WorldWideScience

Sample records for interferon-inducible protein mediates

  1. Gamma Interferon-Induced Guanylate Binding Protein 1 Is a Novel Actin Cytoskeleton Remodeling Factor

    OpenAIRE

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J. K.; Schubert, Dirk W.; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin a...

  2. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses

    Science.gov (United States)

    Montanuy, Imma; Alejo, Ali; Alcami, Antonio

    2011-01-01

    Eradication of smallpox was accomplished 30 yr ago, but poxviral infections still represent a public health concern due to the potential release of variola virus or the emergence of zoonotic poxviruses, such as monkeypox virus. A critical determinant of poxvirus virulence is the inhibition of interferons (IFNs) by the virus-encoded type I IFN-binding protein (IFNα/βBP). This immunomodulatory protein is secreted and has the unique property of interacting with the cell surface in order to prevent IFN-mediated antiviral responses. However, the mechanism of its attachment to the cell surface remains unknown. Using surface plasmon resonance and cell-binding assays, we report that the IFNα/βBP from vaccinia virus, the smallpox vaccine, interacts with cell surface glycosaminoglycans (GAGs). Analysis of the contribution of different regions of the protein to cell surface binding demonstrated that clusters of basic residues in the first immunoglobulin domain mediate GAG interactions. Furthermore, mutation of the GAG-interaction motifs does not affect its IFN-binding and -blocking capacity. Functional conservation of GAG-binding sites is demonstrated for the IFNα/βBP from variola and monkeypox viruses, extending our understanding of immune modulation by the most virulent human poxviruses. These results are relevant for the design of improved vaccines and intervention strategies.—Montanuy, I., Alejo, A., Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. PMID:21372110

  3. Evolution of vertebrate interferon inducible transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Hickford Danielle

    2012-04-01

    Full Text Available Abstract Background Interferon inducible transmembrane proteins (IFITMs have diverse roles, including the control of cell proliferation, promotion of homotypic cell adhesion, protection against viral infection, promotion of bone matrix maturation and mineralisation, and mediating germ cell development. Most IFITMs have been well characterised in human and mouse but little published data exists for other animals. This study characterised IFITMs in two distantly related marsupial species, the Australian tammar wallaby and the South American grey short-tailed opossum, and analysed the phylogeny of the IFITM family in vertebrates. Results Five IFITM paralogues were identified in both the tammar and opossum. As in eutherians, most marsupial IFITM genes exist within a cluster, contain two exons and encode proteins with two transmembrane domains. Only two IFITM genes, IFITM5 and IFITM10, have orthologues in both marsupials and eutherians. IFITM5 arose in bony fish and IFITM10 in tetrapods. The bone-specific expression of IFITM5 appears to be restricted to therian mammals, suggesting that its specialised role in bone production is a recent adaptation specific to mammals. IFITM10 is the most highly conserved IFITM, sharing at least 85% amino acid identity between birds, reptiles and mammals and suggesting an important role for this presently uncharacterised protein. Conclusions Like eutherians, marsupials also have multiple IFITM genes that exist in a gene cluster. The differing expression patterns for many of the paralogues, together with poor sequence conservation between species, suggests that IFITM genes have acquired many different roles during vertebrate evolution.

  4. Endogenous interferon-β-inducible gene expression and interferon-β-treatment are associated with reduced T cell responses to myelin basic protein in multiple sclerosis

    DEFF Research Database (Denmark)

    Börnsen, Lars; Christensen, Jeppe Romme; Ratzer, Rikke

    2015-01-01

    Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used for......-induced CD4+ T-cell autoreactivity in interferon-β-treated multiple sclerosis patients may be mediated by monocyte-derived interleukin-10.......Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used...... for treatment of multiple sclerosis, and some untreated multiple sclerosis patients have increased expression levels of type I interferon-inducible genes in immune cells. The role of endogenous type I interferons in multiple sclerosis is controversial: some studies found an association of high expression levels...

  5. Gamma interferon-induced guanylate binding protein 1 is a novel actin cytoskeleton remodeling factor.

    Science.gov (United States)

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J K; Schubert, Dirk W; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies.

  6. Interferon-γ-induced protein 10 in Lyme disease.

    Science.gov (United States)

    Fallahi, P; Elia, G; Bonatti, A

    2017-01-01

    Lyme disease is an infectious disease caused by bacteria of the Borrelia type, that affects about 300,000 people a year in the USA and 65,000 people a year in Europe. Borrelia infection, and Lyme disease, following occupational exposure has been frequently reported in USA, Europe and Asia. The manifestations of Lyme disease include erythema migrans (EM), arthritis, neuroborrelliosis (NB), and others. Cytokines and chemokines primarily orchestrate leukocyte recruitment to the areas of Borrelia infection, and they are critical mediators of immune and inflammatory responses, in particular of the induction of interferon (IFN)-γ and IFN-γ dependent chemokines. In EM high levels of T helper (Th) 1 cells chemoattranctants [monokine induced by IFN-γ (MIG), IFN-γ-induced protein 10 (IP- 10), and IFN-inducible T cell alpha chemoattractant (I-TAC)] have been shown. Synovial tissues and fluids of patients with Lyme Arthritis (LA) (overall with antibiotic-refractory LA) contained exceptionally high levels of Th1 chemoattractants and cytokines, particularly MIG and IFN-γ. In NB concentrations of IP-10 and I-TAC in the cerebrospinal fluid (CSF) were significantly higher, suggesting that IP-10 and I-TAC create a chemokine gradient between the CSF and serum and recruite C-X-C chemokine receptor 3-expressing memory CD4+ T-cells into the CSF of these patients. A positive association between the disseminating capacity of B. burgdorferi and early type I IFN induction has also been shown. These results suggest that IFN-γ dependent chemokines are important biomarkers to monitor the progression and diffusion of the disease in patients with Borrelia infection; further larger studies are needed.

  7. Association between Interferon-Inducible Protein 6 ( Polymorphisms and Hepatitis B Virus Clearance

    Directory of Open Access Journals (Sweden)

    Geun-Hee Park

    2013-03-01

    Full Text Available CD8+ T cells are key factors mediating hepatitis B virus (HBV clearance. However, these cells are killed through HBV-induced apoptosis during the antigen-presenting period in HBV-induced chronic liver disease (CLD patients. Interferon-inducible protein 6 (IFI6 delays type I interferon-induced apoptosis in cells. We hypothesized that single nucleotide polymorphisms (SNPs in the IFI6 could affect the chronicity of CLD. The present study included a discovery stage, in which 195 CLD patients, including chronic hepatitis B (HEP and cirrhosis patients and 107 spontaneous recovery (SR controls, were analyzed. The genotype distributions of rs2808426 (C > T and rs10902662 (C > T were significantly different between the SR and HEP groups (odds ratio [OR], 6.60; 95% confidence interval [CI], 1.64 to 26.52, p = 0.008 for both SNPs and between the SR and CLD groups (OR, 4.38; 95% CI, 1.25 to 15.26; p = 0.021 and OR, 4.12; 95% CI, 1.18 to 14.44; p = 0.027, respectively. The distribution of diplotypes that contained these SNPs was significantly different between the SR and HEP groups (OR, 6.58; 95% CI, 1.63 to 25.59; p = 0.008 and OR, 0.15; 95% CI, 0.04 to 0.61; p = 0.008, respectively and between the SR and CLD groups (OR, 4.38; 95% CI, 1.25 to 15.26; p = 0.021 and OR, 4.12; 95% CI, 1.18 to 14.44; p = 0.027, respectively. We were unable to replicate the association shown by secondary enrolled samples. A large-scale validation study should be performed to confirm the association between IFI6 and HBV clearance.

  8. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression

    International Nuclear Information System (INIS)

    Kamitani, Shinya; Ohbayashi, Norihiko; Ikeda, Osamu; Togi, Sumihito; Muromoto, Ryuta; Sekine, Yuichi; Ohta, Kazuhide; Ishiyama, Hironobu; Matsuda, Tadashi

    2008-01-01

    Signal transducers and activators of transcription (STATs) mediate cell proliferation, differentiation, and survival in immune responses, hematopoiesis, neurogenesis, and other biological processes. Recently, we showed that KAP1 is a novel STAT-binding partner that regulates STAT3-mediated transactivation. KAP1 is a universal co-repressor protein for the KRAB zinc finger protein superfamily of transcriptional repressors. In this study, we found KAP1-dependent repression of interferon (IFN)/STAT1-mediated signaling. We also demonstrated that endogenous KAP1 associates with endogenous STAT1 in vivo. Importantly, a small-interfering RNA-mediated reduction in KAP1 expression enhanced IFN-induced STAT1-dependent IRF-1 gene expression. These results indicate that KAP1 may act as an endogenous regulator of the IFN/STAT1 signaling pathway

  9. Interferon-induced transcription of a gene encoding a 15-kDA protein depends on an upstream enhancer element

    International Nuclear Information System (INIS)

    Reich, N.; Evans, B.; Levy, D.; Fahey, D.; Knight, E. Jr.; Darnell, J.E. Jr.

    1987-01-01

    A human gene encoding an interferon-induced 15-kDa protein has been isolated from a genomic library. The gene appears to be single-copy and is composed of two exons, the first of which contains the ATG translation initiation codon. In vitro nuclear run-on assays showed that the transcription rate of the gene is stimulated after interferon treatment. To analyze transcriptional regulatory sequences, the authors constructed recombinant plasmids for use in transient transfection assays of HeLa cells. Constructs containing 115 nucleotides 5' to the transcription initiation site were found to be fully inducible by interferon. Assays of deletion mutants identified a critical element for interferon induction located between -115 and -96, just upstream of the CCAAT box. Moreover, a DNA fragment including this region can confer interferon inducibility on a heterologous promoter (thymidine kinase) when cloned in either orientation upstream of the gene or downstream of the gene. These are properties characteristic of an enhancer element that is active only after treatment with interferon. This regulatory sequence may be shared by a group of interferon-induced genes, since a very similar sequence is present within the functional region near the RNA start site of another interferon-induced gene

  10. Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    International Nuclear Information System (INIS)

    Lesinski, Gregory B; Zimmerer, Jason M; Kreiner, Melanie; Trefry, John; Bill, Matthew A; Young, Gregory S; Becknell, Brian; Carson, William E III

    2010-01-01

    Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells. Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr 701 -phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR. SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr 701 -phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation. These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ

  11. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    International Nuclear Information System (INIS)

    Wang, Dang; Fang, Liurong; Luo, Rui; Ye, Rui; Fang, Ying; Xie, Lilan; Chen, Huanchun; Xiao, Shaobo

    2010-01-01

    Research highlights: → FMDV L pro inhibits poly(I:C)-induced IFN-α1/β mRNA expression. → L pro inhibits MDA5-mediated activation of the IFN-α1/β promoter. → L pro significantly reduced the transcription of multiple IRF-responsive genes. → L pro inhibits IFN-α1/β promoter activation by decreasing IRF-3/7 in protein levels. → The ability to process eIF-4G of L pro is not necessary to inhibit IFN-α1/β activation. -- Abstract: The leader proteinase (L pro ) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-β (IFN-β) antagonist that disrupts the integrity of transcription factor nuclear factor κB (NF-κB). In this study, we showed that the reduction of double stranded RNA (dsRNA)-induced IFN-α1/β expression caused by L pro was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-α/β. Furthermore, overexpression of L pro significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L pro mutants indicated that the ability to process eIF-4G of L pro is not required for suppressing dsRNA-induced activation of the IFN-α1/β promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-κB, L pro also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.

  12. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dang; Fang, Liurong; Luo, Rui; Ye, Rui; Fang, Ying; Xie, Lilan; Chen, Huanchun [Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); Xiao, Shaobo, E-mail: shaoboxiao@yahoo.com [Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China)

    2010-08-13

    Research highlights: {yields} FMDV L{sup pro} inhibits poly(I:C)-induced IFN-{alpha}1/{beta} mRNA expression. {yields} L{sup pro} inhibits MDA5-mediated activation of the IFN-{alpha}1/{beta} promoter. {yields} L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes. {yields} L{sup pro} inhibits IFN-{alpha}1/{beta} promoter activation by decreasing IRF-3/7 in protein levels. {yields} The ability to process eIF-4G of L{sup pro} is not necessary to inhibit IFN-{alpha}1/{beta} activation. -- Abstract: The leader proteinase (L{sup pro}) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-{beta} (IFN-{beta}) antagonist that disrupts the integrity of transcription factor nuclear factor {kappa}B (NF-{kappa}B). In this study, we showed that the reduction of double stranded RNA (dsRNA)-induced IFN-{alpha}1/{beta} expression caused by L{sup pro} was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-{alpha}/{beta}. Furthermore, overexpression of L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L{sup pro} mutants indicated that the ability to process eIF-4G of L{sup pro} is not required for suppressing dsRNA-induced activation of the IFN-{alpha}1/{beta} promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-{kappa}B, L{sup pro} also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.

  13. Toscana virus induces interferon although its NSs protein reveals antagonistic activity.

    Science.gov (United States)

    Gori Savellini, Gianni; Weber, Friedemann; Terrosi, Chiara; Habjan, Matthias; Martorelli, Barbara; Cusi, Maria Grazia

    2011-01-01

    Toscana virus (TOSV) is a phlebotomus-transmitted virus that belongs to the family Bunyaviridae and causes widespread infections in humans; about 30 % of these cases result in aseptic meningitis. In the present study, it was shown that TOSV is an inducer of beta interferon (IFN-β), although its non-structural protein (NSs) could inhibit the induction of IFN-β if expressed in a heterologous context. A recombinant Rift Valley fever virus expressing the TOSV NSs could suppress IFN-β expression in infected cells. Moreover, in cells expressing NSs protein from a cDNA plasmid, IFN-β transcripts were not inducible by poly(I : C). Unlike other members of the family Bunyaviridae, TOSV appears to express an NSs protein that is a weak antagonist of IFN induction. Characterization of the interaction of TOSV with the IFN system will help our understanding of virus-host cell interactions and may explain why the pathogenesis of this disease is mostly mild in humans.

  14. Interferon-inducible transmembrane proteins of the innate immune response act as membrane organizers by influencing clathrin and v-ATPase localization and function.

    Science.gov (United States)

    Wee, Yin Shen; Roundy, Kirstin M; Weis, Janis J; Weis, John H

    2012-12-01

    The innate response interferon-inducible transmembrane (Ifitm) proteins have been characterized as influencing proliferation, signaling complexes and restricting virus infections. Treatment of cells lacking these proteins (IfitmDel) with IFN-β resulted in the loss of clathrin from membrane compartments and the inhibition of clathrin-mediated phagocytosis, suggesting a molecular interaction between clathrin and Ifitm proteins. The pH of endosomes of IfitmDel cells, with or without IFN activation, was neutralized, suggesting the function of the vacular ATPase proton pumps in such cells was compromised. Co-immunoprecipitation of Ifitm3 with Atp6v0b demonstrated a direct interaction between the Ifitm proteins and the v-ATPase. These data suggest that the Ifitm proteins help stabilize v-ATPase complexes in cellular membranes which, in turn, facilitates the appropriate subcellular localization of clathrin.

  15. The CXC chemokines gamma interferon (IFN-gamma)-inducible protein 10 and monokine induced by IFN-gamma are released during severe melioidosis

    NARCIS (Netherlands)

    Lauw, F. N.; Simpson, A. J.; Prins, J. M.; van Deventer, S. J.; Chaowagul, W.; White, N. J.; van der Poll, T.

    2000-01-01

    Gamma interferon (IFN-gamma)-inducible protein 10 (IP-10) and monokine induced by IFN-gamma (Mig) are related CXC chemokines which bind to the CXCR3 receptor and specifically target activated T lymphocytes and natural killer (NK) cells. The production of IP-10 and Mig by various cell types in vitro

  16. Interferon γ-inducible protein (IFI) 16 transcriptionally regulates type i interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses.

    Science.gov (United States)

    Thompson, Mikayla R; Sharma, Shruti; Atianand, Maninjay; Jensen, Søren B; Carpenter, Susan; Knipe, David M; Fitzgerald, Katherine A; Kurt-Jones, Evelyn A

    2014-08-22

    The interferon γ-inducible protein 16 (IFI16) has recently been linked to the detection of nuclear and cytosolic DNA during infection with herpes simplex virus-1 and HIV. IFI16 binds dsDNA via HIN200 domains and activates stimulator of interferon genes (STING), leading to TANK (TRAF family member-associated NF-κB activator)-binding kinase-1 (TBK1)-dependent phosphorylation of interferon regulatory factor (IRF) 3 and transcription of type I interferons (IFNs) and related genes. To better understand the role of IFI16 in coordinating type I IFN gene regulation, we generated cell lines with stable knockdown of IFI16 and examined responses to DNA and RNA viruses as well as cyclic dinucleotides. As expected, stable knockdown of IFI16 led to a severely attenuated type I IFN response to DNA ligands and viruses. In contrast, expression of the NF-κB-regulated cytokines IL-6 and IL-1β was unaffected in IFI16 knockdown cells, suggesting that the role of IFI16 in sensing these triggers was unique to the type I IFN pathway. Surprisingly, we also found that knockdown of IFI16 led to a severe attenuation of IFN-α and the IFN-stimulated gene retinoic acid-inducible gene I (RIG-I) in response to cyclic GMP-AMP, a second messenger produced by cyclic GMP-AMP synthase (cGAS) as well as RNA ligands and viruses. Analysis of IFI16 knockdown cells revealed compromised occupancy of RNA polymerase II on the IFN-α promoter in these cells, suggesting that transcription of IFN-stimulated genes is dependent on IFI16. These results indicate a broader role for IFI16 in the regulation of the type I IFN response to RNA and DNA viruses in antiviral immunity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Hepatitis C Virus Frameshift/Alternate Reading Frame Protein Suppresses Interferon Responses Mediated by Pattern Recognition Receptor Retinoic-Acid-Inducible Gene-I.

    Directory of Open Access Journals (Sweden)

    Seung Bum Park

    Full Text Available Hepatitis C virus (HCV actively evades host interferon (IFN responses but the mechanisms of how it does so are not completely understood. In this study, we present evidence for an HCV factor that contributes to the suppression of retinoic-acid-inducible gene-I (RIG-I-mediated IFN induction. Expression of frameshift/alternate reading frame protein (F/ARFP from HCV -2/+1 frame in Huh7 hepatoma cells suppressed type I IFN responses stimulated by HCV RNA pathogen-associated molecular pattern (PAMP and poly(IC. The suppression occurred independently of other HCV factors; and activation of interferon stimulated genes, TNFα, IFN-λ1, and IFN-λ2/3 was likewise suppressed by HCV F/ARFP. Point mutations in the full-length HCV sequence (JFH1 genotype 2a strain were made to introduce premature termination codons in the -2/+1 reading frame coding for F/ARFP while preserving the original reading frame, which enhanced IFNα and IFNβ induction by HCV. The potentiation of IFN response by the F/ARFP mutations was diminished in Huh7.5 cells, which already have a defective RIG-I, and by decreasing RIG-I expression in Huh7 cells. Furthermore, adding F/ARFP back via trans-complementation suppressed IFN induction in the F/ARFP mutant. The F/ARFP mutants, on the other hand, were not resistant to exogenous IFNα. Finally, HCV-infected human liver samples showed significant F/ARFP antibody reactivity, compared to HCV-uninfected control livers. Therefore, HCV F/ARFP likely cooperates with other viral factors to suppress type I and III IFN induction occurring through the RIG-I signaling pathway. This study identifies a novel mechanism of pattern recognition receptor modulation by HCV and suggests a biological function of the HCV alternate reading frame in the modulation of host innate immunity.

  18. The Tat protein of human immunodeficiency virus-1 enhances hepatitis C virus replication through interferon gamma-inducible protein-10

    Directory of Open Access Journals (Sweden)

    Qu Jing

    2012-04-01

    Full Text Available Abstract Background Co-infection with human immunodeficiency virus-1 (HIV-1 and hepatitis C virus (HCV is associated with faster progression of liver disease and an increase in HCV persistence. However, the mechanism by which HIV-1 accelerates the progression of HCV liver disease remains unknown. Results HIV-1/HCV co-infection is associated with increased expression of interferon gamma-induced protein-10 (IP-10 mRNA in peripheral blood mononuclear cells (PBMCs. HCV RNA levels were higher in PBMCs of patients with HIV-1/HCV co-infection than in patients with HCV mono-infection. HIV-1 Tat and IP-10 activated HCV replication in a time-dependent manner, and HIV-1 Tat induced IP-10 production. In addition, the effect of HIV-1 Tat on HCV replication was blocked by anti-IP-10 monoclonal antibody, demonstrating that the effect of HIV-1 Tat on HCV replication depends on IP-10. Taken together, these results suggest that HIV-1 Tat protein activates HCV replication by upregulating IP-10 production. Conclusions HIV-1/HCV co-infection is associated with increased expression of IP-10 mRNA and replication of HCV RNA. Furthermore, both HIV-1 Tat and IP-10 activate HCV replication. HIV-1 Tat activates HCV replication by upregulating IP-10 production. These results expand our understanding of HIV-1 in HCV replication and the mechanism involved in the regulation of HCV replication mediated by HIV-1 during co-infection.

  19. No Love Lost Between Viruses and Interferons.

    Science.gov (United States)

    Fensterl, Volker; Chattopadhyay, Saurabh; Sen, Ganes C

    2015-11-01

    The interferon system protects mammals against virus infections. There are several types of interferons, which are characterized by their ability to inhibit virus replication and resultant pathogenesis by triggering both innate and cell-mediated immune responses. Virus infection is sensed by a variety of cellular pattern-recognition receptors and triggers the synthesis of interferons, which are secreted by the infected cells. In uninfected cells, cell surface receptors recognize the secreted interferons and activate intracellular signaling pathways that induce the expression of interferon-stimulated genes; the proteins encoded by these genes inhibit different stages of virus replication. To avoid extinction, almost all viruses have evolved mechanisms to defend themselves against the interferon system. Consequently, a dynamic equilibrium of survival is established between the virus and its host, an equilibrium that can be shifted to the host's favor by the use of exogenous interferon as a therapeutic antiviral agent.

  20. Interferon-inducible MyD88 protein inhibits hepatitis B virus replication

    International Nuclear Information System (INIS)

    Xiong Wei; Wang Xun; Liu Xiaoying; Xiang Li; Zheng Lingjie; Yuan Zhenghong

    2004-01-01

    Myeloid differential primary response protein (MyD88) is a critical component in the signaling cascade through Toll-like receptors (TLRs) and is induced by α interferon (IFN-α). To examine the role of MyD88 in the antiviral activity of IFN-α against hepatitis B virus (HBV), we established MyD88 stably expressing cell lines and studied HBV replication in these lines after transient transfection. The levels of HBV proteins and viral replicative intermediates were effectively reduced in MyD88-expressing cells. A significant reduction of total and cytoplasmic viral RNAs in MyD88 stably expressing cells was also observed. Using a nuclear factor-κB (NF-κB) dependent reporter assay, it was shown that activation of NF-κB was moderately increased in the presence of expression of MyD88, and further significantly increased by co-expression of HBV. These results suggest a novel mechanism for the inhibition of HBV replication by IFN-α via expression of MyD88 protein involving activation of NF-κB signaling pathway and downregulation of viral transcription

  1. Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3.

    Science.gov (United States)

    Rabbani, M A G; Ribaudo, Michael; Guo, Ju-Tao; Barik, Sailen

    2016-12-15

    A major arm of cellular innate immunity is type I interferon (IFN), represented by IFN-α and IFN-β. Type I IFN transcriptionally induces a large number of cellular genes, collectively known as IFN-stimulated gene (ISG) proteins, which act as antivirals. The IFIT (interferon-induced proteins with tetratricopeptide repeats) family proteins constitute a major subclass of ISG proteins and are characterized by multiple tetratricopeptide repeats (TPRs). In this study, we have interrogated IFIT proteins for the ability to inhibit the growth of human parainfluenza virus type 3 (PIV3), a nonsegmented negative-strand RNA virus of the Paramyxoviridae family and a major cause of respiratory disease in children. We found that IFIT1 significantly inhibited PIV3, whereas IFIT2, IFIT3, and IFIT5 were less effective or not at all. In further screening a set of ISG proteins we discovered that several other such proteins also inhibited PIV3, including IFITM1, IDO (indoleamine 2,3-dioxygenase), PKR (protein kinase, RNA activated), and viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible)/Cig5. The antiviral effect of IDO, the enzyme that catalyzes the first step of tryptophan degradation, could be counteracted by tryptophan. These results advance our knowledge of diverse ISG proteins functioning as antivirals and may provide novel approaches against PIV3. The innate immunity of the host, typified by interferon (IFN), is a major antiviral defense. IFN inhibits virus growth by inducing a large number of IFN-stimulated gene (ISG) proteins, several of which have been shown to have specific antiviral functions. Parainfluenza virus type 3 (PIV3) is major pathogen of children, and no reliable vaccine or specific antiviral against it currently exists. In this article, we report several ISG proteins that strongly inhibit PIV3 growth, the use of which may allow a better antiviral regimen targeting PIV3. Copyright © 2016, American Society for Microbiology

  2. The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein

    Energy Technology Data Exchange (ETDEWEB)

    Hoenen, Antje [School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane (Australia); Gillespie, Leah [Department of Microbiology, La Trobe University, Melbourne (Australia); Department of Microbiology and Immunology, University of Melbourne, Melbourne (Australia); Morgan, Garry; Heide, Peter van der [Institute for Molecular Bioscience, University of Queensland, Brisbane (Australia); Khromykh, Alexander [School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane (Australia); Australian Infectious Diseases Research Centre, University of Queensland, Brisbane (Australia); Mackenzie, Jason, E-mail: jason.mackenzie@unimelb.edu.au [Department of Microbiology, La Trobe University, Melbourne (Australia); Department of Microbiology and Immunology, University of Melbourne, Melbourne (Australia)

    2014-01-05

    Flaviviruses have evolved means to evade host innate immune responses. Recent evidence suggests this is due to prevention of interferon production and signaling in flavivirus-infected cells. Here we show that the interferon-induced MxA protein can sequester the West Nile virus strain Kunjin virus (WNV{sub KUN}) capsid protein in cytoplasmic tubular structures in an expression-replication system. This sequestering resulted in reduced titers of secreted WNV{sub KUN} particles. We show by electron microscopy, tomography and 3D modeling that these cytoplasmic tubular structures form organized bundles. Additionally we show that recombinant ER-targeted MxA can restrict production of infectious WNV{sub KUN} under conditions of virus infection. Our results indicate a co-ordinated and compartmentalized WNV{sub KUN} assembly process may prevent recognition of viral components by MxA, particularly the capsid protein. This recognition can be exploited if MxA is targeted to intracellular sites of WNV{sub KUN} assembly. This results in further understanding of the mechanisms of flavivirus evasion from the immune system. - Highlights: • We show that the ISG MxA can recognize the West Nile virus capsid protein. • Interaction between WNV C protein and MxA induces cytoplasmic fibrils. • MxA can be retargeted to the ER to restrict WNV particle release. • WNV assembly process is a strategy to avoid MxA recognition.

  3. INF-γ Enhances Nox2 Activity by Upregulating phox Proteins When Applied to Differentiating PLB-985 Cells but Does Not Induce Nox2 Activity by Itself.

    Directory of Open Access Journals (Sweden)

    Michael A Ellison

    Full Text Available The cytokine and drug interferon-γ enhances superoxide anion production by the antimicrobicidal Nox2 enzyme of neutrophils. Because mature neutrophils have a short lifespan, we hypothesized that the effects of interferon-γ on these cells might be mediated by its prolonged exposure to differentiating neutrophil precursors in the bone marrow rather than its brief exposure to mature circulating neutrophils. Effects of INF-Γ on NOX2 activity: To address this possibility we exposed the myeloid PLB-985 cell line to interferon-γ for 3 days in the presence of dimethyl sulfoxide which induces terminal differentiation of these cells. Interferon-γ was found to enhance superoxide production by Nox2 in a concentration dependent manner. In contrast, application of interferon-γ alone for 3 days failed to induce detectible Nox2 activity. Additionally, application of interferon-γ for 3 hours to pre-differentiated PLB-985 cells, which models studies using isolated neutrophils, was much less effective at enhancing superoxide anion production. Effects of INF-Γ on phox protein levels: Addition of interferon-γ during differentiation was found to upregulate the Nox2 proteins gp91phox and p47phox in concert with elevated transcription of their genes. The p22phox protein was upregulated in the absence of increased transcription presumably reflecting stabilization resulting from binding to the elevated gp91phox. Thus, increased levels of gp91phox, p47phox and p22phox likely account for the interferonmediated enhancement of dimethyl sulfoxide-induced Nox2 activity. In contrast, although interferon-γ alone also increased various phox proteins and their mRNAs, the pattern was very different to that seen with interferon-γ plus dimethyl sulfoxide. In particular, p47phox was not induced thus explaining the inability of interferon -γ alone to enhance Nox2 activity. Short application of interferon-γ to already differentiated cells failed to increase any phox

  4. A type I interferon signature characterizes chronic antibody-mediated rejection in kidney transplantation.

    Science.gov (United States)

    Rascio, Federica; Pontrelli, Paola; Accetturo, Matteo; Oranger, Annarita; Gigante, Margherita; Castellano, Giuseppe; Gigante, Maddalena; Zito, Anna; Zaza, Gianluigi; Lupo, Antonio; Ranieri, Elena; Stallone, Giovanni; Gesualdo, Loreto; Grandaliano, Giuseppe

    2015-09-01

    Chronic antibody-mediated rejection (CAMR) represents the main cause of kidney graft loss. To uncover the molecular mechanisms underlying this condition, we characterized the molecular signature of peripheral blood mononuclear cells (PBMCs) and, separately, of CD4(+) T lymphocytes isolated from CAMR patients, compared to kidney transplant recipients with normal graft function and histology. We enrolled 29 patients with biopsy-proven CAMR, 29 stable transplant recipients (controls), and 8 transplant recipients with clinical and histological evidence of interstitial fibrosis/tubular atrophy. Messenger RNA and microRNA profiling of PBMCs and CD4(+) T lymphocytes was performed using Agilent microarrays in eight randomly selected patients per group from CAMR and control subjects. Results were evaluated statistically and by functional pathway analysis (Ingenuity Pathway Analysis) and validated in the remaining subjects. In PBMCs, 45 genes were differentially expressed between the two groups, most of which were up-regulated in CAMR and were involved in type I interferon signalling. In the same patients, 16 microRNAs were down-regulated in CAMR subjects compared to controls: four were predicted modulators of six mRNAs identified in the transcriptional analysis. In silico functional analysis supported the involvement of type I interferon signalling. To further confirm this result, we investigated the transcriptomic profiles of CD4(+) T lymphocytes in an independent group of patients, observing that the activation of type I interferon signalling was a specific hallmark of CAMR. In addition, in CAMR patients, we detected a reduction of circulating BDCA2(+) dendritic cells, the natural type I interferon-producing cells, and their recruitment into the graft along with increased expression of MXA, a type I interferon-induced protein, at the tubulointerstitial and vascular level. Finally, interferon alpha mRNA expression was significantly increased in CAMR compared to control

  5. Lipotoxicity induces hepatic protein inclusions through TBK1-mediated p62/SQSTM1 phosphorylation.

    Science.gov (United States)

    Cho, Chun-Seok; Park, Hwan-Woo; Ho, Allison; Semple, Ian A; Kim, Boyoung; Jang, Insook; Park, Haeli; Reilly, Shannon; Saltiel, Alan R; Lee, Jun Hee

    2017-12-18

    Obesity commonly leads to hepatic steatosis, which often provokes lipotoxic injuries to hepatocytes that cause non-alcoholic steatohepatitis (NASH). NASH in turn is associated with the accumulation of insoluble protein aggregates that are composed of ubiquitinated proteins and ubiquitin adaptor p62/sequestosome 1 (SQSTM1). The formation of p62 inclusions in hepatocytes is the critical marker that distinguishes simple fatty liver from NASH and predicts a poor prognostic outcome for subsequent liver carcinogenesis. However, the molecular mechanism by which lipotoxicity induces protein aggregation is currently unknown. Here we show that upon saturated fatty acid-induced lipotoxicity, Tank-binding protein kinase 1 (TBK1) is activated and phosphorylates p62. The TBK1-mediated p62 phosphorylation is important for lipotoxicity-induced aggregation of ubiquitinated proteins and the formation of large protein inclusions in hepatocytes. In addition, cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), upstream regulators of TBK1, are involved in the lipotoxic activation of TBK1 and subsequent p62 phosphorylation in hepatocytes. Furthermore, TBK1 inhibition prevented formation of the ubiquitin-p62 aggregates, not only in cultured hepatocytes, but also in mouse models of obesity and NASH. These results suggest that lipotoxic activation of TBK1 and subsequent p62 phosphorylation are critical steps in the NASH pathology of protein inclusion accumulation in hepatocytes. This mechanism can provide an explanation for how hypernutrition and obesity promote the development of severe liver pathologies, such as steatohepatitis and liver cancer, by facilitating the formation of p62 inclusions. This article is protected by copyright. All rights reserved. © 2017 by the American Association for the Study of Liver Diseases.

  6. Stimulation of Inducible Nitric Oxide Synthase Expression by Beta Interferon Increases Necrotic Death of Macrophages upon Listeria monocytogenes Infection▿

    OpenAIRE

    Zwaferink, Heather; Stockinger, Silvia; Reipert, Siegfried; Decker, Thomas

    2008-01-01

    Murine macrophage death upon infection with Listeria monocytogenes was previously shown to be increased by beta interferon, produced by the infected cells. We saw that interferon-upregulated caspase activation or other interferon-inducible, death-associated proteins, including TRAIL, protein kinase R, and p53, were not necessary for cell death. Macrophage death was reduced when inducible nitric oxide synthase (iNOS) was inhibited during infection, and iNOS-deficient macrophages were less susc...

  7. Identification and expression analysis of the interferon-induced protein with tetratricopeptide repeats 5 (IFIT5 gene in duck (Anas platyrhynchos domesticus.

    Directory of Open Access Journals (Sweden)

    Bin Wang

    Full Text Available The interferon-induced proteins with tetratricopeptide repeats (IFITs protein family mediates antiviral effects by inhibiting translation initiation, cell proliferation, and migration in the interferon (IFN dependent innate immune system. Several members of this family, including IFIT1, IFIT2, IFIT3 and IFIT5, have been heavily studied in mammals. Avian species contain only one family member, IFIT5, and little is known about the role of this protein in birds. In this study, duck IFIT5 (duIFIT5 full-length mRNA was cloned by reverse transcription polymerase chain reaction (RT-PCR and rapid amplification of the cDNA ends (RACE. Based on the sequence obtained, we performed a series of bioinformatics analyses, and found that duIFIT5 was most similar to homologs in other avian species. Also, duIFIT5 contained eight conserved TPR motifs and two conserved multi-domains (TPR_11 and TPR_12. Finally, we used duck hepatitis virus type 1 (DHV-1 and polyriboinosinicpolyribocytidylic acid (poly (I:C as a pathogen or a pathogen-associated molecular pattern induction to infect three-day-old domestic ducklings. The liver and spleen were collected to detect the change in duIFIT5 transcript level upon infection by quantitative real-time PCR (qRT-PCR. DuIFIT5 expression rapidly increased after DHV-1 infection and maintained a high level, while the transcripts of duIFIT5 peaked at 8h after poly (I:C infection and then returned to normal. Taken together, these results provide a greater understanding of avian IFIT5.

  8. Identification and Expression Analysis of the Interferon-Induced Protein with Tetratricopeptide Repeats 5 (IFIT5) Gene in Duck (Anas platyrhynchos domesticus)

    Science.gov (United States)

    Mu, Chunyu; Su, Yanhui; Liu, Ran; Huang, Zhengyang; Li, Yang; Yu, Qingming; Chang, Guobin; Xu, Qi; Chen, Guohong

    2015-01-01

    The interferon-induced proteins with tetratricopeptide repeats (IFITs) protein family mediates antiviral effects by inhibiting translation initiation, cell proliferation, and migration in the interferon (IFN) dependent innate immune system. Several members of this family, including IFIT1, IFIT2, IFIT3 and IFIT5, have been heavily studied in mammals. Avian species contain only one family member, IFIT5, and little is known about the role of this protein in birds. In this study, duck IFIT5 (duIFIT5) full-length mRNA was cloned by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of the cDNA ends (RACE). Based on the sequence obtained, we performed a series of bioinformatics analyses, and found that duIFIT5 was most similar to homologs in other avian species. Also, duIFIT5 contained eight conserved TPR motifs and two conserved multi-domains (TPR_11 and TPR_12). Finally, we used duck hepatitis virus type 1 (DHV-1) and polyriboinosinicpolyribocytidylic acid (poly (I:C)) as a pathogen or a pathogen-associated molecular pattern induction to infect three-day-old domestic ducklings. The liver and spleen were collected to detect the change in duIFIT5 transcript level upon infection by quantitative real-time PCR (qRT-PCR). DuIFIT5 expression rapidly increased after DHV-1 infection and maintained a high level, while the transcripts of duIFIT5 peaked at 8h after poly (I:C) infection and then returned to normal. Taken together, these results provide a greater understanding of avian IFIT5. PMID:25816333

  9. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    International Nuclear Information System (INIS)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-01-01

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways

  10. Dissecting interferon-induced transcriptional programs in human peripheral blood cells.

    Directory of Open Access Journals (Sweden)

    Simon J Waddell

    2010-03-01

    Full Text Available Interferons are key modulators of the immune system, and are central to the control of many diseases. The response of immune cells to stimuli in complex populations is the product of direct and indirect effects, and of homotypic and heterotypic cell interactions. Dissecting the global transcriptional profiles of immune cell populations may provide insights into this regulatory interplay. The host transcriptional response may also be useful in discriminating between disease states, and in understanding pathophysiology. The transcriptional programs of cell populations in health therefore provide a paradigm for deconvoluting disease-associated gene expression profiles.We used human cDNA microarrays to (1 compare the gene expression programs in human peripheral blood mononuclear cells (PBMCs elicited by 6 major mediators of the immune response: interferons alpha, beta, omega and gamma, IL12 and TNFalpha; and (2 characterize the transcriptional responses of purified immune cell populations (CD4+ and CD8+ T cells, B cells, NK cells and monocytes to IFNgamma stimulation. We defined a highly stereotyped response to type I interferons, while responses to IFNgamma and IL12 were largely restricted to a subset of type I interferon-inducible genes. TNFalpha stimulation resulted in a distinct pattern of gene expression. Cell type-specific transcriptional programs were identified, highlighting the pronounced response of monocytes to IFNgamma, and emergent properties associated with IFN-mediated activation of mixed cell populations. This information provides a detailed view of cellular activation by immune mediators, and contributes an interpretive framework for the definition of host immune responses in a variety of disease settings.

  11. Positional effect of phosphorylation sites 266 and 267 in the cytoplasmic domain of the E2 protein of hepatitis C virus 3a genotype: Interferon Resistance analysis via Sequence Alignment

    Directory of Open Access Journals (Sweden)

    Ur Rehman Irshad

    2011-05-01

    Full Text Available Abstract Background Interferon is well thought-out as the key defence against all infections including HCV. The only treatment for HCV infection is pegylated interferon alpha (IFN-α but unluckily more than half of the infected individuals do not act in response to the cure and become chronic HCV carriers. The mechanism how HCV induce interferon resistance is still elusive. It is recently reported that HCV envelope protein 2 interacts with PKR which is the interferon-inducible protein kinase and which in turn blocks the activity of its target molecule called eukaryotic initiation factor elF2. Sequence analysis of Envelope protein reveals it contains a domain homologous to phosphorylation sites of PKR andthe translation initiation factor eIF2alpha. Envelope protein competes for phosphorylation with PKR. Inhibition of kinase activity of PKR is postulated as a mechanism of to interferon (IFN resistance. Results Present study involves the insilico investigation of possible role of potential phosphorylation in envelope 2 protein of 3a genotype in interferon resistance. Envelope protein coding genes were isolated from local HCV isolates, cloned and sequenced. Phylogenetic analysis was done and tertiary structure of envelope gene was predicted. Visualization of phosphorylation in tertiary structure reveals that residue 266 and 267 of envelope gene 2 are surface exposed and their phosphorylation may compete with the phosphorylation of PKR protein and possibly involved in mediating Interferon Resistance. Conclusion A hybrid in-silico and wet laboratory approach of motif prediction, evolutionary and structural analysis has pointed out serine 266 and 267 of the HCV E2 gene as a hopeful claimant for the serine phosphorylation. Recognition of these nucleotide variations may assist to propose genotype precise therapy to avoid and resolve HCV infections.

  12. Production of human interferon alfa 2b in plants of Nicotiana excelsior by Agrobacterium-mediated transient expression.

    Science.gov (United States)

    Sindarovska, Y R; Gerasymenko, I M; Sheludko, Y V; Olevinskaya, Z M; Spivak, N Y; Kuchuk, N V

    2010-01-01

    Human interferon alpha2b gene was transiently expressed in Nicotiana excelsior plants. Fusion with N. plumbaginifolia calreticulin signal peptide for improved apoplast targeting and carrying out the expression under optimized conditions resulted in maximal interferon activity of 3.2 x 10(3) IU/g fresh weight (FW) with an average of 2.1 +/- 0.8 x 10(3) IU/g FW. It proves that N. excelsior is a suitable host for Agrobacterium-mediated transient expression of genes encoding physiologically active human proteins. The transient expression conditions optimized for GFP marker protein were confirmed to be preferable for hIFN alpha2b.

  13. Identification of Secreted Proteins Involved in Nonspecific dsRNA-Mediated Lutzomyia longipalpis LL5 Cell Antiviral Response

    Directory of Open Access Journals (Sweden)

    Andrea Martins-da-Silva

    2018-01-01

    Full Text Available Hematophagous insects transmit infectious diseases. Sand flies are vectors of leishmaniasis, but can also transmit viruses. We have been studying immune responses of Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas. We identified a non-specific antiviral response in L. longipalpis LL5 embryonic cells when treated with non-specific double-stranded RNAs (dsRNAs. This response is reminiscent of interferon response in mammals. We are investigating putative effectors for this antiviral response. Secreted molecules have been implicated in immune responses, including interferon-related responses. We conducted a mass spectrometry analysis of conditioned medium from LL5 cells 24 and 48 h after dsRNA or mock treatment. We identified 304 proteins. At 24 h, 19 proteins had an abundance equal or greater than 2-fold change, while the levels of 17 proteins were reduced when compared to control cells. At the 48 h time point, these numbers were 33 and 71, respectively. The two most abundant secreted peptides at 24 h in the dsRNA-transfected group were phospholipid scramblase, an interferon-inducible protein that mediates antiviral activity, and forskolin-binding protein (FKBP, a member of the immunophilin family, which mediates the effect of immunosuppressive drugs. The transcription profile of most candidates did not follow the pattern of secreted protein abundance.

  14. Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2014-12-01

    Full Text Available Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR. Host PRR for RNA viruses include Toll-like receptors (TLR and retinoic acid-inducible gene I (RIG-I like receptors (RLR. Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.

  15. Interferon-Inducible CD169/Siglec1 Attenuates Anti-HIV-1 Effects of Alpha Interferon

    Science.gov (United States)

    Akiyama, Hisashi; Ramirez, Nora-Guadalupe Pina; Gibson, Gregory; Kline, Christopher; Watkins, Simon; Ambrose, Zandrea

    2017-01-01

    ABSTRACT A hallmark of human immunodeficiency virus type 1 (HIV-1) infection in vivo is chronic immune activation concomitant with type I interferon (IFN) production. Although type I IFN induces an antiviral state in many cell types, HIV-1 can replicate in vivo via mechanisms that have remained unclear. We have recently identified a type I IFN-inducible protein, CD169, as the HIV-1 attachment factor on dendritic cells (DCs) that can mediate robust infection of CD4+ T cells in trans. Since CD169 expression on macrophages is also induced by type I IFN, we hypothesized that type I IFN-inducible CD169 could facilitate productive HIV-1 infection in myeloid cells in cis and CD4+ T cells in trans and thus offset antiviral effects of type I IFN. In support of this hypothesis, infection of HIV-1 or murine leukemia virus Env (MLV-Env)-pseudotyped HIV-1 particles was enhanced in IFN-α-treated THP-1 monocytoid cells, and this enhancement was primarily dependent on CD169-mediated enhancement at the virus entry step, a phenomenon phenocopied in HIV-1 infections of IFN-α-treated primary monocyte-derived macrophages (MDMs). Furthermore, expression of CD169, a marker of type I IFN-induced immune activation in vivo, was enhanced in lymph nodes from pigtailed macaques infected with simian immunodeficiency virus (SIV) carrying HIV-1 reverse transcriptase (RT-SHIV), compared to uninfected macaques, and interestingly, there was extensive colocalization of p27gag and CD169, suggesting productive infection of CD169+ myeloid cells in vivo. While cell-free HIV-1 infection of IFN-α-treated CD4+ T cells was robustly decreased, initiation of infection in trans via coculture with CD169+ IFN-α-treated DCs restored infection, suggesting that HIV-1 exploits CD169 in cis and in trans to attenuate a type I IFN-induced antiviral state. IMPORTANCE HIV-1 infection in humans causes immune activation characterized by elevated levels of proinflammatory cytokines, including type I interferons (IFN

  16. Interferon induced IFIT family genes in host antiviral defense.

    Science.gov (United States)

    Zhou, Xiang; Michal, Jennifer J; Zhang, Lifan; Ding, Bo; Lunney, Joan K; Liu, Bang; Jiang, Zhihua

    2013-01-01

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals.

  17. The N-terminus of Bunyamwera orthobunyavirus NSs protein is essential for interferon antagonism.

    Science.gov (United States)

    van Knippenberg, Ingeborg; Carlton-Smith, Charlie; Elliott, Richard M

    2010-08-01

    Bunyamwera virus NSs protein is involved in the inhibition of cellular transcription and the interferon (IFN) response, and it interacts with the Med8 component of Mediator. A spontaneous mutant of a recombinant NSs-deleted Bunyamwera virus (rBUNdelNSs2) was identified and characterized. This mutant virus, termed mBUNNSs22, expresses a 21 aa N-terminally truncated form of NSs. Like rBUNdelNSs2, mBUNNSs22 is attenuated in IFN-deficient cells, and to a greater extent in IFN-competent cells. Both rBUNdelNSs2 and mBUNNSs22 are potent IFN inducers and their growth can be rescued by depleting cellular IRF3. Strikingly, despite encoding an NSs protein that contains the Med8 interaction domain, mBUNNSs22 fails to block RNA polymerase II activity during infection. Overall, our data suggest that both the interaction of NSs with Med8 and a novel unidentified function of the NSs N-terminus, seem necessary for Bunyamwera virus to counteract host antiviral responses.

  18. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses.

    Science.gov (United States)

    Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Hoenen, Thomas; Zimmer, Gert; Marz, Manja; Weber, Friedemann; Müller, Marcel A; Kochs, Georg

    2017-08-01

    Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity

  19. Production of a monoclonal antibody directed against an interferon-induced 56,000-dalton protein and its use in the study of this protein

    International Nuclear Information System (INIS)

    Rubin, B.Y.; Anderson, S.L.; Lunn, R.M.; Hellermann, G.R.; Richardson, N.K.; Smith, L.J.

    1988-01-01

    Interferon (IFN) treatment of cells induces the synthesis of several new proteins. A hybridoma cell line producing monoclonal antibody to the IFN-induced 56,000-dalton protein has been developed. The IFN-induced 56,000-dalton protein is synthesized by a variety of different cells and in response to IFN-α, IFN-β, and IFN-γ. The induction of this protein is dependent on de novo RNA synthesis, since its induction is inhibited if actinomycin D and the IFNs are added to the cells simultaneously. [ 35 S]-labeling of IFN-treated cells at 4-h intervals at various times after the addition of the IFNs reveals that the synthesis of the 56,000-dalton protein in IFN-α-treated cells peaks within 12 h after the addition of the IFN and is no longer enhanced 20 h after exposure to the IFN. In contrast, IFN-γ-treated cells continue to show an enhanced synthesis of this IFN-induced protein even after 20 h of exposure to the IFN. Thus, the synthesis of the IFN-induced 56,000-dalton protein is regulated differently by the different IFNs. When cells are treated with IFN-α or IFN-γ in the presence of cycloheximide, and actinomycin D is added prior to the removal of the cycloheximide, the cells produce the IFN-induced 56,000-dalton protein and develop an antiviral state in response to both IFN-α and IFN-γ. These results demonstrate that the synthesis of the 56,000-dalton protein is not dependent on the synthesis of an intermediary protein and that the establishment of an antiviral state occurs in the absence of multiple transcriptional events

  20. Interferon-β-induced activation of c-Jun NH2-terminal kinase mediates apoptosis through up-regulation of CD95 in CH31 B lymphoma cells

    International Nuclear Information System (INIS)

    Takada, Eiko; Shimo, Kuniaki; Hata, Kikumi; Abiake, Maira; Mukai, Yasuo; Moriyama, Masami; Heasley, Lynn; Mizuguchi, Junichiro

    2005-01-01

    Type I interferon (IFN)-induced antitumor action is due in part to apoptosis, but the molecular mechanisms underlying IFN-induced apoptosis remain largely unresolved. In the present study, we demonstrate that IFN-β induced apoptosis and the loss of mitochondrial membrane potential (ΔΨm) in the murine CH31 B lymphoma cell line, and this was accompanied by the up-regulation of CD95, but not CD95-ligand (CD95-L), tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL). Pretreatment with anti-CD95-L mAb partially prevented the IFN-β-induced loss of ΔΨm, suggesting that the interaction of IFN-β-up-regulated CD95 with CD95-L plays a crucial role in the induction of fratricide. IFN-β induced a sustained activation of c-Jun NH 2 -terminal kinase 1 (JNK1), but not extracellular signal-regulated kinases (ERKs). The IFN-β-induced apoptosis and loss of ΔΨm were substantially compromised in cells overexpressing a dominant-negative form of JNK1 (dnJNK1), and it was slightly enhanced in cells carrying a constitutively active JNK construct, MKK7-JNK1 fusion protein. The IFN-β-induced up-regulation of CD95 together with caspase-8 activation was also abrogated in the dnJNK1 cells while it was further enhanced in the MKK7-JNK1 cells. The levels of cellular FLIP (c-FLIP), competitively interacting with caspase-8, were down-regulated by stimulation with IFN-β but were reversed by the proteasome inhibitor lactacystin. Collectively, the IFN-β-induced sustained activation of JNK mediates apoptosis, at least in part, through up-regulation of CD95 protein in combination with down-regulation of c-FLIP protein

  1. Parental influenza virion nucleocapsids are efficiently transported into the nuclei of murine cells expressing the nuclear interferon-induced Mx protein.

    Science.gov (United States)

    Broni, B; Julkunen, I; Condra, J H; Davies, M E; Berry, M J; Krug, R M

    1990-12-01

    The interferon-induced murine Mx1 protein, which is localized in the nucleus, most likely specifically blocks influenza virus replication by inhibiting nuclear viral mRNA synthesis, including the mRNA synthesis catalyzed by inoculum (parental) virion nucleocapsids (R. M. Krug, M. Shaw, B. Broni, G. Shapiro, and O. Haller, J. Virol. 56:201-206, 1985). We tested two possible mechanisms for this inhibition. First, we determined whether the transport of parental nucleocapsids into the nucleus was inhibited in murine cells expressing the nuclear Mx1 protein. To detect the Mx1 protein, we prepared rabbit antibodies against the Mx1 protein with a CheY-Mx fusion protein expressed in bacteria. The fate of parental nucleocapsids was monitored by immunofluorescence with an appropriate dilution of monoclonal antibody to the nucleocapsid protein. The protein synthesis inhibitor anisomycin was added to the cells 30 min prior to infection, so that the only nucleocapsids protein molecules in the cells were those associated with nucleocapsids of the parental virus. These nucleocapsids were efficiently transported into the nuclei of murine cells expressing the Mx1 protein, indicating that this protein most likely acts after the parental nucleocapsids enter the nucleus. The second possibility was that the murine Mx1 protein might act in the nucleus to inhibit viral mRNA synthesis indirectly via new cap-binding activities that sequestered cellular capped RNAs away from the viral RNA transcriptase. We show that the same array of nuclear cap-binding proteins was present in Mx-positive and Mx-negative cells treated with interferon. Interestingly, a large amount of a 43-kDa cap-binding activity appeared after interferon treatment of both Mx-positive and Mx-negative cells. Hence, the appearance of new cap-binding activities was unlikely to account for the Mx-specific inhibition of viral mRNA synthesis. These results are most consistent with the possibility that the Mx1 protein acts

  2. Interferon induction by adenoviruses

    Energy Technology Data Exchange (ETDEWEB)

    Beladi, I; Bakay, M; Pusztai, R; Mucsi, I; Tarodi, B [University Medical School, Szeged (Hungary). Inst. of Microbiology

    1979-02-01

    All human, simian, bovine and avian adenovirus types tested so far and the canine hepatitis virus induce interferon production in chick cells. This finding indicated this property to be characteristic for viruses belonging to the adenovirus group. Trypsin treatment, which had no effect upon the infectivity, diminished or eliminated the interferon-inducing abilities of crude adenoviruses, and thus the need for a trypsin-sensitive protein in interferon induction was suggested. T antigen and interferon were formed simultaneously in chick embryo fibroblast cells infected with human adenovirus type 12, and there-fore the adenovirus-specific T antigen was resitant to the action of endogenous interferon synthetized by the same cells. In chicks inoculated with human types, the appearance of interferon was biphasic: an 'early' and a 'late' interferon could be demonstrated with maximum titre 4 and 10 hr, respectively, after virus infection. In chicks infected with adenoviruses, first interferon production and then a decreased primary immune response to sheep red blood cells was observed. It was assumed that in adenovirus-infected chicks the interferon produced by viral stimulus resulted in a transient immunosuppression.

  3. Interferon β induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice.

    Science.gov (United States)

    Chort, Alice; Alves, Sandro; Marinello, Martina; Dufresnois, Béatrice; Dornbierer, Jean-Gabriel; Tesson, Christelle; Latouche, Morwena; Baker, Darren P; Barkats, Martine; El Hachimi, Khalid H; Ruberg, Merle; Janer, Alexandre; Stevanin, Giovanni; Brice, Alexis; Sittler, Annie

    2013-06-01

    We showed previously, in a cell model of spinocerebellar ataxia 7, that interferon beta induces the expression of PML protein and the formation of PML protein nuclear bodies that degrade mutant ataxin 7, suggesting that the cytokine, used to treat multiple sclerosis, might have therapeutic value in spinocerebellar ataxia 7. We now show that interferon beta also induces PML-dependent clearance of ataxin 7 in a preclinical model, SCA7(266Q/5Q) knock-in mice, and improves motor function. Interestingly, the presence of mutant ataxin 7 in the mice induces itself the expression of endogenous interferon beta and its receptor. Immunohistological studies in brains from two patients with spinocerebellar ataxia 7 confirmed that these modifications are also caused by the disease in humans. Interferon beta, administered intraperitoneally three times a week in the knock-in mice, was internalized with its receptor in Purkinje and other cells and translocated to the nucleus. The treatment induced PML protein expression and the formation of PML protein nuclear bodies and decreased mutant ataxin 7 in neuronal intranuclear inclusions, the hallmark of the disease. No reactive gliosis or other signs of toxicity were observed in the brain or internal organs. The performance of the SCA7(266Q/5Q) knock-in mice was significantly improved on two behavioural tests sensitive to cerebellar function: the Locotronic® Test of locomotor function and the Beam Walking Test of balance, motor coordination and fine movements, which are affected in patients with spinocerebellar ataxia 7. In addition to motor dysfunction, SCA7(266Q/5Q) mice present abnormalities in the retina as in patients: ataxin 7-positive neuronal intranuclear inclusions that were reduced by interferon beta treatment. Finally, since neuronal death does not occur in the cerebellum of SCA7(266Q/5Q) mice, we showed in primary cell cultures expressing mutant ataxin 7 that interferon beta treatment improves Purkinje cell survival.

  4. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors.

    Science.gov (United States)

    Deng, Liufu; Liang, Hua; Xu, Meng; Yang, Xuanming; Burnette, Byron; Arina, Ainhoa; Li, Xiao-Dong; Mauceri, Helena; Beckett, Michael; Darga, Thomas; Huang, Xiaona; Gajewski, Thomas F; Chen, Zhijian J; Fu, Yang-Xin; Weichselbaum, Ralph R

    2014-11-20

    Ionizing radiation-mediated tumor regression depends on type I interferon (IFN) and the adaptive immune response, but several pathways control I IFN induction. Here, we demonstrate that adaptor protein STING, but not MyD88, is required for type I IFN-dependent antitumor effects of radiation. In dendritic cells (DCs), STING was required for IFN-? induction in response to irradiated-tumor cells. The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) mediated sensing of irradiated-tumor cells in DCs. Moreover, STING was essential for radiation-induced adaptive immune responses, which relied on type I IFN signaling on DCs. Exogenous IFN-? treatment rescued the cross-priming by cGAS or STING-deficient DCs. Accordingly, activation of STING by a second messenger cGAMP administration enhanced antitumor immunity induced by radiation. Thus radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Biogenesis of non-structural protein 1 (nsp1) and nsp1-mediated type I interferon modulation in arteriviruses

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mingyuan; Kim, Chi Yong [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802 (United States); Rowland, Raymond R.R.; Fang, Ying [Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506 (United States); Kim, Daewoo [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802 (United States); Yoo, Dongwan, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802 (United States)

    2014-06-15

    Type I interferons (IFNs-α/β) play a key role for the antiviral state of host, and the porcine arterivirus; porcine reproductive and respiratory syndrome virus (PRRSV), has been shown to down-regulate the production of IFNs during infection. Non-structural protein (nsp) 1 of PRRSV has been identified as a viral IFN antagonist, and the nsp1α subunit of nsp1 has been shown to degrade the CREB-binding protein (CBP) and to inhibit the formation of enhanceosome thus resulting in the suppression of IFN production. The study was expanded to other member viruses in the family Arteriviridae: equine arteritis virus (EAV), murine lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV). While PRRSV–nsp1 and LDV–nsp1 were auto-cleaved to produce the nsp1α and nsp1β subunits, EAV–nsp1 remained uncleaved. SHFV–nsp1 was initially predicted to be cleaved to generate three subunits (nsp1α, nsp1β, and nsp1γ), but only two subunits were generated as SHFV–nsp1αβ and SHFV–nsp1γ. The papain-like cysteine protease (PLP) 1α motif in nsp1α remained inactive for SHFV, and only the PLP1β motif of nsp1β was functional to generate SHFV–nsp1γ subunit. All subunits of arterivirus nsp1 were localized in the both nucleus and cytoplasm, but PRRSV–nsp1β, LDV–nsp1β, EAV–nsp1, and SHFV–nsp1γ were predominantly found in the nucleus. All subunits of arterivirus nsp1 contained the IFN suppressive activity and inhibited both interferon regulatory factor 3 (IRF3) and NF-κB mediated IFN promoter activities. Similar to PRRSV–nsp1α, CBP degradation was evident in cells expressing LDV–nsp1α and SHFV–nsp1γ, but no such degradation was observed for EAV–nsp1. Regardless of CBP degradation, all subunits of arterivirus nsp1 suppressed the IFN-sensitive response element (ISRE)-promoter activities. Our data show that the nsp1-mediated IFN modulation is a common strategy for all arteriviruses but their mechanism of action may differ

  6. Crystallization and preliminary X-ray analysis of Ebola VP35 interferon inhibitory domain mutant proteins

    International Nuclear Information System (INIS)

    Leung, Daisy W.; Borek, Dominika; Farahbakhsh, Mina; Ramanan, Parameshwaran; Nix, Jay C.; Wang, Tianjiao; Prins, Kathleen C.; Otwinowski, Zbyszek; Honzatko, Richard B.; Helgeson, Luke A.; Basler, Christopher F.; Amarasinghe, Gaya K.

    2010-01-01

    Three mutant forms of Ebola VP35 interferon inhibitory domain were crystallized in three different space groups. VP35 is one of seven structural proteins encoded by the Ebola viral genome and mediates viral replication, nucleocapsid formation and host immune suppression. The C-terminal interferon inhibitory domain (IID) of VP35 is critical for dsRNA binding and interferon inhibition. The wild-type VP35 IID structure revealed several conserved residues that are important for dsRNA binding and interferon antagonism. Here, the expression, purification and crystallization of recombinant Zaire Ebola VP35 IID mutants R312A, K319A/R322A and K339A in space groups P6 1 22, P2 1 2 1 2 1 and P2 1 , respectively, are described. Diffraction data were collected using synchrotron sources at the Advanced Light Source and the Advanced Photon Source

  7. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...hways mediating type I interferon gene expression. PubmedID 17904888 Title Signalling pathways...R, Slater L, Johnston SL. Microbes Infect. 2007 Sep;9(11):1245-51. Epub 2007 Jul 1. (.png) (.svg) (.html) (.csml) Show Signalling pat

  8. Dietary apigenin potentiates the inhibitory effect of interferon-α on cancer cell viability through inhibition of 26S proteasome-mediated interferon receptor degradation

    Directory of Open Access Journals (Sweden)

    Sheng Li

    2016-06-01

    Full Text Available Background: Type I interferons (IFN-α/β have broad and potent immunoregulatory and antiproliferative activities. However, it is still known whether the dietary flavonoids exhibit their antiviral and anticancer properties by modulating the function of type I IFNs. Objective: This study aimed at determining the role of apigenin, a dietary plant flavonoid abundant in common fruits and vegetables, on the type I IFN-mediated inhibition of cancer cell viability. Design: Inhibitory effect of apigenin on human 26S proteasome, a known negative regulator of type I IFN signaling, was evaluated in vitro. Molecular docking was conducted to know the interaction between apigenin and subunits of 26S proteasome. Effects of apigenin on JAK/STAT pathway, 26S proteasome-mediated interferon receptor stability, and cancer cells viability were also investigated. Results: Apigenin was identified to be a potent inhibitor of human 26S proteasome in a cell-based assay. Apigenin inhibited the chymotrypsin-like, caspase-like, and trypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Results from computational modeling of the potential interactions of apigenin with the chymotrypsin site (β5 subunit, caspase site (β1 subunit, and trypsin site (β2 subunit of the proteasome were consistent with the observed proteasome inhibitory activity. Apigenin enhanced the phosphorylation of signal transducer and activator of transcription proteins (STAT1 and STAT2 and promoted the endogenous IFN-α-regulated gene expression. Apigenin inhibited the IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1. Apigenin also sensitized the inhibitory effect of IFN-α on viability of cervical carcinoma HeLa cells. Conclusion: These results suggest that apigenin potentiates the inhibitory effect of IFN-α on cancer cell viability by activating JAK/STAT signaling pathway through inhibition of 26S

  9. pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs.

    Science.gov (United States)

    Gerlach, Thomas; Hensen, Luca; Matrosovich, Tatyana; Bergmann, Janina; Winkler, Michael; Peteranderl, Christin; Klenk, Hans-Dieter; Weber, Friedemann; Herold, Susanne; Pöhlmann, Stefan; Matrosovich, Mikhail

    2017-06-01

    The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins. IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN-induced

  10. Parental influenza virion nucleocapsids are efficiently transported into the nuclei of murine cells expressing the nuclear interferon-induced Mx protein.

    OpenAIRE

    Broni, B; Julkunen, I; Condra, J H; Davies, M E; Berry, M J; Krug, R M

    1990-01-01

    The interferon-induced murine Mx1 protein, which is localized in the nucleus, most likely specifically blocks influenza virus replication by inhibiting nuclear viral mRNA synthesis, including the mRNA synthesis catalyzed by inoculum (parental) virion nucleocapsids (R. M. Krug, M. Shaw, B. Broni, G. Shapiro, and O. Haller, J. Virol. 56:201-206, 1985). We tested two possible mechanisms for this inhibition. First, we determined whether the transport of parental nucleocapsids into the nucleus was...

  11. Loss of prion protein induces a primed state of type I interferon-responsive genes

    DEFF Research Database (Denmark)

    Malachin, Giulia; Reiten, Malin R.; Salvesen, Øyvind

    2017-01-01

    The cellular prion protein (PrPC) has been extensively studied because of its pivotal role in prion diseases; however, its functions remain incompletely understood. A unique line of goats has been identified that carries a nonsense mutation that abolishes synthesis of PrPC. In these animals, the Pr...... genotypes. About 70% of these were classified as interferon-responsive genes. In goats without PrPC, the majority of type I interferon-responsive genes were in a primed, modestly upregulated state, with fold changes ranging from 1.4 to 3.7. Among these were ISG15, DDX58 (RIG-1), MX1, MX2, OAS1, OAS2...... and DRAM1, all of which have important roles in pathogen defense, cell proliferation, apoptosis, immunomodulation and DNA damage response. Our data suggest that PrPC contributes to the fine-tuning of resting state PBMCs expression level of type I interferon-responsive genes. The molecular mechanism...

  12. Human Cytomegalovirus Exploits Interferon-Induced Transmembrane Proteins To Facilitate Morphogenesis of the Virion Assembly Compartment

    Science.gov (United States)

    Xie, Maorong; Xuan, Baoqin; Shan, Jiaoyu; Pan, Deng; Sun, Yamei; Shan, Zhao; Zhang, Jinping; Yu, Dong

    2014-01-01

    ABSTRACT Recently, interferon-induced transmembrane proteins (IFITMs) have been identified to be key effector molecules in the host type I interferon defense system. The invasion of host cells by a large range of RNA viruses is inhibited by IFITMs during the entry step. However, the roles of IFITMs in DNA virus infections have not been studied in detail. In this study, we report that human cytomegalovirus (HCMV), a large human DNA virus, exploits IFITMs to facilitate the formation of the virion assembly compartment (vAC) during infection of human fibroblasts. We found that IFITMs were expressed constitutively in human embryonic lung fibroblasts (MRC5 cells). HCMV infection inhibited IFITM protein accumulation in the later stages of infection. Overexpression of an IFITM protein in MRC5 cells slightly enhanced HCMV production and knockdown of IFITMs by RNA interference reduced the virus titer by about 100-fold on day 8 postinfection, according to the findings of a virus yield assay at a low multiplicity of infection. Virus gene expression and DNA synthesis were not affected, but the typical round structure of the vAC was not formed after the suppression of IFITMs, thereby resulting in defective virion assembly and the production of less infectious virion particles. Interestingly, the replication of herpes simplex virus, a human herpesvirus that is closely related to HCMV, was not affected by the suppression of IFITMs in MRC5 cells. These results indicate that IFITMs are involved in a specific pathway required for HCMV replication. IMPORTANCE HCMV is known to repurpose the interferon-stimulated genes (ISGs) viperin and tetherin to facilitate its replication. Our results expand the range of ISGs that can be exploited by HCMV for its replication. This is also the first report of a proviral function of IFITMs in DNA virus replication. In addition, whereas previous studies showed that IFITMs modulate virus entry, which is a very early stage in the virus life cycle, we

  13. Studies on Brucella interferon: Chromatographic behaviour and purification

    International Nuclear Information System (INIS)

    Bousquet-Ucla, C.; Wietzerbin, J.; Falcoff, E.

    1980-01-01

    Interferon was induced by infecting mice with Brucella suis. Serum containing interferon activity was analyzed by chromatography on Concanavalin A-Sepharose and Phenyl-Sepharose CL-4B columns. Antiviral activity was completely retained by the lectin column indicating that all the interferon molecules are glycosylated. The chromatographic behaviour of Brucella interferon on Phenyl-Sepharose CL-4B show that, like other interferons, Brucella interferon displays hydrophobic properties. However, the hydrophobicity of the interferon molecule was masked in the crude preparation and was only detectable when purified Brucella interferon was used for chromatography. The antigenic properties of Brucella interferon provided the means for developing an affinity chromatographic method resulting in about 60.000 fold purification. As in the case of viral interferon, treatment of L cells with Brucella interferon induced specific enhanced in vitro phosphorylation of a 67.000 molecular weight protein after incubation of cell extracts with doublestranded RNA and [γ- 32 p]ATP. (auth.)

  14. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    International Nuclear Information System (INIS)

    Xiong, Rui; Siegel, David; Ross, David

    2014-01-01

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity

  15. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Rui; Siegel, David; Ross, David, E-mail: david.ross@ucdenver.edu

    2014-10-15

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity.

  16. Analysis of tick-borne encephalitis virus-induced host responses in human cells of neuronal origin and interferon-mediated protection

    Czech Academy of Sciences Publication Activity Database

    Selinger, Martin; Wilkie, G. S.; Tong, L.; Gu, Q.; Schnettler, E.; Grubhoffer, Libor; Kohl, A.

    2017-01-01

    Roč. 98, č. 8 (2017), s. 2043-2060 ISSN 0022-1317 R&D Projects: GA ČR GA15-03044S Institutional support: RVO:60077344 Keywords : blood- brain -barrier * long noncoding RNAs * double-stranded-RNA * interferon * immune-response * gene-expression * stimulated genes * human astrocytes * viral-infection * protein * tick-borne encephalitis virus * neuronal cells * transcriptome analysis * host response * interferon Subject RIV: EE - Microbiology, Virology OBOR OECD: Virology Impact factor: 2.838, year: 2016

  17. The N-terminus of Bunyamwera orthobunyavirus NSs protein is essential for interferon antagonism

    OpenAIRE

    Van Knippenberg, Ingeborg Christine; Carlton-Smith, Charles; Elliott, Richard Michael

    2010-01-01

    This work is supported by UK MRC and BBRC Bunyamwera virus NSs protein is involved in the inhibition of cellular transcription and the interferon (IFN) response, and it interacts with the Med8 component of Mediator. A spontaneous mutant of a recombinant NSs-deleted Bunyamwera virus (rBUNdelNSs2) was identified and characterized. This mutant virus, termed mBUNNSs22, expresses a 21 aa N-terminally truncated form of NSs. Like rBUNdelNSs2, mBUNNSs22 is attenuated in IFN-deficient cells, and to...

  18. Evasion of the Interferon-Mediated Antiviral Response by Filoviruses

    Directory of Open Access Journals (Sweden)

    Washington B. Cárdenas

    2010-01-01

    Full Text Available The members of the filoviruses are recognized as some of the most lethal viruses affecting human and non-human primates. The only two genera of the Filoviridae family, Marburg virus (MARV and Ebola virus (EBOV, comprise the main etiologic agents of severe hemorrhagic fever outbreaks in central Africa, with case fatality rates ranging from 25 to 90%. Fatal outcomes have been associated with a late and dysregulated immune response to infection, very likely due to the virus targeting key host immune cells, such as macrophages and dendritic cells (DCs that are necessary to mediate effective innate and adaptive immune responses. Despite major progress in the development of vaccine candidates for filovirus infections, a licensed vaccine or therapy for human use is still not available. During the last ten years, important progress has been made in understanding the molecular mechanisms of filovirus pathogenesis. Several lines of evidence implicate the impairment of the host interferon (IFN antiviral innate immune response by MARV or EBOV as an important determinant of virulence. In vitro and in vivo experimental infections with recombinant Zaire Ebola virus (ZEBOV, the best characterized filovirus, demonstrated that the viral protein VP35 plays a key role in inhibiting the production of IFN-α/β. Further, the action of VP35 is synergized by the inhibition of cellular responses to IFN-α/β by the minor matrix viral protein VP24. The dual action of these viral proteins may contribute to an efficient initial virus replication and dissemination in the host. Noticeably, the analogous function of these viral proteins in MARV has not been reported. Because the IFN response is a major component of the innate immune response to virus infection, this chapter reviews recent findings on the molecular mechanisms of IFN-mediated antiviral evasion by filovirus infection.

  19. Cardiac arrhythmia with premature ventricular contractures induced by interferon beta in a patient with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Igor Sobol

    2015-03-01

    Full Text Available Multiple sclerosis (MS is an immune-mediated inflammatory and neurodegenerative disease of the central nervous system. Interferon (IFN beta is an active ingredient of five out of twelve disease modifying treatments approved for MS. We report a case of IFN-beta-induced cardiac arrhythmia with premature ventricular contractures in a patient recently diagnosed with MS.

  20. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeon-Jae; Lee, Jin-Hwee [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-05-02

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.

  1. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell\\'s sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95\\/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.

  2. Interleukin 2 and alpha interferon induced in vitro modulation of spontaneous cell mediated cytotoxicity in patients with cancer of the uterine cervix undergoing radiotherapy

    International Nuclear Information System (INIS)

    Radhakrishna Pillai, M.; Balaram, P.; Padmanabhan, T.K.; Abraham, T.; Nair, M.K.; Regional Cancer Centre, Trivandrum

    1989-01-01

    In vitro modulation of spontaneous cell mediated cytotoxicity by interferon and interleukin 2 was carried out using peripheral blood lymphocytes from patients with cancer of the uterine cervix before and at different intervals after commencement of radiation treatment. A total of 150 patients with various stages of the disease were included and cytotoxicity was measured using the single cell cytotoxic assay. These results indicate a beneficial effect in vitro of interleukin 2 and interferon in augmenting spontaneous cell mediated cytotoxicity, a possibly vital antitumour immune mechanism in patients with relatively early cervix cancer. Natural killer cell, lymphokine activated killer cell and interferon activated killer cell activity was depressed immediately following radiotherapy. The activity of these cell types later on increased above pretreatment levels in patients with stages I, IIA and IIB. A similar rebound above pretreatment levels was not observed in patients with stages III and IV. (orig.)

  3. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chaohui, E-mail: zuochaohui@vip.sina.com [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Qiu, Xiaoxin [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Liu, Nianli; Yang, Darong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Xia, Man [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Liu, Jingshi [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Wang, Xiaohong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); and others

    2015-05-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4',6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors. - Highlights: ●The cytotoxic effect of TRAIL on a developed HCC HLCZ01 cells infected with HBV. ●IFN-α and celecoxib induced apoptosis in HLCZ01 cells infected with HBV. ●The combined regime reduced the growth of xenotransplanted HCCs in nude mice model.

  4. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor.

    Directory of Open Access Journals (Sweden)

    Rinki Minakshi

    2009-12-01

    Full Text Available The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV is reported to cause apoptosis of infected cells and several of its proteins including the 3a accessory protein, are pro-apoptotic. Since the 3a protein localizes to the endoplasmic reticulum (ER-Golgi compartment, its role in causing ER stress was investigated in transiently transfected cells. Cells expressing the 3a proteins showed ER stress based on activation of genes for the ER chaperones GRP78 and GRP94. Since ER stress can cause differential modulation of the unfolded protein response (UPR, which includes the inositol-requiring enzyme 1 (IRE-1, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK pathways, these were individually tested in 3a-expressing cells. Only the PERK pathway was found to be activated in 3a-expressing cells based on (1 increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2alpha and inhibitory effects of a dominant-negative form of eIF2alpha on GRP78 promoter activity, (2 increased translation of activating transcription factor 4 (ATF4 mRNA, and (3 ATF4-dependent activation of the C/EBP homologous protein (CHOP gene promoter. Activation of PERK affects innate immunity by suppression of type 1 interferon (IFN signaling. The 3a protein was found to induce serine phosphorylation within the IFN alpha-receptor subunit 1 (IFNAR1 degradation motif and to increase IFNAR1 ubiquitination. Confocal microscopic analysis showed increased translocation of IFNAR1 into the lysosomal compartment and flow cytometry showed reduced levels of IFNAR1 in 3a-expressing cells. These results provide further mechanistic details of the pro-apoptotic effects of the SARS-CoV 3a protein, and suggest a potential role for it in attenuating interferon responses and innate immunity.

  5. Pyrogenicity of interferon and its inducer in rabbits.

    Science.gov (United States)

    Won, S J; Lin, M T

    1988-03-01

    The effects of intracerebral administration of interferon (IFN) or its inducer polyriboinosinic acid-polyribocytidylic acid (poly I:C) on thermoregulatory responses were assessed in conscious rabbits. Administration of IFN (10(2)-10(6) IU) or poly I:C (0.012-12 micrograms) into the preoptic anterior hypothalamus or the third cerebral ventricle caused a dose-dependent fever in rabbits at three ambient temperatures (Ta) tested. In the cold (Ta = 8 degrees C), the fever was due to increased metabolism, whereas in the heat (Ta = 32 degrees C) the fever was due to a reduction in respiratory evaporative heat loss and ear skin blood flow. At the moderate environmental temperature (Ta = 22 degrees C), the fever was due to increased metabolism and cutaneous vasoconstriction. Compared with the febrile responses induced by cerebroventricular route injection of IFN or poly I:C, the hypothalamic route of injection required a much lower dose of IFN or poly I:C to produce a similar fever. Furthermore, the fever induced by intrahypothalamic injection of IFN or poly I:C was reduced by pretreatment of animals with a systemic dose of indomethacin (an inhibitor of all prostaglandins formation) or cycloheximide (an inhibitor of protein synthesis). The data indicate that IFN or its inducer may act through the endogenous release of a prostaglandin or a protein factor of an unknown chemical nature in the preoptic anterior hypothalamic region to induce fever in rabbits. The fever induced by IFN or its inducer is brought about by a decrease in heat loss and/or an increase in heat production in rabbits.

  6. Neuronal Orphan G-Protein Coupled Receptor Proteins Mediate Plasmalogens-Induced Activation of ERK and Akt Signaling.

    Directory of Open Access Journals (Sweden)

    Md Shamim Hossain

    Full Text Available The special glycerophospholipids plasmalogens (Pls are enriched in the brain and reported to prevent neuronal cell death by enhancing phosphorylation of Akt and ERK signaling in neuronal cells. Though the activation of Akt and ERK was found to be necessary for the neuronal cells survival, it was not known how Pls enhanced cellular signaling. To answer this question, we searched for neuronal specific orphan GPCR (G-protein coupled receptor proteins, since these proteins were believed to play a role in cellular signal transduction through the lipid rafts, where both Pls and some GPCRs were found to be enriched. In the present study, pan GPCR inhibitor significantly reduced Pls-induced ERK signaling in neuronal cells, suggesting that Pls could activate GPCRs to induce signaling. We then checked mRNA expression of 19 orphan GPCRs and 10 of them were found to be highly expressed in neuronal cells. The knockdown of these 10 neuronal specific GPCRs by short hairpin (sh-RNA lentiviral particles revealed that the Pls-mediated phosphorylation of ERK was inhibited in GPR1, GPR19, GPR21, GPR27 and GPR61 knockdown cells. We further found that the overexpression of these GPCRs enhanced Pls-mediated phosphorylation of ERK and Akt in cells. Most interestingly, the GPCRs-mediated cellular signaling was reduced significantly when the endogenous Pls were reduced. Our cumulative data, for the first time, suggest a possible mechanism for Pls-induced cellular signaling in the nervous system.

  7. A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase.

    Science.gov (United States)

    Blank, V C; Bertucci, L; Furmento, V A; Peña, C; Marino, V J; Roguin, L P

    2013-06-10

    We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells. Copyright © 2013 Elsevier Inc

  8. Identifying mechanisms by which Escherichia coli O157:H7 subverts interferonmediated signal transducer and activator of transcription-1 activation.

    Directory of Open Access Journals (Sweden)

    Nathan K Ho

    Full Text Available Enterohemorrhagic Escherichia coli serotype O157:H7 is a food borne enteric bacterial pathogen that causes significant morbidity and mortality in both developing and industrialized nations. E. coli O157:H7 infection of host epithelial cells inhibits the interferon gamma pro-inflammatory signaling pathway, which is important for host defense against microbial pathogens, through the inhibition of Stat-1 tyrosine phosphorylation. The aim of this study was to determine which bacterial factors are involved in the inhibition of Stat-1 tyrosine phosphorylation. Human epithelial cells were challenged with either live bacteria or bacterial-derived culture supernatants, stimulated with interferon-gamma, and epithelial cell protein extracts were then analyzed by immunoblotting. The results show that Stat-1 tyrosine phosphorylation was inhibited by E. coli O157:H7 secreted proteins. Using sequential anion exchange and size exclusion chromatography, YodA was identified, but not confirmed to mediate subversion of the Stat-1 signaling pathway using isogenic mutants. We conclude that E. coli O157:H7 subverts Stat-1 tyrosine phosphorylation in response to interferon-gamma through a still as yet unidentified secreted bacterial protein.

  9. Ester alkaloids from Cephalotaxus interfere with the 2'3'-cGAMP-induced type I interferon pathway in vitro.

    Directory of Open Access Journals (Sweden)

    Gayoung Park

    Full Text Available Dysregulated activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING pathway by self-DNA contributes to interferonopathy and promotes autoimmune diseases. To identify potential suppressors of STING-induced type I interferon (IFN induction, ethanol extracts of medicinal plants were screened for inhibitory activity against IFN-ß promoter activation. Notably, 70% ethanol extract of Cephalotaxus koreana specifically down-regulated STING-induced, but not TBK1- or IRF3-induced, IFN-ß promoter activity. The compounds exerting inhibitory activity specifically against STING-mediated IFN-ß promoter activation were identified as ester alkaloids isolated from the genus, Cephalotaxus, homoharringtonine and harringtonine. Furthermore, these two compounds inhibited 2'3'-cGAMP-induced IFN-stimulated gene expression and interaction between STING and TBK1. These suppressive effects were not observed with cephalotaxine devoid of the ester side-chain. Our data support the potential utility of homoharringtonine and harringtonine to treat STING-associated interferonopathy and autoimmune diseases.

  10. Neuromyelitis optica-like pathology is dependent on type I interferon response.

    Science.gov (United States)

    Khorooshi, Reza; Wlodarczyk, Agnieszka; Asgari, Nasrin; Owens, Trevor

    2013-09-01

    Neuromyelitis optica is an antibody-mediated autoimmune inflammatory disease of the central nervous system. Reports have suggested that interferon beta which is beneficial for multiple sclerosis, exacerbates neuromyelitis optica. Our aim was to determine whether type I interferon plays a role in the formation of neuromyelitis optica lesions. Immunoglobulin G from a neuromyelitis optica patient was injected intracerebrally with human complement to type I interferon receptor deficient and wildtype mice. Loss of aquaporin-4 and glial fibrillary acidic protein was reduced in type I interferon receptor deficient mice brain. Our findings suggest that type I interferon signaling contributes to neuromyelitis optica pathogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. TREX1 Knockdown Induces an Interferon Response to HIV that Delays Viral Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Lee Adam Wheeler

    2016-05-01

    Full Text Available Despite their antiviral effect, the in vivo effect of interferons on HIV transmission is difficult to predict, because interferons also activate and recruit HIV-susceptible cells to sites of infection. HIV does not normally induce type I interferons in infected cells, but does if TREX1 is knocked down. Here, we investigated the effect of topical TREX1 knockdown and local interferon production on HIV transmission in human cervicovaginal explants and humanized mice. In explants in which TREX1 was knocked down, HIV induced interferons, which blocked infection. In humanized mice, even though TREX1 knockdown increased infiltrating immune cells, it delayed viral replication for 3–4 weeks. Similarly intravaginal application of type I interferons the day before HIV infection induced interferon responsive genes, reduced inflammation, and decreased viral replication. However, intravenous interferon enhanced inflammation and infection. Thus, in models of human sexual transmission, a localized interferon response inhibits HIV transmission but systemic interferons do not.

  12. Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I

    Directory of Open Access Journals (Sweden)

    Qin Lan

    2011-12-01

    Full Text Available Abstract Background The nonstructural protein 1 (NSP1 of rotavirus has been reported to block interferon (IFN signaling by mediating proteasome-dependent degradation of IFN-regulatory factors (IRFs and (or the β-transducin repeat containing protein (β-TrCP. However, in addition to these targets, NSP1 may subvert innate immune responses via other mechanisms. Results The NSP1 of rotavirus OSU strain as well as the IRF3 binding domain truncated NSP1 of rotavirus SA11 strain are unable to degrade IRFs, but can still inhibit host IFN response, indicating that NSP1 may target alternative host factor(s other than IRFs. Overexpression of NSP1 can block IFN-β promoter activation induced by the retinoic acid inducible gene I (RIG-I, but does not inhibit IFN-β activation induced by the mitochondrial antiviral-signaling protein (MAVS, indicating that NSP1 may target RIG-I. Immunoprecipitation experiments show that NSP1 interacts with RIG-I independent of IRF3 binding domain. In addition, NSP1 induces down-regulation of RIG-I in a proteasome-independent way. Conclusions Our findings demonstrate that inhibition of RIG-I mediated type I IFN responses by NSP1 may contribute to the immune evasion of rotavirus.

  13. Morbillivirus v proteins exhibit multiple mechanisms to block type 1 and type 2 interferon signalling pathways.

    Directory of Open Access Journals (Sweden)

    Senthil K Chinnakannan

    Full Text Available Morbilliviruses form a closely related group of pathogenic viruses which encode three non-structural proteins V, W and C in their P gene. Previous studies with rinderpest virus (RPV and measles virus (MeV have demonstrated that these non-structural proteins play a crucial role in blocking type I (IFNα/β and type II (IFNγ interferon action, and various mechanisms have been proposed for these effects. We have directly compared four important morbilliviruses, rinderpest (RPV, measles virus (MeV, peste des petits ruminants virus (PPRV and canine distemper virus (CDV. These viruses and their V proteins could all block type I IFN action. However, the viruses and their V proteins had varying abilities to block type II IFN action. The ability to block type II IFN-induced gene transcription correlated with co-precipitation of STAT1 with the respective V protein, but there was no correlation between co-precipitation of either STAT1 or STAT2 and the abilities of the V proteins to block type I IFN-induced gene transcription or the creation of the antiviral state. Further study revealed that the V proteins of RPV, MeV, PPRV and CDV could all interfere with phosphorylation of the interferon-receptor-associated kinase Tyk2, and the V protein of highly virulent RPV could also block the phosphorylation of another such kinase, Jak1. Co-precipitation studies showed that morbillivirus V proteins all form a complex containing Tyk2 and Jak1. This study highlights the ability of morbillivirus V proteins to target multiple components of the IFN signalling pathways to control both type I and type II IFN action.

  14. The interferon-induced antiviral protein PML (TRIM19) promotes the restriction and transcriptional silencing of lentiviruses in a context-specific, isoform-specific fashion.

    Science.gov (United States)

    Masroori, Nasser; Merindol, Natacha; Berthoux, Lionel

    2016-03-22

    The promyelocytic leukemia (PML) protein, a type I interferon (IFN-I)-induced gene product and a member of the tripartite motif (TRIM) family, modulates the transcriptional activity of viruses belonging to various families. Whether PML has an impact on the replication of HIV-1 has not been fully addressed, but recent studies point to its possible involvement in the restriction of HIV-1 in human cells and in the maintenance of transcriptional latency in human cell lines in which HIV-1 is constitutively repressed. We investigated further the restriction of HIV-1 and a related lentivirus, SIVmac, by PML in murine cells and in a lymphocytic human cell line. In particular, we studied the relevance of PML to IFN-I-mediated inhibition and the role of individual human isoforms. We demonstrate that both human PML (hPML) and murine PML (mPML) inhibit the early post-entry stages of the replication of HIV-1 and a related lentivirus, SIVmac. In addition, HIV-1 was transcriptionally silenced by mPML and by hPML isoforms I, II, IV and VI in MEFs. This PML-mediated transcriptional repression was attenuated in presence of the histone deacetylase inhibitor SAHA. In contrast, depletion of PML had no effect on HIV-1 gene expression in a human T cell line. PML was found to contribute to the inhibition of HIV-1 by IFN-I. Specifically, IFN-α and IFN-β treatments of MEFs enhanced the PML-dependent inhibition of HIV-1 early replication stages. We show that PML can inhibit HIV-1 and other lentiviruses as part of the IFN-I-mediated response. The restriction takes place at two distinct steps, i.e. reverse transcription and transcription, and in an isoform-specific, cellular context-specific fashion. Our results support a model in which PML activates innate immune antilentiviral effectors. These data are relevant to the development of latency reversal-inducing pharmacological agents, since PML was previously proposed as a pharmacological target for such inhibitors. This study also has

  15. Oxidative Modification of Blood Serum Proteins in Multiple Sclerosis after Interferon Beta and Melatonin Treatment

    Directory of Open Access Journals (Sweden)

    Monika Adamczyk-Sowa

    2017-01-01

    Full Text Available Multiple sclerosis (MS is a disease involving oxidative stress (OS. This study was aimed at examination of the effect of melatonin supplementation on OS parameters, especially oxidative protein modifications of blood serum proteins, in MS patients. The study included 11 control subjects, 14 de novo diagnosed MS patients with the relapsing-remitting form of MS (RRMS, 36 patients with RRMS receiving interferon beta-1b (250 μg every other day, and 25 RRMS patients receiving interferon beta-1b plus melatonin (5 mg daily. The levels of N′-formylkynurenine, kynurenine, dityrosine, carbonyl groups, advanced glycation products (AGEs, advanced oxidation protein products (AOPP, and malondialdehyde were elevated in nontreated RRSM patients. N′-Formylkynurenine, kynurenine, AGEs, and carbonyl contents were decreased only in the group treated with interferon beta plus melatonin, while dityrosine and AOPP contents were decreased both in the group of patients treated with interferon beta and in the group treated with interferon beta-1b plus melatonin. These results demonstrate that melatonin ameliorates OS in MS patients supporting the view that combined administration of interferon beta-1b and melatonin can be more effective in reducing OS in MS patients than interferon beta-1b alone.

  16. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells.

    Science.gov (United States)

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook

    2014-05-02

    Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. MicroRNA Expression Profiling by Bead Array Technology in Human Tumor Cell Lines Treated with Interferon-Alpha-2a

    Directory of Open Access Journals (Sweden)

    Siegrist Fredy

    2009-01-01

    Full Text Available Abstract MicroRNAs are positive and negative regulators of eukaryotic gene expression that modulate transcript abundance by specific binding to sequence motifs located prevalently in the 3' untranslated regions of target messenger RNAs (mRNA. Interferon-alpha-2a (IFNα induces a large set of protein coding genes mediating antiproliferative and antiviral responses. Here we use a global microarray-based microRNA detection platform to identify genes that are induced by IFNα in hepatoma- or melanoma-derived human tumor cell lines. Despite the enormous differences in expression levels between these models, we were able to identify microRNAs that are upregulated by IFNα in both lines suggesting the possibility that interferon-regulated microRNAs are involved in the transcriptional repression of mRNA relevant to cytokine responses.

  18. Interleukin-12 induces sustained activation of multiple host inflammatory mediator systems in chimpanzees

    NARCIS (Netherlands)

    Lauw, F. N.; Dekkers, P. E.; te Velde, A. A.; Speelman, P.; Levi, M. [=Marcel M.; Kurimoto, M.; Hack, C. E.; van Deventer, S. J.; van der Poll, T.

    1999-01-01

    To determine in vivo effects of interleukin (IL)-12 on host inflammatory mediator systems, 4 healthy chimpanzees received recombinant human IL-12 (1 microg/kg) by intravenous injection. IL-12 induced increases in plasma concentrations of IL-15, IL-18, and interferon-gamma (IFN-gamma), plus a marked

  19. Receptor Interacting Protein 3-Mediated Necroptosis Promotes Lipopolysaccharide-Induced Inflammation and Acute Respiratory Distress Syndrome in Mice.

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    Full Text Available Necrosis amplifies inflammation and plays important roles in acute respiratory distress syndrome (ARDS. Necroptosis is a newly identified programmed necrosis that is mediated by receptor interacting protein 3 (RIP3. However, the potential involvement and impact of necroptosis in lipopolysaccharide (LPS-induced ARDS remains unknown. We therefore explored the role and mechanism of RIP3-mediated necroptosis in LPS-induced ARDS. Mice were instilled with increasing doses of LPS intratracheally to induce different degrees of ARDS. Lung tissues were harvested for histological and TUNEL staining and western blot for RIP3, p-RIP3, X-linked inhibitor of apoptosis protein (XIAP, mixed lineage kinase domain-like protein (MLKL, total and cleaved caspases-3/8. Then, wild-type and RIP3 knock-out mice were induced ARDS with 30 mg/kg LPS. Pulmonary cellular necrosis was labeled by the propidium Iodide (PI staining. Levels of TNF-a, Interleukin (IL-1β, IL-6, IL-1α, IL-10 and HMGB1, tissue myeloperoxidase (MPO activity, neutrophil counts and total protein concentration were measured. Results showed that in high dose LPS (30mg/kg and 40mg/kg -induced severe ARDS, RIP3 protein was increased significantly, accompanied by increases of p-RIP3 and MLKL, while in low dose LPS (10mg/kg and 20mg/kg -induced mild ARDS, apoptosis was remarkably increased. In LPS-induced severe ARDS, RIP3 knock-out alleviated the hypothermia symptom, increased survival rate and ameliorated the lung tissue injury RIP3 depletion also attenuated LPS-induced increase in IL-1α/β, IL-6 and HMGB1 release, decreased tissue MPO activity, and reduced neutrophil influx and total protein concentration in BALF in severe ARDS. Further, RIP3 depletion reduced the necrotic cells in the lung and decreased the expression of MLKL, but had no impact on cleaved caspase-3 in LPS-induced ARDS. It is concluded that RIP3-mediated necroptosis is a major mechanism of enhanced inflammation and lung tissue injury in

  20. Factors regulated by interferon gamma and hypoxia-inducible factor 1A contribute to responses that protect mice from Coccidioides immitis infection

    Directory of Open Access Journals (Sweden)

    Woelk Christopher H

    2012-09-01

    Full Text Available Abstract Background Coccidioidomycosis results from airborne infections caused by either Coccidioides immitis or C. posadasii. Both are pathogenic fungi that live in desert soil in the New World and can infect normal hosts, but most infections are self-limited. Disseminated infections occur in approximately 5% of cases and may prove fatal. Mouse models of the disease have identified strains that are resistant (e.g. DBA/2 or susceptible (e.g. C57BL/6 to these pathogens. However, the genetic and immunological basis for this difference has not been fully characterized. Results Microarray technology was used to identify genes that were differentially expressed in lung tissue between resistant DBA/2 and sensitive C57BL/6 mice after infection with C. immitis. Differentially expressed genes were mapped onto biological pathways, gene ontologies, and protein interaction networks, which revealed that innate immune responses mediated by Type II interferon (i.e., IFNG and the signal transducer and activator of transcription 1 (STAT1 contribute to the resistant phenotype. In addition, upregulation of hypoxia inducible factor 1A (HIF1A, possibly as part of a larger inflammatory response mediated by tumor necrosis factor alpha (TNFA, may also contribute to resistance. Microarray gene expression was confirmed by real-time quantitative PCR for a subset of 12 genes, which revealed that IFNG HIF1A and TNFA, among others, were significantly differentially expressed between the two strains at day 14 post-infection. Conclusion These results confirm the finding that DBA/2 mice express more Type II interferon and interferon stimulated genes than genetically susceptible strains and suggest that differential expression of HIF1A may also play a role in protection.

  1. Neutrophils and the calcium-binding protein MRP-14 mediate carrageenan-induced antinociception in mice

    Directory of Open Access Journals (Sweden)

    Rosana L. Pagano

    2002-01-01

    Full Text Available Background: We have previously shown that the calcium-binding protein MRP-14 secreted by neutrophils mediates the antinociceptive response in an acute inflammatory model induced by the intraperitoneal injection of glycogen in mice.

  2. Interferon-gamma inducible protein-10 as a potential biomarker in localized scleroderma

    Science.gov (United States)

    2013-01-01

    Introduction The purpose of this study was to evaluate the presence and levels of interferon-gamma inducible protein-10 (IP-10) in the plasma and skin of pediatric localized scleroderma (LS) patients compared to those of healthy pediatric controls and to determine if IP-10 levels correlate to clinical disease activity measures. Methods The presence of IP-10 in the plasma was analyzed using a Luminex panel in 69 pediatric patients with LS and compared to 71 healthy pediatric controls. Of these patients, five had available skin biopsy specimens with concurrent clinical and serological data during the active disease phase, which were used to analyze the presence and location of IP-10 in the skin by immunohistochemistry (IHC). Results IP-10 levels were significantly elevated in the plasma of LS patients compared to that of healthy controls and correlated to clinical disease activity measures in LS. Immunohistochemistry staining of IP-10 was present in the dermal infiltrate of LS patients and was similar to that found in psoriasis skin specimens, the positive disease control. Conclusions Elevation of IP-10 levels in the plasma compared to those of healthy controls and the presence of IP-10 staining in the affected skin of LS patients indicates that IP-10 is a potential biomarker in LS. Furthermore, significant elevation of IP-10 in LS patients with active versus inactive disease and correlations between IP-10 levels and standardized disease outcome measures of activity in LS strongly suggest that IP-10 may be a biomarker for disease activity in LS. PMID:24499523

  3. Detection of interferon alpha protein reveals differential levels and cellular sources in disease.

    Science.gov (United States)

    Rodero, Mathieu P; Decalf, Jérémie; Bondet, Vincent; Hunt, David; Rice, Gillian I; Werneke, Scott; McGlasson, Sarah L; Alyanakian, Marie-Alexandra; Bader-Meunier, Brigitte; Barnerias, Christine; Bellon, Nathalia; Belot, Alexandre; Bodemer, Christine; Briggs, Tracy A; Desguerre, Isabelle; Frémond, Marie-Louise; Hully, Marie; van den Maagdenberg, Arn M J M; Melki, Isabelle; Meyts, Isabelle; Musset, Lucile; Pelzer, Nadine; Quartier, Pierre; Terwindt, Gisela M; Wardlaw, Joanna; Wiseman, Stewart; Rieux-Laucat, Frédéric; Rose, Yoann; Neven, Bénédicte; Hertel, Christina; Hayday, Adrian; Albert, Matthew L; Rozenberg, Flore; Crow, Yanick J; Duffy, Darragh

    2017-05-01

    Type I interferons (IFNs) are essential mediators of antiviral responses. These cytokines have been implicated in the pathogenesis of autoimmunity, most notably systemic lupus erythematosus (SLE), diabetes mellitus, and dermatomyositis, as well as monogenic type I interferonopathies. Despite a fundamental role in health and disease, the direct quantification of type I IFNs has been challenging. Using single-molecule array (Simoa) digital ELISA technology, we recorded attomolar concentrations of IFNα in healthy donors, viral infection, and complex and monogenic interferonopathies. IFNα protein correlated well with functional activity and IFN-stimulated gene expression. High circulating IFNα levels were associated with increased clinical severity in SLE patients, and a study of the cellular source of IFNα protein indicated disease-specific mechanisms. Measurement of IFNα attomolar concentrations by digital ELISA will enhance our understanding of IFN biology and potentially improve the diagnosis and stratification of pathologies associated with IFN dysregulation. © 2017 Rodero et al.

  4. Light-induced, GTP-binding protein mediated membrane currents of Xenopus oocytes injected with rhodopsin of cephalopods.

    Science.gov (United States)

    Ando, H; Seidou, M; Kito, Y

    1991-01-01

    Xenopus oocytes that were injected with rhabdomeric membranes of squid and octopus photoreceptors acquired light sensitivity. The injected oocytes showed a light-induced current having characteristics similar to other G-protein-mediated Cl- currents induced by the activation of other membrane receptors. Pretreatment of the oocytes with pertussis toxin before the injection suppressed the generation of the light-induced current, indicating an ability of cephalopod rhodopsin to cross-react with an endogenous G-protein of Xenopus oocytes.

  5. The efficacy of intravitreal interferon alpha-2b for the treatment of experimental endotoxin-induced uveitis.

    Science.gov (United States)

    Afarid, Mehrdad; Lashkarizadeh, Hamid; Ashraf, Mohammad J; Nowroozzadeh, Mohammad Hossein; Shafiee, Sayed M

    2016-05-01

    To study the efficacy of intravitreal interferon alpha-2b for endotoxin-induced uveitis. A total of 36 rabbits were randomly allocated to one of the three groups: (1) received interferon plus balanced-salt solution; (2) received lipopolysaccharide (LPS) plus interferon; and (3) received LPS plus balanced-salt solution. Intraocular inflammation was evaluated by slit-lamp biomicroscopy (standardization of uveitis nomenclature grading), binocular indirect ophthalmoscopy (BIO) score, and histopathology. Group 2 showed significantly lower mean (±standard deviation) anterior chamber reaction than Group 3 (3.1 ± 0.9 vs. 3.8 ± 0.4) on day 1 postinjection, lower vitreous cells on days 1 through 7 (day 1: 3.1 ± 0.9 vs. 3.8 ± 0.4; day 3: 2.1 ± 1.6 vs. 3.8 ± 0.4; day 7: 1.9 ± 1.3 vs. 3.6 ± 0.7), and lower BIO score on days 1-7 (day 1: 3.3 ± 1.2 vs. 4.4 ± 0.7; day 3: 3.0 ± 1.4 vs. 4.3 ± 0.9; day 7: 2.4 ± 1.4 vs. 3.7 ± 1.2). The protein content of anterior and vitreous aspirates was lower in Group 2 than 3 (1618.5 ± 411.4 vs. 2567.3 ± 330.8 and 2157.0 ± 283.3 vs. 3204.6 ± 259.5, respectively). Intravitreal interferon alpha-2b was effective in controlling endotoxin-induced uveitis.

  6. Central Role of ULK1 in Type I Interferon Signaling

    Directory of Open Access Journals (Sweden)

    Diana Saleiro

    2015-04-01

    Full Text Available We provide evidence that the Unc-51-like kinase 1 (ULK1 is activated during engagement of the type I interferon (IFN receptor (IFNR. Our studies demonstrate that the function of ULK1 is required for gene transcription mediated via IFN-stimulated response elements (ISRE and IFNγ activation site (GAS elements and controls expression of key IFN-stimulated genes (ISGs. We identify ULK1 as an upstream regulator of p38α mitogen-activated protein kinase (MAPK and establish that the regulatory effects of ULK1 on ISG expression are mediated possibly by engagement of the p38 MAPK pathway. Importantly, we demonstrate that ULK1 is essential for antiproliferative responses and type I IFN-induced antineoplastic effects against malignant erythroid precursors from patients with myeloproliferative neoplasms. Together, these data reveal a role for ULK1 as a key mediator of type I IFNR-generated signals that control gene transcription and induction of antineoplastic responses.

  7. Interferon-γ and NF-κB mediate nitric oxide production by mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Oh, I.; Ozaki, K.; Sato, K.; Meguro, A.; Tatara, R.; Hatanaka, K.; Nagai, T.; Muroi, K.; Ozawa, K.

    2007-01-01

    Mesenchymal stromal cells (MSCs) have been shown to have an immunosuppressive effect. Previously, we demonstrated that nitric oxide (NO) is one of the immunomodulatory mediators of MSCs. We herein show that primary mouse bone marrow MSCs and three cell lines that mimic MSCs suppress both differentiation and proliferation in Th1 condition, whereas the suppression in Th2 condition is mild. NO production is inversely correlated with T cell proliferation in Th1 and Th2 conditions. NO is highly induced in Th1 and minimally induced in Th2. Moreover, an inhibitor of NO synthase restores both proliferation and interferon-γ (IFN-γ) production in Th1 condition. Furthermore, an anti-IFN-γ antibody strongly inhibits NO production and an inhibitor of NF-κB reduces the level of induction of inducible NO synthase (iNOS) in MSCs. Taken together, our results suggest that NO plays a significant role in the modification of Th1 and Th2 differentiation by MSCs, and that both IFN-γ and NF-κB are critical for NO production by MSCs

  8. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus.

    Directory of Open Access Journals (Sweden)

    I-Chueh Huang

    2011-01-01

    Full Text Available Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3 are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV hemagglutinin (HA protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP(1,2 of Marburg and Ebola filoviruses (MARV, EBOV. Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV and entry mediated by the SARS-CoV spike (S protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression.

  9. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ.

    Science.gov (United States)

    Shin, Eun-Joo; Duong, Chu Xuan; Nguyen, Xuan-Khanh Thi; Li, Zhengyi; Bing, Guoying; Bach, Jae-Hyung; Park, Dae Hun; Nakayama, Keiichi; Ali, Syed F; Kanthasamy, Anumantha G; Cadet, Jean Lud; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2012-06-15

    This study examined the role of protein kinase C (PKC) isozymes in methamphetamine (MA)-induced dopaminergic toxicity. Multiple-dose administration of MA did not significantly alter PKCα, PKCβI, PKCβII, or PKCζ expression in the striatum, but did significantly increase PKCδ expression. Gö6976 (a co-inhibitor of PKCα and -β), hispidin (PKCβ inhibitor), and PKCζ pseudosubstrate inhibitor (PKCζ inhibitor) did not significantly alter MA-induced behavioral impairments. However, rottlerin (PKCδ inhibitor) significantly attenuated behavioral impairments in a dose-dependent manner. In addition, MA-induced behavioral impairments were not apparent in PKCδ knockout (-/-) mice. MA-induced oxidative stress (i.e., lipid peroxidation and protein oxidation) was significantly attenuated in rottlerin-treated mice and was not apparent in PKCδ (-/-) mice. Consistent with this, MA-induced apoptosis (i.e., terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells) was significantly attenuated in rottlerin-treated mice. Furthermore, MA-induced increases in the dopamine (DA) turnover rate and decreases in tyrosine hydroxylase (TH) activity and the expression of TH, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) were not significantly observed in rottlerin-treated or PKCδ (-/-) mice. Our results suggest that PKCδ gene expression is a key mediator of oxidative stress and dopaminergic damage induced by MA. Thus, inhibition of PKCδ may be a useful target for protection against MA-induced neurotoxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The efficacy of intravitreal interferon alpha-2b for the treatment of experimental endotoxin-induced uveitis

    Directory of Open Access Journals (Sweden)

    Mehrdad Afarid

    2016-01-01

    Full Text Available Purpose: To study the efficacy of intravitreal interferon alpha-2b for endotoxin-induced uveitis. Materials and Methods: A total of 36 rabbits were randomly allocated to one of the three groups: (1 received interferon plus balanced-salt solution; (2 received lipopolysaccharide (LPS plus interferon; and (3 received LPS plus balanced-salt solution. Intraocular inflammation was evaluated by slit-lamp biomicroscopy (standardization of uveitis nomenclature grading, binocular indirect ophthalmoscopy (BIO score, and histopathology. Results: Group 2 showed significantly lower mean (±standard deviation anterior chamber reaction than Group 3 (3.1 ± 0.9 vs. 3.8 ± 0.4 on day 1 postinjection, lower vitreous cells on days 1 through 7 (day 1: 3.1 ± 0.9 vs. 3.8 ± 0.4; day 3: 2.1 ± 1.6 vs. 3.8 ± 0.4; day 7: 1.9 ± 1.3 vs. 3.6 ± 0.7, and lower BIO score on days 1-7 (day 1: 3.3 ± 1.2 vs. 4.4 ± 0.7; day 3: 3.0 ± 1.4 vs. 4.3 ± 0.9; day 7: 2.4 ± 1.4 vs. 3.7 ± 1.2. The protein content of anterior and vitreous aspirates was lower in Group 2 than 3 (1618.5 ± 411.4 vs. 2567.3 ± 330.8 and 2157.0 ± 283.3 vs. 3204.6 ± 259.5, respectively. Conclusion: Intravitreal interferon alpha-2b was effective in controlling endotoxin-induced uveitis.

  11. Interferon-inducible protein 10 (IP-10) is associated with viremia of early HIV-1 infection in Korean patients.

    Science.gov (United States)

    Lee, SoYong; Chung, Yoon-Seok; Yoon, Cheol-Hee; Shin, YoungHyun; Kim, SeungHyun; Choi, Byeong-Sun; Kim, Sung Soon

    2015-05-01

    Cytokines/chemokines play key roles in modulating disease progression in human immunodeficiency virus (HIV) infection. Although it is known that early HIV-1 infection is associated with increased production of proinflammatory cytokines, the relationship between cytokine levels and HIV-1 pathogenesis is not clear. The concentrations of 18 cytokines/chemokines in 30 HIV-1 negative and 208 HIV-1 positive plasma samples from Korean patients were measured by the Luminex system. Early HIV-1 infection was classified according to the Fiebig stage (FS) based on the characteristics of the patients infected with HIV-1. Concentrations of interleukin-12 (IL-12), interferon-inducible protein-10 (IP-10), macrophage inflammatory protein-1α (MIP-1α) and regulated upon activation, normal T cells expressed and secreted (RANTES) were increased significantly during the early stage of HIV-1 infection (FS II-IV) compared with the HIV-1-negative group. Of these cytokines, an elevated level of IP-10 was the only factor to be correlated positively with a higher viral load during the early stages of HIV-1 infection (FS II-IV) in Koreans (R = 0.52, P IP-10 may be an indicator for HIV-1 viremia and associated closely with viral replication in patients with early HIV-1 infection. © 2015 Wiley Periodicals, Inc.

  12. Impairment of interferon regulatory factor-3 activation by hepatitis C virus core protein basic amino acid region 1.

    Science.gov (United States)

    Inoue, Kazuaki; Tsukiyama-Kohara, Kyoko; Matsuda, Chiho; Yoneyama, Mitsutoshi; Fujita, Takashi; Kuge, Shusuke; Yoshiba, Makoto; Kohara, Michinori

    2012-11-30

    Interferon regulatory factor-3 (IRF-3), a key transcriptional factor in the type I interferon system, is frequently impaired by hepatitis C virus (HCV), in order to establish persistent infection. However, the exact mechanism by which the virus establishes persistent infection has not been fully understood yet. The present study aimed to investigate the effects of various HCV proteins on IRF-3 activation, and elucidate the underlying mechanisms. To achieve this, full-length HCV and HCV subgenomic constructs corresponding to structural and each of the nonstructural proteins were transiently transfected into HepG2 cells. IFN-β induction, plaque formation, and IRF-3 dimerization were elicited by Newcastle disease virus (NDV) infection. The expressions of IRF-3 homodimer and its monomer, Ser386-phosphorylated IRF-3, and HCV core protein were detected by immunofluorescence and western blotting. IFN-β mRNA expression was quantified by real-time PCR (RT-PCR), and IRF-3 activity was measured by the levels of IRF-3 dimerization and phosphorylation, induced by NDV infection or polyriboinosinic:polyribocytidylic acid [poly(I:C)]. Switching of the expression of the complete HCV genome as well as the core proteins, E1, E2, and NS2, suppressed IFN-β mRNA levels and IRF-3 dimerization, induced by NDV infection. Our study revealed a crucial region of the HCV core protein, basic amino acid region 1 (BR1), to inhibit IRF-3 dimerization as well as its phosphorylation induced by NDV infection and poly (I:C), thus interfering with IRF-3 activation. Therefore, our study suggests that rescue of the IRF-3 pathway impairment may be an effective treatment for HCV infection. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Enhanced gamma interferon responses of mouse spleen cells following immunotherapy for tuberculosis relapse.

    Science.gov (United States)

    Gil, Olga; Vilaplana, Cristina; Guirado, Evelyn; Díaz, Jorge; Cáceres, Neus; Singh, Mahavir; Cardona, Pere-Joan

    2008-11-01

    Gamma interferon responses of spleen cells in mice were examined during postchemotherapy relapse of intraperitoneally induced latent tuberculous infection. The mycobacterial extract RUTI, which prevented the relapse, significantly enhanced the immune responses to secreted and structural recombinant mycobacterial antigens, suggesting that RUTI-mediated protection was mediated by activated T cells.

  14. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation.

    Science.gov (United States)

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji

    2009-02-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-beta mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD) or alpha-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR)-mediated eukaryotic initiation factor (eIF)2alpha phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2alpha accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2alpha phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2alpha phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts.

  15. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA1 TLR signaling molecules MAVS IPS1, KIAA1271, VISA VISA_(gene) Mitochondrial antiviral-signaling pr...otein CARD adapter inducing interferon beta, Interferon beta promoter stimulator protein... 1, Putative NF-kappa-B-activating protein 031N, Virus-induced-signaling adapter 9606 Homo sapiens Q7Z434 57506 2VGQ 57506 ...

  16. Tetherin Suppresses Type I Interferon Signaling by Targeting MAVS for NDP52-Mediated Selective Autophagic Degradation in Human Cells.

    Science.gov (United States)

    Jin, Shouheng; Tian, Shuo; Luo, Man; Xie, Weihong; Liu, Tao; Duan, Tianhao; Wu, Yaoxing; Cui, Jun

    2017-10-19

    Tetherin (BST2/CD317) is an interferon-inducible antiviral factor known for its ability to block the release of enveloped viruses from infected cells. Yet its role in type I interferon (IFN) signaling remains poorly defined. Here, we demonstrate that Tetherin is a negative regulator of RIG-I like receptor (RLR)-mediated type I IFN signaling by targeting MAVS. The induction of Tetherin by type I IFN accelerates MAVS degradation via ubiquitin-dependent selective autophagy in human cells. Moreover, Tetherin recruits E3 ubiquitin ligase MARCH8 to catalyze K27-linked ubiquitin chains on MAVS at lysine 7, which serves as a recognition signal for NDP52-dependent autophagic degradation. Taken together, our findings reveal a negative feedback loop of RLR signaling generated by Tetherin-MARCH8-MAVS-NDP52 axis and provide insights into a better understanding of the crosstalk between selective autophagy and optimal deactivation of type I IFN signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA: a new antiviral pathway

    Directory of Open Access Journals (Sweden)

    Saurabh Chattopadhyay

    2016-11-01

    Full Text Available Abstract The innate immune response is the first line of host defense to eliminate viral infection. Pattern recognition receptors in the cytosol, such as RIG-I-like receptors (RLR and Nod-like receptors (NLR, and membrane bound Toll like receptors (TLR detect viral infection and initiate transcription of a cohort of antiviral genes, including interferon (IFN and interferon stimulated genes (ISGs, which ultimately block viral replication. Another mechanism to reduce viral spread is through RIPA, the RLR-induced IRF3-mediated pathway of apoptosis, which causes infected cells to undergo premature death. The transcription factor IRF3 can mediate cellular antiviral responses by both inducing antiviral genes and triggering apoptosis through the activation of RIPA. The mechanism of IRF3 activation in RIPA is distinct from that of transcriptional activation; it requires linear polyubiquitination of specific lysine residues of IRF3. Using RIPA-active, but transcriptionally inactive, IRF3 mutants, it was shown that RIPA can prevent viral replication and pathogenesis in mice.

  18. Ultrasound-mediated interferon β gene transfection inhibits growth of malignant melanoma

    International Nuclear Information System (INIS)

    Yamaguchi, Kazuki; Feril, Loreto B.; Tachibana, Katsuro; Takahashi, Akira; Matsuo, Miki; Endo, Hitomi; Harada, Yoshimi; Nakayama, Juichiro

    2011-01-01

    Highlights: → Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-β genes both in vitro and in vivo. → Ultrasound-mediated IFN-β transfection inhibited proliferation of melanoma cells in vitro. → Ultrasound-mediated IFN-β transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon β (IFN-β) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-β in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-β genes mixed with microbubbles. Successful sonotransfection with IFN-β gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-β gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  19. E2F/Rb Family Proteins Mediate Interferon Induced Repression of Adenovirus Immediate Early Transcription to Promote Persistent Viral Infection.

    Directory of Open Access Journals (Sweden)

    Yueting Zheng

    2016-01-01

    Full Text Available Interferons (IFNs are cytokines that have pleiotropic effects and play important roles in innate and adaptive immunity. IFNs have broad antiviral properties and function by different mechanisms. IFNs fail to inhibit wild-type Adenovirus (Ad replication in established cancer cell lines. In this study, we analyzed the effects of IFNs on Ad replication in normal human cells. Our data demonstrate that both IFNα and IFNγ blocked wild-type Ad5 replication in primary human bronchial epithelial cells (NHBEC and TERT-immortalized normal human diploid fibroblasts (HDF-TERT. IFNs inhibited the replication of divergent adenoviruses. The inhibition of Ad5 replication by IFNα and IFNγ is the consequence of repression of transcription of the E1A immediate early gene product. Both IFNα and IFNγ impede the association of the transactivator GABP with the E1A enhancer region during the early phase of infection. The repression of E1A expression by IFNs requires a conserved E2F binding site in the E1A enhancer, and IFNs increased the enrichment of the E2F-associated pocket proteins, Rb and p107, at the E1A enhancer in vivo. PD0332991 (Pabociclib, a specific CDK4/6 inhibitor, dephosphoryles pocket proteins to promote their interaction with E2Fs and inhibited wild-type Ad5 replication dependent on the conserved E2F binding site. Consistent with this result, expression of the small E1A oncoprotein, which abrogates E2F/pocket protein interactions, rescued Ad replication in the presence of IFNα or IFNγ. Finally, we established a persistent Ad infection model in vitro and demonstrated that IFNγ suppresses productive Ad replication in a manner dependent on the E2F binding site in the E1A enhancer. This is the first study that probes the molecular basis of persistent adenovirus infection and reveals a novel mechanism by which adenoviruses utilize IFN signaling to suppress lytic virus replication and to promote persistent infection.

  20. Interferon Induced Focal Segmental Glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Yusuf Kayar

    2016-01-01

    Full Text Available Behçet’s disease is an inflammatory disease of unknown etiology which involves recurring oral and genital aphthous ulcers and ocular lesions as well as articular, vascular, and nervous system involvement. Focal segmental glomerulosclerosis (FSGS is usually seen in viral infections, immune deficiency syndrome, sickle cell anemia, and hyperfiltration and secondary to interferon therapy. Here, we present a case of FSGS identified with kidney biopsy in a patient who had been diagnosed with Behçet’s disease and received interferon-alpha treatment for uveitis and presented with acute renal failure and nephrotic syndrome associated with interferon.

  1. Inhibition of interleukin-3- and interferon- α-induced JAK/STAT signaling by the synthetic α-X-2',3,4,4'-tetramethoxychalcones α-Br-TMC and α-CF3-TMC.

    Science.gov (United States)

    Jobst, Belinda; Weigl, Julia; Michl, Carina; Vivarelli, Fabio; Pinz, Sophia; Amslinger, Sabine; Rascle, Anne

    2016-11-01

    The JAK/STAT pathway is an essential mediator of cytokine signaling, often upregulated in human diseases and therefore recognized as a relevant therapeutic target. We previously identified the synthetic chalcone α-bromo-2',3,4,4'-tetramethoxychalcone (α-Br-TMC) as a novel JAK2/STAT5 inhibitor. We also found that treatment with α-Br-TMC resulted in a downward shift of STAT5 proteins in SDS-PAGE, suggesting a post-translational modification that might affect STAT5 function. In the present study, we show that a single cysteine within STAT5 is responsible for the α-Br-TMC-induced protein shift, and that this modification does not alter STAT5 transcriptional activity. We also compared the inhibitory activity of α-Br-TMC to that of another synthetic chalcone, α-trifluoromethyl-2',3,4,4'-tetramethoxychalcone (α-CF3-TMC). We found that, like α-Br-TMC, α-CF3-TMC inhibits JAK2 and STAT5 phosphorylation in response to interleukin-3, however without altering STAT5 mobility in SDS-PAGE. Moreover, we demonstrate that both α-Br-TMC and α-CF3-TMC inhibit interferon-α-induced activation of STAT1 and STAT2, by inhibiting their phosphorylation and the expression of downstream interferon-stimulated genes. Together with the previous finding that α-Br-TMC and α-CF3-TMC inhibit the response to inflammation by inducing Nrf2 and blocking NF-κB activities, our data suggest that synthetic chalcones might be useful as anti-inflammatory, anti-cancer and immunomodulatory agents in the treatment of human diseases.

  2. Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation.

    Science.gov (United States)

    Sonkusre, Praveen; Cameotra, Swaranjit Singh

    2017-06-07

    Selenium is well documented to inhibit cancer at higher doses; however, the mechanism behind this inhibition varies widely depending on the cell type and selenium species. Previously, we have demonstrated that Bacillus licheniformis JS2 derived biogenic selenium nanoparticles (SeNPs) induce non-apoptotic cell death in prostate adenocarcinoma cell line, PC-3, at a minimal concentration of 2 µg Se/ml, without causing toxicity to the primary cells. However, the mechanism behind its anticancer activity was elusive. Our results have shown that these SeNPs at a concentration of 2 µg Se/ml were able to induce reactive oxygen species (ROS) mediated necroptosis in PC-3 cells by gaining cellular internalization. Real-time qPCR analysis showed increased expression of necroptosis associated tumor necrotic factor (TNF) and interferon regulatory factor 1 (IRF1). An increased expression of RIP1 protein was also observed at the translational level upon SeNP treatment. Moreover, the cell viability was significantly increased in the presence of necroptosis inhibitor, Necrostatin-1. Data suggest that our biogenic SeNPs induce cell death in PC-3 cells by the ROS-mediated activation of necroptosis, independent to RIP3 and MLKL, regulated by a RIP1 kinase.

  3. Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity

    OpenAIRE

    Judith A. Smith; Judith A. Smith

    2018-01-01

    Protein folding in the endoplasmic reticulum (ER) is an essential cell function. To safeguard this process in the face of environmental threats and internal stressors, cells mount an evolutionarily conserved response known as the unfolded protein response (UPR). Invading pathogens induce cellular stress that impacts protein folding, thus the UPR is well situated to sense danger and contribute to immune responses. Cytokines (inflammatory cytokines and interferons) critically mediate host defen...

  4. Helicobacter pylori Outer Membrane Protein 18 (Hp1125 Is Involved in Persistent Colonization by Evading Interferon-γ Signaling

    Directory of Open Access Journals (Sweden)

    Yuqun Shan

    2015-01-01

    Full Text Available Outer membrane proteins (OMPs can induce an immune response. Omp18 (HP1125 of H. pylori is a powerful antigen that can induce significant interferon-γ (IFN-γ levels. Previous studies have suggested that IFN-γ plays an important role in H. pylori clearance. However, H. pylori has multiple mechanisms to avoid host immune surveillance for persistent colonization. We generated an omp18 mutant (H. pylori 26695 and H. pylori SS1 strain to examine whether Omp18 interacts with IFN-γ and is involved in H. pylori colonization. qRT-PCR revealed that IFN-γ induced Omp18 expression. qRT-PCR and western blot analysis revealed reduced expressions of virulence factors CagA and NapA in H. pylori 26695 with IFN-γ treatment, but they were induced in the Δomp18 strain. In C57BL/6 mice infected with H. pylori SS1 and the Δomp18 strain, the Δomp18 strain conferred defective colonization and activated a stronger inflammatory response. Signal transducer phosphorylation and transcription 1 (STAT1 activator was downregulated by the wild-type strain but not the Δomp18 strain in IFN-γ-treated macrophages. Furthermore, Δomp18 strain survival rates were poor in macrophages compared to the wild-type strain. We concluded that H. pylori Omp18 has an important function influencing IFN-γ-mediated immune response to participate in persistent colonization.

  5. Toscana virus NSs protein inhibits the induction of type I interferon by interacting with RIG-I.

    Science.gov (United States)

    Gori-Savellini, Gianni; Valentini, Melissa; Cusi, Maria Grazia

    2013-06-01

    Toscana virus (TOSV) is a phlebovirus, of the Bunyaviridae family, that is responsible for central nervous system (CNS) injury in humans. Previous data have shown that the TOSV NSs protein is a gamma interferon (IFN-β) antagonist when transiently overexpressed in mammalian cells, inhibiting IRF-3 induction (G. Gori Savellini, F. Weber, C. Terrosi, M. Habjan, B. Martorelli, and M. G. Cusi, J. Gen. Virol. 92:71-79, 2011). In this study, we investigated whether an upstream sensor, which has a role in the signaling cascade leading to the production of type I IFN, was involved. We found a significant decrease in RIG-I protein levels in cells overexpressing TOSV NSs, suggesting that the nonstructural protein interacts with RIG-I and targets it for proteasomal degradation. In fact, the MG-132 proteasome inhibitor was able to restore IFN-β promoter activation in cells expressing NSs, demonstrating the existence of an evasion mechanism based on inhibition of the RIG-I sensor. Furthermore, a C-terminal truncated NSs protein (ΔNSs), although able to interact with RIG-I, did not affect the RIG-I-mediated IFN-β promoter activation, suggesting that the NSs domains responsible for RIG-I-mediated signaling and interaction with RIG-I are mapped on different regions. These results contribute to identify a novel mechanism for bunyaviruses by which TOSV NSs counteracts the early IFN response.

  6. Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion

    Directory of Open Access Journals (Sweden)

    Priya Luthra

    2017-04-01

    Full Text Available Ebola virus (EBOV protein VP35 inhibits production of interferon alpha/beta (IFN by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs. These compounds were demonstrated to induce IFN responses in an ATM kinase-dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN induction. These compounds also suppress EBOV replication in vitro and induce IFN in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses. These findings provide new insights into signaling pathways activated by important chemotherapy drugs and identify a novel therapeutic approach for IFN induction that may be exploited to inhibit RNA virus replication.

  7. NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase.

    Science.gov (United States)

    Habjan, Matthias; Pichlmair, Andreas; Elliott, Richard M; Overby, Anna K; Glatter, Timo; Gstaiger, Matthias; Superti-Furga, Giulio; Unger, Hermann; Weber, Friedemann

    2009-05-01

    Rift Valley fever virus (RVFV) continues to cause large outbreaks of acute febrile and often fatal illness among humans and domesticated animals in Africa, Saudi Arabia, and Yemen. The high pathogenicity of this bunyavirus is mainly due to the viral protein NSs, which was shown to prevent transcriptional induction of the antivirally active type I interferons (alpha/beta interferon [IFN-alpha/beta]). Viruses lacking the NSs gene induce synthesis of IFNs and are therefore attenuated, whereas the noninducing wild-type RVFV strains can only be inhibited by pretreatment with IFN. We demonstrate here in vitro and in vivo that a substantial part of the antiviral activity of IFN against RVFV is due to a double-stranded RNA-dependent protein kinase (PKR). PKR-mediated virus inhibition, however, was much more pronounced for the strain Clone 13 with NSs deleted than for the NSs-expressing strain ZH548. In vivo, Clone 13 was nonpathogenic for wild-type (wt) mice but could regain pathogenicity if mice lacked the PKR gene. ZH548, in contrast, killed both wt and PKR knockout mice indiscriminately. ZH548 was largely resistant to the antiviral properties of PKR because RVFV NSs triggered the specific degradation of PKR via the proteasome. The NSs proteins of the related but less virulent sandfly fever Sicilian virus and La Crosse virus, in contrast, had no such anti-PKR activity despite being efficient suppressors of IFN induction. Our data suggest that RVFV NSs has gained an additional anti-IFN function that may explain the extraordinary pathogenicity of this virus.

  8. Clinical Value of Thyrotropin Receptor Antibodies for the Differential Diagnosis of Interferon Induced Thyroiditis.

    Science.gov (United States)

    Benaiges, D; Garcia-Retortillo, M; Mas, A; Cañete, N; Broquetas, T; Puigvehi, M; Chillarón, J J; Flores-Le Roux, J A; Sagarra, E; Cabrero, B; Zaffalon, D; Solà, R; Pedro-Botet, J; Carrión, J A

    2016-01-01

    The clinical value of thyrotropin receptor antibodies for the differential diagnosis of thyrotoxicosis induced by pegylated interferon-alpha remains unknown. We analyzed the diagnostic accuracy of thyrotropin receptor antibodies in the differential diagnosis of thyrotoxicosis in patients with chronic hepatitis C (CHC) receiving pegylated interferon-alpha plus ribavirin. Retrospective analysis of 274 patients with CHC receiving pegylated interferon-alpha plus ribavirin. Interferon-induced thyrotoxicosis was classified according to clinical guidelines as Graves disease, autoimmune and non- autoimmune destructive thyroiditis. 48 (17.5%) patients developed hypothyroidism, 17 (6.2%) thyrotoxicosis (6 non- autoimmune destructive thyroiditis, 8 autoimmune destructive thyroiditis and 3 Graves disease) and 22 "de novo" thyrotropin receptor antibodies (all Graves disease, 2 of the 8 autoimmune destructive thyroiditis and 17 with normal thyroid function). The sensitivity and specificity of thyrotropin receptor antibodies for Graves disease diagnosis in patients with thyrotoxicosis were 100 and 85%, respectively. Patients with destructive thyroiditis developed hypothyroidism in 87.5% of autoimmune cases and in none of those with a non- autoimmune etiology (pthyroid scintigraphy for the differential diagnosis of thyrotoxicosis in CHC patients treated with pegylated interferon. © Georg Thieme Verlag KG Stuttgart · New York.

  9. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    International Nuclear Information System (INIS)

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R.

    2006-01-01

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML

  10. Reprogramming of murine macrophages through TLR2 confers viral resistance via TRAF3-mediated, enhanced interferon production.

    Directory of Open Access Journals (Sweden)

    Darren J Perkins

    Full Text Available The cell surface/endosomal Toll-like Receptors (TLRs are instrumental in initiating immune responses to both bacteria and viruses. With the exception of TLR2, all TLRs and cytosolic RIG-I-like receptors (RLRs with known virus-derived ligands induce type I interferons (IFNs in macrophages or dendritic cells. Herein, we report that prior ligation of TLR2, an event previously shown to induce "homo" or "hetero" tolerance, strongly "primes" macrophages for increased Type I IFN production in response to subsequent TLR/RLR signaling. This occurs by increasing activation of the transcription factor, IFN Regulatory Factor-3 (IRF-3 that, in turn, leads to enhanced induction of IFN-β, while expression of other pro-inflammatory genes are suppressed (tolerized. In vitro or in vivo "priming" of murine macrophages with TLR2 ligands increase virus-mediated IFN induction and resistance to infection. This priming effect of TLR2 is mediated by the selective upregulation of the K63 ubiquitin ligase, TRAF3. Thus, we provide a mechanistic explanation for the observed antiviral actions of MyD88-dependent TLR2 and further define the role of TRAF3 in viral innate immunity.

  11. The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon

    International Nuclear Information System (INIS)

    Zhang Benyue; Li Ping; Wang Exing; Brahmi, Zacharie; Dunn, Kenneth W.; Blum, Janice S.; Roman, Ann

    2003-01-01

    Major histocompatibility complex (MHC) class II antigens are expressed on human foreskin keratinocytes (HFKs) following exposure to interferon gamma. The expression of MHC class II proteins on the cell surface may allow keratinocytes to function as antigen-presenting cells and induce a subsequent immune response to virus infection. Invariant chain (Ii) is a chaperone protein which plays an important role in the maturation of MHC class II molecules. The sequential degradation of Ii within acidic endocytic compartments is a key process required for the successful loading of antigenic peptide onto MHC class II molecules. Since human papillomavirus (HPV) 16 E5 can inhibit the acidification of late endosomes in HFKs, the E5 protein may be able to affect proper peptide loading onto the MHC class II molecule. To test this hypothesis, HFKs were infected with either control virus or a recombinant virus expressing HPV16 E5 and the infected cells were subsequently treated with interferon-γ. ELISAs revealed a decrease of MHC class II expression on the surface of E5-expressing cells compared with control virus-infected cells after interferon treatment. Western blot analysis showed that, in cells treated with interferon gamma, E5 could prevent the breakdown of Ii and block the formation of peptide-loaded, SDS-stable mature MHC class II dimers, correlating with diminished surface MHC class II expression. These data suggest that HPV16 E5 may be able to decrease immune recognition of infected keratinocytes via disruption of MHC class II protein function

  12. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation.

    Directory of Open Access Journals (Sweden)

    Tetsuro Ikegami

    2009-02-01

    Full Text Available Rift Valley fever virus (RVFV (genus Phlebovirus, family Bunyaviridae is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-beta mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD or alpha-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR-mediated eukaryotic initiation factor (eIF2alpha phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2alpha accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2alpha phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2alpha phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts.

  13. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon

    Science.gov (United States)

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio

    2010-01-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241

  14. [Alpha interferon induced hyperthyroidism: a case report and review of the literature].

    Science.gov (United States)

    Maiga, I; Valdes-Socin, H; Thiry, A; Delwaide, J; Sidibe, A T; Beckers, A

    2015-01-01

    Treatment with alpha interferon in hepatitis C triggers a thyroid autoimmunity in a variable percentage of cases (2-8%). This complication raises some questions about its screening, the possibility to continue anti-viral therapy and thyroid treatment. Alpha interferon has an immunomodulatory effect on the thyroid, but also an inhibitory effect on thyroid hormone synthesis. This explains the occurrence of cases of thyroid dysfunction, which often remain undetected because of their latency. Factors predicting thyroid dysfunction with interferon use are: female sex, history of thyroid disease and previous autoimmunity. Several clinical aspects are encountered including hypothyroidism (the most frequent depending on the series) and hyperthyroidism related to Graves' disease. For their detection, a cooperation between general practionners, gastroenterologists and endocrinologists is mandatory thyroid function tests are requested before, during and after treatment,with alpha interferon. Therapeutic aspects of thyroid disorders range from simple monitoring to symptomatic treatment, such as thyroxine prescription in the presence of hypothyroidism. Antithyroid drugs radioactive iodine or thyroid surgery are used in cases of severe or persistent Graves' disease induced by alpha interferon.

  15. Interferon-γ-inducible protein-10 in chronic hepatitis C: Correlations with insulin resistance, histological features & sustained virological response.

    Science.gov (United States)

    Crisan, Dana; Grigorescu, Mircea Dan; Radu, Corina; Suciu, Alina; Grigorescu, Mircea

    2017-04-01

    One of the multiple factors contributing to virological response in chronic hepatitis C (CHC) is interferon-gamma-inducible protein-10 (IP-10). Its level reflects the status of interferon-stimulated genes, which in turn is associated with virological response to antiviral therapy. The aim of this study was to evaluate the role of serum IP-10 levels on sustained virological response (SVR) and the association of this parameter with insulin resistance (IR) and liver histology. Two hundred and three consecutive biopsy proven CHC patients were included in the study. Serum levels of IP-10 were determined using ELISA method. IR was evaluated by homeostasis model assessment-IR (HOMA-IR). Histological features were assessed invasively by liver biopsy and noninvasively using FibroTest, ActiTest and SteatoTest. Predictive factors for SVR and their interrelations were assessed. A cut-off value for IP-10 of 392 pg/ml was obtained to discriminate between responders and non-responders. SVR was obtained in 107 patients (52.70%). Area under the receiver operating characteristic curve for SVR was 0.875 with a sensitivity of 91.6 per cent, specificity 74.7 per cent, positive predictive value 80.3 per cent and negative predictive value 88.7 per cent. Higher values of IP-10 were associated with increasing stages of fibrosis (P<0.01) and higher grades of inflammation (P=0.02, P=0.07) assessed morphologically and noninvasively through FibroTest and ActiTest. Significant steatosis and IR were also associated with increased levels of IP-10 (P=0.01 and P=0.02). In multivariate analysis, IP-10 levels and fibrosis stages were independently associated with SVR. Our findings showed that the assessment of serum IP-10 level could be a predictive factor for SVR and it was associated with fibrosis, necroinflammatory activity, significant steatosis and IR in patients with chronic HCV infection.

  16. Interferons: between structure and function

    Directory of Open Access Journals (Sweden)

    Katarzyna Bandurska

    2014-05-01

    Full Text Available Interferons are a family of proteins that are released by a variety of cells in response to infections caused by viruses. Currently, we distinguish three types of interferons. They are classified based on the nucleotide sequence, interaction with specific receptors, chromosomal location, structure and physicochemical properties. The following interferons are classified as type I: α, β, ω, κ, ε, ζ, τ, δ, ν. They are recognized and bound by a receptor formed by two peptides, IFN-αR1 and IFN-αR2. Representative of type II interferons is interferon-γ. It binds to a receptor composed of chains IFNGR-1 and IFNGR-2. The recently classified type III interferons comprise IFN-λ1, IFN-λ2, and IFN-λ3. They act on receptors formed by λR1 IFN-and IL-10R2 subunits. A high level of antiviral protection is achieved by IFN-α, IFN-β and IFN-λ. Antiviral activity of interferons is based on the induction and regulation of innate and acquired immune mechanisms. By binding to transmembrane receptors, IFN interacts with target cells mainly by activating the JAK/STAT, but also other signaling pathways. This leads to induction and activation of many antiviral agents, such as protein kinase RNA-activated (PKR, ribonuclease 2-5A pathway, and Mx proteins, as well as numerous apoptotic pathways. As a result of the protective effect of interferons, the virus binding to cells and viral particles penetration into cells is stopped, and the release of the nucleocapsid from an envelope is suppressed. Disruption of transcription and translation processes of the structural proteins prevents the formation of virions or budding of viruses, and as a result degradation of the viral mRNA; the started processes inhibit the chain synthesis of viral proteins and therefore further stimulate the immune system cells.

  17. Postinduction represssion of the β-interferon gene is mediated through two positive regulatory domains

    International Nuclear Information System (INIS)

    Whittemore, L.A.; Maniatis, T.

    1990-01-01

    Virus induction of the human β-interferon (β-IFN) gene results in an increase in the rate of β-IFN mRNA synthesis, followed by a rapid postinduction decrease. In this paper, the authors show that two β-IFN promoter elements, positive regulatory domains I and II (PRDI and PRDII), which are required for virus induction of the β-IFN gene are also required for the postinduction turnoff. Although protein synthesis is not necessary for activation, it is necessary for repression of these promoter elements. Examination of nuclear extracts from cells infected with virus reveals the presence of virus-inducible, cycloheximide-sensitive, DNA-binding activities that interact specifically with PRDI or PRDII. They propose that the postinduction repression of β-IFN gene transcription involves virus inducible repressors that either bind directly to the positive regulatory elements of the β-IFN promoter or inactivate the positive regulatory factors bound to PRDI and PRDII

  18. Constitutive expression of interferon-induced human MxA protein in transgenic tobacco plants does not confer resistance to a variety of RNA viruses

    NARCIS (Netherlands)

    Frese, M.; Prins, M.; Ponten, A.; Goldbach, R.W.; Haller, O.; Zeltz, P.

    2000-01-01

    MxA is a key component in the interferon-induced antiviral defense in humans. After viral infections, MxA is rapidly induced and accumulates in the cytoplasm. The multiplication of many RNA viruses,including all bunyaviruses tested so far, is inhibited by MxA. These findings prompted us to express

  19. Mx Is Not Responsible for the Antiviral Activity of Interferon-α against Japanese Encephalitis Virus

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2017-01-01

    Full Text Available Mx proteins are interferon (IFN-induced dynamin-like GTPases that are present in all vertebrates and inhibit the replication of myriad viruses. However, the role Mx proteins play in IFN-mediated suppression of Japanese encephalitis virus (JEV infection is unknown. In this study, we set out to investigate the effects of Mx1 and Mx2 expression on the interferon-α (IFNα restriction of JEV replication. To evaluate whether the inhibitory activity of IFNα on JEV is dependent on Mx1 or Mx2, we knocked down Mx1 or Mx2 with siRNA in IFNα-treated PK-15 cells and BHK-21 cells, then challenged them with JEV; the production of progeny virus was assessed by plaque assay, RT-qPCR, and Western blotting. Our results demonstrated that depletion of Mx1 or Mx2 did not affect JEV restriction imposed by IFNα, although these two proteins were knocked down 66% and 79%, respectively. Accordingly, expression of exogenous Mx1 or Mx2 did not change the inhibitory activity of IFNα to JEV. In addition, even though virus-induced membranes were damaged by Brefeldin A (BFA, overexpressing porcine Mx1 or Mx2 did not inhibit JEV proliferation. We found that BFA inhibited JEV replication, not maturation, suggesting that BFA could be developed into a novel antiviral reagent. Collectively, our findings demonstrate that IFNα inhibits JEV infection by Mx-independent pathways.

  20. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway.

    Science.gov (United States)

    Sun, Lijun; Wu, Jiaxi; Du, Fenghe; Chen, Xiang; Chen, Zhijian J

    2013-02-15

    The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers host immune responses such as the production of type I interferons. Cytosolic DNA induces interferons through the production of cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced interferon-β in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and interferon-β induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP.

  1. Pig but not Human Interferon-γ Initiates Human Cell-Mediated Rejection of Pig Tissue in vivo

    Science.gov (United States)

    Sultan, Parvez; Murray, Allan G.; McNiff, Jennifer M.; Lorber, Marc I.; Askenase, Philip W.; Bothwell, Alfred L. M.; Pober, Jordan S.

    1997-08-01

    Split-thickness pig skin was transplanted on severe combined immunodeficient mice so that pig dermal microvessels spontaneously inosculated with mouse microvessels and functioned to perfuse the grafts. Pig endothelial cells in the healed grafts constitutively expressed class I and class II major histocompatibility complex molecules. Major histocompatibility complex molecule expression could be further increased by intradermal injection of pig interferon-γ (IFN-γ ) but not human IFN-γ or tumor necrosis factor. Grafts injected with pig IFN-γ also developed a sparse infiltrate of mouse neutrophils and eosinophils without evidence of injury. Introduction of human peripheral blood mononuclear cells into the animals by intraperitoneal inoculation resulted in sparse perivascular mononuclear cell infiltrates in the grafts confined to the pig dermis. Injection of pig skin grafts on mice that received human peripheral blood mononuclear cells with pig IFN-γ (but not human IFN-γ or heat-inactivated pig IFN-γ ) induced human CD4+ and CD8+ T cells and macrophages to more extensively infiltrate the pig skin grafts and injure pig dermal microvessels. These findings suggest that human T cell-mediated rejection of xenotransplanted pig organs may be prevented if cellular sources of pig interferon (e.g., passenger lymphocytes) are eliminated from the graft.

  2. Interferon gamma, interferon-gamma-induced-protein 10, and tuberculin responses of children at high risk of tuberculosis infection

    DEFF Research Database (Denmark)

    Petrucci, Roberta; Abu Amer, Nabil; Gurgel, Ricardo Queiroz

    2008-01-01

    BACKGROUND: Children in contact with adults with pulmonary tuberculosis (TB) are at risk for infection and disease progression, and chemoprophylaxis may reduce this risk. The identification of infection is based on the tuberculin skin test (TST) and interferon-gamma (INF-gamma) release assays...

  3. Differential expression of interferon-gamma and interferon-gamma-inducing cytokines in Thai patients with scrub typhus or leptospirosis

    NARCIS (Netherlands)

    Chierakul, Wirongrong; de Fost, Maaike; Suputtamongkol, Yupin; Limpaiboon, Roongreung; Dondorp, Arjen; White, Nicholas J.; van der Poll, Tom

    2004-01-01

    Interferon (IFN)-gamma plays an important role in the induction of a type 1 immune response against intracellular pathogens. We compared the plasma levels of IFN-gamma and IFN-gamma-inducing cytokines in adult Thai patients with scrub typhus, caused by the obligate intracellular bacterium Orientia

  4. Modulation of interferon-gamma-induced HLA-DR expression on the human keratinocyte cell line SCC-13 by ultraviolet radiation

    International Nuclear Information System (INIS)

    Khan, I.U.; Boehm, K.D.; Elmets, C.A.

    1993-01-01

    Cell surface expression of major histocompatibility determinants on epidermal keratinocytes is a characteristic feature of a number of inflammatory dermatoses and in all likelihood is caused by diffusion of human leukocyte antigen (HLA)-DR-inducing cytokines from cells present in the dermal mononuclear cell infiltrate. Many of these same disorders respond to ultraviolet (UV) radiation phototherapy. Using the human SCC-13 keratinocyte cell line as a model, UV radiation was found to inhibit interferon-gamma-induced HLA-DR expression. Inhibition correlated closely with decreased steady-state levels of HLA-DR mRNA. These findings provide evidence that the therapeutic effect of UV radiation phototherapy may be mediated by its capacity to down-regulate cytokine-induced keratinocyte HLA-DR expression. (Author)

  5. Influenza A virus does not encode a tetherin antagonist with Vpu-like activity and induces IFN-dependent tetherin expression in infected cells.

    Directory of Open Access Journals (Sweden)

    Michael Winkler

    Full Text Available The interferon-induced host cell factor tetherin inhibits release of human immunodeficiency virus (HIV from the plasma membrane of infected cells and is counteracted by the HIV-1 protein Vpu. Influenza A virus (FLUAV also buds from the plasma membrane and is not inhibited by tetherin. Here, we investigated if FLUAV encodes a functional equivalent of Vpu for tetherin antagonism. We found that expression of the FLUAV protein NS1, which antagonizes the interferon (IFN response, did not block the tetherin-mediated restriction of HIV release, which was rescued by Vpu. Similarly, tetherin-mediated inhibition of HIV release was not rescued by FLUAV infection. In contrast, FLUAV infection induced tetherin expression on target cells in an IFN-dependent manner. These results suggest that FLUAV escapes the antiviral effects of tetherin without encoding a tetherin antagonist with Vpu-like activity.

  6. Interferon-β lipofection II. Mechanisms involved in cell death and bystander effect induced by cationic lipid-mediated interferon-β gene transfer to human tumor cells.

    Science.gov (United States)

    Villaverde, M S; Gil-Cardeza, M L; Glikin, G C; Finocchiaro, L M E

    2012-06-01

    We evaluated the cytotoxic effects (apoptosis, necrosis and early senescence) of human interferon-β (hIFNβ) gene lipofection. The cytotoxicity of hIFNβ gene lipofection resulted equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) on human tumor cell lines derived from Ewing's sarcoma (EW7 and COH) and colon (HT-29) carcinomas. However, it was stronger than rhIFNβ on melanoma (M8) and breast adenocarcinoma (MCF7). To reveal the mechanisms involved in these differences, we compared the effects of hIFNβ gene and rhIFNβ protein on EW7 and M8 (sensitive and resistant to rhIFNβ protein, respectively). Lipofection with hIFNβ gene caused a mitochondrial potential decrease simultaneous with an increase of oxidative stress in both cell lines. However, rhIFNβ protein displayed the same pattern of response only in EW7-sensitive cell line. The great bystander effect of the hIFNβ gene lipofection, involving the production of reactive oxygen species, would be among the main causes of its success. In EW7, this effect killed >60% of EW7 cell population, even though only 1% of cells were expressing the transgene. As hIFNβ gene was effective even in the rhIFNβ protein-resistant M8 cell line and in a way not limited by low lipofection efficiency, these results strongly support the clinical potential of this approach.

  7. Interferon gamma, interferon-gamma-induced-protein 10, and tuberculin responses of children at high risk of tuberculosis infection

    DEFF Research Database (Denmark)

    Petrucci, Roberta; Abu Amer, Nabil; Gurgel, Ricardo Queiroz

    2008-01-01

    BACKGROUND: Children in contact with adults with pulmonary tuberculosis (TB) are at risk for infection and disease progression, and chemoprophylaxis may reduce this risk. The identification of infection is based on the tuberculin skin test (TST) and interferon-gamma (INF-gamma) release assays. Ot...

  8. Inhibition of interferon production in human fibroblasts by a tumor promoting phorbol ester

    International Nuclear Information System (INIS)

    Frankfort, H.M.; Vilcek, J.

    1982-01-01

    The effect of 12-0-tetradecanoylphorbol-13-acetate (TPA) on the induction of interferon in cultures of human fibroblasts was examined. TPA was found to inhibit polyinosinate-polycytidylate [poly(I) X poly(C)]-induced interferon production when added either before or with the inducer. A 3-hour pretreatment of FS-4 cells with TPA produced the greatest ihibitory effect. Partially inhibitory treatments with TPA caused a delay in interferon production. On the other hand, interferon yields were slightly enhanced by TPA added at 1 1/2 or 3 hours postinduction. No gross metabolic perturbations (e.g., inhibition of cellular protein or RNA synthesis) were detected which would explain the phenomenon. The inhibition of interferon production was a stereospecific event: biologically inactive derivatives of TPA (4-0-methyl TPA, 4-α-phorbol-12, 13-didecanoate and phorbol-12, 13-diacetate) had no effect on interferon production. Cellular proteases or nucleases did not appear to be involved in this process. The binding of labeled poly(I) X poly(C) to FS-4 cells was unaltered in TPA-treated cultures. In superinduced cultures (i.e., after enhancement of interferon yields by actinomycin D and cycloheximide), interferon production was generally less inhibited by TPA than after simple induction. Newcastle disease virus (NDV)-induced interferon synthesis in GM-258 cells was also inhibited by the phorbol ester. Both α (leukocyte) and β (fibroblast) interferon production was inhibited to a similar degree in TPA-treated cells inoculated with 0.1 or 1 plaque forming unit (PFU) of NDV per cell. Increasing the multiplicity of infection with NDV to 10 PFU per cell overcame the inhibitory action of TPA. We conclude that the site of TPA action is either the triggering (generation of the hypothetical inducing signal) or transcription of the interferom mRNA. (Author)

  9. Structural Insights into Triglyceride Storage Mediated by Fat Storage-Inducing Transmembrane (FIT) Protein 2

    Science.gov (United States)

    Gross, David A.; Snapp, Erik L.; Silver, David L.

    2010-01-01

    Fat storage-Inducing Transmembrane proteins 1 & 2 (FIT1/FITM1 and FIT2/FITM2) belong to a unique family of evolutionarily conserved proteins localized to the endoplasmic reticulum that are involved in triglyceride lipid droplet formation. FIT proteins have been shown to mediate the partitioning of cellular triglyceride into lipid droplets, but not triglyceride biosynthesis. FIT proteins do not share primary sequence homology with known proteins and no structural information is available to inform on the mechanism by which FIT proteins function. Here, we present the experimentally-solved topological models for FIT1 and FIT2 using N-glycosylation site mapping and indirect immunofluorescence techniques. These methods indicate that both proteins have six-transmembrane-domains with both N- and C-termini localized to the cytosol. Utilizing this model for structure-function analysis, we identified and characterized a gain-of-function mutant of FIT2 (FLL(157-9)AAA) in transmembrane domain 4 that markedly augmented the total number and mean size of lipid droplets. Using limited-trypsin proteolysis we determined that the FLL(157-9)AAA mutant has enhanced trypsin cleavage at K86 relative to wild-type FIT2, indicating a conformational change. Taken together, these studies indicate that FIT2 is a 6 transmembrane domain-containing protein whose conformation likely regulates its activity in mediating lipid droplet formation. PMID:20520733

  10. Structural insights into triglyceride storage mediated by fat storage-inducing transmembrane (FIT protein 2.

    Directory of Open Access Journals (Sweden)

    David A Gross

    2010-05-01

    Full Text Available Fat storage-Inducing Transmembrane proteins 1 & 2 (FIT1/FITM1 and FIT2/FITM2 belong to a unique family of evolutionarily conserved proteins localized to the endoplasmic reticulum that are involved in triglyceride lipid droplet formation. FIT proteins have been shown to mediate the partitioning of cellular triglyceride into lipid droplets, but not triglyceride biosynthesis. FIT proteins do not share primary sequence homology with known proteins and no structural information is available to inform on the mechanism by which FIT proteins function. Here, we present the experimentally-solved topological models for FIT1 and FIT2 using N-glycosylation site mapping and indirect immunofluorescence techniques. These methods indicate that both proteins have six-transmembrane-domains with both N- and C-termini localized to the cytosol. Utilizing this model for structure-function analysis, we identified and characterized a gain-of-function mutant of FIT2 (FLL(157-9AAA in transmembrane domain 4 that markedly augmented the total number and mean size of lipid droplets. Using limited-trypsin proteolysis we determined that the FLL(157-9AAA mutant has enhanced trypsin cleavage at K86 relative to wild-type FIT2, indicating a conformational change. Taken together, these studies indicate that FIT2 is a 6 transmembrane domain-containing protein whose conformation likely regulates its activity in mediating lipid droplet formation.

  11. A Recombinant Adenovirus Expressing Ovine Interferon Tau Prevents Influenza Virus-Induced Lethality in Mice.

    Science.gov (United States)

    Martín, V; Pascual, E; Avia, M; Rangel, G; de Molina, A; Alejo, A; Sevilla, N

    2016-01-06

    Ovine interferon tau (IFN-τ) is a unique type I interferon with low toxicity and a broad host range in vivo. We report the generation of a nonreplicative recombinant adenovirus expressing biologically active IFN-τ. Using the B6.A2G-Mx1 mouse model, we showed that single-dose intranasal administration of recombinant Ad5-IFN-τ can effectively prevent lethality and disease induced by highly virulent hv-PR8 influenza virus by activating the interferon response and preventing viral replication. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Interferon-induced central retinal vein thrombosis

    International Nuclear Information System (INIS)

    Nazir, L.; Husain, A.; Haroon, W.; Shaikh, M.I.; Mirza, S.A.; Khan, Z.

    2012-01-01

    A middle-aged lady presented with sudden onset of unilateral central retinal vein thrombosis after completing 6 months course of interferon and ribavirin for chronic hepatitis C infection. She had no risk factors and all her thrombophilia workup was normal, however, she was found to be dyslipidemic which may have contributed to atherosclerosis and predispose to thrombosis. Despite anticoagulation, her visual acuity deteriorated. This case illustrates the possibility of unpredictable visual complication of interferon. Frequent eye examination should be undertaken in patients having underlying risk factors like diabetes, hypertension or dyslipidemia undergoing interferon therapy. (author)

  13. Interferon-induced central retinal vein thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, L; Husain, A; Haroon, W; Shaikh, M I; Mirza, S A; Khan, Z

    2012-11-15

    A middle-aged lady presented with sudden onset of unilateral central retinal vein thrombosis after completing 6 months course of interferon and ribavirin for chronic hepatitis C infection. She had no risk factors and all her thrombophilia workup was normal, however, she was found to be dyslipidemic which may have contributed to atherosclerosis and predispose to thrombosis. Despite anticoagulation, her visual acuity deteriorated. This case illustrates the possibility of unpredictable visual complication of interferon. Frequent eye examination should be undertaken in patients having underlying risk factors like diabetes, hypertension or dyslipidemia undergoing interferon therapy. (author)

  14. RNA editing is induced by type I interferon in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zhang, Jinyao; Chen, Zhaoli; Tang, Zefang; Huang, Jianbing; Hu, Xueda; He, Jie

    2017-07-01

    In recent years, abnormal RNA editing has been shown to play an important role in the development of esophageal squamous cell carcinoma, as such abnormal editing is catalyzed by ADAR (adenosine deaminases acting on RNA). However, the regulatory mechanism of ADAR1 in esophageal squamous cell carcinomas remains largely unknown. In this study, we investigated ADAR1 expression and its association with RNA editing in esophageal squamous cell carcinomas. RNA sequencing applied to esophageal squamous cell carcinoma clinical samples showed that ADAR1 expression was correlated with the expression of STAT1, STAT2, and IRF9. In vitro experiments showed that the abundance of ADAR1 protein was associated with the induced activation of the JAK/STAT pathway by type I interferon. RNA sequencing results showed that treatment with type I interferon caused an increase in the number and degree of RNA editing in esophageal squamous cell carcinoma cell lines. In conclusion, the activation of the JAK/STAT pathway is a regulatory mechanism of ADAR1 expression and causes abnormal RNA editing profile in esophageal squamous cell carcinoma. This mechanism may serve as a new target for esophageal squamous cell carcinoma therapy.

  15. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells

    International Nuclear Information System (INIS)

    Cheon, Soyoung; Song, Seok Bean; Jung, Minkyung; Park, Yoorim; Bang, Jung-Wook; Kim, Tae Sung; Park, Hyunjeong; Kim, Cherl-hyun; Yang, Yool-hee; Bang, Sa Ik; Cho, Daeho

    2008-01-01

    Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-γ inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-γ production, we measured IL-18-induced IFN-γ production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-γ expression was blocked by SKI pre-treatment in both mRNA and protein levels. In addition, the increased IFN-γ production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-γ production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-γ production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-γ production via p38 MAPK

  16. DNA and protein co-administration induces tolerogenic dendritic cells through DC-SIGN mediated negative signals.

    Science.gov (United States)

    Li, Jinyao; Geng, Shuang; Liu, Xiuping; Liu, Hu; Jin, Huali; Liu, Chang-Gong; Wang, Bin

    2013-10-01

    We previously demonstrated that DNA and protein co-administration induced differentiation of immature dendritic cells (iDCs) into CD11c(+)CD40(low)IL-10(+) regulatory DCs (DCregs) via the caveolin-1 (Cav-1) -mediated signal pathway. Here, we demonstrate that production of IL-10 and the low expression of CD40 play a critical role in the subsequent induction of regulatory T cells (Tregs) by the DCregs. We observed that DNA and protein were co-localized with DC-SIGN in caveolae and early lysosomes in the treated DCs, as indicated by co-localization with Cav-1 and EEA-1 compartment markers. DNA and protein also co-localized with LAMP-2. Gene-array analysis of gene expression showed that more than a thousand genes were significantly changed by the DC co-treatment with DNA + protein compared with controls. Notably, the level of DC-SIGN expression was dramatically upregulated in pOVA + OVA co-treated DCs. The expression levels of Rho and Rho GNEF, the down-stream molecules of DC-SIGN mediated signal pathway, were also greatly upregulated. Further, the level of TLR9, the traditional DNA receptor, was significantly downregulated. These results suggest that DC-SIGN as the potential receptor for DNA and protein might trigger the negative pathway to contribute the induction of DCreg combining with Cav-1 mediated negative signal pathway.

  17. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingzhan; Shi, Kaichuang; Yoo, Dongwan, E-mail: dyoo@illinois.edu

    2016-02-15

    Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists and to study their suppressive function, viral coding sequences for the entire structural and nonstructural proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14, nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein ORF3, structure protein envelope (E), membrane (M), and nucleocapsid (N) protein were also shown to inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demonstrate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs expression. - Highlights: • PEDV modulates the host innate immune system by suppressing the type I interferon production and ISGs expression. • Ten viral proteins were identified as IFN antagonists, and nsp1 was the most potent viral IFN antagonist. • PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP). • PEDV nsp1 caused the CBP degradation in the nucleus, which may be the key mechanism for PEDV-mediated IFN downregulation.

  18. Interferon-alpha mediates restriction of human immunodeficiency virus type-1 replication in primary human macrophages at an early stage of replication.

    Directory of Open Access Journals (Sweden)

    Kelly M Cheney

    2010-10-01

    Full Text Available Type I interferons (IFNα and β are induced directly in response to viral infection, resulting in an antiviral state for the cell. In vitro studies have shown that IFNα is a potent inhibitor of viral replication; however, its role in HIV-1 infection is incompletely understood. In this study we describe the ability of IFNα to restrict HIV-1 infection in primary human macrophages in contrast to peripheral blood mononuclear cells and monocyte-derived dendritic cells. Inhibition to HIV-1 replication in cells pretreated with IFNα occurred at an early stage in the virus life cycle. Late viral events such as budding and subsequent rounds of infection were not affected by IFNα treatment. Analysis of early and late HIV-1 reverse transcripts and integrated proviral DNA confirmed an early post entry role for IFNα. First strand cDNA synthesis was slightly reduced but late and integrated products were severely depleted, suggesting that initiation or the nucleic acid intermediates of reverse transcription are targeted. The depletion of integrated provirus is disproportionally greater than that of viral cDNA synthesis suggesting the possibility of a least an additional later target. A role for either cellular protein APOBEC3G or tetherin in this IFNα mediated restriction has been excluded. Vpu, previously shown by others to rescue a viral budding restriction by tetherin, could not overcome this IFNα induced effect. Determining both the viral determinants and cellular proteins involved may lead to novel therapeutic approaches. Our results add to the understanding of HIV-1 restriction by IFNα.

  19. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization.

    Science.gov (United States)

    Veeranki, Sudhakar; Choubey, Divaker

    2012-01-01

    The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein. Published by Elsevier Ltd.

  20. GILT expression in B cells diminishes cathepsin S steady-state protein expression and activity

    OpenAIRE

    Phipps-Yonas, Hannah; Semik, Vikki; Hastings, Karen Taraszka

    2012-01-01

    MHC class II-restricted Ag processing requires protein degradation in the endocytic pathway for the activation of CD4+ T cells. Gamma-interferon-inducible lysosomal thiol reductase (GILT) facilitates Ag processing by reducing protein disulfide bonds in this compartment. Lysosomal cysteine protease cathepsin S (CatS) contains disulfide bonds and mediates essential steps in MHC class II-restricted processing, including proteolysis of large polypeptides and cleavage of the invariant chain. We so...

  1. Swine interferon-induced transmembrane protein, sIFITM3, inhibits foot-and-mouth disease virus infection in vitro and in vivo.

    Science.gov (United States)

    Xu, Jinfang; Qian, Ping; Wu, Qunfeng; Liu, Shasha; Fan, Wenchun; Zhang, Keshan; Wang, Rong; Zhang, Huawei; Chen, Huanchun; Li, Xiangmin

    2014-09-01

    The interferon-induced transmembrane protein 3 (IFITM3) is a widely expressed potent antiviral effector of the host innate immune system. It restricts a diverse group of pathogenic, enveloped viruses, by interfering with endosomal fusion. In this report, the swine IFITM3 (sIFITM3) gene was cloned. It shares the functionally conserved CD225 domain and multiple critical amino acid residues (Y19, F74, F77, R86 and Y98) with its human ortholog, which are essential for antiviral activity. Ectopic expression of sIFITM3 significantly inhibited non-enveloped foot-and-mouth disease virus (FMDV) infection in BHK-21 cells. Furthermore, sIFITM3 blocked FMDV infection at early steps in the virus life cycle by disrupting viral attachment to the host cell surface. Importantly, inoculation of 2-day-old suckling mice with a plasmid expressing sIFITM3 conferred protection against lethal challenge with FMDV. These results suggest that sIFITM3 is a promising antiviral agent and that can safeguard the host from infection with FMDV. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Bim nuclear translocation and inactivation by viral interferon regulatory factor.

    Directory of Open Access Journals (Sweden)

    Young Bong Choi

    2010-08-01

    Full Text Available Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by infection of the host cell. Human herpesvirus 8 (HHV-8 uses several strategies to block the host's innate antiviral defenses via interference with interferon and apoptotic signaling. Contributors include the four viral interferon regulatory factors (vIRFs 1-4, which function in dominant negative fashion to block cellular IRF activities in addition to targeting IRF signaling-induced proteins such as p53 and inhibiting other inducers of apoptosis such as TGFbeta receptor-activated Smad transcription factors. Here we identify direct targeting by vIRF-1 of BH3-only pro-apoptotic Bcl-2 family member Bim, a key negative regulator of HHV-8 replication, to effect its inactivation via nuclear translocation. vIRF-1-mediated relocalization of Bim was identified in transfected cells, by both immunofluorescence assay and western analysis of fractionated cell extracts. Also, co-localization of vIRF-1 and Bim was detected in nuclei of lytically infected endothelial cells. In vitro co-precipitation assays using purified vIRF-1 and Bim revealed direct interaction between the proteins, and Bim-binding residues of vIRF-1 were mapped by deletion and point mutagenesis. Generation and experimental utilization of Bim-refractory vIRF-1 variants revealed the importance of vIRF-1:Bim interaction, specifically, in pro-replication and anti-apoptotic activity of vIRF-1. Furthermore, blocking of the interaction with cell-permeable peptide corresponding to the Bim-binding region of vIRF-1 confirmed the relevance of vIRF-1:Bim association to vIRF-1 pro-replication activity. To our knowledge, this is the first report of an IRF protein that interacts with a Bcl-2 family member and of nuclear sequestration of Bim or any other member of the family as a means of inactivation. The data presented reveal a novel mechanism utilized by a virus to control

  3. Interleukin-18, Interferon-γ, IP-10, and Mig Expression in Epstein-Barr Virus-Induced Infectious Mononucleosis and Posttransplant Lymphoproliferative Disease

    Science.gov (United States)

    Setsuda, Joyce; Teruya-Feldstein, Julie; Harris, Nancy L.; Ferry, Judith A.; Sorbara, Lynn; Gupta, Ghanshyam; Jaffe, Elaine S.; Tosato, Giovanna

    1999-01-01

    T cell immunodeficiency plays an important role in the pathogenesis of posttransplant lymphoproliferative disease (PTLD) by permitting the unbridled expansion of Epstein-Barr virus (EBV)-infected B lymphocytes. However, factors other than T cell function may contribute to PTLD pathogenesis because PTLD infrequently develops even in the context of severe T cell immunodeficiency, and athymic mice that are T-cell-immunodeficient can reject EBV-immortalized cells. Here we report that PTLD tissues express significantly lower levels of IL-18, interferon-γ (IFN-γ), Mig, and RANTES compared to lymphoid tissues diagnosed with acute EBV-induced infectious mononucleosis, as assessed by semiquantitative RT-PCR analysis. Other cytokines and chemokines are expressed at similar levels. Immunohistochemistry confirmed that PTLD tissues contain less IL-18 and Mig protein than tissues with infectious mononucleosis. IL-18, primarily a monocyte product, promotes the secretion of IFN-γ, which stimulates Mig and RANTES expression. Both IL-18 and Mig display antitumor activity in mice involving inhibition of angiogenesis. These results document greater expression of IL-18, IFN-γ, Mig, and RANTES in lymphoid tissues with acute EBV-induced infectious mononucleosis compared to tissues with PTLD and raise the possibility that these mediators participate in critical host responses to EBV infection. PMID:10393857

  4. The C protein of measles virus inhibits the type I interferon response

    International Nuclear Information System (INIS)

    Shaffer, Jessica A.; Bellini, William J.; Rota, Paul A.

    2003-01-01

    Type I interferons (IFNα/β) are an important part of innate immunity to viral infections because they induce an antiviral response and limit viral replication until the adaptive response clears the infection. Since the nonstructural proteins of several paramyxoviruses inhibit the IFNα/β response, we chose to explore the role of the C protein of measles virus (MV) in such inhibition. Previous studies have suggested that the MV C protein may serve as a virulence factor, but its role in the pathogenesis of MV remains undefined. In the present study, a recombinant MV strain that does not express the C protein (MV C-) and its parental strain (Ed Tag) were used. Growth of MV C- was restricted in human peripheral blood mononuclear cells and HeLa cells, but in the presence of neutralizing antibodies to IFNα/β, MV C- produced titers that were equivalent to those of Ed Tag. In addition, expression of the MV C protein from plasmid DNA inhibited the production of an IFNα/β responsive reporter gene and, to a lesser extent, inhibited an IFNγ responsive reporter gene. The ability of the MV C protein to suppress the IFNα/β response was confirmed using a biologic assay. After IFNβ stimulation, HeLa cells infected with Ed Tag produced five-fold less IFNα/β than cells infected with MV C-. While the mechanism of inhibition remains unclear, these data suggest that the MV C protein plays an important role in the pathogenesis of MV by inhibiting IFNα/β signaling

  5. Protein A from orange-spotted nervous necrosis virus triggers type I interferon production in fish cell.

    Science.gov (United States)

    Huang, Runqing; Zhou, Qiong; Shi, Yan; Zhang, Jing; He, Jianguo; Xie, Junfeng

    2018-05-04

    Family Nodaviridae consists of two genera: Alphanodavirus and Betanodavirus, and the latter is classified into four genotypes, including red-spotted grouper nervous necrosis virus, tiger puffer nervous necrosis virus, striped jack nervous necrosis virus, and barfin flounder nervous necrosis virus. Type I interferons (IFNs) play a central role in the innate immune system and antiviral responses, and the interactions between IFN and NNV have been investigated in this study. We have found that the RNA-dependent RNA polymerase (RdRp) from orange-spotted nervous necrosis virus (OGNNV), named protein A, was capable of activating IFN promoter in fathead minnow (FHM) cells. Transient expression of protein A was found to induce IFN expression and secretion, endowing FHM cells with anti-tiger frog virus ability. Protein A from SJNNV can also induce IFN expression in FHM cells but that from Flock House virus (FHV), a well-studied representative species of genus Alphanodavirus, cannot. RdRp activity and mitochondrial localization were shown to be required for protein A to induce IFN expression by means of activating IRF3 but not NFκB. Furthermore, DsRNA synthesized in vitro transcription and poly I:C activated IFN promoter activity when transfected into FHM cells, and dsRNA were also detected in NNV-infected cells. We postulated that dsRNA, a PAMP, was produced by protein A, leading to activation of innate immune response. These results suggest that protein As from NNV are the agonists of innate immune response. This is the first work to demonstrate the interaction between NNV protein A and innate immune system, and may help to understand pathogenesis of NNV. Copyright © 2018. Published by Elsevier Ltd.

  6. A novel small molecule inhibitor of influenza A viruses that targets polymerase function and indirectly induces interferon.

    Directory of Open Access Journals (Sweden)

    Mila Brum Ortigoza

    Full Text Available Influenza viruses continue to pose a major public health threat worldwide and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The antiviral cytokine, interferon (IFN is an essential mediator of the innate immune response and influenza viruses, like many viruses, have evolved strategies to evade this response, resulting in increased replication and enhanced pathogenicity. A cell-based assay that monitors IFN production was developed and applied in a high-throughput compound screen to identify molecules that restore the IFN response to influenza virus infected cells. We report the identification of compound ASN2, which induces IFN only in the presence of influenza virus infection. ASN2 preferentially inhibits the growth of influenza A viruses, including the 1918 H1N1, 1968 H3N2 and 2009 H1N1 pandemic strains and avian H5N1 virus. In vivo, ASN2 partially protects mice challenged with a lethal dose of influenza A virus. Surprisingly, we found that the antiviral activity of ASN2 is not dependent on IFN production and signaling. Rather, its IFN-inducing property appears to be an indirect effect resulting from ASN2-mediated inhibition of viral polymerase function, and subsequent loss of the expression of the viral IFN antagonist, NS1. Moreover, we identified a single amino acid mutation at position 499 of the influenza virus PB1 protein that confers resistance to ASN2, suggesting that PB1 is the direct target. This two-pronged antiviral mechanism, consisting of direct inhibition of virus replication and simultaneous activation of the host innate immune response, is a unique property not previously described for any single antiviral molecule.

  7. Prevention of adverse events of interferon γ gene therapy by gene delivery of interferon γ-heparin-binding domain fusion protein in mice

    Directory of Open Access Journals (Sweden)

    Mitsuru Ando

    2014-01-01

    Full Text Available Sustained gene delivery of interferon (IFN γ can be an effective treatment, but our previous study showed high levels of IFNγ-induced adverse events, including the loss of body weight. These unwanted events could be reduced by target-specific delivery of IFNγ after in vivo gene transfer. To achieve this, we selected the heparin-binding domain (HBD of extracellular superoxide dismutase as a molecule to anchor IFNγ to the cell surface. We designed three IFNγ derivatives, IFNγ-HBD1, IFNγ-HBD2, and IFNγ-HBD3, each of which had 1, 2, or 3 HBDs, respectively. Each plasmid-encoding fusion proteins was delivered to the liver, a model target in this study, by hydrodynamic tail vein injection. The serum concentration of IFNγ-HBD2 and IFNγ-HBD3 after gene delivery was lower than that of IFNγ or IFNγ-HBD1. Gene delivery of IFNγ-HBD2, but not of IFNγ-HBD3, effectively increased the mRNA expression of IFNγ-inducible genes in the liver, suggesting liver-specific distribution of IFNγ-HBD2. Gene delivery of IFNγ-HBD2-suppressed tumor growth in the liver as efficiently as that of IFNγ with much less symptoms of adverse effects. These results indicate that the adverse events of IFNγ gene transfer can be prevented by gene delivery of IFNγ-HBD2, a fusion protein with high cell surface affinity.

  8. Role of reactive oxygen intermediates in the interferon-mediated depression of hepatic drug metabolism and protective effect of N-acetylcysteine in mice.

    Science.gov (United States)

    Ghezzi, P; Bianchi, M; Gianera, L; Landolfo, S; Salmona, M

    1985-08-01

    Interferon (IFN) and IFN inducers are known to depress hepatic microsomal cytochrome P-450 levels, and the liver toxicity of IFN was reported to be lethal in newborn mice. We have observed that administration to mice of IFN and IFN inducers caused a marked increase in liver xanthine oxidase activity. Because this enzyme is well known to produce reactive oxygen intermediates and cytochrome P-450 was reported to be sensitive to the oxidative damage, we have tested the hypothesis that a free radical mechanism could mediate the depression of cytochrome P-450 levels by IFN. Administration to mice of the IFN inducer polyinosinic-polycytidylic acid (2 mg/kg i.p.) caused a 29 to 52% decrease in liver cytochrome P-450. Concomitant p.o. administration of the free radical scavenger, N-acetylcysteine (as a 2.5% solution in drinking water), or the xanthine oxidase inhibitor, allopurinol (100 mg/kg), protected against the IFN-mediated depression of P-450 kg), protected against the IFN-mediated depression of P-450 levels. The results suggest that an increased endogenous generation of free radicals, possibly due to the induction of xanthine oxidase, is implicated in the IFN-mediated depression of liver drug metabolism. The relevance of these data also extends to cases in which this side effect is observed in pathological situations (e.g., viral diseases and administration of vaccines) associated with an induction of IFN.

  9. Kallikrein–Kinin System Suppresses Type I Interferon Responses: A Novel Pathway of Interferon Regulation

    Directory of Open Access Journals (Sweden)

    Alecia Seliga

    2018-02-01

    Full Text Available The Kallikrein–Kinin System (KKS, comprised of kallikreins (klks, bradykinins (BKs angiotensin-converting enzyme (ACE, and many other molecules, regulates a number of physiological processes, including inflammation, coagulation, angiogenesis, and control of blood pressure. In this report, we show that KKS regulates Type I IFN responses, thought to be important in lupus pathogenesis. We used CpG (TLR9 ligand, R848 (TLR7 ligand, or recombinant IFN-α to induce interferon-stimulated genes (ISGs and proteins, and observed that this response was markedly diminished by BKs, klk1 (tissue kallikrein, or captopril (an ACE inhibitor. BKs significantly decreased the ISGs induced by TLRs in vitro and in vivo (in normal and lupus-prone mice, and in human PBMCs, especially the induction of Irf7 gene (p < 0.05, the master regulator of Type I IFNs. ISGs induced by IFN-α were also suppressed by the KKS. MHC Class I upregulation, a classic response to Type I IFNs, was reduced by BKs in murine dendritic cells (DCs. BKs decreased phosphorylation of STAT2 molecules that mediate IFN signaling. Among the secreted pro-inflammatory cytokines/chemokines analyzed (IL-6, IL12p70, and CXCL10, the strongest suppressive effect was on CXCL10, a highly Type I IFN-dependent cytokine, upon CpG stimulation, both in normal and lupus-prone DCs. klks that break down into BKs, also suppressed CpG-induced ISGs in murine DCs. Captopril, a drug that inhibits ACE and increases BK, suppressed ISGs, both in mouse DCs and human PBMCs. The effects of BK were reversed with indomethacin (compound that inhibits production of PGE2, suggesting that BK suppression of IFN responses may be mediated via prostaglandins. These results highlight a novel regulatory mechanism in which members of the KKS control the Type I IFN response and suggest a role for modulators of IFNs in the pathogenesis of lupus and interferonopathies.

  10. Interferon gamma-inducible protein 16 (IFI16 and anti-IFI16 antibodies in primary Sjögren’s syndrome: findings in serum and minor salivary glands

    Directory of Open Access Journals (Sweden)

    A. Alunno

    2016-02-01

    Full Text Available The interferon (IFN signature, namely the overexpression of IFN-inducible genes is a crucial aspect in the pathogenesis of primary Sjögren’s syndrome (pSS. The IFN-inducible IFI16 protein, normally expressed in cell nuclei, may be overexpressed, mislocalized in the cytoplasm and secreted in the extracellular milieu in several autoimmune disorders including pSS. This leads to tolerance breaking to this self-protein and development of anti-IFI16 antibodies. The aim of this study was to identify pathogenic and clinical significance of IFI16 and anti-IFI16 autoantibodies in pSS. IFI16 and anti-IFI16 were assessed in the serum of 30 pSS patients and one-hundred healthy donors (HD by ELISA. IFI16 was also evaluated in 5 minor salivary glands (MSGs of pSS patients and 5 MSGs of non-pSS patients with sicca symptoms by immunohistochemistry. Normal MSGs do not constitutively express IFI16. Conversely, in pSS-MSGs a marked expression and cytoplasmic mislocalization of IFI16 by epithelial cells was observed with infiltrations in lymphocytes and peri/ intra-lesional endothelium. pSS patients display higher serum levels of both IFI16 and anti-IFI16 autoantibodies compared to HD. Our data suggest that IFI16 protein may be involved in the initiation and perpetuation of glandular inflammation occurring in pSS.

  11. Reduced expression of Jak-1 and Tyk-2 proteins leads to interferon resistance in Hepatitis C virus replicon

    Directory of Open Access Journals (Sweden)

    Luftig Ronald

    2007-09-01

    Full Text Available Abstract Background Alpha interferon in combination with ribavirin is the standard therapy for hepatitis C virus infection. Unfortunately, a significant number of patients fail to eradicate their infection with this regimen. The mechanisms of IFN-resistance are unclear. The aim of this study was to determine the contribution of host cell factors to the mechanisms of interferon resistance using replicon cell lines. Results HCV replicons with high and low activation of the IFN-promoter were cultured for a prolonged period of time in the presence of interferon-alpha (IFN-alpha2b. Stable replicon cell lines with resistant phenotype were isolated and characterized by their ability to continue viral replication in the presence of IFN-alpha. Interferon resistant cell colonies developed only in replicons having lower activation of the IFN promoter and no resistant colonies arose from replicons that exhibit higher activation of the IFN promoter. Individual cell clones were isolated and nine IFN resistant cell lines were established. HCV RNA and protein levels in these cells were not altered by IFN- alpha2b. Reduced signaling and IFN-resistant phenotype was found in all Huh-7 cell lines even after eliminating HCV, suggesting that cellular factors are involved. Resistant phenotype in the replicons is not due to lack of interferon receptor expression. All the cell lines show defect in the JAK-STAT signaling and phosphorylation of STAT 1 and STAT 2 proteins were strongly inhibited due to reduced expression of Tyk2 and Jak-1 protein. Conclusion This in vitro study provides evidence that altered expression of the Jak-Stat signaling proteins can cause IFN resistance using HCV replicon cell clones.

  12. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling

    International Nuclear Information System (INIS)

    Johnson, Karen E.; Song, Byeongwoon; Knipe, David M.

    2008-01-01

    Host cells respond to viral infection by many mechanisms, including the production of type I interferons which act in a paracrine and autocrine manner to induce the expression of antiviral interferon-stimulated genes (ISGs). Viruses have evolved means to inhibit interferon signaling to avoid induction of the innate immune response. Herpes simplex virus 1 (HSV-1) has several mechanisms to inhibit type I interferon production, the activities of ISGs, and the interferon signaling pathway itself. We report that the inhibition of the Jak/STAT pathway by HSV-1 requires viral gene expression and that viral immediate-early protein ICP27 plays a role in downregulating STAT-1 phosphorylation and in preventing the accumulation of STAT-1 in the nucleus. We also show that expression of ICP27 by transfection causes an inhibition of IFN-induced STAT-1 nuclear accumulation. Therefore, ICP27 is necessary and sufficient for at least some of the effects of HSV infection on STAT-1

  13. Mediator profiles in tears during the conjunctival response induced by allergic reaction in the nasal mucosa.

    Science.gov (United States)

    Pelikan, Zdenek

    2013-01-01

    The allergic reaction occurring primarily in the nasal mucosa can induce a secondary conjunctival response of an immediate (SICR), late (SLCR), or delayed (SDYCR) type in some patients with allergic conjunctivitis (AC). To investigate the concentration changes of histamine, tryptase, eosinophil cationic protein (ECP), eosinophil-derived neurotoxin (EDN), leukotrienes (LTB 4, LTC4, LTE4), myeloperoxidase (MPO), interferon-γ (IFN-γ), and interleukins (IL-2, IL-4, IL-5) in tears during the SICR, SLCR, and SDYCR. In 32 patients with AC, 11 SICR (ptears. The SICRs were associated with significant concentration changes in tears (ptears (ptears during the 32 PBS controls (p>0.1) or in the ten control patients (p>0.1). These results provide evidence for causal involvement of nasal allergy in some patients with AC, inducing secondary conjunctival response of immediate (SICR), late SLCR, or delayed SDYCR type, associated with different mediator, cytokine, and cellular profiles in the tears, suggesting involvement of different hypersensitivity mechanisms. These results also emphasize the diagnostic value of nasal allergen challenge combined with monitoring of the conjunctival response in some patients with AC.

  14. Cyclophilin B induces integrin-mediated cell adhesion by a mechanism involving CD98-dependent activation of protein kinase C-delta and p44/42 mitogen-activated protein kinases.

    Science.gov (United States)

    Melchior, Aurélie; Denys, Agnès; Deligny, Audrey; Mazurier, Joël; Allain, Fabrice

    2008-02-01

    Initially identified as a cyclosporin-A binding protein, cyclophilin B (CyPB) is an inflammatory mediator that induces adhesion of T lymphocytes to fibronectin, by a mechanism dependent on CD147 and alpha 4 beta 1 integrins. Recent findings have suggested that another cell membrane protein, CD98, may cooperate with CD147 to regulate beta1 integrin functions. Based on these functional relationships, we examined the contribution of CD98 in the pro-adhesive activity of CyPB, by utilizing the responsive promonocyte cell line THP-1. We demonstrated that cross-linking CD98 with CD98-AHN-18 antibody mimicked the responses induced by CyPB, i.e. homotypic aggregation, integrin-mediated adhesion to fibronectin and activation of p44/42 MAPK. Consistent with previous data, immunoprecipitation confirmed the existence of a heterocomplex wherein CD147, CD98 and beta1 integrins were associated. We then demonstrated that CyPB-induced cell adhesion and p44/42 MAPK activation were dependent on the participation of phosphoinositide 3-kinase and subsequent activation of protein kinase C-delta. Finally, silencing the expression of CD98 by RNA interference potently reduced CyPB-induced cell responses, thus confirming the role of CD98 in the pro-adhesive activity of CyPB. Altogether, our results support a model whereby CyPB induces integrin-mediated adhesion via interaction with a multimolecular unit formed by the association between CD147, CD98 and beta1 integrins.

  15. A Luciferase Reporter Gene Assay to Measure Ebola Virus Viral Protein 35-Associated Inhibition of Double-Stranded RNA-Stimulated, Retinoic Acid-Inducible Gene 1-Mediated Induction of Interferon β.

    Science.gov (United States)

    Cannas, Valeria; Daino, Gian Luca; Corona, Angela; Esposito, Francesca; Tramontano, Enzo

    2015-10-01

    During Ebola virus (EBOV) infection, the type I interferon α/β (IFN-α/β) innate immune response is suppressed by EBOV viral protein 35 (VP35), a validated drug target. Identification of EBOV VP35 inhibitors requires a cellular system able to assess the VP35-based inhibitory functions of viral double-stranded RNA (dsRNA) IFN-β induction. We established a miniaturized luciferase gene reporter assay in A549 cells that measures IFN-β induction by viral dsRNA and is dose-dependently inhibited by VP35 expression. When compared to influenza A virus NS1 protein, EBOV VP35 showed improved inhibition of viral dsRNA-based IFN-β induction. This assay can be used to screen for EBOV VP35 inhibitors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Protective effect of galangin in Concanavalin A- induced hepatitis in mice

    Directory of Open Access Journals (Sweden)

    Luo Q

    2015-06-01

    Full Text Available Qingqiong Luo,1,* Liping Zhu,1,* Jieying Ding,1 Xing Zhuang,1 Lili Xu,2 Fuxiang Chen1 1Department of Clinical Immunology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, 2Division of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Galangin is an active pharmacological ingredient from propolis and Alpinia officinarum Hance, and has been reported to have anti-inflammatory and antioxidative properties. The present study aims to reveal the effect of galangin on Concanavalin A (ConA-induced hepatitis (CIH, a well-established animal model of immune-mediated liver injury, and to clarify the related mechanism. C57BL/6 mice were pretreated with galangin followed by ConA challenge. Results indicated that galangin inhibited ConA-induced liver damage. Mice pretreated with galangin showed more reduction of liver damage when compared with control mice pretreated with vehicle solution. In galangin-pretreated mice with induced CIH, increases in serum levels of several inflammatory cytokines, including tumor necrosis factor-α, interferon-γ, and interleukin-12 were dramatically attenuated, and chemokines and adhesion molecules like interferon inducible protein-10, macrophage inflammatory protein-1α, and intercellular adhesion molecule-1 messenger RNA expressions in liver were decreased. Moreover, CIH mice pretreated with galangin showed less leukocyte infiltration and T-cell activation in the liver. Further, the mechanism of the anti-inflammatory effects of galangin may be attributed to its modulation of crucial inflammatory signaling pathways, including nuclear factor kappa B and interferon-gamma/signal transducer and activator of transcription 1. Collectively, these findings suggest the preventive and therapeutic potential of galangin in immune-mediated liver injury in vivo. Keywords: galangin, Concanavalin A-induced

  17. Effects of peritoneal fluid from endometriosis patients on interferon-gamma-induced protein-10 (CXCL10) and interleukin-8 (CXCL8) released by neutrophils and CD4+ T cells.

    Science.gov (United States)

    Kim, Ji-Yeon; Lee, Dong-Hyung; Joo, Jong-Kil; Jin, Jun-O; Wang, Ji-Won; Hong, Young-Seoub; Kwak, Jong-Young; Lee, Kyu-Sup

    2009-09-01

    Intraperitoneal immuno-inflammatory changes may be associated with the pathogenesis of endometriosis. We evaluated the effects of peritoneal fluid obtained from patients with endometriosis (ePF) on the release of interferon-gamma-induced protein-10 (IP-10/CXCL10) and interleukin-8 (IL-8/CXCL8) by neutrophils, CD4(+) T cells, and monocytes. Neutrophils, CD4(+) T cells, and monocytes were cultured with ePF and the chemokine levels in the supernatants were then measured using enzyme-linked immunosorbent assay. The addition of ePF to cultures of CD4(+) T cells led to a significant increase in the release of IP-10 when compared with control PF without endometriosis (cPF). There was a positive correlation between the levels of IL-8 and IP-10 in ePF (R = 0.89, P = 0.041), but not between the levels of IP-10 and IL-8 released by neutrophils, CD4(+) T cells, and monocytes. The levels of IP-10 in ePF were positively correlated with the release of IP-10 by ePF-treated neutrophils (R = 0.89, P ePF significantly enhanced the interferon-gamma-induced release of IP-10 by nuetrophils and CD4(+) T cells. These findings suggest that neutrophils and T cells release differential levels of IP-10 and IL-8 in response to stimulation with ePF, and that these cells are a major source of IP-10 in the PF of endometriosis patients.

  18. Glycogen Synthase Kinase 3 Inactivation Induces Cell Senescence through Sterol Regulatory Element Binding Protein 1-Mediated Lipogenesis in Chang Cells.

    Science.gov (United States)

    Kim, You-Mie; Song, Insun; Seo, Yong-Hak; Yoon, Gyesoon

    2013-12-01

    Enhanced lipogenesis plays a critical role in cell senescence via induction of expression of the mature form of sterol regulatory element binding protein 1 (SREBP1), which contributes to an increase in organellar mass, one of the indicators of senescence. We investigated the molecular mechanisms by which signaling molecules control SREBP1-mediated lipogenesis and senescence. We developed cellular models for stress-induced senescence, by exposing Chang cells, which are immortalized human liver cells, to subcytotoxic concentrations (200 µM) of deferoxamine (DFO) and H2O2. In this model of stress-induced cell senescence using DFO and H2O2, the phosphorylation profile of glycogen synthase kinase 3α (GSK3α) and β corresponded closely to the expression profile of the mature form of SREBP-1 protein. Inhibition of GSK3 with a subcytotoxic concentration of the selective GSK3 inhibitor SB415286 significantly increased mature SREBP1 expression, as well as lipogenesis and organellar mass. In addition, GSK3 inhibition was sufficient to induce senescence in Chang cells. Suppression of GSK3 expression with siRNAs specific to GSK3α and β also increased mature SREBP1 expression and induced senescence. Finally, blocking lipogenesis with fatty acid synthase inhibitors (cerulenin and C75) and siRNA-mediated silencing of SREBP1 and ATP citrate lyase (ACL) significantly attenuated GSK3 inhibition-induced senescence. GSK3 inactivation is an important upstream event that induces SREBP1-mediated lipogenesis and consequent cell senescence.

  19. Fem1b, a proapoptotic protein, mediates proteasome inhibitor-induced apoptosis of human colon cancer cells.

    Science.gov (United States)

    Subauste, M Cecilia; Sansom, Owen J; Porecha, Nehal; Raich, Natacha; Du, Liqin; Maher, Joseph F

    2010-02-01

    In the treatment of colon cancer, the development of resistance to apoptosis is a major factor in resistance to therapy. New molecular approaches to overcome apoptosis resistance, such as selectively upregulating proapoptotic proteins, are needed in colon cancer therapy. In a mouse model with inactivation of the adenomatous polyposis coli (Apc) tumor suppressor gene, reflecting the pathogenesis of most human colon cancers, the gene encoding feminization-1 homolog b (Fem1b) is upregulated in intestinal epithelium following Apc inactivation. Fem1b is a proapoptotic protein that interacts with apoptosis-inducing proteins Fas, tumor necrosis factor receptor-1 (TNFR1), and apoptotic protease activating factor-1 (Apaf-1). Increasing Fem1b expression induces apoptosis of cancer cells, but effects on colon cancer cells have not been reported. Fem1b is a homolog of feminization-1 (FEM-1), a protein in Caenorhabditis elegans that is regulated by proteasomal degradation, but whether Fem1b is likewise regulated by proteasomal degradation is unknown. Herein, we found that Fem1b protein is expressed in primary human colon cancer specimens, and in malignant SW620, HCT-116, and DLD-1 colon cancer cells. Increasing Fem1b expression, by transfection of a Fem1b expression construct, induced apoptosis of these cells. We found that proteasome inhibitor treatment of SW620, HCT-116, and DLD-1 cells caused upregulation of Fem1b protein levels, associated with induction of apoptosis. Blockade of Fem1b upregulation with morpholino antisense oligonucleotide suppressed the proteasome inhibitor-induced apoptosis of these cells. In conclusion, the proapoptotic protein Fem1b is downregulated by the proteasome in malignant colon cancer cells and mediates proteasome inhibitor-induced apoptosis of these cells. Therefore, Fem1b could represent a novel molecular target to overcome apoptosis resistance in therapy of colon cancer.

  20. Interferon-γ Inhibits Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Bethany A Rhein

    Full Text Available Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  1. Interferon-γ Inhibits Ebola Virus Infection.

    Science.gov (United States)

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  2. PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Maria Gato-Cañas

    2017-08-01

    Full Text Available PDL1 blockade produces remarkable clinical responses, thought to occur by T cell reactivation through prevention of PDL1-PD1 T cell inhibitory interactions. Here, we find that PDL1 cell-intrinsic signaling protects cancer cells from interferon (IFN cytotoxicity and accelerates tumor progression. PDL1 inhibited IFN signal transduction through a conserved class of sequence motifs that mediate crosstalk with IFN signaling. Abrogation of PDL1 expression or antibody-mediated PDL1 blockade strongly sensitized cancer cells to IFN cytotoxicity through a STAT3/caspase-7-dependent pathway. Moreover, somatic mutations found in human carcinomas within these PDL1 sequence motifs disrupted motif regulation, resulting in PDL1 molecules with enhanced protective activities from type I and type II IFN cytotoxicity. Overall, our results reveal a mode of action of PDL1 in cancer cells as a first line of defense against IFN cytotoxicity.

  3. Fluoxetine regulates cell growth inhibition of interferon-α.

    Science.gov (United States)

    Lin, Yu-Min; Yu, Bu-Chin; Chiu, Wen-Tai; Sun, Hung-Yu; Chien, Yu-Chieh; Su, Hui-Chen; Yen, Shu-Yang; Lai, Hsin-Wen; Bai, Chyi-Huey; Young, Kung-Chia; Tsao, Chiung-Wen

    2016-10-01

    Fluoxetine, a well-known anti-depression agent, may act as a chemosensitizer to assist and promote cancer therapy. However, how fluoxetine regulates cellular signaling to enhance cellular responses against tumor cell growth remains unclear. In the present study, addition of fluoxetine promoted growth inhibition of interferon-alpha (IFN-α) in human bladder carcinoma cells but not in normal uroepithelial cells through lessening the IFN-α-induced apoptosis but switching to cause G1 arrest, and maintaining the IFN-α-mediated reduction in G2/M phase. Activations and signal transducer and transactivator (STAT)-1 and peroxisome proliferator-activated receptor alpha (PPAR-α) were involved in this process. Chemical inhibitions of STAT-1 or PPAR-α partially rescued bladder carcinoma cells from IFN-α-mediated growth inhibition via blockades of G1 arrest, cyclin D1 reduction, p53 downregulation and p27 upregulation in the presence of fluoxetine. However, the functions of both proteins were not involved in the control of fluoxetine over apoptosis and maintained the declined G2/M phase of IFN-α. These results indicated that activation of PPAR-α and STAT-1 participated, at least in part, in growth inhibition of IFN-α in the presence of fluoxetine.

  4. Two Modes of the Axonal Interferon Response Limit Alphaherpesvirus Neuroinvasion

    Directory of Open Access Journals (Sweden)

    Ren Song

    2016-02-01

    Full Text Available Infection by alphaherpesviruses, including herpes simplex virus (HSV and pseudorabies virus (PRV, typically begins at epithelial surfaces and continues into the peripheral nervous system (PNS. Inflammatory responses are induced at the infected peripheral site prior to invasion of the PNS. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which includes the interferons (IFNs. The fundamental question is how do PNS cell bodies respond to these distant, potentially damaging events experienced by axons. Using compartmented cultures that physically separate neuron axons from cell bodies, we found that pretreating isolated axons with beta interferon (IFN-β or gamma interferon (IFN-γ significantly diminished the number of herpes simplex virus 1 (HSV-1 and PRV particles moving in axons toward the cell bodies in a receptor-dependent manner. Exposing axons to IFN-β induced STAT1 phosphorylation (p-STAT1 only in axons, while exposure of axons to IFN-γ induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated antiviral effects induced by IFN-γ, but not those induced by IFN-β. Proteomic analysis of IFN-β- or IFN-γ-treated axons identified several differentially regulated proteins. Therefore, unlike treatment with IFN-γ, IFN-β induces a noncanonical, local antiviral response in axons. The activation of a local IFN response in axons represents a new paradigm for cytokine control of neuroinvasion.

  5. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  6. cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Paijo

    2016-04-01

    Full Text Available Human cytomegalovirus (HCMV infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING and thus induces antiviral type I interferon (IFN-I responses. We found that plasmacytoid dendritic cells (pDC as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages.

  7. Curcumin inhibits interferoninduced NF-κB and COX-2 in human A549 non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun; Kim, Joo Hyun; Park, Joon Oh; Kim, Kihyun; Kim, Won Seog; Ahn, Jin Seok; Jung, Chul Won; Park, Young Suk; Kang, Won Ki; Park, Keunchil

    2005-01-01

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-α treatment. The IFN-α-treated A549 cells showed increase in protein expression levels of NF-κB and COX-2. IFN-α induced NF-κB binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-α-induced COX-2 expression in A549 cells. Within 10 min, IFN-α rapidly induced the binding activity of a γ- 32 P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-α-induced activations of NF-κB and COX-2 were inhibited by the addition of curcumin in A549 cells

  8. Inflammation Activates the Interferon Signaling Pathways in Taste Bud Cells

    OpenAIRE

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-01-01

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-γ rece...

  9. The Rhoptry Proteins ROP18 and ROP5 Mediate Toxoplasma gondii Evasion of the Murine, But Not the Human, Interferon-Gamma Response

    Science.gov (United States)

    Niedelman, Wendy; Gold, Daniel A.; Rosowski, Emily E.; Sprokholt, Joris K.; Lim, Daniel; Farid Arenas, Ailan; Melo, Mariane B.; Spooner, Eric; Yaffe, Michael B.; Saeij, Jeroen P. J.

    2012-01-01

    The obligate intracellular parasite Toxoplasma gondii secretes effector proteins into the host cell that manipulate the immune response allowing it to establish a chronic infection. Crosses between the types I, II and III strains, which are prevalent in North America and Europe, have identified several secreted effectors that determine strain differences in mouse virulence. The polymorphic rhoptry protein kinase ROP18 was recently shown to determine the difference in virulence between type I and III strains by phosphorylating and inactivating the interferon-γ (IFNγ)-induced immunity-related GTPases (IRGs) that promote killing by disrupting the parasitophorous vacuole membrane (PVM) in murine cells. The polymorphic pseudokinase ROP5 determines strain differences in virulence through an unknown mechanism. Here we report that ROP18 can only inhibit accumulation of the IRGs on the PVM of strains that also express virulent ROP5 alleles. In contrast, specific ROP5 alleles can reduce IRG coating even in the absence of ROP18 expression and can directly interact with one or more IRGs. We further show that the allelic combination of ROP18 and ROP5 also determines IRG evasion and virulence of strains belonging to other lineages besides types I, II and III. However, neither ROP18 nor ROP5 markedly affect survival in IFNγ-activated human cells, which lack the multitude of IRGs present in murine cells. These findings suggest that ROP18 and ROP5 have specifically evolved to block the IRGs and are unlikely to have effects in species that do not have the IRG system, such as humans. PMID:22761577

  10. Human B cells fail to secrete type I interferons upon cytoplasmic DNA exposure.

    Science.gov (United States)

    Gram, Anna M; Sun, Chenglong; Landman, Sanne L; Oosenbrug, Timo; Koppejan, Hester J; Kwakkenbos, Mark J; Hoeben, Rob C; Paludan, Søren R; Ressing, Maaike E

    2017-11-01

    Most cells are believed to be capable of producing type I interferons (IFN I) as part of an innate immune response against, for instance, viral infections. In macrophages, IFN I is potently induced upon cytoplasmic exposure to foreign nucleic acids. Infection of these cells with herpesviruses leads to triggering of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic GMP-AMP (cGAMP) synthase (cGAS). Thereby, the stimulator of interferon genes (STING) and the downstream molecules TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) are sequentially activated culminating in IFN I secretion. Human gamma-herpesviruses, such as Epstein-Barr virus (EBV), exploit B cells as a reservoir for persistent infection. In this study, we investigated whether human B cells, similar to macrophages, engage the cytoplasmic DNA sensing pathway to induce an innate immune response. We found that the B cells fail to secrete IFN I upon cytoplasmic DNA exposure, although they express the DNA sensors cGAS and IFI16 and the signaling components TBK1 and IRF3. In primary human B lymphocytes and EBV-negative B cell lines, this deficiency is explained by a lack of detectable levels of the central adaptor protein STING. In contrast, EBV-transformed B cell lines did express STING, yet both these lines as well as STING-reconstituted EBV-negative B cells did not produce IFN I upon dsDNA or cGAMP stimulation. Our combined data show that the cytoplasmic DNA sensing pathway is dysfunctional in human B cells. This exemplifies that certain cell types cannot induce IFN I in response to cytoplasmic DNA exposure providing a potential niche for viral persistence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Novel fusion protein approach for efficient high-throughput screening of small molecule-mediating protein-protein interactions in cells and living animals.

    Science.gov (United States)

    Paulmurugan, Ramasamy; Gambhir, Sanjiv S

    2005-08-15

    Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule-mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction-mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGSFACGSLSCGSF. A 9 +/- 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation.

  12. Production of interferon-¿ and interleukin-4 by human T cells recognizing Leishmania lipophosphoglycan-associated protein

    DEFF Research Database (Denmark)

    Kemp, M; Kurtzhals, J A; Christensen, C B

    1993-01-01

    The Leishmania protein LPGAP which is co-isolated with lipophosphoglycan is a specific activator of T cells from individuals who have recovered from American leishmaniasis. We have tested the effect of LPGAP on peripheral blood mononuclear cells (PBMC) from Kenyan donors cured from L. donovani in....... The results show that both IFN-gamma producing (Th1-like) and IL-4 producing (Th2-like) T cells recognizing LPGAP are expanded after infection with L. donovani in humans....... infections. LPGAP induced vigorous proliferation and production of interferon-gamma (IFN-gamma) by the cells. In addition PBMC incubated with LPGAP released interleukin-4 (IL-4) after pulsing with ionomycin and phorbol myristate acetate. Single cells were isolated from LPGAP-stimulated cell lines...

  13. Prokaryotic expression of chicken interferon-γ fusion protein and its effect on expression of poultry heat shock protein 70 under heat stress.

    Science.gov (United States)

    Sun, Jinhua; Chen, Yinglin; Qin, Feiyue; Guan, Xueting; Xu, Wei; Xu, Liangmei

    2017-06-01

    Interferons have attracted considerable attention due to their vital roles in the host immune response and low induction of antibiotic resistance. In this study, total RNA was extracted from spleen cells of chicken embryos inoculated with Newcastle disease vaccine, and the full-length chicken interferon-γ (ChIFN-γ) gene was amplified by RT-PCR. The full complementary DNA sequence of the ChIFN-γ gene was 495 bp long and was cloned into the prokaryotic expression vector pProEX™HT b . The plasmid was transformed into Escherichia coli DH5α and the expression of ChIFN-γ was induced by isopropyl β-D-1-thiogalactopyranoside. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis and Western blot results showed the expressed fusion protein had a molecular weight of approximately 18 kDa and was recognized by an anti-His mAb. Moreover, ChIFN-γ was found to demonstrate anti-viral activity in vitro. To test the in vivo function of ChIFN-γ in broilers under heat stress, a total of 100 broilers were randomly assigned to either a control group or a treated group, in which they were hypodermically injected with recombinant ChIFN-γ. Results demonstrated ChIFN-γ affects the messenger RNA expression levels of heat shock protein 70 (HSP70) in the heart and lung tissues, and decreases the concentration of HSP70 in serum. Therefore, we conclude recombinant ChIFN-γ can reduce heat stress to some extent in vivo. © 2016 Japanese Society of Animal Science.

  14. Pro-apoptotic signaling induced by Retinoic acid and dsRNA is under the control of Interferon Regulatory Factor-3 in breast cancer cells.

    Science.gov (United States)

    Bernardo, Ana R; Cosgaya, José M; Aranda, Ana; Jiménez-Lara, Ana M

    2017-07-01

    Breast cancer is one of the most lethal malignancies for women. Retinoic acid (RA) and double-stranded RNA (dsRNA) are considered signaling molecules with potential anticancer activity. RA, co-administered with the dsRNA mimic polyinosinic-polycytidylic acid (poly(I:C)), synergizes to induce a TRAIL (Tumor-Necrosis-Factor Related Apoptosis-Inducing Ligand)- dependent apoptotic program in breast cancer cells. Here, we report that RA/poly(I:C) co-treatment, synergically, induce the activation of Interferon Regulatory Factor-3 (IRF3) in breast cancer cells. IRF3 activation is mediated by a member of the pathogen recognition receptors, Toll-like receptor-3 (TLR3), since its depletion abrogates IRF3 activation by RA/poly(I:C) co-treatment. Besides induction of TRAIL, apoptosis induced by RA/poly(I:C) correlates with the increased expression of pro-apoptotic TRAIL receptors, TRAIL-R1/2, and the inhibition of the antagonistic receptors TRAIL-R3/4. IRF3 plays an important role in RA/poly(I:C)-induced apoptosis since IRF3 depletion suppresses caspase-8 and caspase-3 activation, TRAIL expression upregulation and apoptosis. Interestingly, RA/poly(I:C) combination synergizes to induce a bioactive autocrine/paracrine loop of type-I Interferons (IFNs) which is ultimately responsible for TRAIL and TRAIL-R1/2 expression upregulation, while inhibition of TRAIL-R3/4 expression is type-I IFN-independent. Our results highlight the importance of IRF3 and type-I IFNs signaling for the pro-apoptotic effects induced by RA and synthetic dsRNA in breast cancer cells.

  15. Capsular Polysaccharide is a Main Component of Mycoplasma ovipneumoniae in the Pathogen-Induced Toll-Like Receptor-Mediated Inflammatory Responses in Sheep Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Zhongjia Jiang

    2017-01-01

    Full Text Available Mycoplasma ovipneumoniae (M. ovipneumoniae is characterized as an etiological agent of primary atypical pneumonia that specifically infects sheep and goat. In an attempt to better understand the pathogen-host interaction between the invading M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory responses against capsular polysaccharide (designated as CPS of M. ovipneumoniae using sheep bronchial epithelial cells cultured in an air-liquid interface (ALI model. Results showed that CPS derived from M. ovipneumoniae could activate toll-like receptor- (TLR- mediated inflammatory responses, along with an elevated expression of nuclear factor kappa B (NF-κB, activator protein-1 (AP-1, and interferon regulatory factor 3 (IRF3 as well as various inflammatory-associated mediators, representatively including proinflammatory cytokines, such as IL1β, TNFα, and IL8, and anti-inflammatory cytokines such as IL10 and TGFβ of TLR signaling cascade. Mechanistically, the CPS-induced inflammation was TLR initiated and was mediated by activations of both MyD88-dependent and MyD88-independent signaling pathways. Of importance, a blockage of CPS with specific antibody led a significant reduction of M. ovipneumoniae-induced inflammatory responses in sheep bronchial epithelial cells. These results suggested that CPS is a key virulent component of M. ovipneumoniae, which may play a crucial role in the inflammatory response induced by M. ovipneumoniae infections.

  16. Capsular Polysaccharide is a Main Component of Mycoplasma ovipneumoniae in the Pathogen-Induced Toll-Like Receptor-Mediated Inflammatory Responses in Sheep Airway Epithelial Cells.

    Science.gov (United States)

    Jiang, Zhongjia; Song, Fuyang; Li, Yanan; Xue, Di; Deng, Guangcun; Li, Min; Liu, Xiaoming; Wang, Yujiong

    2017-01-01

    Mycoplasma ovipneumoniae ( M. ovipneumoniae ) is characterized as an etiological agent of primary atypical pneumonia that specifically infects sheep and goat. In an attempt to better understand the pathogen-host interaction between the invading M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory responses against capsular polysaccharide (designated as CPS) of M. ovipneumoniae using sheep bronchial epithelial cells cultured in an air-liquid interface (ALI) model. Results showed that CPS derived from M. ovipneumoniae could activate toll-like receptor- (TLR-) mediated inflammatory responses, along with an elevated expression of nuclear factor kappa B (NF- κ B), activator protein-1 (AP-1), and interferon regulatory factor 3 (IRF3) as well as various inflammatory-associated mediators, representatively including proinflammatory cytokines, such as IL1 β , TNF α , and IL8, and anti-inflammatory cytokines such as IL10 and TGF β of TLR signaling cascade. Mechanistically, the CPS-induced inflammation was TLR initiated and was mediated by activations of both MyD88-dependent and MyD88-independent signaling pathways. Of importance, a blockage of CPS with specific antibody led a significant reduction of M. ovipneumoniae -induced inflammatory responses in sheep bronchial epithelial cells. These results suggested that CPS is a key virulent component of M. ovipneumoniae , which may play a crucial role in the inflammatory response induced by M. ovipneumoniae infections.

  17. Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2 up-regulation and reduced Bcl-2 expression

    International Nuclear Information System (INIS)

    Zhang, X.; Li, L.; Zhang, L.; Borowitz, J.L.; Isom, G.E.

    2009-01-01

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidative stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H 2 O 2 generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H 2 O 2 generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H 2 O 2 accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.

  18. The nucleocapsid protein of measles virus blocks host interferon response

    International Nuclear Information System (INIS)

    Takayama, Ikuyo; Sato, Hiroki; Watanabe, Akira; Omi-Furutani, Mio; Sugai, Akihiro; Kanki, Keita; Yoneda, Misako; Kai, Chieko

    2012-01-01

    Measles virus (MV) belongs to the genus Morbillivirus of the family Paramyxoviridae. A number of paramyxoviruses inhibit host interferon (IFN) signaling pathways in host immune systems by various mechanisms. Inhibition mechanisms have been described for many paramyxoviruses. Although there are inconsistencies among previous reports concerning MV, it appears that P/V/C proteins interfere with the pathways. In this study, we confirmed the effects of MV P gene products of a wild MV strain on IFN pathways and examined that of other viral proteins on it. Interestingly, we found that N protein acts as an IFN-α/β and γ-antagonist as strong as P gene products. We further investigated the mechanisms of MV-N inhibition, and revealed that MV-N blocks the nuclear import of activated STAT without preventing STAT and Jak activation or STAT degradation, and that the nuclear translocation of MV-N is important for the inhibition. The inhibitory effect of the N protein was observed as a common feature of other morbilliviruses. The results presented in this report suggest that N protein of MV as well as P/V/C proteins is involved in the inhibition of host IFN signaling pathways.

  19. The nucleocapsid protein of measles virus blocks host interferon response

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, Ikuyo; Sato, Hiroki; Watanabe, Akira; Omi-Furutani, Mio; Sugai, Akihiro; Kanki, Keita; Yoneda, Misako; Kai, Chieko, E-mail: ckai@ims.u-tokyo.ac.jp

    2012-03-01

    Measles virus (MV) belongs to the genus Morbillivirus of the family Paramyxoviridae. A number of paramyxoviruses inhibit host interferon (IFN) signaling pathways in host immune systems by various mechanisms. Inhibition mechanisms have been described for many paramyxoviruses. Although there are inconsistencies among previous reports concerning MV, it appears that P/V/C proteins interfere with the pathways. In this study, we confirmed the effects of MV P gene products of a wild MV strain on IFN pathways and examined that of other viral proteins on it. Interestingly, we found that N protein acts as an IFN-{alpha}/{beta} and {gamma}-antagonist as strong as P gene products. We further investigated the mechanisms of MV-N inhibition, and revealed that MV-N blocks the nuclear import of activated STAT without preventing STAT and Jak activation or STAT degradation, and that the nuclear translocation of MV-N is important for the inhibition. The inhibitory effect of the N protein was observed as a common feature of other morbilliviruses. The results presented in this report suggest that N protein of MV as well as P/V/C proteins is involved in the inhibition of host IFN signaling pathways.

  20. Interferon beta and vitamin D synergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients.

    Directory of Open Access Journals (Sweden)

    Anne Waschbisch

    Full Text Available Immunoglobulin-like transcript (ILT 3 and 4 are inhibitory receptors that modulate immune responses. Their expression has been reported to be affected by interferon, offering a possible mechanism by which this cytokine exerts its therapeutic effect in multiple sclerosis, a condition thought to involve excessive immune activity. To investigate this possibility, we measured expression of ILT3 and ILT4 on immune cells from multiple sclerosis patients, and in post-mortem brain tissue. We also studied the ability of interferon beta, alone or in combination with vitamin D, to induce upregulation of these receptors in vitro, and compared expression levels between interferon-treated and untreated multiple sclerosis patients. In vitro interferon beta treatment led to a robust upregulation of ILT3 and ILT4 on monocytes, and dihydroxyvitamin D3 increased expression of ILT3 but not ILT4. ILT3 was abundant in demyelinating lesions in postmortem brain, and expression on monocytes in the cerebrospinal fluid was higher than in peripheral blood, suggesting that the central nervous system milieu induces ILT3, or that ILT3 positive monocytes preferentially enter the brain. Our data are consistent with involvement of ILT3 and ILT4 in the modulation of immune responsiveness in multiple sclerosis by both interferon and vitamin D.

  1. The human adenovirus type 5 E1B 55 kDa protein obstructs inhibition of viral replication by type I interferon in normal human cells.

    Directory of Open Access Journals (Sweden)

    Jasdave S Chahal

    Full Text Available Vectors derived from human adenovirus type 5, which typically lack the E1A and E1B genes, induce robust innate immune responses that limit their therapeutic efficacy. We reported previously that the E1B 55 kDa protein inhibits expression of a set of cellular genes that is highly enriched for those associated with anti-viral defense and immune responses, and includes many interferon-sensitive genes. The sensitivity of replication of E1B 55 kDa null-mutants to exogenous interferon (IFN was therefore examined in normal human fibroblasts and respiratory epithelial cells. Yields of the mutants were reduced at least 500-fold, compared to only 5-fold, for wild-type (WT virus replication. To investigate the mechanistic basis of such inhibition, the accumulation of viral early proteins and genomes was compared by immunoblotting and qPCR, respectively, in WT- and mutant-infected cells in the absence or presence of exogenous IFN. Both the concentration of viral genomes detected during the late phase and the numbers of viral replication centers formed were strongly reduced in IFN-treated cells in the absence of the E1B protein, despite production of similar quantities of viral replication proteins. These defects could not be attributed to degradation of entering viral genomes, induction of apoptosis, or failure to reorganize components of PML nuclear bodies. Nor was assembly of the E1B- and E4 Orf6 protein- E3 ubiquitin ligase required to prevent inhibition of viral replication by IFN. However, by using RT-PCR, the E1B 55 kDa protein was demonstrated to be a potent repressor of expression of IFN-inducible genes in IFN-treated cells. We propose that a primary function of the previously described transcriptional repression activity of the E1B 55 kDa protein is to block expression of IFN- inducible genes, and hence to facilitate formation of viral replication centers and genome replication.

  2. Identification of viral genes associated with the interferon-inducing phenotype of a synthetic porcine reproductive and respiratory syndrome virus strain.

    Science.gov (United States)

    Sun, Haiyan; Pattnaik, Asit K; Osorio, Fernando A; Vu, Hiep L X

    2016-12-01

    We recently generated a fully synthetic porcine reproductive and respiratory syndrome virus strain (designated as PRRSV-CON), which confers unprecedented levels of heterologous protection. We report herein that the synthetic PRRSV-CON possesses a unique phenotype in that it induces type-I interferons (IFNs) instead of suppressing these cytokines as most of the naturally occurring PRRSV isolates do. Through gain- and loss- of-function studies, the IFN-inducing phenotype of PRRSV-CON was mapped to the 3.3kb genomic fragment encoding three viral nonstructural proteins: nsp1α, nsp1β and the N-terminal part of nsp2. Further studies indicated that a cooperation among these 3 proteins was required for effective induction of IFNs. Collectively, this study constitutes the first step toward understanding the mechanisms by which the synthetic PRRSV-CON confers heterologous protection. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Inflammatory mediator profiles in tears accompanying keratoconjunctival responses induced by nasal allergy.

    Science.gov (United States)

    Pelikan, Zdenek

    2013-07-01

    The allergic reaction taking place in the nasal mucosa can induce a secondary ocular (keratoconjunctival) response of an immediate (SIOR), late (SLOR) or delayed (SDYOR) type in some patients with keratoconjunctivitis (KC). To investigate the concentration changes of histamine, tryptase, eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), eosinophilic peroxidase (EPO), leucotrienes (LTB₄, LTC₄, LTE₄), prostaglandins (PGD₂, PGE₂ and PGF₂α), thromboxane B₂ (TXB₂), myeloperoxidase (MPO), interferon-γ (IFN-γ) and interleukins (IL-2, IL-4 and IL-5) in tears during the SIOR, SLOR and SDYOR. 19 SIORs (ptears. The ocular response types were associated with significant changes (ptears as follows: (1) SIORs: histamine, tryptase, ECP, LTC₄, PGD₂, PGF₂α, IL-4 and IL-5; (2) SLORs: histamine, ECP, EDN, LTB₄, LTC₄, PGE₂, MPO, IL-4 and IL-5; (3) SDYORs: LTB4, TXB₂, MPO, IFN-γ and IL-2. No significant changes of these factors were measured in tears during the 57 PBS controls (p>0.1). These results demonstrate a causal involvement of nasal allergy in some KC patients, inducing a secondary keratoconjunctival response of an immediate (SIOR), late (SLOR) or delayed (SDYOR) type, associated with different inflammatory mediator profiles in the tears, suggesting participation of different hypersensitivity mechanisms. These results also emphasise the diagnostic value of nasal challenge with allergen combined with monitoring of ocular response in KC patients, responding insufficiently to the usual ophthalmologic therapy.

  4. Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation.

    Science.gov (United States)

    Brasseit, Jennifer; Kwong Chung, Cheong K C; Noti, Mario; Zysset, Daniel; Hoheisel-Dickgreber, Nina; Genitsch, Vera; Corazza, Nadia; Mueller, Christoph

    2018-01-01

    Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1 -/- recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1 -/- recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved.

  5. Interferon-β gene transfer induces a strong cytotoxic bystander effect on melanoma cells.

    Science.gov (United States)

    Rossi, Úrsula A; Gil-Cardeza, María L; Villaverde, Marcela S; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2015-05-01

    A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-β (IFNβ) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFNβ gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) to human cells. IFNβ gene lipofection was not cytotoxic for only one canine melanoma cell line. When cultured as monolayers, three human and three canine IFNβ-lipofected melanoma cell lines displayed a remarkable bystander effect. As spheroids, the same six cell lines were sensitive to IFNβ gene transfer, two displaying a significant multicell resistance phenotype. The effects of conditioned IFNβ-lipofected canine melanoma cell culture media suggested the release of at least one soluble thermolabile cytotoxic factor that could not be detected in human melanoma cells. By using a secretion signal-free truncated human IFNβ, we showed that its intracellular expression was enough to induce cytotoxicity in two human melanoma cell lines. The lower cytoplasmatic levels of reactive oxygen species detected after intracellular IFNβ expression could be related to the resistance displayed by one human melanoma cell line. As IFNβ gene transfer was effective against most of the assayed melanomas in a way not limited by relatively low lipofection efficiencies, the clinical potential of this approach is strongly supported. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Minocycline treatment ameliorates interferon-alpha-induced neurogenic defects and depression-like behaviors in mice

    Directory of Open Access Journals (Sweden)

    Lian-Shun eZheng

    2015-01-01

    Full Text Available Interferon-alpha (IFN-α is a proinflammatory cytokine that is widely used for the treatment of chronic viral hepatitis and malignancy, because of its immune-activating, antiviral, and antiproliferative properties. However, long-term IFN-α treatment frequently causes depression, which limits its clinical utility. The precise molecular and cellular mechanisms of IFN-α-induced depression are not currently understood. Neural stem cells (NSCs in the hippocampus continuously generate new neurons, and some evidence suggests that decreased neurogenesis plays a role in the neuropathology of depression. We previously reported that IFN-α treatment suppressed hippocampal neurogenesis and induced depression-like behaviors via its receptors in the brain in adult mice. However, it is unclear how systemic IFN-α administration induces IFN-α signaling in the hippocampus. In this study, we analyzed the role of microglia, immune cells in the brain, in mediating the IFN-α-induced neurogenic defects and depressive behaviors. In vitro studies demonstrated that IFN-α treatment induced the secretion of endogenous IFN-α from microglia, which suppressed NSC proliferation. In vivo treatment of adult mice with IFN-α for five weeks increased the production of proinflammatory cytokines, including IFN-α, and reduced neurogenesis in the hippocampus. Both effects were prevented by simultaneous treatment with minocycline, an inhibitor of microglial activation. Furthermore, minocycline treatment significantly suppressed IFN-α-induced depressive behaviors in mice. These results suggest that microglial activation plays a critical role in the development of IFN-α-induced depression, and that minocycline is a promising drug for the treatment of IFN-α-induced depression in patients, especially those who are low responders to conventional antidepressant treatments.

  7. Type 1 Diabetes and Interferon Therapy

    OpenAIRE

    Nakamura, Kan; Kawasaki, Eiji; Imagawa, Akihisa; Awata, Takuya; Ikegami, Hiroshi; Uchigata, Yasuko; Kobayashi, Tetsuro; Shimada, Akira; Nakanishi, Koji; Makino, Hideichi; Maruyama, Taro; Hanafusa, Toshiaki

    2011-01-01

    OBJECTIVE Interferon therapy can trigger induction of several autoimmune diseases, including type 1 diabetes. To assess the clinical, immunologic, and genetic characteristics of type 1 diabetes induced by interferon therapy, we conducted a nationwide cross-sectional survey. RESEARCH DESIGN AND METHODS Clinical characteristics, anti-islet autoantibodies, and HLA-DR typing were examined in 91 patients for whom type 1 diabetes developed during or shortly after interferon therapy. RESULTS Median ...

  8. Protein phosphatase 2A mediates JS-K-induced apoptosis by affecting Bcl-2 family proteins in human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Liu, Ling; Huang, Zile; Chen, Jingjing; Wang, Jiangang; Wang, Shuying

    2018-04-25

    Protein phosphatase 2A (PP2A) is an important enzyme within various signal transduction pathways. The present study was investigated PP2A mediates JS-K-induced apoptosis by affecting Bcl-2 family protein. JS-K showed diverse inhibitory effects in five HCC cell lines, especially HepG2 cells. JS-K caused a dose- and time-dependent reduction in cell viability and increased in levels of LDH release. Meanwhile, JS-K- induced apoptosis was characterized by mitochondrial membrane potential reduction, Hoechst 33342 + /PI + dual staining, release of cytochrome c (Cyt c), and activation of cleaved caspase-9/3. Moreover, JS-K-treatment could lead to the activation of protein phosphatase 2A-C (PP2A-C), decrease of anti-apoptotic Bcl-2 family-protein expression including p-Bcl-2 (Ser70), Bcl-2, Bcl-xL, and Mcl-1 as well as the increase of pro-apoptosis Bcl-2 family-protein including Bim, Bad, Bax, and Bak. Furthermore, JS-K caused a marked increase of intracellular NO levels while pre-treatment with Carboxy-PTIO (a NO scavenger) reduced the cytotoxicity effects and the apoptosis rate. Meanwhile, pre-treatment with Carboxy-PTIO attenuated the JS-K-induced up-regulation of PP2A, Cyt c, and cleaved-caspase-9/3 activation. The silencing PP2A-C by siRNA could abolish the activation of PP2A-C, down-regulation of anti-apoptotic Bcl-2 family-protein (p-Bcl-2, Bcl-2, Bcl-xL, and Mcl-1), increase of pro-apoptosis Bcl-2 family-protein (Bim, Bad, Bax, and Bak) and apoptotic-related protein (Cyt c, cleaved caspase-9/3) that were caused by JS-K in HepG2 cells. In addition, pre-treatment with OA (a PP2A inhibitor) also attenuated the above effects induced by JS-K. In summary, NO release from JS-K induces apoptosis through PP2A activation, which contributed to the regulation of Bcl-2 family proteins. © 2018 Wiley Periodicals, Inc.

  9. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors.

    Directory of Open Access Journals (Sweden)

    Sachin Gupta

    Full Text Available Type I interferon is known to inhibit HIV-1 replication through the induction of interferon stimulated genes (ISG, including a number of HIV-1 restriction factors. To better understand interferon-mediated HIV-1 restriction, we constructed a constitutively active form of the RIG-I adapter protein MAVS. Constitutive MAVS was generated by fusion of full length MAVS to a truncated form of the Epstein Barr virus protein LMP1 (ΔLMP1. Supernatant from ΔLMP1-MAVS-transfected 293T cells contained high levels of type I interferons and inhibited HIV replication in both TZM-bl and primary human CD4+ T cells. Supernatant from ΔLMP1-MAVS-transfected 293T cells also inhibited replication of VSV-G pseudotyped single cycle SIV in TZM-bl cells, suggesting restriction was post-entry and common to both HIV and SIV. Gene array analysis of ΔLMP1-MAVS-transfected 293T cells and trans-activated CD4+ T cells showed significant upregulation of ISG, including previously characterized HIV restriction factors Viperin, Tetherin, MxB, and ISG56. Interferon blockade studies implicated interferon-beta in this response. In addition to direct viral inhibition, ΔLMP1-MAVS markedly enhanced secretion of IFN-β and IL-12p70 by dendritic cells and the activation and maturation of dendritic cells. Based on this immunostimulatory activity, an adenoviral vector (Ad5 expressing ΔLMP1-MAVS was tested as a molecular adjuvant in an HIV vaccine mouse model. Ad5-Gag antigen combined with Ad5-ΔLMP1-MAVS enhanced control of vaccinia-gag replication in a mouse challenge model, with 4/5 animals showing undetectable virus following challenge. Overall, ΔLMP1-MAVS is a promising reagent to inhibit HIV-1 replication in infected tissues and enhance vaccine-mediated immune responses, while avoiding toxicity associated with systemic type I interferon administration.

  10. IFN-gamma-inducible Irga6 mediates host resistance against Chlamydia trachomatis via autophagy.

    Directory of Open Access Journals (Sweden)

    Munir A Al-Zeer

    Full Text Available Chlamydial infection of the host cell induces Gamma interferon (IFNgamma, a central immunoprotector for humans and mice. The primary defense against Chlamydia infection in the mouse involves the IFNgamma-inducible family of IRG proteins; however, the precise mechanisms mediating the pathogen's elimination are unknown. In this study, we identify Irga6 as an important resistance factor against C. trachomatis, but not C. muridarum, infection in IFNgamma-stimulated mouse embryonic fibroblasts (MEFs. We show that Irga6, Irgd, Irgm2 and Irgm3 accumulate at bacterial inclusions in MEFs upon stimulation with IFNgamma, whereas Irgb6 colocalized in the presence or absence of the cytokine. This accumulation triggers a rerouting of bacterial inclusions to autophagosomes that subsequently fuse to lysosomes for elimination. Autophagy-deficient Atg5-/- MEFs and lysosomal acidification impaired cells surrender to infection. Irgm2, Irgm3 and Irgd still localize to inclusions in IFNgamma-induced Atg5-/- cells, but Irga6 localization is disrupted indicating its pivotal role in pathogen resistance. Irga6-deficient (Irga6-/- MEFs, in which chlamydial growth is enhanced, do not respond to IFNgamma even though Irgb6, Irgd, Irgm2 and Irgm3 still localize to inclusions. Taken together, we identify Irga6 as a necessary factor in conferring host resistance by remodelling a classically nonfusogenic intracellular pathogen to stimulate fusion with autophagosomes, thereby rerouting the intruder to the lysosomal compartment for destruction.

  11. Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress.

    Science.gov (United States)

    Garaigorta, Urtzi; Heim, Markus H; Boyd, Bryan; Wieland, Stefan; Chisari, Francis V

    2012-10-01

    Stress granules (SGs) are cytoplasmic structures that are induced in response to environmental stress, including viral infections. Here we report that hepatitis C virus (HCV) triggers the appearance of SGs in a PKR- and interferon (IFN)-dependent manner. Moreover, we show an inverse correlation between the presence of stress granules and the induction of IFN-stimulated proteins, i.e., MxA and USP18, in HCV-infected cells despite high-level expression of the corresponding MxA and USP18 mRNAs, suggesting that interferon-stimulated gene translation is inhibited in stress granule-containing HCV-infected cells. Finally, in short hairpin RNA (shRNA) knockdown experiments, we found that the stress granule proteins T-cell-restricted intracellular antigen 1 (TIA-1), TIA1-related protein (TIAR), and RasGAP-SH3 domain binding protein 1 (G3BP1) are required for efficient HCV RNA and protein accumulation at early time points in the infection and that G3BP1 and TIA-1 are required for intracellular and extracellular infectious virus production late in the infection, suggesting that they are required for virus assembly. In contrast, TIAR downregulation decreases extracellular infectious virus titers with little effect on intracellular RNA content or infectivity late in the infection, suggesting that it is required for infectious particle release. Collectively, these results illustrate that HCV exploits the stress granule machinery at least two ways: by inducing the formation of SGs by triggering PKR phosphorylation, thereby downregulating the translation of antiviral interferon-stimulated genes, and by co-opting SG proteins for its replication, assembly, and egress.

  12. Nonstructural 5A Protein of Hepatitis C Virus Interferes with Toll-Like Receptor Signaling and Suppresses the Interferon Response in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Takeya Tsutsumi

    Full Text Available The hepatitis C virus nonstructural protein NS5A is involved in resistance to the host immune response, as well as the viral lifecycle such as replication and maturation. Here, we established transgenic mice expressing NS5A protein in the liver and examined innate immune responses against lipopolysaccharide (LPS in vivo. Intrahepatic gene expression levels of cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ were significantly suppressed after LPS injection in the transgenic mouse liver. Induction of the C-C motif chemokine ligand 2, 4, and 5 was also suppressed. Phosphorylation of the signal transducer and activator of transcription 3, which is activated by cytokines, was also reduced, and expression levels of interferon-stimulated genes, 2'-5' oligoadenylate synthase, interferon-inducible double-stranded RNA-activated protein kinase, and myxovirus resistance 1 were similarly suppressed. Since LPS binds to toll-like receptor 4 and stimulates the downstream pathway leading to induction of these genes, we examined the extracellular signal-regulated kinase and IκB-α. The phosphorylation levels of these molecules were reduced in transgenic mouse liver, indicating that the pathway upstream of the molecules was disrupted by NS5A. Further analyses revealed that the interaction between interleukin-1 receptor-associated kinase-1 and tumor necrosis factor receptor associated factor-6 was dispersed in transgenic mice, suggesting that NS5A may interfere with this interaction via myeloid differentiation primary response gene 88, which was shown to interact with NS5A. Since the gut microbiota, a source of LPS, is known to be associated with pathological conditions in liver diseases, our results suggest the involvement of NS5A in the pathogenesis of HCV infected-liver via the suppression of innate immunity.

  13. Nitric oxide-mediated modulation of iron regulatory proteins: implication for cellular iron homeostasis.

    Science.gov (United States)

    Kim, Sangwon; Ponka, Prem

    2002-01-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) that are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO(.), a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels and a decrease in ferritin synthesis. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels and a dramatic increase in ferritin synthesis. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels and an increase in ferritin synthesis in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO(+)-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  14. Ribosomal Protein S6 Kinase (RSK-2 as a central effector molecule in RON receptor tyrosine kinase mediated epithelial to mesenchymal transition induced by macrophage-stimulating protein

    Directory of Open Access Journals (Sweden)

    Zhang Rui-Wen

    2011-05-01

    Full Text Available Abstract Background Epithelial to mesenchymal transition (EMT occurs during cancer cell invasion and malignant metastasis. Features of EMT include spindle-like cell morphology, loss of epithelial cellular markers and gain of mesenchymal phenotype. Activation of the RON receptor tyrosine kinase by macrophage-stimulating protein (MSP has been implicated in cellular EMT program; however, the major signaling determinant(s responsible for MSP-induced EMT is unknown. Results The study presented here demonstrates that RSK2, a downstream signaling protein of the Ras-Erk1/2 pathway, is the principal molecule that links MSP-activated RON signaling to complete EMT. Using MDCK cells expressing RON as a model, a spindle-shape based screen was conducted, which identifies RSK2 among various intracellular proteins as a potential signaling molecule responsible for MSP-induced EMT. MSP stimulation dissociated RSK2 with Erk1/2 and promoted RSK2 nuclear translocation. MSP strongly induced RSK2 phosphorylation in a dose-dependent manner. These effects relied on RON and Erk1/2 phosphorylation, which is significantly potentiated by transforming growth factor (TGF-β1, an EMT-inducing cytokine. Specific RSK inhibitor SL0101 completely prevented MSP-induced RSK phosphorylation, which results in inhibition of MSP-induced spindle-like morphology and suppression of cell migration associated with EMT. In HT-29 cancer cells that barely express RSK2, forced RSK2 expression results in EMT-like phenotype upon MSP stimulation. Moreover, specific siRNA-mediated silencing of RSK2 but not RSK1 in L3.6pl pancreatic cancer cells significantly inhibited MSP-induced EMT-like phenotype and cell migration. Conclusions MSP-induced RSK2 activation is a critical determinant linking RON signaling to cellular EMT program. Inhibition of RSK2 activity may provide a therapeutic opportunity for blocking RON-mediated cancer cell migration and subsequent invasion.

  15. Cold-inducible RNA-binding protein mediates cold air inducible airway mucin production through TLR4/NF-κB signaling pathway.

    Science.gov (United States)

    Chen, Lingxiu; Ran, Danhua; Xie, Wenyue; Xu, Qing; Zhou, Xiangdong

    2016-10-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases and cold air stimulation has been shown to be associated with the severity of these diseases. However, the regulatory mechanisms that mediate excessive mucin production under cold stress remain elusive. Recently, the cold-inducible RNA-binding protein (CIRP) has been shown to be markedly induced after exposure to cold air. In this study, we sought to explore the expression of CIRP within bronchial biopsy specimens, the effect on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in cold air stimulation process. We found that CIRP protein expression was significantly increased in patients with COPD and in mice treated with cold air. Moreover, cold air stimulation induced MUC5AC expression in wild-type mice but not in CIRP(-/-) mice. In vitro, cold air stress significantly elevated the transcriptional and protein expression levels of MUC5AC in human bronchial epithelial cells. CIRP, toll-like receptor 4 (TLR4) and phosphorylated NF-κB p65 (p-p65) increased significantly in response to cold stress and CIRP siRNA, TLR4 - neutralizing Ab and a specific inhibitor of NF-κB could attenuated cold stress inducible MUC5AC expression. In addition, CIRP siRNA could hindered the expression levels of TLR4 and p-p65 both induced by cold stress. Taken together, these results suggest that airway epithelial cells constitutively express CIRP in vitro and in vivo. CIRP is responsible for cold-inducible MUC5AC expression by activating TLR4/NF-κB signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. C-Reactive Protein (CRP), Interferon Gamma-Inducible Protein 10 (IP-10), and Lipopolysaccharide (LPS) Are Associated with Risk of Tuberculosis after Initiation of Antiretroviral Therapy in Resource-Limited Settings

    Science.gov (United States)

    Tenforde, Mark W.; Gupte, Nikhil; Dowdy, David W.; Asmuth, David M.; Balagopal, Ashwin; Pollard, Richard B.; Sugandhavesa, Patcharaphan; Lama, Javier R.; Pillay, Sandy; Cardoso, Sandra W.; Pawar, Jyoti; Santos, Breno; Riviere, Cynthia; Mwelase, Noluthando; Kanyama, Cecilia; Kumwenda, Johnstone; Hakim, James G.; Kumarasamy, Nagalingeswaran; Bollinger, Robert; Semba, Richard D.; Campbell, Thomas B.; Gupta, Amita

    2015-01-01

    Objective The association between pre-antiretroviral (ART) inflammation and immune activation and risk for incident tuberculosis (TB) after ART initiation among adults is uncertain. Design Nested case-control study (n = 332) within ACTG PEARLS trial of three ART regimens among 1571 HIV-infected, treatment-naïve adults in 9 countries. We compared cases (participants with incident TB diagnosed by 96 weeks) to a random sample of controls (participants who did not develop TB, stratified by country and treatment arm). Methods We measured pre-ART C-reactive protein (CRP), EndoCab IgM, ferritin, interferon gamma (IFN-γ), interleukin 6 (IL-6), interferon gamma-inducible protein 10 (IP-10), lipopolysaccharide (LPS), soluble CD14 (sCD14), tumor necrosis factor alpha (TNF-α), and CD4/DR+/38+ and CD8/DR+/38+ T cells. Markers were defined according to established cutoff definitions when available, 75th percentile of measured values when not, and detectable versus undetectable for LPS. Using logistic regression, we measured associations between biomarkers and incident TB, adjusting for age, sex, study site, treatment arm, baseline CD4 and log10 viral load. We assessed the discriminatory value of biomarkers using receiver operating characteristic (ROC) analysis. Results Seventy-seven persons (4.9%) developed incident TB during follow-up. Elevated baseline CRP (aOR 3.25, 95% CI: 1.55–6.81) and IP-10 (aOR 1.89, 95% CI: 1.05–3.39), detectable plasma LPS (aOR 2.39, 95% CI: 1.13–5.06), and the established TB risk factors anemia and hypoalbuminemia were independently associated with incident TB. In ROC analysis, CRP, albumin, and LPS improved discrimination only modestly for TB risk when added to baseline routine patient characteristics including CD4 count, body mass index, and prior TB. Conclusion Incident TB occurs commonly after ART initiation. Although associated with higher post-ART TB risk, baseline CRP, IP-10, and LPS add limited value to routine patient characteristics

  17. Measurement of feline cytokines interleukin-12 and interferon- g produced by heat inducible gene therapy adenoviral vector using real time PCR

    International Nuclear Information System (INIS)

    Siddiqui, F.; Avery, P.R.; Ullrich, R.L.; LaRue, S.M.; Dewhirst, M.W.; Li, C.-Y.

    2003-01-01

    Biologic tumor therapy using Interleukin-12 (IL-12) has shown promise as an adjuvant to radiation therapy. The goals for cancer gene immunotherapy include effective eradication of established tumors and generation of a lasting systemic immune response. Among the cytokines, IL-12 has been found to be most effective gene in eradicating experimental tumors, preventing the development of metastases, and eliciting long-term antitumor immunity. Depending on the tumor model, IL-12 can exert antitumor activities via T cells, NK cells or NKT cells. It induces the production of IFN-g and IFN-inducible protein-10. It is also postulated to have antiangiogenic effects, thus inhibiting tumor formation and metastases. However, its use in clinical trials has been restricted largely owing to its systemic hematologic and hepatotoxicity. We tested the efficacy of adenovirus mediated expression of feline IL-12 gene placed under the control of an inducible promoter, the heat shock proteins (hsp70B). This places gene expression under the control of an external physical agent (hyperthermia), thus offering an 'on-off' switch and potentially reducing systemic toxicity by restricting its expression locally to the tumor. Crandell Feline Kidney (CrFK) cells were infected using the construct and the supernatant was then used to stimulate production of interferon g (IFN-g) in feline peripheral blood mononuclear cells (PBMC). As there is no commercially available ELISA kit currently available to detect or measure feline cytokines, we used real time-PCR to measure cytokine mRNA. These results will be used to initiate a clinical trial in cats with soft tissue sarcomas examining hyperthermia Induced gene therapy in conjunction with radiation therapy. The real time- PCR techniques developed here will be used to quantitatively measure cytokine mRNA levels in the punch biopsy samples obtained from the cats during the clinical trial. Support for this study was in part by NCI grant CA72745

  18. Literature systematic review on the ophthalmological side effects of interferons

    Directory of Open Access Journals (Sweden)

    Yara Dadalti Fragoso

    2011-08-01

    Full Text Available Interferons alpha and beta have been used worldwide for a few decades, altering the natural history of several severe diseases including hepatitis C, cancer and immune-mediated conditions such as multiple sclerosis. The adverse events profile of interferons is well established, but only isolated reports of ophthalmological complications of interferon therapy have been published. The objective of this study was to carry out a literature systematic review on the subject, bringing to light the need for careful ophthalmological monitoring of patients undergoing interferon treatment. Nearly 500 cases of ophthalmological complications related to interferon have been reported. The most frequent findings were soft exudates, hemorrhages and retina ischemia.

  19. The interferon response to intracellular DNA: why so many receptors?

    Science.gov (United States)

    Unterholzner, Leonie

    2013-11-01

    The detection of intracellular DNA has emerged to be a key event in the innate immune response to viruses and intracellular bacteria, and during conditions of sterile inflammation and autoimmunity. One of the consequences of the detection of DNA as a 'stranger' and a 'danger' signal is the production of type I interferons and pro-inflammatory cytokines. Much work has been dedicated to the elucidation of the signalling cascades that activate this DNA-induced gene expression programme. However, while many proteins have been proposed to act as sensors for intracellular DNA in recent years, none has been met with universal acceptance, and a theory linking all the recent observations is, as yet, lacking. This review presents the evidence for the various interferon-inducing DNA receptors proposed to date, and examines the hypotheses that might explain why so many different receptors appear to be involved in the innate immune recognition of intracellular DNA. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Interferon alfa and ribavirin induced hair changes

    International Nuclear Information System (INIS)

    Amir, S.; Taj, A.; Muhamud, T.H.; Iqbal, Z.; Yaqub, F.

    2007-01-01

    Combination therapy of Interferon alfa and ribavirin in chronic hepatitis C has well documented cutaneous adverse effects. Most interesting of these has been reported on hair physiology. This study was conducted to determine the frequency and pattern of adverse effects involving hair in patients receiving combination of interferon alfa 2a and ribavirin for chronic hepatitis C. The study was conducted in Department of Dermatology, Division of Medicine Shaikh Zayed Hospital. Thirty Eight patients who completed treatment with interferon alfa (3 MIU subcutaneously thrice weekly) and 1200 mg ribavirin daily for 24 weeks were enrolled in this single-center study. The patient's response and examination finding particularly regarding involvement of hair was noted on a Proforma. Thirty Two out of thirty eight (84%) patients noted adverse effects involving hair. The most frequent was diffuse hair loss and occurred in 27 patients (71%). Hypertrichosis of eyelashes (trichomegaly) and eyebrows (synophyrs) was observed in 18 (47%) and 16 (42%) patients respectively. Graying of hair was noted in 4 patients (11%), while discoloration of moustache hair was seen in 2 patients (5%). Epilation at the site of subcutaneous injection was noted in 10 patients (26%). Alopecia areata was reported in 2 patients (5%). It is concluded that adverse effects involving hair are frequent and varied (hair loss to excess hair growth) during combination therapy with Interferon alfa-2a and Ribavirin for chronic hepatitis C. (author)

  1. Persistent interferon transgene expression by RNA interference-mediated silencing of interferon receptors.

    Science.gov (United States)

    Takahashi, Yuki; Vikman, Elin; Nishikawa, Makiya; Ando, Mitsuru; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2010-09-01

    The in vivo half-life of interferons (IFNs) is very short, and its extension would produce a better therapeutic outcome in IFN-based therapy. Delivery of IFN genes is one solution for providing a sustained supply. IFNs have a variety of functions, including the suppression of transgene expression, through interaction with IFN receptors (IFNRs). This suppression could prevent IFNs from being expressed from vectors delivered. Silencing the expression of IFNAR and IFNGR, the receptors for type I and II IFNs, respectively, in cells expressing IFNs may prolong transgene expression of IFNs. Mouse melanoma B16-BL6 cells or mouse liver were selected as a site expressing IFNs (not a target for IFN gene therapy) and IFN-expressing plasmid DNA was delivered with or without small interfering RNA (siRNA) targeting IFNRs. Transfection of B16-BL6 cells with siRNA targeting IFNAR1 subunit (IFNAR1) resulted in the reduced expression of IFNAR on the cell surface. This silencing significantly increased the IFN-beta production in cells that were transfected with IFN-beta-expressing plasmid DNA. Similar results were obtained with the combination of IFN-gamma and IFNGR. Co-injection of IFN-beta-expressing plasmid DNA with siRNA targeting IFNAR1 into mice resulted in sustained plasma concentration of IFN-beta. These results provide experimental evidence that the RNAi-mediated silencing of IFNRs in cells expressing IFN, such as hepatocytes, is an effective approach for improving transgene expression of IFNs when their therapeutic target comprises cells other than those expressing IFNs.

  2. Protein phosphatase 5 is necessary for ATR-mediated DNA repair

    International Nuclear Information System (INIS)

    Kang, Yoonsung; Cheong, Hyang-Min; Lee, Jung-Hee; Song, Peter I.; Lee, Kwang-Ho; Kim, Sang-Yong; Jun, Jae Yeoul; You, Ho Jin

    2011-01-01

    Research highlights: → Serine/threonine protein phosphatase 5 (PP5) has been shown to participate in ataxia telangiectasia-mutated (ATM)- and ATR (ATM- and Rad3-related)-mediated checkpoint pathways, which plays an important role in the DNA damage response and maintenance of genomic stability. → However, it is not clear exactly how PP5 participates in this process. → Our results indicate that PP5 is more closely related with ATR-mediated pathway than ATM-mediated pathway in DNA damage repair. -- Abstract: Several recent studies have shown that protein phosphatase 5 (PP5) participates in cell cycle arrest after DNA damage, but its roles in DNA repair have not yet been fully characterized. We investigated the roles of PP5 in the repair of ultraviolet (UV)- and neocarzinostatin (NCS)-induced DNA damage. The results of comet assays revealed different repair patterns in UV- and NCS-exposed U2OS-PS cells. PP5 is only essential for Rad3-related (ATR)-mediated DNA repair. Furthermore, the phosphorylation of 53BP1 and BRCA1, important mediators of DNA damage repair, and substrates of ATR and ATM decreased in U2OS-PS cells exposed to UV radiation. In contrast, the cell cycle arrest proteins p53, CHK1, and CHK2 were normally phosphorylated in U2OS and U2OS-PS cells exposed to UV radiation or treated with NCS. In view of these results, we suggest that PP5 plays a crucial role in ATR-mediated repair of UV-induced DNA damage.

  3. Inflammation activates the interferon signaling pathways in taste bud cells.

    Science.gov (United States)

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-10-03

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.

  4. Interferon-γ inhibits ghrelin expression and secretion via a somatostatin-mediated mechanism

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A B; Døssing, Kristina B V; Aabakke, Anna JM

    2011-01-01

    To investigate if and how the proinflammatory cytokine interferon ¿ (IFN¿) affects ghrelin expression in mice.......To investigate if and how the proinflammatory cytokine interferon ¿ (IFN¿) affects ghrelin expression in mice....

  5. Interferon-γ inhibits ghrelin expression and secretion via a somatostatin-mediated mechanism

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A B; Døssing, Kristina B V; Aabakke, Anna JM

    2011-01-01

    To investigate if and how the proinflammatory cytokine interferon γ (IFNγ) affects ghrelin expression in mice.......To investigate if and how the proinflammatory cytokine interferon γ (IFNγ) affects ghrelin expression in mice....

  6. Increased expression of beta 2-microglobulin and histocompatibility antigens on human lymphoid cells induced by interferon

    DEFF Research Database (Denmark)

    Hokland, M; Heron, I; Berg, K

    1982-01-01

    Normal human peripheral blood lymphocytes were incubated in the presence of different concentrations of interferon for various incubation periods. Subsequently, the amount of beta 2-Microglobulin and HLA-A, B and C surface antigens was estimated by means of quantitative immunofluorescence (flow...... cytofluorometry) and by a radioimmunoassay for beta 2-Microglobulin. It was found that the amounts of these MHC antigens increased in a dose and time-dependent way after interferon treatment. Furthermore, the influence of different temperatures on this IFN-induced increase in beta 2-Microglobulin was gradually...

  7. Role of interferon in resistance and immunity to protozoa

    Science.gov (United States)

    Sonnenfeld, G.; Degee, A. L. W.; Mansfield, J. M.; Newsome, A. L.; Arnold, R. R.

    1985-01-01

    Production of interferon (I) in response to protozoan infection, and the interferon-mediated inhibition of parasite replication were studied in order to determine if these effects may be related to immunologic-mediated resistance of the hosts. Two extracellular parasites-Trypanosoma brucei rhodesiense and Naegleria fowlei were used. Upon infection with the trypanosome, only resistant strains of mice produced I. An early peak of alpha/beta I is followed by appearance of gamma I, which coincided with antibody production and a drop in parasitemia. In case of the amoeba, pretreatment of its suspension with alpha/beta I inhibits its replication in vitro, and appears to protect mice from the infection and the disease. It is proposed that production of interferon, with its regulatory effect on the immune responses, may play a major role in regulating the processes of protozoan-caused diseases.

  8. Neuromyelitis optica-like pathology is dependent on type I interferon response

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Wlodarczyk, Agnieszka; Asgari, Nasrin

    2013-01-01

    Neuromyelitis optica is an antibody-mediated autoimmune inflammatory disease of the central nervous system. Reports have suggested that interferon beta which is beneficial for multiple sclerosis, exacerbates neuromyelitis optica. Our aim was to determine whether type I interferon plays a role in ...

  9. Strain differences in the somnogenic effects of interferon inducers in mice.

    Science.gov (United States)

    Toth, L A

    1996-12-01

    Increased slow-wave sleep accompanies influenza infection in C57BL/6 mice but not BALB/c mice. These strains of mice possess different alleles of the genetic lucus If-1, which codes for high (If-1h; C57BL/6) and low (If-1(1); BALB/c) production of interferon (IFN), a putative sleep-inducing cytokine. To evaluate the contribution of the If-1 gene to differences in murine sleep propensity, sleep patterns were evaluated in mice treated with the IFN inducers polyinosinic:polycytidilic acid (pIC) or Newcastle disease virus (NDV), with influenza virus, or with murine interferon (IFN-alpha) or IFN-alpha/beta. As compared with baseline values, C57BL/6 mice exhibited increased slow-wave sleep after all three challenges, but BALB/c mice did not. Congenic B6.C-H28c mice, which bear the BALB/c allele for low IFN production on the C57BL/6 genetic background, showed enhanced slow-wave sleep after influenza infection but not after NDV. Exogenous IFN did not enhance slow-wave sleep in either C57BL/6 or BALB/c mice. These data suggest that the If-1 allele may influence the somnogenic responsiveness of mice under some conditions but that additional mechanisms may contribute to sleep enhancement during infectious disease.

  10. C-terminal of human histamine H1 receptors regulates their agonist-induced clathrin-mediated internalization and G-protein signaling.

    Science.gov (United States)

    Hishinuma, Shigeru; Nozawa, Hiroki; Akatsu, Chizuru; Shoji, Masaru

    2016-11-01

    It has been suggested that the agonist-induced internalization of G-protein-coupled receptors from the cell surface into intracellular compartments regulates cellular responsiveness. We previously reported that G q/11 -protein-coupled human histamine H 1 receptors internalized via clathrin-dependent mechanisms upon stimulation with histamine. However, the molecular determinants of H 1 receptors responsible for agonist-induced internalization remain unclear. In this study, we evaluated the roles of the intracellular C-terminal of human histamine H 1 receptors tagged with hemagglutinin (HA) at the N-terminal in histamine-induced internalization in Chinese hamster ovary cells. The histamine-induced internalization was evaluated by the receptor binding assay with [ 3 H]mepyramine and confocal immunofluorescence microscopy with an anti-HA antibody. We found that histamine-induced internalization was inhibited under hypertonic conditions or by pitstop, a clathrin terminal domain inhibitor, but not by filipin or nystatin, disruptors of the caveolar structure and function. The histamine-induced internalization was also inhibited by truncation of a single amino acid, Ser487, located at the end of the intracellular C-terminal of H 1 receptors, but not by its mutation to alanine. In contrast, the receptor-G-protein coupling, which was evaluated by histamine-induced accumulation of [ 3 H]inositol phosphates, was potentiated by truncation of Ser487, but was lost by its mutation to alanine. These results suggest that the intracellular C-terminal of human H 1 receptors, which only comprises 17 amino acids (Cys471-Ser487), plays crucial roles in both clathrin-dependent internalization of H 1 receptors and G-protein signaling, in which truncation of Ser487 and its mutation to alanine are revealed to result in biased signaling toward activation of G-proteins and clathrin-mediated internalization, respectively. © 2016 International Society for Neurochemistry.

  11. IFN-γ Induces Mimic Extracellular Trap Cell Death in Lung Epithelial Cells Through Autophagy-Regulated DNA Damage.

    Science.gov (United States)

    Lin, Chiou-Feng; Chien, Shun-Yi; Chen, Chia-Ling; Hsieh, Chia-Yuan; Tseng, Po-Chun; Wang, Yu-Chih

    2016-02-01

    Treatment of interferon-γ (IFN-γ) causes cell growth inhibition and cytotoxicity in lung epithelial malignancies. Regarding the induction of autophagy related to IFN-γ signaling, this study investigated the link between autophagy and IFN-γ cytotoxicity. In A549 human lung cancer cells, IFN-γ treatment induced concurrent apoptotic and nonapoptotic events. Unexpectedly, the nonapoptotic cells present mimic extracellular trap cell death (ETosis), which was regulated by caspase-3 and by autophagy induction through immunity-related GTPase family M protein 1 and activating transcription factor 6. Furthermore, IFN-γ signaling controlled mimic ETosis through a mechanism involving an autophagy- and Fas-associated protein with death domain-controlled caspase-8/-3 activation. Following caspase-mediated lamin degradation, IFN-γ caused DNA damage-associated ataxia telangiectasia and Rad3-related protein (ATR)/ataxia telangiectasia mutated (ATM)-regulated mimic ETosis. Upon ATR/ATM signaling, peptidyl arginine deiminase 4 (PAD4)-mediated histone 3 citrullination promoted mimic ETosis. Such IFN-γ-induced effects were defective in PC14PE6/AS2 human lung cancer cells, which were unsusceptible to IFN-γ-induced autophagy. Due to autophagy-based caspase cascade activation, IFN-γ triggers unconventional caspase-mediated DNA damage, followed by ATR/ATM-regulated PAD4-mediated histone citrullination during mimic ETosis in lung epithelial malignancy.

  12. Role of hypoxia-inducible factor-α in hepatitis-B-virus X protein-mediated MDR1 activation

    International Nuclear Information System (INIS)

    Han, Hyo-Kyung; Han, Chang Yeob; Cheon, Eun-Pa; Lee, Jaewon; Kang, Keon Wook

    2007-01-01

    The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1α (HIF-1α) and induced the nuclear translocation of C/EBPβ. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1α siRNA but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1α activation, and suggest HIF-1α for the therapeutic target of HBV-mediated chemoresistance

  13. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA1 TLR signaling molecules Rsad2 Vig1 Radical S-adenosyl methionine domain-containing pr...otein 2 Viperin, Virus inhibitory protein, endoplasmic reticulum-associated, interferon-inducible 10090 Mus musculus 58185 Q8CBB9 21435586 ...

  14. Interferon Alpha Signalling and Its Relevance for the Upregulatory Effect of Transporter Proteins Associated with Antigen Processing (TAP in Patients with Malignant Melanoma.

    Directory of Open Access Journals (Sweden)

    Ruth Heise

    Full Text Available Interferon alpha (IFNα is routinely used in the clinical practice for adjuvant systemic melanoma therapy. Understanding the molecular mechanism of IFNα effects and prediction of response in the IFNα therapy regime allows initiation and continuation of IFNα treatment for responder and exclusion of non-responder to avoid therapy inefficacy and side-effects. The transporter protein associated with antigen processing-1 (TAP1 is part of the MHC class I peptide-loading complex, and important for antigen presentation in tumor and antigen presenting cells. In the context of personalized medicine, we address this potential biomarker TAP1 as a target of IFNα signalling.We could show that IFNα upregulates TAP1 expression in peripheral blood mononuclear cells (PBMCs of patients with malignant melanoma receiving adjuvant high-dose immunotherapy. IFNα also induced expression of TAP1 in mouse blood and tumor tissue and suppressed the formation of melanoma metastasis in an in vivo B16 tumor model. Besides its expression, TAP binding affinity and transport activity is induced by IFNα in human monocytic THP1 cells. Furthermore, our data revealed that IFNα clearly activates phosphorylation of STAT1 and STAT3 in THP1 and A375 melanoma cells. Inhibition of Janus kinases abrogates the IFNα-induced TAP1 expression. These results suggest that the JAK/STAT pathway is a crucial mediator for TAP1 expression elicited by IFNα treatment.We suppose that silencing of TAP1 expression provides tumor cells with a mechanism to escape cytotoxic T-lymphocyte recognition. The observed benefit of IFNα treatment could be mediated by the shown dual effect of TAP1 upregulation in antigen presenting cells on the one hand, and of TAP1 upregulation in 'silent' metastatic melanoma cells on the other hand. In conclusion, this work contributes to a better understanding of the mode of action of IFNα which is essential to identify markers to predict, assess and monitor therapeutic

  15. Interferon Alpha Signalling and Its Relevance for the Upregulatory Effect of Transporter Proteins Associated with Antigen Processing (TAP) in Patients with Malignant Melanoma

    Science.gov (United States)

    Ensslen, Silke; Marquardt, Yvonne; Czaja, Katharina; Joussen, Sylvia; Beer, Daniel; Abele, Rupert; Plewnia, Gabriele; Tampé, Robert; Merk, Hans F.; Hermanns, Heike M.; Baron, Jens M.

    2016-01-01

    Introduction Interferon alpha (IFNα) is routinely used in the clinical practice for adjuvant systemic melanoma therapy. Understanding the molecular mechanism of IFNα effects and prediction of response in the IFNα therapy regime allows initiation and continuation of IFNα treatment for responder and exclusion of non-responder to avoid therapy inefficacy and side-effects. The transporter protein associated with antigen processing-1 (TAP1) is part of the MHC class I peptide-loading complex, and important for antigen presentation in tumor and antigen presenting cells. In the context of personalized medicine, we address this potential biomarker TAP1 as a target of IFNα signalling. Results We could show that IFNα upregulates TAP1 expression in peripheral blood mononuclear cells (PBMCs) of patients with malignant melanoma receiving adjuvant high-dose immunotherapy. IFNα also induced expression of TAP1 in mouse blood and tumor tissue and suppressed the formation of melanoma metastasis in an in vivo B16 tumor model. Besides its expression, TAP binding affinity and transport activity is induced by IFNα in human monocytic THP1 cells. Furthermore, our data revealed that IFNα clearly activates phosphorylation of STAT1 and STAT3 in THP1 and A375 melanoma cells. Inhibition of Janus kinases abrogates the IFNα-induced TAP1 expression. These results suggest that the JAK/STAT pathway is a crucial mediator for TAP1 expression elicited by IFNα treatment. Conclusion We suppose that silencing of TAP1 expression provides tumor cells with a mechanism to escape cytotoxic T-lymphocyte recognition. The observed benefit of IFNα treatment could be mediated by the shown dual effect of TAP1 upregulation in antigen presenting cells on the one hand, and of TAP1 upregulation in ‘silent’ metastatic melanoma cells on the other hand. In conclusion, this work contributes to a better understanding of the mode of action of IFNα which is essential to identify markers to predict, assess and

  16. Heartland virus NSs protein disrupts host defenses by blocking the TBK1 kinase-IRF3 transcription factor interaction and signaling required for interferon induction.

    Science.gov (United States)

    Ning, Yun-Jia; Feng, Kuan; Min, Yuan-Qin; Deng, Fei; Hu, Zhihong; Wang, Hualin

    2017-10-06

    Heartland virus (HRTV) is a pathogenic phlebovirus related to the severe fever with thrombocytopenia syndrome virus (SFTSV), another phlebovirus causing life-threatening disease in humans. Previous findings have suggested that SFTSV can antagonize the host interferon (IFN) system via viral nonstructural protein (NSs)-mediated sequestration of antiviral signaling proteins into NSs-induced inclusion bodies. However, whether and how HRTV counteracts the host innate immunity is unknown. Here, we report that HRTV NSs (HNSs) also antagonizes IFN and cytokine induction and bolsters viral replication, although no noticeable inclusion body formation was observed in HNSs-expressing cells. Furthermore, HNSs inhibited the virus-triggered activation of IFN-β promoter by specifically targeting the IFN-stimulated response element but not the NF-κB response element. Consistently, HNSs blocked the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3, an IFN-stimulated response element-activating transcription factor). Reporter gene assays next showed that HNSs blockades the antiviral signaling mediated by RIG-I-like receptors likely at the level of TANK-binding kinase 1 (TBK1). Indeed, HNSs strongly interacts with TBK1 as indicated by confocal microscopy and pulldown analyses, and we also noted that the scaffold dimerization domain of TBK1 is required for the TBK1-HNSs interaction. Finally, pulldown assays demonstrated that HNSs expression dose-dependently diminishes a TBK1-IRF3 interaction, further explaining the mechanism for HNSs function. Collectively, these data suggest that HNSs, an antagonist of host innate immunity, interacts with TBK1 and thereby hinders the association of TBK1 with its substrate IRF3, thus blocking IRF3 activation and transcriptional induction of the cellular antiviral responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Tumor inherent interferons: Impact on immune reactivity and immunotherapy.

    Science.gov (United States)

    Brockwell, Natasha K; Parker, Belinda S

    2018-04-19

    Immunotherapy has revolutionized cancer treatment, with sustained responses to immune checkpoint inhibitors reported in a number of malignancies. Such therapeutics are now being trialed in aggressive or advanced cancers that are heavily reliant on untargeted therapies, such as triple negative breast cancer. However, responses have been underwhelming to date and are very difficult to predict, leading to an inability to accurately weigh up the benefit-to-risk ratio for their implementation. The tumor immune microenvironment has been closely linked to immunotherapeutic response, with superior responses observed in patients with T cell-inflamed or 'hot' tumors. One class of cytokines, the type I interferons, are a major dictator of tumor immune infiltration and activation. Tumor cell inherent interferon signaling dramatically influences the immune microenvironment and the expression of immune checkpoint proteins, hence regulators and targets of this pathway are candidate biomarkers of immunotherapeutic response. In support of a link between IFN signaling and immunotherapeutic response, the combination of type I interferon inducers with checkpoint immunotherapy has recently been demonstrated critical for a sustained anti-tumor response in aggressive breast cancer models. Here we review evidence that links type I interferons with a hot tumor immune microenvironment, response to checkpoint inhibitors and reduced risk of metastasis that supports their use as biomarkers and therapeutics in oncology. Copyright © 2018. Published by Elsevier Ltd.

  18. Enterovirus Exposure Uniquely Discriminates Type 1 Diabetes Patients with a Homozygous from a Heterozygous Melanoma Differentiation-Associated Protein 5/Interferon Induced with Helicase C Domain 1 A946T Genotype.

    Science.gov (United States)

    Schulte, Barbara M; Gielen, Paul R; Kers-Rebel, Esther D; Prosser, Amy C; Lind, Katharina; Flodström-Tullberg, Malin; Tack, Cees J; Elving, Lammy D; Adema, Gosse J

    2016-09-01

    In children at risk for type 1 diabetes, innate immune activity is detected before seroconversion. Enterovirus infections have been linked to diabetes development, and a polymorphism (A946T) in the innate immune sensor recognizing enterovirus RNA, interferon-induced with helicase C domain 1/melanoma differentiation-associated protein 5, predisposes to disease. We hypothesized that the strength of innate antienteroviral responses is affected in autoimmune type 1 diabetes patients and linked to the A946T polymorphism. We compared induction of interferon-stimulated genes (ISGs) in peripheral blood mononuclear cells (PBMCs) and dendritic cells (DCs) in healthy individuals and diabetes patients upon stimulation with enterovirus, enterovirus-antibody complexes, or ligands mimicking infection in relation to the A946T polymorphism. Overall, PBMCs of diabetes patients and healthy donors showed comparable ISG induction upon stimulation. No differences were observed in DCs. Interestingly, the data imply that the magnitude of responses to enterovirus and enterovirus-antibody complexes in PBMCs is critically influenced by the A946T polymorphism and elevated in heterozygotes compared to TT homozygous individuals in autoimmune diabetes patients, but not healthy controls. These data imply an intrinsic difference in the responses to enterovirus and enterovirus-antibody complexes in diabetes patients carrying a TT risk genotype compared to heterozygotes that may influence control of enterovirus clearance.

  19. Distinct mechanisms of loss of IFN-gamma mediated HLA class I inducibility in two melanoma cell lines

    International Nuclear Information System (INIS)

    Rodríguez, Teresa; Méndez, Rosa; Del Campo, Ana; Jiménez, Pilar; Aptsiauri, Natalia; Garrido, Federico; Ruiz-Cabello, Francisco

    2007-01-01

    The inability of cancer cells to present antigen on the cell surface via MHC class I molecules is one of the mechanisms by which tumor cells evade anti-tumor immunity. Alterations of Jak-STAT components of interferon (IFN)-mediated signaling can contribute to the mechanism of cell resistance to IFN, leading to lack of MHC class I inducibility. Hence, the identification of IFN-γ-resistant tumors may have prognostic and/or therapeutic relevance. In the present study, we investigated a mechanism of MHC class I inducibility in response to IFN-γ treatment in human melanoma cell lines. Basal and IFN-induced expression of HLA class I antigens was analyzed by means of indirect immunofluorescence flow cytometry, Western Blot, RT-PCR, and quantitative real-time RT-PCR (TaqMan ® Gene Expression Assays). In demethylation studies cells were cultured with 5-aza-2'-deoxycytidine. Electrophoretic Mobility Shift Assay (EMSA) was used to assay whether IRF-1 promoter binding activity is induced in IFN-γ-treated cells. Altered IFN-γ mediated HLA-class I induction was observed in two melanoma cells lines (ESTDAB-004 and ESTDAB-159) out of 57 studied, while treatment of these two cell lines with IFN-α led to normal induction of HLA class I antigen expression. Examination of STAT-1 in ESTDAB-004 after IFN-γ treatment demonstrated that the STAT-1 protein was expressed but not phosphorylated. Interestingly, IFN-α treatment induced normal STAT-1 phosphorylation and HLA class I expression. In contrast, the absence of response to IFN-γ in ESTDAB-159 was found to be associated with alterations in downstream components of the IFN-γ signaling pathway. We observed two distinct mechanisms of loss of IFN-γ inducibility of HLA class I antigens in two melanoma cell lines. Our findings suggest that loss of HLA class I induction in ESTDAB-004 cells results from a defect in the earliest steps of the IFN-γ signaling pathway due to absence of STAT-1 tyrosine-phosphorylation, while absence

  20. Genetic analysis of interferon induced thyroiditis (IIT): evidence for a key role for MHC and apoptosis related genes and pathways.

    Science.gov (United States)

    Hasham, Alia; Zhang, Weijia; Lotay, Vaneet; Haggerty, Shannon; Stefan, Mihaela; Concepcion, Erlinda; Dieterich, Douglas T; Tomer, Yaron

    2013-08-01

    Autoimmune thyroid diseases (AITD) have become increasingly recognized as a complication of interferon-alpha (IFNα) therapy in patients with chronic Hepatitis C virus (HCV) infection. Interferon-induced thyroiditis (IIT) can manifest as clinical thyroiditis in approximately 15% of HCV patients receiving IFNα and subclinical thyroiditis in up to 40% of patients, possibly resulting in either dose reduction or discontinuation of IFNα treatment. However, the exact mechanisms that lead to the development of IIT are unknown and may include IFNα-mediated immune-recruitment as well as direct toxic effects on thyroid follicular cells. We hypothesized that IIT develops in genetically predisposed individuals whose threshold for developing thyroiditis is lowered by IFNα. Therefore, our aim was to identify the susceptibility genes for IIT. We used a genomic convergence approach combining genetic association data with transcriptome analysis of genes upregulated by IFNα. Integrating results of genetic association, transcriptome data, pathway, and haplotype analyses enabled the identification of 3 putative loci, SP100/110/140 (2q37.1), HLA (6p21.3), and TAP1 (6p21.3) that may be involved in the pathogenesis of IIT. Immune-regulation and apoptosis emerged as the predominant mechanisms underlying the etiology of IIT. Published by Elsevier Ltd.

  1. Inducible protein-10 as a predictive marker of antiviral hepatitis C treatment

    DEFF Research Database (Denmark)

    Neesgaard, Bastian; Ruhwald, Morten; Weis, Nina

    2017-01-01

    AIM: To investigate interferon-γ-inducible protein-10's (IP-10) potential to anticipate rapid (RVR)- and sustained virological responses (SVR) to chronic hepatitis C (CHC) treatment. METHODS: We included case series examining RVR or SVR in relation to 24 or 48 wk treatment for CHC, in patients...... treatment free for at least six months, with genotype 1 or 4, and in relation to 24 wk treatment for genotype 2 and 3, with pegylated interferon in combination with ribavirin. Patients had to have both a baseline IP-10 level as well as a hepatitis C virus (HCV)-RNA determination 4 wk after treatment...... initiation or 24 wk after end of treatment. Studies including patients with liver diseases other than CHC, human immunodeficiency virus-infection, treatment with immunosuppresents or cytostatica, alcohol dependency or active intravenous drug-use were excluded. We found 81 articles by searching the MEDLINE...

  2. Synthetic cold-inducible promoter enhances recombinant protein accumulation during Agrobacterium-mediated transient expression in Nicotiana excelsior at chilling temperatures.

    Science.gov (United States)

    Gerasymenko, I M; Sheludko, Y V

    2017-07-01

    To exploit cold-inducible biochemical processes beneficial for foreign mRNA transcription, translation and storage, as well as protein product stability, during Agrobacterium-mediated transient expression. The efficiency of three different 5'-regulatory sequences to achieve transient expression of the GFP-based reporter gene under chilling conditions (6-8 °C since the 3rd day post inoculation) was compared. We studied the upstream sequences of a cold-inducible Arabidopsis thaliana cor15a gene, the core element of 35S CaMV promoter fused to the TMV omega 5'-UTR, and the synthetic promoter including the 35S core sequence and two binding sites for cold-inducible CBF transcription factors (P_DRE::35S). Cultivation of plants transiently expressing reporter gene under control of the synthetic P_DRE::35S promoter under chilling conditions since the 3rd dpi led to the reliably higher reporter accumulation as compared to the other tested regulatory sequences under chilling or greenhouse conditions. Reporter protein fluorescence under chilling conditions using P_DRE::35S reached 160% as compared to the transient expression in the greenhouse. Period of transient expression considerably extended if plants were cultivated at chilling temperature since the 3rd dpi: reporter protein fluorescence reached its maximum at the 20th dpi and was detected in leaves up to the 65th dpi. The enhanced protein accumulation at low temperature was accompanied by the prolonged period of corresponding mRNA accumulation. Transient expression under chilling conditions using synthetic cold-inducible promoter enhances target protein accumulation and may decrease greenhouse heating expenses.

  3. Ghrelin receptors mediate ghrelin-induced excitation of agouti-related protein/neuropeptide Y but not pro-opiomelanocortin neurons.

    Science.gov (United States)

    Chen, Shao-Rui; Chen, Hong; Zhou, Jing-Jing; Pradhan, Geetali; Sun, Yuxiang; Pan, Hui-Lin; Li, De-Pei

    2017-08-01

    Ghrelin increases food intake and body weight by stimulating orexigenic agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons and inhibiting anorexic pro-opiomelanocortin (POMC) neurons in the hypothalamus. Growth hormone secretagogue receptor (Ghsr) mediates the effect of ghrelin on feeding behavior and energy homeostasis. However, the role of Ghsr in the ghrelin effect on these two populations of neurons is unclear. We hypothesized that Ghsr mediates the effect of ghrelin on AgRP and POMC neurons. In this study, we determined whether Ghsr similarly mediates the effects of ghrelin on AgRP/NPY and POMC neurons using cell type-specific Ghsr-knockout mice. Perforated whole-cell recordings were performed on green fluorescent protein-tagged AgRP/NPY and POMC neurons in the arcuate nucleus in hypothalamic slices. In Ghsr +/+ mice, ghrelin (100 nM) significantly increased the firing activity of AgRP/NPY neurons but inhibited the firing activity of POMC neurons. In Ghsr -/- mice, the excitatory effect of ghrelin on AgRP/NPY neurons was abolished. Ablation of Ghsr also eliminated ghrelin-induced increases in the frequency of GABAergic inhibitory postsynaptic currents of POMC neurons. Strikingly, ablation of Ghsr converted the ghrelin effect on POMC neurons from inhibition to excitation. Des-acylated ghrelin had no such effect on POMC neurons in Ghsr -/- mice. In both Ghsr +/+ and Ghsr -/- mice, blocking GABA A receptors with gabazine increased the basal firing activity of POMC neurons, and ghrelin further increased the firing activity of POMC neurons in the presence of gabazine. Our findings provide unequivocal evidence that Ghsr is essential for ghrelin-induced excitation of AgRP/NPY neurons. However, ghrelin excites POMC neurons through an unidentified mechanism that is distinct from conventional Ghsr. © 2017 International Society for Neurochemistry.

  4. Identification of the proteins related to SET-mediated hepatic cytotoxicity of trichloroethylene by proteomic analysis.

    Science.gov (United States)

    Ren, Xiaohu; Yang, Xifei; Hong, Wen-Xu; Huang, Peiwu; Wang, Yong; Liu, Wei; Ye, Jinbo; Huang, Haiyan; Huang, Xinfeng; Shen, Liming; Yang, Linqing; Zhuang, Zhixiong; Liu, Jianjun

    2014-05-16

    Trichloroethylene (TCE) is an effective solvent for a variety of organic materials. Since the wide use of TCE as industrial degreasing of metals, adhesive paint and polyvinyl chloride production, TCE has turned into an environmental and occupational toxicant. Exposure to TCE could cause severe hepatotoxicity; however, the toxic mechanisms of TCE remain poorly understood. Recently, we reported that SET protein mediated TCE-induced cytotoxicity in L-02 cells. Here, we further identified the proteins related to SET-mediated hepatic cytotoxicity of TCE using the techniques of DIGE (differential gel electrophoresis) and MALDI-TOF-MS/MS. Among the 20 differential proteins identified, 8 were found to be modulated by SET in TCE-induced cytotoxicity and three of them (cofilin-1, peroxiredoxin-2 and S100-A11) were validated by Western-blot analysis. The functional analysis revealed that most of the identified SET-modulated proteins are apoptosis-associated proteins. These data indicated that these proteins may be involved in SET-mediated hepatic cytotoxicity of TCE in L-02 cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Evasion of interferon responses by Ebola and Marburg viruses.

    Science.gov (United States)

    Basler, Christopher F; Amarasinghe, Gaya K

    2009-09-01

    The filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), cause frequently lethal viral hemorrhagic fever. These infections induce potent cytokine production, yet these host responses fail to prevent systemic virus replication. Consistent with this, filoviruses have been found to encode proteins VP35 and VP24 that block host interferon (IFN)-alpha/beta production and inhibit signaling downstream of the IFN-alpha/beta and the IFN-gamma receptors, respectively. VP35, which is a component of the viral nucleocapsid complex and plays an essential role in viral RNA synthesis, acts as a pseudosubstrate for the cellular kinases IKK-epsilon and TBK-1, which phosphorylate and activate interferon regulatory factor 3 (IRF-3) and interferon regulatory factor 7 (IRF-7). VP35 also promotes SUMOylation of IRF-7, repressing IFN gene transcription. In addition, VP35 is a dsRNA-binding protein, and mutations that disrupt dsRNA binding impair VP35 IFN-antagonist activity while leaving its RNA replication functions intact. The phenotypes of recombinant EBOV bearing mutant VP35s unable to inhibit IFN-alpha/beta demonstrate that VP35 IFN-antagonist activity is critical for full virulence of these lethal pathogens. The structure of the VP35 dsRNA-binding domain, which has recently become available, is expected to provide insight into how VP35 IFN-antagonist and dsRNA-binding functions are related. The EBOV VP24 protein inhibits IFN signaling through an interaction with select host cell karyopherin-alpha proteins, preventing the nuclear import of otherwise activated STAT1. It remains to be determined to what extent VP24 may also modulate the nuclear import of other host cell factors and to what extent this may influence the outcome of infection. Notably, the Marburg virus VP24 protein does not detectably block STAT1 nuclear import, and, unlike EBOV, MARV infection inhibits STAT1 and STAT2 phosphorylation. Thus, despite their similarities, there are fundamental differences by which

  6. Interferon gamma peptidomimetic targeted to interstitial myofibroblasts attenuates renal fibrosis after unilateral ureteral obstruction in mice

    NARCIS (Netherlands)

    Poosti, Fariba; Bansal, Ruchi; Yazdani, Saleh; Prakash, Jai; Beljaars, Leonie; van den Born, Jacob; de Borst, Martin H.; van Goor, Harry; Hillebrands, Jan-Luuk; Poelstra, Klaas

    2016-01-01

    Renal fibrosis cannot be adequately treated since anti-fibrotic treatment is lacking. Interferon-gamma is a pro-inflammatory cytokine with anti-fibrotic properties. Clinical use of interferon-gamma is hampered due to inflammation-mediated systemic side effects. We used an interferon-gamma

  7. Protein kinase A-induced internalization of Slack channels from the neuronal membrane occurs by adaptor protein-2/clathrin-mediated endocytosis.

    Science.gov (United States)

    Gururaj, Sushmitha; Evely, Katherine M; Pryce, Kerri D; Li, Jun; Qu, Jun; Bhattacharjee, Arin

    2017-11-24

    The sodium-activated potassium (K Na ) channel Kcnt1 (Slack) is abundantly expressed in nociceptor (pain-sensing) neurons of the dorsal root ganglion (DRG), where they transmit the large outward conductance I KNa and arbitrate membrane excitability. Slack channel expression at the DRG membrane is necessary for their characteristic firing accommodation during maintained stimulation, and reduced membrane channel density causes hyperexcitability. We have previously shown that in a pro-inflammatory state, a decrease in membrane channel expression leading to reduced Slack-mediated I KNa expression underlies DRG neuronal sensitization. An important component of the inflammatory milieu, PKA internalizes Slack channels from the DRG membrane, reduces I KNa , and produces DRG neuronal hyperexcitability when activated in cultured primary DRG neurons. Here, we show that this PKA-induced retrograde trafficking of Slack channels also occurs in intact spinal cord slices and that it is carried out by adaptor protein-2 (AP-2) via clathrin-mediated endocytosis. We provide mass spectrometric and biochemical evidence of an association of native neuronal AP-2 adaptor proteins with Slack channels, facilitated by a dileucine motif housed in the cytoplasmic Slack C terminus that binds AP-2. By creating a competitive peptide blocker of AP-2-Slack binding, we demonstrated that this interaction is essential for clathrin recruitment to the DRG membrane, Slack channel endocytosis, and DRG neuronal hyperexcitability after PKA activation. Together, these findings uncover AP-2 and clathrin as players in Slack channel regulation. Given the significant role of Slack in nociceptive neuronal excitability, the AP-2 clathrin-mediated endocytosis trafficking mechanism may enable targeting of peripheral and possibly, central neuronal sensitization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Interferon-γ and proliferation responses to Salmonella enterica Serotype Typhi proteins in patients with S. Typhi Bacteremia in Dhaka, Bangladesh.

    Directory of Open Access Journals (Sweden)

    Alaullah Sheikh

    2011-06-01

    Full Text Available Salmonella enterica serotype Typhi is a human-restricted intracellular pathogen and the cause of typhoid fever. Cellular immune responses are required to control and clear Salmonella infection. Despite this, there are limited data on cellular immune responses in humans infected with wild type S. Typhi.For this work, we used an automated approach to purify a subset of S. Typhi proteins identified in previous antibody-based immuno-affinity screens and antigens known to be expressed in vivo, including StaF-putative fimbrial protein-STY0202, StbB-fimbrial chaperone-STY0372, CsgF-involved in curli production-STY1177, CsgD- putative regulatory protein-STY1179, OppA-periplasmic oligopeptide binding protein precursor-STY1304, PagC-outer membrane invasion protein-STY1878, and conserved hypothetical protein-STY2195; we also generated and analyzed a crude membrane preparation of S. Typhi (MP. In comparison to samples collected from uninfected Bangladeshi and North American participants, we detected significant interferon-γ responses in PBMCs stimulated with MP, StaF, StbB, CsgF, CsgD, OppA, STY2195, and PagC in patients bacteremic with S. Typhi in Bangladesh. The majority of interferon-γ expressing T cells were CD4 cells, although CD8 responses also occurred. We also assessed cellular proliferation responses in bacteremic patients, and confirmed increased responses in infected individuals to MP, StaF, STY2195, and PagC in convalescent compared to acute phase samples and compared to controls. StaF is a fimbrial protein homologous to E. coli YadK, and contains a Pfam motif thought to be involved in cellular adhesion. PagC is expressed in vivo under the control of the virulence-associated PhoP-regulon required for intra-macrophage survival of Salmonella. STY2195 is a conserved hypothetical protein of unknown function.This is the first analysis of cellular immune responses to purified S. Typhi antigens in patients with typhoid fever. These results indicate

  9. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    Science.gov (United States)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  10. Sporothrix schenckii Immunization, but Not Infection, Induces Protective Th17 Responses Mediated by Circulating Memory CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Alberto García-Lozano

    2018-06-01

    Full Text Available Sporotrichosis is a chronic subcutaneous mycosis caused by the Sporothrix schenckii species complex and it is considered an emerging opportunistic infection in countries with tropical and subtropical climates. The host’s immune response has a main role in the development of this disease. However, it is unknown the features of the memory cellular immune response that could protect against the infection. Our results show that i.d. immunization in the ears of mice with inactivated S. schenckii conidia (iC combined with the cholera toxin (CT induces a cellular immune response mediated by circulating memory CD4+ T cells, which mainly produce interleukin 17 (IL-17. These cells mediate a strong delayed-type hypersensitivity (DTH reaction. Systemic and local protection against S. schenckii was mediated by circulating CD4+ T cells. In contrast, the infection induces a potent immune response in the skin mediated by CD4+ T cells, which have an effector phenotype that preferentially produce interferon gamma (IFN-γ and mediate a transitory DTH reaction. Our findings prove the potential value of the CT as a potent skin adjuvant when combined with fungal antigens, and they also have important implications for our better understanding of the differences between the memory immune response induced by the skin immunization and those induced by the infection; this knowledge enhances our understanding of how a protective immune response against a S. schenckii infection is developed.

  11. Pancreatitis induced by pegylated interferon alfa-2b in a patient affected by chronic hepatitis C.

    Science.gov (United States)

    Cecchi, Enrica; Forte, Paolo; Cini, Elisabetta; Banchelli, Grazia; Ferlito, Chiara; Mugelli, Alessandro

    2004-01-01

    A middle-aged man was admitted to the ED because of nausea and vomiting, abdominal distention and fainting. A blood analysis revealed high levels of serum amylase and lipase, confirming a diagnosis of acute pancreatitis. The history showed that the patient had self-administered a single dose of pegylated interferon alfa-2b and ribavirin daily for 7 days for chronic hepatitis C. The medications were stopped and his condition gradually improved. In agreement with the literature and the Naranjo algorythm result, pegylated interferon alfa-2b is associated with acute pancreatitis. Identification of a few signs and symptoms is the first 'signal' in preventing a serious drug-induced adverse event.

  12. Virus-Induced Type I Interferon Deteriorates Control of Systemic Pseudomonas Aeruginosa Infection

    Directory of Open Access Journals (Sweden)

    Katja Merches

    2015-07-01

    Full Text Available Background: Type I interferon (IFN-I predisposes to bacterial superinfections, an important problem during viral infection or treatment with interferon-alpha (IFN-α. IFN-I-induced neutropenia is one reason for the impaired bacterial control; however there is evidence that more frequent bacterial infections during IFN-α-treatment occur independently of neutropenia. Methods: We analyzed in a mouse model, whether Pseudomonas aeruginosa control is influenced by co-infection with the lymphocytic choriomeningitis virus (LCMV. Bacterial titers, numbers of neutrophils and the gene-expression of liver-lysozyme-2 were determined during a 24 hours systemic infection with P. aeruginosa in wild-type and Ifnar-/- mice under the influence of LCMV or poly(I:C. Results: Virus-induced IFN-I impaired the control of Pseudomonas aeruginosa. This was associated with neutropenia and loss of lysozyme-2-expression in the liver, which had captured P. aeruginosa. A lower release of IFN-I by poly(I:C-injection also impaired the bacterial control in the liver and reduced the expression of liver-lysozyme-2. Low concentration of IFN-I after infection with a virulent strain of P. aeruginosa alone impaired the bacterial control and reduced lysozyme-2-expression in the liver as well. Conclusion: We found that during systemic infection with P. aeruginosa Kupffer cells quickly controlled the bacteria in cooperation with neutrophils. Upon LCMV-infection this cooperation was disturbed.

  13. Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1

    Directory of Open Access Journals (Sweden)

    Nur Aziz

    2018-05-01

    Full Text Available Interferon regulatory factor (IRF-3 is known to have a critical role in viral and bacterial innate immune responses by regulating the production of type I interferon (IFN. Thymoquinone (TQ is a compound derived from black cumin (Nigella sativa L. and is known to regulate immune responses by affecting transcription factors associated with inflammation, including nuclear factor-κB (NF-κB and activator protein-1 (AP-1. However, the role of TQ in the IRF-3 signaling pathway has not been elucidated. In this study, we explored the molecular mechanism of TQ-dependent regulation of enzymes in IRF-3 signaling pathways using the lipopolysaccharide (LPS-stimulated murine macrophage-like RAW264.7 cell line. TQ decreased mRNA expression of the interferon genes IFN-α and IFN-β in these cells. This inhibition was due to its suppression of the transcriptional activation of IRF-3, as shown by inhibition of IRF-3 PRD (III-I luciferase activity as well as the phosphorylation pattern of IRF-3 in the immunoblotting experiment. Moreover, TQ targeted the autophosphorylation of TANK-binding kinase 1 (TBK1, an upstream key enzyme responsible for IRF-3 activation. Taken together, these findings suggest that TQ can downregulate IRF-3 activation via inhibition of TBK1, which would subsequently decrease the production of type I IFN. TQ also regulated IRF-3, one of the inflammatory transcription factors, providing a novel insight into its anti-inflammatory activities.

  14. Genetic Evidence for an Interferon-Antagonistic Function of Rift Valley Fever Virus Nonstructural Protein NSs

    Science.gov (United States)

    Bouloy, Michèle; Janzen, Christian; Vialat, Pierre; Khun, Huot; Pavlovic, Jovan; Huerre, Michel; Haller, Otto

    2001-01-01

    Rift Valley fever virus (RVFV), a phlebovirus of the family Bunyaviridae, is a major public health threat in Egypt and sub-Saharan Africa. The viral and host cellular factors that contribute to RVFV virulence and pathogenicity are still poorly understood. All pathogenic RVFV strains direct the synthesis of a nonstructural phosphoprotein (NSs) that is encoded by the smallest (S) segment of the tripartite genome and has an undefined accessory function. In this report, we show that MP12 and clone 13, two attenuated RVFV strains with mutations in the NSs gene, were highly virulent in IFNAR−/− mice lacking the alpha/beta interferon (IFN-α/β) receptor but remained attenuated in IFN-γ receptor-deficient mice. Both attenuated strains proved to be excellent inducers of early IFN-α/β production. In contrast, the virulent strain ZH548 failed to induce detectable amounts of IFN-α/β and replicated extensively in both IFN-competent and IFN-deficient mice. Clone 13 has a defective NSs gene with a large in-frame deletion. This defect in the NSs gene results in expression of a truncated protein which is rapidly degraded. To investigate whether the presence of the wild-type NSs gene correlated with inhibition of IFN-α/β production, we infected susceptible IFNAR−/− mice with S gene reassortant viruses. When the S segment of ZH548 was replaced by that of clone 13, the resulting reassortants became strong IFN inducers. When the defective S segment of clone 13 was exchanged with the wild-type S segment of ZH548, the reassortant virus lost the capacity to stimulate IFN-α/β production. These results demonstrate that the ability of RVFV to inhibit IFN-α/β production correlates with viral virulence and suggest that the accessory protein NSs is an IFN antagonist. PMID:11152510

  15. NMDA-induced potentiation of mGluR5 is mediated by activation of protein phosphatase 2B/calcineurin

    Science.gov (United States)

    Alagarsamy, Sudar; Saugstad, Julie; Warren, Lee; Mansuy, Isabelle M.; Gereau, Robert W.; Conn, P. Jeffrey

    2010-01-01

    Previous reports have shown that activation of N-methyl-D-aspartate (NMDA) receptors potentiates responses to activation of the group I metabotropic glutamate receptor mGluR5 by reversing PKC-mediated desensitization of this receptor. NMDA-induced reversal of mGluR5 desensitization is dependent on activation of protein phosphatases. However, the specific protein phosphatase involved and the precise mechanism by which NMDA receptor activation reduces mGluR desensitization are not known. We have performed a series of molecular, biochemical, and genetic studies to show that NMDA-induced regulation of mGluR5 is dependent on activation of calcium-dependent protein phosphatase 2B/calcineurin (PP2B/CaN). Furthermore, we report that purified calcineurin directly dephosphorylates the C-terminal tail of mGluR5 at sites that are phosphorylated by PKC. Finally, immunoprecipitation and GST fusion protein pull-down experiments reveal that calcineurin interacts with mGluR5, suggesting that these proteins could be colocalized in a signaling complex. Taken together with previous studies, these data suggest that activation of NMDA receptors leads to activation of calcineurin and that calcineurin modulates mGluR5 function by directly dephosphorylating mGluR5 at PKC sites that are involved in desensitization of this receptor. 2005 Elsevier Ltd. All rights reserved. PMID:16005030

  16. How Ebola virus counters the interferon system.

    Science.gov (United States)

    Kühl, A; Pöhlmann, S

    2012-09-01

    Zoonotic transmission of Ebola virus (EBOV) to humans causes a severe haemorrhagic fever in afflicted individuals with high case-fatality rates. Neither vaccines nor therapeutics are at present available to combat EBOV infection, making the virus a potential threat to public health. To devise antiviral strategies, it is important to understand which components of the immune system could be effective against EBOV infection. The interferon (IFN) system constitutes a key innate defence against viral infections and prevents development of lethal disease in mice infected with EBOV strains not adapted to this host. Recent research revealed that expression of the host cell IFN-inducible transmembrane proteins 1-3 (IFITM1-3) and tetherin is induced by IFN and restricts EBOV infection, at least in cell culture model systems. IFITMs, tetherin and other effector molecules of the IFN system could thus pose a potent barrier against EBOV spread in humans. However, EBOV interferes with signalling events required for human cells to express these proteins. Here, we will review the strategies employed by EBOV to fight the IFN system, and we will discuss how IFITM proteins and tetherin inhibit EBOV infection. © 2012 Blackwell Verlag GmbH.

  17. Interferon γ-Induced Nuclear Interleukin-33 Potentiates the Release of Esophageal Epithelial Derived Cytokines.

    Directory of Open Access Journals (Sweden)

    Jing Shan

    Full Text Available Esophageal epithelial cells are an initiating cell type in esophageal inflammation, playing an essential role in the pathogenesis of gastroesophageal reflux disease (GERD. A new tissue-derived cytokine, interleukin-33 (IL-33, has been shown to be upregulated in esophageal epithelial cell nuclei in GERD, taking part in mucosal inflammation. Here, inflammatory cytokines secreted by esophageal epithelial cells, and their regulation by IL-33, were investigated.In an in vitro stratified squamous epithelial model, IL-33 expression was examined using quantitative RT-PCR, western blot, ELISA, and immunofluorescence. Epithelial cell secreted inflammatory cytokines were examined using multiplex flow immunoassay. IL-33 was knocked down with small interfering RNA (siRNA in normal human esophageal epithelial cells (HEECs. Pharmacological inhibitors and signal transducers and activators of transcription 1 (STAT1 siRNA were used to explore the signaling pathways.Interferon (IFNγ treatment upregulated nuclear IL-33 in HEECs. Furthermore, HEECs can produce various inflammatory cytokines, such as IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1, regulated on activation normal T-cell expressed and presumably secreted (RANTES, and granulocyte-macrophage colony-stimulating factor (GM-CSF in response to IFNγ. Nuclear, but not exogenous IL-33, amplified IFN induction of these cytokines. P38 mitogen-activated protein kinase (MAPK and janus protein tyrosine kinases (JAK/STAT1 were the common signaling pathways of IFNγ-mediated induction of IL-33 and other cytokines.Esophageal epithelial cells can actively participate in GERD pathogenesis through the production of various cytokines, and epithelial-derived IL-33 might play a central role in the production of these cytokines.

  18. Interferon-alpha in the treatment of multiple myeloma

    DEFF Research Database (Denmark)

    Khoo, T.L.; Joshua, D.; Gibson, J.

    2011-01-01

    Interferons are soluble proteins produced naturally by cells in response to viruses. It has both anti-proliferative and immunomodulating properties and is one of the first examples of a biological response modifier use to treat the hematological malignancy multiple myeloma. Interferon has been used......-induction agent with other chemotherapy regimens, and as maintenance therapy after conventional chemotherapy or complete remission after autologous or allogeneic transplantation. Interferon as a single induction agent or co-induction agent with other chemotherapy agents appears only to have minimal benefit...... in myeloma. Its role as maintenance therapy in the plateau phase of myeloma also remains uncertain. More recently, the use of interferon must now compete with the "new drugs" - thalidomide, lenalidomide and bortezomib in myeloma treatment. Will there be a future role of interferon in the treatment...

  19. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    Science.gov (United States)

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Enterovirus Exposure Uniquely Discriminates Type 1 Diabetes Patients with a Homozygous from a Heterozygous Melanoma Differentiation-Associated Protein 5/Interferon Induced with Helicase C Domain 1 A946T Genotype

    NARCIS (Netherlands)

    Schulte, B.M.; Gielen, P.R.; Kers-Rebel, E.D.; Prosser, A.C.; Lind, K.; Flodstrom-Tullberg, M.; Tack, C.J.J.; Elving, L.D.; Adema, G.J.

    2016-01-01

    In children at risk for type 1 diabetes, innate immune activity is detected before seroconversion. Enterovirus infections have been linked to diabetes development, and a polymorphism (A946T) in the innate immune sensor recognizing enterovirus RNA, interferon-induced with helicase C domain 1/melanoma

  1. Cyclic GMP-AMP Synthase is a Cytosolic DNA Sensor that Activates the Type-I Interferon Pathway

    Science.gov (United States)

    Sun, Lijun; Wu, Jiaxi; Du, Fenghe; Chen, Xiang; Chen, Zhijian J.

    2013-01-01

    The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers the host immune responses such as the production of type-I interferons (IFN). Cytosolic DNA induces IFN through the production of cyclic-GMP-AMP (cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced IFNβ in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and IFNβ induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP. PMID:23258413

  2. La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts.

    Science.gov (United States)

    Blakqori, Gjon; Delhaye, Sophie; Habjan, Matthias; Blair, Carol D; Sánchez-Vargas, Irma; Olson, Ken E; Attarzadeh-Yazdi, Ghassem; Fragkoudis, Rennos; Kohl, Alain; Kalinke, Ulrich; Weiss, Siegfried; Michiels, Thomas; Staeheli, Peter; Weber, Friedemann

    2007-05-01

    La Crosse virus (LACV) is a mosquito-transmitted member of the Bunyaviridae family that causes severe encephalitis in children. For the LACV nonstructural protein NSs, previous overexpression studies with mammalian cells had suggested two different functions, namely induction of apoptosis and inhibition of RNA interference (RNAi). Here, we demonstrate that mosquito cells persistently infected with LACV do not undergo apoptosis and mount a specific RNAi response. Recombinant viruses that either express (rLACV) or lack (rLACVdelNSs) the NSs gene similarly persisted and were prone to the RNAi-mediated resistance to superinfection. Furthermore, in mosquito cells overexpressed LACV NSs was unable to inhibit RNAi against Semliki Forest virus. In mammalian cells, however, the rLACVdelNSs mutant virus strongly activated the antiviral type I interferon (IFN) system, whereas rLACV as well as overexpressed NSs suppressed IFN induction. Consequently, rLACVdelNSs was attenuated in IFN-competent mouse embryo fibroblasts and animals but not in systems lacking the type I IFN receptor. In situ analyses of mouse brains demonstrated that wild-type and mutant LACV mainly infect neuronal cells and that NSs is able to suppress IFN induction in the central nervous system. Thus, our data suggest little relevance of the NSs-induced apoptosis or RNAi inhibition for growth or pathogenesis of LACV in the mammalian host and indicate that NSs has no function in the insect vector. Since deletion of the viral NSs gene can be fully complemented by inactivation of the host's IFN system, we propose that the major biological function of NSs is suppression of the mammalian innate immune response.

  3. Canonical and Non-Canonical Aspects of JAK-STAT Signaling: Lessons from Interferons for Cytokine Responses.

    Science.gov (United States)

    Majoros, Andrea; Platanitis, Ekaterini; Kernbauer-Hölzl, Elisabeth; Rosebrock, Felix; Müller, Mathias; Decker, Thomas

    2017-01-01

    Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signal transduction mediates cytokine responses. Canonical signaling is based on STAT tyrosine phosphorylation by activated JAKs. Downstream of interferon (IFN) receptors, activated JAKs cause the formation of the transcription factors IFN-stimulated gene factor 3 (ISGF3), a heterotrimer of STAT1, STAT2 and interferon regulatory factor 9 (IRF9) subunits, and gamma interferon-activated factor (GAF), a STAT1 homodimer. In recent years, several deviations from this paradigm were reported. These include kinase-independent JAK functions as well as extra- and intranuclear activities of U-STATs without phosphotyrosines. Additionally, transcriptional control by STAT complexes resembling neither GAF nor ISGF3 contributes to transcriptome changes in IFN-treated cells. Our review summarizes the contribution of non-canonical JAK-STAT signaling to the innate antimicrobial immunity imparted by IFN. Moreover, we touch upon functions of IFN pathway proteins beyond the IFN response. These include metabolic functions of IRF9 as well as the regulation of natural killer cell activity by kinase-dead TYK2 and different phosphorylation isoforms of STAT1.

  4. Noncanonical Effects of IRF9 in Intestinal Inflammation: More than Type I and Type III Interferons.

    Science.gov (United States)

    Rauch, Isabella; Rosebrock, Felix; Hainzl, Eva; Heider, Susanne; Majoros, Andrea; Wienerroither, Sebastian; Strobl, Birgit; Stockinger, Silvia; Kenner, Lukas; Müller, Mathias; Decker, Thomas

    2015-07-01

    The interferon (IFN)-stimulated gene factor 3 (ISGF3) transcription factor with its Stat1, Stat2, and interferon regulatory factor 9 (IRF9) subunits is employed for transcriptional responses downstream of receptors for type I interferons (IFN-I) that include IFN-α and IFN-β and type III interferons (IFN-III), also called IFN-λ. Here, we show in a murine model of dextran sodium sulfate (DSS)-induced colitis that IRF9 deficiency protects animals, whereas the combined loss of IFN-I and IFN-III receptors worsens their condition. We explain the different phenotypes by demonstrating a function of IRF9 in a noncanonical transcriptional complex with Stat1, apart from IFN-I and IFN-III signaling. Together, Stat1 and IRF9 produce a proinflammatory activity that overrides the benefits of the IFN-III response on intestinal epithelial cells. Our results further suggest that the CXCL10 chemokine gene is an important mediator of this proinflammatory activity. We thus establish IFN-λ as a potentially anticolitogenic cytokine and propose an important role for IRF9 as a component of noncanonical Stat complexes in the development of colitis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection

    International Nuclear Information System (INIS)

    Heinemann, D; Kalies, S; Schomaker, M; Ertmer, W; Meyer, H; Ripken, T; Murua Escobar, H

    2014-01-01

    Nanoparticle laser interactions are in widespread use in cell manipulation. In particular, molecular medicine needs techniques for the directed delivery of molecules into mammalian cells. Proteins are the final mediator of most cellular cascades. However, despite several methodical approaches, the efficient delivery of proteins to cells remains challenging. This paper presents a new protein transfection technique via laser scanning of cells previously incubated with gold nanoparticles. The laser-induced plasmonic effects on the gold nanoparticles cause a transient permeabilization of the cellular membrane, allowing proteins to enter the cell. Applying this technique, it was possible to deliver green fluorescent protein into mammalian cells with an efficiency of 43%, maintaining a high level of cell viability. Furthermore, a functional delivery of Caspase 3, an apoptosis mediating protein, was demonstrated and evaluated in several cellular assays. Compared to conventional protein transfection techniques such as microinjection, the methodical approach presented here enables high-throughput transfection of about 10 000 cells per second. Moreover, a well-defined point in time of delivery is guaranteed by gold nanoparticle mediated laser transfection, allowing the detailed temporal analysis of cellular pathways and protein trafficking. (papers)

  6. Pegylated interferon de novo-induce autoimmune haemolytic anaemia in chronic hepatitis C patient

    OpenAIRE

    Said, Ashraf; Elbahrawy, Ashraf; Alfiomy, Mohamed; Abdellah, Mohamed; Shahat, Khaled; Salah, Mohamed; Mostafa, Sadek; Elwassief, Ahmed; Aboelfotoh, Attef; Abdelhafeez, Hafez; El-Sherif, Assem

    2011-01-01

    A 55-year-old Egyptian woman with chronic hepatitis C undergoing treatment with pegylated interferon (Peg-IFN) alfa-2a plus ribavirin was referred to our hospital on November 2010 with prolonged easy fatigability and an attack of syncope; she had no prior history of autoimmune disorders or allergy. Laboratory investigations documented the presence of Peg-IFN induced autoimmune haemolytic anaemia and autoimmune thyroiditis. Intravenous γ globulin (IVGG) failed to correct the autoimmune process...

  7. Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Ploug; Lauridsen, Anne-Marie; Kristensen, Poul

    2006-01-01

    . Adrm1 has been described as an interferon-gamma-inducible, heavily glycosylated membrane protein of 110 kDa. However, we found Adrm1 in mouse tissues only as a 42 kDa peptide, corresponding to the mass of the non-glycosylated peptide chain, and it could not be induced in HeLa cells with interferon...

  8. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity.

    Science.gov (United States)

    Chiang, Jessica J; Sparrer, Konstantin M J; van Gent, Michiel; Lässig, Charlotte; Huang, Teng; Osterrieder, Nikolaus; Hopfner, Karl-Peter; Gack, Michaela U

    2018-01-01

    The sensor RIG-I detects double-stranded RNA derived from RNA viruses. Although RIG-I is also known to have a role in the antiviral response to DNA viruses, physiological RNA species recognized by RIG-I during infection with a DNA virus are largely unknown. Using next-generation RNA sequencing (RNAseq), we found that host-derived RNAs, most prominently 5S ribosomal RNA pseudogene 141 (RNA5SP141), bound to RIG-I during infection with herpes simplex virus 1 (HSV-1). Infection with HSV-1 induced relocalization of RNA5SP141 from the nucleus to the cytoplasm, and virus-induced shutoff of host protein synthesis downregulated the abundance of RNA5SP141-interacting proteins, which allowed RNA5SP141 to bind RIG-I and induce the expression of type I interferons. Silencing of RNA5SP141 strongly dampened the antiviral response to HSV-1 and the related virus Epstein-Barr virus (EBV), as well as influenza A virus (IAV). Our findings reveal that antiviral immunity can be triggered by host RNAs that are unshielded following depletion of their respective binding proteins by the virus.

  9. Nitrosative stress and nitrated proteins in trichloroethene-mediated autoimmunity.

    Directory of Open Access Journals (Sweden)

    Gangduo Wang

    Full Text Available Exposure to trichloroethene (TCE, a ubiquitous environmental contaminant, has been linked to a variety of autoimmune diseases (ADs including SLE, scleroderma and hepatitis. Mechanisms involved in the pathogenesis of ADs are largely unknown. Earlier studies from our laboratory in MRL+/+ mice suggested the contribution of oxidative/nitrosative stress in TCE-induced autoimmunity, and N-acetylcysteine (NAC supplementation provided protection by attenuating oxidative stress. This study was undertaken to further evaluate the contribution of nitrosative stress in TCE-mediated autoimmunity and to identify proteins susceptible to nitrosative stress. Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, ∼ 250 mg/kg/day via drinking water. TCE exposure led to significant increases in serum anti-nuclear and anti-histone antibodies together with significant induction of iNOS and increased formation of nitrotyrosine (NT in sera and livers. Proteomic analysis identified 14 additional nitrated proteins in the livers of TCE-treated mice. Furthermore, TCE exposure led to decreased GSH levels and increased activation of NF-κB. Remarkably, NAC supplementation not only ameliorated TCE-induced nitrosative stress as evident from decreased iNOS, NT, nitrated proteins, NF-κB p65 activation and increased GSH levels, but also the markers of autoimmunity, as evident from decreased levels of autoantibodies in the sera. These findings provide support to the role of nitrosative stress in TCE-mediated autoimmune response and identify specific nitrated proteins which could have autoimmune potential. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for designing therapeutic strategies.

  10. Casein Kinase 1α Mediates the Degradation of Receptors for Type I and Type II Interferons Caused by Hemagglutinin of Influenza A Virus.

    Science.gov (United States)

    Xia, Chuan; Wolf, Jennifer J; Vijayan, Madhuvanthi; Studstill, Caleb J; Ma, Wenjun; Hahm, Bumsuk

    2018-04-01

    Although influenza A virus (IAV) evades cellular defense systems to effectively propagate in the host, the viral immune-evasive mechanisms are incompletely understood. Our recent data showed that hemagglutinin (HA) of IAV induces degradation of type I IFN receptor 1 (IFNAR1). Here, we demonstrate that IAV HA induces degradation of type II IFN (IFN-γ) receptor 1 (IFNGR1), as well as IFNAR1, via casein kinase 1α (CK1α), resulting in the impairment of cellular responsiveness to both type I and II IFNs. IAV infection or transient HA expression induced degradation of both IFNGR1 and IFNAR1, whereas HA gene-deficient IAV failed to downregulate the receptors. IAV HA caused the phosphorylation and ubiquitination of IFNGR1, leading to the lysosome-dependent degradation of IFNGR1. Influenza viral HA strongly decreased cellular sensitivity to type II IFNs, as it suppressed the activation of STAT1 and the induction of IFN-γ-stimulated genes in response to exogenously supplied recombinant IFN-γ. Importantly, CK1α, but not p38 MAP kinase or protein kinase D2, was proven to be critical for HA-induced degradation of both IFNGR1 and IFNAR1. Pharmacologic inhibition of CK1α or small interfering RNA (siRNA)-based knockdown of CK1α repressed the degradation processes of both IFNGR1 and IFNAR1 triggered by IAV infection. Further, CK1α was shown to be pivotal for proficient replication of IAV. Collectively, the results suggest that IAV HA induces degradation of IFN receptors via CK1α, creating conditions favorable for viral propagation. Therefore, the study uncovers a new immune-evasive pathway of influenza virus. IMPORTANCE Influenza A virus (IAV) remains a grave threat to humans, causing seasonal and pandemic influenza. Upon infection, innate and adaptive immunity, such as the interferon (IFN) response, is induced to protect hosts against IAV infection. However, IAV seems to be equipped with tactics to evade the IFN-mediated antiviral responses, although the detailed

  11. UV-induced DNA-binding proteins in human cells

    International Nuclear Information System (INIS)

    Glazer, P.M.; Greggio, N.A.; Metherall, J.E.; Summers, W.C.

    1989-01-01

    To investigate the response of human cells to DNA-damaging agents such as UV irradiation, the authors examined nuclear protein extracts of UV-irradiated HeLa cells for the presence of DNA-binding proteins. Electrophoretically separated proteins were transferred to a nitrocellulose filter that was subsequently immersed in a binding solution containing radioactively labeled DNA probes. Several DNA-binding proteins were induced in HeLa cells after UV irradiation. These included proteins that bind predominantly double-stranded DNA and proteins that bind both double-stranded and single-stranded DNA. The binding proteins were induced in a dose-dependent manner by UV light. Following a dose of 12 J/m 2 , the binding proteins in the nuclear extracts increased over time to a peak in the range of 18 hr after irradiation. Experiments with metabolic inhibitors (cycloheximide and actinomycin D) revealed that de novo synthesis of these proteins is not required for induction of the binding activities, suggesting that the induction is mediated by protein modification

  12. Cyclic ADP-ribose and IP3 mediate abscisic acid-induced isoflavone accumulation in soybean sprouts

    International Nuclear Information System (INIS)

    Jiao, Caifeng; Yang, Runqiang; Gu, Zhenxin

    2016-01-01

    In this study, the roles of ABA-cADPR-Ca 2+ and ABA-IP3-Ca 2+ signaling pathways in UV-B-induced isoflavone accumulation in soybean sprouts were investigated. Results showed that abscisic acid (ABA) up regulated cyclic ADP-ribose (cADPR) and inositol 1,4,5-trisphosphate (IP3) levels in soybean sprouts under UV-B radiation. Furthermore, cADPR and IP3, as second messengers of UV-B-triggered ABA, induced isoflavone accumulation by up-regulating proteins and genes expression and activity of isoflavone biosynthetic-enzymes (chalcone synthase, CHS; isoflavone synthase, IFS). After Ca 2+ was chelated by EGTA, isoflavone content decreased. Overall, ABA-induced cADPR and IP3 up regulated isoflavone accumulation which was mediated by Ca 2+ signaling via enhancing the expression of proteins and genes participating in isoflavone biosynthesis in soybean sprouts under UV-B radiation. - Highlights: • UV-B-induced cADPR and IP3 synthesis was mediated by ABA. • cADPR and IP3 were involved in UV-B-ABA-induced isoflavone accumulation. • cADPR and IP3-induced isoflavone accumulation may be mediated by Ca 2+ . • ABA, cADPR, IP3 and Ca 2+ could activate proteins expression of CHS and IFS.

  13. The G protein-coupled receptor GPR30 mediates the proliferative and invasive effects induced by hydroxytamoxifen in endometrial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Du, Gui-Qiang; Zhou, Long; Chen, Xiao-Yue [Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital of the China Welfare Institute Affiliated to Shanghai Jiao Tong University, 910, Hengshan Road, Shanghai (China); Wan, Xiao-Ping, E-mail: wanxiaoping61@126.com [Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital of the China Welfare Institute Affiliated to Shanghai Jiao Tong University, 910, Hengshan Road, Shanghai (China); He, Yin-Yan [Department of Obstetrics and Gynecology, Shanghai First People' s Hospital, Shanghai Jiao Tong University, Shanghai (China)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer We assessed hydroxytamoxifen (OHT) effects in two endometrial cancer cell lines. Black-Right-Pointing-Pointer GPR30 mediates the proliferative effects induced by OHT. Black-Right-Pointing-Pointer GPR30 mediates the invasive effects induced by OHT. Black-Right-Pointing-Pointer GPR30 expression was up-regulated by OHT in endometrial cancer cell line. -- Abstract: The selective ER modulator tamoxifen (TAM) is the most widely used ER antagonist for treatment of women with hormone-dependent breast tumor. However, long-term treatment is associated with an increased risk of endometrial cancer. The aim of the present study was to demonstrate new insight into the role of G-protein coupled receptor 30 (GPR30) in the activity of TAM, which promoted endometrial cancer. In endometrial cancer cell lines ISHIKAWA and KLE, the potential of 4-hydroxytamoxifen (OHT), the active metabolite of TAM, 17{beta}-estradiol (E2) and G1, a non-steroidal GPR30-specific agonist to promote cell proliferation and invasion was evaluated. All agents above induced high proliferative and invasive effects, while the down-regulation of GPR30 or the interruption of MAPK signal pathway partly or completely prevented the action of the regent. Moreover, the RNA and protein expression of GPR30 was up-regulated by G1, E2 or OHT in both cell lines. The present study provided a new insight into the mechanism involved in the agonistic activity exerted by TAM in the uterus.

  14. The G protein-coupled receptor GPR30 mediates the proliferative and invasive effects induced by hydroxytamoxifen in endometrial cancer cells

    International Nuclear Information System (INIS)

    Du, Gui-Qiang; Zhou, Long; Chen, Xiao-Yue; Wan, Xiao-Ping; He, Yin-Yan

    2012-01-01

    Highlights: ► We assessed hydroxytamoxifen (OHT) effects in two endometrial cancer cell lines. ► GPR30 mediates the proliferative effects induced by OHT. ► GPR30 mediates the invasive effects induced by OHT. ► GPR30 expression was up-regulated by OHT in endometrial cancer cell line. -- Abstract: The selective ER modulator tamoxifen (TAM) is the most widely used ER antagonist for treatment of women with hormone-dependent breast tumor. However, long-term treatment is associated with an increased risk of endometrial cancer. The aim of the present study was to demonstrate new insight into the role of G-protein coupled receptor 30 (GPR30) in the activity of TAM, which promoted endometrial cancer. In endometrial cancer cell lines ISHIKAWA and KLE, the potential of 4-hydroxytamoxifen (OHT), the active metabolite of TAM, 17β-estradiol (E2) and G1, a non-steroidal GPR30-specific agonist to promote cell proliferation and invasion was evaluated. All agents above induced high proliferative and invasive effects, while the down-regulation of GPR30 or the interruption of MAPK signal pathway partly or completely prevented the action of the regent. Moreover, the RNA and protein expression of GPR30 was up-regulated by G1, E2 or OHT in both cell lines. The present study provided a new insight into the mechanism involved in the agonistic activity exerted by TAM in the uterus.

  15. Borna disease virus nucleoprotein inhibits type I interferon induction through the interferon regulatory factor 7 pathway

    International Nuclear Information System (INIS)

    Song, Wuqi; Kao, Wenping; Zhai, Aixia; Qian, Jun; Li, Yujun; Zhang, Qingmeng; Zhao, Hong; Hu, Yunlong; Li, Hui; Zhang, Fengmin

    2013-01-01

    Highlights: •IRF7 nuclear localisation was inhibited by BDV persistently infected. •BDV N protein resistant to IFN induction both in BDV infected OL cell and N protein plasmid transfected OL cell. •BDV N protein is related to the inhibition of IRF7 nuclear localisation. -- Abstract: The expression of type I interferon (IFN) is one of the most potent innate defences against viral infection in higher vertebrates. Borna disease virus (BDV) establishes persistent, noncytolytic infections in animals and in cultured cells. Early studies have shown that the BDV phosphoprotein can inhibit the activation of type I IFN through the TBK1–IRF3 pathway. The function of the BDV nucleoprotein in the inhibition of IFN activity is not yet clear. In this study, we demonstrated IRF7 activation and increased IFN-α/β expression in a BDV-persistently infected human oligodendroglia cell line following RNA interference-mediated BDV nucleoprotein silencing. Furthermore, we showed that BDV nucleoprotein prevented the nuclear localisation of IRF7 and inhibited endogenous IFN induction by poly(I:C), coxsackie virus B3 and IFN-β. Our findings provide evidence for a previously undescribed mechanism by which the BDV nucleoprotein inhibits type I IFN expression by interfering with the IRF7 pathway

  16. Protein Self-Assembly and Protein-Induced DNA Morphologies

    Science.gov (United States)

    Mawhinney, Matthew T.

    The ability of biomolecules to associate into various structural configurations has a substantial impact on human physiology. The synthesis of protein polypeptide chains using the information encoded by DNA is mediated through the use of regulatory proteins, known as transcription factors. Some transcription factors perform function by inducing local curvature in deoxyribonucleic acid (DNA) strands, the mechanisms of which are not entirely known. An important architectural protein, eleven zinc finger CTCF (11 ZF CTCF) is involved in genome organization and hypothesized to mediate DNA loop formation. Direct evidence for these CTCF-induced DNA loops has yet to be observed. In this thesis, the effect of 11 ZF CTCF on DNA morphology is examined using atomic force microscopy, a powerful technique for visualizing biomolecules with nanometer resolution. The presence of CTCF is revealed to induce a variety of morphologies deviating from the relaxed state of control DNA samples, including compact circular complexes, meshes, and networks. Images reveal quasi-circular DNA/CTCF complexes consistent with a single DNA molecule twice wrapped around the protein. The structures of DNA and proteins are highly important for operations in the cell. Structural irregularities may lead to a variety of issues, including more than twenty human pathologies resulting from aberrant protein misfolding into amyloid aggregates of elongated fibrils. Insulin deficiency and resistance characterizing type 2 diabetes often requires administration of insulin. Injectable and inhalable delivery methods have been documented to result in the deposition of amyloid fibrils. Oligomers, soluble multiprotein assemblies, are believed to play an important role in this process. Insulin aggregation under physiological conditions is not well understood and oligomers have not yet been fully characterized. In this thesis, in vitro insulin aggregation at acidic and neutral pH is explored using a variety of techniques

  17. Seneca Valley Virus Suppresses Host Type I Interferon Production by Targeting Adaptor Proteins MAVS, TRIF, and TANK for Cleavage.

    Science.gov (United States)

    Qian, Suhong; Fan, Wenchun; Liu, Tingting; Wu, Mengge; Zhang, Huawei; Cui, Xiaofang; Zhou, Yun; Hu, Junjie; Wei, Shaozhong; Chen, Huanchun; Li, Xiangmin; Qian, Ping

    2017-08-15

    Seneca Valley virus (SVV) is an oncolytic RNA virus belonging to the Picornaviridae family. Its nucleotide sequence is highly similar to those of members of the Cardiovirus genus. SVV is also a neuroendocrine cancer-selective oncolytic picornavirus that can be used for anticancer therapy. However, the interaction between SVV and its host is yet to be fully characterized. In this study, SVV inhibited antiviral type I interferon (IFN) responses by targeting different host adaptors, including mitochondrial antiviral signaling (MAVS), Toll/interleukin 1 (IL-1) receptor domain-containing adaptor inducing IFN-β (TRIF), and TRAF family member-associated NF-κB activator (TANK), via viral 3C protease (3C pro ). SVV 3C pro mediated the cleavage of MAVS, TRIF, and TANK at specific sites, which required its protease activity. The cleaved MAVS, TRIF, and TANK lost the ability to regulate pattern recognition receptor (PRR)-mediated IFN production. The cleavage of TANK also facilitated TRAF6-induced NF-κB activation. SVV was also found to be sensitive to IFN-β. Therefore, SVV suppressed antiviral IFN production to escape host antiviral innate immune responses by cleaving host adaptor molecules. IMPORTANCE Host cells have developed various defenses against microbial pathogen infection. The production of IFN is the first line of defense against microbial infection. However, viruses have evolved many strategies to disrupt this host defense. SVV, a member of the Picornavirus genus, is an oncolytic virus that shows potential functions in anticancer therapy. It has been demonstrated that IFN can be used in anticancer therapy for certain tumors. However, the relationship between oncolytic virus and innate immune response in anticancer therapy is still not well known. In this study, we showed that SVV has evolved as an effective mechanism to inhibit host type I IFN production by using its 3C pro to cleave the molecules MAVS, TRIF, and TANK directly. These molecules are crucial for

  18. Interferoninduces expression of MHC class II on intestinal epithelial cells and protects mice from colitis.

    Directory of Open Access Journals (Sweden)

    Christoph Thelemann

    Full Text Available Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD and involve CD4(+ T cells, which are activated by major histocompatibility complex class II (MHCII molecules on antigen-presenting cells (APCs. However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC affects CD4(+ T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL-10 receptor-blocking antibodies (anti-IL10R mAb. To assess the role of interferon (IFN-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+ T-helper type (Th1 cells - but not group 3 innate lymphoid cells (ILCs or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+ T cells and forkhead box P3 (FoxP3(+ regulatory T (Treg cells. IFN-γ produced mainly by CD4(+ T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.

  19. The double-stranded RNA-activated protein kinase mediates viral-induced encephalitis

    International Nuclear Information System (INIS)

    Scheuner, Donalyn; Gromeier, Matthias; Davies, Monique V.; Dorner, Andrew J.; Song Benbo; Patel, Rupali V.; Wimmer, Eckard J.; McLendon, Roger E.; Kaufman, Randal J.

    2003-01-01

    The double-stranded (ds) RNA-activated protein kinase (PKR) plays an important role in control of viral infections and cell growth. We have studied the role of PKR in viral infection in mice that are defective in the PKR signaling pathway. Transgenic mice were derived that constitutively express a trans-dominant-negative kinase-defective mutant PKR under control of the β-actin promoter. The trans-dominant-negative PKR mutant expressing transgenic mice do not have a detectable phenotype, similar to observations with PKR knock-out mice. The requirement for PKR in viral pathogenesis was studied by intracerebral infection of mice with a mouse-adapted poliovirus. Histopathological analysis revealed diffuse encephalomyelitis with severe inflammatory lesions throughout the central nervous system (CNS) in infected wild-type mice. In contrast, histopathological evaluation of virus-injected trans-dominant-negative PKR transgenic mice as well as PKR knock-out mice yielded no signs of tissue damage associated with inflammatory host responses. However, the virus did replicate in both models of PKR-deficient mice at a level equal to that observed in wild-type infected mice. Although the results indicate a clear difference in susceptibility to poliovirus-induced encephalitis, this difference manifests clinically as a slight delay in fatal neuropathy in trans-dominant-negative PKR transgenic and PKR knock-out animals. Our observations support the finding that viral-induced PKR activation may play a significant role in pathogenesis by mediating the host response to viral CNS infection. They support PKR to be an effective target to control tissue damage due to deleterious host responses to viral infection

  20. Human endogenous retrovirus expression is inversely related with the up-regulation of interferon-inducible genes in the skin of patients with lichen planus.

    Science.gov (United States)

    Nogueira, Marcelle Almeida de Sousa; Gavioli, Camila Fátima Biancardi; Pereira, Nátalli Zanete; de Carvalho, Gabriel Costa; Domingues, Rosana; Aoki, Valéria; Sato, Maria Notomi

    2015-04-01

    Lichen planus (LP) is a common inflammatory skin disease of unknown etiology. Reports of a common transactivation of quiescent human endogenous retroviruses (HERVs) support the connection of viruses to the disease. HERVs are ancient retroviral sequences in the human genome and their transcription is often deregulated in cancer and autoimmune diseases. We explored the transcriptional activity of HERV sequences as well as the antiviral restriction factor and interferon-inducible genes in the skin from LP patients and healthy control (HC) donors. The study included 13 skin biopsies from patients with LP and 12 controls. Real-time PCR assay identified significant decrease in the HERV-K gag and env mRNA expression levels in LP subjects, when compared to control group. The expressions of HERV-K18 and HERV-W env were also inhibited in the skin of LP patients. We observed a strong correlation between HERV-K gag with other HERV sequences, regardless the down-modulation of transcripts levels in LP group. In contrast, a significant up-regulation of the cytidine deaminase APOBEC 3G (apolipoprotein B mRNA-editing), and the GTPase MxA (Myxovirus resistance A) mRNA expression level was identified in the LP skin specimens. Other transcript expressions, such as the master regulator of type I interferon-dependent immune responses, STING (stimulator of interferon genes) and IRF-7 (interferon regulatory factor 7), IFN-β and the inflammassome NALP3, had increased levels in LP, when compared to HC group. Our study suggests that interferon-inducible factors, in addition to their role in innate immunity against exogenous pathogens, contribute to the immune control of HERVs. Evaluation of the balance between HERV and interferon-inducible factor expression could possibly contribute to surveillance of inflammatory/malignant status of skin diseases.

  1. Potential for all-trans retinoic acid (tretinoin) to enhance interferon-alpha treatment response in chronic myelogenous leukemia, melanoma, myeloma and renal cell carcinoma.

    Science.gov (United States)

    Kast, Richard E

    2008-10-01

    This note mechanistically accounts for recent unexplained findings that all-trans retinoic acid (ATRA, also termed tretinoin) exerts an anti-viral effect against hepatitis C virus (HCV) in chronically infected patients, in whom ATRA also showed synergy with interferon-alpha. How HCV replication was suppressed was unclear. Both effects of ATRA can be accounted for by ATRA's upregulation of RIG protein, an 18 kDa product of retinoic induced gene-1. Increased RIG then couples ATRA to increased Type 1 interferons' production. Details of this mechanism predict that ATRA will similarly augment interferon-a activity in treating chronic myelogenous leukemia, melanoma, myeloma and renal cell carcinoma and that the addition of ribavirin and/or bexarotene will each incrementally enhance interferon-a responses in these cancers.

  2. Type I interferon production during herpes simplex virus infection is controlled by cell-type-specific viral recognition through Toll-like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel recognition systems

    DEFF Research Database (Denmark)

    Rasmussen, Simon Brandtoft; Sørensen, Louise Nørgaard; Malmgaard, Lene

    2007-01-01

    Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes...... simplex virus (HSV) infection. We show that early production of IFN in vivo is mediated through Toll-like receptor 9 (TLR9) and plasmacytoid dendritic cells, whereas the subsequent alpha/beta IFN (IFN-alpha/beta) response is derived from several cell types and induced independently of TLR9...

  3. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    Science.gov (United States)

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  4. Dexras1 mediates glucocorticoid-associated adipogenesis and diet-induced obesity

    Science.gov (United States)

    Cha, Jiyoung Y.; Kim, Hyo Jung; Yu, Jung Hwan; Xu, Jing; Kim, Daham; Paul, Bindu D.; Choi, Hyeonjin; Kim, Seyun; Lee, Yoo Jeong; Ho, Gary P.; Rao, Feng; Snyder, Solomon H.; Kim, Jae-woo

    2013-01-01

    Adipogenesis, the conversion of precursor cells into adipocytes, is associated with obesity and is mediated by glucocorticoids acting via hitherto poorly characterized mechanisms. Dexras1 is a small G protein of the Ras family discovered on the basis of its marked induction by the synthetic glucocorticoid dexamethasone. We show that Dexras1 mediates adipogenesis and diet-induced obesity. Adipogenic differentiation of 3T3-L1 cells is abolished with Dexras1 depletion, whereas overexpression of Dexras1 elicits adipogenesis. Adipogenesis is markedly reduced in mouse embryonic fibroblasts from Dexras1-deleted mice, whereas adiposity and diet-induced weight gain are diminished in the mutant mice. PMID:24297897

  5. Delayed brain ischemia tolerance induced by electroacupuncture pretreatment is mediated via MCP-induced protein 1

    Science.gov (United States)

    2013-01-01

    Background Emerging studies have demonstrated that pretreatment with electroacupuncture (EA) induces significant tolerance to focal cerebral ischemia. The present study seeks to determine the involvement of monocyte chemotactic protein-induced protein 1 (MCPIP1), a recently identified novel modulator of inflammatory reactions, in the cerebral neuroprotection conferred by EA pretreatment in the animal model of focal cerebral ischemia and to elucidate the mechanisms of EA pretreatment-induced ischemic brain tolerance. Methods Twenty-four hours after the end of the last EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 90 minutes in male C57BL/6 mice and MCPIP1 knockout mice. Transcription and expression of MCPIP1 gene was monitored by qRT-PCR, Western blot and immunohistochemistry. The neurobehavioral scores, infarction volumes, proinflammatory cytokines and leukocyte infiltration in brain and NF-κB signaling were evaluated after ischemia/reperfusion. Results MCPIP1 protein and mRNA levels significantly increased specifically in mouse brain undergoing EA pretreatment. EA pretreatment significantly attenuated the infarct volume, neurological deficits, upregulation of proinflammatory cytokines and leukocyte infiltration in the brain of wild-type mice after MCAO compared with that of the non-EA group. MCPIP1-deficient mice failed to evoke EA pretreatment-induced tolerance compared with that of the control MCPIP1 knockout group without EA treatment. Furthermore, the activation of NF-κB signaling was significantly reduced in EA-pretreated wild-type mice after MCAO compared to that of the non-EA control group and MCPIP1-deficient mice failed to confer the EA pretreatment-induced inhibition of NF-κB signaling after MCAO. Conclusions Our data demonstrated that MCPIP1 deficiency caused significant lack of EA pretreatment-induced cerebral protective effects after MCAO compared with the control group and that MCPIP1 is

  6. Interferon synthesis in mouse peritoneal cells damaged by x irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Szolgay, E; T' alas, M

    1976-01-01

    NDV-induced interferon of peritoneal cells of irradiated (x-rays, 400 R) and control mice was investigated in vitro. Irradiation or treatment with hydroxyurea (10(-5) M) and mitomycin C (25 microng/ml) did not change interferon synthesis in spite of an 80 to 90% inhibition of 3H-thymidine incorporation. Increased doses of mitomycin C and treatment with actinomycin D and puromycin blocked interferon production. De novo interferon synthesis occurred in cells with damaged replicative activity of DNA caused by irradiation or by treatment with antimetabolites.

  7. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 genome editing enhances antiviral response in porcine cells

    Science.gov (United States)

    Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...

  8. Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis

    Science.gov (United States)

    Yoshida, Aiko; Sakai, Nobuaki; Uekusa, Yoshitsugu; Imaoka, Yuka; Itagaki, Yoshitsuna; Suzuki, Yuki

    2018-01-01

    Clathrin-mediated endocytosis (CME) proceeds through a series of morphological changes of the plasma membrane induced by a number of protein components. Although the spatiotemporal assembly of these proteins has been elucidated by fluorescence-based techniques, the protein-induced morphological changes of the plasma membrane have not been fully clarified in living cells. Here, we visualize membrane morphology together with protein localizations during CME by utilizing high-speed atomic force microscopy (HS-AFM) combined with a confocal laser scanning unit. The plasma membrane starts to invaginate approximately 30 s after clathrin starts to assemble, and the aperture diameter increases as clathrin accumulates. Actin rapidly accumulates around the pit and induces a small membrane swelling, which, within 30 s, rapidly covers the pit irreversibly. Inhibition of actin turnover abolishes the swelling and induces a reversible open–close motion of the pit, indicating that actin dynamics are necessary for efficient and irreversible pit closure at the end of CME. PMID:29723197

  9. HTLV-1 Tax-mediated TAK1 activation involves TAB2 adapter protein

    International Nuclear Information System (INIS)

    Yu Qingsheng; Minoda, Yasumasa; Yoshida, Ryoko; Yoshida, Hideyuki; Iha, Hidekatsu; Kobayashi, Takashi; Yoshimura, Akihiko; Takaesu, Giichi

    2008-01-01

    Human T cell leukemia virus type 1 (HTLV-1) Tax is an oncoprotein that plays a crucial role in the proliferation and transformation of HTLV-1-infected T lymphocytes. It has recently been reported that Tax activates a MAPKKK family, TAK1. However, the molecular mechanism of Tax-mediated TAK1 activation is not well understood. In this report, we investigated the role of TAK1-binding protein 2 (TAB2) in Tax-mediated TAK1 activation. We found that TAB2 physically interacts with Tax and augments Tax-induced NF-κB activity. Tax and TAB2 cooperatively activate TAK1 when they are coexpressed. Furthermore, TAK1 activation by Tax requires TAB2 binding as well as ubiquitination of Tax. We also found that the overexpression of TRAF2, 5, or 6 strongly induces Tax ubiquitination. These results suggest that TAB2 may be critically involved in Tax-mediated activation of TAK1 and that NF-κB-activating TRAF family proteins are potential cellular E3 ubiquitin ligases toward Tax

  10. Vaccinia virus recombinants expressing chimeric proteins of human immunodeficiency virus and gamma interferon are attenuated for nude mice.

    OpenAIRE

    Giavedoni, L D; Jones, L; Gardner, M B; Gibson, H L; Ng, C T; Barr, P J; Yilma, T

    1992-01-01

    We have developed a method for attenuating vaccinia virus recombinants by expressing a fusion protein of a lymphokine and an immunogen. Chimeric genes were constructed that coded for gamma interferon (IFN-gamma) and structural proteins of the human immunodeficiency virus type 1 (HIV-1). In this study, we describe the biological and immunological properties of vaccinia virus recombinants expressing chimeric genes of murine or human IFN-gamma with glycoprotein gp120, gag, and a fragment of gp41...

  11. An anti-interleukin-2 receptor drug attenuates T- helper 1 lymphocytes-mediated inflammation in an acute model of endotoxin-induced uveitis.

    Directory of Open Access Journals (Sweden)

    Salvador Mérida

    Full Text Available The aim of the present study was to evaluate the anti-inflammatory efficacy of Daclizumab, an anti-interleukin-2 receptor drug, in an experimental uveitis model upon a subcutaneous injection of lipopolysaccharide into Lewis rats, a valuable model for ocular acute inflammatory processes. The integrity of the blood-aqueous barrier was assessed 24 h after endotoxin-induced uveitis by evaluating two parameters: cell count and protein concentration in aqueous humors. The histopathology of all the ocular structures (cornea, lens, sclera, choroid, retina, uvea, and anterior and posterior chambers was also considered. Enzyme-linked immunosorbent assays of the aqueous humor samples were performed to quantify the levels of the different chemokine and cytokine proteins. Similarly, a biochemical analysis of oxidative stress-related markers was also assessed. The inflammation observed in the anterior chamber of the eyes when Daclizumab was administered with endotoxin was largely prevented since the aqueous humor protein concentration substantially lowered concomitantly with a significant reduction in the uveal and vitreous histopathological grading. Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon-γ, also significantly reduced with related anti-oxidant systems recovery. Daclizumab treatment in endotoxin-induced uveitis reduced Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon gamma, by about 60-70% and presented a preventive role in endotoxin-induced oxidative stress. This antioxidant protective effect of Daclizumab may be related to several of the observed Daclizumab effects in our study, including IL-6 cytokine regulatory properties and a substantial concomitant drop in INFγ. Concurrently, Daclizumab treatment triggered a significant reduction in both the uveal histopathological grading and protein concentration in aqueous humors, but not in cellular infiltration.

  12. Molecular simulations of lipid-mediated protein-protein interactions

    NARCIS (Netherlands)

    de Meyer, F.J.M.; Venturoli, M.; Smit, B.

    2008-01-01

    Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the

  13. Pegylated interferon de novo-induce autoimmune haemolytic anaemia in chronic hepatitis C patient.

    Science.gov (United States)

    Said, Ashraf; Elbahrawy, Ashraf; Alfiomy, Mohamed; Abdellah, Mohamed; Shahat, Khaled; Salah, Mohamed; Mostafa, Sadek; Elwassief, Ahmed; Aboelfotoh, Attef; Abdelhafeez, Hafez; El-Sherif, Assem

    2011-08-11

    A 55-year-old Egyptian woman with chronic hepatitis C undergoing treatment with pegylated interferon (Peg-IFN) alfa-2a plus ribavirin was referred to our hospital on November 2010 with prolonged easy fatigability and an attack of syncope; she had no prior history of autoimmune disorders or allergy. Laboratory investigations documented the presence of Peg-IFN induced autoimmune haemolytic anaemia and autoimmune thyroiditis. Intravenous γ globulin (IVGG) failed to correct the autoimmune process; on the other hand steroid therapy dramatically corrected both haematological and thyroid values, and step down the immune process. Our report indicated that Peg-IFN de novo-induce autoimmune haemolysis, documenting a previous report. IVGG failed to step down the immune process in our case.

  14. The combination of maltose-binding protein and BCG-induced Th1 activation is involved in TLR2/9-mediated upregulation of MyD88-TRAF6 and TLR4-mediated downregulation of TRIF-TRAF3.

    Science.gov (United States)

    Liu, Guomu; Zhai, Xiaoyu; Zhou, Hongyue; Yang, Xiaoyu; Zhang, Nannan; Tai, Guixiang; Ni, Weihua

    2018-03-01

    Our previous study demonstrated that maltose-binding protein (MBP) activated Th1 through the TLR2-mediated MyD88-dependent pathway and the TLR4-mediated TRIF-dependent pathway. The combination of MBP and BCG synergistically induced Th1 activation, and the TLR2/9-mediated MyD88-dependent pathway is involved in this process. To further explore this mechanism, we stimulated purified mouse CD4 + T cells with MBP and BCG in vitro. The results demonstrated that MBP combined with BCG synergistically increased IFN-γ production and TLR2/4/9 expression, suggesting the involvement of TLR2/4/9 in the combination-induced Th1 activation. Next, TLRs 2/4/9 were blocked to analyze the effects of TLRs on Th1 activation. The results demonstrated that MBP induced a low level of Th1 activation by upregulating TLR2-mediated MyD88-TRAF6 and TLR4-mediated TRIF-TRAF3 expression, whereas MBP combined with BCG induced synergistic Th1 activation, which was not only triggered by strong upregulation of TLR2/9-mediated MyD88-TRAF6 expression but also by shifting TLR4-mediated TRIF-TRAF3 into the TRIF-TRAF6 pathway. Moreover, we observed that a TLR4 antibody upregulated MyD88 expression and a TLR9 inhibitor downregulated TRIF expression, indicating that there was cross-talk between TLRs 2/4/9 in MBP combined with BCG-induced Th1 activation. Our findings may expand the knowledge regarding TLR cross-talk involved in regulating the Th1 response. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. The structure of the human interferon alpha/beta receptor gene.

    Science.gov (United States)

    Lutfalla, G; Gardiner, K; Proudhon, D; Vielh, E; Uzé, G

    1992-02-05

    Using the cDNA coding for the human interferon alpha/beta receptor (IFNAR), the IFNAR gene has been physically mapped relative to the other loci of the chromosome 21q22.1 region. 32,906 base pairs covering the IFNAR gene have been cloned and sequenced. Primer extension and solution hybridization-ribonuclease protection have been used to determine that the transcription of the gene is initiated in a broad region of 20 base pairs. Some aspects of the polymorphism of the gene, including noncoding sequences, have been analyzed; some are allelic differences in the coding sequence that induce amino acid variations in the resulting protein. The exon structure of the IFNAR gene and of that of the available genes for the receptors of the cytokine/growth hormone/prolactin/interferon receptor family have been compared with the predictions for the secondary structure of those receptors. From this analysis, we postulate a common origin and propose an hypothesis for the divergence from the immunoglobulin superfamily.

  16. The interferon response circuit in antiviral host defense.

    Science.gov (United States)

    Haller, O; Weber, F

    2009-01-01

    Viruses have learned to multiply in the face of a powerful innate and adaptive immune response of the host. They have evolved multiple strategies to evade the interferon (IFN) system which would otherwise limit virus growth at an early stage of infection. IFNs induce the synthesis of a range of antiviral proteins which serve as cell-autonomous intrinsic restriction factors. For example, the dynamin-like MxA GTPase inhibits the multiplication of influenza and bunyaviruses (such as La Crosse virus, Hantaan virus, Rift Valley Fever virus, and Crimean-Congo hemorrhagic fever virus) by binding and sequestering the nucleocapsid protein into large perinuclear complexes. To overcome such intracellular restrictions, virulent viruses either inhibit IFN synthesis, bind and inactivate secreted IFN molecules, block IFN-activated signaling, or disturb the action of IFN-induced antiviral proteins. Many viruses produce specialized proteins to disarm the danger signal or express virulence genes that target members of the IFN regulatory factor family (IRFs) or components of the JAK-STAT signaling pathway. An alternative evasion strategy is based on extreme viral replication speed which out-competes the IFN response. The identification of viral proteins with IFN antagonistic functions has great implications for disease prevention and therapy. Virus mutants lacking IFN antagonistic properties represent safe yet highly immunogenic candidate vaccines. Furthermore, novel drugs intercepting viral IFN-antagonists could be used to disarm the viral intruders.

  17. Activation of the PI3K/Akt pathway mediates bone morphogenetic protein 2-induced invasion of pancreatic cancer cells Panc-1.

    Science.gov (United States)

    Chen, Xiong; Liao, Jie; Lu, YeBin; Duan, XiaoHui; Sun, WeiJia

    2011-06-01

    Bone morphogenetic proteins (BMPs) signaling has an emerging role in pancreatic cancer. However, because of the multiple effects of different BMPs, no final conclusions have been made as to the role of BMPs in pancreatic cancer. In our studies, we have focused on bone morphogenetic protein 2(BMP-2) because it induces an epithelial to mesenchymal transition (EMT) and accelerates invasion in the human pancreatic cancer cell line Panc-1. It has been reported that the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediates invasion of gastric and colon cancer cells, which is unrevealed in pancreatic cancer cells. The objective of our study was to investigate whether BMP-2 mediated invasion might pass through the PI3K/Akt pathway. Our results show that expression of phosphorylation of Akt was increased by treatment with BMP-2, but not Noggin, a BMP-2 antagonist. Then pretreatment of Panc-1 cells with LY294002, an inhibitor of the PI3K/AKT pathway, significantly inhibited BMP-2-induced EMT and invasiveness. The data suggest that BMP-2 accelerates invasion of panc-1 cells via the PI3K/AKT pathway in panc-1 cells, which gives clues to searching new therapy targets in advanced pancreatic cancer.

  18. Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-γ-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Zeidler, Patti C.; Millecchia, Lyndell M.; Castranova, Vincent

    2004-01-01

    Exposure of mice to lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-γ were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-γ (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-γ were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-α, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-α, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-γ is anti-inflammatory, and this becomes evident over time

  19. Type I interferon and pattern recognition receptor signaling following particulate matter inhalation

    Directory of Open Access Journals (Sweden)

    Erdely Aaron

    2012-07-01

    Full Text Available Abstract Background Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc – stainless steel (GMA-SS welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. Results The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10. In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3 were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88 to inhalation of GMA-SS. Conclusion This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure.

  20. Sulindac, a nonsteroidal anti-inflammatory drug, selectively inhibits interferon-γ-induced expression of the chemokine CXCL9 gene in mouse macrophages

    International Nuclear Information System (INIS)

    Sakaeda, Yoshiichi; Hiroi, Miki; Shimojima, Takahiro; Iguchi, Mayumi; Kanegae, Haruhide; Ohmori, Yoshihiro

    2006-01-01

    Sulindac, a non-steroidal anti-inflammatory drug, has been shown to exert an anti-tumor effect on several types of cancer. To determine the effect of sulindac on intracellular signaling pathways in host immune cells such as macrophages, we investigated the effect of the drug on interferon gamma (IFNγ)-induced expression of signal transducer and activator of transcription 1 (STAT1) and other genes in mouse macrophage-like cell line RAW264.7 cells. Sulindac, but not aspirin or sodium salicylate, inhibited IFNγ-induced expression of the CXC ligand 9 (CXCL9) mRNA, a chemokine for activated T cells, whereas the interferon-induced expression of CXCL10 or IFN regulatory factor-1 was not affected by sulindac. Luciferase reporter assay demonstrated that sulindac inhibited IFNγ-induced promoter activity of the CXCL9 gene. Surprisingly, sulindac had no inhibitory effect on IFNγ-induced STAT1 activation; however, constitutive nuclear factor κB activity was suppressed by the drug. These results indicate that sulindac selectively inhibited IFNγ-inducible gene expression without inhibiting STAT1 activation

  1. Stability of human interferon-beta 1: oligomeric human interferon-beta 1 is inactive but is reactivated by monomerization.

    Science.gov (United States)

    Utsumi, J; Yamazaki, S; Kawaguchi, K; Kimura, S; Shimizu, H

    1989-10-05

    Human interferon-beta 1 is extremely stable is a low ionic strength solution of pH 2 such as 10 mM HCl at 37 degrees C. However, the presence of 0.15 M NaCl led to a remarkable loss of antiviral activity. The molecular-sieve high-performance liquid chromatography revealed that, whereas completely active human interferon-beta 1 eluted as a 25 kDa species (monomeric form), the inactivated preparation eluted primarily as a 90 kDa species (oligomeric form). The specific activity (units per mg protein) of the oligomeric form was approx. 10% of that of the monomeric form. This observation shows that oligomeric human interferon-beta 1 is apparently in an inactive form. When the oligomeric eluate was resolved by polyacrylamide gel containing sodium dodecyl sulphate (SDS), it appeared to be monomeric under non-reducing conditions. Monomerization of the oligomeric human interferon-beta 1 by treatment with 1% SDS, fully regenerated its antiviral activity. These results suggest that the inactivation of the human interferon-beta 1 preparation was caused by its oligomerization via hydrophobic interactions without the formation of intermolecular disulphide bonds. These oligomers can be dissociated by SDS to restore biological activity.

  2. Canonical and Non-Canonical Aspects of JAK–STAT Signaling: Lessons from Interferons for Cytokine Responses

    Science.gov (United States)

    Majoros, Andrea; Platanitis, Ekaterini; Kernbauer-Hölzl, Elisabeth; Rosebrock, Felix; Müller, Mathias; Decker, Thomas

    2017-01-01

    Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signal transduction mediates cytokine responses. Canonical signaling is based on STAT tyrosine phosphorylation by activated JAKs. Downstream of interferon (IFN) receptors, activated JAKs cause the formation of the transcription factors IFN-stimulated gene factor 3 (ISGF3), a heterotrimer of STAT1, STAT2 and interferon regulatory factor 9 (IRF9) subunits, and gamma interferon-activated factor (GAF), a STAT1 homodimer. In recent years, several deviations from this paradigm were reported. These include kinase-independent JAK functions as well as extra- and intranuclear activities of U-STATs without phosphotyrosines. Additionally, transcriptional control by STAT complexes resembling neither GAF nor ISGF3 contributes to transcriptome changes in IFN-treated cells. Our review summarizes the contribution of non-canonical JAK–STAT signaling to the innate antimicrobial immunity imparted by IFN. Moreover, we touch upon functions of IFN pathway proteins beyond the IFN response. These include metabolic functions of IRF9 as well as the regulation of natural killer cell activity by kinase-dead TYK2 and different phosphorylation isoforms of STAT1. PMID:28184222

  3. Geldanamycin-induced degradation of Chk1 is mediated by proteasome

    International Nuclear Information System (INIS)

    Nomura, M.; Nomura, N.; Yamashita, J.

    2005-01-01

    Checkpoint kinase 1 (Chk1) is a cell cycle regulator and a heat shock protein 90 (Hsp90) client. It is essential for cell proliferation and survival. In this report, we analyzed the mechanisms of Chk1 regulation in U87MG glioblastoma cells using Geldanamycin (GA), which interferes with the function of Hsp90. GA reduced Chk1 protein level but not its mRNA level in glioblastoma cells. Co-treatment with GA and cycloheximide (CHX), a protein synthesis inhibitor, induced a decrease of half-life of the Chk1 protein to 3 h and resulted in Chk1 down-regulation. CHX alone induced only 32% reduction of Chk1 protein even after 24 h. These findings indicated that reduction of Chk1 by GA was due to destabilization and degradation of the protein. In addition, GA-induced down-regulation of Chk1 was reversed by MG132, a specific proteasome inhibitor. And it was revealed that Chk1 was ubiquitinated by GA. These results have indicated that degradation of Chk1 by GA was mediated by the ubiquitin-proteasome pathway in U87MG glioblastoma cells

  4. The Neuron-Specific Protein TMEM59L Mediates Oxidative Stress-Induced Cell Death.

    Science.gov (United States)

    Zheng, Qiuyang; Zheng, Xiaoyuan; Zhang, Lishan; Luo, Hong; Qian, Lingzhi; Fu, Xing; Liu, Yiqian; Gao, Yuehong; Niu, Mengxi; Meng, Jian; Zhang, Muxian; Bu, Guojun; Xu, Huaxi; Zhang, Yun-Wu

    2017-08-01

    TMEM59L is a newly identified brain-specific membrane-anchored protein with unknown functions. Herein we found that both TMEM59L and its homolog, TMEM59, are localized in Golgi and endosomes. However, in contrast to a ubiquitous and relatively stable temporal expression of TMEM59, TMEM59L expression was limited in neurons and increased during development. We also found that both TMEM59L and TMEM59 interacted with ATG5 and ATG16L1, and that overexpression of them triggered cell autophagy. However, overexpression of TMEM59L induced intrinsic caspase-dependent apoptosis more dramatically than TMEM59. In addition, downregulation of TMEM59L prevented neuronal cell death and caspase-3 activation caused by hydrogen peroxide insults and reduced the lipidation of LC3B. Finally, we found that AAV-mediated knockdown of TMEM59L in mice significantly ameliorated caspase-3 activation, increased mouse duration in the open arm during elevated plus maze test, reduced mouse immobility time during forced swim test, and enhanced mouse memory during Y-maze and Morris water maze tests. Together, our study indicates that TMEM59L is a pro-apoptotic neuronal protein involved in animal behaviors such as anxiety, depression, and memory, and that TMEM59L downregulation protects neurons against oxidative stress.

  5. C7L family of poxvirus host range genes inhibits antiviral activities induced by type I interferons and interferon regulatory factor 1.

    Science.gov (United States)

    Meng, Xiangzhi; Schoggins, John; Rose, Lloyd; Cao, Jingxin; Ploss, Alexander; Rice, Charles M; Xiang, Yan

    2012-04-01

    Vaccinia virus (VACV) K1L and C7L function equivalently in many mammalian cells to support VACV replication and antagonize antiviral activities induced by type I interferons (IFNs). While K1L is limited to orthopoxviruses, genes that are homologous to C7L are found in diverse mammalian poxviruses. In this study, we showed that the C7L homologues from sheeppox virus and swinepox virus could rescue the replication defect of a VACV mutant deleted of both K1L and C7L (vK1L(-)C7L(-)). Interestingly, the sheeppox virus C7L homologue could rescue the replication of vK1L(-)C7L(-) in human HeLa cells but not in murine 3T3 and LA-4 cells, in contrast to all other C7L homologues. Replacing amino acids 134 and 135 of the sheeppox virus C7L homologue, however, made it functional in the two murine cell lines, suggesting that these two residues are critical for antagonizing a putative host restriction factor which has some subtle sequence variation in human and murine cells. Furthermore, the C7L family of host range genes from diverse mammalian poxviruses were all capable of antagonizing type I IFN-induced antiviral activities against VACV. Screening of a library of more than 350 IFN-stimulated genes (ISGs) identified interferon-regulated factor 1 (IRF1) as an inhibitor of vK1L(-)C7L(-) but not wild-type VACV. Expression of either K1L or C7L, however, rendered vK1L(-)C7L(-) resistant to IRF1-induced antiviral activities. Altogether, our data show that K1L and C7L antagonize IRF1-induced antiviral activities and that the host modulation function of C7L is evolutionally conserved in all poxviruses that can readily replicate in tissue-cultured mammalian cells.

  6. Prolonged exposure to particulate chromate inhibits RAD51 nuclear import mediator proteins.

    Science.gov (United States)

    Browning, Cynthia L; Wise, John Pierce

    2017-09-15

    Particulate hexavalent chromium (Cr(VI)) is a human lung carcinogen and a human health concern. The induction of structural chromosome instability is considered to be a driving mechanism of Cr(VI)-induced carcinogenesis. Homologous recombination repair protects against Cr(VI)-induced chromosome damage, due to its highly accurate repair of Cr(VI)-induced DNA double strand breaks. However, recent studies demonstrate Cr(VI) inhibits homologous recombination repair through the misregulation of RAD51. RAD51 is an essential protein in HR repair that facilitates the search for a homologous sequence. Recent studies show prolonged Cr(VI) exposure prevents proper RAD51 subcellular localization, causing it to accumulate in the cytoplasm. Since nuclear import of RAD51 is crucial to its function, this study investigated the effect of Cr(VI) on the RAD51 nuclear import mediators, RAD51C and BRCA2. We show acute (24h) Cr(VI) exposure induces the proper localization of RAD51C and BRCA2. In contrast, prolonged (120h) exposure increased the cytoplasmic localization of both proteins, although RAD51C localization was more severely impaired. These results correlate temporally with the previously reported Cr(VI)-induced RAD51 cytoplasmic accumulation. In addition, we found Cr(VI) does not inhibit interaction between RAD51 and its nuclear import mediators. Altogether, our results suggest prolonged Cr(VI) exposure inhibits the nuclear import of RAD51C, and to a lesser extent, BRCA2, which results in the cytoplasmic accumulation of RAD51. Cr(VI)-induced inhibition of nuclear import may play a key role in its carcinogenic mechanism since the nuclear import of many tumor suppressor proteins and DNA repair proteins is crucial to their function. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Knockdown of menin affects pre-mRNA processing and promoter fidelity at the interferon-gamma inducible IRF1 gene

    Directory of Open Access Journals (Sweden)

    Auriemma Lauren B

    2012-01-01

    Full Text Available Abstract Background The tumor suppressor menin (MEN1 is mutated in the inherited disease multiple endocrine neoplasia type I, and has several documented cellular roles, including the activation and repression of transcription effected by several transcription factors. As an activator, MEN1 is a component of the Set1-like mixed lineage leukemia (MLL MLL1/MLL2 methyltransferase complex that methylates histone H3 lysine 4 (H3K4. MEN1 is localized to the signal transducer and activator of transcription 1 (STAT1-dependent gene, interferon regulatory factor 1 (IRF1, and is further recruited when IRF1 transcription is triggered by interferon-γ signaling. Results RNAi-mediated knockdown of MEN1 alters the H3K4 dimethylation and H3 acetylation profiles, and the localization of histone deacetylase 3, at IRF1. While MEN1 knockdown does not impact the rate of transcription, IRF1 heteronuclear transcripts become enriched in MEN1-depleted cells. The processed mRNA and translated protein product are concomitantly reduced, and the antiviral state is attenuated. Additionally, the transcription start site at the IRF1 promoter is disrupted in the MEN1-depleted cells. The H3K4 demethylase, lysine specific demethylase 1, is also associated with IRF1, and its inhibition alters H3K4 methylation and disrupts the transcription start site as well. Conclusions Taken together, the data indicate that MEN1 contributes to STAT1-activated gene expression in a novel manner that includes defining the transcription start site and RNA processing.

  8. Improved innate and adaptive immunostimulation by genetically modified HIV-1 protein expressing NYVAC vectors.

    Directory of Open Access Journals (Sweden)

    Esther D Quakkelaar

    Full Text Available Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs, RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.

  9. SAMHD1 restricts HIV-1 replication and regulates interferon production in mouse myeloid cells.

    Directory of Open Access Journals (Sweden)

    Ruonan Zhang

    Full Text Available SAMHD1 restricts the replication of HIV-1 and other retroviruses in human myeloid and resting CD4(+ T cells and that is counteracted in SIV and HIV-2 by the Vpx accessory protein. The protein is a phosphohydrolase that lowers the concentration of deoxynucleoside triphosphates (dNTP, blocking reverse transcription of the viral RNA genome. Polymorphisms in the gene encoding SAMHD1 are associated with Aicardi-Goutières Syndrome, a neurological disorder characterized by increased type-I interferon production. SAMHD1 is conserved in mammals but its role in restricting virus replication and controlling interferon production in non-primate species is not well understood. We show that SAMHD1 is catalytically active and expressed at high levels in mouse spleen, lymph nodes, thymus and lung. siRNA knock-down of SAMHD1 in bone marrow-derived macrophages increased their susceptibility to HIV-1 infection. shRNA knock-down of SAMHD1 in the murine monocytic cell-line RAW264.7 increased its susceptibility to HIV-1 and murine leukemia virus and increased the levels of the dNTP pool. In addition, SAMHD1 knock-down in RAW264.7 cells induced the production of type-I interferon and several interferon-stimulated genes, modeling the situation in Aicardi-Goutières Syndrome. Our findings suggest that the role of SAMHD1 in restricting viruses is conserved in the mouse. The RAW264.7 cell-line serves as a useful tool to study the antiviral and innate immune response functions of SAMHD1.

  10. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    Directory of Open Access Journals (Sweden)

    Lv Y

    2015-07-01

    Full Text Available Yingqian Lv, Shan Zhao, Jinzhu Han, Likang Zheng, Zixin Yang, Li Zhao Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China Abstract: Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1 were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. Keywords: hypoxia, hypoxia-inducible factor-1α, multidrug resistance associated protein, transcriptional regulation, chemotherapy tolerance

  11. Interferon-gamma and tumor necrosis factor-alpha sensitize primarily resistant human endometrial stromal cells to Fas-mediated apoptosis

    DEFF Research Database (Denmark)

    Fluhr, Herbert; Krenzer, Stefanie; Stein, Gerburg M

    2007-01-01

    The subtle interaction between the implanting embryo and the maternal endometrium plays a pivotal role during the process of implantation. Human endometrial stromal cells (ESCs) express Fas and the implanting trophoblast cells secrete Fas ligand (FASLG, FasL), suggesting a possible role for Fas......-mediated signaling during early implantation. Here we show that ESCs are primarily resistant to Fas-mediated apoptosis independently of their state of hormonal differentiation. Pre-treatment of ESCs with interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha sensitizes them to become apoptotic upon stimulation...... of Fas by an agonistic anti-Fas antibody. Incubation of ESCs with the early embryonic signal human chorionic gonadotropin (hCG, CGB) does not influence their reaction to Fas stimulation. The sensitizing effect of IFN-gamma and TNF-alpha was accompanied by a significant upregulation of Fas and FLICE...

  12. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na+ channel interaction

    International Nuclear Information System (INIS)

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-01

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na + channels is a coupled event mediated by guanine nucleotide binding protein(s) [G-protein(s)]. These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of [ 3 H] acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of [ 3 H]batrachotoxin to Na + channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced 22 Na + uptake in the presence and absence of tetrodotoxin, which blocks Na + channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na + channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na + channel-is such that at resting potential the muscarinic receptor induces opening of Na + channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues

  13. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2012-08-01

    Full Text Available Abstract Background Exposure to particulate matter (PM is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. Objectives We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC barrier integrity and enhanced cardiopulmonary dysfunction. Methods Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm. Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. Results PM exposure induced tight junction protein Zona occludens-1 (ZO-1 relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin. N-acetyl-cysteine (NAC, 5 mM reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2, in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. Conclusions These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.

  14. Ursodeoxycholic acid protects cardiomyocytes against cobalt chloride induced hypoxia by regulating transcriptional mediator of cells stress hypoxia inducible factor 1α and p53 protein.

    Science.gov (United States)

    Mohamed, Anis Syamimi; Hanafi, Noorul Izzati; Sheikh Abdul Kadir, Siti Hamimah; Md Noor, Julina; Abdul Hamid Hasani, Narimah; Ab Rahim, Sharaniza; Siran, Rosfaiizah

    2017-10-01

    In hepatocytes, ursodeoxycholic acid (UDCA) activates cell signalling pathways such as p53, intracellular calcium ([Ca 2+ ] i ), and sphingosine-1-phosphate (S1P)-receptor via Gα i -coupled-receptor. Recently, UDCA has been shown to protect the heart against hypoxia-reoxygenation injury. However, it is not clear whether UDCA cardioprotection against hypoxia acts through a transcriptional mediator of cells stress, HIF-1α and p53. Therefore, in here, we aimed to investigate whether UDCA could protect cardiomyocytes (CMs) against hypoxia by regulating expression of HIF-1α, p53, [Ca 2+ ] i , and S1P-Gα i -coupled-receptor. Cardiomyocytes were isolated from newborn rats (0-2 days), and hypoxia was induced by using cobalt chloride (CoCl 2 ). Cardiomyocytes were treated with UDCA and cotreated with either FTY720 (S1P-receptor agonist) or pertussis toxin (PTX; Gα i inhibitor). Cells were subjected for proliferation assay, beating frequency, QuantiGene Plex assay, western blot, immunofluorescence, and calcium imaging. Our findings showed that UDCA counteracted the effects of CoCl 2 on cell viability, beating frequency, HIF-1α, and p53 protein expression. We found that these cardioprotection effects of UDCA were similar to FTY720, S1P agonist. Furthermore, we observed that UDCA protects CMs against CoCl 2 -induced [Ca 2+ ] i dynamic alteration. Pharmacological inhibition of the Gα i -sensitive receptor did not abolish the cardioprotection of UDCA against CoCl 2 detrimental effects, except for cell viability and [Ca 2+ ] i . Pertussis toxin is partially effective in inhibiting UDCA protection against CoCl 2 effects on CM cell viability. Interestingly, PTX fully inhibits UDCA cardioprotection on CoCl 2 -induced [Ca 2+ ] i dynamic changes. We conclude that UDCA cardioprotection against CoCl 2 -induced hypoxia is similar to FTY720, and its actions are not fully mediated by the Gα i -coupled protein sensitive pathways. Ursodeoxycholic acid is the most hydrophilic bile

  15. TAT-Mediated Delivery of Tousled Protein to Salivary Glands Protects Against Radiation-Induced Hypofunction

    Energy Technology Data Exchange (ETDEWEB)

    Sunavala-Dossabhoy, Gulshan, E-mail: gsunav@lsuhsc.edu [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Palaniyandi, Senthilnathan; Richardson, Charles; De Benedetti, Arrigo [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Schrott, Lisa [Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Caldito, Gloria [Department of Bioinformatics and Computational Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States)

    2012-09-01

    Purpose: Patients treated with radiotherapy for head-and-neck cancer invariably suffer its deleterious side effect, xerostomia. Salivary hypofunction ensuing from the irreversible destruction of glands is the most common and debilitating oral complication affecting patients undergoing regional radiotherapy. Given that the current management of xerostomia is palliative and ineffective, efforts are now directed toward preventive measures to preserve gland function. The human homolog of Tousled protein, TLK1B, facilitates chromatin remodeling at DNA repair sites and improves cell survival against ionizing radiation (IR). Therefore, we wanted to determine whether a direct transfer of TLK1B protein to rat salivary glands could protect against IR-induced salivary hypofunction. Methods: The cell-permeable TAT-TLK1B fusion protein was generated. Rat acinar cell line and rat salivary glands were pretreated with TAT peptide or TAT-TLK1B before IR. The acinar cell survival in vitro and salivary function in vivo were assessed after radiation. Results: We demonstrated that rat acinar cells transduced with TAT-TLK1B were more resistant to radiation (D{sub 0} = 4.13 {+-} 1.0 Gy; {alpha}/{beta} = 0 Gy) compared with cells transduced with the TAT peptide (D{sub 0} = 4.91 {+-} 1.0 Gy; {alpha}/{beta} = 20.2 Gy). Correspondingly, retroductal instillation of TAT-TLK1B in rat submandibular glands better preserved salivary flow after IR (89%) compared with animals pretreated with Opti-MEM or TAT peptide (31% and 39%, respectively; p < 0.01). Conclusions: The results demonstrate that a direct transfer of TLK1B protein to the salivary glands effectively attenuates radiation-mediated gland dysfunction. Prophylactic TLK1B-protein therapy could benefit patients undergoing radiotherapy for head-and-neck cancer.

  16. Mitochondrial ribosomal protein L41 mediates serum starvation-induced cell-cycle arrest through an increase of p21WAF1/CIP1

    International Nuclear Information System (INIS)

    Kim, Mi Jin; Yoo, Young A.; Kim, Hyung Jung; Kang, Seongman; Kim, Yong Geon; Kim, Jun Suk; Yoo, Young Do

    2005-01-01

    Ribosomal proteins not only act as components of the translation apparatus but also regulate cell proliferation and apoptosis. A previous study reported that MRPL41 plays an important role in p53-dependent apoptosis. It also showed that MRPL41 arrests the cell cycle by stabilizing p27 Kip1 in the absence of p53. This study found that MRPL41 mediates the p21 WAF1/CIP1 -mediated G1 arrest in response to serum starvation. The cells were released from serum starvation-induced G1 arrest via the siRNA-mediated blocking of MRPL41 expression. Overall, these results suggest that MRPL41 arrests the cell cycle by increasing the p21 WAF1/CIP1 and p27 Kip1 levels under the growth inhibitory conditions

  17. ISG15 in the tumorigenesis and treatment of cancer: An emerging role in malignancies of the digestive system

    Science.gov (United States)

    Zuo, Chaohui; Sheng, Xinyi; Ma, Min; Xia, Man; Ouyang, Linda

    2016-01-01

    The interferon-stimulated gene 15 ubiquitin-like modifier (ISG15) encodes an IFN-inducible, ubiquitin-like protein. The ISG15 protein forms conjugates with numerous cellular proteins that are involved in a multitude of cellular functions, including interferon-induced immune responses and the regulation of cellular protein turnover. The expression of ISG15 and ISG15-mediated conjugation has been implicated in a wide range of human tumors and cancer cell lines, but the roles of ISG15 in tumorigenesis and responses to anticancer treatments remain largely unknown. In this review, we discuss the findings of recent studies with regard to the role of ISG15 pathways in cancers of the digestive system. PMID:27626310

  18. RNA-Seq Based Transcriptome Analysis of the Type I Interferon Host Response upon Vaccinia Virus Infection of Mouse Cells

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2017-01-01

    Full Text Available Vaccinia virus (VACV encodes the soluble type I interferon (IFN binding protein B18 that is secreted from infected cells and also attaches to the cell surface, as an immunomodulatory strategy to inhibit the host IFN response. By using next generation sequencing technologies, we performed a detailed RNA-seq study to dissect at the transcriptional level the modulation of the IFN based host response by VACV and B18. Transcriptome profiling of L929 cells after incubation with purified recombinant B18 protein showed that attachment of B18 to the cell surface does not trigger cell signalling leading to transcriptional activation. Consistent with its ability to bind type I IFN, B18 completely inhibited the IFN-mediated modulation of host gene expression. Addition of UV-inactivated virus particles to cell cultures altered the expression of a set of 53 cellular genes, including genes involved in innate immunity. Differential gene expression analyses of cells infected with replication competent VACV identified the activation of a broad range of host genes involved in multiple cellular pathways. Interestingly, we did not detect an IFN-mediated response among the transcriptional changes induced by VACV, even after the addition of IFN to cells infected with a mutant VACV lacking B18. This is consistent with additional viral mechanisms acting at different levels to block IFN responses during VACV infection.

  19. Bropirimine inhibits osteoclast differentiation through production of interferon

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Mochizuki, Ayako; Yoshimura, Kentaro; Miyamoto, Yoichi; Kaneko, Kotaro; Inoue, Tomio; Chikazu, Daichi; Takami, Masamichi; Kamijo, Ryutaro

    2015-01-01

    Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presence of activated vitamin D_3. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D_3. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.

  20. Bropirimine inhibits osteoclast differentiation through production of interferon

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Hiroaki [Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Mochizuki, Ayako [Department of Oral Physiology, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Yoshimura, Kentaro; Miyamoto, Yoichi [Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Kaneko, Kotaro [Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo 160-0023 (Japan); Inoue, Tomio [Department of Oral Physiology, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Chikazu, Daichi [Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo 160-0023 (Japan); Takami, Masamichi [Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Kamijo, Ryutaro, E-mail: kamijor@dent.showa-u.ac.jp [Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555 (Japan)

    2015-11-06

    Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presence of activated vitamin D{sub 3}. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D{sub 3}. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.

  1. Hepatitis C virus core protein induces hepatic steatosis via Sirt1-dependent pathway.

    Science.gov (United States)

    Zhang, Chuanhai; Wang, Jingjing; Zhang, Hanlin; Liu, Shunai; Lee, Hyuek Jong; Jin, Wanzhu; Cheng, Jun

    2018-05-01

    Hepatic steatosis is a common feature of patients with chronic hepatitis C. Previous reports have shown that the overexpression of hepatitis C virus core-encoding sequences (hepatitis C virus genotypes 3a and 1b) significantly induces intracellular triglyceride accumulation. However, the underlying mechanism has not yet been revealed. To investigate whether Sirt1 is involved in hepatitis C virus-mediated hepatic steatosis, the overexpression of hepatitis C virus core 1b protein and Sirt1 and the knockdown of Sirt1 in HepG2 cells were performed. To confirm the results of the cellular experiment liver-specific Sirt1 KO mice with lentivirus-mediated hepatitis C virus core 1b overexpression were studied. Our results show that hepatitis C virus core 1b protein overexpression led to the accumulation of triglycerides in HepG2 cells. Notably the expression of PPARγ2 was dramatically increased at both the mRNA and protein levels by hepatitis C virus core 1b overexpression. The protein expression of Sirt1 is an upstream regulator of PPARγ2 and was also significantly increased after core 1b overexpression. In addition, the overexpression or knockdown of Sirt1 expression alone was sufficient to modulate p300-mediated PPARγ2 deacetylation. In vivo studies showed that hepatitis C virus core protein 1b-induced hepatic steatosis was attenuated in liver-specific Sirt1 KO mice by downregulation of PPARγ2 expression. Sirt1 mediates hepatitis C virus core protein 1b-induced hepatic steatosis by regulation of PPARγ2 expression. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. CLCA2 as a p53-Inducible Senescence Mediator

    Directory of Open Access Journals (Sweden)

    Chizu Tanikawa

    2012-02-01

    Full Text Available p53 is a tumor suppressor gene that is frequently mutated in multiple cancer tissues. Activated p53 protein regulates its downstream genes and subsequently inhibits malignant transformation by inducing cell cycle arrest, apoptosis, DNA repair, and senescence. However, genes involved in the p53-mediated senescence pathway are not yet fully elucidated. Through the screening of two genome-wide expression profile data sets, one for cells in which exogenous p53 was introduced and the other for senescent fibroblasts, we have identified chloride channel accessory 2 (CLCA2 as a p53-inducible senescence-associated gene. CLCA2 was remarkably induced by replicative senescence as well as oxidative stress in a p53-dependent manner. We also found that ectopically expressed CLCA2 induced cellular senescence, and the down-regulation of CLCA2 by small interfering RNA caused inhibition of oxidative stress-induced senescence. Interestingly, the reduced expression of CLCA2 was frequently observed in various kinds of cancers including prostate cancer, whereas its expression was not affected in precancerous prostatic intraepithelial neoplasia. Thus, our findings suggest a crucial role of p53/CLCA2-mediated senescence induction as a barrier for malignant transformation.

  3. Stromal cells and osteoclasts are responsible for exacerbated collagen-induced arthritis in interferon-beta-deficient mice

    DEFF Research Database (Denmark)

    Treschow, Alexandra P; Teige, Ingrid; Nandakumar, Kutty S

    2005-01-01

    OBJECTIVE: Clinical trials using interferon-beta (IFNbeta) in the treatment of rheumatoid arthritis have shown conflicting results. We undertook this study to understand the mechanisms of IFNbeta in arthritis at a physiologic level. METHODS: Collagen-induced arthritis (CIA) was induced in IFNbeta....... Differences in osteoclast maturation were determined in situ by histology of arthritic and naive paws and by in vitro maturation studies of naive bone marrow cells. The importance of IFNbeta-producing fibroblasts was determined by transferring fibroblasts into mice at the time of CIA immunization. RESULTS...

  4. Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury-induced neuropathic pain states.

    Science.gov (United States)

    Boroujerdi, Amin; Zeng, Jun; Sharp, Kelli; Kim, Donghyun; Steward, Oswald; Luo, Z David

    2011-03-01

    Spinal cord injury (SCI) commonly results in the development of neuropathic pain, which can dramatically impair the quality of life for SCI patients. SCI-induced neuropathic pain can be manifested as both tactile allodynia (a painful sensation to a non-noxious stimulus) and hyperalgesia (an enhanced sensation to a painful stimulus). The mechanisms underlying these pain states are poorly understood. Clinical studies have shown that gabapentin, a drug that binds to the voltage-gated calcium channel alpha-2-delta-1 subunit (Ca(v)α2δ-1) proteins is effective in the management of SCI-induced neuropathic pain. Accordingly, we hypothesized that tactile allodynia post SCI is mediated by an upregulation of Ca(v)α2δ-1 in dorsal spinal cord. To test this hypothesis, we examined whether SCI-induced dysregulation of spinal Ca(v)α2δ-1 plays a contributory role in below-level allodynia development in a rat spinal T9 contusion injury model. We found that Ca(v)α2δ-1 expression levels were significantly increased in L4-6 dorsal, but not ventral, spinal cord of SCI rats that correlated with tactile allodynia development in the hind paw plantar surface. Furthermore, both intrathecal gabapentin treatment and blocking SCI-induced Ca(v)α2δ-1 protein upregulation by intrathecal Ca(v)α2δ-1 antisense oligodeoxynucleotides could reverse tactile allodynia in SCI rats. These findings support that SCI-induced Ca(v)α2δ-1 upregulation in spinal dorsal horn is a key component in mediating below-level neuropathic pain states, and selectively targeting this pathway may provide effective pain relief for SCI patients. Spinal cord contusion injury caused increased calcium channel Ca(v)α2δ-1 subunit expression in dorsal spinal cord that contributes to neuropathic pain states. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  5. Interferon in lyssavirus infection.

    Science.gov (United States)

    Rieder, Martina; Finke, Stefan; Conzelmann, Karl-Klaus

    2012-01-01

    Rabies is a zoonosis still claiming more than 50 000 human deaths per year. Typically, human cases are due to infection with rabies virus, the prototype of the Lyssavirus genus, but sporadic cases of rabies-like encephalitis caused by other lyssaviruses have been reported. In contrast to rabies virus, which has an extremely broad host range including many terrestrial warm-blooded animals, rabies-related viruses are associated predominantly with bats and rarely infect terrestrial species. In spite of a very close genetic relationship of rabies and rabies-related viruses, the factors determining the limited host range of rabies-related viruses are not clear. In the past years the importance of viral countermeasures against the host type I interferon system for establishment of an infection became evident. The rabies virus phosphoprotein (P) has emerged as a critical factor required for paralysing the signalling cascades leading to transcriptional activation of interferon genes as well as interferon signalling pathways, thereby limiting expression of antiviral and immune stimulatory genes. Comparative studies would be of interest in order to determine whether differential abilities of the lyssavirus P proteins contribute to the restricted host range of lyssaviruses.

  6. Lambda Interferon (IFN-gamma), a Type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, C.

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN......-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral...

  7. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, Christina

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN......-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral...

  8. Experimental Neuromyelitis Optica Induces a Type I Interferon Signature in the Spinal Cord

    Science.gov (United States)

    Kaufmann, Nathalie; Zeka, Bleranda; Schanda, Kathrin; Fujihara, Kazuo; Illes, Zsolt; Dahle, Charlotte; Reindl, Markus; Lassmann, Hans; Bradl, Monika

    2016-01-01

    Neuromyelitis optica (NMO) is an acute inflammatory disease of the central nervous system (CNS) which predominantly affects spinal cord and optic nerves. Most patients harbor pathogenic autoantibodies, the so-called NMO-IgGs, which are directed against the water channel aquaporin 4 (AQP4) on astrocytes. When these antibodies gain access to the CNS, they mediate astrocyte destruction by complement-dependent and by antibody-dependent cellular cytotoxicity. In contrast to multiple sclerosis (MS) patients who benefit from therapies involving type I interferons (I-IFN), NMO patients typically do not profit from such treatments. How is I-IFN involved in NMO pathogenesis? To address this question, we made gene expression profiles of spinal cords from Lewis rat models of experimental neuromyelitis optica (ENMO) and experimental autoimmune encephalomyelitis (EAE). We found an upregulation of I-IFN signature genes in EAE spinal cords, and a further upregulation of these genes in ENMO. To learn whether the local I-IFN signature is harmful or beneficial, we induced ENMO by transfer of CNS antigen-specific T cells and NMO-IgG, and treated the animals with I-IFN at the very onset of clinical symptoms, when the blood-brain barrier was open. With this treatment regimen, we could amplify possible effects of the I-IFN induced genes on the transmigration of infiltrating cells through the blood brain barrier, and on lesion formation and expansion, but could avoid effects of I-IFN on the differentiation of pathogenic T and B cells in the lymph nodes. We observed that I-IFN treated ENMO rats had spinal cord lesions with fewer T cells, macrophages/activated microglia and activated neutrophils, and less astrocyte damage than their vehicle treated counterparts, suggesting beneficial effects of I-IFN. PMID:26990978

  9. Phagocytosis by macrophages mediated by receptors for denatured proteins - dependence on tyrosine protein kinases

    Directory of Open Access Journals (Sweden)

    M.R. Hespanhol

    2002-03-01

    Full Text Available Previous studies have demonstrated that some components of the leukocyte cell membrane, CR3 (Mac-1, CD11b/CD18 and p150/95, are able to bind to denatured proteins. Thus, it is of interest to know which effector functions of these cells can be triggered by these receptors when they interact with particles or surfaces covered with denatured proteins. In the present study we analyzed their possible role as mediators of phagocytosis of red cells covered with denatured bovine serum albumin (BSA by mouse peritoneal macrophages. We observed that a macrophages are able to recognize (bind to these red cells, b this interaction can be inhibited by denatured BSA in the fluid phase, c there is no phagocytosis of these particles by normal macrophages, d phagocytosis mediated by denatured BSA can be, however, effectively triggered in inflammatory macrophages induced by glycogen or in macrophages activated in vivo with LPS, and e this phagocytic capacity is strongly dependent on the activity of tyrosine protein kinases in its signal transduction pathway, as demonstrated by using three kinds of enzyme inhibitors (genistein, quercetin and herbimycin A.

  10. Hepatitis C Virus and Disrupted Interferon Signaling Promote Lymphoproliferation via Type II CD95 and Interleukins

    Science.gov (United States)

    MACHIDA, KEIGO; TSUKIYAMA-KOHARA, KYOKO; SEKIGUCH, SATOSHI; SEIKE, EIJI; TÓNE, SHIGENOBU; HAYASHI, YUKIKO; TOBITA, YOSHIMI; KASAMA, YURI; SHIMIZU, MASUMI; TAKAHASHI, HIDEMI; TAYA, CHYOJI; YONEKAWA, HIROMICHI; TANAKA, NOBUYUKI; KOHARA, MICHINORI

    2014-01-01

    BACKGROUND & AIMS The molecular mechanisms of lymphoproliferation associated with the disruption of interferon (IFN) signaling and chronic hepatitis C virus (HCV) infection are poorly understood. Lymphomas are extrahepatic manifestations of HCV infection; we sought to clarify the molecular mechanisms of these processes. METHODS We established interferon regulatory factor-1– null (irf-1−/−) mice with inducible and persistent expression of HCV structural proteins (irf-1/CN2 mice). All the mice (n = 900) were observed for at least 600 days after Cre/loxP switching. Histologic analyses, as well as analyses of lymphoproliferation, sensitivity to Fas-induced apoptosis, colony formation, and cytokine production, were performed. Proteins associated with these processes were also assessed. RESULTS Irf-1/CN2 mice had extremely high incidences of lymphomas and lymphoproliferative disorders and displayed increased mortality. Disruption of irf-1 reduced the sensitivity to Fas-induced apoptosis and decreased the levels of caspases-3/7 and caspase-9 messenger RNA species and enzymatic activities. Furthermore, the irf-1/CN2 mice showed decreased activation of caspases-3/7 and caspase-9 and increased levels of interleukin (IL)-2, IL-10, and Bcl-2, as well as increased Bcl-2 expression, which promoted oncogenic transformation of lymphocytes. IL-2 and IL-10 were induced by the HCV core protein in splenocytes. CONCLUSIONS Disruption of IFN signaling resulted in development of lymphoma, indicating that differential signaling occurs in lymphocytes compared with liver. This mouse model, in which HCV expression and disruption of IFN signaling synergize to promote lymphoproliferation, will be an important tool for the development of therapeutic agents that target the lymphoproliferative pathway. PMID:19362089

  11. Calcium/Calmodulin-Dependent Protein Kinase IV Mediates IFN-γ-Induced Immune Behaviors in Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    RuiCai Gu

    2018-03-01

    Full Text Available Background/Aims: Whether calcium/calmodulin-dependent protein kinase IV (CaMKIV plays a role in regulating immunologic features of muscle cells in inflammatory environment, as it does for immune cells, remains mostly unknown. In this study, we investigated the influence of endogenous CaMKIV on the immunological characteristics of myoblasts and myotubes received IFN-γ stimulation. Methods: C2C12 and murine myogenic precursor cells (MPCs were cultured and differentiated in vitro, in the presence of pro-inflammatory IFN-γ. CaMKIV shRNA lentivirus transfection was performed to knockdown CaMKIV gene in C2C12 cells. pEGFP-N1-CaMKIV plasmid was delivered into knockout cells for recovering intracellular CaMKIV gene level. CREB1 antagonist KG-501 was used to block CREB signal. qPCR, immunoblot analysis, or immunofluorescence was used to detect mRNA and protein levels of CaMKIV, immuno-molecules, or pro-inflammatory cytokines and chemokines. Co-stimulatory molecules expression was assessed by FACS analysis. Results: IFN-γ induces the expression or up-regulation of MHC-I/II and TLR3, and the up-regulation of CaMKIV level in muscle cells. In contrast, CaMKIV knockdown in myoblasts and myotubes leads to expression inhibition of the above immuno-molecules. As well, CaMKIV knockdown selectively inhibits pro-inflammatory cytokines/chemokines, and co-stimulatory molecules expression in IFN-γ treated myoblasts and myotubes. Finally, CaMKIV knockdown abolishes IFN-γ induced CREB pathway molecules accumulation in differentiated myotubes. Conclusions: CaMKIV can be induced to up-regulate in muscle cells under inflammatory condition, and positively mediates intrinsic immune behaviors of muscle cells triggered by IFN-γ.

  12. Lipid-protein interaction induced domains: Kinetics and conformational changes in multicomponent vesicles

    Science.gov (United States)

    Sreeja, K. K.; Sunil Kumar, P. B.

    2018-04-01

    The spatio-temporal organization of proteins and the associated morphological changes in membranes are of importance in cell signaling. Several mechanisms that promote the aggregation of proteins at low cell surface concentrations have been investigated in the past. We show, using Monte Carlo simulations, that the affinity of proteins for specific lipids can hasten their aggregation kinetics. The lipid membrane is modeled as a dynamically triangulated surface with the proteins defined as in-plane fields at the vertices. We show that, even at low protein concentrations, strong lipid-protein interactions can result in large protein clusters indicating a route to lipid mediated signal amplification. At high protein concentrations, the domains form buds similar to that seen in lipid-lipid interaction induced phase separation. Protein interaction induced domain budding is suppressed when proteins act as anisotropic inclusions and exhibit nematic orientational order. The kinetics of protein clustering and resulting conformational changes are shown to be significantly different for the isotropic and anisotropic curvature inducing proteins.

  13. In vivo functional requirement of the mouse Ifitm1 gene for germ cell development, interferon mediated immune response and somitogenesis.

    Directory of Open Access Journals (Sweden)

    Ingeborg Klymiuk

    Full Text Available The mammalian Interferon induced transmembrane protein 1 (Ifitm1 gene was originally identified as a member of a gene family highly inducible by type I and type II interferons. Based on expression analyses, it was suggested to be required for normal primordial germ cell migration. The knockdown of Ifitm1 in mouse embryos provided evidence for a role in somitogenesis. We generated the first targeted knockin allele of the Ifitm1 gene to systematically reassess all inferred functions. Sperm motility and the fertility of male and female mutant mice are as in wild type littermates. Embryonic somites and the adult vertebral column appear normal in homozygous Ifitm1 knockout mice, demonstrating that Ifitm1 is not essential for normal segmentation of the paraxial mesoderm. Proportions of leucocyte subsets, including granulocytes, monocytes, B-cells, T-cells, NK-cells, and NKT-cells, are unchanged in mutant mice. Based on a normal immune response to Listeria monocytogenes infection, there is no evidence for a dysfunction in downstream IFNγ signaling in Ifitm1 mutant mice. Expression from the Ifitm1 locus from E8.5 to E14.5 is highly dynamic. In contrast, in adult mice, Ifitm1 expression is highly restricted and strong in the bronchial epithelium. Intriguingly, IFITM1 is highly overexpressed in tumor epithelia cells of human squamous cell carcinomas and in adenocarcinomas of NSCLC patients. These analyses underline the general importance of targeted in vivo studies for the functional annotation of the mammalian genome. The first comprehensive description of the Ifitm1 expression pattern provides a rational basis for the further examination of Ifitm1 gene functions. Based on our data, the fact that IFITM1 can function as a negative regulator of cell proliferation, and because the gene maps to chromosome band 11p15.5, previously associated with NSCLC, it is likely that IFITM1 in man has a key role in tumor formation.

  14. Interferon Response and Viral Evasion by Members of the Family Rhabdoviridae

    OpenAIRE

    Matthias J. Schnell; Elizabeth J. Faul; Douglas S. Lyles

    2009-01-01

    Like many animal viruses, those of the Rhabdoviridae family, are able to antagonize the type I interferon response and cause disease in mammalian hosts. Though these negative-stranded RNA viruses are very simple and code for as few as five proteins, they have been seen to completely abrogate the type I interferon response early in infection. In this review, we will discuss the viral organization and type I interferon evasion of rhabdoviruses, focusing on vesicular stomatitis virus (VSV) and r...

  15. Interferon-Mediated Innate Immune Responses against Malaria Parasite Liver Stages

    Directory of Open Access Journals (Sweden)

    Jessica L. Miller

    2014-04-01

    Full Text Available Mosquito-transmitted malaria parasites infect hepatocytes and asymptomatically replicate as liver stages. Using RNA sequencing, we show that a rodent malaria liver-stage infection stimulates a robust innate immune response including type I interferon (IFN and IFNγ pathways. Liver-stage infection is suppressed by these infection-engendered innate responses. This suppression was abrogated in mice deficient in IFNγ, the type I IFN α/β receptor (IFNAR, and interferon regulatory factor 3. Natural killer and CD49b+CD3+ natural killer T (NKT cells increased in the liver after a primary infection, and CD1d-restricted NKT cells, which secrete IFNγ, were critical in reducing liver-stage burden of a secondary infection. Lack of IFNAR signaling abrogated the increase in NKT cell numbers in the liver, showing a link between type I IFN signaling, cell recruitment, and subsequent parasite elimination. Our findings demonstrate innate immune sensing of malaria parasite liver-stage infection and that the ensuing innate responses can eliminate the parasite.

  16. Interferon Response and Viral Evasion by Members of the Family Rhabdoviridae

    Directory of Open Access Journals (Sweden)

    Matthias J. Schnell

    2009-11-01

    Full Text Available Like many animal viruses, those of the Rhabdoviridae family, are able to antagonize the type I interferon response and cause disease in mammalian hosts. Though these negative-stranded RNA viruses are very simple and code for as few as five proteins, they have been seen to completely abrogate the type I interferon response early in infection. In this review, we will discuss the viral organization and type I interferon evasion of rhabdoviruses, focusing on vesicular stomatitis virus (VSV and rabies virus (RABV. Despite their structural similarities, VSV and RABV have completely different mechanisms by which they avert the host immune response. VSV relies on the matrix protein to interfere with host gene transcription and nuclear export of anti-viral mRNAs. Alternatively, RABV uses its phosphoprotein to interfere with IRF-3 phosphorylation and STAT1 signaling. Understanding the virus-cell interactions and viral proteins necessary to evade the immune response is important in developing effective vaccines and therapeutics for this viral family.

  17. Ethylene-induced senescence-related gene expression requires protein synthesis

    International Nuclear Information System (INIS)

    Lawton, K.A.; Raghothama, K.G.; Woodson, W.R.

    1990-01-01

    We have investigated the effects of inhibiting protein synthesis on the ethylene-induced expression of 3 carnation senescence-related genes, pSR5, pSR8, and pSR12. Treatment of preclimacteric carnation petal discs with 1μg/ml of cycloheximide, a cytoplasmic protein synthesis inhibitor, for 3h inhibited protein synthesis by >80% as quantitated by the incorporation of [35S]methionine into protein. Pre-treatment of petal discs with cycloheximide prevented ethylene-induced SR transcript accumulation. Cycloheximide treatment of petal discs held in air did not result in increased levels of SR mRNA. These results indicate that ethylene does not interact with pre-formed factors but rather that the activation of SR gene expression by ethylene is mediated by labile protein factor(s) synthesized on cytoplasmic ribosomes. Experiments are currently underway to determine if cycloheximide exerts its effect at the transcriptional or post-transcriptional level

  18. Identification of two auto-cleavage products of nonstructural protein 1 (nsp1) in porcine reproductive and respiratory syndrome virus infected cells: nsp1 function as interferon antagonist

    International Nuclear Information System (INIS)

    Chen, Z.; Lawson, S.; Sun, Z.; Zhou, X.; Guan, X.; Christopher-Hennings, J.; Nelson, E.A.; Fang, Y.

    2010-01-01

    The porcine reproductive and respiratory syndrome virus nsp1 is predicted to be auto-cleaved from the replicase polyprotein into nsp1α and nsp1β subunits. In infected cells, we detected the actual existence of nsp1α and nsp1β. Cleavage sites between nsp1α/nsp1β and nsp1β/nsp2 were identified by protein microsequencing analysis. Time course study showed that nsp1α and nsp1β mainly localize into the cell nucleus after 10 h post infection. Further analysis revealed that both proteins dramatically inhibited IFN-β expression. The nsp1β was observed to significantly inhibit expression from an interferon-stimulated response element promoter after Sendai virus infection or interferon treatment. It was further determined to inhibit nuclear translocation of STAT1 in the JAK-STAT signaling pathway. These results demonstrated that nsp1β has ability to inhibit both interferon synthesis and signaling, while nsp1α alone strongly inhibits interferon synthesis. These findings provide important insights into mechanisms of nsp1 in PRRSV pathogenesis and its impact in vaccine development.

  19. The Absent in Melanoma 2-Like Receptor IFN-Inducible Protein 16 as an Inflammasome Regulator in Systemic Lupus Erythematosus: The Dark Side of Sensing Microbes

    Directory of Open Access Journals (Sweden)

    Valeria Caneparo

    2018-05-01

    Full Text Available Absent in melanoma 2 (AIM2-like receptors (ALRs are a newly characterized class of pathogen recognition receptors (PRRs involved in cytosolic and nuclear pathogen DNA recognition. In recent years, two ALR family members, the interferon (IFN-inducible protein 16 (IFI16 and AIM2, have been linked to the pathogenesis of various autoimmune diseases, among which systemic lupus erythematosus (SLE has recently gained increasing attention. SLE patients are indeed often characterized by constitutively high serum IFN levels and increased expression of IFN-stimulated genes due to an abnormal response to pathogens and/or incorrect self-DNA recognition process. Consistently, we and others have shown that IFI16 is overexpressed in a wide range of autoimmune diseases where it triggers production of specific autoantibodies. In addition, evidence from mouse models supports a model whereby ALRs are required for IFN-mediated host response to both exogenous and endogenous DNA. Following interaction with cytoplasmic or nuclear nucleic acids, ALRs can form a functional inflammasome through association with the adaptor ASC [apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD] and with procaspase-1. Importantly, inflammasome-mediated upregulation of IL-1β and IL-18 production positively correlates with SLE disease severity. Therefore, targeting ALR sensors and their downstream pathways represents a promising alternative therapeutic approach for SLE and other systemic autoimmune diseases.

  20. Cell Death of Gamma Interferon-Stimulated Human Fibroblasts upon Toxoplasma gondii Infection Induces Early Parasite Egress and Limits Parasite Replication

    NARCIS (Netherlands)

    Niedelman, Wendy; Sprokholt, Joris K.; Clough, Barbara; Frickel, Eva-Maria; Saeij, Jeroen P. J.

    2013-01-01

    The intracellular protozoan parasite Toxoplasma gondii is a major food-borne illness and opportunistic infection for the immunosuppressed. Resistance to Toxoplasma is dependent on gamma interferon (IFN-γ) activation of both hematopoietic and nonhematopoietic cells. Although IFN-γ-induced innate

  1. Cell death of gamma interferon-stimulated human fibroblasts upon toxoplasma gondii infection induces early parasite egress and limits parasite replication

    NARCIS (Netherlands)

    Niedelman, W.; Sprokholt, J.K.; Clough, B.; Frickel, E.; Saeij, J.P.J.

    2013-01-01

    The intracellular protozoan parasite Toxoplasma gondii is a major food-borne illness and opportunistic infection for the immunosuppressed. Resistance to Toxoplasma is dependent on gamma interferon (IFN-¿) activation of both hematopoietic and nonhematopoietic cells. Although IFN-¿-induced innate

  2. Sensitization of interferoninduced apoptosis in human osteosarcoma cells by extracellular S100A4

    International Nuclear Information System (INIS)

    Pedersen, Kjetil Boye; Andersen, Kristin; Fodstad, Øystein; Mælandsmo, Gunhild Mari

    2004-01-01

    S100A4 is a small Ca 2+ -binding protein of the S100 family with metastasis-promoting properties. Recently, secreted S100A4 protein has been shown to possess a number of functions, including induction of angiogenesis, stimulation of cell motility and neurite extension. Cell cultures from two human osteosarcoma cell lines, OHS and its anti-S100A4 ribozyme transfected counterpart II-11b, was treated with IFN-γ and recombinant S100A4 in order to study the sensitizing effects of extracellular S100A4 on IFN-γ mediated apoptosis. Induction of apoptosis was demonstrated by DNA fragmentation, cleavage of poly (ADP-ribose) polymerase and Lamin B. In the present work, we found that the S100A4-expressing human osteosarcoma cell line OHS was more sensitive to IFN-γ-mediated apoptosis than the II-11b cells. S100A4 protein was detected in conditioned medium from OHS cells, but not from II-11b cells, and addition of recombinant S100A4 to the cell medium sensitized II-11b cells to apoptosis induced by IFN-γ. The S100A4/IFN-γ-mediated induction of apoptosis was shown to be independent of caspase activation, but dependent on the formation of reactive oxygen species. Furthermore, addition of extracellular S100A4 was demonstrated to activate nuclear factor-κB (NF-κB). In conclusion, we have shown that S100A4 sensitizes osteosarcoma cells to IFN-γ-mediated induction of apoptosis. Additionally, extracellular S100A4 activates NF-κB, but whether these events are causally related remains unknown

  3. Cytokine Expression in CD3+ Cells in an Infant with Food Protein-Induced Enterocolitis Syndrome (FPIES: Case Report

    Directory of Open Access Journals (Sweden)

    F. Mori

    2009-01-01

    Full Text Available Food protein-induced enterocolitis syndrome (FPIES is a non-IgE-mediated food allergy characterized by severe vomiting, diarrhea, and often failure to thrive in infants. Symptoms typically resolve after the triggering food-derived protein is removed from the diet and recur within few hours after the re-exposure to the causal protein. The diagnosis is based on clinical symptoms and a positive food challenge. In this study, we report a case of FPIES to rice in an 8-month-old boy. We performed a double-blind placebo-controlled food challenge (DBPCFC to rice and we measured the intracellular T cell expression of interleukin-4 (IL-4; IL-10, and interferon (IFN- pre-and post-challenge during an acute FPIES reaction and when tolerance to rice had been achieved. For the first time we describe an increase in T cell IL-4 and decrease in IFN- expression after a positive challenge with rice (i.e. rice triggered a FPIES attack and an increase in T cell IL-10 expression after rice challenge 6 months later after a negative challenge (i.e., the child had acquired tolerance to rice in an 8 month old with documented FPIES to rice. A Th2 activation associated with high IL-4 levels may contribute to the pathophysiology of the disease. On the other hand, T cell-derived IL-10 may play a role in the acquisition of immunotolerance by regulating the Th1 and Th2 responses.

  4. Pegylated interferons Lambda-1a and alfa-2a display different gene induction and cytokine and chemokine release profiles in whole blood, human hepatocytes and peripheral blood mononuclear cells.

    Science.gov (United States)

    Freeman, J; Baglino, S; Friborg, J; Kraft, Z; Gray, T; Hill, M; McPhee, F; Hillson, J; Lopez-Talavera, J C; Wind-Rotolo, M

    2014-06-01

    Pegylated interferon-lambda-1a (Lambda), a type III interferon (IFN) in clinical development for the treatment of chronic HCV infection, has shown comparable efficacy and an improved safety profile to a regimen based on pegylated IFN alfa-2a (alfa). To establish a mechanistic context for this improved profile, we investigated the ex vivo effects of Lambda and alfa on cytokine and chemokine release, and on expression of IFN-stimulated genes (ISGs) in primary human hepatocytes and peripheral blood mononuclear cells (PBMCs) from healthy subjects. Our findings were further compared with changes observed in blood analysed from HCV-infected patients treated with Lambda or alfa in clinical studies. mRNA transcript and protein expression of the IFN-λ-limiting receptor subunit was lower compared with IFN-α receptor subunits in all cell types. Upon stimulation, alfa and Lambda induced ISG expression in hepatocytes and PBMCs, although in PBMCs Lambda-induced ISG expression was modest. Furthermore, alfa and Lambda induced release of cytokines and chemokines from hepatocytes and PBMCs, although differences in their kinetics of induction were observed. In HCV-infected patients, alfa treatment induced ISG expression in whole blood after single and repeat dosing. Lambda treatment induced modest ISG expression after single dosing and showed no induction after repeat dosing. Alfa and Lambda treatment increased IP-10, iTAC, IL-6, MCP-1 and MIP-1β levels in serum, with alfa inducing higher levels of all mediators compared with Lambda. Overall, ex vivo and in vivo induction profiles reported in this analysis strongly correlate with clinical observations of fewer related adverse events for Lambda vs those typically associated with alfa. © 2014 John Wiley & Sons Ltd.

  5. The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses.

    Science.gov (United States)

    Takahama, Michihiro; Fukuda, Mitsunori; Ohbayashi, Norihiko; Kozaki, Tatsuya; Misawa, Takuma; Okamoto, Toru; Matsuura, Yoshiharu; Akira, Shizuo; Saitoh, Tatsuya

    2017-09-19

    Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5), in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING), the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Michihiro Takahama

    2017-09-01

    Full Text Available Cyclic GMP-AMP synthase (cGAS is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5, in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING, the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis.

  7. Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut.

    Science.gov (United States)

    Pervolaraki, Kalliopi; Stanifer, Megan L; Münchau, Stephanie; Renn, Lynnsey A; Albrecht, Dorothee; Kurzhals, Stefan; Senís, Elena; Grimm, Dirk; Schröder-Braunstein, Jutta; Rabin, Ronald L; Boulant, Steeve

    2017-01-01

    Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that

  8. Protein Kinase G Induces an Immune Response in Cows Exposed to Mycobacterium avium Subsp. paratuberculosis

    Directory of Open Access Journals (Sweden)

    Horacio Bach

    2018-01-01

    Full Text Available To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence of Mycobacterium avium subspecies paratuberculosis (MAP, the causative agent of Johne’s disease, as the serine/threonine protein kinase G (PknG. In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species.

  9. STAT1 is essential for the inhibition of hepatitis C virus replication by interferon-λ but not by interferon-α.

    Science.gov (United States)

    Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Honjoh, Chisato; Kato, Yuji; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao

    2016-12-08

    Interferon-α (IFN-α) and IFN-λ are structurally distinct cytokines that bind to different receptors, but induce expression of similar sets of genes through Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathways. The difference between IFN-α and IFN-λ signaling remains poorly understood. Here, using the CRISPR/Cas9 system, we examine the role of STAT1 and STAT2 in the inhibition of hepatitis C virus (HCV) replication by IFN-α and IFN-λ. Treatment with IFN-α increases expression of IFN-stimulated genes (ISGs) such as double-stranded RNA-activated protein kinase (PKR) and decreases viral RNA and protein levels in HCV-infected Huh-7.5 human hepatoma cells. These responses are only partially attenuated by knockout of STAT1 but are abolished by knockout of STAT2. In contrast, the inhibition of HCV replication by IFN-λ is abolished by knockout of STAT1 or STAT2. Microarray analysis reveals that IFN-α but not IFN-λ can induce expression of the majority of ISGs in STAT1 knockout cells. These findings suggest that IFN-α can inhibit HCV replication through a STAT2-dependent but STAT1-independent pathway, whereas IFN-λ induces ISG expression and inhibits HCV replication exclusively through a STAT1- and STAT2-dependent pathway.

  10. Alveolar macrophage–derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes

    Science.gov (United States)

    Goritzka, Michelle; Makris, Spyridon; Kausar, Fahima; Durant, Lydia R.; Pereira, Catherine; Kumagai, Yutaro; Culley, Fiona J.; Mack, Matthias; Akira, Shizuo

    2015-01-01

    Type I interferons (IFNs) are important for host defense from viral infections, acting to restrict viral production in infected cells and to promote antiviral immune responses. However, the type I IFN system has also been associated with severe lung inflammatory disease in response to respiratory syncytial virus (RSV). Which cells produce type I IFNs upon RSV infection and how this directs immune responses to the virus, and potentially results in pathological inflammation, is unclear. Here, we show that alveolar macrophages (AMs) are the major source of type I IFNs upon RSV infection in mice. AMs detect RSV via mitochondrial antiviral signaling protein (MAVS)–coupled retinoic acid–inducible gene 1 (RIG-I)–like receptors (RLRs), and loss of MAVS greatly compromises innate immune restriction of RSV. This is largely attributable to loss of type I IFN–dependent induction of monocyte chemoattractants and subsequent reduced recruitment of inflammatory monocytes (infMo) to the lungs. Notably, the latter have potent antiviral activity and are essential to control infection and lessen disease severity. Thus, infMo recruitment constitutes an important and hitherto underappreciated, cell-extrinsic mechanism of type I IFN–mediated antiviral activity. Dysregulation of this system of host antiviral defense may underlie the development of RSV-induced severe lung inflammation. PMID:25897172

  11. Interferon Potentiates Toll-Like Receptor-Induced Prostaglandin D2 Production through Positive Feedback Regulation between Signal Transducer and Activators of Transcription 1 and Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Ji-Yun Kim

    2017-12-01

    Full Text Available Prostaglandin D2 (PGD2 is a potent lipid mediator that controls inflammation, and its dysregulation has been implicated in diverse inflammatory disorders. Despite significant progress made in understanding the role of PGD2 as a key regulator of immune responses, the molecular mechanism underlying PGD2 production remains unclear, particularly upon challenge with different and multiple inflammatory stimuli. Interferons (IFNs potentiate macrophage activation and act in concert with exogenous inflammatory mediators such as toll-like receptor (TLR ligands to amplify inflammatory responses. A recent study found that IFN-γ enhanced lipopolysaccharide-induced PGD2 production, indicating a role of IFNs in PGD2 regulation. Here, we demonstrate that TLR-induced PGD2 production by macrophages was significantly potentiated by signaling common to IFN-β and IFN-γ in a signal transducer and activators of transcription (STAT1-dependent mechanism. Such potentiation by IFNs was also observed for PGE2 production, despite the differential regulation of PGD synthase and PGE synthase isoforms mediating PGD2 and PGE2 production under inflammatory conditions. Mechanistic analysis revealed that the generation of intracellular reactive oxygen species (ROS was remarkably potentiated by IFNs and required for PGD2 production, but was nullified by STAT1 deficiency. Conversely, the regulation of STAT1 level and activity by IFNs was largely dependent on ROS levels. Using a model of zymosan-induced peritonitis, the relevance of this finding in vivo was supported by marked inhibition of PGD2 and ROS produced in peritoneal exudate cells by STAT1 deficiency. Collectively, our findings suggest that IFNs, although not activating on their own, are potent amplifiers of TLR-induced PGD2 production via positive-feedback regulation between STAT1 and ROS.

  12. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine

    International Nuclear Information System (INIS)

    Zhao Ping; Cao Jie; Zhao Lanjuan; Qin Zhaolin; Ke Jinshan; Pan Wei; Ren Hao; Yu Jianguo; Qi Zhongtian

    2005-01-01

    The nucleocapsid (N) protein of SARS-coronavirus (SARS-CoV) is the key protein for the formation of the helical nucleocapsid during virion assembly. This protein is believed to be more conserved than other proteins of the virus, such as spike and membrane glycoprotein. In this study, the N protein of SARS-CoV was expressed in Escherichia coli DH5α and identified with pooled sera from patients in the convalescence phase of SARS. A plasmid pCI-N, encoding the full-length N gene of SARS-CoV, was constructed. Expression of the N protein was observed in COS1 cells following transfection with pCI-N. The immune responses induced by intramuscular immunization with pCI-N were evaluated in a murine model. Serum anti-N immunoglobulins and splenocytes proliferative responses against N protein were observed in immunized BALB/c mice. The major immunoglobulin G subclass recognizing N protein was immunoglobulin G2a, and stimulated splenocytes secreted high levels of gamma interferon and IL-2 in response to N protein. More importantly, the immunized mice produced strong delayed-type hypersensitivity (DTH) and CD8 + CTL responses to N protein. The study shows that N protein of SARS-CoV not only is an important B cell immunogen, but also can elicit broad-based cellular immune responses. The results indicate that the N protein may be of potential value in vaccine development for specific prophylaxis and treatment against SARS

  13. The Role of Interferon Antagonist, Non-Structural Proteins in the Pathogenesis and Emergence of Arboviruses

    Directory of Open Access Journals (Sweden)

    Samantha S. Soldan

    2011-06-01

    Full Text Available A myriad of factors favor the emergence and re-emergence of arthropod-borne viruses (arboviruses, including migration, climate change, intensified livestock production, an increasing volume of international trade and transportation, and changes to ecosystems (e.g., deforestation and loss of biodiversity. Consequently, arboviruses are distributed worldwide and represent over 30% of all emerging infectious diseases identified in the past decade. Although some arboviral infections go undetected or are associated with mild, flu-like symptoms, many are important human and veterinary pathogens causing serious illnesses such as arthritis, gastroenteritis, encephalitis and hemorrhagic fever and devastating economic loss as a consequence of lost productivity and high mortality rates among livestock. One of the most consistent molecular features of emerging arboviruses, in addition to their near exclusive use of RNA genomes, is the inclusion of viral, non-structural proteins that act as interferon antagonists. In this review, we describe these interferon antagonists and common strategies that arboviruses use to counter the host innate immune response. In addition, we discuss the complex interplay between host factors and viral determinants that are associated with virus emergence and re-emergence, and identify potential targets for vaccine and anti-viral therapies.

  14. Characteristics of the interferon regulatory factor 5 (IRF5) and its expression in response to LCDV and poly I:C challenges in Japanese flounder, Paralichthys olivaceus.

    Science.gov (United States)

    Hu, Guo-Bin; Lou, Hui-Min; Dong, Xian-Zhi; Liu, Qiu-Ming; Zhang, Shi-Cui

    2012-10-01

    Interferon regulatory factor 5 (IRF5) has been identified as a key transcriptional mediator regulating expression of both type I interferons (IFNs) and proinflammatory cytokines. In this study, the cDNA and genomic sequences of IRF5 were isolated from Japanese flounder, Paralichthys olivaceus. The gene of Japanese flounder (Jf)IRF5 is 7326 bp long, contains 9 exons and 8 introns and encodes a putative protein of 472 amino acids. The predicted protein sequence shares 61.1-81.9% identity to fish IRF5 and possesses a DNA-binding domain (DBD), a middle region (MR), an IRF association domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) conserved in all known IRF5s. Phylogenetic analysis clustered it into the teleost IRF5 subgroup within vertebrate IRF5 group. JfIRF5 mRNA was constitutively expressed in all tissues examined, with higher levels observed in the gills and head kidney. Gene expression of JfIRF5 was analyzed over a 7-day time course in the gills, head kidney, spleen and muscle of Japanese flounders challenged with lymphocystis disease virus (LCDV) and polyinosinic:polycytidylic acid (poly I:C). The data showed that JfIRF5 expression was slightly up-regulated by LCDV, but its induction time was clearly moved up; in contrast, the induction upon poly I:C challenge started not earlier than day 2 post-injection and was stronger and more persistent with a later peak time in all four organs. The late and long-lasting inductive expression of JfIRF5 following poly I:C challenge suggests that it might be an interferon stimulated gene (ISG), the induction of which is driven by poly I:C-induced type I IFNs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lili; Yang, Min; Ding, Wei [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Zhang, Minmin [Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China); Niu, Jianying [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Qiao, Zhongdong [School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240 (China); Gu, Yong, E-mail: yonggu@vip.163.com [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China)

    2016-08-01

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.

  16. Food protein induced enterocolitis syndrome caused by rice beverage.

    Science.gov (United States)

    Caminiti, Lucia; Salzano, Giuseppina; Crisafulli, Giuseppe; Porcaro, Federica; Pajno, Giovanni Battista

    2013-05-14

    Food protein-induced enterocolitis syndrome (FPIES) is an uncommon and potentially severe non IgE-mediated gastrointestinal food allergy. It is usually caused by cow's milk or soy proteins, but may also be triggered by ingestion of solid foods. The diagnosis is made on the basis of clinical history and symptoms. Management of acute phase requires fluid resuscitation and intravenous steroids administration, but avoidance of offending foods is the only effective therapeutic option.Infant with FPIES presented to our emergency department with vomiting, watery stools, hypothension and metabolic acidosis after ingestion of rice beverage. Intravenous fluids and steroids were administered with good clinical response. Subsequently, a double blind placebo control food challenge (DBPCFC) was performed using rice beverage and hydrolyzed formula (eHF) as placebo. The "rice based formula" induced emesis, diarrhoea and lethargy. Laboratory investigations reveal an increase of absolute count of neutrophils and the presence of faecal eosinophils. The patient was treated with both intravenous hydration and steroids. According to Powell criteria, oral food challenge was considered positive and diagnosis of FPIES induced by rice beverage was made. Patient was discharged at home with the indication to avoid rice and any rice beverage as well as to reintroduce hydrolyzed formula. A case of FPIES induced by rice beverage has never been reported. The present case clearly shows that also beverage containing rice proteins can be responsible of FPIES. For this reason, the use of rice beverage as cow's milk substitute for the treatment of non IgE-mediated food allergy should be avoided.

  17. Regulation of CD95 expression and CD95-mediated cell death by interferon-gamma in acute lymphoblastic leukemia with chromosomal translocation t(4;11).

    Science.gov (United States)

    Dörrie, J; Schuh, W; Keil, A; Bongards, E; Greil, J; Fey, G H; Zunino, S J

    1999-10-01

    The regulatory effects of IFNgamma on CD95 expression and CD95-mediated cell death were investigated in three high-risk pro-B acute lymphoblastic leukemia (ALL) lines that carry the chromosomal translocation t(4;11)(q21;q23). These leukemias are characteristically refractory to conventional chemotherapeutic treatments operating through the induction of apoptosis. However, the mechanisms leading to increased cell survival and resistance to cell death in these leukemias are largely unknown. Interferon-gamma (IFNgamma), a potent inhibitor of hematopoiesis, acts in part by upregulating CD95 and sensitizing cells to CD95-induced apoptosis. The t(4;11) lines SEM, RS4;11, and MV4;11 expressed low levels of CD95, but were completely resistant to CD95-mediated death. Addition of IFNgamma markedly upregulated CD95 expression in SEM (8-9-fold), RS4;11 (2-3-fold), and MV4;11 (2-3-fold) lines. However, after treatment with IFNgamma, only an 11% increase in sensitivity to CD95-mediated cell death was observed in SEM cells, whereas RS4;11 and MV4;11 cells remained resistant. Cycloheximide, but not actinomycin D or brefeldin A, increased CD95-specific cell death only in IFNgamma-treated RS4;11 cells by approximately 12%. Abundant levels of Bcl-2 and Bcl-XL, known to inhibit CD95-signaling in some cells, were present suggesting a possible role for both molecules in the resistance to CD95-mediated cell death. Resistance of the leukemic blasts to CD95-mediated cell death and the failure of IFNgamma to substantially sensitize the CD95-signaling pathway may contribute to the highly malignant phenotype of pro-B ALL with translocation t(4;11).

  18. Negative Role of RIG-I Serine 8 Phosphorylation in the Regulatin of Interferon-beta Production

    Energy Technology Data Exchange (ETDEWEB)

    E Nistal-Villan; M Gack; G Martinez-Delgado; N Maharaj; K Inn; H Yang; R Wang; A Aggarwal; J Jung; A Garcia-Sastre

    2011-12-31

    RIG-I (retinoic acid-inducible gene I) and TRIM25 (tripartite motif protein 25) have emerged as key regulatory factors to induce interferon (IFN)-mediated innate immune responses to limit viral replication. Upon recognition of viral RNA, TRIM25 E3 ligase binds the first caspase recruitment domain (CARD) of RIG-I and subsequently induces lysine 172 ubiquitination of the second CARD of RIG-I, which is essential for the interaction with downstream MAVS/IPS-1/CARDIF/VISA and, thereby, IFN-beta mRNA production. Although ubiquitination has emerged as a major factor involved in RIG-I activation, the potential contribution of other post-translational modifications, such as phosphorylation, to the regulation of RIG-I activity has not been addressed. Here, we report the identification of serine 8 phosphorylation at the first CARD of RIG-I as a negative regulatory mechanism of RIG-I-mediated IFN-beta production. Immunoblot analysis with a phosphospecific antibody showed that RIG-I serine 8 phosphorylation steady-state levels were decreased upon stimulation of cells with IFN-beta or virus infection. Substitution of serine 8 in the CARD RIG-I functional domain with phosphomimetic aspartate or glutamate results in decreased TRIM25 binding, RIG-I ubiquitination, MAVS binding, and downstream signaling. Finally, sequence comparison reveals that only primate species carry serine 8, whereas other animal species carry an asparagine, indicating that serine 8 phosphorylation may represent a primate-specific regulation of RIG-I activation. Collectively, these data suggest that the phosphorylation of RIG-I serine 8 operates as a negative switch of RIG-I activation by suppressing TRIM25 interaction, further underscoring the importance of RIG-I and TRIM25 connection in type I IFN signal transduction.

  19. Targeted induction of interferon-λ in humanized chimeric mouse liver abrogates hepatotropic virus infection.

    Science.gov (United States)

    Nakagawa, Shin-ichiro; Hirata, Yuichi; Kameyama, Takeshi; Tokunaga, Yuko; Nishito, Yasumasa; Hirabayashi, Kazuko; Yano, Junichi; Ochiya, Takahiro; Tateno, Chise; Tanaka, Yasuhito; Mizokami, Masashi; Tsukiyama-Kohara, Kyoko; Inoue, Kazuaki; Yoshiba, Makoto; Takaoka, Akinori; Kohara, Michinori

    2013-01-01

    The interferon (IFN) system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV) and hepatitis B virus (HBV). This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC). Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs) in the livers and sera of these humanized chimeric mice. Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level) of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic) tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1), suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.

  20. Zika Virus Antagonizes Type I Interferon Responses during Infection of Human Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    James R Bowen

    2017-02-01

    Full Text Available Zika virus (ZIKV is an emerging mosquito-borne flavivirus that is causally linked to severe neonatal birth defects, including microcephaly, and is associated with Guillain-Barre syndrome in adults. Dendritic cells (DCs are an important cell type during infection by multiple mosquito-borne flaviviruses, including dengue virus, West Nile virus, Japanese encephalitis virus, and yellow fever virus. Despite this, the interplay between ZIKV and DCs remains poorly defined. Here, we found human DCs supported productive infection by a contemporary Puerto Rican isolate with considerable variability in viral replication, but not viral binding, between DCs from different donors. Historic isolates from Africa and Asia also infected DCs with distinct viral replication kinetics between strains. African lineage viruses displayed more rapid replication kinetics and infection magnitude as compared to Asian lineage viruses, and uniquely induced cell death. Infection of DCs with both contemporary and historic ZIKV isolates led to minimal up-regulation of T cell co-stimulatory and MHC molecules, along with limited secretion of inflammatory cytokines. Inhibition of type I interferon (IFN protein translation was observed during ZIKV infection, despite strong induction at the RNA transcript level and up-regulation of other host antiviral proteins. Treatment of human DCs with RIG-I agonist potently restricted ZIKV replication, while type I IFN had only modest effects. Mechanistically, we found all strains of ZIKV antagonized type I IFN-mediated phosphorylation of STAT1 and STAT2. Combined, our findings show that ZIKV subverts DC immunogenicity during infection, in part through evasion of type I IFN responses, but that the RLR signaling pathway is still capable of inducing an antiviral state, and therefore may serve as an antiviral therapeutic target.

  1. Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance

    Science.gov (United States)

    Quiñones, Mar; Al-Massadi, Omar; Gallego, Rosalía; Fernø, Johan; Diéguez, Carlos; López, Miguel; Nogueiras, Ruben

    2015-01-01

    Objective Glucagon receptor antagonists and humanized glucagon antibodies are currently studied as promising therapies for obesity and type II diabetes. Among its variety of actions, glucagon reduces food intake, but the molecular mechanisms mediating this effect as well as glucagon resistance are totally unknown. Methods Glucagon and adenoviral vectors were administered in specific hypothalamic nuclei of lean and diet-induced obese rats. The expression of neuropeptides controlling food intake was performed by in situ hybridization. The regulation of factors of the glucagon signaling pathway was assessed by western blot. Results The central injection of glucagon decreased feeding through a hypothalamic pathway involving protein kinase A (PKA)/Ca2+-calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK)-dependent mechanism. More specifically, the central injection of glucagon increases PKA activity and reduces protein levels of CaMKKβ and its downstream target phosphorylated AMPK in the hypothalamic arcuate nucleus (ARC). Consistently, central glucagon significantly decreased AgRP expression. Inhibition of PKA and genetic activation of AMPK in the ARC blocked glucagon-induced anorexia in lean rats. Genetic down-regulation of glucagon receptors in the ARC stimulates fasting-induced hyperphagia. Although glucagon was unable to decrease food intake in DIO rats, glucagon sensitivity was restored after inactivation of CaMKKβ, specifically in the ARC. Thus, glucagon decreases food intake acutely via PKA/CaMKKβ/AMPK dependent pathways in the ARC, and CaMKKβ mediates its obesity-induced hypothalamic resistance. Conclusions This work reveals the molecular underpinnings by which glucagon controls feeding that may lead to a better understanding of disease states linked to anorexia and cachexia. PMID:26909312

  2. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress.

    Science.gov (United States)

    Liang, Jingjing; Sagum, Cari A; Bedford, Mark T; Sidhu, Sachdev S; Sudol, Marius; Han, Ziying; Harty, Ronald N

    2017-01-01

    Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.

  3. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress.

    Directory of Open Access Journals (Sweden)

    Jingjing Liang

    2017-01-01

    Full Text Available Ebola (EBOV and Marburg (MARV viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3, a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs, as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA. Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.

  4. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus.

    Science.gov (United States)

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU.

  5. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus.

    Directory of Open Access Journals (Sweden)

    Barbara Holzer

    Full Text Available The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV. NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus. We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU.

  6. Coordinate viral induction of tumor necrosis factor α and interferon β in human B cells and monocytes

    International Nuclear Information System (INIS)

    Goldfeld, A.E.; Maniatis, T.

    1989-01-01

    Human tumor necrosis factor α (TNF-α) gene expression can be induced primarily in cells of the monocyte/macrophage lineage by a variety of inducers, including lipopolysaccharide, phorbol esters such as phorbol 12-myristate 13-acetate, and virus or synthetic double-stranded RNA [poly(I)·poly(C)]. In this paper the authors show that the TNF-α gene also responds to virus and phorbol 12-myristate 13-acetate in B lymphocytes and that virus is the most potent inducer of TNF-α mRNA in both monocyte and B-cell lines. In addition, they show that viral infection coinduces the expression of TNF-α and interferon β mRNA and that viral induction of both genes is blocked by the kinase inhibitor 2-aminopurine. Inhibition of protein synthesis with cycloheximide had no effect on mRNA expression of the genes in one of three cell lines tested (U937) but blocked the viral induction of both genes in another (Namalwa). Thus, the regulatory factors required for mRNA induction of both genes are present prior to the addition of virus in U937 but not in Namalwa cells. However, in a third cell line (JY), cycloheximide blocked viral induction of the interferon β gene but not the TNF-α gene. Taken together, these observations suggest that viral induction of TNF-α and interferon β gene expression may involve overlapping pathways with both common and distinct regulatory factors

  7. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo.

    Science.gov (United States)

    Douam, Florian; Soto Albrecht, Yentli E; Hrebikova, Gabriela; Sadimin, Evita; Davidson, Christian; Kotenko, Sergei V; Ploss, Alexander

    2017-08-15

    role of type III interferon (IFN)-mediated signaling, a host immune defense mechanism, in controlling YFV-17D infection and attenuation in different mouse models. We uncovered a critical role of type III IFN-mediated signaling in preserving the integrity of the blood-brain barrier and preventing viral brain invasion. Type III IFN also played a major role in regulating the induction of a potent but balanced immune response that prevented viral evasion of the host immune system. An improved understanding of the complex mechanisms regulating YFV-17D attenuation will provide insights into the key virus-host interactions that regulate host immune responses and infection outcomes as well as open novel avenues for the development of innovative vaccine strategies. Copyright © 2017 Douam et al.

  8. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng-Hou [NO.3 People' s Hospital affiliated to Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 201900 (China); The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Wu, Ying-Li [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Meng [Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China); Liu, Chuan-Xu; Wang, Li-Shun [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Guo-Qiang, E-mail: chengq@shsmu.edu.cn [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China)

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  9. Type I Interferon in the Pathogenesis of Lupus

    Science.gov (United States)

    Crow, Mary K.

    2014-01-01

    Investigations of patients with systemic lupus erythematosus (SLE) have applied insights from studies of the innate immune response to define type I interferon (IFN-I), with IFN-α the dominant mediator, as central to the pathogenesis of this prototype systemic autoimmune disease. Genetic association data identify regulators of nucleic acid degradation and components of TLR-independent, endosomal TLR-dependent, and IFN-I signaling pathways as contributors to lupus disease susceptibility. Together with a gene expression signature characterized by IFNI-induced gene transcripts in lupus blood and tissue, those data support the conclusion that many of the immunologic and pathologic features of this disease are a consequence of a persistent self-directed immune reaction driven by IFN-I and mimicking a sustained anti-virus response. This expanding knowledge of the role of IFN-I and the innate immune response suggests candidate therapeutic targets that are being tested in lupus patients. PMID:24907379

  10. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  11. Interferon induction in bovine and feline monolayer cultures by four bluetongue virus serotypes.

    OpenAIRE

    Fulton, R W; Pearson, N J

    1982-01-01

    The interferon inducing ability of bluetongue viruses was studied in bovine and feline monolayer cultures inoculated with each of four bluetongue virus serotypes. Interferon was assayed by a plaque reduction method in monolayer cultures with vesicular stomatitis virus as challenge virus. Interferon was produced by bovine turbinate, Georgia bovine kidney, and Crandell feline kidney monolayer cultures in response to bluetongue virus serotypes 10, 11, 13 and 17. The antiviral substances produced...

  12. 5HT(4) agonists inhibit interferon-gamma-induced MHC class II and B7 costimulatory molecules expression on cultured astrocytes

    NARCIS (Netherlands)

    Zeinstra, Esther M.; Wilczak, Nadine; Wilschut, Jan C.; Glazenburg, Lisa; Chesik, Daniel; Kroese, Frans G. M.; De Keyser, Jacques

    2006-01-01

    A failure of tight control of MHC class II expression on astrocytes may play a role in the development of autoimmune responses in multiple sclerosis. The 5-HT4 serotonin receptor agonists cisapride and prucalopride, at concentrations between 10(-10) M and 10(-8) M, reduced interferon-gamma-induced

  13. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    International Nuclear Information System (INIS)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy; Suresh, Subramaniyam; Gupta, Priyanka; Vijayakaran, Karunakaran; Sankar, Palanisamy; Kurade, Nitin Pandurang; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-01-01

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91 st day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOS and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E max of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce arsenic-induced

  14. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    Energy Technology Data Exchange (ETDEWEB)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy; Suresh, Subramaniyam; Gupta, Priyanka; Vijayakaran, Karunakaran; Sankar, Palanisamy; Kurade, Nitin Pandurang; Mishra, Santosh Kumar; Sarkar, Souvendra Nath, E-mail: snsarkar1911@rediffmail.com

    2014-10-01

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91{sup st} day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOS and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E{sub max} of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce arsenic-induced

  15. TOX3 (TNRC9) overexpression in bladder cancer cells decreases cellular proliferation and triggers an interferon-like response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtröder, Karin; Mansilla, Francisco; Andersen, Lars Dyrskjøt

    2013-01-01

    Background Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+-dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...... urothelium. Microarray expression profiling of human bladder cancer cells overexpressing TOX3 followed by Pathway analysis showed that TOX3 overexpression mainly affected the Interferon Signaling Pathway. TOX3 upregulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 overexpressing...

  16. Interferon-alpha-induced destructive thyroiditis followed by Graves' disease in a patient with chronic hepatitis C: a case report.

    Science.gov (United States)

    Kim, Bu Kyung; Choi, Young Sik; Park, Yo Han; Lee, Sang Uk

    2011-12-01

    Interferon-induced thyroiditis (IIT) is a major clinical problem for patients receiving interferon-alpha (IFN-α) therapy. But, destructive thyroiditis followed by Graves' disease associated with IFN-α therapy is very rarely reported. Herein, we report a rare case of pegylated IFN-α (pegIFN-α) induced destructive thyroiditis followed by Graves' disease in a patient with HCV infection. A 31-yr-old woman suffered from chronic active hepatitis C and was treated with pegIFN-α and ribavirin for 12 months. Results of a thyroid function test and autoantibody levels were normal before IFN-α therapy was initiated. Destructive thyrotoxicosis appeared seven months after the initiation of IFN-α therapy, followed by Graves' thyrotoxicosis two months after the cessation of therapy. The diagnoses of destructive thyroiditis and Graves' disease were confirmed by the presence of TSH receptor antibodies in addition to Tc-99m scintigraphy findings. The patient's antithyroglobulin antibody titer increased gradually during IFN-α therapy and remained weakly positive after IFN-α therapy was discontinued.

  17. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    DEFF Research Database (Denmark)

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...... control or virus-induced T-cell-dependent inflammation. Thus, MIP-1alpha is not mandatory for T-cell-mediated antiviral immunity....

  18. NOX4 mediates BMP4-induced upregulation of TRPC1 and 6 protein expressions in distal pulmonary arterial smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Qian Jiang

    Full Text Available Our previous studies demonstrated that bone morphogenetic protein 4 (BMP4 mediated, elevated expression of canonical transient receptor potential (TRPC largely accounts for the enhanced proliferation in pulmonary arterial smooth muscle cells (PASMCs. In the present study, we sought to determine the signaling pathway through which BMP4 up-regulates TRPC expression.We employed recombinant human BMP4 (rhBMP4 to determine the effects of BMP4 on NADPH oxidase 4 (NOX4 and reactive oxygen species (ROS production in rat distal PASMCs. We also designed small interfering RNA targeting NOX4 (siNOX4 and detected whether NOX4 knockdown affects rhBMP4-induced ROS, TRPC1 and 6 expression, cell proliferation and intracellular Ca2+ determination in PASMCs.In rhBMP4 treated rat distal PASMCs, NOX4 expression was (226.73±11.13 %, and the mean ROS level was (123.65±1.62 % of that in untreated control cell. siNOX4 transfection significantly reduced rhBMP4-induced elevation of the mean ROS level in PASMCs. Moreover, siNOX4 transfection markedly reduced rhBMP4-induced elevation of TRPC1 and 6 proteins, basal [Ca2+]i and SOCE. Furthermore, compared with control group (0.21±0.001, the proliferation of rhBMP4 treated cells was significantly enhanced (0.41±0.001 (P<0.01. However, such increase was attenuated by knockdown of NOX4. Moreover, external ROS (H2O2 100 µM, 24 h rescued the effects of NOX4 knockdown, which included the declining of TRPC1 and 6 expression, basal intracellular calcium concentration ([Ca2+]i and store-operated calcium entry (SOCE, suggesting that NOX4 plays as an important mediator in BMP4-induced proliferation and intracellular calcium homeostasis.These results suggest that BMP4 may increase ROS level, enhance TRPC1 and 6 expression and proliferation by up-regulating NOX4 expression in PASMCs.

  19. Understanding the molecular mechanism(s) of hepatitis C virus (HCV) induced interferon resistance.

    Science.gov (United States)

    Qashqari, Hanadi; Al-Mars, Amany; Chaudhary, Adeel; Abuzenadah, Adel; Damanhouri, Ghazi; Alqahtani, Mohammed; Mahmoud, Maged; El Sayed Zaki, Maysaa; Fatima, Kaneez; Qadri, Ishtiaq

    2013-10-01

    Hepatitis C virus (HCV) is one of the foremost causes of chronic liver disease affecting over 300 million globally. HCV contains a positive-stranded RNA of ~9600 nt and is surrounded by the 5' and 3'untranslated regions (UTR). The only successful treatment regimen includes interferon (IFN) and ribavirin. Like many other viruses, HCV has also evolved various mechanisms to circumvent the IFN response by blocking (1) downstream signaling actions via STAT1, STAT2, IRF9 and JAK-STAT pathways and (2) repertoire of IFN Stimulatory Genes (ISGs). Several studies have identified complex host demographic and genetic factors as well as viral genetic heterogeneity associated with outcomes of IFN therapy. The genetic predispositions of over 2000 ISGS may render the patients to become resistant, thus identification of such parameters within a subset of population are necessary for management corollary. The ability of various HCV genotypes to diminish IFN antiviral responses plays critical role in the establishment of chronic infection at the acute stage of infection, thus highlighting importance of the resistance in HCV treated groups. The recently defined role of viral protein such as C, E2, NS3/NS4 and NS5A proteins in inducing the IFN resistance are discussed in this article. How the viral and host genetic composition and epistatic connectivity among polymorphic genomic sites synchronizes the evolutionary IFN resistance trend remains under investigation. However, these signals may have the potential to be employed for accurate prediction of therapeutic outcomes. In this review article, we accentuate the significance of host and viral components in IFN resistance with the aim to determine the successful outcome in patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Generation of mutant Uukuniemi viruses lacking the nonstructural protein NSs by reverse genetics indicates that NSs is a weak interferon antagonist.

    Science.gov (United States)

    Rezelj, Veronica V; Överby, Anna K; Elliott, Richard M

    2015-05-01

    Uukuniemi virus (UUKV) is a tick-borne member of the Phlebovirus genus (family Bunyaviridae) and has been widely used as a safe laboratory model to study aspects of bunyavirus replication. Recently, a number of new tick-borne phleboviruses have been discovered, some of which, like severe fever with thrombocytopenia syndrome virus and Heartland virus, are highly pathogenic in humans. UUKV could now serve as a useful comparator to understand the molecular basis for the different pathogenicities of these related viruses. We established a reverse-genetics system to recover UUKV entirely from cDNA clones. We generated two recombinant viruses, one in which the nonstructural protein NSs open reading frame was deleted from the S segment and one in which the NSs gene was replaced with green fluorescent protein (GFP), allowing convenient visualization of viral infection. We show that the UUKV NSs protein acts as a weak interferon antagonist in human cells but that it is unable to completely counteract the interferon response, which could serve as an explanation for its inability to cause disease in humans. Uukuniemi virus (UUKV) is a tick-borne phlebovirus that is apathogenic for humans and has been used as a convenient model to investigate aspects of phlebovirus replication. Recently, new tick-borne phleboviruses have emerged, such as severe fever with thrombocytopenia syndrome virus in China and Heartland virus in the United States, that are highly pathogenic, and UUKV will now serve as a comparator to aid in the understanding of the molecular basis for the virulence of these new viruses. To help such investigations, we have developed a reverse-genetics system for UUKV that permits manipulation of the viral genome. We generated viruses lacking the nonstructural protein NSs and show that UUKV NSs is a weak interferon antagonist. In addition, we created a virus that expresses GFP and thus allows convenient monitoring of virus replication. These new tools represent a

  1. AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA.

    Science.gov (United States)

    Nakaya, Yuki; Lilue, Jingtao; Stavrou, Spyridon; Moran, Eileen A; Ross, Susan R

    2017-07-05

    Cytosolic DNAs derived from retrotransposons serve as pathogen-associated molecular patterns for pattern recognition receptors (PRRs) that stimulate the induction of interferons (IFNs) and other cytokines, leading to autoimmune disease. Cyclic GMP-AMP synthase is one PRR that senses retrotransposon DNA, activating type I IFN responses through the stimulator of IFN genes (STING). Absent in melanoma 2 (AIM2)-like receptors (ALRs) have also been implicated in these pathways. Here we show that the mouse ALR IFI205 senses cytosolic retrotransposon DNA independently of cyclic GMP-AMP production. AIM2 antagonizes IFI205-mediated IFN induction activity by sequestering it from STING. We also found that the complement of genes located in the ALR locus in C57BL/6 and AIM2 knockout mice are different and unique, which has implications for interpretation of the sensing of pathogens in different mouse strains. Our data suggest that members of the ALR family are critical to the host IFN response to endogenous DNA. IMPORTANCE Autoimmune diseases like Aicardi-Goutières syndrome and lupus erythematosus arise when cells of the immune system become activated and attack host cells and tissues. We found that DNA generated by endogenous retroviruses and retroelements in inbred mice and mouse cells is recognized by several host proteins found in macrophages that are members of the ALR family and that these proteins both suppress and activate the pathways leading to the generation of cytokines and IFNs. We also show that there is great genetic diversity between different inbred mouse strains in the ALR genes, which might contribute to differential susceptibility to autoimmunity. Understanding how immune cells become activated is important to the control of disease. Copyright © 2017 Nakaya et al.

  2. Oxygen-glucose deprivation preconditioning protects neurons against oxygen-glucose deprivation/reperfusion induced injury via bone morphogenetic protein-7 mediated ERK, p38 and Smad signalling pathways.

    Science.gov (United States)

    Guan, Junhong; Du, Shaonan; Lv, Tao; Qu, Shengtao; Fu, Qiang; Yuan, Ye

    2016-01-01

    Bone morphogenetic protein (BMP)-7 mediated neuroprotective effect of cerebral ischemic preconditioning (IPC) has been studied in an ischemic animal model, but the underlying cellular mechanisms have not been clearly clarified. In this study, primary cortical neurons and the SH-SY5Y cell line were used to investigate the role of BMP-7 and its downstream signals in the neuroprotective effects of oxygen-glucose deprivation preconditioning (OGDPC). Immunocytochemistry was used to detect the expression of neurofilament in neurons. MTT and lactate dehydrogenase activity assays were used to measure the cytotoxicity. Western blot was used to detect the protein expression of BMP-7 and downstream signals. BMP inhibitor, mitogen-activated protein kinase inhibitors, Smad inhibitor and siRNA of Smad 1 were used to investigate the role of corresponding signalling pathways in the OGDPC. Results showed that OGDPC-induced overexpression of BMP-7 in primary cortical neurons and SH-SY5Y cells. Both of endogenous and exogenous BMP-7 could replicate the neuroprotective effects seen in OGDPC pretreatment. In addition, extracellular regulated protein kinases, p38 and Smad signalling pathway were found to be involved in the neuroprotective effects mediated by OGDPC via BMP-7. This study primarily reveals the cellular mechanisms of the neuroprotection mediated by OGDPC, and provides evidence for better understanding of this intrinsic factor against ischemia. © 2015 Wiley Publishing Asia Pty Ltd.

  3. Hepatitis E virus persists in the presence of a type III interferon response.

    Science.gov (United States)

    Yin, Xin; Li, Xinlei; Ambardekar, Charuta; Hu, Zhimin; Lhomme, Sébastien; Feng, Zongdi

    2017-05-01

    The RIG-I-like RNA helicase (RLR)-mediated interferon (IFN) response plays a pivotal role in the hepatic antiviral immunity. The hepatitis A virus (HAV) and the hepatitis C virus (HCV) counter this response by encoding a viral protease that cleaves the mitochondria antiviral signaling protein (MAVS), a common signaling adaptor for RLRs. However, a third hepatotropic RNA virus, the hepatitis E virus (HEV), does not appear to encode a functional protease yet persists in infected cells. We investigated HEV-induced IFN responses in human hepatoma cells and primary human hepatocytes. HEV infection resulted in persistent virus replication despite poor spread. This was companied by a type III IFN response that upregulated multiple IFN-stimulated genes (ISGs), but type I IFNs were barely detected. Blocking type III IFN production or signaling resulted in reduced ISG expression and enhanced HEV replication. Unlike HAV and HCV, HEV did not cleave MAVS; MAVS protein size, mitochondrial localization, and function remained unaltered in HEV-replicating cells. Depletion of MAVS or MDA5, and to a less extent RIG-I, also diminished IFN production and increased HEV replication. Furthermore, persistent activation of the JAK/STAT signaling rendered infected cells refractory to exogenous IFN treatment, and depletion of MAVS or the receptor for type III IFNs restored the IFN responsiveness. Collectively, these results indicate that unlike other hepatotropic RNA viruses, HEV does not target MAVS and its persistence is associated with continuous production of type III IFNs.

  4. Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression.

    Science.gov (United States)

    Yao, Shutong; Zong, Chuanlong; Zhang, Ying; Sang, Hui; Yang, Mingfeng; Jiao, Peng; Fang, Yongqi; Yang, Nana; Song, Guohua; Qin, Shucun

    2013-01-01

    This study was to explore whether activating transcription factor 6 (ATF6), an important sensor to endoplasmic reticulum (ER) stress, would mediate oxidized low-density lipoprotein (ox-LDL)- induced cholesterol accumulation and apoptosis in cultured macrophages and the underlying molecular mechanisms. Intracellular lipid droplets and total cholesterol levels were assayed by oil red O staining and enzymatic colorimetry, respectively. Cell viability and apoptosis were determined using MTT assay and AnnexinV-FITC apoptosis detection kit, respectively. The nuclear translocation of ATF6 in cells was detected by immunofluorescence analysis. Protein and mRNA levels were examined by Western blot analysis and real time-PCR, respectively. ATF6 siRNA was transfected to RAW264.7 cells by lipofectamin. Exposure of cells to ox-LDL induced glucose-regulated protein 78 (GRP78). C/EBP homologous protein (CHOP), a key-signaling component of ER stress-induced apoptosis, was up-regulated in ox-LDL-treated cells. ATF6, a factor that positively regulates CHOP expression, was activated by ox-LDL in a concentration- and time- dependent manner. The role of the ATF6-mediated ER stress pathway was further confirmed through the siRNA-mediated knockdown of ATF6, which attenuated ox-LDL-induced upregulation of CHOP, cholesterol accumulation and apoptosis in macrophages. In addition, the phosphorylation of double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), another factor that positively regulates CHOP expression, was induced in the presence of ox-LDL, and PERK-specific siRNA also inhibited the ox-LDL-induced upregulation of CHOP and apoptosis in RAW264.7 cells. These results demonstrate that ER stress-related proteins, particularly ATF6 and its downstream molecule CHOP, are involved in ox-LDL-induced cholesterol accumulation and apoptosis in macrophages.

  5. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    Science.gov (United States)

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  6. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  7. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki; Hiyama, Taiki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan)

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  8. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis.

    Science.gov (United States)

    Wang, Jiao; Liu, Shu; Yin, Yancun; Li, Mingjin; Wang, Bo; Yang, Li; Jiang, Yangfu

    2015-03-01

    The anthraquinone compound rhein is a natural agent in the traditional Chinese medicine rhubarb. Preclinical studies demonstrate that rhein has anticancer activity. Treatment of a variety of cancer cells with rhein may induce apoptosis. Here, we report that rhein induces atypical unfolded protein response in breast cancer MCF-7 cells and hepatoma HepG2 cells. Rhein induces CHOP expression, eIF2α phosphorylation and caspase cleavage, while it does not induce glucose-regulated protein 78 (GRP78) expression in both MCF-7 and HepG2 cells. Meanwhile, rhein inhibits thapsigargin-induced GRP78 expression and X box-binding protein 1 splicing. In addition, rhein inhibits Akt phosphorylation and stimulates FOXO transactivation activity. Rhein induces Bim expression in MCF-7 and HepG2 cells, which can be abrogated by FOXO3a knockdown. Knockdown of FOXO3a or Bim abrogates rhein-induced caspase cleavage and apoptosis. The chemical chaperone 4-phenylbutyrate acid antagonizes the induction of FOXO activation, Bim expression and caspase cleavage by rhein, indicating that protein misfolding may be involved in triggering these deleterious effects. We conclude that FOXO3a-mediated up-regulation of Bim is a key mechanism underlying rhein-induced cancer cells apoptosis.

  9. Pulmonary abnormalities caused by interferon with or without herbal drug. CT and radiographic findings

    International Nuclear Information System (INIS)

    Ikezoe, Junpei; Kohno, Nobuaki; Johkoh, Takeshi; Kozuka, Takahiro; Kawase, Ichiro; Ebara, Hidemi; Kamisako, Toshinori; Adachi, Yukihiko.

    1995-01-01

    Chest radiographic and CT findings of acute diffuse interstitial lung disease due to interferon administration were reviewed. The subjects were 5 patients who were treated with interferon alone (n=4) or combined with traditional herbal drug treatment (n=one) for chronic hepatitis C. Respiratory symptoms consisted of cough (n=4), fever (n=4), dyspnea (n=3), and chest pain (n=one). CT findings were peripherally predominant non-segmental consolidation (n=3) with or without ground-glass opacities, and intralobular reticulation with ground-glass opacities (n=2). Neither honeycombing nor lung distortion was observed on CT. Chest radiographs showed airspace consolidation with or without ground-glass opacities (n=4) and reticulonodular lesions with ground-glass opacities (n=one). Although radiological findings of interferon-induced lung abnormalities were not uniform, it appears that these findings reflect lung hypersensitivity to interferon. Recognizing radiographic and CT findings of interferon-induced lung abnormalities is required because they are likely to occur associated with increasing use of this drug in the clinical setting. (N.K.)

  10. Pulmonary abnormalities caused by interferon with or without herbal drug. CT and radiographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Ikezoe, Junpei; Kohno, Nobuaki; Johkoh, Takeshi; Kozuka, Takahiro; Kawase, Ichiro [Osaka Univ. (Japan). Faculty of Medicine; Ebara, Hidemi; Kamisako, Toshinori; Adachi, Yukihiko

    1995-02-01

    Chest radiographic and CT findings of acute diffuse interstitial lung disease due to interferon administration were reviewed. The subjects were 5 patients who were treated with interferon alone (n=4) or combined with traditional herbal drug treatment (n=one) for chronic hepatitis C. Respiratory symptoms consisted of cough (n=4), fever (n=4), dyspnea (n=3), and chest pain (n=one). CT findings were peripherally predominant non-segmental consolidation (n=3) with or without ground-glass opacities, and intralobular reticulation with ground-glass opacities (n=2). Neither honeycombing nor lung distortion was observed on CT. Chest radiographs showed airspace consolidation with or without ground-glass opacities (n=4) and reticulonodular lesions with ground-glass opacities (n=one). Although radiological findings of interferon-induced lung abnormalities were not uniform, it appears that these findings reflect lung hypersensitivity to interferon. Recognizing radiographic and CT findings of interferon-induced lung abnormalities is required because they are likely to occur associated with increasing use of this drug in the clinical setting. (N.K.).

  11. Singlet oxygen-mediated formation of protein peroxides within cells

    International Nuclear Information System (INIS)

    Wright, A.; Policarpio, V.

    2003-01-01

    Full text: Singlet oxygen is generated by a number of cellular, enzymatic and chemical reactions as well as by exposure to UV, or visible light in the presence of a sensitizer; as a consequence this oxidant has been proposed as a damaging agent in a number of pathologies including photo-aging and skin cancer. Proteins are major targets for singlet oxygen as a result of their abundance and high rate constants for reaction. In this study it is shown that illumination of viable, sensitizer-loaded, THP-1 (human monocyte-like) cells with visible light gives rise to intra-cellular protein-derived peroxides. The peroxide yield increases with illumination time, requires the presence of the sensitizer, is enhanced in D 2 O, and decreased by azide; these data are consistent with the mediation of singlet oxygen. The concentration of peroxides detected, which is not affected by glucose or ascorbate loading of the cells, corresponds to ca. 1.5 nmoles peroxide per 10 6 cells using rose bengal as sensitizer, or 10 nmoles per mg cell protein and account for up to ca. 15% of the O 2 consumed by the cells. Similar peroxides have been detected on isolated cellular proteins exposed to light in the presence of rose bengal and oxygen. After cessation of illumination, the cellular protein peroxide levels decreases with t 1/2 ca. 4 hrs at 37 deg C, and this is associated with increased cell lysis. Decomposition of protein peroxides formed within cells, or on isolated cellular proteins, by metal ions, gives rise to radicals as detected by EPR spin trapping. These protein peroxides, and radicals derived from them, can inactivate key cellular enzymes (including caspases, GAPDH and glutathione reductase) and induce DNA base oxidation, strand breaks and DNA-protein cross-links. These studies demonstrate that exposure of intact cells to visible light in the presence of a sensitizer gives rise to novel long-lived, but reactive, intra-cellular protein peroxides via singlet oxygen-mediated

  12. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ginkel, Paul R. van; Yan, Michael B. [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Bhattacharya, Saswati [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Department of Pediatrics, University of Wisconsin, Madison, WI 53792 (United States); Polans, Arthur S., E-mail: aspolans@wisc.edu [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Kenealey, Jason D. [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602 (United States)

    2015-11-01

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cells to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death. - Highlights: • Natural products having low toxicity increase cytoplasmic calcium in cancer cells. • A G-protein/IP{sub 3} pathway mediates the release of calcium from the ER. • The elevation of intracellular calcium modulates p53 activity. • p53 and other Ca{sup 2+}-dependent pro-apoptotic pathways inhibit cancer cell growth.

  13. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells

    International Nuclear Information System (INIS)

    Ginkel, Paul R. van; Yan, Michael B.; Bhattacharya, Saswati; Polans, Arthur S.; Kenealey, Jason D.

    2015-01-01

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cells to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death. - Highlights: • Natural products having low toxicity increase cytoplasmic calcium in cancer cells. • A G-protein/IP 3 pathway mediates the release of calcium from the ER. • The elevation of intracellular calcium modulates p53 activity. • p53 and other Ca 2+ -dependent pro-apoptotic pathways inhibit cancer cell growth.

  14. Vagal modulation of high mobility group box-1 protein mediates electroacupuncture-induced cardioprotection in ischemia-reperfusion injury.

    Science.gov (United States)

    Zhang, Juan; Yong, Yue; Li, Xing; Hu, Yu; Wang, Jian; Wang, Yong-qiang; Song, Wei; Chen, Wen-ting; Xie, Jian; Chen, Xue-mei; Lv, Xin; Hou, Li-li; Wang, Ke; Zhou, Jia; Wang, Xiang-rui; Song, Jian-gang

    2015-10-26

    Excessive release of high mobility group box-1 (HMGB1) protein from ischemic cardiomyocytes activates inflammatory cascades and enhances myocardial injury after reperfusion. Here we report evidence that electroacupuncture of mice at Neiguan acupoints can inhibit the up-regulation of cardiac HMGB1 following myocardial ischemia and attenuate the associated inflammatory responses and myocardial injury during reperfusion. These benefits of electroacupuncture were partially reversed by administering recombinant HMGB1 to the mice, and further potentiated by administering anti-HMGB1 antibody. Electroacupuncture-induced inhibition of HMGB1 release was markedly reduced by unilateral vagotomy or administration of nicotinic receptor antagonist, but not by chemical sympathectomy. The cholinesterase inhibitor neostigmine mimicked the effects of electroacupuncture on HMGB1 release and myocardial ischemia reperfusion injury. Culture experiments with isolated neonatal cardiomyocytes showed that acetylcholine, but not noradrenaline, inhibited hypoxia-induced release of HMGB1 via a α7nAchR-dependent pathway. These results suggest that electroacupuncture acts via the vagal nerve and its nicotinic receptor-mediated signaling to inhibit HMGB1 release from ischemic cardiomyocytes. This helps attenuate pro-inflammatory responses and myocardial injury during reperfusion.

  15. Regulatory T cells and other lymphocyte subpopulations in patients with melanoma developing interferon-induced thyroiditis during high-dose interferon-α2b treatment.

    Science.gov (United States)

    Soldevila, Berta; Alonso, Núria; Martínez-Arconada, Maria J; Granada, Maria L; Boada, Aram; Vallejos, Virginia; Fraile, Manuel; Fernández-Sanmartín, Marco A; Pujol-Borrell, Ricardo; Puig-Domingo, Manel; Sanmartí, Anna; Martínez-Cáceres, Eva M

    2013-04-01

    One of the side effects of interferon-alpha therapy is interferon-induced thyroiditis (IIT). The role of lymphocyte subpopulations in IIT melanoma patients remains to be defined. Our objective was to assess different peripheral blood lymphocyte subpopulations, mainly regulatory T cells (Tregs), in melanoma patients who developed IIT. From 30 melanoma patients receiving high-dose interferon (HDI)-alpha 2b (IFN-α2b) treatment, those who developed IIT (IIT patients) were selected and compared with patients who did not develop IIT (Co-MM) and healthy controls (Co-H). Peripheral blood mononuclear cells were obtained before treatment (BT), mid-treatment (MT), end of treatment (ET), 24 weeks post-treatment and at appearance of IIT (TT). Nine patients developed IIT (30%): four Hashimoto's thyroiditis and five destructive thyroiditis. An increase in Tregs was observed in both melanoma groups during HDI treatment. A decrease in CD3(+) , NKT lymphocyte subpopulations and Bcl2 expression on B cells was also observed in both groups. However, no changes were observed in the percentage of CD4(+) , CD8(+) , CD3(+) γδ(+) , CD19(+) , transitional B cells (CD24(high) CD38(high) CD19(+) CD27(-) ), natural killer (NK), invariant NKT (iNKT) lymphocytes and Th1/Th2 balance when BT was compared with ET. At TT, IIT patients had a higher Tregs percentage than Co-MM (P = 0·012) and Co-H (P = 0·004), a higher iNKT percentage than Co-MM (P = 0·011), a higher transitional B cells percentage than Co-H (P = 0·015), a lower CD3(+) percentage than Co-H (P = 0·001) and a lower Bcl2 expression on B cells than Co-H (P < 0·001). Our results point to the immunomodulatory effects of IFN-α on different lymphocyte subpopulations and a possible role of Tregs in melanoma patients who developed IIT. © 2012 Blackwell Publishing Ltd.

  16. TOX3 (TNRC9) Over Expression in Bladder Cancer Cells Decreases Cellular Proliferation and Triggers an Interferon-Like Response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Mansilla Castaño, Francisco; Dyrskjøt, Lars

    2013-01-01

    Background: Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+ dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...... urothelium. Microarray expression profiling of human bladder cancer cells over expressing TOX3 followed by Pathway analysis showed that TOX3 Overexpression mainly affected the Interferon Signaling Pathway. TOX3 up regulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 over...

  17. Antiproliferative activity of recombinant human interferon-λ2 ...

    African Journals Online (AJOL)

    Antiproliferative activity of recombinant human interferon-λ2 expressed in stably ... The representing 26 kDa protein band of IFN-λ2 was detected by SDS-PAGE and ... The antiproliferative activity of hIFN-λ2 was determined by MTT assay.

  18. Interferoninduces cellular senescence in cutaneous human papilloma virus-transformed human keratinocytes by affecting p53 transactivating activity.

    Directory of Open Access Journals (Sweden)

    Maria V Chiantore

    Full Text Available Interferon (IFN-β inhibits cell proliferation and affects cell cycle in keratinocytes transformed by both mucosal high risk Human Papilloma Virus (HPV and cutaneous HPV E6 and E7 proteins. In particular, upon longer IFN-β treatments, cutaneous HPV38 expressing cells undergo senescence. IFN-β appears to induce senescence by upregulating the expression of the tumor suppressor PML, a well known IFN-induced gene. Indeed, experiments in gene silencing via specific siRNAs have shown that PML is essential in the execution of the senescence programme and that both p53 and p21 pathways are involved. IFN-β treatment leads to a modulation of p53 phosphorylation and acetylation status and a reduction in the expression of the p53 dominant negative ΔNp73. These effects allow the recovery of p53 transactivating activity of target genes involved in the control of cell proliferation. Taken together, these studies suggest that signaling through the IFN pathway might play an important role in cellular senescence. This additional understanding of IFN antitumor action and mechanisms influencing tumor responsiveness or resistance appears useful in aiding further promising development of biomolecular strategies in the IFN therapy of cancer.

  19. CFTR mediates noradrenaline-induced ATP efflux from DRG neurons.

    Science.gov (United States)

    Kanno, Takeshi; Nishizaki, Tomoyuki

    2011-09-24

    In our earlier study, noradrenaline (NA) stimulated ATP release from dorsal root ganglion (DRG) neurons as mediated via β(3) adrenoceptors linked to G(s) protein involving protein kinase A (PKA) activation, to cause allodynia. The present study was conducted to understand how ATP is released from DRG neurons. In an outside-out patch-clamp configuration from acutely dissociated rat DRG neurons, single-channel currents, sensitive to the P2X receptor inhibitor PPADS, were evoked by approaching the patch-electrode tip close to a neuron, indicating that ATP is released from DRG neurons, to activate P2X receptor. NA increased the frequency of the single-channel events, but such NA effect was not found for DRG neurons transfected with the siRNA to silence the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In the immunocytochemical study using acutely dissociated rat DRG cells, CFTR was expressed in neurons alone, but not satellite cells, fibroblasts, or Schwann cells. It is concluded from these results that CFTR mediates NA-induced ATP efflux from DRG neurons as an ATP channel.

  20. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy

    Science.gov (United States)

    Periyasamy, Palsamy; Guo, Ming-Lei; Buch, Shilpa

    2016-01-01

    ABSTRACT Cocaine is known to induce inflammation, thereby contributing in part, to the pathogenesis of neurodegeneration. A recent study from our lab has revealed a link between macroautophagy/autophagy and microglial activation. The current study was aimed at investigating whether cocaine could also mediate activation of astrocytes and, whether this process involved induction of autophagy. Our findings demonstrated that cocaine mediated the activation of astrocytes by altering the levels of autophagy markers, such as BECN1, ATG5, MAP1LC3B-II, and SQSTM1 in both human A172 astrocytoma cells and primary human astrocytes. Furthermore, cocaine treatment resulted in increased formation of endogenous MAP1LC3B puncta in human astrocytes. Additionally, astrocytes transfected with the GFP-MAP1LC3B plasmid also demonstrated cocaine-mediated upregulation of the green fluorescent MAP1LC3B puncta. Cocaine-mediated induction of autophagy involved upstream activation of ER stress proteins such as EIF2AK3, ERN1, ATF6 since blockage of autophagy using either pharmacological or gene-silencing approaches, had no effect on cocaine-mediated induction of ER stress. Using both pharmacological and gene-silencing approaches to block either ER stress or autophagy, our findings demonstrated that cocaine-induced activation of astrocytes (measured by increased levels of GFAP) involved sequential activation of ER stress and autophagy. Cocaine-mediated-increased upregulation of GFAP correlated with increased expression of proinflammatory mediators such as TNF, IL1B, and IL6. In conclusion, these findings reveal an association between ER stress-mediated autophagy and astrogliosis in cocaine-treated astrocytes. Intervention of ER stress and/or autophagy signaling would thus be promising therapeutic targets for abrogating cocaine-mediated neuroinflammation. PMID:27337297

  1. Peripheral Blood Cells from Patients with Autoimmune Addison's Disease Poorly Respond to Interferons In Vitro, Despite Elevated Serum Levels of Interferon-Inducible Chemokines

    Science.gov (United States)

    Bjånesøy, Trine; Hellesen, Alexander; Breivik, Lars; Bakke, Marit; Husebye, Eystein S.; Bratland, Eirik

    2015-01-01

    Autoimmune Addison's disease (AAD) is a disorder caused by an immunological attack on the adrenal cortex. The interferon (IFN)-inducible chemokine CXCL10 is elevated in serum of AAD patients, suggesting a peripheral IFN signature. However, CXCL10 can also be induced in adrenocortical cells stimulated with IFNs, cytokines, or microbial components. We therefore investigated whether peripheral blood mononuclear cells (PBMCs) from AAD patients display an enhanced propensity to produce CXCL10 and the related chemokine CXCL9, after stimulation with type I or II IFNs or the IFN inducer poly (I:C). Although serum levels of CXCL10 and CXCL9 were significantly elevated in patients compared with controls, IFN stimulated patient PBMC produced significantly less CXCL10/CXCL9 than control PBMC. Low CXCL10 production was not significantly associated with medication, disease duration, or comorbidities, but the low production of poly (I:C)-induced CXCL10 among patients was associated with an AAD risk allele in the phosphatase nonreceptor type 22 (PTPN22) gene. PBMC levels of total STAT1 and -2, and IFN-induced phosphorylated STAT1 and -2, were not significantly different between patients and controls. We conclude that PBMC from patients with AAD are deficient in their response to IFNs, and that the adrenal cortex itself may be responsible for the increased serum levels of CXCL10. PMID:25978633

  2. Peripheral Blood Cells from Patients with Autoimmune Addison's Disease Poorly Respond to Interferons In Vitro, Despite Elevated Serum Levels of Interferon-Inducible Chemokines.

    Science.gov (United States)

    Edvardsen, Kine; Bjånesøy, Trine; Hellesen, Alexander; Breivik, Lars; Bakke, Marit; Husebye, Eystein S; Bratland, Eirik

    2015-10-01

    Autoimmune Addison's disease (AAD) is a disorder caused by an immunological attack on the adrenal cortex. The interferon (IFN)-inducible chemokine CXCL10 is elevated in serum of AAD patients, suggesting a peripheral IFN signature. However, CXCL10 can also be induced in adrenocortical cells stimulated with IFNs, cytokines, or microbial components. We therefore investigated whether peripheral blood mononuclear cells (PBMCs) from AAD patients display an enhanced propensity to produce CXCL10 and the related chemokine CXCL9, after stimulation with type I or II IFNs or the IFN inducer poly (I:C). Although serum levels of CXCL10 and CXCL9 were significantly elevated in patients compared with controls, IFN stimulated patient PBMC produced significantly less CXCL10/CXCL9 than control PBMC. Low CXCL10 production was not significantly associated with medication, disease duration, or comorbidities, but the low production of poly (I:C)-induced CXCL10 among patients was associated with an AAD risk allele in the phosphatase nonreceptor type 22 (PTPN22) gene. PBMC levels of total STAT1 and -2, and IFN-induced phosphorylated STAT1 and -2, were not significantly different between patients and controls. We conclude that PBMC from patients with AAD are deficient in their response to IFNs, and that the adrenal cortex itself may be responsible for the increased serum levels of CXCL10.

  3. TMEM16A mediates the hypersecretion of mucus induced by Interleukin-13

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiachen; Jiang, Youfan; Li, Li; Liu, Yanan; Tang, Hui; Jiang, Depeng, E-mail: depengjiang@163.com

    2015-06-10

    Previous studies showed that the Ca{sup 2+}-activated Cl{sup −} channel (CaCC) was involved in the pathogenesis of mucus hypersecretion induced by Interleukin-13 (IL-13). However, the mechanisms underlying the process were unknown. Recently, transmembrane protein 16A (TMEM16A) was identified as the channel underlying the CaCC current. The aim of the current study was to investigate whether the TMEM16A channel is part of the mechanism underlying IL-13-induced mucus hypersecretion. We observed that both TMEM16A mRNA and protein expression were significantly up-regulated after treatment with IL-13 in human bronchial epithelial 16 (HBE 16) cells, which correlated with an increase in mucus production. Additionally, mucus hypersecretion in rat airways was induced by intratracheal instillation of IL-13 and similar increases were observed in the expression of TMEM16A mRNA and protein in the bronchial epithelium. Niflumic acid (NA), a selective antagonist of CaCC, markedly blocked IL-13-induced mucin (MUC) 5AC mRNA and protein production in vivo and in vitro. Further investigation with HBE16 cells revealed that TMEM16A overexpression clearly promoted mucus production, IκBα phosphorylation, and p65 accumulation in the nucleus. The loss of TMEM16A resulted in inhibition of mucus production, and the TMEM16A-mediated production of MUC5AC was significantly blocked by a nuclear factor-kappa B (NF-κB) inhibitor. Therefore, the TMEM16A channel acts upstream of NF-κB in the regulation of mucus production. This is the first demonstration that the TMEM16A-NF-κB pathway is positively involved in IL-13-induced mucus production, which provides novel insight into the molecular mechanism of mucin overproduction. - Highlights: • TMEM16A acts as downstream events of IL-13 signaling pathway. • Established the link between TMEM16A and mucus hypersecretion. • NF-κB activation might be responsible for TMEM16A mediated mucus secretion.

  4. Trypsin- and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294.

    Science.gov (United States)

    Yun, Bingling; Guan, Xiaolu; Liu, Yongzhen; Gao, Yanni; Wang, Yongqiang; Qi, Xiaole; Cui, Hongyu; Liu, Changjun; Zhang, Yanping; Gao, Li; Li, Kai; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2015-10-26

    Avian metapneumovirus (aMPV) and human metapneumovirus (hMPV) are members of the genus Metapneumovirus in the subfamily Pneumovirinae. Metapneumovirus fusion (F) protein mediates the fusion of host cells with the virus membrane for infection. Trypsin- and/or low pH-induced membrane fusion is a strain-dependent phenomenon for hMPV. Here, we demonstrated that three subtypes of aMPV (aMPV/A, aMPV/B, and aMPV/C) F proteins promoted cell-cell fusion in the absence of trypsin. Indeed, in the presence of trypsin, only aMPV/C F protein fusogenicity was enhanced. Mutagenesis of the amino acids at position 100 and/or 101, located at a putative cleavage region in aMPV F proteins, revealed that the trypsin-mediated fusogenicity of aMPV F proteins is regulated by the residues at positions 100 and 101. Moreover, we demonstrated that aMPV/A and aMPV/B F proteins mediated cell-cell fusion independent of low pH, whereas the aMPV/C F protein did not. Mutagenesis of the residue at position 294 in the aMPV/A, aMPV/B, and aMPV/C F proteins showed that 294G played a critical role in F protein-mediated fusion under low pH conditions. These findings on aMPV F protein-induced cell-cell fusion provide new insights into the molecular mechanisms underlying membrane fusion and pathogenesis of aMPV.

  5. Identification of amino-acid residues in the V protein of peste des petits ruminants essential for interference and suppression of STAT-mediated interferon signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xusheng, E-mail: maxushengtt@163.com [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China); Yang, Xing [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China); Nian, Xiaofeng [Institute of Pathogen Biology and Immunology, Hebei North University, Zhangjiakou 07500 (China); Zhang, Zhidong; Dou, Yongxi [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China); Zhang, Xuehu [Gansu Agricultural University, Lanzhou (China); Luo, Xuenong; Su, Junhong; Zhu, Qiyun [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China); Cai, Xuepeng, E-mail: caixp@vip.163.com [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China)

    2015-09-15

    Peste des petits ruminants virus (PPRV) causes a fatal disease in small ruminants. V protein of PPRV plays a pivotal role in interfering with host innate immunity by blocking IFNs signaling through interacting with STAT1 and STAT2. In the present study, the results demonstrated that PPRV V protein blocks IFN actions in a dose dependent manner and restrains the translocation of STAT1/2 proteins. We speculate that the translocation inhibition might be caused by the interfering of the downstream of STAT protein. Mutagenesis defines that Cys cluster and Trp motif of PPRV V protein are essential for STAT-mediated IFN signaling. These findings give a new sight for the further studies to understand the delicate mechanism of PPRV to escape the IFN signaling. - Highlights: • PPRV V protein inhibits type I IFN production and blocks its activation. • PPRV V protein negatively regulates activation of ISRE and GAS promoter. • PPRV V protein inhibits nuclear translocation of STAT protein by non-degradation. • PNT and VCT domain of PPRV V protein inhibit IFN transduction. • PPRV V protein binds with STAT protein via some conserved motifs.

  6. Suppressive effects of a novel compound on interphotoreceptor retinoid-binding protein-induced experimental autoimmune uveoretinitis in rats

    Directory of Open Access Journals (Sweden)

    Jun-ichi Sakai

    1999-01-01

    Full Text Available The immunosuppressive effect of ethyl O-(N-(pcarboxyphenyl-carbamoyl-mycophenolate(CAM was examined in interphotoreceptor retinoid-binding protein (IRBP-induced experimental autoimmune uveoretinitis (EAU in rats. Lewis rats immunized with bovine IRBP were treated with various oral doses of CAM postimmunization. The degree of inflammation was assessed clinically each day and histologically on day 14 or day 20. Production of various cytokines and IRBP-specific antibody, as well as IRBP-specific proliferation response, was assessed. Complete inhibition of EAU in rats, both by clinical and histologic criteria, was achieved with 50 mg/kg CAM when administered daily for 14 days following IRBP immunization. Partial inhibition was observed at lesser doses of CAM. This CAM-mediated response was accompanied by diminished production of cytokines interleukin-2, interferon-γ and tumor necrosis factor-α, as well as a reduction in IRBP-specific antibody production. Furthermore, administration of CAM either in the induction phase only (days 0–7 or in the effector phase only (days 9 or 11 to day 20 was also capable of suppressing EAU, as assessed histopathologically on day 20. We conclude that CAM is effective in suppressing EAU in rats and its mechanism of action appears to involve modulation of T cell function.

  7. TNF blockade induces a dysregulated type I interferon response without autoimmunity in paradoxical psoriasis.

    Science.gov (United States)

    Conrad, Curdin; Di Domizio, Jeremy; Mylonas, Alessio; Belkhodja, Cyrine; Demaria, Olivier; Navarini, Alexander A; Lapointe, Anne-Karine; French, Lars E; Vernez, Maxime; Gilliet, Michel

    2018-01-02

    Although anti-tumor necrosis factor (TNF) agents are highly effective in the treatment of psoriasis, 2-5% of treated patients develop psoriasis-like skin lesions called paradoxical psoriasis. The pathogenesis of this side effect and its distinction from classical psoriasis remain unknown. Here we show that skin lesions from patients with paradoxical psoriasis are characterized by a selective overexpression of type I interferons, dermal accumulation of plasmacytoid dendritic cells (pDC), and reduced T-cell numbers, when compared to classical psoriasis. Anti-TNF treatment prolongs type I interferon production by pDCs through inhibition of their maturation. The resulting type I interferon overexpression is responsible for the skin phenotype of paradoxical psoriasis, which, unlike classical psoriasis, is independent of T cells. These findings indicate that paradoxical psoriasis represents an ongoing overactive innate inflammatory process, driven by pDC-derived type I interferon that does not lead to T-cell autoimmunity.

  8. Inhibition of mitochondria- and endoplasmic reticulum stress-mediated autophagy augments temozolomide-induced apoptosis in glioma cells.

    Directory of Open Access Journals (Sweden)

    Chien-Ju Lin

    Full Text Available Autophagy is a crucial process for cells to maintain homeostasis and survival through degradation of cellular proteins and organelles, including mitochondria and endoplasmic reticula (ER. We previously demonstrated that temozolomide (TMZ, an alkylating agent for brain tumor chemotherapy, induced reactive oxygen species (ROS/extracellular signal-regulated kinase (ERK-mediated autophagy to protect glioma cells from apoptosis. In this study, we investigated the role of mitochondrial damage and ER stress in TMZ-induced cytotoxicity. Mitochondrial depolarization and mitochondrial permeability transition pore (MPTP opening were observed as a prelude to TMZ-induced autophagy, and these were followed by the loss of mitochondrial mass. Electron transport chain (ETC inhibitors, such as rotenone (a complex I inhibitor, sodium azide (a complex IV inhibitor, and oligomycin (a complex V inhibitor, or the MPTP inhibitor, cyclosporine A, decreased mitochondrial damage-mediated autophagy, and therefore increased TMZ-induced apoptosis. TMZ treatment triggered ER stress with increased expression of GADD153 and GRP78 proteins, and deceased pro-caspase 12 protein. ER stress consequently induced autophagy through c-Jun N-terminal kinases (JNK and Ca(2+ signaling pathways. Combination of TMZ with 4-phenylbutyrate (4-PBA, an ER stress inhibitor, augmented TMZ-induced cytotoxicity by inhibiting autophagy. Taken together, our data indicate that TMZ induced autophagy through mitochondrial damage- and ER stress-dependent mechanisms to protect glioma cells. This study provides evidence that agents targeting mitochondria or ER may be potential anticancer strategies.

  9. Outer membrane protein A (OmpA of Shigella flexneri 2a induces TLR2-mediated activation of B cells: involvement of protein tyrosine kinase, ERK and NF-κB.

    Directory of Open Access Journals (Sweden)

    Rajsekhar Bhowmick

    Full Text Available B cells are critically important in combating bacterial infections and their differentiation into plasma cells and memory cells aids bacterial clearance and long-lasting immunity conferred by essentially all vaccines. Outer membrane protein A (OmpA of Shigella flexneri 2a has been demonstrated to induce the production of IgG and IgA in vivo following immunization of mice through intranasal route, but the direct involvement of B cells in OmpA-mediated immune regulation was not determined. Consequently, we investigated whether OmpA can modulate B cell functions and identified the molecular events involved in OmpA-induced B cell immune response in vitro. We show that OmpA of S. flexneri 2a activates B cells to produce protective cytokines, IL-6 and IL-10 as well as facilitates their differentiation into antibody secreting cells (ASCs. The immunostimulatory properties of OmpA are attributed to the increased surface expression of MHCII and CD86 on B cells. We also report here that B cell activation by OmpA is mediated strictly through recognition by TLR2, resulting in initiation of cascades of signal transduction events, involving increased phosphorylation of protein tyrosine kinases (PTKs, ERK and IκBα, leading to nuclear translocation of NF-κB. Importantly, a TLR2 antibody diminishes OmpA-induced upregulation of MHCII and CD86 on B cell surface as well as significantly inhibits B cell differentiation and cytokine secretion. Furthermore, we illustrate that B cell differentiation into ASCs and induction of cytokine secretion by OmpA are dependent on PTKs activity. Moreover, we identify that OmpA-induced B cell differentiation is entirely dependent on ERK pathway, whereas both NF-κB and ERK are essential for cytokine secretion by B cells. Overall, our data demonstrate that OmpA of S. flexneri 2a amplifies TLR signaling in B cells and triggers B cell immune response, which is critical for the development of an effective adaptive immunity to an

  10. A case of reversible dilated cardiomyopathy after alpha-interferon therapy in a patient with renal cell carcinoma.

    Science.gov (United States)

    Kuwata, Akiko; Ohashi, Masuo; Sugiyama, Masaya; Ueda, Ryuzo; Dohi, Yasuaki

    2002-12-01

    A 47-year-old man with renal cell carcinoma underwent nephrectomy, and postoperative chemotherapy was performed with recombinant alpha-interferon. Five years later, he experienced dyspnea during physical exertion. An echocardiogram revealed dilatation and systolic dysfunction of the left ventricle, and thallium-201 myocardial scintigraphy showed diffuse heterogeneous perfusion. We diagnosed congestive heart failure because of cardiomyopathy induced by alpha-interferon therapy. Withdrawal of interferon therapy and the combination of an angiotensin-converting enzyme inhibitor, diuretics, and digitalis improved left ventricular systolic function. Furthermore, myocardial scintigraphy using [123I] beta-methyl-p-iodophenylpentadecanoic acid (123I-BMIPP) or [123 I]metaiodobenzylguanidine (123I-MIBG) revealed normal perfusion after the improvement of congestive heart failure. This is a rare case of interferon-induced cardiomyopathy that resulted in normal myocardial images in 123I-BMIPP and 123I-MIBG scintigrams after withdrawal of interferon therapy.

  11. Coffee induces breast cancer resistance protein expression in Caco-2 cells.

    Science.gov (United States)

    Isshiki, Marina; Umezawa, Kazuo; Tamura, Hiroomi

    2011-01-01

    Coffee is a beverage that is consumed world-wide on a daily basis and is known to induce a series of metabolic and pharmacological effects, especially in the digestive tract. However, little is known concerning the effects of coffee on transporters in the gastrointestinal tract. To elucidate the effect of coffee on intestinal transporters, we investigated its effect on expression of the breast cancer resistance protein (BCRP/ABCG2) in a human colorectal cancer cell line, Caco-2. Coffee induced BCRP gene expression in Caco-2 cells in a coffee-dose dependent manner. Coffee treatment of Caco-2 cells also increased the level of BCRP protein, which corresponded to induction of gene expression, and also increased cellular efflux activity, as judged by Hoechst33342 accumulation. None of the major constituents of coffee tested could induce BCRP gene expression. The constituent of coffee that mediated this induction was extractable with ethyl acetate and was produced during the roasting process. Dehydromethylepoxyquinomicin (DHMEQ), an inhibitor of nuclear factor (NF)-κB, inhibited coffee-mediated induction of BCRP gene expression, suggesting involvement of NF-κB in this induction. Our data suggest that daily consumption of coffee might induce BCRP expression in the gastrointestinal tract and may affect the bioavailability of BCRP substrates.

  12. Interleukin 17 enhances bone morphogenetic protein-2-induced ectopic bone formation

    NARCIS (Netherlands)

    Croes, M.; Kruyt, M. C.; Groen, W. M.; Van Dorenmalen, K. M.A.; Dhert, W. J.A.; Öner, F. C.; Alblas, J.

    2018-01-01

    Interleukin 17 (IL-17) stimulates the osteogenic differentiation of progenitor cells in vitro through a synergy with bone morphogenetic protein (BMP)-2. This study investigates whether the diverse responses mediated by IL-17 in vivo also lead to enhanced BMP-2-induced bone formation. Since IL-17 is

  13. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-01-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  14. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  15. Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated beta-cell death.

    Science.gov (United States)

    Chen, Junqin; Fontes, Ghislaine; Saxena, Geetu; Poitout, Vincent; Shalev, Anath

    2010-02-01

    We have previously shown that lack of thioredoxin-interacting protein (TXNIP) protects against diabetes and glucotoxicity-induced beta-cell apoptosis. Because the role of TXNIP in lipotoxicity is unknown, the goal of the present study was to determine whether TXNIP expression is regulated by fatty acids and whether TXNIP deficiency also protects beta-cells against lipoapoptosis. RESARCH DESIGN AND METHODS: To determine the effects of fatty acids on beta-cell TXNIP expression, INS-1 cells and isolated islets were incubated with/without palmitate and rats underwent cyclic infusions of glucose and/or Intralipid prior to islet isolation and analysis by quantitative real-time RT-PCR and immunoblotting. Using primary wild-type and TXNIP-deficient islets, we then assessed the effects of palmitate on apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]), mitochondrial death pathway (cytochrome c release), and endoplasmic reticulum (ER) stress (binding protein [BiP], C/EBP homologous protein [CHOP]). Effects of TXNIP deficiency were also tested in the context of staurosporine (mitochondrial damage) or thapsigargin (ER stress). Glucose elicited a dramatic increase in islet TXNIP expression both in vitro and in vivo, whereas fatty acids had no such effect and, when combined with glucose, even abolished the glucose effect. We also found that TXNIP deficiency does not effectively protect against palmitate or thapsigargin-induced beta-cell apoptosis, but specifically prevents staurosporine- or glucose-induced toxicity. Our results demonstrate that unlike glucose, fatty acids do not induce beta-cell expression of proapoptotic TXNIP. They further reveal that TXNIP deficiency specifically inhibits the mitochondrial death pathway underlying beta-cell glucotoxicity, whereas it has very few protective effects against ER stress-mediated lipoapoptosis.

  16. A mitochondria-dependent pathway mediates the apoptosis of GSE-induced yeast.

    Directory of Open Access Journals (Sweden)

    Sishuo Cao

    Full Text Available Grapefruit seed extract (GSE, which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling (TUNEL and 4,6'-diaminidino-2-phenylindole (DAPI staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential and ROS (reactive oxygen species indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA. The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS. We found that the changes of the metabolites and the protein changes had relevant consistency.

  17. A mitochondria-dependent pathway mediates the apoptosis of GSE-induced yeast.

    Science.gov (United States)

    Cao, Sishuo; Xu, Wentao; Zhang, Nan; Wang, Yan; Luo, YunBo; He, Xiaoyun; Huang, Kunlun

    2012-01-01

    Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling (TUNEL) and 4,6'-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA). The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS). We found that the changes of the metabolites and the protein changes had relevant consistency.

  18. Use of Novel Recombinant Antigens in the Interferon Gamma Assay for Detection of Mycobacterium Avium Subsp. Paratuberculosis Infection in Cattle

    DEFF Research Database (Denmark)

    Mikkelsen, Heidi; Aagaard, Claus; Nielsen, Søren Saxmose

    2012-01-01

    of the study were to evaluate immunogenicity and specificity of 14 novel recombinant antigens for use in the IFN-γ assay and to assess the consistency of IFN-γ responses. The antigens used were 4 ESAT-6 family members, 4 latency proteins, 4 secreted proteins including Ag85B, 3 other antigens and PPDj......Early stage Mycobacterium avium subsp. paratuberculosis (MAP) infection can be detected by measuring antigen specific cell mediated immune responses by the interferon gamma (IFN-γ) assay. Available IFN-γ assay use purified protein derivate of Johnin (PPDj) leading to low specificity. The objectives...... of the infected and non-infected herds were significantly (Passay using PPDj did not correlate with the results using the novel antigens since 5 of the 17 animals that were positive to PPDj were...

  19. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    2010-03-01

    Full Text Available Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated.Here, we found that AMPK-induced phospholipase D1 (PLD1 activation is required for (14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT stimulates PLD activity, while AMPK-dominant negative (DN inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA, which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator regulate (14C-glucose uptake and cell surface glucose transport (GLUT 4 through ERK stimulation by AMPK-mediated PLD1 activation.These results suggest that AMPK-mediated PLD1 activation is required for (14C

  20. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression.

    Science.gov (United States)

    Knowlton, K U; Baracchini, E; Ross, R S; Harris, A N; Henderson, S A; Evans, S M; Glembotski, C C; Chien, K R

    1991-04-25

    To study the mechanisms which mediate the transcriptional activation of cardiac genes during alpha adrenergic stimulation, the present study examined the regulated expression of three cardiac genes, a ventricular embryonic gene (atrial natriuretic factor, ANF), a constitutively expressed contractile protein gene (cardiac MLC-2), and a cardiac sodium channel gene. alpha 1-Adrenergic stimulation activates the expression and release of ANF from neonatal ventricular cells. As assessed by RNase protection analyses, treatment with alpha-adrenergic agonists increases the steady-state levels of ANF mRNA by greater than 15-fold. However, a rat cardiac sodium channel gene mRNA is not induced, indicating that alpha-adrenergic stimulation does not lead to an increase in the expression of all cardiac genes. Studies employing a series of rat ANF luciferase and rat MLC-2 luciferase fusion genes identify 315- and 92-base pair cis regulatory sequences within an embryonic gene (ANF) and a constitutively expressed contractile protein gene (MLC-2), respectively, which mediate alpha-adrenergic-inducible gene expression. Transfection of various ANF luciferase reporters into neonatal rat ventricular cells demonstrated that upstream sequences which mediate tissue-specific expression (-3003 to -638) can be segregated from those responsible for inducibility. The lack of inducibility of a cardiac Na+ channel gene, and the segregation of ANF gene sequences which mediate cardiac specific from those which mediate inducible expression, provides further insight into the relationship between muscle-specific and inducible expression during cardiac myocyte hypertrophy. Based on these results, a testable model is proposed for the induction of embryonic cardiac genes and constitutively expressed contractile protein genes and the noninducibility of a subset of cardiac genes during alpha-adrenergic stimulation of neonatal rat ventricular cells.

  1. EFFICACY OF INTRAPERITONEAL INTERFERON-α ADMINISTRATION FOR TREATMENT OF ENDOMETRIOSIS IN RATS

    Directory of Open Access Journals (Sweden)

    R. V. Pavlov

    2006-01-01

    Full Text Available Abstract. The article presents the results of intraperitoneal administration of recombinant rat interferon-α to twenty Wistar rats with experimentally induced endometriosis. The following criteria of treatment efficiency were applied: presence of ectopic endometrium in transplanted segments of cornu uteri, proliferative activity of endometrioid cells, features of vascularization and leucocyte infiltration within endometrial foci. It was shown that local application of interferon-α caused regression of endometrioid epithelial heterotopias in 50 per cent of the cases. If endometrioid epithelium was retained, its proliferative activity did significantly drop under interferon-α application. In all transplants derived from rats treated with interferon-α, the degree of vascularization is reduced, accompanied by increased leucocytic infiltration (due to lymphocytes, along with decreased contents of macrophages within leucocytic infiltrates.

  2. Mitogen-activated protein kinases mediate Mycobacterium ...

    Indian Academy of Sciences (India)

    2012-01-19

    Jan 19, 2012 ... CD44, an adhesion molecule, has been reported to be a binding site for ... receptors in mediating mitogen-activated protein kinase activation. ... surface expression and tumour necrosis factor-alpha levels, ... Abbreviations used: Abs, antibodies; ANOVA, analysis of variance; AP-1, activator protein -1; BCG, ...

  3. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    International Nuclear Information System (INIS)

    Adegbola, Onikepe; Pasternack, Gary R.

    2005-01-01

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing

  4. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model.

    Science.gov (United States)

    Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders

    2017-11-17

    The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.

  5. Adenosine monophosphate activated protein kinase (AMPK), a mediator of estradiol-induced apoptosis in long-term estrogen deprived breast cancer cells.

    Science.gov (United States)

    Chen, Haiyan; Wang, Ji-Ping; Santen, Richard J; Yue, Wei

    2015-06-01

    Estrogens stimulate growth of hormone-dependent breast cancer but paradoxically induce tumor regress under certain circumstances. We have shown that long-term estrogen deprivation (LTED) enhances the sensitivity of hormone dependent breast cancer cells to estradiol (E2) so that physiological concentrations of estradiol induce apoptosis in these cells. E2-induced apoptosis involve both intrinsic and extrinsic pathways but precise mechanisms remain unclear. We found that exposure of LTED MCF-7 cells to E2 activated AMP activated protein kinase (AMPK). In contrast, E2 inhibited AMPK activation in wild type MCF-7 cells where E2 prevents apoptosis. As a result of AMPK activation, the transcriptional activity of FoxO3, a downstream factor of AMPK, was up-regulated in E2 treatment of LTED. Increased activity of FoxO3 was demonstrated by up-regulation of three FoxO3 target genes, Bim, Fas ligand (FasL), and Gadd45α. Among them, Bim and FasL mediate intrinsic and extrinsic apoptosis respectively and Gadd45α causes cell cycle arrest at the G2/M phase. To further confirm the role of AMPK in apoptosis, we used AMPK activator AICAR in wild type MCF-7 cells and examined apoptosis, proliferation and expression of Bim, FasL, and Gadd45α. The effects of AICAR on these parameters recapitulated those observed in E2-treated LTED cells. Activation of AMPK by AICAR also increased expression of Bax in MCF-7 cells and its localization to mitochondria, which is a required process for apoptosis. These results reveal that AMPK is an important factor mediating E2-induced apoptosis in LTED cells, which is implicative of therapeutic potential for relapsing breast cancer after hormone therapy.

  6. Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases.

    Science.gov (United States)

    Nakayama, Hiroyuki; Otsu, Kinya

    2018-03-06

    Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection - termed sterile inflammation - is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP-AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases. © 2018 The Author(s).

  7. Differential induction of Toll-like receptors & type 1 interferons by Sabin attenuated & wild type 1 polioviruses in human neuronal cells.

    Science.gov (United States)

    Mohanty, Madhu C; Deshpande, Jagadish M

    2013-01-01

    Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains) do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV) and Sabin attenuated type 1 poliovirus (Sabin PV) in cultured human neuronal cells. By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs) and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH) infected with Sabin PV and wild PV. Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5) m-RNA in neuronal cells at the beginning of infection (up to 4 h) as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies.

  8. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway.

    Science.gov (United States)

    Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A; Pfeffer, Lawrence M

    2017-12-22

    Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro , and inhibited GBM tumorigenesis in vivo . Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro , and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway.

  9. Proteins mediating intra- and intercellular transport of lipids and lipid-modified proteins

    NARCIS (Netherlands)

    Neumann, S.

    2008-01-01

    Proteins mediating intra- and intercellular transport of lipids and lipid-modified proteins In this thesis, I studied the intra- and intercellular transport of lipidic molecules, in particular glycosphingolipids and lipid-modified proteins. The first part focuses on the intracellular transport of

  10. An Assay in Microtitre Plates for Absolute Abundance of Chicken Interferon Alpha Transcripts

    Directory of Open Access Journals (Sweden)

    Renata Novak Kujundžić

    2010-01-01

    Full Text Available Immunosuppression of commercial chickens is a serious animal health and economic problem in the poultry industry. The major causes of the immunosuppression are viruses that suppress transcription of interferon genes, especially interferon alpha. There is a need for monitoring immunosuppression in commercially bred chickens. For this purpose, the absolute abundance of interferon alpha transcripts can be measured in blood of chickens by a suitable assay. Such an assay was used to estimate abundance of chicken interferon alpha in a sample of splenic cells induced with polyinosinic polycytidylic acid. The abundance measured was 29 ± 2 attomoles/µg total RNA. This assay can be performed in microtitre plates using samples collected from chickens in poultry houses.

  11. Protein-Tyrosine Phosphatase-1B Mediates Sleep Fragmentation-Induced Insulin Resistance and Visceral Adipose Tissue Inflammation in Mice.

    Science.gov (United States)

    Gozal, David; Khalyfa, Abdelnaby; Qiao, Zhuanghong; Akbarpour, Mahzad; Maccari, Rosanna; Ottanà, Rosaria

    2017-09-01

    Sleep fragmentation (SF) is highly prevalent and has emerged as an important contributing factor to obesity and metabolic syndrome. We hypothesized that SF-induced increases in protein tyrosine phosphatase-1B (PTP-1B) expression and activity underlie increased food intake, inflammation, and leptin and insulin resistance. Wild-type (WT) and ObR-PTP-1b-/- mice (Tg) were exposed to SF and control sleep (SC), and food intake was monitored. WT mice received a PTP-1B inhibitor (RO-7d; Tx) or vehicle (Veh). Upon completion of exposures, systemic insulin and leptin sensitivity tests were performed as well as assessment of visceral white adipose tissue (vWAT) insulin receptor sensitivity and macrophages (ATM) polarity. SF increased food intake in either untreated or Veh-treated WT mice. Leptin-induced hypothalamic STAT3 phosphorylation was decreased, PTP-1B activity was increased, and reduced insulin sensitivity emerged both systemic and in vWAT, with the latter displaying proinflammatory ATM polarity changes. All of the SF-induced effects were abrogated following PTP-1B inhibitor treatment and in Tg mice. SF induces increased food intake, reduced leptin signaling in hypothalamus, systemic insulin resistance, and reduced vWAT insulin sensitivity and inflammation that are mediated by increased PTP-1B activity. Thus, PTP-1B may represent a viable therapeutic target in the context of SF-induced weight gain and metabolic dysfunction. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. Interferons, properties and applications

    NARCIS (Netherlands)

    H. Schellekens (Huub); W. Weimar (Willem)

    1980-01-01

    textabstractThe main theme of this thesis is the clinical evaluation of interferon. From the biology of the interferon system and animal experiments it can be expected that exogenous interferon will exert its optimum effect when used to prevent acute infections or to modulate chronic

  13. Pancreatic β-Cell-Derived IP-10/CXCL10 Isletokine Mediates Early Loss of Graft Function in Islet Cell Transplantation.

    Science.gov (United States)

    Yoshimatsu, Gumpei; Kunnathodi, Faisal; Saravanan, Prathab Balaji; Shahbazov, Rauf; Chang, Charles; Darden, Carly M; Zurawski, Sandra; Boyuk, Gulbahar; Kanak, Mazhar A; Levy, Marlon F; Naziruddin, Bashoo; Lawrence, Michael C

    2017-11-01

    Pancreatic islets produce and secrete cytokines and chemokines in response to inflammatory and metabolic stress. The physiological role of these "isletokines" in health and disease is largely unknown. We observed that islets release multiple inflammatory mediators in patients undergoing islet transplants within hours of infusion. The proinflammatory cytokine interferon-γ-induced protein 10 (IP-10/CXCL10) was among the highest released, and high levels correlated with poor islet transplant outcomes. Transgenic mouse studies confirmed that donor islet-specific expression of IP-10 contributed to islet inflammation and loss of β-cell function in islet grafts. The effects of islet-derived IP-10 could be blocked by treatment of donor islets and recipient mice with anti-IP-10 neutralizing monoclonal antibody. In vitro studies showed induction of the IP-10 gene was mediated by calcineurin-dependent NFAT signaling in pancreatic β-cells in response to oxidative or inflammatory stress. Sustained association of NFAT and p300 histone acetyltransferase with the IP-10 gene required p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) activity, which differentially regulated IP-10 expression and subsequent protein release. Overall, these findings elucidate an NFAT-MAPK signaling paradigm for induction of isletokine expression in β-cells and reveal IP-10 as a primary therapeutic target to prevent β-cell-induced inflammatory loss of graft function after islet cell transplantation. © 2017 by the American Diabetes Association.

  14. Respiratory Syncytial Virus Nonstructural Proteins Upregulate SOCS1 and SOCS3 in the Different Manner from Endogenous IFN Signaling

    Directory of Open Access Journals (Sweden)

    Junwen Zheng

    2015-01-01

    Full Text Available Respiratory syncytial virus (RSV infection upregulates genes of the suppressor of cytokine signaling (SOCS family, which utilize a feedback loop to inhibit type I interferon dependent antiviral signaling pathway. Here, we reconstituted RSV nonstructural (NS protein expression plasmids (pNS1, pNS2, and pNS1/2 and tested whether NS1 or NS2 would trigger SOCS1 and SOCS3 protein expression. These NS proteins inhibited interferon- (IFN- α signaling through a mechanism involving the induction of SOCS1 and SOCS3, which appeared to be different from autocrine IFN dependent. NS1 induced both SOCS1 and SOCS3 upregulation, while NS2 only induced SOCS1 expression. The induced expression of SOCS1 and SOCS3 preceded endogenous IFN-signaling activation and inhibited the IFN-inducible antiviral response as well as chemokine induction. Treatments with INF-α and NS proteins both induced SOCS1 expression; however, they had opposing effects on IFN-α-dependent antiviral gene expression. Our results indicate that NS1 and NS2, which induce the expression of SOCS1 or SOCS3, might represent an independent pathway of stimulating endogenous IFN signaling.

  15. 2'-5'-Oligoadenylate Synthetase-Like Protein Inhibits Respiratory Syncytial Virus Replication and Is Targeted by the Viral Nonstructural Protein 1.

    Science.gov (United States)

    Dhar, Jayeeta; Cuevas, Rolando A; Goswami, Ramansu; Zhu, Jianzhong; Sarkar, Saumendra N; Barik, Sailen

    2015-10-01

    2'-5'-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein. Here we describe differential inhibitory activities of human OASL and the two mouse OASL homologs against respiratory syncytial virus (RSV) replication. Interestingly, nonstructural protein 1 (NS1) of RSV promoted proteasome-dependent degradation of specific OASL isoforms. We conclude that OASL acts as a cellular antiviral protein and that RSV NS1 suppresses this function to evade cellular innate immunity and allow virus growth. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. cGAS-Mediated Innate Immunity Spreads Intercellularly through HIV-1 Env-Induced Membrane Fusion Sites.

    Science.gov (United States)

    Xu, Shuting; Ducroux, Aurélie; Ponnurangam, Aparna; Vieyres, Gabrielle; Franz, Sergej; Müsken, Mathias; Zillinger, Thomas; Malassa, Angelina; Ewald, Ellen; Hornung, Veit; Barchet, Winfried; Häussler, Susanne; Pietschmann, Thomas; Goffinet, Christine

    2016-10-12

    Upon sensing cytoplasmic retroviral DNA in infected cells, cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the cyclic dinucleotide cGAMP, which activates STING to trigger a type I interferon (IFN) response. We find that membrane fusion-inducing contact between donor cells expressing the HIV envelope (Env) and primary macrophages endogenously expressing the HIV receptor CD4 and coreceptor enable intercellular transfer of cGAMP. This cGAMP exchange results in STING-dependent antiviral IFN responses in target macrophages and protection from HIV infection. Furthermore, under conditions allowing cell-to-cell transmission of HIV-1, infected primary T cells, but not cell-free virions, deliver cGAMP to autologous macrophages through HIV-1 Env and CD4/coreceptor-mediated membrane fusion sites and induce a STING-dependent, but cGAS-independent, IFN response in target cells. Collectively, these findings identify an infection-specific mode of horizontal transfer of cGAMP between primary immune cells that may boost antiviral responses, particularly in infected tissues in which cell-to-cell transmission of virions exceeds cell-free infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Enhancement of antiproliferative activity of interferons by RNA interference-mediated silencing of SOCS gene expression in tumor cells.

    Science.gov (United States)

    Takahashi, Yuki; Kaneda, Haruka; Takasuka, Nana; Hattori, Kayoko; Nishikawa, Makiya; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2008-08-01

    The suppressor of cytokine signaling (SOCS) proteins, negative regulators of interferon (IFN)-induced signaling pathways, is involved in IFN resistance of tumor cells. To improve the growth inhibitory effect of IFN-beta and IFN-gamma on a murine melanoma cell line, B16-BL6, and a murine colon carcinoma cell line, Colon26 cells, SOCS-1 and SOCS-3 gene expression in tumor cells was downregulated by transfection of plasmid DNA expressing short hairpin RNA targeting one of these genes (pshSOCS-1 and pshSOCS-3, respectively). Transfection of pshSOCS-1 significantly increased the antiproliferative effect of IFN-gamma on B16-BL6 cells. However, any other combinations of plasmids and IFN had little effect on the growth of B16-BL6 cells. In addition, transfection of pshSOCS-1 and pshSOCS-3 produced little improvement in the effect of IFN on Colon26 cells. To understand the mechanism underlining these findings, the level of SOCS gene expression was measured by real time polymerase chain reaction. Addition of IFN-gamma greatly increased the SOCS-1 mRNA expression in B16-BL6 cells. Taking into account the synergistic effect of pshSOCS-1 and IFN-gamma on the growth of B16-BL6 cells, these findings suggest that IFN-gamma-induced high SOCS-1 gene expression in B16-BL6 cells significantly interferes with the antiproliferative effect of IFN-gamma. These results indicate that silencing SOCS gene expression can be an effective strategy to enhance the antitumor effect of IFN under conditions in which the SOCS gene expression is upregulated by IFN.

  18. Neuropsychiatric complications associated with interferon - alpha -2b treatment of malignant melanoma.

    LENUS (Irish Health Repository)

    Enudi, W

    2012-02-01

    Several adverse effects have been associated with interferon alpha 2b treatment and neuropsychiatric effects have also been commonly reported. Psychosis and mood disorders have been described in the literature. This case report is of a 30 year old man with malignant melanoma stage 3a who was receiving adjuvant alpha 2b interferon and developed a manic episode two weeks post switching after one month of treatment on a high dose to a low dose. There was no previous psychiatric illness and no known family history of mental illness. This is in keeping with previous reports that mania has been observed in patients undergoing interferon treatment especially after significant dose-reduction or treatment breaks. Mania induced by interferon responds well to antimanic drugs .Since interferon alpha 2b is now commonly used in the treatment of malignant melanoma and other conditions, the need to be aware of its neuropsychiatric complications is essential.

  19. Neuropsychiatric complications associated with interferon - alpha -2b treatment of malignant melanoma.

    LENUS (Irish Health Repository)

    Enudi, W

    2009-08-01

    Several adverse effects have been associated with interferon alpha 2b treatment and neuropsychiatric effects have also been commonly reported. Psychosis and mood disorders have been described in the literature. This case report is of a 30 year old man with malignant melanoma stage 3a who was receiving adjuvant alpha 2b interferon and developed a manic episode two weeks post switching after one month of treatment on a high dose to a low dose. There was no previous psychiatric illness and no known family history of mental illness. This is in keeping with previous reports that mania has been observed in patients undergoing interferon treatment especially after significant dose-reduction or treatment breaks. Mania induced by interferon responds well to antimanic drugs .Since interferon alpha 2b is now commonly used in the treatment of malignant melanoma and other conditions, the need to be aware of its neuropsychiatric complications is essential.

  20. Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation.

    Science.gov (United States)

    Wan, Xiaojuan; Wang, Songbo; Xu, Jingren; Zhuang, Lu; Xing, Kongping; Zhang, Mengyuan; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Li, Tiejun; Shu, Gang; Jiang, Qingyan

    2017-01-01

    Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms "oxidative phosphorylation", "ribosome", "gap junction", "PPAR signaling pathway", and "focal adhesion" were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.

  1. Inflammatory Cytokines Induce Podoplanin Expression at the Tumor Invasive Front.

    Science.gov (United States)

    Kunita, Akiko; Baeriswyl, Vanessa; Meda, Claudia; Cabuy, Erik; Takeshita, Kimiko; Giraudo, Enrico; Wicki, Andreas; Fukayama, Masashi; Christofori, Gerhard

    2018-05-01

    Tumor invasion is a critical first step in the organismic dissemination of cancer cells and the formation of metastasis in distant organs, the most important prognostic factor and the actual cause of death in most of the cancer patients. We report herein that the cell surface protein podoplanin (PDPN), a potent inducer of cancer cell invasion, is conspicuously expressed by the invasive front of squamous cell carcinomas (SCCs) of the cervix in patients and in the transgenic human papillomavirus/estrogen mouse model of cervical cancer. Laser capture microscopy combined with gene expression profiling reveals that the expression of interferon-responsive genes is up-regulated in PDPN-expressing cells at the tumor invasive front, which are exposed to CD45-positive inflammatory cells. Indeed, PDPN expression can be induced in cultured SCC cell lines by single or combined treatments with interferon-γ, transforming growth factor-β, and/or tumor necrosis factor-α. Notably, shRNA-mediated ablation of either PDPN or STAT1 in A431 SCC cells repressed cancer cell invasion on s.c. transplantation into immunodeficient mice. The results highlight the induction of tumor cell invasion by the inflammatory cytokine-stimulated expression of PDPN in the outermost cell layers of cervical SCC. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators

    Science.gov (United States)

    Liu, Yangfan P.; Tsai, I-Chun; Morleo, Manuela; Oh, Edwin C.; Leitch, Carmen C.; Massa, Filomena; Lee, Byung-Hoon; Parker, David S.; Finley, Daniel; Zaghloul, Norann A.; Franco, Brunella; Katsanis, Nicholas

    2014-01-01

    Cilia are critical mediators of paracrine signaling; however, it is unknown whether proteins that contribute to ciliopathies converge on multiple paracrine pathways through a common mechanism. Here, we show that loss of cilopathy-associated proteins Bardet-Biedl syndrome 4 (BBS4) or oral-facial-digital syndrome 1 (OFD1) results in the accumulation of signaling mediators normally targeted for proteasomal degradation. In WT cells, several BBS proteins and OFD1 interacted with proteasomal subunits, and loss of either BBS4 or OFD1 led to depletion of multiple subunits from the centrosomal proteasome. Furthermore, overexpression of proteasomal regulatory components or treatment with proteasomal activators sulforaphane (SFN) and mevalonolactone (MVA) ameliorated signaling defects in cells lacking BBS1, BBS4, and OFD1, in morphant zebrafish embryos, and in induced neurons from Ofd1-deficient mice. Finally, we tested the hypothesis that other proteasome-dependent pathways not known to be associated with ciliopathies are defective in the absence of ciliopathy proteins. We found that loss of BBS1, BBS4, or OFD1 led to decreased NF-κB activity and concomitant IκBβ accumulation and that these defects were ameliorated with SFN treatment. Taken together, our data indicate that basal body proteasomal regulation governs paracrine signaling pathways and suggest that augmenting proteasomal function might benefit ciliopathy patients. PMID:24691443

  3. Heat shock protein 90β: A novel mediator of vitamin D action

    International Nuclear Information System (INIS)

    Angelo, Giana; Lamon-Fava, Stefania; Sonna, Larry A.; Lindauer, Meghan L.; Wood, Richard J.

    2008-01-01

    We investigated the role of Heat shock protein 90 (Hsp90) in vitamin D action in Caco-2 cells using geldanamycin (GA) to block Hsp90 function and RNA interference to reduce Hsp90β expression. When cells were exposed to GA, vitamin D-mediated gene expression and transcriptional activity were inhibited by 69% and 54%, respectively. Gel shift analysis indicated that GA reduced vitamin D-mediated DNA binding activity of the vitamin D receptor (VDR). We tested the specific role of Hsp90β by knocking down its expression with stably expressed short hairpin RNA. Vitamin D-induced gene expression and transcriptional activity were reduced by 90% and 80%, respectively, in Hsp90β-deficient cells. Nuclear protein for VDR and RXRα, its heterodimer partner, were not reduced in Hsp90β-deficient cells. These findings indicate that Hsp90β is needed for optimal vitamin D responsiveness in the enterocyte and demonstrate a specific role for Hsp90β in VDR signaling

  4. Opposing roles for interferon regulatory factor-3 (IRF-3 and type I interferon signaling during plague.

    Directory of Open Access Journals (Sweden)

    Ami A Patel

    Full Text Available Type I interferons (IFN-I broadly control innate immunity and are typically transcriptionally induced by Interferon Regulatory Factors (IRFs following stimulation of pattern recognition receptors within the cytosol of host cells. For bacterial infection, IFN-I signaling can result in widely variant responses, in some cases contributing to the pathogenesis of disease while in others contributing to host defense. In this work, we addressed the role of type I IFN during Yersinia pestis infection in a murine model of septicemic plague. Transcription of IFN-β was induced in vitro and in vivo and contributed to pathogenesis. Mice lacking the IFN-I receptor, Ifnar, were less sensitive to disease and harbored more neutrophils in the later stage of infection which correlated with protection from lethality. In contrast, IRF-3, a transcription factor commonly involved in inducing IFN-β following bacterial infection, was not necessary for IFN production but instead contributed to host defense. In vitro, phagocytosis of Y. pestis by macrophages and neutrophils was more effective in the presence of IRF-3 and was not affected by IFN-β signaling. This activity correlated with limited bacterial growth in vivo in the presence of IRF-3. Together the data demonstrate that IRF-3 is able to activate pathways of innate immunity against bacterial infection that extend beyond regulation of IFN-β production.

  5. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin

    2010-01-01

    and that the contraction induced secretion of VEGF is partially mediated via adenosine acting on A(2B) adenosine receptors. Moreover, the contraction induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent.......The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and contraction caused secretion of VEGF (pcontraction induced secretion of VEGF protein was abolished by the A(2B) antagonist enprofyllin and markedly reduced by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells...

  6. Dual specific oral tolerance induction using interferon gamma for IgE-mediated anaphylactic food allergy and the dissociation of local skin allergy and systemic oral allergy: tolerance or desensitization?

    Science.gov (United States)

    Noh, G; Jang, E H

    2014-01-01

    Specific oral tolerance induction (SOTI) for IgE-mediated food allergy (IFA) can be successfully achieved using interfero gamma (classic SOTI). In this study, a tolerable dose was introduced during tolerance induction with interferon gamma (dual SOTI), and its effectiveness was evaluated. The study population comprised 25 IFA patients. Blood samples were taken for analysis, including complete blood count with differential counts of eosinophils, serum total IgE levels, and specific IgE for allergenic foods. Skin prick tests were conducted with the allergens. Oral food challenges were performed to diagnose IFA. Ten patients received dual SOTI, 5 received classic SOTI, 5 received SOTI without interferon gamma (original SOTI), and 5 were not treated (controls). Patients treated with dual SOTI and classic SOTI using interferon gamma became tolerant to the allergenic food. The tolerable dose was introduced successfully in dual SOTI. It was difficult to proceed with the same dosing protocol used for classic SOTI in cases treated with original SOTI. Following dual SOTI, the systemic reaction to oral intake subsided, but the local skin reaction to contact with the allergenic food persisted. Dual SOTI is an improved protocol for SOTI using interferon gamma for IFA.The local skin reaction and systemic reaction to oral intake were dissociated following dual SOTI. In cases of food allergy, tolerance appears to result from desensitization to allergens.

  7. Mast cell chymase induces smooth muscle cell apoptosis by disrupting NF-κB-mediated survival signaling

    International Nuclear Information System (INIS)

    Leskinen, Markus J.; Heikkilae, Hanna M.; Speer, Mei Y.; Hakala, Jukka K.; Laine, Mika; Kovanen, Petri T.; Lindstedt, Ken A.

    2006-01-01

    Chymase released from activated mast cells induces apoptosis of vascular smooth muscle cells (SMCs) in vitro by degrading the pericellular matrix component fibronectin, so causing disruption of focal adhesion complexes and Akt dephosphorylation, which are necessary for cell adhesion and survival. However, the molecular mechanisms of chymase-mediated apoptosis downstream of Akt have remained elusive. Here, we show by means of RT-PCR, Western blotting, EMSA, immunocytochemistry and confocal microscopy, that chymase induces SMC apoptosis by disrupting NF-κB-mediated survival signaling. Following chymase treatment, the translocation of active NF-κB/p65 to the nucleus was partly abolished and the amount of nuclear p65 was reduced. Pretreatment of SMCs with chymase also inhibited LPS- and IL-1β-induced nuclear translocation of p65. The chymase-induced degradation of p65 was mediated by active caspases. Loss of NF-κB-mediated transactivation resulted in downregulation of bcl-2 mRNA and protein expression, leading to mitochondrial swelling and release of cytochrome c. The apoptotic process involved activation of both caspase 9 and caspase 8. The results reveal that, by disrupting the NF-κB-mediated survival-signaling pathway, activated chymase-secreting mast cells can mediate apoptosis of cultured arterial SMCs. Since activated mast cells colocalize with apoptotic SMCs in vulnerable areas of human atherosclerotic plaques, they may participate in the weakening and rupture of atherosclerotic plaques

  8. IGF-binding proteins mediate TGF-beta 1-induced apoptosis in bovine mammary epithelial BME-UV1 cells.

    Science.gov (United States)

    Gajewska, Małgorzata; Motyl, Tomasz

    2004-10-01

    TGF-beta 1 is an antiproliferative and apoptogenic factor for mammary epithelial cells (MEC) acting in an auto/paracrine manner and thus considered an important local regulator of mammary tissue involution. However, the apoptogenic signaling pathway induced by this cytokine in bovine MEC remains obscure. The present study was focused on identification of molecules involved in apoptogenic signaling of transforming growth factor-beta 1 (TGF-beta 1) in the model of bovine mammary epithelial cell line (BME-UV1). Laser scanning cytometry (LSC), Western blot and electrophoretic mobility shift assay (EMSA) were used for analysis of expression and activity of TGF-beta 1-related signaling molecules. The earliest response occurring within 1-2 h after TGF-beta 1 administration was an induction and activation of R-Smads (Smad2 and Smad3) and Co-Smad (Smad4). An evident formation of Smad-DNA complexes began from 2nd hour after MEC exposure to TGF-beta 1. Similarly to Smads, proteins of AP1 complex: phosphorylated c-Jun and JunD appeared to be early reactive molecules; however, an increase in their expression was detected only in cytosolic fraction. In the next step, an increase of IGF binding protein-3 (IGFBP-3) and IGFBP-4 expression was observed from 6th hour followed by a decrease in the activity of protein kinase B (PKB/Akt), which occurred after 24 h of MEC exposure to TGF-beta 1. The decrease in PKB/Akt activity coincided in time with the decline of phosphorylated Bad expression (inactive form). Present study supported additional evidence that stimulation of insulin-like growth factor I (IGF-I) was associated with complete abrogation of TGF-beta 1-induced activation of Bad and Bax and in the consequence protection against apoptosis. In conclusion, apoptotic effect of TGF-beta 1 in bovine MEC is mediated by IGFBPs and occurs through IGF-I sequestration, resulting in inhibition of PKB/Akt-dependent survival pathway.

  9. Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization.

    Science.gov (United States)

    Jeon, Yung Jin; Kim, Hyun Jik

    2018-05-01

    Respiratory mucosa especially nasal epithelium is well known as the first-line barrier of air-borne pathogens. High levels of reactive oxygen species (ROS) are detected in in vitro cultured human epithelial cells and in vivo lung. With identification of NADPH oxidase (Nox) system of respiratory epithelium, the antimicrobial role of ROS has been studied. Duox2 is the most abundant Nox isoform and produces the regulated amount of ROS in respiratory epithelium. Duox2-derived ROS are involved in antiviral innate immune responses but more studies are needed to verify the mechanism. In respiratory epithelium, Duox2-derived ROS is critical for recognition of virus through families retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) at the early stage of antiviral innate immune responses. Various secreted interferons (IFNs) play essential roles for antiviral host defense by downstream cell signaling, and transcription of IFN-stimulated genes is started to suppress viral replication. Type I and type III IFNs are verified more responsible for influenza A virus (IAV) infection in respiratory epithelium and Duox2 is required to regulate IFN-related immune responses. Transient overexpression of Duox2 using cationic polymer polyethylenimine (PEI) induces secretion of type I and type III IFNs and significantly attenuated IAV replication in respiratory epithelium. Here, we discuss Duox2-mediated antiviral innate immune responses and the role of Duox2 as a mucosal vaccine to resist respiratory viral infection.

  10. Plasmacytoid dendritic cell interferon-α production to R-848 stimulation is decreased in male infants.

    Science.gov (United States)

    Wang, Jennifer P; Zhang, Lei; Madera, Rachel F; Woda, Marcia; Libraty, Daniel H

    2012-07-06

    Sex differences in response to microbial infections, especially viral ones, may be associated with Toll-like receptor (TLR)-mediated responses by plasmacytoid dendritic cells (pDCs). In this study, we identified sex differences in human infant pDC interferon-α production following challenge with the TLR7/8 agonist R-848. Male pDC responses were significantly lower than those of females during early infancy. This difference may be attributed to the androgen surge experienced by males during the early infancy period. Pretreatment of human pDCs with dihydrotestosterone produced a significant reduction in interferon-α production following R-848 challenge. Androgen-mediated regulation of pDC TLR7-driven innate immune responses may contribute to the observed sex differences in response to infections during early infancy.

  11. HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells

    Science.gov (United States)

    Ivanov, Alexander V.; Smirnova, Olga A.; Petrushanko, Irina Y.; Ivanova, Olga N.; Karpenko, Inna L.; Alekseeva, Ekaterina; Sominskaya, Irina; Makarov, Alexander A.; Bartosch, Birke; Kochetkov, Sergey N.; Isaguliants, Maria G.

    2015-01-01

    Hepatitis C virus (HCV) infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core). Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGFβ1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS). The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37–191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1α. The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein. PMID:26035647

  12. Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway.

    Science.gov (United States)

    Deng, Lin; Adachi, Tetsuya; Kitayama, Kikumi; Bungyoku, Yasuaki; Kitazawa, Sohei; Ishido, Satoshi; Shoji, Ikuo; Hotta, Hak

    2008-11-01

    We previously reported that cells harboring the hepatitis C virus (HCV) RNA replicon as well as those expressing HCV NS3/4A exhibited increased sensitivity to suboptimal doses of apoptotic stimuli to undergo mitochondrion-mediated apoptosis (Y. Nomura-Takigawa, et al., J. Gen. Virol. 87:1935-1945, 2006). Little is known, however, about whether or not HCV infection induces apoptosis of the virus-infected cells. In this study, by using the chimeric J6/JFH1 strain of HCV genotype 2a, we demonstrated that HCV infection induced cell death in Huh7.5 cells. The cell death was associated with activation of caspase 3, nuclear translocation of activated caspase 3, and cleavage of DNA repair enzyme poly(ADP-ribose) polymerase, which is known to be an important substrate for activated caspase 3. These results suggest that HCV-induced cell death is, in fact, apoptosis. Moreover, HCV infection activated Bax, a proapoptotic member of the Bcl-2 family, as revealed by its conformational change and its increased accumulation on mitochondrial membranes. Concomitantly, HCV infection induced disruption of mitochondrial transmembrane potential, followed by mitochondrial swelling and release of cytochrome c from mitochondria. HCV infection also caused oxidative stress via increased production of mitochondrial superoxide. On the other hand, HCV infection did not mediate increased expression of glucose-regulated protein 78 (GRP78) or GRP94, which are known as endoplasmic reticulum (ER) stress-induced proteins; this result suggests that ER stress is not primarily involved in HCV-induced apoptosis in our experimental system. Taken together, our present results suggest that HCV infection induces apoptosis of the host cell through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway(s).

  13. DNA damage-inducible transcript 4 (DDIT4) mediates methamphetamine-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes

    International Nuclear Information System (INIS)

    Chen, Rui; Wang, Bin; Chen, Ling; Cai, Dunpeng; Li, Bing; Chen, Chuanxiang; Huang, Enping; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2016-01-01

    Methamphetamine (METH) is an amphetamine-like psychostimulant that is commonly abused. Previous studies have shown that METH can induce damages to the nervous system and recent studies suggest that METH can also cause adverse and potentially lethal effects on the cardiovascular system. Recently, we demonstrated that DNA damage-inducible transcript 4 (DDIT4) regulates METH-induced neurotoxicity. However, the role of DDIT4 in METH-induced cardiotoxicity remains unknown. We hypothesized that DDIT4 may mediate METH-induced autophagy and apoptosis in cardiomyocytes. To test the hypothesis, we examined DDIT4 protein expression in cardiomyocytes and in heart tissues of rats exposed to METH with Western blotting. We also determined the effects on METH-induced autophagy and apoptosis after silencing DDIT4 expression with synthetic siRNA with or without pretreatment of a mTOR inhibitor rapamycin in cardiomyocytes using Western blot analysis, fluorescence microscopy and TUNEL staining. Our results showed that METH exposure increased DDIT4 expression and decreased phosphorylation of mTOR that was accompanied with increased autophagy and apoptosis both in vitro and in vivo. These effects were normalized after silencing DDIT4. On the other hand, rapamycin promoted METH-induced autophagy and apoptosis in DDIT4 knockdown cardiomyocytes. These results suggest that DDIT4 mediates METH-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes. - Highlights: • METH exposure increases DDIT4 expression in cardiomyocytes. • DDIT4 mediates METH-induced autophagy and apoptosis in cardiomyocytes. • DDIT4 silencing protects cardiomyocytes against METH-caused autophagy and apoptosis.

  14. DNA damage-inducible transcript 4 (DDIT4) mediates methamphetamine-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Rui [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Department of Forensic Medicine, Guangdong Medical University, Dongguan 523808 (China); Wang, Bin; Chen, Ling; Cai, Dunpeng; Li, Bing; Chen, Chuanxiang; Huang, Enping [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Liu, Chao [Guangzhou Forensic Science Institute, Guangzhou 510030 (China); Lin, Zhoumeng [Institute of Computational Comparative Medicine and Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 (United States); Xie, Wei-Bing, E-mail: xieweib@126.com [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Wang, Huijun, E-mail: hjwang711@yahoo.cn [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China)

    2016-03-15

    Methamphetamine (METH) is an amphetamine-like psychostimulant that is commonly abused. Previous studies have shown that METH can induce damages to the nervous system and recent studies suggest that METH can also cause adverse and potentially lethal effects on the cardiovascular system. Recently, we demonstrated that DNA damage-inducible transcript 4 (DDIT4) regulates METH-induced neurotoxicity. However, the role of DDIT4 in METH-induced cardiotoxicity remains unknown. We hypothesized that DDIT4 may mediate METH-induced autophagy and apoptosis in cardiomyocytes. To test the hypothesis, we examined DDIT4 protein expression in cardiomyocytes and in heart tissues of rats exposed to METH with Western blotting. We also determined the effects on METH-induced autophagy and apoptosis after silencing DDIT4 expression with synthetic siRNA with or without pretreatment of a mTOR inhibitor rapamycin in cardiomyocytes using Western blot analysis, fluorescence microscopy and TUNEL staining. Our results showed that METH exposure increased DDIT4 expression and decreased phosphorylation of mTOR that was accompanied with increased autophagy and apoptosis both in vitro and in vivo. These effects were normalized after silencing DDIT4. On the other hand, rapamycin promoted METH-induced autophagy and apoptosis in DDIT4 knockdown cardiomyocytes. These results suggest that DDIT4 mediates METH-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes. - Highlights: • METH exposure increases DDIT4 expression in cardiomyocytes. • DDIT4 mediates METH-induced autophagy and apoptosis in cardiomyocytes. • DDIT4 silencing protects cardiomyocytes against METH-caused autophagy and apoptosis.

  15. Tannic Acid Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in Prostate Cancer.

    Science.gov (United States)

    Nagesh, Prashanth K B; Hatami, Elham; Chowdhury, Pallabita; Kashyap, Vivek K; Khan, Sheema; Hafeez, Bilal B; Chauhan, Subhash C; Jaggi, Meena; Yallapu, Murali M

    2018-03-07

    Endoplasmic reticulum (ER) stress is an intriguing target with significant clinical importance in chemotherapy. Interference with ER functions can lead to the accumulation of unfolded proteins, as detected by transmembrane sensors that instigate the unfolded protein response (UPR). Therefore, controlling induced UPR via ER stress with natural compounds could be a novel therapeutic strategy for the management of prostate cancer. Tannic acid (a naturally occurring polyphenol) was used to examine the ER stress mediated UPR pathway in prostate cancer cells. Tannic acid treatment inhibited the growth, clonogenic, invasive, and migratory potential of prostate cancer cells. Tannic acid demonstrated activation of ER stress response (Protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol requiring enzyme 1 (IRE1)) and altered its regulatory proteins (ATF4, Bip, and PDI) expression. Tannic acid treatment affirmed upregulation of apoptosis-associated markers (Bak, Bim, cleaved caspase 3, and cleaved PARP), while downregulation of pro-survival proteins (Bcl-2 and Bcl-xL). Tannic acid exhibited elevated G₁ population, due to increase in p18 INK4C and p21 WAF1/CIP1 expression, while cyclin D1 expression was inhibited. Reduction of MMP2 and MMP9, and reinstated E-cadherin signifies the anti-metastatic potential of this compound. Altogether, these results demonstrate that tannic acid can promote apoptosis via the ER stress mediated UPR pathway, indicating a potential candidate for cancer treatment.

  16. Targeted induction of interferon-λ in humanized chimeric mouse liver abrogates hepatotropic virus infection.

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Nakagawa

    Full Text Available BACKGROUND & AIMS: The interferon (IFN system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV and hepatitis B virus (HBV. METHODS: This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC. Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs in the livers and sera of these humanized chimeric mice. RESULTS: Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1, suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. CONCLUSIONS: These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.

  17. Thyroid hormonal disturbances related to treatment of hepatitis C with interferon-alpha and ribavirin

    Directory of Open Access Journals (Sweden)

    Debora Lucia Seguro Danilovic

    2011-01-01

    Full Text Available OBJECTIVE: To characterize thyroid disturbances induced by interferon-alpha and ribavirin therapy in patients with chronic hepatitis C. INTRODUCTION: Interferon-alpha is used to treat chronic hepatitis C infections. This compound commonly induces both autoimmune and non-autoimmune thyroiditis. METHODS: We prospectively selected 26 patients with chronic hepatitis C infections. Clinical examinations, hormonal evaluations, and color-flow Doppler ultrasonography of the thyroid were performed before and during antiviral therapy. RESULTS: Of the patients in our study, 54% had no thyroid disorders associated with the interferon-alpha therapy but showed reduced levels of total T3 along with a decrease in serum alanine aminotransferase. Total T4 levels were also reduced at 3 and 12 months, but free T4 and thyroid stimulating hormone (TSH levels remained stable. A total of 19% of the subjects had autoimmune interferon-induced thyroiditis, which is characterized by an emerge of antithyroid antibodies or overt hypothyroidism. Additionally, 16% had non-autoimmune thyroiditis, which presents as destructive thyroiditis or subclinical hypothyroidism, and 11% remained in a state of euthyroidism despite the prior existence of antithyroidal antibodies. Thyrotoxicosis with destructive thyroiditis was diagnosed within three months of therapy, and ultrasonography of these patients revealed thyroid shrinkage and discordant change in the vascular patterns. DISCUSSION: Decreases in the total T3 and total T4 levels may be related to improvements in the hepatocellular lesions or inflammatory changes similar to those associated with nonthyroidal illnesses. The immune mechanisms and direct effects of interferon-alpha can be associated with thyroiditis. CONCLUSION: Interferon-alpha and ribavirin induce autoimmune and non-autoimmune thyroiditis and hormonal changes (such as decreased total T3 and total T4 levels, which occur despite stable free T4 and TSH levels. A thyroid

  18. Heat shock proteins 70 and 90 from Clonorchis sinensis induce Th1 response and stimulate antibody production.

    Science.gov (United States)

    Chung, Eun Joo; Jeong, Young-Il; Lee, Myoung-Ro; Kim, Yu Jung; Lee, Sang-Eun; Cho, Shin-Hyeong; Lee, Won-Ja; Park, Mi-Yeoun; Ju, Jung-Won

    2017-03-01

    Heat shock proteins (HSPs) are found in all prokaryotes and most compartments of eukaryotic cells. Members of the HSP family mediate immune responses to tissue damage or cellular stress. However, little is known about the immune response induced by the oriental liver fluke, Clonorchis sinensis, even though this organism is carcinogenic to humans. We address this issue in the present study in mouse bone marrow dendritic cells (mBMDCs), using recombinant HSP70 and 90 from C. sinensis (rCsHSP70 and rCsHSP90). rCsHSP70 and rCsHSP90 were produced in an E. coli system. Purified recombinant proteins were treated in BMDCs isolated from C57BL/6 mice. T cells were isolated from Balb/c mice and co-cultured with activated mBMDCs. Expression of surface molecules was measured by flow cytometry and cytokine secretion was quantified using ELISA. C57BL/6 mice were divided into four groups, including peptide alone, peptide/Freund's adjuvant, peptide/CsHSP70, peptide/CsHSP90, and were immunized intraperitoneally three times. Two weeks after final immunization, antibodies against peptide were measured using ELISA. Both proteins induced a dose-dependent upregulation in major histocompatibility complex and co-stimulatory molecule expression and increased secretion of pro-inflammatory cytokines including interleukin (IL)-1β, -6, and -12p70 and tumor necrosis factor-α in mBMDCs. Furthermore, when allogenic T cells were incubated with mBMDCs activated by rCsHSP70 and rCsHSP90, the helper T cell (Th)1 cytokine interferon-γ was up-regulated whereas the level of the Th2 cytokine IL-4 was unchanged. These results indicate that rCsHSPs predominantly induce a Th1 response. Over and above these results, we also demonstrated that the production of peptide-specific antibodies can be activated after immunization via in vitro peptide binding with rCsHSP70 or rCsHSP90. This study showed for the first time that the HSP or HSP/peptide complexes of C. sinensis could be considered as a more effective

  19. Type I interferons as stimulators of DC-mediated cross-priming: impact on anti-tumor response

    Directory of Open Access Journals (Sweden)

    Giovanna eSchiavoni

    2013-12-01

    Full Text Available Induction of potent tumor-specific cytotoxic T-cell responses is a fundamental objective in anticancer therapeutic strategies. This event requires that antigen-presenting cells (APC present tumor-associated antigens (Ag on their MHC class-I molecule, in a process termed cross-presentation. Dendritic cells (DC are particularly keen on this task and can induce the cross-priming of CD8+ T cells, when exposed to danger or inflammatory signals that stimulate their activation. Type I interferons (IFN-I, a family of long-known immunostimulatory cytokines, have been proven to produce optimal activation signal for DC-induced cross-priming. Recent in vitro and in vivo evidences have suggested that IFN-I -stimulated cross-priming by DC against tumor-associated Ag is a key mechanism for cancer immunosurveillance and may be usefully exploited to boost anti-tumor CD8+ T-cell responses. Here, we will review the cross-presentation properties of different DC subsets, with special focus on cell-associated and tumor Ag, and discuss how IFN-I can modify this function, with the aim of identifying more specific and effective strategies for improving anticancer responses.

  20. In vivo administration of interferon alpha and interleukin 2 induces proliferation of lymphoid cells in the organs of mice

    International Nuclear Information System (INIS)

    Puri, R.K.; Travis, W.D.; Rosenberg, S.A.

    1990-01-01

    We have previously shown that interleukin 2 (IL-2) synergizes with interferon alpha (IFN-alpha) in mediating the regression of established pulmonary and hepatic metastases and the reduction of intradermal tumor in various murine tumor models. To understand the mechanism of synergy, we have examined lymphoid cell proliferation in various organs of mice in response to IL-2 and IFN-alpha administration. We have utilized a technique for labeling newly synthesized DNA in vivo with 5-[125I]iodo-2'-deoxyuridine to examine proliferation of endogenous cells in response to IL-2 and IL-2 plus IFN-alpha. A proliferation index was calculated by dividing cpm in the tissues treated with cytokines by cpm obtained in corresponding tissues of control mice. After 4 days of IL-2 administration, a significant uptake of 5-[125I]iodo-2'-deoxyuridine was observed in the lungs, liver, kidneys, and spleen (proliferation index of 13, 10.3, 3.6, and 3.2, respectively). IFN-alpha alone mediated very little incorporation of radiolabel but when administered in combination with IL-2 a reduction of IL-2-induced proliferation was seen on day 4. For example 19,272 +/- 4,556 cpm (mean +/- SE) were obtained in the liver of IL-2-treated mice, compared to 8,103 +/- 2,111 cpm in livers of IL-2 plus IFN-alpha-treated mice (P less than 0.05). Similar inhibition of IL-2-induced proliferation was observed in the lungs, kidneys, and spleen. In contrast, on days 7 or 8, higher uptake of radiolabel was obtained in IFN-alpha plus IL-2-treated lungs, liver, and kidneys, compared to organs of mice treated with IL-2 alone or IFN-alpha alone. A proliferation index of 30.5, 9.8, and 10 was obtained in the lungs, liver, and kidneys of IL-2- plus IFN-alpha-treated animals, compared to 9.6, 3.6, and 5.5 in the corresponding organs of IL-2-treated mice

  1. Phosphorylation of the Usher syndrome 1G protein SANS controls Magi2-mediated endocytosis.

    Science.gov (United States)

    Bauß, Katharina; Knapp, Barbara; Jores, Pia; Roepman, Ronald; Kremer, Hannie; Wijk, Erwin V; Märker, Tina; Wolfrum, Uwe

    2014-08-01

    The human Usher syndrome (USH) is a complex ciliopathy with at least 12 chromosomal loci assigned to three clinical subtypes, USH1-3. The heterogeneous USH proteins are organized into protein networks. Here, we identified Magi2 (membrane-associated guanylate kinase inverted-2) as a new component of the USH protein interactome, binding to the multifunctional scaffold protein SANS (USH1G). We showed that the SANS-Magi2 complex assembly is regulated by the phosphorylation of an internal PDZ-binding motif in the sterile alpha motif domain of SANS by the protein kinase CK2. We affirmed Magi2's role in receptor-mediated, clathrin-dependent endocytosis and showed that phosphorylated SANS tightly regulates Magi2-mediated endocytosis. Specific depletions by RNAi revealed that SANS and Magi2-mediated endocytosis regulates aspects of ciliogenesis. Furthermore, we demonstrated the localization of the SANS-Magi2 complex in the periciliary membrane complex facing the ciliary pocket of retinal photoreceptor cells in situ. Our data suggest that endocytotic processes may not only contribute to photoreceptor cell homeostasis but also counterbalance the periciliary membrane delivery accompanying the exocytosis processes for the cargo vesicle delivery. In USH1G patients, mutations in SANS eliminate Magi2 binding and thereby deregulate endocytosis, lead to defective ciliary transport modules and ultimately disrupt photoreceptor cell function inducing retinal degeneration. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Oromucosal Administration of Interferon to Humans

    Directory of Open Access Journals (Sweden)

    Manfred W. Beilharz

    2010-01-01

    Full Text Available The prevailing dogma is that, to be systemically effective, interferon-alpha (IFNα must be administered in sufficiently high doses to yield functional blood concentrations. Such an approach to IFNa therapy has proven effective in some instances, but high-dose parenteral IFNα therapy has the disadvantage of causing significant adverse events. Mounting evidence suggests that IFNα delivered into the oral cavity in low doses interacts with the oral mucosa in a unique manner to induce systemic host defense mechanisms without IFNα actually entering the circulation, thus reducing the potential for toxic side effects. A better understanding of the applications and potential benefits of this treatment modality are under active investigation. This paper provides a review of the relevant literature on the clinical use of the oromucosal route of administration of interferon, with an emphasis on the treatment of influenza.

  3. CMOS image sensor for detection of interferon gamma protein interaction as a point-of-care approach.

    Science.gov (United States)

    Marimuthu, Mohana; Kandasamy, Karthikeyan; Ahn, Chang Geun; Sung, Gun Yong; Kim, Min-Gon; Kim, Sanghyo

    2011-09-01

    Complementary metal oxide semiconductor (CMOS)-based image sensors have received increased attention owing to the possibility of incorporating them into portable diagnostic devices. The present research examined the efficiency and sensitivity of a CMOS image sensor for the detection of antigen-antibody interactions involving interferon gamma protein without the aid of expensive instruments. The highest detection sensitivity of about 1 fg/ml primary antibody was achieved simply by a transmission mechanism. When photons are prevented from hitting the sensor surface, a reduction in digital output occurs in which the number of photons hitting the sensor surface is approximately proportional to the digital number. Nanoscale variation in substrate thickness after protein binding can be detected with high sensitivity by the CMOS image sensor. Therefore, this technique can be easily applied to smartphones or any clinical diagnostic devices for the detection of several biological entities, with high impact on the development of point-of-care applications.

  4. Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation.

    Science.gov (United States)

    Wang, S; Wang, H; Guo, H; Kang, L; Gao, X; Hu, L

    2011-06-30

    Inhibition of microglial over-reaction and the inflammatory processes may represent a therapeutic target to alleviate the progression of neurological diseases, such as neurodegenerative diseases and stroke. Scutellarin is the major active component of Erigeron breviscapus (Vant.) Hand-Mazz, a herbal medicine in treatment of cerebrovascular diseases for a long time in the Orient. In this study, we explored the mechanisms of neuroprotection by Scutellarin, particularly its anti-inflammatory effects in microglia. We observed that Scutellarin inhibited lipopolysaccharide (LPS)-induced production of proinflammatory mediators such as nitric oxide (NO), tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) and reactive oxygen species (ROS), suppressed LPS-stimulated inducible nitric oxide synthase (iNOS), TNFα, and IL-1β mRNA expression in rat primary microglia or BV-2 mouse microglial cell line. Scutellarin inhibited LPS-induced nuclear translocation and DNA binding activity of nuclear factor κB (NF-κB). It repressed the LPS-induced c-Jun N-terminal kinase (JNK) and p38 phosphorylation without affecting the activity of extracellular signal regulated kinase (ERK) mitogen-activated protein kinase. Moreover, Scutellarin also inhibited interferon-γ (IFN-γ)-induced NO production, iNOS mRNA expression and transcription factor signal transducer and activator of transcription 1α (STAT1α) activation. Concomitantly, conditioned media from Scutellarin pretreated BV-2 cells significantly reduced neurotoxicity compared with conditioned media from LPS treated alone. Together, the present study reported the anti-inflammatory activity of Scutellarin in microglial cells along with their underlying molecular mechanisms, and suggested Scutellarin might have therapeutic potential for various microglia mediated neuroinflammation. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Toll-like receptor 7 agonist GS-9620 induces prolonged inhibition of HBV via a type I interferon-dependent mechanism.

    Science.gov (United States)

    Niu, Congrong; Li, Li; Daffis, Stephane; Lucifora, Julie; Bonnin, Marc; Maadadi, Sarah; Salas, Eduardo; Chu, Ruth; Ramos, Hilario; Livingston, Christine M; Beran, Rudolf K; Garg, Abhishek V; Balsitis, Scott; Durantel, David; Zoulim, Fabien; Delaney, William E; Fletcher, Simon P

    2018-05-01

    GS-9620, an oral agonist of toll-like receptor 7 (TLR7), is in clinical development for the treatment of chronic hepatitis B (CHB). GS-9620 was previously shown to induce prolonged suppression of serum viral DNA and antigens in the woodchuck and chimpanzee models of CHB. Herein, we investigated the molecular mechanisms that contribute to the antiviral response to GS-9620 using in vitro models of hepatitis B virus (HBV) infection. Cryopreserved primary human hepatocytes (PHH) and differentiated HepaRG (dHepaRG) cells were infected with HBV and treated with GS-9620, conditioned media from human peripheral blood mononuclear cells treated with GS-9620 (GS-9620 conditioned media [GS-9620-CM]), or other innate immune stimuli. The antiviral and transcriptional response to these agents was determined. GS-9620 had no antiviral activity in HBV-infected PHH, consistent with low level TLR7 mRNA expression in human hepatocytes. In contrast, GS-9620-CM induced prolonged reduction of HBV DNA, RNA, and antigen levels in PHH and dHepaRG cells via a type I interferon (IFN)-dependent mechanism. GS-9620-CM did not reduce covalently closed circular DNA (cccDNA) levels in either cell type. Transcriptional profiling demonstrated that GS-9620-CM strongly induced various HBV restriction factors - although not APOBEC3A or the Smc5/6 complex - and indicated that established HBV infection does not modulate innate immune sensing or signaling in cryopreserved PHH. GS-9620-CM also induced expression of immunoproteasome subunits and enhanced presentation of an immunodominant viral peptide in HBV-infected PHH. Type I IFN induced by GS-9620 durably suppressed HBV in human hepatocytes without reducing cccDNA levels. Moreover, HBV antigen presentation was enhanced, suggesting additional components of the TLR7-induced immune response played a role in the antiviral response to GS-9620 in animal models of CHB. GS-9620 is a drug currently being tested in clinical trials for the treatment of chronic

  6. Salvianolic acid A preconditioning confers protection against concanavalin A-induced liver injury through SIRT1-mediated repression of p66shc in mice

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaomei; Hu, Yan; Zhai, Xiaohan; Lin, Musen [Department of Pharmacology, Dalian Medical University, Dalian 116044 (China); Chen, Zhao; Tian, Xiaofeng; Zhang, Feng [Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Gao, Dongyan; Ma, Xiaochi [Department of Pharmacology, Dalian Medical University, Dalian 116044 (China); Lv, Li, E-mail: lv_li@126.com [Department of Pharmacology, Dalian Medical University, Dalian 116044 (China); Yao, Jihong, E-mail: Yaojihong65@hotmail.com [Department of Pharmacology, Dalian Medical University, Dalian 116044 (China)

    2013-11-15

    Salvianolic acid A (SalA) is a phenolic carboxylic acid derivative extracted from Salvia miltiorrhiza. It has many biological and pharmaceutical activities. The purpose of this study was to investigate the effect of SalA on concanavalin A (ConA)-induced acute hepatic injury in Kunming mice and to explore the role of SIRT1 in such an effect. The results showed that in vivo pretreatment with SalA significantly reduced ConA-induced elevation in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and decreased levels of the hepatotoxic cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Moreover, the SalA pretreatment ameliorated the increases in NF-κB and in cleaved caspase-3 caused by ConA exposure. Whereas, the pretreatment completely reversed expression of the B-cell lymphoma-extra large (Bcl-xL). More importantly, the SalA pretreatment significantly increased the expression of SIRT1, a NAD{sup +}-dependent deacetylase, which was known to attenuate acute hypoxia damage and metabolic liver diseases. In our study, the increase in SIRT1 was closely associated with down-regulation of the p66 isoform (p66shc) of growth factor adapter Shc at both protein and mRNA levels. In HepG2 cell culture, SalA pretreatment increased SIRT1 expression in a time and dose-dependent manner and such an increase was abrogated by siRNA knockdown of SIRT1. Additionally, inhibition of SIRT1 significantly reversed the decreased expression of p66shc, and attenuated SalA-induced p66shc down-regulation. Collectively, the present study indicated that SalA may be a potent activator of SIRT and that SalA can alleviate ConA-induced hepatitis through SIRT1-mediated repression of the p66shc pathway. - Highlights: • We report for the first time that SalA protects against ConA-induced hepatitis. • We find that SalA is a potential activator of SIRT1. • SalA's protection against hepatitis involves SIRT1-mediated repression of p

  7. Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection.

    Science.gov (United States)

    Maric-Biresev, Jelena; Hunn, Julia P; Krut, Oleg; Helms, J Bernd; Martens, Sascha; Howard, Jonathan C

    2016-04-20

    The interferon-γ (IFN-γ)-inducible immunity-related GTPase (IRG), Irgm1, plays an essential role in restraining activation of the IRG pathogen resistance system. However, the loss of Irgm1 in mice also causes a dramatic but unexplained susceptibility phenotype upon infection with a variety of pathogens, including many not normally controlled by the IRG system. This phenotype is associated with lymphopenia, hemopoietic collapse, and death of the mouse. We show that the three regulatory IRG proteins (GMS sub-family), including Irgm1, each of which localizes to distinct sets of endocellular membranes, play an important role during the cellular response to IFN-γ, each protecting specific membranes from off-target activation of effector IRG proteins (GKS sub-family). In the absence of Irgm1, which is localized mainly at lysosomal and Golgi membranes, activated GKS proteins load onto lysosomes, and are associated with reduced lysosomal acidity and failure to process autophagosomes. Another GMS protein, Irgm3, is localized to endoplasmic reticulum (ER) membranes; in the Irgm3-deficient mouse, activated GKS proteins are found at the ER. The Irgm3-deficient mouse does not show the drastic phenotype of the Irgm1 mouse. In the Irgm1/Irgm3 double knock-out mouse, activated GKS proteins associate with lipid droplets, but not with lysosomes, and the Irgm1/Irgm3(-/-) does not have the generalized immunodeficiency phenotype expected from its Irgm1 deficiency. The membrane targeting properties of the three GMS proteins to specific endocellular membranes prevent accumulation of activated GKS protein effectors on the corresponding membranes and thus enable GKS proteins to distinguish organellar cellular membranes from the membranes of pathogen vacuoles. Our data suggest that the generalized lymphomyeloid collapse that occurs in Irgm1(-/-) mice upon infection with a variety of pathogens may be due to lysosomal damage caused by off-target activation of GKS proteins on lysosomal

  8. Molecular cloning and expression of a transformation-sensitive human protein containing the TPR motif and sharing identity to the stress-inducible yeast protein STI1

    DEFF Research Database (Denmark)

    Honoré, B; Leffers, H; Madsen, Peder

    1992-01-01

    in families of fungal proteins required for mitosis and RNA synthesis. In particular, the protein has 42% amino acid sequence identity to STI1, a stress-inducible mediator of the heat shock response in Saccharomyces cerevisiae. Northern blot analysis indicated that the 3521 mRNA is up-regulated in several...

  9. Maresin 1, a Proresolving Lipid Mediator, Mitigates Carbon Tetrachloride-Induced Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Ruidong Li

    2016-01-01

    Full Text Available Maresin 1 (MaR 1 was recently reported to have protective properties in several different animal models of acute inflammation by inhibiting inflammatory response. However, its function in acute liver injury is still unknown. To address this question, we induced liver injury in BALB/c mice with intraperitoneal injection of carbon tetrachloride with or without treatment of MaR 1. Our data showed that MaR 1 attenuated hepatic injury, oxidative stress, and lipid peroxidation induced by carbon tetrachloride, as evidenced by increased thiobarbituric acid reactive substances and reactive oxygen species levels were inhibited by treatment of MaR 1. Furthermore, MaR 1 increased activities of antioxidative mediators in carbon tetrachloride-treated mice liver. MaR 1 decreased indices of inflammatory mediators such as tumor necrosis factor-α, interleukin-6, interleukin-1β, monocyte chemotactic protein 1, myeloperoxidase, cyclooxygenase-2, and inducible nitric oxide synthase. Administration of MaR 1 inhibited activation of nuclear factor kappa B (NF-κb and mitogen-activated protein kinases (MAPKs in the liver of CCl4 treated mice. In conclusion, these results suggested the antioxidative, anti-inflammatory properties of MaR 1 in CCl4 induced liver injury. The possible mechanism is partly implicated in its abilities to inhibit ROS generation and activation of NF-κb and MAPK pathway.

  10. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4.

    Science.gov (United States)

    Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung

    2016-04-01

    Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.

  11. Retraction: Myostatin Induces Degradation of Sarcomeric Proteins through a Smad3 Signaling Mechanism During Skeletal Muscle Wasting

    Science.gov (United States)

    Lokireddy, Sudarsanareddy; McFarlane, Craig; Ge, Xiaojia; Zhang, Huoming; Sze, Siu Kwan; Sharma, Mridula

    2011-01-01

    Ubiquitination-mediated proteolysis is a hallmark of skeletal muscle wasting manifested in response to negative growth factors, including myostatin. Thus, the characterization of signaling mechanisms that induce the ubiquitination of intracellular and sarcomeric proteins during skeletal muscle wasting is of great importance. We have recently characterized myostatin as a potent negative regulator of myogenesis and further demonstrated that elevated levels of myostatin in circulation results in the up-regulation of the muscle-specific E3 ligases, Atrogin-1 and muscle ring finger protein 1 (MuRF1). However, the exact signaling mechanisms by which myostatin regulates the expression of Atrogin-1 and MuRF1, as well as the proteins targeted for degradation in response to excess myostatin, remain to be elucidated. In this report, we have demonstrated that myostatin signals through Smad3 (mothers against decapentaplegic homolog 3) to activate forkhead box O1 and Atrogin-1 expression, which further promotes the ubiquitination and subsequent proteasome-mediated degradation of critical sarcomeric proteins. Smad3 signaling was dispensable for myostatin-dependent overexpression of MuRF1. Although down-regulation of Atrogin-1 expression rescued approximately 80% of sarcomeric protein loss induced by myostatin, only about 20% rescue was seen when MuRF1 was silenced, implicating that Atrogin-1 is the predominant E3 ligase through which myostatin manifests skeletal muscle wasting. Furthermore, we have highlighted that Atrogin-1 not only associates with myosin heavy and light chain, but it also ubiquitinates these sarcomeric proteins. Based on presented data we propose a model whereby myostatin induces skeletal muscle wasting through targeting sarcomeric proteins via Smad3-mediated up-regulation of Atrogin-1 and forkhead box O1. PMID:21964591

  12. Presynaptic protein synthesis required for NT-3-induced long-term synaptic modulation

    Directory of Open Access Journals (Sweden)

    Je H

    2011-01-01

    Full Text Available Abstract Background Neurotrophins elicit both acute and long-term modulation of synaptic transmission and plasticity. Previously, we demonstrated that the long-term synaptic modulation requires the endocytosis of neurotrophin-receptor complex, the activation of PI3K and Akt, and mTOR mediated protein synthesis. However, it is unclear whether the long-term synaptic modulation by neurotrophins depends on protein synthesis in pre- or post-synaptic cells. Results Here we have developed an inducible protein translation blocker, in which the kinase domain of protein kinase R (PKR is fused with bacterial gyrase B domain (GyrB-PKR, which could be dimerized upon treatment with a cell permeable drug, coumermycin. By genetically targeting GyrB-PKR to specific cell types, we show that NT-3 induced long-term synaptic modulation requires presynaptic, but not postsynaptic protein synthesis. Conclusions Our results provide mechanistic insights into the cell-specific requirement for protein synthesis in the long-term synaptic modulation by neurotrophins. The GyrB-PKR system may be useful tool to study protein synthesis in a cell-specific manner.

  13. POLYMORPHIC VARIANTS OF THE GENE OF INTERFERON LAMBDA 3 AND FEATURES OF IMMUNE RESPONSE IN CHILDREN WITH CHRONIC VIRAL HEPATITIS C

    Directory of Open Access Journals (Sweden)

    T. B. Sentsova

    2017-01-01

    Full Text Available To study the immune manifestations of the interferon-lambda 3 genepolymorphism in chronic viral hepatitis C, 110 Russian children (54 girls and 56 boys with chronic HCV infection aged from 3 to 17 years were examined. All children were on combined therapy (pegylated interferon + ribavirin. It was found that among the studied polymorphic variants of the IFN-λ 3 gene in children with chronic HCV infection, T allele of the marker rs12979860 is associated with infection and chronization of HCV. The T/T rs12979860 genotype of the IFN-λ3 gene is unfavorable for the course of chronic HCV infection due to low levels of activated T-lymphocytes, intactness of the proinflammatory cytokines TNF-α, IL-6, IL-1α, and interferoninducible protein IP-10. The revealed relation of the polymorphic variants of C/C + C/T locus rs12979860 of INF-λ3 gene with the expression of activated T-lymphocytes discloses the protective nature of these genotypes to the development of chronic HCV infection in children. 

  14. [(35)S]-GTPgammaS autoradiography reveals alpha(2) adrenoceptor-mediated G-protein activation in amygdala and lateral septum.

    Science.gov (United States)

    Newman-Tancredi, A; Chaput, C; Touzard, M; Millan, M J

    2000-04-03

    alpha(2)-adrenoceptor-mediated G-protein activation was examined by [(35)S]-GTPgammaS autoradiography. In alpha(2)-adrenoceptor-rich regions (amygdala, lateral septum), noradrenaline stimulated [(35)S]-GTPgammaS binding. These actions were abolished by the selective alpha(2) antagonist, atipamezole. Conversely, in caudate nucleus, which expresses few alpha(2) receptors, noradrenaline-induced stimulation was not inhibited by atipamezole, suggesting that it is not mediated by alpha(2)-adrenoceptors.

  15. Differential induction of Toll-like receptors & type 1 interferons by Sabin attenuated & wild type 1 polioviruses in human neuronal cells

    Directory of Open Access Journals (Sweden)

    Madhu C Mohanty

    2013-01-01

    Full Text Available Background & objectives: Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV and Sabin attenuated type 1 poliovirus (Sabin PV in cultured human neuronal cells. Methods: By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH infected with Sabin PV and wild PV. Results: Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5 m-RNA in neuronal cells at the beginning of infection (up to 4 h as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Interpretation & conclusions: Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies.

  16. Differential Regulation of Interferon Responses by Ebola and Marburg Virus VP35 Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Megan R.; Liu, Gai; Mire, Chad E.; Sureshchandra, Suhas; Luthra, Priya; Yen, Benjamin; Shabman, Reed S.; Leung, Daisy W.; Messaoudi, Ilhem; Geisbert, Thomas W.; Amarasinghe, Gaya K.; Basler, Christopher F.

    2016-02-11

    Suppression of innate immune responses during filoviral infection contributes to disease severity. Ebola (EBOV) and Marburg (MARV) viruses each encode a VP35 protein that suppresses RIG-I-like receptor signaling and interferon-α/β (IFN-α/β) production by several mechanisms, including direct binding to double stranded RNA (dsRNA). Here, we demonstrate that in cell culture, MARV infection results in a greater upregulation of IFN responses as compared to EBOV infection. This correlates with differences in the efficiencies by which EBOV and MARV VP35s antagonize RIG-I signaling. Furthermore, structural and biochemical studies suggest that differential recognition of RNA elements by the respective VP35 C-terminal IFN inhibitory domain (IID) rather than affinity for RNA by the respective VP35s is critical for this observation. Our studies reveal functional differences in EBOV versus MARV VP35 RNA binding that result in unexpected differences in the host response to deadly viral pathogens.

  17. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

    International Nuclear Information System (INIS)

    Mosedale, Merrie; Wu, Hong; Kurtz, C. Lisa; Schmidt, Stephen P.; Adkins, Karissa; Harrill, Alison H.

    2014-01-01

    A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response. Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis

  18. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

    Energy Technology Data Exchange (ETDEWEB)

    Mosedale, Merrie [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Wu, Hong [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Kurtz, C. Lisa [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Schmidt, Stephen P. [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Adkins, Karissa, E-mail: Karissa.Adkins@pfizer.com [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Harrill, Alison H. [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); University of Arkansas for Medical Sciences, Little Rock, AR72205 (United States)

    2014-10-01

    A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response. Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis

  19. Interferoninduced in female genital epithelium by HIV-1 glycoprotein 120 via Toll-like-receptor 2 pathway acts to protect the mucosal barrier.

    Science.gov (United States)

    Nazli, Aisha; Dizzell, Sara; Zahoor, Muhammad Atif; Ferreira, Victor H; Kafka, Jessica; Woods, Matthew William; Ouellet, Michel; Ashkar, Ali A; Tremblay, Michel J; Bowdish, Dawn Me; Kaushic, Charu

    2018-03-19

    More than 40% of HIV infections occur via female reproductive tract (FRT) through heterosexual transmission. Epithelial cells that line the female genital mucosa are the first line of defense against HIV-1 and other sexually transmitted pathogens. These sentient cells recognize and respond to external stimuli by induction of a range of carefully balanced innate immune responses. Previously, we have shown that in response to HIV-1 gp120, the genital epithelial cells (GECs) from upper reproductive tract induce an inflammatory response that may facilitate HIV-1 translocation and infection. In this study, we report that the endometrial and endocervical GECs simultaneously induce biologically active interferon-β (IFNβ) antiviral responses following exposure to HIV-1 that act to protect the epithelial tight junction barrier. The innate antiviral response was directly induced by HIV-1 envelope glycoprotein gp120 and addition of gp120 neutralizing antibody inhibited IFNβ production. Interferon-β was induced by gp120 in upper GECs through Toll-like receptor 2 signaling and required presence of heparan sulfate on epithelial cell surface. The induction of IFNβ was dependent upon activation of transcription factor IRF3 (interferon regulatory factor 3). The IFNβ was biologically active, had a protective effect on epithelial tight junction barrier and was able to inhibit HIV-1 infection in TZM-bl indicator cells and HIV-1 replication in T cells. This is the first report that recognition of HIV-1 by upper GECs leads to induction of innate antiviral pathways. This could explain the overall low infectivity of HIV-1 in the FRT and could be exploited for HIV-1 prophylaxis.Cellular and Molecular Immunology advance online publication, 19 March 2018; doi:10.1038/cmi.2017.168.

  20. Plasmacytoid dendritic cell interferon-α production to R-848 stimulation is decreased in male infants

    Directory of Open Access Journals (Sweden)

    Wang Jennifer P

    2012-07-01

    Full Text Available Abstract Background Sex differences in response to microbial infections, especially viral ones, may be associated with Toll-like receptor (TLR-mediated responses by plasmacytoid dendritic cells (pDCs. Results In this study, we identified sex differences in human infant pDC interferon-α production following challenge with the TLR7/8 agonist R-848. Male pDC responses were significantly lower than those of females during early infancy. This difference may be attributed to the androgen surge experienced by males during the early infancy period. Pretreatment of human pDCs with dihydrotestosterone produced a significant reduction in interferon-α production following R-848 challenge. Conclusions Androgen-mediated regulation of pDC TLR7-driven innate immune responses may contribute to the observed sex differences in response to infections during early infancy.

  1. Exploiting the MDM2-CK1α Protein-Protein Interface to Develop Novel Biologics That Induce UBL-Kinase-Modification and Inhibit Cell Growth

    Science.gov (United States)

    Huart, Anne-Sophie; MacLaine, Nicola J.; Narayan, Vikram; Hupp, Ted R.

    2012-01-01

    Protein-protein interactions forming dominant signalling events are providing ever-growing platforms for the development of novel Biologic tools for controlling cell growth. Casein Kinase 1 α (CK1α) forms a genetic and physical interaction with the murine double minute chromosome 2 (MDM2) oncoprotein resulting in degradation of the p53 tumour suppressor. Pharmacological inhibition of CK1 increases p53 protein level and induces cell death, whilst small interfering RNA-mediated depletion of CK1α stabilizes p53 and induces growth arrest. We mapped the dominant protein-protein interface that stabilizes the MDM2 and CK1α complex in order to determine whether a peptide derived from the core CK1α-MDM2 interface form novel Biologics that can be used to probe the contribution of the CK1-MDM2 protein-protein interaction to p53 activation and cell viability. Overlapping peptides derived from CK1α were screened for dominant MDM2 binding sites using (i) ELISA with recombinant MDM2; (ii) cell lysate pull-down towards endogenous MDM2; (iii) MDM2-CK1α complex-based competition ELISA; and (iv) MDM2-mediated ubiquitination. One dominant peptide, peptide 35 was bioactive in all four assays and its transfection induced cell death/growth arrest in a p53-independent manner. Ectopic expression of flag-tagged peptide 35 induced a novel ubiquitin and NEDD8 modification of CK1α, providing one of the first examples whereby NEDDylation of a protein kinase can be induced. These data identify an MDM2 binding motif in CK1α which when isolated as a small peptide can (i) function as a dominant negative inhibitor of the CK1α-MDM2 interface, (ii) be used as a tool to study NEDDylation of CK1α, and (iii) reduce cell growth. Further, this approach provides a technological blueprint, complementing siRNA and chemical biology approaches, by exploiting protein-protein interactions in order to develop Biologics to manipulate novel types of signalling pathways such as cross-talk between

  2. Exploiting the MDM2-CK1α protein-protein interface to develop novel biologics that induce UBL-kinase-modification and inhibit cell growth.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Huart

    Full Text Available Protein-protein interactions forming dominant signalling events are providing ever-growing platforms for the development of novel Biologic tools for controlling cell growth. Casein Kinase 1 α (CK1α forms a genetic and physical interaction with the murine double minute chromosome 2 (MDM2 oncoprotein resulting in degradation of the p53 tumour suppressor. Pharmacological inhibition of CK1 increases p53 protein level and induces cell death, whilst small interfering RNA-mediated depletion of CK1α stabilizes p53 and induces growth arrest. We mapped the dominant protein-protein interface that stabilizes the MDM2 and CK1α complex in order to determine whether a peptide derived from the core CK1α-MDM2 interface form novel Biologics that can be used to probe the contribution of the CK1-MDM2 protein-protein interaction to p53 activation and cell viability. Overlapping peptides derived from CK1α were screened for dominant MDM2 binding sites using (i ELISA with recombinant MDM2; (ii cell lysate pull-down towards endogenous MDM2; (iii MDM2-CK1α complex-based competition ELISA; and (iv MDM2-mediated ubiquitination. One dominant peptide, peptide 35 was bioactive in all four assays and its transfection induced cell death/growth arrest in a p53-independent manner. Ectopic expression of flag-tagged peptide 35 induced a novel ubiquitin and NEDD8 modification of CK1α, providing one of the first examples whereby NEDDylation of a protein kinase can be induced. These data identify an MDM2 binding motif in CK1α which when isolated as a small peptide can (i function as a dominant negative inhibitor of the CK1α-MDM2 interface, (ii be used as a tool to study NEDDylation of CK1α, and (iii reduce cell growth. Further, this approach provides a technological blueprint, complementing siRNA and chemical biology approaches, by exploiting protein-protein interactions in order to develop Biologics to manipulate novel types of signalling pathways such as cross

  3. p18(Hamlet) mediates different p53-dependent responses to DNA-damage inducing agents.

    Science.gov (United States)

    Lafarga, Vanesa; Cuadrado, Ana; Nebreda, Angel R

    2007-10-01

    Cells organize appropriate responses to environmental cues by activating specific signaling networks. Two proteins that play key roles in coordinating stress responses are the kinase p38alpha (MAPK14) and the transcription factor p53 (TP53). Depending on the nature and the extent of the stress-induced damage, cells may respond by arresting the cell cycle or by undergoing cell death, and these responses are usually associated with the phosphorylation of particular substrates by p38alpha as well as the activation of specific target genes by p53. We recently characterized a new p38alpha substrate, named p18(Hamlet) (ZNHIT1), which mediates p53-dependent responses to different genotoxic stresses. Thus, cisplatin or UV light induce stabilization of the p18(Hamlet) protein, which then enhances the ability of p53 to bind to and activate the promoters of pro-apoptotic genes such as NOXA and PUMA leading to apoptosis induction. In a similar way, we report here that p18(Hamlet) can also mediate the cell cycle arrest induced in response to gamma-irradiation, by participating in the p53-dependent upregulation of the cell cycle inhibitor p21(Cip1) (CDKN1A).

  4. Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: role of the qacA locus.

    Science.gov (United States)

    Kupferwasser, L I; Skurray, R A; Brown, M H; Firth, N; Yeaman, M R; Bayer, A S

    1999-10-01

    Thrombin-induced platelet microbicidal protein 1 (tPMP-1) is a small, cationic peptide released from rabbit platelets following thrombin stimulation. In vitro resistance to this peptide among strains of Staphylococcus aureus correlates with the survival advantage of such strains at sites of endothelial damage in humans as well as in experimental endovascular infections. The mechanisms involved in the phenotypic resistance of S. aureus to tPMP-1 are not fully delineated. The plasmid-encoded staphylococcal gene qacA mediates multidrug resistance to multiple organic cations via a proton motive force-dependent efflux pump. We studied whether the qacA gene might also confer resistance to cationic tPMP-1. Staphylococcal plasmids encoding qacA were found to confer resistance to tPMP-1 in an otherwise susceptible parental strain. Deletions which removed the region containing the qacA gene in the S. aureus multiresistance plasmid pSK1 abolished tPMP-1 resistance. Resistance to tPMP-1 in the qacA-bearing strains was inoculum independent but peptide concentration dependent, with the level of resistance decreasing at higher peptide concentrations for a given inoculum. There was no apparent cross-resistance in qacA-bearing strains to other endogenous cationic antimicrobial peptides which are structurally distinct from tPMP-1, including human neutrophil defensin 1, protamine, or the staphylococcal lantibiotics pep5 and nisin. These data demonstrate that the staphylococcal multidrug resistance gene qacA also mediates in vitro resistance to cationic tPMP-1.

  5. Detection of Cyclic Dinucleotides by STING.

    Science.gov (United States)

    Du, Xiao-Xia; Su, Xiao-Dong

    2017-01-01

    STING (stimulator of interferon genes) is an essential signaling adaptor protein mediating cytosolic DNA-induced innate immunity for both microbial invasion and self-DNA leakage. STING is also a direct receptor for cytosolic cyclic dinucleotides (CDNs), including the microbial secondary messengers c-di-GMP (3',3'-cyclic di-GMP), 3',3'cGAMP (3',3'-cyclic GMP-AMP), and mammalian endogenous 2',3'cGAMP (2',3'-cyclic GMP-AMP) synthesized by cGAS (cyclic GMP-AMP synthase). Upon CDN binding, STING undergoes a conformational change to enable signal transduction by phosphorylation and finally to active IRF3 (Interferon regulatory factor 3) for type I interferon production. Here, we describe some experimental procedures such as Isothermal Titration Calorimetry and luciferase reporter assays to study the CDNs binding and activity by STING proteins.

  6. Chk2 mediates RITA-induced apoptosis.

    Science.gov (United States)

    de Lange, J; Verlaan-de Vries, M; Teunisse, A F A S; Jochemsen, A G

    2012-06-01

    Reactivation of the p53 tumor-suppressor protein by small molecules like Nutlin-3 and RITA (reactivation of p53 and induction of tumor cell apoptosis) is a promising strategy for cancer therapy. The molecular mechanisms involved in the responses to RITA remain enigmatic. Several groups reported the induction of a p53-dependent DNA damage response. Furthermore, the existence of a p53-dependent S-phase checkpoint has been suggested, involving the checkpoint kinase Chk1. We have recently shown synergistic induction of apoptosis by RITA in combination with Nutlin-3, and we observed concomitant Chk2 phosphorylation. Therefore, we investigated whether Chk2 contributes to the cellular responses to RITA. Strikingly, the induction of apoptosis seemed entirely Chk2 dependent. Transcriptional activity of p53 in response to RITA required the presence of Chk2. A partial rescue of apoptosis observed in Noxa knockdown cells emphasized the relevance of p53 transcriptional activity for RITA-induced apoptosis. In addition, we observed an early p53- and Chk2-dependent block of DNA replication upon RITA treatment. Replicating cells seemed more prone to entering RITA-induced apoptosis. Furthermore, the RITA-induced DNA damage response, which was not a secondary effect of apoptosis induction, was strongly attenuated in cells lacking p53 or Chk2. In conclusion, we identified Chk2 as an essential mediator of the cellular responses to RITA.

  7. Hepatitis A and hepatitis C viruses: divergent infection outcomes marked by similarities in induction and evasion of interferon responses.

    Science.gov (United States)

    Qu, Lin; Lemon, Stanley M

    2010-11-01

    Hepatitis A and hepatitis C viruses (HAV and HCV) are both positive-strand ribonucleic acid (RNA) viruses with hepatotropic lifestyles. Despite several important differences, they share many biological and molecular features and similar genome replication schemes. Despite this, HAV infections are usually effectively controlled by the host with elimination of the virus, whereas HCV most often is able to establish lifelong persistent infection. The mechanisms underlying this difference are unknown. The cellular helicases RIG-I and MDA5, and Toll-like receptor 3, are pattern recognition receptors that sense virus-derived RNAs within hepatocytes in the liver. Activation of these receptors leads to their interaction with specific adaptor proteins, mitochondrial antiviral signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β (TRIF), respectively, which engage downstream kinases to activate two crucial transcription factors, nuclear factor kappa B (NF-κB) and interferon regulatory factor 3 (IRF3). This results in the induction of interferons (IFNs) and IFN-stimulated genes that ultimately establish an antiviral state. These signaling pathways are central to host antiviral defense and thus frequent targets for viral interference. Both HAV and HCV express proteases that target signal transduction through these pathways and that block the induction of IFNs upon sensing of viral RNA by these receptors. An understanding of the differences and similarities in the early innate immune responses to these infections is likely to provide important insights into the mechanism underlying the long-term persistence of HCV. © Thieme Medical Publishers.

  8. TANK-Binding Kinase 1 (TBK1 Isoforms Negatively Regulate Type I Interferon Induction by Inhibiting TBK1-IRF3 Interaction and IRF3 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Yi Wei Hu

    2018-01-01

    Full Text Available TANK-binding kinase 1 (TBK1 is an important serine/threonine-protein kinase that mediates phosphorylation and nuclear translocation of IRF3, which contributes to induction of type I interferons (IFNs in the innate antiviral response. In mammals, TBK1 spliced isoform negatively regulates the virus-triggered IFN-β signaling pathway by disrupting the interaction between retinoic acid-inducible gene I (RIG-I and mitochondria antiviral-signaling protein (MAVS. However, it is still unclear whether alternative splicing patterns and the function of TBK1 isoform(s exist in teleost fish. In this study, we identify two alternatively spliced isoforms of TBK1 from zebrafish, termed TBK1_tv1 and TBK1_tv2. Both TBK1_tv1 and TBK1_tv2 contain an incomplete STKc_TBK1 domain. Moreover, the UBL_TBK1_like domain is also missing for TBK1_tv2. TBK1_tv1 and TBK1_tv2 are expressed in zebrafish larvae. Overexpression of TBK1_tv1 and TBK1_tv2 inhibits RIG-I-, MAVS-, TBK1-, and IRF3-mediated activation of IFN promoters in response to spring viremia of carp virus infection. Also, TBK1_tv1 and TBK1_tv2 inhibit expression of IFNs and IFN-stimulated genes induced by MAVS and TBK1. Mechanistically, TBK1_tv1 and TBK1_tv2 competitively associate with TBK1 and IRF3 to disrupt the formation of a functional TBK1-IRF3 complex, impeding the phosphorylation of IRF3 mediated by TBK1. Collectively, these results demonstrate that TBK1 spliced isoforms are dominant negative regulators in the RIG-I/MAVS/TBK1/IRF3 antiviral pathway by targeting the functional TBK1-IRF3 complex formation. Identification and functional characterization of piscine TBK1 spliced isoforms may contribute to understanding the role of TBK1 expression in innate antiviral response.

  9. Structure of the caspase-recruitment domain from a zebrafish guanylate-binding protein

    International Nuclear Information System (INIS)

    Jin, Tengchuan; Huang, Mo; Smith, Patrick; Jiang, Jiansheng; Xiao, T. Sam

    2013-01-01

    The crystal structure of the first zebrafish caspase-recruitment domain at 1.47 Å resolution illustrates a six-helix bundle fold similar to that of the human NLRP1 CARD. The caspase-recruitment domain (CARD) mediates homotypic protein–protein interactions that assemble large oligomeric signaling complexes such as the inflammasomes during innate immune responses. Structural studies of the mammalian CARDs demonstrate that their six-helix bundle folds belong to the death-domain superfamily, whereas such studies have not been reported for other organisms. Here, the zebrafish interferon-induced guanylate-binding protein 1 (zIGBP1) was identified that contains an N-terminal GTPase domain and a helical domain typical of the mammalian guanylate-binding proteins, followed by a FIIND domain and a C-terminal CARD similar to the mammalian inflammasome proteins NLRP1 and CARD8. The structure of the zIGBP1 CARD as a fusion with maltose-binding protein was determined at 1.47 Å resolution. This revealed a six-helix bundle fold similar to the NLRP1 CARD structure with the bent α1 helix typical of all known CARD structures. The zIGBP1 CARD surface contains a positively charged patch near its α1 and α4 helices and a negatively charged patch near its α2, α3 and α5 helices, which may mediate its interaction with partner domains. Further studies using binding assays and other analyses will be required in order to address the physiological function(s) of this zebrafish protein

  10. Differential Delivery of Genomic Double-Stranded RNA Causes Reovirus Strain-Specific Differences in Interferon Regulatory Factor 3 Activation.

    Science.gov (United States)

    Stuart, Johnasha D; Holm, Geoffrey H; Boehme, Karl W

    2018-05-01

    Serotype 3 (T3) reoviruses induce substantially more type 1 interferon (IFN-I) secretion than serotype 1 (T1) strains. However, the mechanisms underlying differences in IFN-I production between T1 and T3 reoviruses remain undefined. Here, we found that differences in IFN-I production between T1 and T3 reoviruses correlate with activation of interferon regulatory factor 3 (IRF3), a key transcription factor for the production of IFN-I. T3 strain rsT3D activated IRF3 more rapidly and to a greater extent than the T1 strain rsT1L, in simian virus 40 (SV40) immortalized endothelial cells (SVECs). Differences in IRF3 activation between rsT1L and rsT3D were observed in the first hours of infection and were independent of de novo viral RNA and protein synthesis. NF-κB activation mirrored IRF3 activation, with rsT3D inducing more NF-κB activity than rsT1L. We also found that IRF3 and NF-κB are activated in a mitochondrial antiviral-signaling protein (MAVS)-dependent manner. rsT1L does not suppress IRF3 activation, as IRF3 phosphorylation could be induced in rsT1L-infected cells. Transfected rsT1L and rsT3D RNA induced IRF3 phosphorylation, indicating that genomic RNA from both strains has the capacity to activate IRF3. Finally, bypassing the normal route of reovirus entry by transfecting in vitro -generated viral cores revealed that rsT1L and rsT3D core particles induced equivalent IRF3 activation. Taken together, our findings indicate that entry-related events that occur after outer capsid disassembly, but prior to deposition of viral cores into the cytoplasm, influence the efficiency of IFN-I responses to reovirus. This work provides further insight into mechanisms by which nonenveloped viruses activate innate immune responses. IMPORTANCE Detection of viral nucleic acids by the host cell triggers type 1 interferon (IFN-I) responses, which are critical for containing and clearing viral infections. Viral RNA is sensed in the cytoplasm by cellular receptors that initiate

  11. Functional polymorphisms of interferon-gamma affect pneumonia-induced sepsis.

    Directory of Open Access Journals (Sweden)

    Ding Wang

    Full Text Available Sepsis is an inflammatory syndrome caused by infection, and both its incidence and mortality are high. Because interferon-gamma (IFN-γ plays an important role in inflammation, this work assessed IFN-γ single nucleotide polymorphism (SNPs that may be associated with sepsis.A total of 196 patients with pneumonia-induced sepsis and 213 age- and sex-matched healthy volunteers participated in our study from July 2012 to July 2013 in Guangzhou, China. Patient clinical information was collected. Clinical pathology was assessed in subgroups defined based on clinical criteria, APACHE II (acute physiology and chronic health evaluation and SOFA (sepsis-related organ failure assessment scores and discharge rate. Four functional SNPs, -1616T/C (rs2069705, -764G/C (rs2069707, +874A/T (rs2430561 and +3234C/T (rs2069718, were genotyped by Snapshot in both sepsis patients and healthy controls. Pearson's chi-square test or Fisher's exact test were used to analyze the distribution of the SNPs, and the probability values (P values, odds ratios (OR and 95% confidence intervals (CIs were calculated.No mutations in the IFN-γ -764G/C SNP were detected among the participants in our study. The +874A/T and +3234C/T SNPs were in strong linkage disequilibrium (LD (r(2 = 0.894. The -1616 TC+TT, +874 AT+AA genotype and the TAC haplotype were significantly associated with sepsis susceptibility, while the CTT haplotype was associated with protection against sepsis incidence. Genotype of -1616 TT wasn't only protective against severity of sepsis, but also against higher APACHE II and SOFA scores as +874 AA and +3234 CC. The TAC haplotype was was protective against progression to severe sepsis either.Our results suggest that functional IFN-γ SNPs and their haplotypes are associated with pneumonia-induced sepsis.

  12. Herpesvirus Genome Recognition Induced Acetylation of Nuclear IFI16 Is Essential for Its Cytoplasmic Translocation, Inflammasome and IFN-β Responses.

    Directory of Open Access Journals (Sweden)

    Mairaj Ahmed Ansari

    2015-07-01

    Full Text Available The IL-1β and type I interferon-β (IFN-β molecules are important inflammatory cytokines elicited by the eukaryotic host as innate immune responses against invading pathogens and danger signals. Recently, a predominantly nuclear gamma-interferon-inducible protein 16 (IFI16 involved in transcriptional regulation has emerged as an innate DNA sensor which induced IL-1β and IFN-β production through inflammasome and STING activation, respectively. Herpesvirus (KSHV, EBV, and HSV-1 episomal dsDNA genome recognition by IFI16 leads to IFI16-ASC-procaspase-1 inflammasome association, cytoplasmic translocation and IL-1β production. Independent of ASC, HSV-1 genome recognition results in IFI16 interaction with STING in the cytoplasm to induce interferon-β production. However, the mechanisms of IFI16-inflammasome formation, cytoplasmic redistribution and STING activation are not known. Our studies here demonstrate that recognition of herpesvirus genomes in the nucleus by IFI16 leads into its interaction with histone acetyltransferase p300 and IFI16 acetylation resulting in IFI16-ASC interaction, inflammasome assembly, increased interaction with Ran-GTPase, cytoplasmic redistribution, caspase-1 activation, IL-1β production, and interaction with STING which results in IRF-3 phosphorylation, nuclear pIRF-3 localization and interferon-β production. ASC and STING knockdowns did not affect IFI16 acetylation indicating that this modification is upstream of inflammasome-assembly and STING-activation. Vaccinia virus replicating in the cytoplasm did not induce nuclear IFI16 acetylation and cytoplasmic translocation. IFI16 physically associates with KSHV and HSV-1 genomes as revealed by proximity ligation microscopy and chromatin-immunoprecipitation studies which is not hampered by the inhibition of acetylation, thus suggesting that acetylation of IFI16 is not required for its innate sensing of nuclear viral genomes. Collectively, these studies identify the

  13. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1-activated transcription of the interferon regulatory factor 1 gene (IRF1

    Directory of Open Access Journals (Sweden)

    Buro Lauren J

    2010-09-01

    Full Text Available Abstract Background Signal transducer and activator of transcription (STAT activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. Results Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1. Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFNγ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD of Pol II are disrupted during gene activation as well. Conclusions H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.

  14. 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Qilong Wang

    2011-02-01

    Full Text Available Autophagy is a cellular self-digestion process activated in response to stresses such as energy deprivation and oxidative stress. However, the mechanisms by which energy deprivation and oxidative stress trigger autophagy remain undefined. Here, we report that activation of AMP-activated protein kinase (AMPK by mitochondria-derived reactive oxygen species (ROS is required for autophagy in cultured endothelial cells. AMPK activity, ROS levels, and the markers of autophagy were monitored in confluent bovine aortic endothelial cells (BAEC treated with the glycolysis blocker 2-deoxy-D-glucose (2-DG. Treatment of BAEC with 2-DG (5 mM for 24 hours or with low concentrations of H(2O(2 (100 µM induced autophagy, including increased conversion of microtubule-associated protein light chain 3 (LC3-I to LC3-II, accumulation of GFP-tagged LC3 positive intracellular vacuoles, and increased fusion of autophagosomes with lysosomes. 2-DG-treatment also induced AMPK phosphorylation, which was blocked by either co-administration of two potent anti-oxidants (Tempol and N-Acetyl-L-cysteine or overexpression of superoxide dismutase 1 or catalase in BAEC. Further, 2-DG-induced autophagy in BAEC was blocked by overexpressing catalase or siRNA-mediated knockdown of AMPK. Finally, pretreatment of BAEC with 2-DG increased endothelial cell viability after exposure to hypoxic stress. Thus, AMPK is required for ROS-triggered autophagy in endothelial cells, which increases endothelial cell survival in response to cell stress.

  15. Adhesion Regulating Molecule 1 Mediates HAP40 Overexpression-Induced Mitochondrial Defects

    Science.gov (United States)

    Huang, Zih-Ning; Chung, Her Min; Fang, Su-Chiung; Her, Lu-Shiun

    2017-01-01

    Striatal neuron death in Huntington's disease is associated with abnormal mitochondrial dynamics and functions. However, the mechanisms for this mitochondrial dysregulation remain elusive. Increased accumulation of Huntingtin-associated protein 40 (HAP40) has been shown to be associated with Huntington's disease. However, the link between increased HAP40 and Huntington's disease remains largely unknown. Here we show that HAP40 overexpression causes mitochondrial dysfunction and reduces cell viability in the immortalized mouse striatal neurons. HAP40-associated mitochondrial dysfunction is associated with reduction of adhesion regulating molecule 1 (ADRM1) protein. Consistently, depletion of ADRM1 by shRNAs impaired mitochondrial functions and increased mitochondrial fragmentation in mouse striatal cells. Moreover, reducing ADRM1 levels enhanced activity of fission factor dynamin-related GTPase protein 1 (Drp1) via increased phosphorylation at serine 616 of Drp1 (Drp1Ser616). Restoring ADRM1 protein levels was able to reduce HAP40-induced ROS levels and mitochondrial fragmentation and improved mitochondrial functions and cell viability. Moreover, reducing Drp1 activity by Drp1 inhibitor, Mdivi-1, ameliorates both HAP40 overexpression- and ADRM1 depletion-induced mitochondrial dysfunction. Taken together, our studies suggest that HAP40-mediated reduction of ADRM1 alters the mitochondrial fission activity and results in mitochondrial fragmentation and mitochondrial dysfunction. PMID:29209146

  16. Acetaminophen modulates the transcriptional response to recombinant interferon-beta.

    Directory of Open Access Journals (Sweden)

    Aaron Farnsworth

    Full Text Available BACKGROUND: Recombinant interferon treatment can result in several common side effects including fever and injection-site pain. Patients are often advised to use acetaminophen or other over-the-counter pain medications as needed. Little is known regarding the transcriptional changes induced by such co-administration. METHODOLOGY/PRINCIPAL FINDINGS: We tested whether the administration of acetaminophen causes a change in the response normally induced by interferon-beta treatment. CD-1 mice were administered acetaminophen (APAP, interferon-beta (IFN-beta or a combination of IFN-beta+APAP and liver and serum samples were collected for analysis. Differential gene expression was determined using an Agilent 22 k whole mouse genome microarray. Data were analyzed by several methods including Gene Ontology term clustering and Gene Set Enrichment Analysis. We observed a significant change in the transcription profile of hepatic cells when APAP was co-administered with IFN-beta. These transcriptional changes included a marked up-regulation of genes involved in signal transduction and cell differentiation and down-regulation of genes involved in cellular metabolism, trafficking and the IkappaBK/NF-kappaB cascade. Additionally, we observed a large decrease in the expression of several IFN-induced genes including Ifit-3, Isg-15, Oasl1, Zbp1 and predicted gene EG634650 at both early and late time points. CONCLUSIONS/SIGNIFICANCE: A significant change in the transcriptional response was observed following co-administration of IFN-beta+APAP relative to IFN-beta treatment alone. These results suggest that administration of acetaminophen has the potential to modify the efficacy of IFN-beta treatment.

  17. Allergen-Induced Dermatitis Causes Alterations in Cutaneous Retinoid-Mediated Signaling in Mice

    Science.gov (United States)

    Gericke, Janine; Ittensohn, Jan; Mihály, Johanna; Dubrac, Sandrine; Rühl, Ralph

    2013-01-01

    Nuclear receptor-mediated signaling via RARs and PPARδ is involved in the regulation of skin homeostasis. Moreover, activation of both RAR and PPARδ was shown to alter skin inflammation. Endogenous all-trans retinoic acid (ATRA) can activate both receptors depending on specific transport proteins: Fabp5 initiates PPARδ signaling whereas Crabp2 promotes RAR signaling. Repetitive topical applications of ovalbumin (OVA) in combination with intraperitoneal injections of OVA or only intraperitoneal OVA applications were used to induce allergic dermatitis. In our mouse model, expression of IL-4, and Hbegf increased whereas expression of involucrin, Abca12 and Spink5 decreased in inflamed skin, demonstrating altered immune response and epidermal barrier homeostasis. Comprehensive gene expression analysis showed alterations of the cutaneous retinoid metabolism and retinoid-mediated signaling in allergic skin immune response. Notably, ATRA synthesis was increased as indicated by the elevated expression of retinaldehyde dehydrogenases and increased levels of ATRA. Consequently, the expression pattern of genes downstream to RAR was altered. Furthermore, the increased ratio of Fabp5 vs. Crabp2 may indicate an up-regulation of the PPARδ pathway in allergen-induced dermatitis in addition to the altered RAR signaling. Thus, our findings suggest that ATRA levels, RAR-mediated signaling and signaling involved in PPARδ pathways are mainly increased in allergen-induced dermatitis and may contribute to the development and/or maintenance of allergic skin diseases. PMID:23977003

  18. Ebola virus infection inversely correlates with the overall expression levels of promyelocytic leukaemia (PML protein in cultured cells

    Directory of Open Access Journals (Sweden)

    Szekely Laszlo

    2003-04-01

    Full Text Available Abstract Background Ebola virus causes severe, often fatal hemorrhagic fever in humans. The mechanism of escape from cellular anti-viral mechanisms is not yet fully understood. The promyelocytic leukaemia (PML associated nuclear body is part of the interferon inducible cellular defense system. Several RNA viruses have been found to interfere with the anti-viral function of the PML body. The possible interaction between Ebola virus and the PML bodies has not yet been explored. Results We found that two cell lines, Vero E6 and MCF7, support virus production at high and low levels respectively. The expression of viral proteins was visualized and quantified using high resolution immunofluorescence microscopy. Ebola encoded NP and VP35 accumulated in cytoplasmic inclusion bodies whereas VP40 was mainly membrane associated but it was also present diffusely in the cytoplasm as well as in the euchromatic areas of the nucleus. The anti-VP40 antibody also allowed the detection of extracellular virions. Interferon-alpha treatment decreased the production of all three viral proteins and delayed the development of cytopathic effects in both cell lines. Virus infection and interferon-alpha treatment induced high levels of PML protein expression in MCF7 but much less in Vero E6 cells. No disruption of PML bodies, a common phenomenon induced by a variety of different viruses, was observed. Conclusion We have established a simple fixation and immunofluorescence staining procedure that allows specific co-detection and precise sub-cellular localization of the PML nuclear bodies and the Ebola virus encoded proteins NP, VP35 and VP40 in formaldehyde treated cells. Interferon-alpha treatment delays virus production in vitro. Intact PML bodies may play an anti-viral role in Ebola infected cells.

  19. The murine cytomegalovirus M35 protein antagonizes type I IFN induction downstream of pattern recognition receptors by targeting NF-κB mediated transcription.

    Directory of Open Access Journals (Sweden)

    Baca Chan

    2017-05-01

    Full Text Available The type I interferon (IFN response is imperative for the establishment of the early antiviral immune response. Here we report the identification of the first type I IFN antagonist encoded by murine cytomegalovirus (MCMV that shuts down signaling following pattern recognition receptor (PRR sensing. Screening of an MCMV open reading frame (ORF library identified M35 as a novel and strong negative modulator of IFNβ promoter induction following activation of both RNA and DNA cytoplasmic PRR. Additionally, M35 inhibits the proinflammatory cytokine response downstream of Toll-like receptors (TLR. Using a series of luciferase-based reporters with specific transcription factor binding sites, we determined that M35 targets NF-κB-, but not IRF-mediated, transcription. Expression of M35 upon retroviral transduction of immortalized bone marrow-derived macrophages (iBMDM led to reduced IFNβ transcription and secretion upon activation of stimulator of IFN genes (STING-dependent signaling. On the other hand, M35 does not antagonize interferon-stimulated gene (ISG 56 promoter induction or ISG transcription upon exogenous stimulation of the type I IFN receptor (IFNAR. M35 is present in the viral particle and, upon MCMV infection of fibroblasts, is immediately shuttled to the nucleus where it exerts its immunomodulatory effects. Deletion of M35 from the MCMV genome and hence from the viral particle resulted in elevated type I IFN transcription and secretion in vitro and in vivo. In the absence of M35, lower viral titers are observed during acute infection of the host, and productive infection in the salivary glands was not detected. In conclusion, the M35 protein is released by MCMV immediately upon infection in order to deftly inhibit the antiviral type I IFN response by targeting NF-κB-mediated transcription. The identification of this novel viral protein reinforces the importance of timely countermeasures in the complex relationship between virus and host.

  20. Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice.

    Science.gov (United States)

    De Domenico, Ivana; Zhang, Tian Y; Koening, Curry L; Branch, Ryan W; London, Nyall; Lo, Eric; Daynes, Raymond A; Kushner, James P; Li, Dean; Ward, Diane M; Kaplan, Jerry

    2010-07-01

    Hepcidin is a peptide hormone that regulates iron homeostasis and acts as an antimicrobial peptide. It is expressed and secreted by a variety of cell types in response to iron loading and inflammation. Hepcidin mediates iron homeostasis by binding to the iron exporter ferroportin, inducing its internalization and degradation via activation of the protein kinase Jak2 and the subsequent phosphorylation of ferroportin. Here we have shown that hepcidin-activated Jak2 also phosphorylates the transcription factor Stat3, resulting in a transcriptional response. Hepcidin treatment of ferroportin-expressing mouse macrophages showed changes in mRNA expression levels of a wide variety of genes. The changes in transcript levels for half of these genes were a direct effect of hepcidin, as shown by cycloheximide insensitivity, and dependent on the presence of Stat3. Hepcidin-mediated transcriptional changes modulated LPS-induced transcription in both cultured macrophages and in vivo mouse models, as demonstrated by suppression of IL-6 and TNF-alpha transcript and secreted protein. Hepcidin-mediated transcription in mice also suppressed toxicity and morbidity due to single doses of LPS, poly(I:C), and turpentine, which is used to model chronic inflammatory disease. Most notably, we demonstrated that hepcidin pretreatment protected mice from a lethal dose of LPS and that hepcidin-knockout mice could be rescued from LPS toxicity by injection of hepcidin. The results of our study suggest a new function for hepcidin in modulating acute inflammatory responses.

  1. BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues.

    Science.gov (United States)

    Muthalagu, Nathiya; Junttila, Melissa R; Wiese, Katrin E; Wolf, Elmar; Morton, Jennifer; Bauer, Barbara; Evan, Gerard I; Eilers, Martin; Murphy, Daniel J

    2014-09-11

    MYC is one of the most frequently overexpressed oncogenes in human cancer, and even modestly deregulated MYC can initiate ectopic proliferation in many postmitotic cell types in vivo. Sensitization of cells to apoptosis limits MYC's oncogenic potential. However, the mechanism through which MYC induces apoptosis is controversial. Some studies implicate p19ARF-mediated stabilization of p53, followed by induction of proapoptotic BH3 proteins NOXA and PUMA, whereas others argue for direct regulation of BH3 proteins, especially BIM. Here, we use a single experimental system to systematically evaluate the roles of p19ARF and BIM during MYC-induced apoptosis, in vitro, in vivo, and in combination with a widely used chemotherapeutic, doxorubicin. We find a common specific requirement for BIM during MYC-induced apoptosis in multiple settings, which does not extend to the p53-responsive BH3 family member PUMA, and find no evidence of a role for p19ARF during MYC-induced apoptosis in the tissues examined. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes

    International Nuclear Information System (INIS)

    Latchoumycandane, Calivarathan; Seah, Quee Ming; Tan, Rachel C.H.; Sattabongkot, Jetsumon; Beerheide, Walter; Boelsterli, Urs A.

    2006-01-01

    Leflunomide, a disease-modifying anti-rheumatic drug, protects against T-cell-mediated liver injury by poorly understood mechanisms. The active metabolite of leflunomide, A77 1726 (teriflunomide) has been shown to inhibit stress-activated protein kinases (JNK pathway), which are key regulators of mitochondria-mediated cell death. Therefore, we hypothesized that leflunomide may protect from drugs that induce the mitochondrial permeability transition (mPT) by blocking the JNK signaling pathway. To this end, we exposed cultured immortalized human hepatocytes (HC-04) to the standard protoxicant drug acetaminophen (APAP), which induces CsA-sensitive mPT-mediated cell death. We determined the effects of leflunomide on the extent of APAP-induced hepatocyte injury and the upstream JNK-mediated mitochondrial signaling pathways. We found that leflunomide or A77 1726 concentration-dependently protected hepatocytes from APAP (1 mM)-induced mitochondrial permeabilization and lethal cell injury. This was not due to proximal inhibition of CYP-catalyzed APAP bioactivation to its thiol-reactive metabolite. Instead, we demonstrate that leflunomide (20 μM) inhibited the APAP-induced early (3 h) activation (phosphorylation) of JNK1/2, thus inhibiting phosphorylation of the anti-apoptotic protein Bcl-2 and preventing P-Bcl-2-mediated induction of the mPT. This greatly attenuated mitochondrial cytochrome c release, which we used as a marker for mitochondrial permeabilization. The specific JNK2 inhibitor SP600125 similarly protected from APAP-induced cell death. In conclusion, these findings are consistent with our hypothesis that leflunomide protects from protoxicant-induced hepatocyte injury by inhibiting JNK signaling and preventing mPT induction

  3. Limitations of Using IL-17A and IFN-γ-Induced Protein 10 to Detect Bovine Tuberculosis

    Science.gov (United States)

    Xin, Ting; Gao, Xintao; Yang, Hongjun; Li, Pingjun; Liang, Qianqian; Hou, Shaohua; Sui, Xiukun; Guo, Xiaoyu; Yuan, Weifeng; Zhu, Hongfei; Ding, Jiabo; Jia, Hong

    2018-01-01

    Bovine tuberculosis (bTB) is primarily caused by infection with Mycobacterium bovis, which belongs to the Mycobacterium tuberculosis complex. The airborne route is considered the most common for transmission of M. bovis, and more than 15% of cattle with bTB shed the Mycobacterium, which can be detect by nested PCR to amplify mycobacterial mpb70 from a nasal swab from a cow. To screen for cytokines fostering early and accurate detection of bTB, peripheral blood mononuclear cells were isolated from naturally M. bovis-infected, experimentally M. bovis 68002-infected, and uninfected cattle, then these cells were stimulated by PPD-B, CFP-10-ESAT-6 (CE), or phosphate-buffered saline (PBS) for 6 h. The levels of interferon gamma (IFN-γ), IFN-γ-induced protein 10 (IP-10), IL-6, IL-12, IL-17A, and tumor necrosis factor alpha mRNA were measured using real-time PCR. To explore the cytokines associated with different periods of M. bovis infection, cattle were divided into three groups: PCR-positive, PCR-negative, and uninfected using the tuberculin skin test, CFP-10/ESAT-6/TB10.4 protein cocktail-based skin test, IFN-γ release assay (IGRA), CFP-10/ESAT-6 (CE)-based IGRA, and nested PCR. The expression of IP-10, IL-17A, and IFN-γ proteins induced by PPD-B, CE, or PBS was detected by ELISA. The results showed that levels of PPD-B-stimulated IL-17A and IP-10 (mRNA and protein), and CE-induced IP-10 (mRNA and protein) were significantly higher in cattle naturally or experimentally infected with M. bovis than in those that were uninfected. The levels of PPD-B- or CE-induced IL-17A and IP-10 (protein) could be used to differentiate M. bovis-infected calves from uninfected ones for 6 to 30 weeks post-infection, whereas PPD-B- and CE-induced IP-10 and IL-17A mRNA expression could be used to differentiate M. bovis-infected calves from uninfected ones between 6 and 58 weeks post-infection. However, CE-induced IL-17A (protein) was not a reliable indicator of M. bovis infection

  4. Four regulatory elements in the human c-fos promoter mediate transactivation by HTLV-1 Tax protein.

    Science.gov (United States)

    Alexandre, C; Verrier, B

    1991-04-01

    Expression of the human c-fos proto-oncogene is activated in trans by the Tax protein encoded by human T-cell leukemia virus type-1 (HTLV-1). Indeed, we show here that a HeLa clone stably transfected by Tax expresses Fos at a high level. We also show that multiple elements of the human c-fos promoter, i.e. the v-sis conditioned medium inducible element (SIE), the dyad symmetry element (DSE) necessary for growth factor induction, the octanucleotide direct repeat element (DR), and the cyclic AMP response element (CRE) centred at -60, can all mediate Tax transactivation. In the DSE, the 10bp central core that binds the serum response factor (SRF) is, by itself, sufficient to mediate Tax transactivation. Moreover, a CRE-binding protein is involved in Tax activation through the CRE-60 element. Since Fos is a transregulator of cellular genes, our results suggest that the oncoprotein plays a crucial role in T-cell transformation by HTLV-1 in conjunction with other Tax-inducible genes.

  5. Identification of alpha interferon-induced envelope mutations of hepatitis C virus in vitro associated with increased viral fitness and interferon resistance

    DEFF Research Database (Denmark)

    Serre, Stéphanie B N; Krarup, Henrik B; Bukh, Jens

    2013-01-01

    Alpha interferon (IFN-α) is an essential component of innate antiviral immunity and of treatment regimens for chronic hepatitis C virus (HCV) infection. Resistance to IFN might be important for HCV persistence and failure of IFN-based therapies. Evidence for HCV genetic correlates of IFN resistance...... is limited. Experimental studies were hampered by lack of HCV culture systems. Using genotype (strain) 1a(H77) and 3a(S52) Core-NS2 JFH1-based recombinants, we aimed at identifying viral correlates of IFN-α resistance in vitro. Long-term culture with IFN-α2b in Huh7.5 cells resulted in viral spread...... with acquisition of putative escape mutations in HCV structural and nonstructural proteins. Reverse genetic studies showed that primarily amino acid changes I348T in 1a(H77) E1 and F345V/V414A in 3a(S52) E1/E2 increased viral fitness. Single-cycle assays revealed that I348T and F345V/V414A enhanced viral entry...

  6. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.

    Directory of Open Access Journals (Sweden)

    Stephanie Puukila

    Full Text Available Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG, a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

  7. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    Science.gov (United States)

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  8. Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis

    DEFF Research Database (Denmark)

    Polman, Chris H; Bertolotto, Antonio; Deisenhammer, Florian

    2010-01-01

    in MS and NAbs to interferon-beta therapy convened in Amsterdam, Netherlands, under the auspices of the Neutralizing Antibodies on Interferon beta in Multiple Sclerosis consortium, a European-based project of the 6th Framework Programme of the European Commission, to review and discuss data on NAbs......The identification of factors that can affect the efficacy of immunomodulatory drugs in relapsing-remitting multiple sclerosis (MS) is important. For the available interferon-beta products, neutralising antibodies (NAb) have been shown to affect treatment efficacy. In June, 2009, a panel of experts...... and their practical consequences for the treatment of patients with MS on interferon beta. The panel believed that information about NAbs and other markers of biological activity of interferons (ie, myxovirus resistance protein A [MxA]) can be integrated with clinical and imaging indicators to guide individual...

  9. LPS-Toll-Like Receptor-Mediated Signaling on Expression of Protein S and C4b-Binding Protein in the Liver

    Directory of Open Access Journals (Sweden)

    Tatsuya Hayashi

    2010-01-01

    Full Text Available Protein S (PS, mainly synthesized in hepatocytes and endothelial cells, plays a critical role as a cofactor of anticoagulant activated protein C (APC. PS activity is regulated by C4b-binding protein (C4BP, structurally composed of seven α-chains (C4BPα and a β-chain (C4BPβ. In this paper, based primarily on our previous studies, we review the lipopolysaccharide (LPS-induced signaling which affects expression of PS and C4BP in the liver. Our in vivo studies in rats showed that after LPS injection, plasma PS levels are significantly decreased, whereas plasma C4BP levels first are transiently decreased after 2 to 12 hours and then significantly increased after 24 hours. LPS decreases PS antigen and mRNA levels in both hepatocytes and sinusoidal endothelial cells (SECs, and decreases C4BP antigen and both C4BPα and C4BPβ mRNA levels in hepatocytes. Antirat CD14 and antirat Toll-like receptor (TLR-4 antibodies inhibited LPS-induced NFκB activation in both hepatocytes and SECs. Furthermore, inhibitors of NFκB and MEK recovered the LPS-induced decreased expression of PS in both cell types and the LPS-induced decreased expression of C4BP in hepatocytes. These data suggest that the LPS-induced decrease in PS expression in hepatocytes and SECs and LPS-induced decrease in C4BP expression in hepatocytes are mediated by MEK/ERK signaling and NFκB activation and that membrane-bound CD14 and TLR-4 are involved in this mechanism.

  10. Ribavirin plus interferon versus interferon for chronic hepatitis C

    DEFF Research Database (Denmark)

    Brok, Jesper; Gluud, Lise Lotte; Gluud, Christian

    2010-01-01

    Hepatitis C is a major cause of liver-related morbidity and mortality. Standard therapy is ribavirin plus pegylated interferon to achieve undetectable level of virus in the blood, but the effect on clinical outcomes is controversial.......Hepatitis C is a major cause of liver-related morbidity and mortality. Standard therapy is ribavirin plus pegylated interferon to achieve undetectable level of virus in the blood, but the effect on clinical outcomes is controversial....

  11. Genome-Derived Cytosolic DNA Mediates Type I Interferon-Dependent Rejection of B Cell Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Yu J. Shen

    2015-04-01

    Full Text Available The DNA damage response (DDR induces the expression of type I interferons (IFNs, but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells.

  12. Henipaviruses Employ a Multifaceted Approach to Evade the Antiviral Interferon Response

    Directory of Open Access Journals (Sweden)

    Megan L. Shaw

    2009-12-01

    Full Text Available Hendra and Nipah virus, which constitute the genus Henipavirus, are zoonotic paramyxoviruses that have been associated with sporadic outbreaks of severe disease and mortality in humans since their emergence in the late 1990s. Similar to other paramyxoviruses, their ability to evade the host interferon (IFN response is conferred by the P gene. The henipavirus P gene encodes four proteins; the P, V, W and C proteins, which have all been described to inhibit the antiviral response. Further studies have revealed that these proteins have overlapping but unique properties which enable the virus to block multiple signaling pathways in the IFN response. The best characterized of these is the JAK-STAT signaling pathway which is targeted by the P, V and W proteins via an interaction with the transcription factor STAT1. In addition the V and W proteins can both limit virus-induced induction of IFN but they appear to do this via distinct mechanisms that rely on unique sequences in their C-terminal domains. The ability to generate recombinant Nipah viruses now gives us the opportunity to determine the precise role for each of these proteins and address their contribution to pathogenicity. Additionally, the question of whether these multiple anti-IFN strategies are all active in the different mammalian hosts for henipaviruses, particularly the fruit bat reservoir, warrants further exploration.

  13. c-Jun N-terminal kinase mediates AML1-ETO protein-induced connexin-43 expression

    International Nuclear Information System (INIS)

    Gao Fenghou; Wang Qiong; Wu Yingli; Li Xi; Zhao Kewen; Chen Guoqiang

    2007-01-01

    AML1-ETO fusion protein, a product of leukemia-related chromosomal translocation t(8;21), was reported to upregulate expression of connexin-43 (Cx43), a member of gap junction-constituted connexin family. However, its mechanism(s) remains unclear. By bioinformatic analysis, here we showed that there are two putative AML1-binding consensus sequences followed by two activated protein (AP)1 sites in the 5'-flanking region upstream to Cx43 gene. AML1-ETO could directly bind to these two AML1-binding sites in electrophoretic mobility shift assay, but luciferase reporter assay revealed that the AML1 binding sites were not indispensable for Cx43 induction by AML1-ETO protein. Conversely, AP1 sites exerted an important role in this event. In agreement, AML1-ETO overexpression in leukemic U937 cells activated c-Jun N-terminal kinase (JNK), while its specific inhibitor SP600125 effectively abrogated AML1-ETO-induced Cx43 expression, indicating that JNK signaling pathway contributes to AML1-ETO induced Cx43 expression. These results would shed new insights for understanding mechanisms of AML1-ETO-associated leukemogenesis

  14. Cadmium-induced teratogenicity: Association with ROS-mediated endoplasmic reticulum stress in placenta

    International Nuclear Information System (INIS)

    Wang, Zhen; Wang, Hua; Xu, Zhong Mei; Ji, Yan-Li; Chen, Yuan-Hua; Zhang, Zhi-Hui; Zhang, Cheng; Meng, Xiu-Hong; Zhao, Mei; Xu, De-Xiang

    2012-01-01

    The placenta is essential for sustaining the growth of the fetus. An increased endoplasmic reticulum (ER) stress has been associated with the impaired placental and fetal development. Cadmium (Cd) is a potent teratogen that caused fetal malformation and growth restriction. The present study investigated the effects of maternal Cd exposure on placental and fetal development. The pregnant mice were intraperitoneally injected with CdCl 2 (4.5 mg/kg) on gestational day 9. As expected, maternal Cd exposure during early limb development significantly increased the incidences of forelimb ectrodactyly in fetuses. An obvious impairment in the labyrinth, a highly developed tissue of blood vessels, was observed in placenta of mice treated with CdCl 2 . In addition, maternal Cd exposure markedly repressed cell proliferation and increased apoptosis in placenta. An additional experiment showed that maternal Cd exposure significantly upregulated the expression of GRP78, an ER chaperone. Moreover, maternal Cd exposure induced the phosphorylation of placental eIF2α, a downstream molecule of PERK signaling. In addition, maternal Cd exposure significantly increased the level of placental CHOP, another target of PERK signaling, indicating that the unfolded protein response (UPR) signaling was activated in placenta of mice treated with CdCl 2 . Interestingly, alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, significantly alleviated Cd-induced placental ER stress and UPR. Taken together, these results suggest that reactive oxygen species (ROS)-mediated ER stress might be involved in Cd-induced impairment on placental and fetal development. Antioxidants may be used as pharmacological agents to protect against Cd-induced fetal malformation and growth restriction. -- Highlights: ► Cd induces fetal malformation and growth restriction. ► Cd induced placental ER stress and UPR. ► PBN alleviates Cd-induced ER stress and UPR in placenta. ► ROS-mediated ER stress might

  15. Use of the johnin PPD interferon-gamma assay in control of bovine paratuberculosis

    DEFF Research Database (Denmark)

    Jungersen, Gregers; Mikkelsen, Heidi; Grell, Susanne N.

    2012-01-01

    Although the interferon-gamma (IFN-γ) assay for measurements of cell-mediated immune (CMI) responses to paratuberculosis PPD (johnin) has been available for close to 20 years, the assay has not yet emerged as the long desired test to identify infected animals at an early time point. Among other...

  16. Interferon alpha inhibits viral replication of a live-attenuated porcine reproductive and respiratory syndrome virus vaccine preventing development of an adaptive immune response in swine

    Science.gov (United States)

    Type I interferons, such as interferon alpha (IFNa), contribute to innate antiviral immunity by promoting production of antiviral mediators and are also involved in promoting an adaptive immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating and c...

  17. Singlet oxygen-mediated damage to proteins and its consequences

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2003-01-01

    by the transfer of energy to ground state (triplet) molecular oxygen by either protein-bound, or other, chromophores. Singlet oxygen can also be generated by a range of other enzymatic and non-enzymatic reactions including processes mediated by heme proteins, lipoxygenases, and activated leukocytes, as well...... the absorption of UV radiation by the protein, or bound chromophore groups, thereby generating excited states (singlet or triplets) or radicals via photo-ionisation. The second major process involves indirect oxidation of the protein via the formation and subsequent reactions of singlet oxygen generated...... as radical termination reactions. This paper reviews the data available on singlet oxygen-mediated protein oxidation and concentrates primarily on the mechanisms by which this excited state species brings about changes to both the side-chains and backbone of amino acids, peptides, and proteins. Recent work...

  18. Type I interferon induction is detrimental during infection with the Whipple's disease bacterium, Tropheryma whipplei.

    Directory of Open Access Journals (Sweden)

    Khatoun Al Moussawi

    2010-01-01

    Full Text Available Macrophages are the first line of defense against pathogens. Upon infection macrophages usually produce high levels of proinflammatory mediators. However, macrophages can undergo an alternate polarization leading to a permissive state. In assessing global macrophage responses to the bacterial agent of Whipple's disease, Tropheryma whipplei, we found that T. whipplei induced M2 macrophage polarization which was compatible with bacterial replication. Surprisingly, this M2 polarization of infected macrophages was associated with apoptosis induction and a functional type I interferon (IFN response, through IRF3 activation and STAT1 phosphorylation. Using macrophages from mice deficient for the type I IFN receptor, we found that this type I IFN response was required for T. whipplei-induced macrophage apoptosis in a JNK-dependent manner and was associated with the intracellular replication of T. whipplei independently of JNK. This study underscores the role of macrophage polarization in host responses and highlights the detrimental role of type I IFN during T. whipplei infection.

  19. Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway.

    Science.gov (United States)

    Wang, Wei; Peng, Yizhi; Wang, Yuanyuan; Zhao, Xiaohui; Yuan, Zhiqiang

    2009-09-01

    1. Hypoxia-induced cardiomyocyte apoptosis contributes significantly to cardiac dysfunction following trauma, shock and burn injury. There is evidence that heat shock protein (HSP) 90 is anti-apoptotic in cardiomyocytes subjected to a variety of apoptotic stimuli. Because HSP90 acts as an upstream regulator of the serine/threonine protein kinase Akt survival pathway during cellular stress, we hypothesized that HSP90 exerts a cardioprotective effect via the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. 2. Neonatal rat cardiomyocytes were subjected to normoxia or hypoxia in the absence or presence of the HSP90 inhibitor geldanamycin (1 μg/mL). Cardiomyocyte apoptosis was assessed by release of lactate dehydrogenase (LDH), terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) staining and caspase 3 activity. Expression of HSP90, Akt, Bad and cytochrome c release was determined by western blot analysis. 3. Following exposure of cells to hypoxia, HSP90 was markedly elevated in a time-dependent manner, reaching a peak at 6 h (eightfold increase). Geldanamycin significantly increased hypoxia-induced release of LDH by 114%, the percentage of apoptotic cardiomyocytes by 102% and caspase 3 activity by 78%. Pretreatment of cells with geldanamycin also suppressed phosphorylation of both Akt and its downstream target Bad, but promoted the mitochondrial release of cytochrome c. 4. In conclusion, HSP90 activity is enhanced in cardiomyocytes following hypoxic insult. The anti-apoptotic effect of HSP90 on cardiomyocytes subjected to hypoxia is mediated, at least in part, by the PI3-K/Akt pathway. Key words: apoptosis, cardiomyocyte, heart failure, heat shock protein 90, hypoxia, phosphatidylinositol 3-kinase/Akt signalling pathway, serine/threonine protein kinase Akt.

  20. Lyoniresinol 3α-O-β-D-glucopyranoside-mediated hypoglycaemia and its influence on apoptosis-regulatory protein expression in the injured kidneys of streptozotocin-induced mice.

    Science.gov (United States)

    Wen, Qingwei; Liang, Tao; Qin, Feizhang; Wei, Jinbin; He, Qiaoling; Luo, Xiu; Chen, Xiaoyu; Zheng, Ni; Huang, Renbin

    2013-01-01

    Averrhoa carambola L. (Oxalidaceae) root (ACLR) has a long history of use in traditional Chinese medicine for treating diabetes and diabetic nephropathy (DN). (±)-Lyoniresinol 3α-O-β-D-glucopyranoside (LGP1, LGP2) were two chiral lignan glucosides that were isolated from the ACLR. The purpose of this study was to investigate the effect of LGP1 and LGP2-mediated hypoglycaemia on renal injury in streptozotocin (STZ)-induced diabetic mice. STZ-induced diabetic mice were administrated LGP1 and LGP2 orally (20, 40, 80 mg/kg body weight/d) for 14 days. Hyperglycaemia and the expression of related proteins such as nuclear factor-κB (NF-κB), caspase-3, -8, -9, and Bcl-associated X protein (Bax) were markedly decreased by LGP1 treatment. However, LGP2 treatment had no hypoglycaemic activity. Diabetes-dependent alterations in the kidney such as glomerular hypertrophy, excessive extracellular matrix amassing, and glomerular and tubular basement membrane thickening were improved after 14 days of LGP1 treatment. B cell lymphoma Leukaemia-2 (Bcl-2) expression was reduced in the STZ-induced diabetic mouse kidneys but was enhanced by LGP1 treatment. These findings suggest that LGP1 treatment may inhibit diabetic nephropathy progression and may regulate several pharmacological targets for treating or preventing diabetic nephropathy.