WorldWideScience

Sample records for interferon-induced gene expression

  1. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    International Nuclear Information System (INIS)

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R.

    2006-01-01

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML

  2. Endogenous interferon-β-inducible gene expression and interferon-β-treatment are associated with reduced T cell responses to myelin basic protein in multiple sclerosis

    DEFF Research Database (Denmark)

    Börnsen, Lars; Christensen, Jeppe Romme; Ratzer, Rikke

    2015-01-01

    Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used for......-induced CD4+ T-cell autoreactivity in interferon-β-treated multiple sclerosis patients may be mediated by monocyte-derived interleukin-10.......Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used...... for treatment of multiple sclerosis, and some untreated multiple sclerosis patients have increased expression levels of type I interferon-inducible genes in immune cells. The role of endogenous type I interferons in multiple sclerosis is controversial: some studies found an association of high expression levels...

  3. Gene expression analysis of interferon-beta treatment in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F.; Datta, P.; Larsen, J.

    2008-01-01

    by treatment with IFN-beta. We use DNA microarrays to study gene expression in 10 multiple sclerosis (MS) patients who began de novo treatment with IFN-beta. After the first injection of IFN-beta, the expression of 74 out of 3428 genes changed at least two-fold and statistically significantly (after Bonferroni......Treatment with interferon-beta (IFN-beta) induces the expression of hundreds of genes in blood mononuclear cells, and the expression of several genes has been proposed as a marker of the effect of treatment with IFN-beta. However, to date no molecules have been identified that are stably induced...

  4. Sulindac, a nonsteroidal anti-inflammatory drug, selectively inhibits interferon-γ-induced expression of the chemokine CXCL9 gene in mouse macrophages

    International Nuclear Information System (INIS)

    Sakaeda, Yoshiichi; Hiroi, Miki; Shimojima, Takahiro; Iguchi, Mayumi; Kanegae, Haruhide; Ohmori, Yoshihiro

    2006-01-01

    Sulindac, a non-steroidal anti-inflammatory drug, has been shown to exert an anti-tumor effect on several types of cancer. To determine the effect of sulindac on intracellular signaling pathways in host immune cells such as macrophages, we investigated the effect of the drug on interferon gamma (IFNγ)-induced expression of signal transducer and activator of transcription 1 (STAT1) and other genes in mouse macrophage-like cell line RAW264.7 cells. Sulindac, but not aspirin or sodium salicylate, inhibited IFNγ-induced expression of the CXC ligand 9 (CXCL9) mRNA, a chemokine for activated T cells, whereas the interferon-induced expression of CXCL10 or IFN regulatory factor-1 was not affected by sulindac. Luciferase reporter assay demonstrated that sulindac inhibited IFNγ-induced promoter activity of the CXCL9 gene. Surprisingly, sulindac had no inhibitory effect on IFNγ-induced STAT1 activation; however, constitutive nuclear factor κB activity was suppressed by the drug. These results indicate that sulindac selectively inhibited IFNγ-inducible gene expression without inhibiting STAT1 activation

  5. Human endogenous retrovirus expression is inversely related with the up-regulation of interferon-inducible genes in the skin of patients with lichen planus.

    Science.gov (United States)

    Nogueira, Marcelle Almeida de Sousa; Gavioli, Camila Fátima Biancardi; Pereira, Nátalli Zanete; de Carvalho, Gabriel Costa; Domingues, Rosana; Aoki, Valéria; Sato, Maria Notomi

    2015-04-01

    Lichen planus (LP) is a common inflammatory skin disease of unknown etiology. Reports of a common transactivation of quiescent human endogenous retroviruses (HERVs) support the connection of viruses to the disease. HERVs are ancient retroviral sequences in the human genome and their transcription is often deregulated in cancer and autoimmune diseases. We explored the transcriptional activity of HERV sequences as well as the antiviral restriction factor and interferon-inducible genes in the skin from LP patients and healthy control (HC) donors. The study included 13 skin biopsies from patients with LP and 12 controls. Real-time PCR assay identified significant decrease in the HERV-K gag and env mRNA expression levels in LP subjects, when compared to control group. The expressions of HERV-K18 and HERV-W env were also inhibited in the skin of LP patients. We observed a strong correlation between HERV-K gag with other HERV sequences, regardless the down-modulation of transcripts levels in LP group. In contrast, a significant up-regulation of the cytidine deaminase APOBEC 3G (apolipoprotein B mRNA-editing), and the GTPase MxA (Myxovirus resistance A) mRNA expression level was identified in the LP skin specimens. Other transcript expressions, such as the master regulator of type I interferon-dependent immune responses, STING (stimulator of interferon genes) and IRF-7 (interferon regulatory factor 7), IFN-β and the inflammassome NALP3, had increased levels in LP, when compared to HC group. Our study suggests that interferon-inducible factors, in addition to their role in innate immunity against exogenous pathogens, contribute to the immune control of HERVs. Evaluation of the balance between HERV and interferon-inducible factor expression could possibly contribute to surveillance of inflammatory/malignant status of skin diseases.

  6. Interferon induced IFIT family genes in host antiviral defense.

    Science.gov (United States)

    Zhou, Xiang; Michal, Jennifer J; Zhang, Lifan; Ding, Bo; Lunney, Joan K; Liu, Bang; Jiang, Zhihua

    2013-01-01

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals.

  7. Interferon γ-inducible protein (IFI) 16 transcriptionally regulates type i interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses.

    Science.gov (United States)

    Thompson, Mikayla R; Sharma, Shruti; Atianand, Maninjay; Jensen, Søren B; Carpenter, Susan; Knipe, David M; Fitzgerald, Katherine A; Kurt-Jones, Evelyn A

    2014-08-22

    The interferon γ-inducible protein 16 (IFI16) has recently been linked to the detection of nuclear and cytosolic DNA during infection with herpes simplex virus-1 and HIV. IFI16 binds dsDNA via HIN200 domains and activates stimulator of interferon genes (STING), leading to TANK (TRAF family member-associated NF-κB activator)-binding kinase-1 (TBK1)-dependent phosphorylation of interferon regulatory factor (IRF) 3 and transcription of type I interferons (IFNs) and related genes. To better understand the role of IFI16 in coordinating type I IFN gene regulation, we generated cell lines with stable knockdown of IFI16 and examined responses to DNA and RNA viruses as well as cyclic dinucleotides. As expected, stable knockdown of IFI16 led to a severely attenuated type I IFN response to DNA ligands and viruses. In contrast, expression of the NF-κB-regulated cytokines IL-6 and IL-1β was unaffected in IFI16 knockdown cells, suggesting that the role of IFI16 in sensing these triggers was unique to the type I IFN pathway. Surprisingly, we also found that knockdown of IFI16 led to a severe attenuation of IFN-α and the IFN-stimulated gene retinoic acid-inducible gene I (RIG-I) in response to cyclic GMP-AMP, a second messenger produced by cyclic GMP-AMP synthase (cGAS) as well as RNA ligands and viruses. Analysis of IFI16 knockdown cells revealed compromised occupancy of RNA polymerase II on the IFN-α promoter in these cells, suggesting that transcription of IFN-stimulated genes is dependent on IFI16. These results indicate a broader role for IFI16 in the regulation of the type I IFN response to RNA and DNA viruses in antiviral immunity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...hways mediating type I interferon gene expression. PubmedID 17904888 Title Signalling pathways...R, Slater L, Johnston SL. Microbes Infect. 2007 Sep;9(11):1245-51. Epub 2007 Jul 1. (.png) (.svg) (.html) (.csml) Show Signalling pat

  9. Contact inhibition and interferon (IFN)-modulated gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kulesh, D.A.

    1986-01-01

    The relationship between cell morphology, proliferation and contact inhibition was studied in normal and malignant human cells which varied in their sensitivity to contact inhibition. Their ability to proliferate was examined under conditions where the cells were constrained into different shapes. Cell proliferation was quantitated by labeling indices, which were inferred by autoradiography, and by total cell counts. The normal cells (JHU-1, IMR-90) were dependent on cell shape for proliferation capability while the transformed cells (RT4, HT1080) were shape-dependent for proliferation. Interferon (IFN) induced shape-dependent proliferation and contact inhibition in the transformed cells when used at subantiproliferative concentrations. This ability of B-IFN to confer a level of proliferation control which is characteristic of normal fibroblasts suggests a possible relationship between gene expression mediated by IFN and those genes involved in the maintenance of regulated cell proliferation. To evaluate this possibility, cDNA libraries were constructed from IFN-treated and untreated HT1080 cells. The resulting 10 IFN-induced and 11 IFN-repressed sequences were then differentially rescreened using /sup 32/P-cDNA probes. This screening resulted in the identification of at least four cDNA sequences which appeared to be proliferation regulated as well as IFN-modulated. These cloned, regulated cDNA sequences were then used as /sup 32/P-labeled probes to study both the gene expression at the mRNA level employing Northern blotting and slot blotting techniques.

  10. Transcriptional expression of type I interferon response genes and stability of housekeeping genes in the human endometrium and endometriosis

    DEFF Research Database (Denmark)

    Vestergaard, Anna L; Knudsen, Ulla B; Munk, Torben

    2011-01-01

    Endometriosis is a painful chronic female disease defined by the presence of endometrial tissue implants in ectopic locations. The pathogenesis is much debated, and type I interferons could be involved. The expression of genes of the type I interferon response were profiled by a specific PCR Array...... of RNA obtained from ectopic and eutopic endometrium collected from 9 endometriosis patients and 9 healthy control women. Transcriptional expression levels of selected interferon-regulated and housekeeping genes were investigated by real-time quantitative reverse transcriptase PCR (qRT-PCR). Stably...... expressed housekeeping genes for valid normalization of transcriptional studies of endometrium and endometriosis have not yet been published. Here, seven housekeeping genes were evaluated for stability using the GeNorm and NormFinder software. A normalization factor based on HMBS, TBP, and YWHAZ expression...

  11. Interferon-induced transcription of a gene encoding a 15-kDA protein depends on an upstream enhancer element

    International Nuclear Information System (INIS)

    Reich, N.; Evans, B.; Levy, D.; Fahey, D.; Knight, E. Jr.; Darnell, J.E. Jr.

    1987-01-01

    A human gene encoding an interferon-induced 15-kDa protein has been isolated from a genomic library. The gene appears to be single-copy and is composed of two exons, the first of which contains the ATG translation initiation codon. In vitro nuclear run-on assays showed that the transcription rate of the gene is stimulated after interferon treatment. To analyze transcriptional regulatory sequences, the authors constructed recombinant plasmids for use in transient transfection assays of HeLa cells. Constructs containing 115 nucleotides 5' to the transcription initiation site were found to be fully inducible by interferon. Assays of deletion mutants identified a critical element for interferon induction located between -115 and -96, just upstream of the CCAAT box. Moreover, a DNA fragment including this region can confer interferon inducibility on a heterologous promoter (thymidine kinase) when cloned in either orientation upstream of the gene or downstream of the gene. These are properties characteristic of an enhancer element that is active only after treatment with interferon. This regulatory sequence may be shared by a group of interferon-induced genes, since a very similar sequence is present within the functional region near the RNA start site of another interferon-induced gene

  12. Interferongene transfer induces a strong cytotoxic bystander effect on melanoma cells.

    Science.gov (United States)

    Rossi, Úrsula A; Gil-Cardeza, María L; Villaverde, Marcela S; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2015-05-01

    A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-β (IFNβ) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFNβ gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) to human cells. IFNβ gene lipofection was not cytotoxic for only one canine melanoma cell line. When cultured as monolayers, three human and three canine IFNβ-lipofected melanoma cell lines displayed a remarkable bystander effect. As spheroids, the same six cell lines were sensitive to IFNβ gene transfer, two displaying a significant multicell resistance phenotype. The effects of conditioned IFNβ-lipofected canine melanoma cell culture media suggested the release of at least one soluble thermolabile cytotoxic factor that could not be detected in human melanoma cells. By using a secretion signal-free truncated human IFNβ, we showed that its intracellular expression was enough to induce cytotoxicity in two human melanoma cell lines. The lower cytoplasmatic levels of reactive oxygen species detected after intracellular IFNβ expression could be related to the resistance displayed by one human melanoma cell line. As IFNβ gene transfer was effective against most of the assayed melanomas in a way not limited by relatively low lipofection efficiencies, the clinical potential of this approach is strongly supported. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. The relationships between IFNL4 genotype, intrahepatic interferon-stimulated gene expression and interferon treatment response differs in HCV-1 compared with HCV-3.

    Science.gov (United States)

    Holmes, J A; Congiu, M; Bonanzinga, S; Sandhu, M K; Kia, Y H; Bell, S J; Nguyen, T; Iser, D M; Visvanathan, K; Sievert, W; Bowden, D S; Desmond, P V; Thompson, A J

    2015-08-01

    The biological mechanism underlying the association between IFNL4/IFNL3 polymorphism and peginterferon/ribavirin (PR) response in HCV-1 is thought to involve differential intrahepatic interferon-stimulated gene expression. HCV-3 is more sensitive to PR, but there are no studies of the association between IFNL4 polymorphism, PR treatment response and liver interferon-stimulated gene expression in HCV-3. We evaluated the association between IFNL4/IFNL3 genotypes, PR treatment outcomes and intrahepatic interferon-stimulated gene expression, according to HCV genotype. HCV-1 and HCV-3 patients who received PR therapy were identified. IFNL3 (rs12979860) and IFNL4 genotype (rs368234815) were determined. A second cohort with stored liver specimens was identified. Expression of ISGs was measured by rt-PCR. Two hundred and fifty-nine patients were identified: 55% HCV-1, 45% HCV-3. IFNL4 genotype frequency was TT/TT 44%, TT/ΔG 42% andΔG/ΔG 14%. Linkage disequilibrium with IFNL3 genotype was high (r(2) = 0.98). The association between IFNL4 genotype and PR response was attenuated in HCV-3 vs. HCV-1 (HCV-3: SVR 89% vs. 76% vs. 72% for TT/TT vs. TT/ΔG vs. ΔG/ΔG, P = 0.09; HCV-1: SVR: 82% vs. 29% vs. 24%, P < 0.001). Intrahepatic ISG expression was evaluated in 92 patients; 61% HCV-1. The association between IFNL4 genotype and liver ISG expression was significantly different for HCV-3 vs. HCV-1 (P-value for interaction = 0.046), with levels of interferon-stimulated gene expression being highest in HCV-1 patients who carried a poor-response IFNL4 genotype. The relationship between IFNL4 genotype and PR treatment response as well as intrahepatic interferon-stimulated gene expression differs between HCV-1 and HCV-3. These data suggest fundamental differences in host-virus interactions according to HCV genotype. © 2015 John Wiley & Sons Ltd.

  14. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes.

    Science.gov (United States)

    Tsai, Wei-Jern; Chang, Chu-Ting; Wang, Guei-Jane; Lee, Tzong-Huei; Chang, Shwu-Fen; Lu, Shao-Chun; Kuo, Yuh-Chi

    2011-03-25

    Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.

  15. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes

    Science.gov (United States)

    2011-01-01

    Background Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Methods Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. Results AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. Conclusion AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT. PMID:21435270

  16. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes

    Directory of Open Access Journals (Sweden)

    Chang Shwu-Fen

    2011-03-01

    Full Text Available Abstract Background Arctium lappa (Niubang, a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC, isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Methods Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. Results AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2 and interferon-γ (IFN-γ production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. Conclusion AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.

  17. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression

    International Nuclear Information System (INIS)

    Kamitani, Shinya; Ohbayashi, Norihiko; Ikeda, Osamu; Togi, Sumihito; Muromoto, Ryuta; Sekine, Yuichi; Ohta, Kazuhide; Ishiyama, Hironobu; Matsuda, Tadashi

    2008-01-01

    Signal transducers and activators of transcription (STATs) mediate cell proliferation, differentiation, and survival in immune responses, hematopoiesis, neurogenesis, and other biological processes. Recently, we showed that KAP1 is a novel STAT-binding partner that regulates STAT3-mediated transactivation. KAP1 is a universal co-repressor protein for the KRAB zinc finger protein superfamily of transcriptional repressors. In this study, we found KAP1-dependent repression of interferon (IFN)/STAT1-mediated signaling. We also demonstrated that endogenous KAP1 associates with endogenous STAT1 in vivo. Importantly, a small-interfering RNA-mediated reduction in KAP1 expression enhanced IFN-induced STAT1-dependent IRF-1 gene expression. These results indicate that KAP1 may act as an endogenous regulator of the IFN/STAT1 signaling pathway

  18. Expressions of interferon-inducible genes IFIT1 and IFIT4 mRNA in PBMCs of patients with systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Liu Chunyan; Chen Xingguo; Wang Zizheng

    2009-01-01

    To investigate the expression levels of interferon-inducible genes (IFIT1, IFIT4) in the peripheral blood mononuclear cells (PBMCs) of patients with systemic lupus erythematosus (SLE), and the relations between these genes expression levels and disease activity, the expression levels of IFIT1 and IFIT4 mRNA in the 95 patients with SLE and 48 normal controls were detected by Sybr green dye based real-time quantitative PCR method, and these genes expression levels were compared with anti-double strand DNA antibody. The associations between the expression levels of IFIT1, IFIT4 mRNA, anti-double strand DNA antibody and SLEDAI scores in patients with SLE were analyzed. The results showed that the expression levels of IFIT1, IFIT4 mRNA in the SLE patients were significantly higher than those of the normal controls (P<0.01). The expression levels of IFIT1, IFIT4 mRNA in the active SLE patients were higher than those of the inactive SLE patients (P<0.05). The real time expression levels of IFIT1 and IFIT4 mRNA showed positive correlations with each other (P<0.05) in patients with SLE. There was positively correlation between the expression levels of IFIT1, IFIT4 mRNA and the anti-double strand DNA antibody (P<0.05). The expression levels of IFIT1, IFIT4 mRNA in patients with SLE were significantly higher than those of the normal controls, and positively associated with SLEDAI scores, so they were helpful in evaluating SLE disease activity and severity. To inhibit the expressions of IFIT1, IFIT4 mRNA may provide a novel target for SLE treatment. (authors)

  19. Importance of correlation between gene expression levels: application to the type I interferon signature in rheumatoid arthritis.

    Science.gov (United States)

    Reynier, Frédéric; Petit, Fabien; Paye, Malick; Turrel-Davin, Fanny; Imbert, Pierre-Emmanuel; Hot, Arnaud; Mougin, Bruno; Miossec, Pierre

    2011-01-01

    The analysis of gene expression data shows that many genes display similarity in their expression profiles suggesting some co-regulation. Here, we investigated the co-expression patterns in gene expression data and proposed a correlation-based research method to stratify individuals. Using blood from rheumatoid arthritis (RA) patients, we investigated the gene expression profiles from whole blood using Affymetrix microarray technology. Co-expressed genes were analyzed by a biclustering method, followed by gene ontology analysis of the relevant biclusters. Taking the type I interferon (IFN) pathway as an example, a classification algorithm was developed from the 102 RA patients and extended to 10 systemic lupus erythematosus (SLE) patients and 100 healthy volunteers to further characterize individuals. We developed a correlation-based algorithm referred to as Classification Algorithm Based on a Biological Signature (CABS), an alternative to other approaches focused specifically on the expression levels. This algorithm applied to the expression of 35 IFN-related genes showed that the IFN signature presented a heterogeneous expression between RA, SLE and healthy controls which could reflect the level of global IFN signature activation. Moreover, the monitoring of the IFN-related genes during the anti-TNF treatment identified changes in type I IFN gene activity induced in RA patients. In conclusion, we have proposed an original method to analyze genes sharing an expression pattern and a biological function showing that the activation levels of a biological signature could be characterized by its overall state of correlation.

  20. Dissecting interferon-induced transcriptional programs in human peripheral blood cells.

    Directory of Open Access Journals (Sweden)

    Simon J Waddell

    2010-03-01

    Full Text Available Interferons are key modulators of the immune system, and are central to the control of many diseases. The response of immune cells to stimuli in complex populations is the product of direct and indirect effects, and of homotypic and heterotypic cell interactions. Dissecting the global transcriptional profiles of immune cell populations may provide insights into this regulatory interplay. The host transcriptional response may also be useful in discriminating between disease states, and in understanding pathophysiology. The transcriptional programs of cell populations in health therefore provide a paradigm for deconvoluting disease-associated gene expression profiles.We used human cDNA microarrays to (1 compare the gene expression programs in human peripheral blood mononuclear cells (PBMCs elicited by 6 major mediators of the immune response: interferons alpha, beta, omega and gamma, IL12 and TNFalpha; and (2 characterize the transcriptional responses of purified immune cell populations (CD4+ and CD8+ T cells, B cells, NK cells and monocytes to IFNgamma stimulation. We defined a highly stereotyped response to type I interferons, while responses to IFNgamma and IL12 were largely restricted to a subset of type I interferon-inducible genes. TNFalpha stimulation resulted in a distinct pattern of gene expression. Cell type-specific transcriptional programs were identified, highlighting the pronounced response of monocytes to IFNgamma, and emergent properties associated with IFN-mediated activation of mixed cell populations. This information provides a detailed view of cellular activation by immune mediators, and contributes an interpretive framework for the definition of host immune responses in a variety of disease settings.

  1. Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    International Nuclear Information System (INIS)

    Lesinski, Gregory B; Zimmerer, Jason M; Kreiner, Melanie; Trefry, John; Bill, Matthew A; Young, Gregory S; Becknell, Brian; Carson, William E III

    2010-01-01

    Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells. Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr 701 -phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR. SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr 701 -phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation. These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ

  2. Cyclic changes in gene expression induced by Peg-interferon alfa-2b plus ribavirin in peripheral blood monocytes (PBMC of hepatitis C patients during the first 10 weeks of treatment

    Directory of Open Access Journals (Sweden)

    Edenberg Howard J

    2008-11-01

    Full Text Available Abstract Background and Aims This study determined the kinetics of gene expression during the first 10 weeks of therapy with Pegylated-interferon-alfa2b (PegIntron™ and ribavirin (administered by weight in HCV patients and compared it with the recently completed Virahep C study 12 in which Peginterferon-alfa2a (Pegasys™ and ribavirin were administered. Methods RNA was isolated from peripheral blood monocytes (PBMC from twenty treatment-naïve patients just before treatment (day 1 and at days 3, 6, 10, 13, 27, 42 and 70 days after treatment. Gene expression at each time was measured using Affymetrix microarrays and compared to that of day 1. Results The expression of many genes differed significantly (p ≤ 0.001 and changed at least 1.5-fold at days 3 (290 probes and 10 (255 probes, but the number dropped at days 6 (165 and 13 (142. Most genes continued to be up regulated throughout the trial period. A second group of genes, including CXCL10, CMKLR1 (chemokine receptor 1, TRAIL, IL1Rα and genes associated with complement and lipid metabolism, was transiently induced early in treatment. CDKN1C (cyclin kinase inhibitor 1 was induced early but repressed at later times. Genes induced at later times were mostly related to blood chemistry and oxygen transport. By week 10, 11 of the patients demonstrated a positive response to therapy, and the final sustained viral response (SVR was 35%. The levels of gene induction or decrease was very similar to that previously reported with Pegasys/ribavirin treatment. Conclusion The response to Pegintron/ribavirin was similar to that reported for Pegasys/ribavirin despite some differences in the amount administered. We did not detect major differences at the genomic level between patients responding to treatment or non-responders, perhaps because of limited power. Gene induction occurred in a cyclic fashion, peaking right after administration of interferon and declining between administrations of the drug. Our

  3. A Recombinant Adenovirus Expressing Ovine Interferon Tau Prevents Influenza Virus-Induced Lethality in Mice.

    Science.gov (United States)

    Martín, V; Pascual, E; Avia, M; Rangel, G; de Molina, A; Alejo, A; Sevilla, N

    2016-01-06

    Ovine interferon tau (IFN-τ) is a unique type I interferon with low toxicity and a broad host range in vivo. We report the generation of a nonreplicative recombinant adenovirus expressing biologically active IFN-τ. Using the B6.A2G-Mx1 mouse model, we showed that single-dose intranasal administration of recombinant Ad5-IFN-τ can effectively prevent lethality and disease induced by highly virulent hv-PR8 influenza virus by activating the interferon response and preventing viral replication. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Loss of prion protein induces a primed state of type I interferon-responsive genes

    DEFF Research Database (Denmark)

    Malachin, Giulia; Reiten, Malin R.; Salvesen, Øyvind

    2017-01-01

    The cellular prion protein (PrPC) has been extensively studied because of its pivotal role in prion diseases; however, its functions remain incompletely understood. A unique line of goats has been identified that carries a nonsense mutation that abolishes synthesis of PrPC. In these animals, the Pr...... genotypes. About 70% of these were classified as interferon-responsive genes. In goats without PrPC, the majority of type I interferon-responsive genes were in a primed, modestly upregulated state, with fold changes ranging from 1.4 to 3.7. Among these were ISG15, DDX58 (RIG-1), MX1, MX2, OAS1, OAS2...... and DRAM1, all of which have important roles in pathogen defense, cell proliferation, apoptosis, immunomodulation and DNA damage response. Our data suggest that PrPC contributes to the fine-tuning of resting state PBMCs expression level of type I interferon-responsive genes. The molecular mechanism...

  5. Gamma-interferon alters globin gene expression in neonatal and adult erythroid cells

    International Nuclear Information System (INIS)

    Miller, B.A.; Perrine, S.P.; Antognetti, G.; Perlmutter, D.H.; Emerson, S.G.; Sieff, C.; Faller, D.V.

    1987-01-01

    The effect of gamma-interferon on fetal hemoglobin synthesis by purified cord blood, fetal liver, and adult bone marrow erythroid progenitors was studied with a radioligand assay to measure hemoglobin production by BFU-E-derived erythroblasts. Coculture with recombinant gamma-interferon resulted in a significant and dose-dependent decrease in fetal hemoglobin production by neonatal and adult, but not fetal, BFU-E-derived erythroblasts. Accumulation of fetal hemoglobin by cord blood BFU-E-derived erythroblasts decreased up to 38.1% of control cultures (erythropoietin only). Synthesis of both G gamma/A gamma globin was decreased, since the G gamma/A gamma ratio was unchanged. Picograms fetal hemoglobin per cell was decreased by gamma-interferon addition, but picograms total hemoglobin was unchanged, demonstrating that a reciprocal increase in beta-globin production occurred in cultures treated with gamma-interferon. No toxic effect of gamma-interferon on colony growth was noted. The addition of gamma-interferon to cultures resulted in a decrease in the percentage of HbF produced by adult BFU-E-derived cells to 45.6% of control. Fetal hemoglobin production by cord blood, fetal liver, and adult bone marrow erythroid progenitors, was not significantly affected by the addition of recombinant GM-CSF, recombinant interleukin 1 (IL-1), recombinant IL-2, or recombinant alpha-interferon. Although fetal progenitor cells appear unable to alter their fetal hemoglobin program in response to any of the growth factors added here, the interaction of neonatal and adult erythroid progenitors with gamma-interferon results in an altered expression of globin genes

  6. Modulation of gene expression in a human cell line caused by poliovirus, vaccinia virus and interferon

    Directory of Open Access Journals (Sweden)

    Hoddevik Gunnar

    2007-03-01

    Full Text Available Abstract Background The project was initiated to describe the response of a human embryonic fibroblast cell line to the replication of two different viruses, and, more specifically, to look for candidate genes involved in viral defense. For this purpose, the cells were synchronously infected with poliovirus in the absence or presence of interferon-alpha, or with vaccinia virus, a virus that is not inhibited by interferon. By comparing the changes in transcriptosome due to these different challenges, it should be possible to suggest genes that might be involved in defense. Results The viral titers were sufficient to yield productive infection in a majority of the cells. The cells were harvested in triplicate at various time-points, and the transcriptosome compared with mock infected cells using oligo-based, global 35 k microarrays. While there was very limited similarities in the response to the different viruses, a large proportion of the genes up-regulated by interferon-alpha were also up-regulated by poliovirus. Interferon-alpha inhibited poliovirus replication, but there were no signs of any interferons being induced by poliovirus. The observations suggest that the cells do launch an antiviral response to poliovirus in the absence of interferon. Analyses of the data led to a list of candidate antiviral genes. Functional information was limited, or absent, for most of the candidate genes. Conclusion The data are relevant for our understanding of how the cells respond to poliovirus and vaccinia virus infection. More annotations, and more microarray studies with related viruses, are required in order to narrow the list of putative defence-related genes.

  7. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  8. Early gene expression profiles of patients with chronic hepatitis C treated with pegylated interferon-alfa and ribavirin.

    Science.gov (United States)

    Younossi, Zobair M; Baranova, Ancha; Afendy, Arian; Collantes, Rochelle; Stepanova, Maria; Manyam, Ganiraju; Bakshi, Anita; Sigua, Christopher L; Chan, Joanne P; Iverson, Ayuko A; Santini, Christopher D; Chang, Sheng-Yung P

    2009-03-01

    Responsiveness to hepatitis C virus (HCV) therapy depends on viral and host factors. Our aim was to assess sustained virologic response (SVR)-associated early gene expression in patients with HCV receiving pegylated interferon-alpha2a (PEG-IFN-alpha2a) or PEG-IFN-alpha2b and ribavirin with the duration based on genotypes. Blood samples were collected into PAXgene tubes prior to treatment as well as 1, 7, 28, and 56 days after treatment. From the peripheral blood cells, total RNA was extracted, quantified, and used for one-step reverse transcription polymerase chain reaction to profile 154 messenger RNAs. Expression levels of messenger RNAs were normalized with six "housekeeping" genes and a reference RNA. Multiple regression and stepwise selection were performed to assess differences in gene expression at different time points, and predictive performance was evaluated for each model. A total of 68 patients were enrolled in the study and treated with combination therapy. The results of gene expression showed that SVR could be predicted by the gene expression of signal transducer and activator of transcription-6 (STAT-6) and suppressor of cytokine signaling-1 in the pretreatment samples. After 24 hours, SVR was predicted by the expression of interferon-dependent genes, and this dependence continued to be prominent throughout the treatment. Early gene expression during anti-HCV therapy may elucidate important molecular pathways that may be influencing the probability of achieving virologic response.

  9. Enhancement of antiproliferative activity of interferons by RNA interference-mediated silencing of SOCS gene expression in tumor cells.

    Science.gov (United States)

    Takahashi, Yuki; Kaneda, Haruka; Takasuka, Nana; Hattori, Kayoko; Nishikawa, Makiya; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2008-08-01

    The suppressor of cytokine signaling (SOCS) proteins, negative regulators of interferon (IFN)-induced signaling pathways, is involved in IFN resistance of tumor cells. To improve the growth inhibitory effect of IFN-beta and IFN-gamma on a murine melanoma cell line, B16-BL6, and a murine colon carcinoma cell line, Colon26 cells, SOCS-1 and SOCS-3 gene expression in tumor cells was downregulated by transfection of plasmid DNA expressing short hairpin RNA targeting one of these genes (pshSOCS-1 and pshSOCS-3, respectively). Transfection of pshSOCS-1 significantly increased the antiproliferative effect of IFN-gamma on B16-BL6 cells. However, any other combinations of plasmids and IFN had little effect on the growth of B16-BL6 cells. In addition, transfection of pshSOCS-1 and pshSOCS-3 produced little improvement in the effect of IFN on Colon26 cells. To understand the mechanism underlining these findings, the level of SOCS gene expression was measured by real time polymerase chain reaction. Addition of IFN-gamma greatly increased the SOCS-1 mRNA expression in B16-BL6 cells. Taking into account the synergistic effect of pshSOCS-1 and IFN-gamma on the growth of B16-BL6 cells, these findings suggest that IFN-gamma-induced high SOCS-1 gene expression in B16-BL6 cells significantly interferes with the antiproliferative effect of IFN-gamma. These results indicate that silencing SOCS gene expression can be an effective strategy to enhance the antitumor effect of IFN under conditions in which the SOCS gene expression is upregulated by IFN.

  10. ACTIVATION OF GENES CONTROLLING THE IMMUNE SIGNALING PATHWAYS: DIFFERENTIAL INDIVIDUAL SENSITIVITY OF HUMAN BLOOD CELLS FOR INTERFERON PREPARATIONS AND IFN INDUCERS

    Directory of Open Access Journals (Sweden)

    T. M. Sokolova

    2015-01-01

    Full Text Available We have studied dose effects of several Interferon (IFN inducers, i.e., Genfaxon (beta-1 IFN, Cycloferon and Immunomax upon expression of six genes controlling the signaling in immune pathways (TLR3, TLR4, RIG1, IRF3, IPS, B2M, by means of real-time RT-PCR, being tested with blood cells from three humans. It is revealed that individual cell samples showed different sensitivity to these drugs, probably, due to constitutive levels of TLR3 and TLR4 gene expression and possible connections with their immune pathology. Genfaxon at a dose of 104 ME produced potent stimulation of TLR3, TLR4, IRF3 and B2M genes in two persons. Immunomax, at a dose 0,5 unit, exhibited same effect in one case only (with Epstein-Barr virus infection. Cycloferon stimulated gene expression at much lower levels than Genfaxon in any cases. We have shown a reverse correlation between sensitivity of the cells to Immunomax, and constitutive TLR3 and TLR4 expression. The stimulatory effects of Immunomax were maximal in a person with very low TLR3/4 gene expression. Immunomax boosted the genes from several signaling pathways, including TLR3, TLR4, but genes of RIG/IPS pathway showed higher activation. Cycloferon induced gene transcription of IRF3 and B2M-receptor to higher degree, than expression of TLR3 and TLR4 genes. Hence, our data concerning Genfaxon, Immunomax and Cycloferon confirm their IFN-inducing effects upon human blood cells. The RT-PCR-based evaluation of gene expression related to signaling immune pathways in blood cell populations will enable rapid and highly specific quantitation of IFN and IFN-inducer drugs activities, thus avoiding their biological testing in long-term cell cultures. 

  11. MicroRNA Expression Profiling by Bead Array Technology in Human Tumor Cell Lines Treated with Interferon-Alpha-2a

    Directory of Open Access Journals (Sweden)

    Siegrist Fredy

    2009-01-01

    Full Text Available Abstract MicroRNAs are positive and negative regulators of eukaryotic gene expression that modulate transcript abundance by specific binding to sequence motifs located prevalently in the 3' untranslated regions of target messenger RNAs (mRNA. Interferon-alpha-2a (IFNα induces a large set of protein coding genes mediating antiproliferative and antiviral responses. Here we use a global microarray-based microRNA detection platform to identify genes that are induced by IFNα in hepatoma- or melanoma-derived human tumor cell lines. Despite the enormous differences in expression levels between these models, we were able to identify microRNAs that are upregulated by IFNα in both lines suggesting the possibility that interferon-regulated microRNAs are involved in the transcriptional repression of mRNA relevant to cytokine responses.

  12. C7L family of poxvirus host range genes inhibits antiviral activities induced by type I interferons and interferon regulatory factor 1.

    Science.gov (United States)

    Meng, Xiangzhi; Schoggins, John; Rose, Lloyd; Cao, Jingxin; Ploss, Alexander; Rice, Charles M; Xiang, Yan

    2012-04-01

    Vaccinia virus (VACV) K1L and C7L function equivalently in many mammalian cells to support VACV replication and antagonize antiviral activities induced by type I interferons (IFNs). While K1L is limited to orthopoxviruses, genes that are homologous to C7L are found in diverse mammalian poxviruses. In this study, we showed that the C7L homologues from sheeppox virus and swinepox virus could rescue the replication defect of a VACV mutant deleted of both K1L and C7L (vK1L(-)C7L(-)). Interestingly, the sheeppox virus C7L homologue could rescue the replication of vK1L(-)C7L(-) in human HeLa cells but not in murine 3T3 and LA-4 cells, in contrast to all other C7L homologues. Replacing amino acids 134 and 135 of the sheeppox virus C7L homologue, however, made it functional in the two murine cell lines, suggesting that these two residues are critical for antagonizing a putative host restriction factor which has some subtle sequence variation in human and murine cells. Furthermore, the C7L family of host range genes from diverse mammalian poxviruses were all capable of antagonizing type I IFN-induced antiviral activities against VACV. Screening of a library of more than 350 IFN-stimulated genes (ISGs) identified interferon-regulated factor 1 (IRF1) as an inhibitor of vK1L(-)C7L(-) but not wild-type VACV. Expression of either K1L or C7L, however, rendered vK1L(-)C7L(-) resistant to IRF1-induced antiviral activities. Altogether, our data show that K1L and C7L antagonize IRF1-induced antiviral activities and that the host modulation function of C7L is evolutionally conserved in all poxviruses that can readily replicate in tissue-cultured mammalian cells.

  13. Analysis of gene expression in fetal and adult cells infected with rubella virus

    International Nuclear Information System (INIS)

    Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.

    2008-01-01

    Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adult lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced

  14. Pregnancy-induced gene expression changes in vivo among women with rheumatoid arthritis: a pilot study.

    Science.gov (United States)

    Goin, Dana E; Smed, Mette Kiel; Pachter, Lior; Purdom, Elizabeth; Nelson, J Lee; Kjærgaard, Hanne; Olsen, Jørn; Hetland, Merete Lund; Zoffmann, Vibeke; Ottesen, Bent; Jawaheer, Damini

    2017-05-25

    Little is known about gene expression changes induced by pregnancy in women with rheumatoid arthritis (RA) and healthy women because the few studies previously conducted did not have pre-pregnancy samples available as baseline. We have established a cohort of women with RA and healthy women followed prospectively from a pre-pregnancy baseline. In this study, we tested the hypothesis that pregnancy-induced changes in gene expression among women with RA who improve during pregnancy (pregDAS improved ) overlap substantially with changes observed among healthy women and differ from changes observed among women with RA who worsen during pregnancy (pregDAS worse ). Global gene expression profiles were generated by RNA sequencing (RNA-seq) from 11 women with RA and 5 healthy women before pregnancy (T0) and at the third trimester (T3). Among the women with RA, eight showed an improvement in disease activity by T3, whereas three worsened. Differential expression analysis was used to identify genes demonstrating significant changes in expression within each of the RA and healthy groups (T3 vs T0), as well as between the groups at each time point. Gene set enrichment was assessed in terms of Gene Ontology processes and protein networks. A total of 1296 genes were differentially expressed between T3 and T0 among the 8 pregDAS improved women, with 161 genes showing at least two-fold change (FC) in expression by T3. The majority (108 of 161 genes) were also differentially expressed among healthy women (qexpression between the pregDAS improved and pregDAS worse groups, all of which were inducible by type I interferon (IFN). These IFN-inducible genes were over-expressed at T3 compared to the T0 baseline among the pregDAS improved women. In our pilot RNA-seq dataset, increased pregnancy-induced expression of type I IFN-inducible genes was observed among women with RA who improved during pregnancy, but not among women who worsened. These findings warrant further investigation into

  15. Expression of isgylation related genes in regenerating rat liver

    Directory of Open Access Journals (Sweden)

    Kuklin A. V.

    2015-10-01

    Full Text Available Our recent studies have revealed the early up-regulated expression of interferon alpha (IFNα in the liver, induced by partial hepatectomy. The role of this cytokine of innate immune response in liver regeneration is still controversial. Aim. To analyze expression of canonical interferon-stimulated genes Ube1l, Ube2l6, Trim25, Usp18 and Isg15 during the liver transition from quiescence to proliferation induced by partial hepatectomy, and acute phase response induced by laparotomy. These genes are responsible for posttranslational modification of proteins by ISGylation. The expression of genes encoding TATA binding protein (TBP and 18S rRNA served as indirect general markers of transcriptional and translational activities. Methods. The abundance of investigated RNAs was assessed in total liver RNA by real time RT–qPCR. Results. Partial hepatecomy induced steady upregulation of the Tbp and 18S rRNA genes expression during 12 hours post-surgery and downregulation or no change in expression of ISGylation-related genes during the first 3 hours followed by slight upregulation at 12 hours. The level of Isg15 transcripts was permanently below that of the control during the prereplicative period. Laparotomy induced a continuous downregulation of Tbp and 18S rRNA expression and early (1–3h upregulation of ISGylation–related transcripts followed by a sharp drop at 6 hours and slight increase/decrease at 12 hours. The changes in the abundance of Ifnα and ISGylation-related mRNAs were oppositely directed at each stage of the response to partial hepatectomy and laparotomy. Conclusion. We suggest that the expression of ISGylation-related genes does not depend on the expression of Ifnα gene after both surgeries. The indirect indices of transcription and translation as well as the expression of ISGylation-relaled genes are principally different in response to partial hepatectomy and laparotomy and argue for the high specificity of innate immune response.

  16. TOX3 (TNRC9) Over Expression in Bladder Cancer Cells Decreases Cellular Proliferation and Triggers an Interferon-Like Response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Mansilla Castaño, Francisco; Dyrskjøt, Lars

    2013-01-01

    Background: Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+ dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...... urothelium. Microarray expression profiling of human bladder cancer cells over expressing TOX3 followed by Pathway analysis showed that TOX3 Overexpression mainly affected the Interferon Signaling Pathway. TOX3 up regulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 over...

  17. Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible gene- like receptors, which synergize to induce type I interferon production

    DEFF Research Database (Denmark)

    Rasmussen, Simon B; Jensen, Søren B; Nielsen, Christoffer

    2009-01-01

    The innate antiviral response is initiated by pattern recognition receptors, which recognize viral pathogen-associated molecular patterns. Here we show that retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) in cooperation with Toll-like receptor (TLR) 9 is required for expression of type I...... interferons (IFNs) after infection with herpes simplex virus (HSV). Our work also identified RNase L as a critical component in IFN induction. Moreover, we found that TLR9 and RLRs activate distinct, as well as overlapping, intracellular signalling pathways. Thus, RLRs are important for recognition of HSV...

  18. Expression Analysis of Interferon-Stimulated Gene 15 in the Rock Bream Oplegnathus fasciatus against Rock Bream Iridovirus (RSIV) Challenge.

    Science.gov (United States)

    Kim, Kyung-Hee; Yang, In Jung; Kim, Woo-Jin; Park, Choul-Ji; Park, Jong-Won; Noh, Gyeong Eon; Lee, Seunghyung; Lee, Young Mee; Hwang, Hyung Kyu; Kim, Hyun Chul

    2017-12-01

    Interferon-stimulated gene 15 (ISG15) is known to interfere with viral replication and infection by limiting the viral infection of cells. Interferon-stimulated gene 15 (ISG15) interferes with viral replication and infectivity by limiting viral infection in cells. It also plays an important role in the immune response. In this study, tissue-specific expression of ISG15 in healthy rock bream samples and spatial and temporal expression analysis of rock bream ISG15 (RbISG15) were performed following rock bream iridovirus (RSIV) infection. RbISG15 expression was significantly higher in the eye, gill, intestine, kidney, liver, muscle, spleen, and stomach, but low in the brain. There were particularly high levels of expression in the liver and muscle. RbISG15 expression was also examined in several tissues and at various times following RSIV infection. ISG15 expression increased within 3 h in the whole body and decreased at 24 h after infection. In addition, temporal expression of several tissues following RSIV infection showed a similar pattern in the muscle, kidney, and spleen, increasing at 3 h and decreasing at 72 h. These results suggest that ISG15 plays an important role in the immune response of rock bream. Overall, this study characterizes the response of RbISG15 following RSIV infection.

  19. Overlapping positive and negative regulatory domains of the human β-interferon gene

    International Nuclear Information System (INIS)

    Goodbourn, S.; Maniatis, T.

    1988-01-01

    Virus of poly(I) x poly(C) induction of human β-interferon gene expression requires a 40-base-pair DNA sequence designated the interferon gene regulatory element (IRE). Previous studies have shown that the IRE contains both positive and negative regulatory DNA sequences. To localize these sequences and study their interactions, the authors have examined the effects of a large number of single-base mutations within the IRE on β-interferon gene regulation. They find that the IRE consists of two genetically separable positive regulatory domains and an overlapping negative control sequence. They propose that the β-interferon gene is switched off in uninduced cells by a repressor that blocks the interaction between one of the two positive regulatory sequences and a specific transcription factor. Induction would then lead to inactivation or displacement of the repressor and binding of transcription factors to both positive regulatory domains

  20. No Love Lost Between Viruses and Interferons.

    Science.gov (United States)

    Fensterl, Volker; Chattopadhyay, Saurabh; Sen, Ganes C

    2015-11-01

    The interferon system protects mammals against virus infections. There are several types of interferons, which are characterized by their ability to inhibit virus replication and resultant pathogenesis by triggering both innate and cell-mediated immune responses. Virus infection is sensed by a variety of cellular pattern-recognition receptors and triggers the synthesis of interferons, which are secreted by the infected cells. In uninfected cells, cell surface receptors recognize the secreted interferons and activate intracellular signaling pathways that induce the expression of interferon-stimulated genes; the proteins encoded by these genes inhibit different stages of virus replication. To avoid extinction, almost all viruses have evolved mechanisms to defend themselves against the interferon system. Consequently, a dynamic equilibrium of survival is established between the virus and its host, an equilibrium that can be shifted to the host's favor by the use of exogenous interferon as a therapeutic antiviral agent.

  1. Prevention of adverse events of interferon γ gene therapy by gene delivery of interferon γ-heparin-binding domain fusion protein in mice

    Directory of Open Access Journals (Sweden)

    Mitsuru Ando

    2014-01-01

    Full Text Available Sustained gene delivery of interferon (IFN γ can be an effective treatment, but our previous study showed high levels of IFNγ-induced adverse events, including the loss of body weight. These unwanted events could be reduced by target-specific delivery of IFNγ after in vivo gene transfer. To achieve this, we selected the heparin-binding domain (HBD of extracellular superoxide dismutase as a molecule to anchor IFNγ to the cell surface. We designed three IFNγ derivatives, IFNγ-HBD1, IFNγ-HBD2, and IFNγ-HBD3, each of which had 1, 2, or 3 HBDs, respectively. Each plasmid-encoding fusion proteins was delivered to the liver, a model target in this study, by hydrodynamic tail vein injection. The serum concentration of IFNγ-HBD2 and IFNγ-HBD3 after gene delivery was lower than that of IFNγ or IFNγ-HBD1. Gene delivery of IFNγ-HBD2, but not of IFNγ-HBD3, effectively increased the mRNA expression of IFNγ-inducible genes in the liver, suggesting liver-specific distribution of IFNγ-HBD2. Gene delivery of IFNγ-HBD2-suppressed tumor growth in the liver as efficiently as that of IFNγ with much less symptoms of adverse effects. These results indicate that the adverse events of IFNγ gene transfer can be prevented by gene delivery of IFNγ-HBD2, a fusion protein with high cell surface affinity.

  2. Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta.

    Directory of Open Access Journals (Sweden)

    Hélène Bierne

    Full Text Available Bacterial infections trigger the expression of type I and II interferon genes but little is known about their effect on type III interferon (IFN-λ genes, whose products play important roles in epithelial innate immunity against viruses. Here, we studied the expression of IFN-λ genes in cultured human epithelial cells infected with different pathogenic bacteria and in the mouse placenta infected with Listeria monocytogenes. We first showed that in intestinal LoVo cells, induction of IFN-λ genes by L. monocytogenes required bacterial entry and increased further during the bacterial intracellular phase of infection. Other Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis, also induced IFN-λ genes when internalized by LoVo cells. In contrast, Gram-negative bacteria Salmonella enterica serovar Typhimurium, Shigella flexneri and Chlamydia trachomatis did not substantially induce IFN-λ. We also found that IFN-λ genes were up-regulated in A549 lung epithelial cells infected with Mycobacterium tuberculosis and in HepG2 hepatocytes and BeWo trophoblastic cells infected with L. monocytogenes. In a humanized mouse line permissive to fetoplacental listeriosis, IFN-λ2/λ3 mRNA levels were enhanced in placentas infected with L. monocytogenes. In addition, the feto-placental tissue was responsive to IFN-λ2. Together, these results suggest that IFN-λ may be an important modulator of the immune response to Gram-positive intracellular bacteria in epithelial tissues.

  3. Autocrine secretion of tumor necrosis factor under the influence of interferon-γ amplifies HLA-DR gene induction in human monocytes

    International Nuclear Information System (INIS)

    Arenzana-Seisdedos, F.; Mogensen, S.C.; Vuillier, F.; Fiers, W.; Virelizier, J.L.

    1988-01-01

    Recombinant interferon-γ (IFN-γ) induced HLA-DR gene expression in both U937 and THP-1 human monocytic cell lines, although the former was only very weakly inducible. Combination of recombinant tumor necrosis factor (TNF) and IFN-γ resulted in a synergistic enhancement of DR mRNA and protein induction in both cell lines. TNF alone increased the constitutive expression of the DR gene in THP-1 cells. In the HLA class II-negative U937 cells, TNF used alone was not able to induce DR gene expression. Such a negative result was not due to a lack of TNF receptor expression in U937 cells, since TNF clearly induced HLA class I and TNF gene expression in this cell line. THP-1, but not U937, cells secreted TNF under the influence of IFN-γ. Neutralization of TNF by a specific antibody decreased IFN-γ-induced DR antigen expression in THP-1 cultures. These observations indicate that TNF is not able to directly induce DR gene expression, but rather amplifies ongoing expression of this gene, whether constitutive or induced by IFN-γ. In the two cell lines tested, the level of DR inducibility under the influence of IFN-γ used alone depended on a different inducibility of TNF secretion by IFN-γ. Altogether, the observations indicate that TNF, whether exogenous or endogenously produced under the influence of IFN-γ, amplifies DR gene expression in monocytes, a phenomenon that may provide to such antigen-presenting cells a selective sensitivity to the DR-inducing effects of IFN-γ

  4. Activation of the human beta interferon gene by the adenovirus type 12 E1B gene

    International Nuclear Information System (INIS)

    Shiroki, K.; Toth, M.

    1988-01-01

    The transcription of endogenous beta interferon mRNA was activated in human embryo kidney (HEK) cells infected with adenovirus 12 (Ad12) but was activated only inefficiently or not at all in HEK cells infected with Ad5 and rc-1 (Ad5 dl312 containing the Ad12 E1A region). The analysis with Ad12 mutants showed that Ad12 E1B products, especially the 19K protein, were important for the expression of the endogenous beta interferon gene and Ad12 E1A products were not involved in the expression. The expression of exogeneously transfected pIFN-CAT (a hybrid plasmid having the human beta interferon promoter fused with the CAT gene) was activated in HEK and chicken embryo fibroblast (CEF) cells infected with either Ad12 or Ad5. The analysis of cotransfection of CEF cells with pIFN-CAT and plasmids containing fragments of Ad12 or Ad5 DNA showed that Ad12 or Ad5 E1B (possibly the 19K protein) was and E1A was not involved in the expression of the exogenous pIFN-CAT

  5. Ester alkaloids from Cephalotaxus interfere with the 2'3'-cGAMP-induced type I interferon pathway in vitro.

    Directory of Open Access Journals (Sweden)

    Gayoung Park

    Full Text Available Dysregulated activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING pathway by self-DNA contributes to interferonopathy and promotes autoimmune diseases. To identify potential suppressors of STING-induced type I interferon (IFN induction, ethanol extracts of medicinal plants were screened for inhibitory activity against IFN-ß promoter activation. Notably, 70% ethanol extract of Cephalotaxus koreana specifically down-regulated STING-induced, but not TBK1- or IRF3-induced, IFN-ß promoter activity. The compounds exerting inhibitory activity specifically against STING-mediated IFN-ß promoter activation were identified as ester alkaloids isolated from the genus, Cephalotaxus, homoharringtonine and harringtonine. Furthermore, these two compounds inhibited 2'3'-cGAMP-induced IFN-stimulated gene expression and interaction between STING and TBK1. These suppressive effects were not observed with cephalotaxine devoid of the ester side-chain. Our data support the potential utility of homoharringtonine and harringtonine to treat STING-associated interferonopathy and autoimmune diseases.

  6. Virus-Induced Type I Interferon Deteriorates Control of Systemic Pseudomonas Aeruginosa Infection

    Directory of Open Access Journals (Sweden)

    Katja Merches

    2015-07-01

    Full Text Available Background: Type I interferon (IFN-I predisposes to bacterial superinfections, an important problem during viral infection or treatment with interferon-alpha (IFN-α. IFN-I-induced neutropenia is one reason for the impaired bacterial control; however there is evidence that more frequent bacterial infections during IFN-α-treatment occur independently of neutropenia. Methods: We analyzed in a mouse model, whether Pseudomonas aeruginosa control is influenced by co-infection with the lymphocytic choriomeningitis virus (LCMV. Bacterial titers, numbers of neutrophils and the gene-expression of liver-lysozyme-2 were determined during a 24 hours systemic infection with P. aeruginosa in wild-type and Ifnar-/- mice under the influence of LCMV or poly(I:C. Results: Virus-induced IFN-I impaired the control of Pseudomonas aeruginosa. This was associated with neutropenia and loss of lysozyme-2-expression in the liver, which had captured P. aeruginosa. A lower release of IFN-I by poly(I:C-injection also impaired the bacterial control in the liver and reduced the expression of liver-lysozyme-2. Low concentration of IFN-I after infection with a virulent strain of P. aeruginosa alone impaired the bacterial control and reduced lysozyme-2-expression in the liver as well. Conclusion: We found that during systemic infection with P. aeruginosa Kupffer cells quickly controlled the bacteria in cooperation with neutrophils. Upon LCMV-infection this cooperation was disturbed.

  7. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling

    International Nuclear Information System (INIS)

    Johnson, Karen E.; Song, Byeongwoon; Knipe, David M.

    2008-01-01

    Host cells respond to viral infection by many mechanisms, including the production of type I interferons which act in a paracrine and autocrine manner to induce the expression of antiviral interferon-stimulated genes (ISGs). Viruses have evolved means to inhibit interferon signaling to avoid induction of the innate immune response. Herpes simplex virus 1 (HSV-1) has several mechanisms to inhibit type I interferon production, the activities of ISGs, and the interferon signaling pathway itself. We report that the inhibition of the Jak/STAT pathway by HSV-1 requires viral gene expression and that viral immediate-early protein ICP27 plays a role in downregulating STAT-1 phosphorylation and in preventing the accumulation of STAT-1 in the nucleus. We also show that expression of ICP27 by transfection causes an inhibition of IFN-induced STAT-1 nuclear accumulation. Therefore, ICP27 is necessary and sufficient for at least some of the effects of HSV infection on STAT-1

  8. Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid

    NARCIS (Netherlands)

    Radtke, O.A.; Kiderlen, A.F.; Kayser, Oliver; Kolodziej, H

    2004-01-01

    The effects of gallic acid on the gene expressions of inducible nitric oxide synthase (iNOS) and the cytokines interleukin (IL)-1, IL-10, IL-12, IL-18, TNF-alpha, and interferon (IFN)-gamma were investigated by reverse-transcription polymerase chain reaction (RT-PCR). The experiments were performed

  9. Expression of biologically active human interferon alpha 2 in aloe vera

    Science.gov (United States)

    We have developed a system for transgenic expression of proteins in Aloe Vera. Using this approach we have generated plants expressing the human gene interferon alpha 2, IFNa2. IFNa2 is a small secreted cytokine that plays a vital role in regulating the body’s immune response to viral infections a...

  10. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    International Nuclear Information System (INIS)

    Wang, Dang; Fang, Liurong; Luo, Rui; Ye, Rui; Fang, Ying; Xie, Lilan; Chen, Huanchun; Xiao, Shaobo

    2010-01-01

    Research highlights: → FMDV L pro inhibits poly(I:C)-induced IFN-α1/β mRNA expression. → L pro inhibits MDA5-mediated activation of the IFN-α1/β promoter. → L pro significantly reduced the transcription of multiple IRF-responsive genes. → L pro inhibits IFN-α1/β promoter activation by decreasing IRF-3/7 in protein levels. → The ability to process eIF-4G of L pro is not necessary to inhibit IFN-α1/β activation. -- Abstract: The leader proteinase (L pro ) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-β (IFN-β) antagonist that disrupts the integrity of transcription factor nuclear factor κB (NF-κB). In this study, we showed that the reduction of double stranded RNA (dsRNA)-induced IFN-α1/β expression caused by L pro was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-α/β. Furthermore, overexpression of L pro significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L pro mutants indicated that the ability to process eIF-4G of L pro is not required for suppressing dsRNA-induced activation of the IFN-α1/β promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-κB, L pro also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.

  11. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dang; Fang, Liurong; Luo, Rui; Ye, Rui; Fang, Ying; Xie, Lilan; Chen, Huanchun [Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); Xiao, Shaobo, E-mail: shaoboxiao@yahoo.com [Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China)

    2010-08-13

    Research highlights: {yields} FMDV L{sup pro} inhibits poly(I:C)-induced IFN-{alpha}1/{beta} mRNA expression. {yields} L{sup pro} inhibits MDA5-mediated activation of the IFN-{alpha}1/{beta} promoter. {yields} L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes. {yields} L{sup pro} inhibits IFN-{alpha}1/{beta} promoter activation by decreasing IRF-3/7 in protein levels. {yields} The ability to process eIF-4G of L{sup pro} is not necessary to inhibit IFN-{alpha}1/{beta} activation. -- Abstract: The leader proteinase (L{sup pro}) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-{beta} (IFN-{beta}) antagonist that disrupts the integrity of transcription factor nuclear factor {kappa}B (NF-{kappa}B). In this study, we showed that the reduction of double stranded RNA (dsRNA)-induced IFN-{alpha}1/{beta} expression caused by L{sup pro} was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-{alpha}/{beta}. Furthermore, overexpression of L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L{sup pro} mutants indicated that the ability to process eIF-4G of L{sup pro} is not required for suppressing dsRNA-induced activation of the IFN-{alpha}1/{beta} promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-{kappa}B, L{sup pro} also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.

  12. DMPD: Type I interferon [corrected] gene induction by the interferon regulatory factorfamily of transcription factors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16979567 Type I interferon [corrected] gene induction by the interferon regulatory factorfamily...ng) (.svg) (.html) (.csml) Show Type I interferon [corrected] gene induction by the interferon regulatory factorfamily...orrected] gene induction by the interferon regulatory factorfamily of transcription factors. Authors Honda K

  13. The structure of the human interferon alpha/beta receptor gene.

    Science.gov (United States)

    Lutfalla, G; Gardiner, K; Proudhon, D; Vielh, E; Uzé, G

    1992-02-05

    Using the cDNA coding for the human interferon alpha/beta receptor (IFNAR), the IFNAR gene has been physically mapped relative to the other loci of the chromosome 21q22.1 region. 32,906 base pairs covering the IFNAR gene have been cloned and sequenced. Primer extension and solution hybridization-ribonuclease protection have been used to determine that the transcription of the gene is initiated in a broad region of 20 base pairs. Some aspects of the polymorphism of the gene, including noncoding sequences, have been analyzed; some are allelic differences in the coding sequence that induce amino acid variations in the resulting protein. The exon structure of the IFNAR gene and of that of the available genes for the receptors of the cytokine/growth hormone/prolactin/interferon receptor family have been compared with the predictions for the secondary structure of those receptors. From this analysis, we postulate a common origin and propose an hypothesis for the divergence from the immunoglobulin superfamily.

  14. TREX1 Knockdown Induces an Interferon Response to HIV that Delays Viral Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Lee Adam Wheeler

    2016-05-01

    Full Text Available Despite their antiviral effect, the in vivo effect of interferons on HIV transmission is difficult to predict, because interferons also activate and recruit HIV-susceptible cells to sites of infection. HIV does not normally induce type I interferons in infected cells, but does if TREX1 is knocked down. Here, we investigated the effect of topical TREX1 knockdown and local interferon production on HIV transmission in human cervicovaginal explants and humanized mice. In explants in which TREX1 was knocked down, HIV induced interferons, which blocked infection. In humanized mice, even though TREX1 knockdown increased infiltrating immune cells, it delayed viral replication for 3–4 weeks. Similarly intravaginal application of type I interferons the day before HIV infection induced interferon responsive genes, reduced inflammation, and decreased viral replication. However, intravenous interferon enhanced inflammation and infection. Thus, in models of human sexual transmission, a localized interferon response inhibits HIV transmission but systemic interferons do not.

  15. Production of human interferon alfa 2b in plants of Nicotiana excelsior by Agrobacterium-mediated transient expression.

    Science.gov (United States)

    Sindarovska, Y R; Gerasymenko, I M; Sheludko, Y V; Olevinskaya, Z M; Spivak, N Y; Kuchuk, N V

    2010-01-01

    Human interferon alpha2b gene was transiently expressed in Nicotiana excelsior plants. Fusion with N. plumbaginifolia calreticulin signal peptide for improved apoplast targeting and carrying out the expression under optimized conditions resulted in maximal interferon activity of 3.2 x 10(3) IU/g fresh weight (FW) with an average of 2.1 +/- 0.8 x 10(3) IU/g FW. It proves that N. excelsior is a suitable host for Agrobacterium-mediated transient expression of genes encoding physiologically active human proteins. The transient expression conditions optimized for GFP marker protein were confirmed to be preferable for hIFN alpha2b.

  16. Polymorphism in the interferon-{alpha} gene family

    Energy Technology Data Exchange (ETDEWEB)

    Golovleva, I.; Lundgren, E.; Beckman, L. [Univ. of Umea (Sweden); Kandefer-Szerszen, M. [Maria Curie-Sklodowska Univ., Lublin (Poland)

    1996-09-01

    A pronounced genetic polymorphism of the interferon type I gene family has been assumed on the basis of RFLP analysis of the genomic region as well as the large number of sequences published compared to the number of loci. However, IFNA2 is the only locus that has been carefully analyzed concerning gene frequency, and only naturally occurring rare alleles have been found. We have extended the studies on a variation of expressed sequences by studying the IFNA1, IFNA2, IFNA10, IFNA13, IFNA14, and IFNA17 genes. Genomic white-blood-cell DNA from a population sample of blood donors and from a family material were screened by single-nucleotide primer extension (allele-specific primer extension) of PCR fragments. Because of sequence similarities, in some cases {open_quotes}nested{close_quotes} PCR was used, and, when applicable, restriction analysis or control sequencing was performed. All individuals carried the interferon-{alpha} 1 and interferon-{alpha} 13 variants but not the LeIF D variant. At the IFNA2 and IFNA14 loci only one sequence variant was found, while in the IFNA10 and IFNA17 groups two alleles were detected in each group. The IFNA10 and IFNA17 alleles segregated in families and showed a close fit to the Hardy-Weinberg equilibrium. There was a significant linkage disequilibrium between IFNA10 and IFNA17 alleles. The fact that the extent of genetic polymorphism was lower than expected suggests that a majority of the previously described gene sequences represent nonpolymorphic rare mutants that may have arisen in tumor cell lines. 44 refs., 4 figs., 4 tabs.

  17. Macrophage Expression of Inflammatory Genes in Response to EMCV Infection

    Directory of Open Access Journals (Sweden)

    Zachary R. Shaheen

    2015-08-01

    Full Text Available The expression and production of type 1 interferon is the classic cellular response to virus infection. In addition to this antiviral response, virus infection also stimulates the production of proinflammatory mediators. In this review, the pathways controlling the induction of inflammatory genes and the roles that these inflammatory mediators contribute to host defense against viral pathogens will be discussed. Specific focus will be on the role of the chemokine receptor CCR5, as a signaling receptor controlling the activation of pathways leading to virus-induced inflammatory gene expression.

  18. Measurement of feline cytokines interleukin-12 and interferon- g produced by heat inducible gene therapy adenoviral vector using real time PCR

    International Nuclear Information System (INIS)

    Siddiqui, F.; Avery, P.R.; Ullrich, R.L.; LaRue, S.M.; Dewhirst, M.W.; Li, C.-Y.

    2003-01-01

    Biologic tumor therapy using Interleukin-12 (IL-12) has shown promise as an adjuvant to radiation therapy. The goals for cancer gene immunotherapy include effective eradication of established tumors and generation of a lasting systemic immune response. Among the cytokines, IL-12 has been found to be most effective gene in eradicating experimental tumors, preventing the development of metastases, and eliciting long-term antitumor immunity. Depending on the tumor model, IL-12 can exert antitumor activities via T cells, NK cells or NKT cells. It induces the production of IFN-g and IFN-inducible protein-10. It is also postulated to have antiangiogenic effects, thus inhibiting tumor formation and metastases. However, its use in clinical trials has been restricted largely owing to its systemic hematologic and hepatotoxicity. We tested the efficacy of adenovirus mediated expression of feline IL-12 gene placed under the control of an inducible promoter, the heat shock proteins (hsp70B). This places gene expression under the control of an external physical agent (hyperthermia), thus offering an 'on-off' switch and potentially reducing systemic toxicity by restricting its expression locally to the tumor. Crandell Feline Kidney (CrFK) cells were infected using the construct and the supernatant was then used to stimulate production of interferon g (IFN-g) in feline peripheral blood mononuclear cells (PBMC). As there is no commercially available ELISA kit currently available to detect or measure feline cytokines, we used real time-PCR to measure cytokine mRNA. These results will be used to initiate a clinical trial in cats with soft tissue sarcomas examining hyperthermia Induced gene therapy in conjunction with radiation therapy. The real time- PCR techniques developed here will be used to quantitatively measure cytokine mRNA levels in the punch biopsy samples obtained from the cats during the clinical trial. Support for this study was in part by NCI grant CA72745

  19. Evolution of vertebrate interferon inducible transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Hickford Danielle

    2012-04-01

    Full Text Available Abstract Background Interferon inducible transmembrane proteins (IFITMs have diverse roles, including the control of cell proliferation, promotion of homotypic cell adhesion, protection against viral infection, promotion of bone matrix maturation and mineralisation, and mediating germ cell development. Most IFITMs have been well characterised in human and mouse but little published data exists for other animals. This study characterised IFITMs in two distantly related marsupial species, the Australian tammar wallaby and the South American grey short-tailed opossum, and analysed the phylogeny of the IFITM family in vertebrates. Results Five IFITM paralogues were identified in both the tammar and opossum. As in eutherians, most marsupial IFITM genes exist within a cluster, contain two exons and encode proteins with two transmembrane domains. Only two IFITM genes, IFITM5 and IFITM10, have orthologues in both marsupials and eutherians. IFITM5 arose in bony fish and IFITM10 in tetrapods. The bone-specific expression of IFITM5 appears to be restricted to therian mammals, suggesting that its specialised role in bone production is a recent adaptation specific to mammals. IFITM10 is the most highly conserved IFITM, sharing at least 85% amino acid identity between birds, reptiles and mammals and suggesting an important role for this presently uncharacterised protein. Conclusions Like eutherians, marsupials also have multiple IFITM genes that exist in a gene cluster. The differing expression patterns for many of the paralogues, together with poor sequence conservation between species, suggests that IFITM genes have acquired many different roles during vertebrate evolution.

  20. Acetaminophen modulates the transcriptional response to recombinant interferon-beta.

    Directory of Open Access Journals (Sweden)

    Aaron Farnsworth

    Full Text Available BACKGROUND: Recombinant interferon treatment can result in several common side effects including fever and injection-site pain. Patients are often advised to use acetaminophen or other over-the-counter pain medications as needed. Little is known regarding the transcriptional changes induced by such co-administration. METHODOLOGY/PRINCIPAL FINDINGS: We tested whether the administration of acetaminophen causes a change in the response normally induced by interferon-beta treatment. CD-1 mice were administered acetaminophen (APAP, interferon-beta (IFN-beta or a combination of IFN-beta+APAP and liver and serum samples were collected for analysis. Differential gene expression was determined using an Agilent 22 k whole mouse genome microarray. Data were analyzed by several methods including Gene Ontology term clustering and Gene Set Enrichment Analysis. We observed a significant change in the transcription profile of hepatic cells when APAP was co-administered with IFN-beta. These transcriptional changes included a marked up-regulation of genes involved in signal transduction and cell differentiation and down-regulation of genes involved in cellular metabolism, trafficking and the IkappaBK/NF-kappaB cascade. Additionally, we observed a large decrease in the expression of several IFN-induced genes including Ifit-3, Isg-15, Oasl1, Zbp1 and predicted gene EG634650 at both early and late time points. CONCLUSIONS/SIGNIFICANCE: A significant change in the transcriptional response was observed following co-administration of IFN-beta+APAP relative to IFN-beta treatment alone. These results suggest that administration of acetaminophen has the potential to modify the efficacy of IFN-beta treatment.

  1. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity.

    Directory of Open Access Journals (Sweden)

    Hans Rempel

    2008-04-01

    Full Text Available HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14(+ monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1, a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases.We analyzed sialoadhesin expression on CD14(+ monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14(+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-alpha and interferon-gamma but not tumor necrosis factor-alpha. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-infection.Increased sialoadhesin expression on CD14(+ monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14(+ monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells.

  2. Modulation of interferon-gamma-induced HLA-DR expression on the human keratinocyte cell line SCC-13 by ultraviolet radiation

    International Nuclear Information System (INIS)

    Khan, I.U.; Boehm, K.D.; Elmets, C.A.

    1993-01-01

    Cell surface expression of major histocompatibility determinants on epidermal keratinocytes is a characteristic feature of a number of inflammatory dermatoses and in all likelihood is caused by diffusion of human leukocyte antigen (HLA)-DR-inducing cytokines from cells present in the dermal mononuclear cell infiltrate. Many of these same disorders respond to ultraviolet (UV) radiation phototherapy. Using the human SCC-13 keratinocyte cell line as a model, UV radiation was found to inhibit interferon-gamma-induced HLA-DR expression. Inhibition correlated closely with decreased steady-state levels of HLA-DR mRNA. These findings provide evidence that the therapeutic effect of UV radiation phototherapy may be mediated by its capacity to down-regulate cytokine-induced keratinocyte HLA-DR expression. (Author)

  3. Factors regulated by interferon gamma and hypoxia-inducible factor 1A contribute to responses that protect mice from Coccidioides immitis infection

    Directory of Open Access Journals (Sweden)

    Woelk Christopher H

    2012-09-01

    Full Text Available Abstract Background Coccidioidomycosis results from airborne infections caused by either Coccidioides immitis or C. posadasii. Both are pathogenic fungi that live in desert soil in the New World and can infect normal hosts, but most infections are self-limited. Disseminated infections occur in approximately 5% of cases and may prove fatal. Mouse models of the disease have identified strains that are resistant (e.g. DBA/2 or susceptible (e.g. C57BL/6 to these pathogens. However, the genetic and immunological basis for this difference has not been fully characterized. Results Microarray technology was used to identify genes that were differentially expressed in lung tissue between resistant DBA/2 and sensitive C57BL/6 mice after infection with C. immitis. Differentially expressed genes were mapped onto biological pathways, gene ontologies, and protein interaction networks, which revealed that innate immune responses mediated by Type II interferon (i.e., IFNG and the signal transducer and activator of transcription 1 (STAT1 contribute to the resistant phenotype. In addition, upregulation of hypoxia inducible factor 1A (HIF1A, possibly as part of a larger inflammatory response mediated by tumor necrosis factor alpha (TNFA, may also contribute to resistance. Microarray gene expression was confirmed by real-time quantitative PCR for a subset of 12 genes, which revealed that IFNG HIF1A and TNFA, among others, were significantly differentially expressed between the two strains at day 14 post-infection. Conclusion These results confirm the finding that DBA/2 mice express more Type II interferon and interferon stimulated genes than genetically susceptible strains and suggest that differential expression of HIF1A may also play a role in protection.

  4. 5HT(4) agonists inhibit interferon-gamma-induced MHC class II and B7 costimulatory molecules expression on cultured astrocytes

    NARCIS (Netherlands)

    Zeinstra, Esther M.; Wilczak, Nadine; Wilschut, Jan C.; Glazenburg, Lisa; Chesik, Daniel; Kroese, Frans G. M.; De Keyser, Jacques

    2006-01-01

    A failure of tight control of MHC class II expression on astrocytes may play a role in the development of autoimmune responses in multiple sclerosis. The 5-HT4 serotonin receptor agonists cisapride and prucalopride, at concentrations between 10(-10) M and 10(-8) M, reduced interferon-gamma-induced

  5. Coordinate viral induction of tumor necrosis factor α and interferon β in human B cells and monocytes

    International Nuclear Information System (INIS)

    Goldfeld, A.E.; Maniatis, T.

    1989-01-01

    Human tumor necrosis factor α (TNF-α) gene expression can be induced primarily in cells of the monocyte/macrophage lineage by a variety of inducers, including lipopolysaccharide, phorbol esters such as phorbol 12-myristate 13-acetate, and virus or synthetic double-stranded RNA [poly(I)·poly(C)]. In this paper the authors show that the TNF-α gene also responds to virus and phorbol 12-myristate 13-acetate in B lymphocytes and that virus is the most potent inducer of TNF-α mRNA in both monocyte and B-cell lines. In addition, they show that viral infection coinduces the expression of TNF-α and interferon β mRNA and that viral induction of both genes is blocked by the kinase inhibitor 2-aminopurine. Inhibition of protein synthesis with cycloheximide had no effect on mRNA expression of the genes in one of three cell lines tested (U937) but blocked the viral induction of both genes in another (Namalwa). Thus, the regulatory factors required for mRNA induction of both genes are present prior to the addition of virus in U937 but not in Namalwa cells. However, in a third cell line (JY), cycloheximide blocked viral induction of the interferon β gene but not the TNF-α gene. Taken together, these observations suggest that viral induction of TNF-α and interferon β gene expression may involve overlapping pathways with both common and distinct regulatory factors

  6. Bioinformatics analysis of the factors controlling type I IFN gene expression in autoimmune disease and virus-induced immunity

    Directory of Open Access Journals (Sweden)

    Di eFeng

    2013-09-01

    Full Text Available Patients with systemic lupus erythematosus (SLE and Sjögren's syndrome (SS display increased levels of type I IFN-induced genes. Plasmacytoid dendritic cells (PDCs are natural interferon producing cells and considered to be a primary source of IFN-α in these two diseases. Differential expression patterns of type I IFN inducible transcripts can be found in different immune cell subsets and in patients with both active and inactive autoimmune disease. A type I IFN gene signature generally consists of three groups of IFN-induced genes - those regulated in response to virus-induced type I IFN, those regulated by the IFN-induced mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK pathway, and those by the IFN-induced phosphoinositide-3 kinase (PI-3K pathway. These three groups of type I IFN-regulated genes control important cellular processes such as apoptosis, survival, adhesion, and chemotaxis, that when dysregulated, contribute to autoimmunity. With the recent generation of large datasets in the public domain from next-generation sequencing and DNA microarray experiments, one can perform detailed analyses of cell type-specific gene signatures as well as identify distinct transcription factors that differentially regulate these gene signatures. We have performed bioinformatics analysis of data in the public domain and experimental data from our lab to gain insight into the regulation of type I IFN gene expression. We have found that the genetic landscape of the IFNA and IFNB genes are occupied by transcription factors, such as insulators CTCF and cohesin, that negatively regulate transcription, as well as IRF5 and IRF7, that positively and distinctly regulate IFNA subtypes. A detailed understanding of the factors controlling type I IFN gene transcription will significantly aid in the identification and development of new therapeutic strategies targeting the IFN pathway in autoimmune disease.

  7. POLYMORPHIC VARIANTS OF THE GENE OF INTERFERON LAMBDA 3 AND FEATURES OF IMMUNE RESPONSE IN CHILDREN WITH CHRONIC VIRAL HEPATITIS C

    Directory of Open Access Journals (Sweden)

    T. B. Sentsova

    2017-01-01

    Full Text Available To study the immune manifestations of the interferon-lambda 3 genepolymorphism in chronic viral hepatitis C, 110 Russian children (54 girls and 56 boys with chronic HCV infection aged from 3 to 17 years were examined. All children were on combined therapy (pegylated interferon + ribavirin. It was found that among the studied polymorphic variants of the IFN-λ 3 gene in children with chronic HCV infection, T allele of the marker rs12979860 is associated with infection and chronization of HCV. The T/T rs12979860 genotype of the IFN-λ3 gene is unfavorable for the course of chronic HCV infection due to low levels of activated T-lymphocytes, intactness of the proinflammatory cytokines TNF-α, IL-6, IL-1α, and interferoninducible protein IP-10. The revealed relation of the polymorphic variants of C/C + C/T locus rs12979860 of INF-λ3 gene with the expression of activated T-lymphocytes discloses the protective nature of these genotypes to the development of chronic HCV infection in children. 

  8. Inflammatory Cytokines Induce Podoplanin Expression at the Tumor Invasive Front.

    Science.gov (United States)

    Kunita, Akiko; Baeriswyl, Vanessa; Meda, Claudia; Cabuy, Erik; Takeshita, Kimiko; Giraudo, Enrico; Wicki, Andreas; Fukayama, Masashi; Christofori, Gerhard

    2018-05-01

    Tumor invasion is a critical first step in the organismic dissemination of cancer cells and the formation of metastasis in distant organs, the most important prognostic factor and the actual cause of death in most of the cancer patients. We report herein that the cell surface protein podoplanin (PDPN), a potent inducer of cancer cell invasion, is conspicuously expressed by the invasive front of squamous cell carcinomas (SCCs) of the cervix in patients and in the transgenic human papillomavirus/estrogen mouse model of cervical cancer. Laser capture microscopy combined with gene expression profiling reveals that the expression of interferon-responsive genes is up-regulated in PDPN-expressing cells at the tumor invasive front, which are exposed to CD45-positive inflammatory cells. Indeed, PDPN expression can be induced in cultured SCC cell lines by single or combined treatments with interferon-γ, transforming growth factor-β, and/or tumor necrosis factor-α. Notably, shRNA-mediated ablation of either PDPN or STAT1 in A431 SCC cells repressed cancer cell invasion on s.c. transplantation into immunodeficient mice. The results highlight the induction of tumor cell invasion by the inflammatory cytokine-stimulated expression of PDPN in the outermost cell layers of cervical SCC. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. A New Synthetic Compound, 2-OH, Enhances Interleukin-2 and InterferonGene Expression in Human Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Woan-Fang Tzeng

    2009-07-01

    Full Text Available A new synthetic compound, 6-hydroxy-2-tosylisoquinolin-1(2H-one (2-OH, was selected for immunopharmacological activity tests. The effects of 2-OH on human peripheral blood mononuclear cell (PBMC proliferation were determined by tritiated thymidine uptake. Compared to phytohemagglutinin (PHA; 5 μg/mL stimulation, 2-OH significantly enhanced PBMC proliferation in a dose-dependent manner. The 50% enhancement activity (EC50 for 2-OH was 4.4±0.1 μM. In addition, effects of 2-OH on interleukin-2 (IL-2 and interferon-γ (IFN-γ production in PBMC were determined by enzyme immunoassay. Results demonstrated that 2-OH stimulated IL-2 and IFN-γ production in PBMC. Data from reverse transcription-polymerase chain reaction (RT-PCR and real-time PCR indicated that IL-2 and IFN-γ mRNA expression in PBMC could be induced by 2-OH. Therefore, 2-OH enhanced IL-2 and IFN-γ production in PBMC by modulation their gene expression. We suggest that 2-OH may be an immunomodulatory agent.

  10. Acute Vhl gene inactivation induces cardiac HIF-dependent erythropoietin gene expression.

    Directory of Open Access Journals (Sweden)

    Marta Miró-Murillo

    Full Text Available Von Hippel Lindau (Vhl gene inactivation results in embryonic lethality. The consequences of its inactivation in adult mice, and of the ensuing activation of the hypoxia-inducible factors (HIFs, have been explored mainly in a tissue-specific manner. This mid-gestation lethality can be also circumvented by using a floxed Vhl allele in combination with an ubiquitous tamoxifen-inducible recombinase Cre-ER(T2. Here, we characterize a widespread reduction in Vhl gene expression in Vhl(floxed-UBC-Cre-ER(T2 adult mice after dietary tamoxifen administration, a convenient route of administration that has yet to be fully characterized for global gene inactivation. Vhl gene inactivation rapidly resulted in a marked splenomegaly and skin erythema, accompanied by renal and hepatic induction of the erythropoietin (Epo gene, indicative of the in vivo activation of the oxygen sensing HIF pathway. We show that acute Vhl gene inactivation also induced Epo gene expression in the heart, revealing cardiac tissue to be an extra-renal source of EPO. Indeed, primary cardiomyocytes and HL-1 cardiac cells both induce Epo gene expression when exposed to low O(2 tension in a HIF-dependent manner. Thus, as well as demonstrating the potential of dietary tamoxifen administration for gene inactivation studies in UBC-Cre-ER(T2 mouse lines, this data provides evidence of a cardiac oxygen-sensing VHL/HIF/EPO pathway in adult mice.

  11. Constitutive expression of interferon-induced human MxA protein in transgenic tobacco plants does not confer resistance to a variety of RNA viruses

    NARCIS (Netherlands)

    Frese, M.; Prins, M.; Ponten, A.; Goldbach, R.W.; Haller, O.; Zeltz, P.

    2000-01-01

    MxA is a key component in the interferon-induced antiviral defense in humans. After viral infections, MxA is rapidly induced and accumulates in the cytoplasm. The multiplication of many RNA viruses,including all bunyaviruses tested so far, is inhibited by MxA. These findings prompted us to express

  12. Persistent interferon transgene expression by RNA interference-mediated silencing of interferon receptors.

    Science.gov (United States)

    Takahashi, Yuki; Vikman, Elin; Nishikawa, Makiya; Ando, Mitsuru; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2010-09-01

    The in vivo half-life of interferons (IFNs) is very short, and its extension would produce a better therapeutic outcome in IFN-based therapy. Delivery of IFN genes is one solution for providing a sustained supply. IFNs have a variety of functions, including the suppression of transgene expression, through interaction with IFN receptors (IFNRs). This suppression could prevent IFNs from being expressed from vectors delivered. Silencing the expression of IFNAR and IFNGR, the receptors for type I and II IFNs, respectively, in cells expressing IFNs may prolong transgene expression of IFNs. Mouse melanoma B16-BL6 cells or mouse liver were selected as a site expressing IFNs (not a target for IFN gene therapy) and IFN-expressing plasmid DNA was delivered with or without small interfering RNA (siRNA) targeting IFNRs. Transfection of B16-BL6 cells with siRNA targeting IFNAR1 subunit (IFNAR1) resulted in the reduced expression of IFNAR on the cell surface. This silencing significantly increased the IFN-beta production in cells that were transfected with IFN-beta-expressing plasmid DNA. Similar results were obtained with the combination of IFN-gamma and IFNGR. Co-injection of IFN-beta-expressing plasmid DNA with siRNA targeting IFNAR1 into mice resulted in sustained plasma concentration of IFN-beta. These results provide experimental evidence that the RNAi-mediated silencing of IFNRs in cells expressing IFN, such as hepatocytes, is an effective approach for improving transgene expression of IFNs when their therapeutic target comprises cells other than those expressing IFNs.

  13. Interferoninduces expression of MHC class II on intestinal epithelial cells and protects mice from colitis.

    Directory of Open Access Journals (Sweden)

    Christoph Thelemann

    Full Text Available Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD and involve CD4(+ T cells, which are activated by major histocompatibility complex class II (MHCII molecules on antigen-presenting cells (APCs. However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC affects CD4(+ T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL-10 receptor-blocking antibodies (anti-IL10R mAb. To assess the role of interferon (IFN-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+ T-helper type (Th1 cells - but not group 3 innate lymphoid cells (ILCs or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+ T cells and forkhead box P3 (FoxP3(+ regulatory T (Treg cells. IFN-γ produced mainly by CD4(+ T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.

  14. Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii.

    Science.gov (United States)

    Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C; Barik, Sailen

    2015-03-01

    Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell

  15. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    Science.gov (United States)

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-07

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.

  16. Differential expression of interferon-gamma and interferon-gamma-inducing cytokines in Thai patients with scrub typhus or leptospirosis

    NARCIS (Netherlands)

    Chierakul, Wirongrong; de Fost, Maaike; Suputtamongkol, Yupin; Limpaiboon, Roongreung; Dondorp, Arjen; White, Nicholas J.; van der Poll, Tom

    2004-01-01

    Interferon (IFN)-gamma plays an important role in the induction of a type 1 immune response against intracellular pathogens. We compared the plasma levels of IFN-gamma and IFN-gamma-inducing cytokines in adult Thai patients with scrub typhus, caused by the obligate intracellular bacterium Orientia

  17. Repeated exposure to Lutzomyia intermedia sand fly saliva induces local expression of interferon-inducible genes both at the site of injection in mice and in human blood.

    Science.gov (United States)

    Weinkopff, Tiffany; de Oliveira, Camila I; de Carvalho, Augusto M; Hauyon-La Torre, Yazmin; Muniz, Aline C; Miranda, Jose Carlos; Barral, Aldina; Tacchini-Cottier, Fabienne

    2014-01-01

    During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate

  18. Interferon regulatory factor 5 gene polymorphism in Egyptian children with systemic lupus erythematosus.

    Science.gov (United States)

    Hammad, A; Mossad, Y M; Nasef, N; Eid, R

    2017-07-01

    Background Increased expression of interferon-inducible genes is implicated in the pathogenesis of systemic lupus erythematosus (SLE). Interferon regulatory factor 5 (IRF5) is one of the transcription factors regulating interferon and was proved to be implicated in the pathogenesis of SLE in different populations. Objectives The objective of this study was to investigate the correlation between polymorphisms of the IRF5 gene and SLE susceptibility in a cohort of Egyptian children and to investigate their association with clinico-pathological features, especially lupus nephritis. Subjects and methods Typing of interferon regulatory factor 5 rs10954213, rs2004640 and rs2280714 polymorphisms were done using polymerase chain reaction-restriction fragment length polymorphism for 100 children with SLE and 100 matched healthy controls. Results Children with SLE had more frequent T allele and TT genotype of rs2004640 ( P c  = 0.003 and 0.024, respectively) compared to controls. Patients with nephritis had more frequent T allele of rs2004640 compared to controls ( P c  = 0.003). However the allele and genotype frequencies of the three studied polymorphisms did not show any difference in patients with nephritis in comparison to those without nephritis. Haplotype GTA of rs10954213, rs2004640 and rs2280714, respectively, was more frequent in lupus patients in comparison to controls ( p = 0.01) while the haplotype GGG was more frequent in controls than lupus patients ( p = 0.011). Conclusion The rs2004640 T allele and TT genotype and GTA haplotype of rs rs10954213, rs2004640, and rs2280714, respectively, can be considered as risk factors for the development of SLE. The presence of the rs2004640 T allele increases the risk of nephritis development in Egyptian children with SLE.

  19. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Lookeren Campagne, Michiel M. van; Haastert, Peter J.M. van; Spek, Wouter; Schaap, Pauline

    1989-01-01

    We investigated the effect of Li+ on two types of cyclic AMP-regulated gene expression and on basal and cyclic AMP-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Li+ effectively inhibits cyclic AMP-induced prespore gene expression, half-maximal inhibition occurring at about 2mM-LiCl.

  20. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

    Science.gov (United States)

    Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S

    2017-07-01

    Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  1. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon

    Science.gov (United States)

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio

    2010-01-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241

  2. Sequence and expression analyses of porcine ISG15 and ISG43 genes.

    Science.gov (United States)

    Huang, Jiangnan; Zhao, Shuhong; Zhu, Mengjin; Wu, Zhenfang; Yu, Mei

    2009-08-01

    The coding sequences of porcine interferon-stimulated gene 15 (ISG15) and the interferon-stimulated gene (ISG43) were cloned from swine spleen mRNA. The amino acid sequences deduced from porcine ISG15 and ISG43 genes coding sequence shared 24-75% and 29-83% similarity with ISG15s and ISG43s from other vertebrates, respectively. Structural analyses revealed that porcine ISG15 comprises two ubiquitin homologues motifs (UBQ) domain and a conserved C-terminal LRLRGG conjugating motif. Porcine ISG43 contains an ubiquitin-processing proteases-like domain. Phylogenetic analyses showed that porcine ISG15 and ISG43 were mostly related to rat ISG15 and cattle ISG43, respectively. Using quantitative real-time PCR assay, significant increased expression levels of porcine ISG15 and ISG43 genes were detected in porcine kidney endothelial cells (PK15) cells treated with poly I:C. We also observed the enhanced mRNA expression of three members of dsRNA pattern-recognition receptors (PRR), TLR3, DDX58 and IFIH1, which have been reported to act as critical receptors in inducing the mRNA expression of ISG15 and ISG43 genes. However, we did not detect any induced mRNA expression of IFNalpha and IFNbeta, suggesting that transcriptional activations of ISG15 and ISG43 were mediated through IFN-independent signaling pathway in the poly I:C treated PK15 cells. Association analyses in a Landrace pig population revealed that ISG15 c.347T>C (BstUI) polymorphism and the ISG43 c.953T>G (BccI) polymorphism were significantly associated with hematological parameters and immune-related traits.

  3. Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3.

    Science.gov (United States)

    Rabbani, M A G; Ribaudo, Michael; Guo, Ju-Tao; Barik, Sailen

    2016-12-15

    A major arm of cellular innate immunity is type I interferon (IFN), represented by IFN-α and IFN-β. Type I IFN transcriptionally induces a large number of cellular genes, collectively known as IFN-stimulated gene (ISG) proteins, which act as antivirals. The IFIT (interferon-induced proteins with tetratricopeptide repeats) family proteins constitute a major subclass of ISG proteins and are characterized by multiple tetratricopeptide repeats (TPRs). In this study, we have interrogated IFIT proteins for the ability to inhibit the growth of human parainfluenza virus type 3 (PIV3), a nonsegmented negative-strand RNA virus of the Paramyxoviridae family and a major cause of respiratory disease in children. We found that IFIT1 significantly inhibited PIV3, whereas IFIT2, IFIT3, and IFIT5 were less effective or not at all. In further screening a set of ISG proteins we discovered that several other such proteins also inhibited PIV3, including IFITM1, IDO (indoleamine 2,3-dioxygenase), PKR (protein kinase, RNA activated), and viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible)/Cig5. The antiviral effect of IDO, the enzyme that catalyzes the first step of tryptophan degradation, could be counteracted by tryptophan. These results advance our knowledge of diverse ISG proteins functioning as antivirals and may provide novel approaches against PIV3. The innate immunity of the host, typified by interferon (IFN), is a major antiviral defense. IFN inhibits virus growth by inducing a large number of IFN-stimulated gene (ISG) proteins, several of which have been shown to have specific antiviral functions. Parainfluenza virus type 3 (PIV3) is major pathogen of children, and no reliable vaccine or specific antiviral against it currently exists. In this article, we report several ISG proteins that strongly inhibit PIV3 growth, the use of which may allow a better antiviral regimen targeting PIV3. Copyright © 2016, American Society for Microbiology

  4. Light-dependent expression of flg22-induced defense genes in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Satoshi eSano

    2014-10-01

    Full Text Available Chloroplasts have been reported to generate retrograde immune signals that activate defense gene expression in the nucleus. However, the roles of light and photosynthesis in plant immunity remain largely elusive. In this study, we evaluated the effects of light on the expression of defense genes induced by flg22, a peptide derived from bacterial flagellins which acts as a potent elicitor in plants. Whole-transcriptome analysis of flg22-treated Arabidopsis thaliana seedlings under light and dark conditions for 30 min revealed that a number of (30% genes strongly induced by flg22 (>4.0 require light for their rapid expression, whereas flg22-repressed genes include a significant number of genes that are down-regulated by light. Furthermore, light is responsible for the flg22-induced accumulation of salicylic acid, indicating that light is indispensable for basal defense responses in plants. To elucidate the role of photosynthesis in defense, we further examined flg22-induced defense gene expression in the presence of specific inhibitors of photosynthetic electron transport: 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU and 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB. Light-dependent expression of defense genes was largely suppressed by DBMIB, but only partially suppressed by DCMU. These findings suggest that photosynthetic electron flow plays a role in controling the light-dependent expression of flg22-inducible defense genes.

  5. Hepatitis C Virus Frameshift/Alternate Reading Frame Protein Suppresses Interferon Responses Mediated by Pattern Recognition Receptor Retinoic-Acid-Inducible Gene-I.

    Directory of Open Access Journals (Sweden)

    Seung Bum Park

    Full Text Available Hepatitis C virus (HCV actively evades host interferon (IFN responses but the mechanisms of how it does so are not completely understood. In this study, we present evidence for an HCV factor that contributes to the suppression of retinoic-acid-inducible gene-I (RIG-I-mediated IFN induction. Expression of frameshift/alternate reading frame protein (F/ARFP from HCV -2/+1 frame in Huh7 hepatoma cells suppressed type I IFN responses stimulated by HCV RNA pathogen-associated molecular pattern (PAMP and poly(IC. The suppression occurred independently of other HCV factors; and activation of interferon stimulated genes, TNFα, IFN-λ1, and IFN-λ2/3 was likewise suppressed by HCV F/ARFP. Point mutations in the full-length HCV sequence (JFH1 genotype 2a strain were made to introduce premature termination codons in the -2/+1 reading frame coding for F/ARFP while preserving the original reading frame, which enhanced IFNα and IFNβ induction by HCV. The potentiation of IFN response by the F/ARFP mutations was diminished in Huh7.5 cells, which already have a defective RIG-I, and by decreasing RIG-I expression in Huh7 cells. Furthermore, adding F/ARFP back via trans-complementation suppressed IFN induction in the F/ARFP mutant. The F/ARFP mutants, on the other hand, were not resistant to exogenous IFNα. Finally, HCV-infected human liver samples showed significant F/ARFP antibody reactivity, compared to HCV-uninfected control livers. Therefore, HCV F/ARFP likely cooperates with other viral factors to suppress type I and III IFN induction occurring through the RIG-I signaling pathway. This study identifies a novel mechanism of pattern recognition receptor modulation by HCV and suggests a biological function of the HCV alternate reading frame in the modulation of host innate immunity.

  6. Prokaryotic expression of chicken interferon-γ fusion protein and its effect on expression of poultry heat shock protein 70 under heat stress.

    Science.gov (United States)

    Sun, Jinhua; Chen, Yinglin; Qin, Feiyue; Guan, Xueting; Xu, Wei; Xu, Liangmei

    2017-06-01

    Interferons have attracted considerable attention due to their vital roles in the host immune response and low induction of antibiotic resistance. In this study, total RNA was extracted from spleen cells of chicken embryos inoculated with Newcastle disease vaccine, and the full-length chicken interferon-γ (ChIFN-γ) gene was amplified by RT-PCR. The full complementary DNA sequence of the ChIFN-γ gene was 495 bp long and was cloned into the prokaryotic expression vector pProEX™HT b . The plasmid was transformed into Escherichia coli DH5α and the expression of ChIFN-γ was induced by isopropyl β-D-1-thiogalactopyranoside. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis and Western blot results showed the expressed fusion protein had a molecular weight of approximately 18 kDa and was recognized by an anti-His mAb. Moreover, ChIFN-γ was found to demonstrate anti-viral activity in vitro. To test the in vivo function of ChIFN-γ in broilers under heat stress, a total of 100 broilers were randomly assigned to either a control group or a treated group, in which they were hypodermically injected with recombinant ChIFN-γ. Results demonstrated ChIFN-γ affects the messenger RNA expression levels of heat shock protein 70 (HSP70) in the heart and lung tissues, and decreases the concentration of HSP70 in serum. Therefore, we conclude recombinant ChIFN-γ can reduce heat stress to some extent in vivo. © 2016 Japanese Society of Animal Science.

  7. Mechanisms of foot-and-mouth disease virus tropism inferred from differential tissue gene expression.

    Directory of Open Access Journals (Sweden)

    James J Zhu

    Full Text Available Foot-and-mouth disease virus (FMDV targets specific tissues for primary infection, secondary high-titer replication (e.g. foot and mouth where it causes typical vesicular lesions and long-term persistence at some primary replication sites. Although integrin αVβ6 receptor has been identified as primary FMDV receptors in animals, their tissue distribution alone fails to explain these highly selective tropism-driven events. Thus, other molecular mechanisms must play roles in determining this tissue specificity. We hypothesized that differences in certain biological activities due to differential gene expression determine FMDV tropism and applied whole genome gene expression profiling to identify genes differentially expressed between FMDV-targeted and non-targeted tissues in terms of supporting primary infection, secondary replication including vesicular lesions, and persistence. Using statistical and bioinformatic tools to analyze the differential gene expression, we identified mechanisms that could explain FMDV tissue tropism based on its association with differential expression of integrin αVβ6 heterodimeric receptor (FMDV receptor, fibronectin (ligand of the receptor, IL-1 cytokines, death receptors and the ligands, and multiple genes in the biological pathways involved in extracellular matrix turnover and interferon signaling found in this study. Our results together with reported findings indicate that differences in (1 FMDV receptor availability and accessibility, (2 type I interferon-inducible immune response, and (3 ability to clear virus infected cells via death receptor signaling play roles in determining FMDV tissue tropism and the additional increase of high extracellular matrix turnover induced by FMDV infection, likely via triggering the signaling of highly expressed IL-1 cytokines, play a key role in the pathogenesis of vesicular lesions.

  8. Stimulation of Inducible Nitric Oxide Synthase Expression by Beta Interferon Increases Necrotic Death of Macrophages upon Listeria monocytogenes Infection▿

    OpenAIRE

    Zwaferink, Heather; Stockinger, Silvia; Reipert, Siegfried; Decker, Thomas

    2008-01-01

    Murine macrophage death upon infection with Listeria monocytogenes was previously shown to be increased by beta interferon, produced by the infected cells. We saw that interferon-upregulated caspase activation or other interferon-inducible, death-associated proteins, including TRAIL, protein kinase R, and p53, were not necessary for cell death. Macrophage death was reduced when inducible nitric oxide synthase (iNOS) was inhibited during infection, and iNOS-deficient macrophages were less susc...

  9. Interferon beta and vitamin D synergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients.

    Directory of Open Access Journals (Sweden)

    Anne Waschbisch

    Full Text Available Immunoglobulin-like transcript (ILT 3 and 4 are inhibitory receptors that modulate immune responses. Their expression has been reported to be affected by interferon, offering a possible mechanism by which this cytokine exerts its therapeutic effect in multiple sclerosis, a condition thought to involve excessive immune activity. To investigate this possibility, we measured expression of ILT3 and ILT4 on immune cells from multiple sclerosis patients, and in post-mortem brain tissue. We also studied the ability of interferon beta, alone or in combination with vitamin D, to induce upregulation of these receptors in vitro, and compared expression levels between interferon-treated and untreated multiple sclerosis patients. In vitro interferon beta treatment led to a robust upregulation of ILT3 and ILT4 on monocytes, and dihydroxyvitamin D3 increased expression of ILT3 but not ILT4. ILT3 was abundant in demyelinating lesions in postmortem brain, and expression on monocytes in the cerebrospinal fluid was higher than in peripheral blood, suggesting that the central nervous system milieu induces ILT3, or that ILT3 positive monocytes preferentially enter the brain. Our data are consistent with involvement of ILT3 and ILT4 in the modulation of immune responsiveness in multiple sclerosis by both interferon and vitamin D.

  10. Quantitation of multiple myeloma oncogene 1/interferon-regulatory factor 4 gene expression in malignant B-cell proliferations and normal leukocytes.

    Science.gov (United States)

    Yamada, M; Asanuma, K; Kobayashi, D; Moriai, R; Yajima, T; Yagihashi, A; Yamamori, S; Watanabe, N

    2001-01-01

    We studied multiple myeloma oncogene 1/interferon-regulatory factor 4 (MUM1/IRF4) mRNA expression in various malignant human hematopoietic cell lines and normal leukocyte fractions. A quantitative reverse transcription-polymerase chain reaction was used to assess expression and chromosomes were examined for anomalies by fluorescent in situ hybridization. Among 12 cell lines examined, mRNA transcripts were expressed only in B-lymphoblastic and myeloma cell lines. Myeloma cells and malignant cell lines derived from mature B cells expressed more transcript than cell lines derived from immature B cells. Transcript levels, however, showed no association with chromosomal translocations. Expression in B-cell fractions from healthy donors was much less than in the malignant cells. In addition, MUM1/IRF4 mRNA expressed in samples from patients with acute lymphoblastic leukemia derived from B cells but not T cells. Our results suggested that MUM1/IRF4 gene expression is related to stage of differentiation of malignant B cells and they indicated the possibility that the quantitative analysis of MUM1/IRF4 gene is a useful tool for detection of malignant B-cell proliferations in clinical laboratory tests.

  11. Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling.

    Science.gov (United States)

    Grimmig, Bernhard; Gonzalez-Perez, Maria N; Leubner-Metzger, Gerhard; Vögeli-Lange, Regina; Meins, Fred; Hain, Rüdiger; Penuelas, Josep; Heidenreich, Bernd; Langebartels, Christian; Ernst, Dieter; Sandermann, Heinrich

    2003-03-01

    Recent studies suggest that ethylene is involved in signalling ozone-induced gene expression. We show here that application of ozone increased glucuronidase (GUS) expression of chimeric reporter genes regulated by the promoters of the tobacco class I beta-1,3-glucanases (GLB and Gln2) and the grapevine resveratrol synthase (Vst1) genes in transgenic tobacco leaves. 5'-deletion analysis of the class I beta-1,3-glucanase promoter revealed that ozone-induced gene regulation is mainly mediated by the distal enhancer region containing the positively acting ethylene-responsive element (ERE). In addition, application of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, blocked ozone-induced class I beta-1,3-glucanase promoter activity. Enhancer activity and ethylene-responsiveness depended on the integrity of the GCC boxes, cis-acting elements present in the ERE of the class I beta-1,3-glucanase and the basic-type pathogenesis-related PR-1 protein (PRB-1b) gene promoters. The minimal PRB-1b promoter containing only the ERE with intact GCC boxes, was sufficient to confer 10-fold ozone inducibility to a GUS-reporter gene, while a substitution mutation in the GCC box abolished ozone responsiveness. The ERE region of the class I beta-1,3-glucanase promoter containing two intact GCC boxes confered strong ozone inducibility to a minimal cauliflower mosaic virus (CaMV) 35S RNA promoter, whereas two single-base substitution in the GCC boxes resulted in a complete loss of ozone inducibility. Taken together, these datastrongly suggest that ethylene is signalling ozone-induced expression of class I beta-l,3-glucanase and PRB-1b genes. Promoter analysis of the stilbene synthase Vst1 gene unravelled different regions for ozone and ethylene-responsiveness. Application of 1-MCP blocked ethylene-induced Vst1 induction, but ozone induction was not affected. This shows that ozone-induced gene expression occurs via at least two different signalling mechanisms and suggests an

  12. Lambda Interferon (IFN-gamma), a Type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, C.

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN......-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral...

  13. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, Christina

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN......-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral...

  14. Improved innate and adaptive immunostimulation by genetically modified HIV-1 protein expressing NYVAC vectors.

    Directory of Open Access Journals (Sweden)

    Esther D Quakkelaar

    Full Text Available Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs, RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.

  15. Identification and expression analysis of the interferon-induced protein with tetratricopeptide repeats 5 (IFIT5 gene in duck (Anas platyrhynchos domesticus.

    Directory of Open Access Journals (Sweden)

    Bin Wang

    Full Text Available The interferon-induced proteins with tetratricopeptide repeats (IFITs protein family mediates antiviral effects by inhibiting translation initiation, cell proliferation, and migration in the interferon (IFN dependent innate immune system. Several members of this family, including IFIT1, IFIT2, IFIT3 and IFIT5, have been heavily studied in mammals. Avian species contain only one family member, IFIT5, and little is known about the role of this protein in birds. In this study, duck IFIT5 (duIFIT5 full-length mRNA was cloned by reverse transcription polymerase chain reaction (RT-PCR and rapid amplification of the cDNA ends (RACE. Based on the sequence obtained, we performed a series of bioinformatics analyses, and found that duIFIT5 was most similar to homologs in other avian species. Also, duIFIT5 contained eight conserved TPR motifs and two conserved multi-domains (TPR_11 and TPR_12. Finally, we used duck hepatitis virus type 1 (DHV-1 and polyriboinosinicpolyribocytidylic acid (poly (I:C as a pathogen or a pathogen-associated molecular pattern induction to infect three-day-old domestic ducklings. The liver and spleen were collected to detect the change in duIFIT5 transcript level upon infection by quantitative real-time PCR (qRT-PCR. DuIFIT5 expression rapidly increased after DHV-1 infection and maintained a high level, while the transcripts of duIFIT5 peaked at 8h after poly (I:C infection and then returned to normal. Taken together, these results provide a greater understanding of avian IFIT5.

  16. Identification and Expression Analysis of the Interferon-Induced Protein with Tetratricopeptide Repeats 5 (IFIT5) Gene in Duck (Anas platyrhynchos domesticus)

    Science.gov (United States)

    Mu, Chunyu; Su, Yanhui; Liu, Ran; Huang, Zhengyang; Li, Yang; Yu, Qingming; Chang, Guobin; Xu, Qi; Chen, Guohong

    2015-01-01

    The interferon-induced proteins with tetratricopeptide repeats (IFITs) protein family mediates antiviral effects by inhibiting translation initiation, cell proliferation, and migration in the interferon (IFN) dependent innate immune system. Several members of this family, including IFIT1, IFIT2, IFIT3 and IFIT5, have been heavily studied in mammals. Avian species contain only one family member, IFIT5, and little is known about the role of this protein in birds. In this study, duck IFIT5 (duIFIT5) full-length mRNA was cloned by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of the cDNA ends (RACE). Based on the sequence obtained, we performed a series of bioinformatics analyses, and found that duIFIT5 was most similar to homologs in other avian species. Also, duIFIT5 contained eight conserved TPR motifs and two conserved multi-domains (TPR_11 and TPR_12). Finally, we used duck hepatitis virus type 1 (DHV-1) and polyriboinosinicpolyribocytidylic acid (poly (I:C)) as a pathogen or a pathogen-associated molecular pattern induction to infect three-day-old domestic ducklings. The liver and spleen were collected to detect the change in duIFIT5 transcript level upon infection by quantitative real-time PCR (qRT-PCR). DuIFIT5 expression rapidly increased after DHV-1 infection and maintained a high level, while the transcripts of duIFIT5 peaked at 8h after poly (I:C) infection and then returned to normal. Taken together, these results provide a greater understanding of avian IFIT5. PMID:25816333

  17. In vivo functional requirement of the mouse Ifitm1 gene for germ cell development, interferon mediated immune response and somitogenesis.

    Directory of Open Access Journals (Sweden)

    Ingeborg Klymiuk

    Full Text Available The mammalian Interferon induced transmembrane protein 1 (Ifitm1 gene was originally identified as a member of a gene family highly inducible by type I and type II interferons. Based on expression analyses, it was suggested to be required for normal primordial germ cell migration. The knockdown of Ifitm1 in mouse embryos provided evidence for a role in somitogenesis. We generated the first targeted knockin allele of the Ifitm1 gene to systematically reassess all inferred functions. Sperm motility and the fertility of male and female mutant mice are as in wild type littermates. Embryonic somites and the adult vertebral column appear normal in homozygous Ifitm1 knockout mice, demonstrating that Ifitm1 is not essential for normal segmentation of the paraxial mesoderm. Proportions of leucocyte subsets, including granulocytes, monocytes, B-cells, T-cells, NK-cells, and NKT-cells, are unchanged in mutant mice. Based on a normal immune response to Listeria monocytogenes infection, there is no evidence for a dysfunction in downstream IFNγ signaling in Ifitm1 mutant mice. Expression from the Ifitm1 locus from E8.5 to E14.5 is highly dynamic. In contrast, in adult mice, Ifitm1 expression is highly restricted and strong in the bronchial epithelium. Intriguingly, IFITM1 is highly overexpressed in tumor epithelia cells of human squamous cell carcinomas and in adenocarcinomas of NSCLC patients. These analyses underline the general importance of targeted in vivo studies for the functional annotation of the mammalian genome. The first comprehensive description of the Ifitm1 expression pattern provides a rational basis for the further examination of Ifitm1 gene functions. Based on our data, the fact that IFITM1 can function as a negative regulator of cell proliferation, and because the gene maps to chromosome band 11p15.5, previously associated with NSCLC, it is likely that IFITM1 in man has a key role in tumor formation.

  18. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Xie, Tao; Tong, Liqiong; Barrett, Tanya; Yuan, Jie; Hatzidimitriou, George; McCann, Una D; Becker, Kevin G; Donovan, David M; Ricaurte, George A

    2002-01-01

    The purpose of these studies was to examine the role of gene expression in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. First, the effects of the mRNA synthesis inhibitor, actinomycin-D, and the protein synthesis inhibitor, cycloheximide, were examined. Both agents afforded complete protection against METH-induced DA neurotoxicity and did so independently of effects on core temperature, DA transporter function, or METH brain levels, suggesting that gene transcription and mRNA translation play a role in METH neurotoxicity. Next, microarray technology, in combination with an experimental approach designed to facilitate recognition of relevant gene expression patterns, was used to identify gene products linked to METH-induced DA neurotoxicity. This led to the identification of several genes in the ventral midbrain associated with the neurotoxic process, including genes for energy metabolism [cytochrome c oxidase subunit 1 (COX1), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase chain 2, and phosphoglycerate mutase B], ion regulation (members of sodium/hydrogen exchanger and sodium/bile acid cotransporter family), signal transduction (adenylyl cyclase III), and cell differentiation and degeneration (N-myc downstream-regulated gene 3 and tau protein). Of these differentially expressed genes, we elected to further examine the increase in COX1 expression, because of data implicating energy utilization in METH neurotoxicity and the known role of COX1 in energy metabolism. On the basis of time course studies, Northern blot analyses, in situ hybridization results, and temperature studies, we now report that increased COX1 expression in the ventral midbrain is linked to METH-induced DA neuronal injury. The precise role of COX1 and other genes in METH neurotoxicity remains to be elucidated.

  19. Combined genome-wide expression profiling and targeted RNA interference in primary mouse macrophages reveals perturbation of transcriptional networks associated with interferon signalling

    Directory of Open Access Journals (Sweden)

    Craigon Marie

    2009-08-01

    Full Text Available Abstract Background Interferons (IFNs are potent antiviral cytokines capable of reprogramming the macrophage phenotype through the induction of interferon-stimulated genes (ISGs. Here we have used targeted RNA interference to suppress the expression of a number of key genes associated with IFN signalling in murine macrophages prior to stimulation with interferon-gamma. Genome-wide changes in transcript abundance caused by siRNA activity were measured using exon-level microarrays in the presence or absence of IFNγ. Results Transfection of murine bone-marrow derived macrophages (BMDMs with a non-targeting (control siRNA and 11 sequence-specific siRNAs was performed using a cationic lipid transfection reagent (Lipofectamine2000 prior to stimulation with IFNγ. Total RNA was harvested from cells and gene expression measured on Affymetrix GeneChip Mouse Exon 1.0 ST Arrays. Network-based analysis of these data revealed six siRNAs to cause a marked shift in the macrophage transcriptome in the presence or absence IFNγ. These six siRNAs targeted the Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2 transcripts. The perturbation of the transcriptome by the six siRNAs was highly similar in each case and affected the expression of over 600 downstream transcripts. Regulated transcripts were clustered based on co-expression into five major groups corresponding to transcriptional networks associated with the type I and II IFN response, cell cycle regulation, and NF-KB signalling. In addition we have observed a significant non-specific immune stimulation of cells transfected with siRNA using Lipofectamine2000, suggesting use of this reagent in BMDMs, even at low concentrations, is enough to induce a type I IFN response. Conclusion Our results provide evidence that the type I IFN response in murine BMDMs is dependent on Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2, and that siRNAs targeted to these genes results in perturbation of key transcriptional networks associated

  20. Identification and function analysis of canine stimulator of interferon gene (STING).

    Science.gov (United States)

    Zhang, Yuxiang; Zhu, Mengyan; Li, Gairu; Liu, Jie; Zhai, Xiaofeng; Wang, Ruyi; Zhang, Junyan; Xing, Gang; Gu, Jinyan; Yan, Liping; Lei, Jing; Sun, Haifeng; Shi, Zhiyu; Liu, Fei; Hu, Boli; Su, Shuo; Zhou, Jiyong

    2017-12-01

    Stimulator of interferon gene (STING) plays an important role in the cyclic GMP-AMP synthase (cGAS)-mediated activation of type I IFN responses. In this study, we identified and cloned canine STING gene. Full-length STING encodes a 375 amino acid product that shares the highest similarity with feline STING. Highest levels of mRNA of canine STING were detected in the spleen and lungs while the lowest levels in the heart and muscle. Analysis of its cellular localization showed that STING is localizes to the endoplasmic reticulum. STING overexpression induced the IFN response via the IRF3 and NF-κB pathways and up-regulated the expression of ISG15 and viperin. However, knockdown of STING did not inhibit the IFN-β response triggered by poly(dA:dT), poly(I:C), or SeV. Finally, overexpression of STING significantly inhibited the replication of canine influenza virus H3N2. Collectively, our findings indicate that STING is involved in the regulation of the IFN-β pathway in canine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-γ and IL-6 Immune Response Pathways in Mice

    Directory of Open Access Journals (Sweden)

    Petra A. Tsuji

    2015-08-01

    Full Text Available Selenium is an essential element that is required to support a number of cellular functions and biochemical pathways. The objective of this study was to examine the effects of reduced dietary selenium levels on gene expression to assess changes in expression of non-selenoprotein genes that may contribute to the physiological consequences of selenium deficiency. Mice were fed diets that were either deficient in selenium or supplemented with selenium in the form of sodium selenite for six weeks. Differences in liver mRNA expression and translation were measured using a combination of ribosome profiling, RNA-Seq, microarrays, and qPCR. Expression levels and translation of mRNAs encoding stress-related selenoproteins were shown to be up-regulated by increased selenium status, as were genes involved in inflammation and response to interferon-γ. Changes in serum cytokine levels were measured which confirmed that interferon-γ, as well as IL-6, were increased in selenium adequate mice. Finally, microarray and qPCR analysis of lung tissue demonstrated that the selenium effects on immune function are not limited to liver. These data are consistent with previous reports indicating that adequate selenium levels can support beneficial immune responses, and further identify the IL-6 and interferon-γ pathways as being responsive to dietary selenium intake.

  2. Interferon β induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice.

    Science.gov (United States)

    Chort, Alice; Alves, Sandro; Marinello, Martina; Dufresnois, Béatrice; Dornbierer, Jean-Gabriel; Tesson, Christelle; Latouche, Morwena; Baker, Darren P; Barkats, Martine; El Hachimi, Khalid H; Ruberg, Merle; Janer, Alexandre; Stevanin, Giovanni; Brice, Alexis; Sittler, Annie

    2013-06-01

    We showed previously, in a cell model of spinocerebellar ataxia 7, that interferon beta induces the expression of PML protein and the formation of PML protein nuclear bodies that degrade mutant ataxin 7, suggesting that the cytokine, used to treat multiple sclerosis, might have therapeutic value in spinocerebellar ataxia 7. We now show that interferon beta also induces PML-dependent clearance of ataxin 7 in a preclinical model, SCA7(266Q/5Q) knock-in mice, and improves motor function. Interestingly, the presence of mutant ataxin 7 in the mice induces itself the expression of endogenous interferon beta and its receptor. Immunohistological studies in brains from two patients with spinocerebellar ataxia 7 confirmed that these modifications are also caused by the disease in humans. Interferon beta, administered intraperitoneally three times a week in the knock-in mice, was internalized with its receptor in Purkinje and other cells and translocated to the nucleus. The treatment induced PML protein expression and the formation of PML protein nuclear bodies and decreased mutant ataxin 7 in neuronal intranuclear inclusions, the hallmark of the disease. No reactive gliosis or other signs of toxicity were observed in the brain or internal organs. The performance of the SCA7(266Q/5Q) knock-in mice was significantly improved on two behavioural tests sensitive to cerebellar function: the Locotronic® Test of locomotor function and the Beam Walking Test of balance, motor coordination and fine movements, which are affected in patients with spinocerebellar ataxia 7. In addition to motor dysfunction, SCA7(266Q/5Q) mice present abnormalities in the retina as in patients: ataxin 7-positive neuronal intranuclear inclusions that were reduced by interferon beta treatment. Finally, since neuronal death does not occur in the cerebellum of SCA7(266Q/5Q) mice, we showed in primary cell cultures expressing mutant ataxin 7 that interferon beta treatment improves Purkinje cell survival.

  3. Gene expression profiling distinguishes between spontaneous and radiation-induced rat mammary carcinomas

    International Nuclear Information System (INIS)

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Kakinuma, Shizuko; Shimada, Yoshiya; Yamashita, Satoshi; Ushijima, Toshikazu

    2008-01-01

    The ability to distinguish between spontaneous and radiation-induced cancers in humans is expected to improve the resolution of estimated risk from low dose radiation. Mammary carcinomas were obtained from Sprague-Dawley rats that were either untreated (n=45) or acutely γ-irradiated (1 Gy; n=20) at seven weeks of age. Gene expression profiles of three spontaneous and four radiation-induced carcinomas, as well as those of normal mammary glands, were analyzed by microarrays. Differential expression of identified genes of interest was then verified by quantitative polymerase chain reaction (qPCR). Cluster analysis of global gene expression suggested that spontaneous carcinomas were distinguished from a heterogeneous population of radiation-induced carcinomas, though most gene expressions were common. We identified 50 genes that had different expression levels between spontaneous and radiogenic carcinomas. We then selected 18 genes for confirmation of the microarray data by qPCR analysis and obtained the following results: high expression of Plg, Pgr and Wnt4 was characteristic to all spontaneous carcinomas; Tnfsf11, Fgf10, Agtr1a, S100A9 and Pou3f3 showed high expression in a subset of radiation-induced carcinomas; and increased Gp2, Areg and Igf2 expression, as well as decreased expression of Ca3 and noncoding RNA Mg1, were common to all carcinomas. Thus, gene expression analysis distinguished between spontaneous and radiogenic carcinomas, suggesting possible differences in their carcinogenic mechanism. (author)

  4. Bortezomib Enhances the Antitumor Effects of InterferonGene Transfer on Melanoma Cells.

    Science.gov (United States)

    Rossi, Ursula A; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2017-01-01

    Malignant melanoma is a fast growing form of skin cancer with increasing global incidence. Clinically, canine malignant melanoma and human melanoma share comparable treatment-resistances, metastatic phenotypes and site selectivity. Both interferon-β (IFNβ) and bortezomib (BTZ) display inhibitory activities on melanoma cells. Here, we evaluated the cytotoxic effects of the combination of BTZ and IFNβ gene lipofection on cultured melanoma cell lines. Cell viability determined by the acid phosphatase method, cell migration mesasured by the wound healing assay, DNA fragmentation and cell cycle by flow cytometry after propidium iodide staining and reactive oxygen species (ROS) production by H2DCF-DA fluorescence. Four canine mucosal (Ak, Br, Bk and Ol) and two human dermal (A375 and SB2) melanoma cell lines were assayed. BTZ sub-pharmacological concentrations (5 nM) enhanced the cytotoxic effects of IFNβ transgene expression on melanoma cells monolayers and spheroids. The combination was also more effective than the single treatments when assayed for clonogenic survival and cell migration. The combined treatment produced a significant raise of apoptosis evidenced by DNA fragmentation as compared to either BTZ or IFNβ gene lipofection single treatments. Furthermore, BTZ significantly increased the intracellular ROS generation induced by IFNβ gene transfer in melanoma cells, an effect that was reversed by the addition of the ROS inhibitor N-acetyl-L-cystein. The present work encourages further studies about the potential of the combination of interferon gene transfer with proteasome inhibitors as a new combined therapy for malignant melanoma, both in veterinary and/or human clinical settings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Enhanced apoptosis and radiosensitization by combined 13-CIS-retinoic acid and interferon-α2a; role of RAR-β gene

    International Nuclear Information System (INIS)

    Ryu, Samuel; Stein, Joseph P.; Chung, Chung T.; Lee, Yong J.; Kim, Jae Ho

    2001-01-01

    Purpose: Combined use of 13-cis-retinoic acid (cRA) and interferon-α2a (IFNα) induced significant radiosensitization in human cervical cancer ME-180 cell line, whereas it failed to achieve similar radiation enhancement in HeLa cells. The differential radiosensitization could be from the difference of retinoic acid receptor (RAR) expression because RAR-β was highly expressed in ME-180 cells in contrast to the HeLa cells where RAR-β was not detectable. We examined the role of this gene in mediating radiosensitization by cRA and IFNα, and explored the mechanism of radiation-induced cell killing. Methods and Materials: Human cervical cancer cell lines, ME-180 and HeLa, were treated with cRA and IFNα followed by radiation. Apoptosis and radiosensitization were quantitated by TUNEL assay (in situ DNA nick end labeling) and colony-forming ability of surviving cells. The cells were transfected with bcl-2 gene and RAR-β gene to test the role of these genes in mediating radiosensitization and apoptosis. Results: Synergistic radiosensitization and apoptosis was observed by combined use of cRA and IFNα with radiation in ME-180 cells which express high level of RAR-β mRNA, whereas these were not seen in HeLa cells where RAR-β mRNA is not detectable. Both radiosensitization and apoptosis were abolished by bcl-2 gene in ME-180 cells. RAR-β gene transfection induced similar radiation enhancement and apoptosis in HeLa cells. Conclusion: Apoptosis and radiation response were enhanced in the cells with high level of RAR-β mRNA expression. The RAR-β gene appears to mediate the radiation-induced apoptosis by cRA and IFNα. These findings indicate that presence of RAR-β in the cancer cells could be exploited for patient selection in using these drugs for apoptosis and radiosensitization

  6. Host Gene Expression Analysis in Sri Lankan Melioidosis Patients

    Science.gov (United States)

    2017-06-19

    CCL5 Chemokine (C-C motif) ligand 5 /RANTES. IFNγ Interferon gamma TNFα Tumor necrosis factor alpha HMGB1 High mobility group box 1 protein /high...aim of this study was to analyze gene expression levels of human host factors in melioidosis patients and establish useful correlation with disease...PBMC’s) of study subjects. Gene expression profiles of 25 gene targets including 19 immune response genes and 6 epigenetic factors were analyzed by

  7. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    Science.gov (United States)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  8. Analysis of tick-borne encephalitis virus-induced host responses in human cells of neuronal origin and interferon-mediated protection

    Czech Academy of Sciences Publication Activity Database

    Selinger, Martin; Wilkie, G. S.; Tong, L.; Gu, Q.; Schnettler, E.; Grubhoffer, Libor; Kohl, A.

    2017-01-01

    Roč. 98, č. 8 (2017), s. 2043-2060 ISSN 0022-1317 R&D Projects: GA ČR GA15-03044S Institutional support: RVO:60077344 Keywords : blood- brain -barrier * long noncoding RNAs * double-stranded-RNA * interferon * immune-response * gene-expression * stimulated genes * human astrocytes * viral-infection * protein * tick-borne encephalitis virus * neuronal cells * transcriptome analysis * host response * interferon Subject RIV: EE - Microbiology, Virology OBOR OECD: Virology Impact factor: 2.838, year: 2016

  9. In Vivo Imaging of Local Gene Expression Induced by Magnetic Hyperthermia

    Directory of Open Access Journals (Sweden)

    Olivier Sandre

    2017-02-01

    Full Text Available The present work aims to demonstrate that colloidal dispersions of magnetic iron oxide nanoparticles stabilized with dextran macromolecules placed in an alternating magnetic field can not only produce heat, but also that these particles could be used in vivo for local and noninvasive deposition of a thermal dose sufficient to trigger thermo-induced gene expression. Iron oxide nanoparticles were first characterized in vitro on a bio-inspired setup, and then they were assayed in vivo using a transgenic mouse strain expressing the luciferase reporter gene under transcriptional control of a thermosensitive promoter. Iron oxide nanoparticles dispersions were applied topically on the mouse skin or injected subcutaneously with Matrigel™ to generate so-called pseudotumors. Temperature was monitored continuously with a feedback loop to control the power of the magnetic field generator and to avoid overheating. Thermo-induced luciferase expression was followed by bioluminescence imaging 6 h after heating. We showed that dextran-coated magnetic iron oxide nanoparticle dispersions were able to induce in vivo mild hyperthermia compatible with thermo-induced gene expression in surrounding tissues and without impairing cell viability. These data open new therapeutic perspectives for using mild magnetic hyperthermia as noninvasive modulation of tumor microenvironment by local thermo-induced gene expression or drug release.

  10. Interferon Lambda Genetics and Biology in Regulation of Viral Control

    Directory of Open Access Journals (Sweden)

    Emily A. Hemann

    2017-12-01

    Full Text Available Type III interferons, also known as interferon lambdas (IFNλs, are the most recent addition to the IFN family following their discovery in 2003. Initially, IFNλ was demonstrated to induce expression of interferon-stimulated genes and exert antiviral properties in a similar manner to type I IFNs. However, while IFNλ has been described to have largely overlapping expression and function with type I IFNs, it has become increasingly clear that type III IFNs also have distinct functions from type I IFNs. In contrast to type I IFNs, whose receptor is ubiquitously expressed, type III IFNs signal and function largely at barrier epithelial surfaces, such as the respiratory and gastrointestinal tracts, as well as the blood–brain barrier. In further support of unique functions for type III IFNs, single nucleotide polymorphisms in IFNL genes in humans are strongly associated with outcomes to viral infection. These biological linkages have also been more directly supported by studies in mice highlighting roles of IFNλ in promoting antiviral immune responses. In this review, we discuss the current understanding of type III IFNs, and how their functions are similar to, and different from, type I IFN in various immune cell subtypes and viral infections.

  11. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    Science.gov (United States)

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have

  12. Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives

    Science.gov (United States)

    Gajbhiye, Virendra; Escalante, Leah; Chen, Guojun; Laperle, Alex; Zheng, Qifeng; Steyer, Benjamin; Gong, Shaoqin; Saha, Krishanu

    2013-12-01

    Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained higher fibroblast proliferation levels and MMP activity. The results demonstrate that the PEG-H40-DXC nanoparticle system provides an effective tool to controlling gene expression in human stem cell derivatives.Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained

  13. Interferon-γ inhibits ghrelin expression and secretion via a somatostatin-mediated mechanism

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A B; Døssing, Kristina B V; Aabakke, Anna JM

    2011-01-01

    To investigate if and how the proinflammatory cytokine interferon ¿ (IFN¿) affects ghrelin expression in mice.......To investigate if and how the proinflammatory cytokine interferon ¿ (IFN¿) affects ghrelin expression in mice....

  14. Interferon-γ inhibits ghrelin expression and secretion via a somatostatin-mediated mechanism

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A B; Døssing, Kristina B V; Aabakke, Anna JM

    2011-01-01

    To investigate if and how the proinflammatory cytokine interferon γ (IFNγ) affects ghrelin expression in mice.......To investigate if and how the proinflammatory cytokine interferon γ (IFNγ) affects ghrelin expression in mice....

  15. Identification of salt-stress induced differentially expressed genes in ...

    African Journals Online (AJOL)

    Identification of salt-stress induced differentially expressed genes in barley leaves using the annealingcontrol- primer-based GeneFishing technique. S Lee, K Lee, K Kim, GJ Choi, SH Yoon, HC Ji, S Seo, YC Lim, N Ahsan ...

  16. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    International Nuclear Information System (INIS)

    Ocaña-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert; Stech, Jürgen; Stech, Olga; Summerfield, Artur

    2012-01-01

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-κB translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  17. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ocana-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland); Stech, Juergen; Stech, Olga [Friedrich-Loeffler Institut, Greifswald-Insel Riems (Germany); Summerfield, Artur, E-mail: artur.summerfield@ivi.admin.ch [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland)

    2012-05-25

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-{kappa}B translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  18. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  19. Characteristics of the interferon regulatory factor 5 (IRF5) and its expression in response to LCDV and poly I:C challenges in Japanese flounder, Paralichthys olivaceus.

    Science.gov (United States)

    Hu, Guo-Bin; Lou, Hui-Min; Dong, Xian-Zhi; Liu, Qiu-Ming; Zhang, Shi-Cui

    2012-10-01

    Interferon regulatory factor 5 (IRF5) has been identified as a key transcriptional mediator regulating expression of both type I interferons (IFNs) and proinflammatory cytokines. In this study, the cDNA and genomic sequences of IRF5 were isolated from Japanese flounder, Paralichthys olivaceus. The gene of Japanese flounder (Jf)IRF5 is 7326 bp long, contains 9 exons and 8 introns and encodes a putative protein of 472 amino acids. The predicted protein sequence shares 61.1-81.9% identity to fish IRF5 and possesses a DNA-binding domain (DBD), a middle region (MR), an IRF association domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) conserved in all known IRF5s. Phylogenetic analysis clustered it into the teleost IRF5 subgroup within vertebrate IRF5 group. JfIRF5 mRNA was constitutively expressed in all tissues examined, with higher levels observed in the gills and head kidney. Gene expression of JfIRF5 was analyzed over a 7-day time course in the gills, head kidney, spleen and muscle of Japanese flounders challenged with lymphocystis disease virus (LCDV) and polyinosinic:polycytidylic acid (poly I:C). The data showed that JfIRF5 expression was slightly up-regulated by LCDV, but its induction time was clearly moved up; in contrast, the induction upon poly I:C challenge started not earlier than day 2 post-injection and was stronger and more persistent with a later peak time in all four organs. The late and long-lasting inductive expression of JfIRF5 following poly I:C challenge suggests that it might be an interferon stimulated gene (ISG), the induction of which is driven by poly I:C-induced type I IFNs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. DMPD: Interferon gene regulation: not all roads lead to Tolls. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16095970 Interferon gene regulation: not all roads lead to Tolls. Jefferies CA, Fit...zgerald KA. Trends Mol Med. 2005 Sep;11(9):403-11. (.png) (.svg) (.html) (.csml) Show Interferon gene regulation: not all roads... lead to Tolls. PubmedID 16095970 Title Interferon gene regulation: not all roads lead to

  1. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis.

    Science.gov (United States)

    Laperchia, Claudia; Tesoriero, Chiara; Seke-Etet, Paul F; La Verde, Valentina; Colavito, Valeria; Grassi-Zucconi, Gigliola; Rodgers, Jean; Montague, Paul; Kennedy, Peter G E; Bentivoglio, Marina

    2017-08-01

    Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis.

  2. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2017-08-01

    Full Text Available Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease.The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi, but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness.The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African

  3. cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Paijo

    2016-04-01

    Full Text Available Human cytomegalovirus (HCMV infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING and thus induces antiviral type I interferon (IFN-I responses. We found that plasmacytoid dendritic cells (pDC as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages.

  4. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  5. Whole Blood Transcriptional Profiling of Interferon-Inducible Genes Identifies Highly Upregulated IFI27 in Primary Myelofibrosis

    DEFF Research Database (Denmark)

    Skov, Vibe; Larsen, Thomas Stauffer; Thomassen, Mads

    2011-01-01

    focused upon the transcriptional profiling of interferon-associated genes in patients with essential thrombocythemia (ET) (n = 19), polycythemia vera (PV) (n = 41), and primary myelofibrosis (PMF) (n = 9). Using whole-blood transcriptional profiling and accordingly obtaining an integrated signature...

  6. Whole-blood transcriptional profiling of interferon-inducible genes identifies highly upregulated IFI27 in primary myelofibrosis

    DEFF Research Database (Denmark)

    Skov, Vibe; Larsen, Thomas Stauffer; Thomassen, Mads

    2011-01-01

    focused upon the transcriptional profiling of interferon-associated genes in patients with essential thrombocythemia (ET) (n = 19), polycythemia vera (PV) (n = 41), and primary myelofibrosis (PMF) (n = 9). Using whole-blood transcriptional profiling and accordingly obtaining an integrated signature...

  7. Interferoninduces cellular senescence in cutaneous human papilloma virus-transformed human keratinocytes by affecting p53 transactivating activity.

    Directory of Open Access Journals (Sweden)

    Maria V Chiantore

    Full Text Available Interferon (IFN-β inhibits cell proliferation and affects cell cycle in keratinocytes transformed by both mucosal high risk Human Papilloma Virus (HPV and cutaneous HPV E6 and E7 proteins. In particular, upon longer IFN-β treatments, cutaneous HPV38 expressing cells undergo senescence. IFN-β appears to induce senescence by upregulating the expression of the tumor suppressor PML, a well known IFN-induced gene. Indeed, experiments in gene silencing via specific siRNAs have shown that PML is essential in the execution of the senescence programme and that both p53 and p21 pathways are involved. IFN-β treatment leads to a modulation of p53 phosphorylation and acetylation status and a reduction in the expression of the p53 dominant negative ΔNp73. These effects allow the recovery of p53 transactivating activity of target genes involved in the control of cell proliferation. Taken together, these studies suggest that signaling through the IFN pathway might play an important role in cellular senescence. This additional understanding of IFN antitumor action and mechanisms influencing tumor responsiveness or resistance appears useful in aiding further promising development of biomolecular strategies in the IFN therapy of cancer.

  8. Modulation of interferon-induced genes by lipoxin analogue in anti-glomerular basement membrane nephritis.

    Science.gov (United States)

    Ohse, Takamoto; Ota, Tatsuru; Kieran, Niamh; Godson, Catherine; Yamada, Koei; Tanaka, Tetsuhiro; Fujita, Toshiro; Nangaku, Masaomi

    2004-04-01

    Immune complex deposition is associated with the accumulation of neutrophils, which play an important role in the various immune-mediated diseases. A novel anti-inflammatory agent, the lipoxin A (LXA) analogue (15-epi-16-(FPhO)-LXA-Me)), a stable synthetic analogue of aspirin-triggered 15-epi-lipoxin A4 (ATLa), was used in experimental anti-glomerular basement membrane (GBM) antibody nephritis in mice. ATLa was administered before the induction of the disease, and 2 h later, the animals were killed. ATLa reduced the infiltrating neutrophils and nitrotyrosine staining in glomeruli. Subsequent changes of gene expression in the early phase were evaluated, and 5674 genes were present under the basal conditions in kidneys from normal mice; 54 upregulated genes and 25 downregulated genes were detected in anti-GBM nephritis. Eighteen of these upregulated genes were those induced by IFN-gamma. Real-time quantitative PCR analysis confirmed the results of the microarrays. To investigate a role of IFN-gamma in neutrophil infiltration, anti-GBM nephritis was induced in IFN-gamma knockout mice. The number of infiltrating neutrophils in these mice did not differ from those in wild-type mice. Also examined were CD11b expression on neutrophils from mice treated with ATLa by flow cytometry, but suppression of this adhesion molecule was not observed. Neutrophil infiltration was successfully inhibited by ATLa in the early phase of murine anti-GBM nephritis. Microarray analysis detected the change of mRNA expression in anti-GBM nephritis and demonstrated amelioration of various genes by ATLa, which may provide a clue to the development of novel therapeutic approaches in immune renal injury.

  9. Interferon-β lipofection II. Mechanisms involved in cell death and bystander effect induced by cationic lipid-mediated interferongene transfer to human tumor cells.

    Science.gov (United States)

    Villaverde, M S; Gil-Cardeza, M L; Glikin, G C; Finocchiaro, L M E

    2012-06-01

    We evaluated the cytotoxic effects (apoptosis, necrosis and early senescence) of human interferon-β (hIFNβ) gene lipofection. The cytotoxicity of hIFNβ gene lipofection resulted equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) on human tumor cell lines derived from Ewing's sarcoma (EW7 and COH) and colon (HT-29) carcinomas. However, it was stronger than rhIFNβ on melanoma (M8) and breast adenocarcinoma (MCF7). To reveal the mechanisms involved in these differences, we compared the effects of hIFNβ gene and rhIFNβ protein on EW7 and M8 (sensitive and resistant to rhIFNβ protein, respectively). Lipofection with hIFNβ gene caused a mitochondrial potential decrease simultaneous with an increase of oxidative stress in both cell lines. However, rhIFNβ protein displayed the same pattern of response only in EW7-sensitive cell line. The great bystander effect of the hIFNβ gene lipofection, involving the production of reactive oxygen species, would be among the main causes of its success. In EW7, this effect killed >60% of EW7 cell population, even though only 1% of cells were expressing the transgene. As hIFNβ gene was effective even in the rhIFNβ protein-resistant M8 cell line and in a way not limited by low lipofection efficiency, these results strongly support the clinical potential of this approach.

  10. Hepatic expression of proteasome subunit alpha type-6 is upregulated during viral hepatitis and putatively regulates the expression of ISG15 ubiquitin-like modifier, a proviral host gene in hepatitis C virus infection.

    Science.gov (United States)

    Broering, R; Trippler, M; Werner, M; Real, C I; Megger, D A; Bracht, T; Schweinsberg, V; Sitek, B; Eisenacher, M; Meyer, H E; Baba, H A; Weber, F; Hoffmann, A-C; Gerken, G; Schlaak, J F

    2016-05-01

    The interferon-stimulated gene 15 (ISG15) plays an important role in the pathogenesis of hepatitis C virus (HCV) infection. ISG15-regulated proteins have previously been identified that putatively affect this proviral interaction. The present observational study aimed to elucidate the relation between ISG15 and these host factors during HCV infection. Transcriptomic and proteomic analyses were performed using liver samples of HCV-infected (n = 54) and uninfected (n = 10) or HBV-infected controls (n = 23). Primary human hepatocytes (PHH) were treated with Toll-like receptor ligands, interferons and kinase inhibitors. Expression of ISG15 and proteasome subunit alpha type-6 (PSMA6) was suppressed in subgenomic HCV replicon cell lines using specific siRNAs. Comparison of hepatic expression patterns revealed significantly increased signals for ISG15, IFIT1, HNRNPK and PSMA6 on the protein level as well as ISG15, IFIT1 and PSMA6 on the mRNA level in HCV-infected patients. In contrast to interferon-stimulated genes, PSMA6 expression occurred independent of HCV load and genotype. In PHH, the expression of ISG15 and PSMA6 was distinctly induced by poly(I:C), depending on IRF3 activation or PI3K/AKT signalling, respectively. Suppression of PSMA6 in HCV replicon cells led to significant induction of ISG15 expression, thus combined knock-down of both genes abrogated the antiviral effect induced by the separate suppression of ISG15. These data indicate that hepatic expression of PSMA6, which is upregulated during viral hepatitis, likely depends on TLR3 activation. PSMA6 affects the expression of immunoregulatory ISG15, a proviral factor in the pathogenesis of HCV infection. Therefore, the proteasome might be involved in the enigmatic interaction between ISG15 and HCV. © 2016 John Wiley & Sons Ltd.

  11. Epstein-Barr virus-induced gene 3 (EBI3) polymorphisms and expression are associated with susceptibility to pulmonary tuberculosis.

    Science.gov (United States)

    Zheng, Ruijuan; Liu, Haipeng; Song, Peng; Feng, Yonghong; Qin, Lianhua; Huang, Xiaochen; Chen, Jianxia; Yang, Hua; Liu, Zhonghua; Cui, Zhenglin; Hu, Zhongyi; Ge, Baoxue

    2015-07-01

    Tuberculosis (TB) remains a major global health problem and host genetic factors play a critical role in susceptibility and resistance to TB. The aim of this study was to identify novel candidate genes associated with TB susceptibility. We performed a population-based case-control study to genotype 13 tag SNPs spanning Epstein-Barr virus-induced gene 3 (EBI3), colony stimulating factor 2 (CSF2), IL-4, interferon beta 1 (IFNB1), chemokine (C-X-C motif) ligand 14 (CXCL14) and myeloid differentiation primary response gene 88 (Myd88) genes in 435 pulmonary TB patients and 375 health donors from China. We observed that EBI3 gene rs4740 polymorphism was associated with susceptibility to pulmonary tuberculosis (PTB) and the allele G was associated with a protective effect against PTB. Furthermore, EBI3 deficiency led to reduced bacterial burden and histopathological impairment in the lung of mice infected with Mycobacterium bovis BCG. Meanwhile, higher abundance of EBI3 was observed in the granuloma of PTB patients and in the lung tissue of BCG-infected mice. Of note, the expression of EBI3 in macrophages was remarkably induced by mycobacteria infection at both mRNA and protein level. In conclusion, EBI3 gene rs4740 polymorphism is closely associated with susceptibility to PTB and the elevation and enrichment of EBI3 in the lung which at least partially derived from macrophages may contribute to the exacerbation of mycobacterial infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Increased expression of beta 2-microglobulin and histocompatibility antigens on human lymphoid cells induced by interferon

    DEFF Research Database (Denmark)

    Hokland, M; Heron, I; Berg, K

    1982-01-01

    Normal human peripheral blood lymphocytes were incubated in the presence of different concentrations of interferon for various incubation periods. Subsequently, the amount of beta 2-Microglobulin and HLA-A, B and C surface antigens was estimated by means of quantitative immunofluorescence (flow...... cytofluorometry) and by a radioimmunoassay for beta 2-Microglobulin. It was found that the amounts of these MHC antigens increased in a dose and time-dependent way after interferon treatment. Furthermore, the influence of different temperatures on this IFN-induced increase in beta 2-Microglobulin was gradually...

  13. Vaccinia virus recombinants expressing chimeric proteins of human immunodeficiency virus and gamma interferon are attenuated for nude mice.

    OpenAIRE

    Giavedoni, L D; Jones, L; Gardner, M B; Gibson, H L; Ng, C T; Barr, P J; Yilma, T

    1992-01-01

    We have developed a method for attenuating vaccinia virus recombinants by expressing a fusion protein of a lymphokine and an immunogen. Chimeric genes were constructed that coded for gamma interferon (IFN-gamma) and structural proteins of the human immunodeficiency virus type 1 (HIV-1). In this study, we describe the biological and immunological properties of vaccinia virus recombinants expressing chimeric genes of murine or human IFN-gamma with glycoprotein gp120, gag, and a fragment of gp41...

  14. Expression of intracellular interferon-alpha confers antiviral properties in transfected bovine fetal fibroblasts and does not affect the full development of SCNT embryos.

    Directory of Open Access Journals (Sweden)

    Dawei Yu

    Full Text Available Foot-and-mouth disease, one of the most significant diseases of dairy herds, has substantial effects on farm economics, and currently, disease control measures are limited. In this study, we constructed a vector with a human interferon-α (hIFN-α (without secretory signal sequence gene cassette containing the immediate early promoter of human cytomegalovirus. Stably transfected bovine fetal fibroblasts were obtained by G418 selection, and hIFN-α transgenic embryos were produced by somatic cell nuclear transfer (SCNT. Forty-six transgenic embryos were transplanted into surrogate cows, and five cows (10.9% became pregnant. Two male cloned calves were born. Expression of hIFN-α was detected in transfected bovine fetal fibroblasts, transgenic SCNT embryos, and different tissues from a transgenic SCNT calf at two days old. In transfected bovine fetal fibroblasts, expression of intracellular IFN-α induced resistance to vesicular stomatitis virus infection, increased apoptosis, and induced the expression of double-stranded RNA-activated protein kinase gene (PKR and the 2'-5'-oligoadenylate synthetase gene (2'-5' OAS, which are IFN-inducible genes with antiviral activity. Analysis by qRT-PCR showed that the mRNA expression levels of PKR, 2'-5' OAS, and P53 were significantly increased in wild-type bovine fetal fibroblasts stimulated with extracellular recombinant human IFN-α-2b, showing that intracellular IFN-α induces biological functions similar to extracellular IFN-α. In conclusion, expression of intracellular hIFN-α conferred antiviral properties in transfected bovine fetal fibroblasts and did not significantly affect the full development of SCNT embryos. Thus, IFN-α transgenic technology may provide a revolutionary way to achieve elite breeding of livestock.

  15. Genetic analysis of interferon induced thyroiditis (IIT): evidence for a key role for MHC and apoptosis related genes and pathways.

    Science.gov (United States)

    Hasham, Alia; Zhang, Weijia; Lotay, Vaneet; Haggerty, Shannon; Stefan, Mihaela; Concepcion, Erlinda; Dieterich, Douglas T; Tomer, Yaron

    2013-08-01

    Autoimmune thyroid diseases (AITD) have become increasingly recognized as a complication of interferon-alpha (IFNα) therapy in patients with chronic Hepatitis C virus (HCV) infection. Interferon-induced thyroiditis (IIT) can manifest as clinical thyroiditis in approximately 15% of HCV patients receiving IFNα and subclinical thyroiditis in up to 40% of patients, possibly resulting in either dose reduction or discontinuation of IFNα treatment. However, the exact mechanisms that lead to the development of IIT are unknown and may include IFNα-mediated immune-recruitment as well as direct toxic effects on thyroid follicular cells. We hypothesized that IIT develops in genetically predisposed individuals whose threshold for developing thyroiditis is lowered by IFNα. Therefore, our aim was to identify the susceptibility genes for IIT. We used a genomic convergence approach combining genetic association data with transcriptome analysis of genes upregulated by IFNα. Integrating results of genetic association, transcriptome data, pathway, and haplotype analyses enabled the identification of 3 putative loci, SP100/110/140 (2q37.1), HLA (6p21.3), and TAP1 (6p21.3) that may be involved in the pathogenesis of IIT. Immune-regulation and apoptosis emerged as the predominant mechanisms underlying the etiology of IIT. Published by Elsevier Ltd.

  16. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways.

    Science.gov (United States)

    Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang

    2018-06-05

    Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.

  17. Microarray-based screening of differentially expressed genes in glucocorticoid-induced avascular necrosis

    Science.gov (United States)

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-01-01

    The underlying mechanisms of glucocorticoid (GC)-induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC-induced ANFH. E-MEXP-2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid-induced ANFH rats compared with 5 placebo-treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC-induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25-Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α-2-macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC-induced ANFH via interacting with VDR. A2M may also be involved in the development of GC-induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC-induced ANFH may provide novel targets for diagnostics and therapeutic treatment. PMID:28393228

  18. Microarray‑based screening of differentially expressed genes in glucocorticoid‑induced avascular necrosis.

    Science.gov (United States)

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-06-01

    The underlying mechanisms of glucocorticoid (GC)‑induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC‑induced ANFH. E‑MEXP‑2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid‑induced ANFH rats compared with 5 placebo‑treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC‑induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25‑Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α‑2‑macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC‑induced ANFH via interacting with VDR. A2M may also be involved in the development of GC‑induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC‑induced ANFH may provide novel targets for diagnostics and therapeutic treatment.

  19. Interferon-γ Inhibits Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Bethany A Rhein

    Full Text Available Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  20. Interferon-γ Inhibits Ebola Virus Infection.

    Science.gov (United States)

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  1. GATA-dependent regulation of TPO-induced c-mpl gene expression during megakaryopoiesis.

    Science.gov (United States)

    Sunohara, Masataka; Morikawa, Shigeru; Fuse, Akira; Sato, Iwao

    2014-01-01

    Thrombopoietin (TPO) and its receptor, c-Mpl, play the crucial role during megakaryocytopoiesis. Previously, we have shown that the promoter activity of c-mpl induced by TPO is modulated by transcription through a PKC-dependent pathway and that GATA(-77) is involved as a positive regulatory element in TPO-induced c-mpl gene expression in the megakaryoblastic CMK cells. In this research, to examine participating possibility of GATA promoter element in TPO- induced c-mpl gene expression through a PKC-independent pathway, the promoter activity of site-directed mutagenesis and the effect of potein kinase C modulator were measured by a transient transfection assay system. Together with our previous results on the TPO-induced c-mpl promoter, this study indicates destruction of -77GATA in c-mpl promoter decreased the activity by 47.3% under existence of GF109203. These results suggest that GATA promoter element plays significant role in TPO-induced c-mpl gene expression through a PKC-independent pathway.

  2. Differential neutrophil gene expression in early bovine pregnancy

    Directory of Open Access Journals (Sweden)

    Kizaki Keiichiro

    2013-02-01

    Full Text Available Abstract Background In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT-stimulated gene expression in peripheral blood leukocytes (PBL, was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. Methods PBL were collected on days 0 (just before artificial insemination, 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15, myxovirus-resistance (MX 1 and 2, and 2′-5′-oligoadenylate synthetase (OAS1, were then analyzed in each fraction through day 28 of gestation using qPCR. Results Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte

  3. Cloning-free regulated monitoring of reporter and gene expression

    Directory of Open Access Journals (Sweden)

    Demirkaya Omer

    2009-03-01

    Full Text Available Abstract Background The majority of the promoters, their regulatory elements, and their variations in the human genome remain unknown. Reporter gene technology for transcriptional activity is a widely used tool for the study of promoter structure, gene regulation, and signaling pathways. Construction of transcriptional reporter vectors, including use of cis-acting sequences, requires cloning and time-demanding manipulations, particularly with introduced mutations. Results In this report, we describe a cloning-free strategy to generate transcriptionally-controllable linear reporter constructs. This approach was applied in common transcriptional models of inflammatory response and the interferon system. In addition, it was used to delineate minimal transcriptional activity of selected ribosomal protein promoters. The approach was tested for conversion of genes into TetO-inducible/repressible expression cassettes. Conclusion The simple introduction and tuning of any transcriptional control in the linear DNA product renders promoter activation and regulated gene studies simple and versatile.

  4. [Expression of gamma interferon during HPV and Chlamydia trachomatis infection in cervical samples].

    Science.gov (United States)

    Colín-Ferreyra, María Del Carmen; Mendieta-Zerón, Hugo; Romero-Figueroa, María Del Socorro; Martínez-Madrigal, Migdania; Martínez-Pérez, Sergio; Domínguez-García, María Victoria

    2015-02-01

    The aim of this study was to mesure the expression of gamma interferon in HPV and Chlamydia trachomatis infection in squamous intraepithelial lesions. Samples from 100 patients diagnosed by colposcopy with or without squamous intraepithelial lesions were used in the present study. Each patient was found to be infected by HPV and C.trachomatis. Relative gamma interferon mRNA expression was assessed using a real-time reverse transcriptase PCR assay (RT-PCR). The relative units of expression of gamma interferon mRNA were 13, 1.8 and 0.3, for HPV and C.trachomatis co-infection, or HPV or C.trachomatis infection, respectively. HPV and C.trachomatis could overstimulate the expression of gamma interferon. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  5. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury.

    Science.gov (United States)

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI.

  6. Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Julia Diegelmann

    Full Text Available BACKGROUND: Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. METHODOLOGY/PRINCIPAL FINDINGS: Expression studies were performed by microarray analysis, quantitative PCR (qPCR, reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes, many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes. Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. CONCLUSIONS/SIGNIFICANCE: IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV.

  7. Toscana virus induces interferon although its NSs protein reveals antagonistic activity.

    Science.gov (United States)

    Gori Savellini, Gianni; Weber, Friedemann; Terrosi, Chiara; Habjan, Matthias; Martorelli, Barbara; Cusi, Maria Grazia

    2011-01-01

    Toscana virus (TOSV) is a phlebotomus-transmitted virus that belongs to the family Bunyaviridae and causes widespread infections in humans; about 30 % of these cases result in aseptic meningitis. In the present study, it was shown that TOSV is an inducer of beta interferon (IFN-β), although its non-structural protein (NSs) could inhibit the induction of IFN-β if expressed in a heterologous context. A recombinant Rift Valley fever virus expressing the TOSV NSs could suppress IFN-β expression in infected cells. Moreover, in cells expressing NSs protein from a cDNA plasmid, IFN-β transcripts were not inducible by poly(I : C). Unlike other members of the family Bunyaviridae, TOSV appears to express an NSs protein that is a weak antagonist of IFN induction. Characterization of the interaction of TOSV with the IFN system will help our understanding of virus-host cell interactions and may explain why the pathogenesis of this disease is mostly mild in humans.

  8. Identification of distinct genes associated with seawater aspiration-induced acute lung injury by gene expression profile analysis

    Science.gov (United States)

    Liu, Wei; Pan, Lei; Zhang, Minlong; Bo, Liyan; Li, Congcong; Liu, Qingqing; Wang, Li; Jin, Faguang

    2016-01-01

    Seawater aspiration-induced acute lung injury (ALI) is a syndrome associated with a high mortality rate, which is characterized by severe hypoxemia, pulmonary edema and inflammation. The present study is the first, to the best of our knowledge, to analyze gene expression profiles from a rat model of seawater aspiration-induced ALI. Adult male Sprague-Dawley rats were instilled with seawater (4 ml/kg) in the seawater aspiration-induced ALI group (S group) or with distilled water (4 ml/kg) in the distilled water negative control group (D group). In the blank control group (C group) the rats' tracheae were exposed without instillation. Subsequently, lung samples were examined by histopathology; total protein concentration was detected in bronchoalveolar lavage fluid (BALF); lung wet/dry weight ratios were determined; and transcript expression was detected by gene sequencing analysis. The results demonstrated that histopathological alterations, pulmonary edema and total protein concentrations in BALF were increased in the S group compared with in the D group. Analysis of differential gene expression identified up and downregulated genes in the S group compared with in the D and C groups. A gene ontology analysis of the differential gene expression revealed enrichment of genes in the functional pathways associated with neutrophil chemotaxis, immune and defense responses, and cytokine activity. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the cytokine-cytokine receptor interaction pathway was one of the most important pathways involved in seawater aspiration-induced ALI. In conclusion, activation of the cytokine-cytokine receptor interaction pathway may have an essential role in the progression of seawater aspiration-induced ALI, and the downregulation of tumor necrosis factor superfamily member 10 may enhance inflammation. Furthermore, IL-6 may be considered a biomarker in seawater aspiration-induced ALI. PMID:27509884

  9. Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture.

    Science.gov (United States)

    Schmaltz-Panneau, Barbara; Cordova, Amanda; Dhorne-Pollet, Sophie; Hennequet-Antier, Christelle; Uzbekova, Sveltlana; Martinot, Emmanuelle; Doret, Sarah; Martin, Patrice; Mermillod, Pascal; Locatelli, Yann

    2014-10-01

    In mammals, the oviduct may participate to the regulation of early embryo development. In vitro co-culture of early bovine embryos with bovine oviduct epithelial cells (BOEC) has been largely used to mimic the maternal environment. However, the mechanisms of BOEC action have not been clearly elucidated yet. The aim of this study was to determine the response of BOEC cultures to the presence of developing bovine embryos. A 21,581-element bovine oligonucleotide array was used compare the gene expression profiles of confluent BOEC cultured for 8 days with or without embryos. This study revealed 34 differentially expressed genes (DEG). Of these 34 genes, IFI6, ISG15, MX1, IFI27, IFI44, RSAD2, IFITM1, EPSTI1, USP18, IFIT5, and STAT1 expression increased to the greatest extent due to the presence of embryos with a major impact on antiviral and immune response. Among the mRNAs at least 25 are already described as induced by interferons. In addition, transcript levels of new candidate genes involved in the regulation of transcription, modulation of the maternal immune system and endometrial remodeling were found to be increased. We selected 7 genes and confirmed their differential expression by quantitative RT-PCR. The immunofluorescence imaging of cellular localization of STAT1 protein in BOEC showed a nuclear translocation in the presence of embryos, suggesting the activation of interferon signaling pathway. This first systematic study of BOEC transcriptome changes in response to the presence of embryos in cattle provides some evidences that these cells are able to adapt their transcriptomic profile in response to embryo signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Differential expression of ozone-induced gene during exposures to ...

    African Journals Online (AJOL)

    Differential expression of ozone-induced gene during exposures to salt stress in Polygonum sibiricum Laxm leaves, stem and underground stem. ... PcOZI-1 mRNA in untreated plants was detected at low levels in underground stem, leaves and at higher levels in stem. PcOZI-1 mRNA accumulation was transiently induced ...

  11. Translational control is a major contributor to hypoxia induced gene expression

    International Nuclear Information System (INIS)

    Beucken, Twan van den; Magagnin, Michael G.; Jutten, Barry; Seigneuric, Renaud; Lambin, Philippe; Koritzinsky, Marianne; Wouters, Bradly G.

    2011-01-01

    Background and purpose: Hypoxia is a common feature of solid tumors that is associated with an aggressive phenotype, resistance to therapy and poor prognosis. Major contributors to these adverse effects are the transcriptional program activated by the HIF family of transcription factors as well as the translational response mediated by PERK-dependent phosphorylation of eIF2α and inhibition of mTORC1 activity. In this study we determined the relative contribution of both transcriptional and translational responses to changes in hypoxia induced gene expression. Material and methods: Total and efficiently translated (polysomal) mRNA was isolated from DU145 prostate carcinoma cells that were exposed for up to 24 h of hypoxia ( 2 ). Changes in transcription and translation were assessed using affymetrix microarray technology. Results: Our data reveal an unexpectedly large contribution of translation control on both induced and repressed gene expression at all hypoxic time points, particularly during acute hypoxia (2-4 h). Gene ontology analysis revealed that gene classes like transcription and signal transduction are stimulated by translational control whereas expression of genes involved in cell growth and protein metabolism are repressed during hypoxic conditions by translational control. Conclusions: Our data indicate that translation influences gene expression during hypoxia on a scale comparable to that of transcription.

  12. Tissue specific promoters improve the localization of radiation-inducible gene expression

    International Nuclear Information System (INIS)

    Hallahan, Dennis; Kataoka, Yasushi; Kuchibhotla, Jaya; Virudachalam, Subbu; Weichselbaum, Ralph

    1996-01-01

    Purpose: Site-specific activation of gene expression can be achieved by the use of a promoter that is induced by physical agents such as x-rays. The purpose of the present study was to determine whether site-specific activation of gene therapy can also be achieved within the vascular endothelium by use of radiation-inducible promoters. We studied induction of promoter-reporter gene constructs using previously identified radiation-promoters from c-jun, c-fos, Egr-1, ICAM-1, ELAM-1 after transfection into in the vascular endothelium. Methods: The following radiation-inducible genetic constructs were created: The ELAM-1 promoter fragment was cloned into pOGH to obtain the pE-sel(-587 +35)GH reporter construct. The ICAM-1 promoter fragment (-1162/+1) was cloned upstream of the CAT coding region of the pCAT-plasmid (Promega) after removal of the SV40 promoter by Bgl2/Stu1 digestion to create the pBS-CAT plasmid. The 132 to +170 bp segment of the 5' untranslated region of the c-jun promoter was cloned to the CAT reporter gene to create the -132/+170 cjun-CAT. The Egr-1 promoter fragment (-425/+75) was cloned upstream of the CAT coding region to create the pE425-CAT plasmid. Tandem repeats of the AP-1 binding site were cloned upstream of the CAT coding region (3 xTRE-CAT). Tandem repeats of the Egr binding site (EBS) were cloned upstream of the CAT coding region (EBS-CAT). Human vascular endothelial cells from both large vessel and small vessel origin (HUVEC and HMEC), as well as human tumor cell lines were transfected with plasmids -132/+170 cjun-CAT, pE425-CAT, 3 xTRE-CAT, EBS-CAT, pE-sel-GH and pBS-CAT by use of liposomes. Humor tumor cell lines included SQ20B (squamous), RIT3 (sarcoma), and HL525 (leukemia). Each plasmid was cotransfected with a plasmid containing a CMV promoter linked to the LacZ gene (1 μg). Transfected cells were treated with mock irradiation or x-rays. Cell extracts were assayed for reporter gene expression. Results: Radiation-induced gene

  13. TOX3 (TNRC9) overexpression in bladder cancer cells decreases cellular proliferation and triggers an interferon-like response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtröder, Karin; Mansilla, Francisco; Andersen, Lars Dyrskjøt

    2013-01-01

    Background Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+-dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...... urothelium. Microarray expression profiling of human bladder cancer cells overexpressing TOX3 followed by Pathway analysis showed that TOX3 overexpression mainly affected the Interferon Signaling Pathway. TOX3 upregulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 overexpressing...

  14. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes

    Science.gov (United States)

    Purcell, M.K.; Laing, K.J.; Woodson, J.C.; Thorgaard, G.H.; Hansen, J.D.

    2009-01-01

    The genes encoding the type I and type II interferons (IFNs) have previously been identified in rainbow trout and their proteins partially characterized. These previous studies reported a single type II IFN (rtIFN-??) and three rainbow trout type I IFN genes that are classified into either group I (rtIFN1, rtIFN2) or group II (rtIFN3). In this present study, we report the identification of a novel IFN-?? gene (rtIFN-??2) and a novel type I group II IFN (rtIFN4) in homozygous rainbow trout and predict that additional IFN genes or pseudogenes exist in the rainbow trout genome. Additionally, we provide evidence that short and long forms of rtIFN1 are actively and differentially transcribed in homozygous trout, and likely arose due to alternate splicing of the first exon. Quantitative reverse transcriptase PCR (qRT-PCR) assays were developed to systematically profile all of the rainbow trout IFN transcripts, with high specificity at an individual gene level, in na??ve fish and after stimulation with virus or viral-related molecules. Cloned PCR products were used to ensure the specificity of the qRT-PCR assays and as absolute standards to assess transcript abundance of each gene. All IFN genes were modulated in response to Infectious hematopoietic necrosis virus (IHNV), a DNA vaccine based on the IHNV glycoprotein, and poly I:C. The most inducible of the type I IFN genes, by all stimuli tested, were rtIFN3 and the short transcript form of rtIFN1. Gene expression of rtIFN-??1 and rtIFN-??2 was highly up-regulated by IHNV infection and DNA vaccination but rtIFN-??2 was induced to a greater magnitude. The specificity of the qRT-PCR assays reported here will be useful for future studies aimed at identifying which cells produce IFNs at early time points after infection. ?? 2008 Elsevier Ltd.

  15. Tetracycline-inducible gene expression system in Leishmania mexicana

    Czech Academy of Sciences Publication Activity Database

    Kraeva, N.; Ishemgulova, A.; Lukeš, Julius; Yurchenko, Vyacheslav

    2014-01-01

    Roč. 198, č. 1 (2014), s. 11-13 ISSN 0166-6851 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Leishmania mexicana * Gene expression * Tet-inducible system Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.787, year: 2014

  16. Interferon-Inducible CD169/Siglec1 Attenuates Anti-HIV-1 Effects of Alpha Interferon

    Science.gov (United States)

    Akiyama, Hisashi; Ramirez, Nora-Guadalupe Pina; Gibson, Gregory; Kline, Christopher; Watkins, Simon; Ambrose, Zandrea

    2017-01-01

    ABSTRACT A hallmark of human immunodeficiency virus type 1 (HIV-1) infection in vivo is chronic immune activation concomitant with type I interferon (IFN) production. Although type I IFN induces an antiviral state in many cell types, HIV-1 can replicate in vivo via mechanisms that have remained unclear. We have recently identified a type I IFN-inducible protein, CD169, as the HIV-1 attachment factor on dendritic cells (DCs) that can mediate robust infection of CD4+ T cells in trans. Since CD169 expression on macrophages is also induced by type I IFN, we hypothesized that type I IFN-inducible CD169 could facilitate productive HIV-1 infection in myeloid cells in cis and CD4+ T cells in trans and thus offset antiviral effects of type I IFN. In support of this hypothesis, infection of HIV-1 or murine leukemia virus Env (MLV-Env)-pseudotyped HIV-1 particles was enhanced in IFN-α-treated THP-1 monocytoid cells, and this enhancement was primarily dependent on CD169-mediated enhancement at the virus entry step, a phenomenon phenocopied in HIV-1 infections of IFN-α-treated primary monocyte-derived macrophages (MDMs). Furthermore, expression of CD169, a marker of type I IFN-induced immune activation in vivo, was enhanced in lymph nodes from pigtailed macaques infected with simian immunodeficiency virus (SIV) carrying HIV-1 reverse transcriptase (RT-SHIV), compared to uninfected macaques, and interestingly, there was extensive colocalization of p27gag and CD169, suggesting productive infection of CD169+ myeloid cells in vivo. While cell-free HIV-1 infection of IFN-α-treated CD4+ T cells was robustly decreased, initiation of infection in trans via coculture with CD169+ IFN-α-treated DCs restored infection, suggesting that HIV-1 exploits CD169 in cis and in trans to attenuate a type I IFN-induced antiviral state. IMPORTANCE HIV-1 infection in humans causes immune activation characterized by elevated levels of proinflammatory cytokines, including type I interferons (IFN

  17. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    Science.gov (United States)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  18. Pegylated interferons Lambda-1a and alfa-2a display different gene induction and cytokine and chemokine release profiles in whole blood, human hepatocytes and peripheral blood mononuclear cells.

    Science.gov (United States)

    Freeman, J; Baglino, S; Friborg, J; Kraft, Z; Gray, T; Hill, M; McPhee, F; Hillson, J; Lopez-Talavera, J C; Wind-Rotolo, M

    2014-06-01

    Pegylated interferon-lambda-1a (Lambda), a type III interferon (IFN) in clinical development for the treatment of chronic HCV infection, has shown comparable efficacy and an improved safety profile to a regimen based on pegylated IFN alfa-2a (alfa). To establish a mechanistic context for this improved profile, we investigated the ex vivo effects of Lambda and alfa on cytokine and chemokine release, and on expression of IFN-stimulated genes (ISGs) in primary human hepatocytes and peripheral blood mononuclear cells (PBMCs) from healthy subjects. Our findings were further compared with changes observed in blood analysed from HCV-infected patients treated with Lambda or alfa in clinical studies. mRNA transcript and protein expression of the IFN-λ-limiting receptor subunit was lower compared with IFN-α receptor subunits in all cell types. Upon stimulation, alfa and Lambda induced ISG expression in hepatocytes and PBMCs, although in PBMCs Lambda-induced ISG expression was modest. Furthermore, alfa and Lambda induced release of cytokines and chemokines from hepatocytes and PBMCs, although differences in their kinetics of induction were observed. In HCV-infected patients, alfa treatment induced ISG expression in whole blood after single and repeat dosing. Lambda treatment induced modest ISG expression after single dosing and showed no induction after repeat dosing. Alfa and Lambda treatment increased IP-10, iTAC, IL-6, MCP-1 and MIP-1β levels in serum, with alfa inducing higher levels of all mediators compared with Lambda. Overall, ex vivo and in vivo induction profiles reported in this analysis strongly correlate with clinical observations of fewer related adverse events for Lambda vs those typically associated with alfa. © 2014 John Wiley & Sons Ltd.

  19. CAR expression and inducibility of CYP2B genes in liver of rats treated with PB-like inducers

    International Nuclear Information System (INIS)

    Pustylnyak, Vladimir O.; Gulyaeva, Lyudmila F.; Lyakhovich, Vyacheslav V.

    2005-01-01

    The expression of the CAR gene and inducibility of CYP2B protein in the liver of male Wistar rats treated with phenobarbital (PB) and triphenyldioxane (TPD) were investigated. To clarify the role of phosphorylation/dephosphorylation in these processes, rats were treated with inhibitors of Ca 2+ /calmodulin-dependent kinase II (W 7 ) or protein phosphatases PP1 and PP2A (OA) before induction. Constitutive expression of the CAR gene in livers of untreated rats was detected by multiplex RT-PCR. Treatment with W 7 resulted in a 2.8-fold induction of CAR gene expression, whereas OA led to a 2.4-fold decrease of the mRNA level. The same results were obtained for CYP2B genes expression, which were increased by W 7 treatment (two-fold) and decreased by OA (2.3-fold). PB-induction did not lead to significant alteration in the level of CAR gene expression, although CYP2B genes expression was enhanced two-fold over control values. TPD caused a two-fold increase of both CAR and CYP2B mRNA levels. Both inducers reduced the effects of inhibitors on CAR gene expression. Results of EMSA showed that PB, TPD or W 7 alone induced formation of complexes of NR1 with nuclear proteins. Appearance of the complexes correlated with an increase in CYP2B expression, and their intensities were modulated by the protein kinase inhibitors. Thus, our results demonstrate that constitutive expressions of CAR as well as CYP2B during induction are regulated by phosphorylation/dephosphorylation processes

  20. Parental influenza virion nucleocapsids are efficiently transported into the nuclei of murine cells expressing the nuclear interferon-induced Mx protein.

    Science.gov (United States)

    Broni, B; Julkunen, I; Condra, J H; Davies, M E; Berry, M J; Krug, R M

    1990-12-01

    The interferon-induced murine Mx1 protein, which is localized in the nucleus, most likely specifically blocks influenza virus replication by inhibiting nuclear viral mRNA synthesis, including the mRNA synthesis catalyzed by inoculum (parental) virion nucleocapsids (R. M. Krug, M. Shaw, B. Broni, G. Shapiro, and O. Haller, J. Virol. 56:201-206, 1985). We tested two possible mechanisms for this inhibition. First, we determined whether the transport of parental nucleocapsids into the nucleus was inhibited in murine cells expressing the nuclear Mx1 protein. To detect the Mx1 protein, we prepared rabbit antibodies against the Mx1 protein with a CheY-Mx fusion protein expressed in bacteria. The fate of parental nucleocapsids was monitored by immunofluorescence with an appropriate dilution of monoclonal antibody to the nucleocapsid protein. The protein synthesis inhibitor anisomycin was added to the cells 30 min prior to infection, so that the only nucleocapsids protein molecules in the cells were those associated with nucleocapsids of the parental virus. These nucleocapsids were efficiently transported into the nuclei of murine cells expressing the Mx1 protein, indicating that this protein most likely acts after the parental nucleocapsids enter the nucleus. The second possibility was that the murine Mx1 protein might act in the nucleus to inhibit viral mRNA synthesis indirectly via new cap-binding activities that sequestered cellular capped RNAs away from the viral RNA transcriptase. We show that the same array of nuclear cap-binding proteins was present in Mx-positive and Mx-negative cells treated with interferon. Interestingly, a large amount of a 43-kDa cap-binding activity appeared after interferon treatment of both Mx-positive and Mx-negative cells. Hence, the appearance of new cap-binding activities was unlikely to account for the Mx-specific inhibition of viral mRNA synthesis. These results are most consistent with the possibility that the Mx1 protein acts

  1. Interleukin-18, Interferon-γ, IP-10, and Mig Expression in Epstein-Barr Virus-Induced Infectious Mononucleosis and Posttransplant Lymphoproliferative Disease

    Science.gov (United States)

    Setsuda, Joyce; Teruya-Feldstein, Julie; Harris, Nancy L.; Ferry, Judith A.; Sorbara, Lynn; Gupta, Ghanshyam; Jaffe, Elaine S.; Tosato, Giovanna

    1999-01-01

    T cell immunodeficiency plays an important role in the pathogenesis of posttransplant lymphoproliferative disease (PTLD) by permitting the unbridled expansion of Epstein-Barr virus (EBV)-infected B lymphocytes. However, factors other than T cell function may contribute to PTLD pathogenesis because PTLD infrequently develops even in the context of severe T cell immunodeficiency, and athymic mice that are T-cell-immunodeficient can reject EBV-immortalized cells. Here we report that PTLD tissues express significantly lower levels of IL-18, interferon-γ (IFN-γ), Mig, and RANTES compared to lymphoid tissues diagnosed with acute EBV-induced infectious mononucleosis, as assessed by semiquantitative RT-PCR analysis. Other cytokines and chemokines are expressed at similar levels. Immunohistochemistry confirmed that PTLD tissues contain less IL-18 and Mig protein than tissues with infectious mononucleosis. IL-18, primarily a monocyte product, promotes the secretion of IFN-γ, which stimulates Mig and RANTES expression. Both IL-18 and Mig display antitumor activity in mice involving inhibition of angiogenesis. These results document greater expression of IL-18, IFN-γ, Mig, and RANTES in lymphoid tissues with acute EBV-induced infectious mononucleosis compared to tissues with PTLD and raise the possibility that these mediators participate in critical host responses to EBV infection. PMID:10393857

  2. Radiation and desiccation response motif mediates radiation induced gene expression in D. radiodurans

    International Nuclear Information System (INIS)

    Anaganti, Narasimha; Basu, Bhakti; Apte, Shree Kumar

    2015-01-01

    Deinococcus radiodurans is an extremophile that withstands lethal doses of several DNA damaging agents such as gamma irradiation, UV rays, desiccation and chemical mutagens. The organism responds to DNA damage by inducing expression of several DNA repair genes. At least 25 radiation inducible gene promoters harbour a 17 bp palindromic sequence known as radiation and desiccation response motif (RDRM) implicated in gamma radiation inducible gene expression. However, mechanistic details of gamma radiation-responsive up-regulation in gene expression remain enigmatic. The promoters of highly radiation induced genes ddrB (DR0070), gyrB (DR0906), gyrA (DR1913), a hypothetical gene (DR1143) and recA (DR2338) from D. radiodurans were cloned in a green fluorescence protein (GFP)-based promoter probe shuttle vector pKG and their promoter activity was assessed in both E. coli as well as in D. radiodurans. The gyrA, gyrB and DR1143 gene promoters were active in E. coli although ddrB and recA promoters showed very weak activity. In D. radiodurans, all the five promoters were induced several fold following 6 kGy gamma irradiation. Highest induction was observed for ddrB promoter (25 fold), followed by DR1143 promoter (15 fold). The induction in the activity of gyrB, gyrA and recA promoters was 5, 3 and 2 fold, respectively. To assess the role of RDRM, the 17 bp palindromic sequence was deleted from these promoters. The promoters devoid of RDRM sequence displayed increase in the basal expression activity, but the radiation-responsive induction in promoter activity was completely lost. The substitution of two conserved bases of RDRM sequence yielded decreased radiation induction of PDR0070 promoter. Deletion of 5 bases from 5'-end of PDR0070 RDRM increased basal promoter activity, but radiation induction was completely abolished. Replacement of RDRM with non specific sequence of PDR0070 resulted in loss of basal expression and radiation induction. The results demonstrate that

  3. FORMALDEHYDE-INDUCED GENE EXPRESSION IN F344 RAT NASAL RESPIRATORY EPITHELIUM.

    Science.gov (United States)

    Formaldehyde-induced gene expression in F344 rat nasal respiratory epithelium ABSTRACTFormaldehyde, an occupational and environmental toxicant used extensively in the manufacturing of many household and personal use products, is known to induce squamous cell carci...

  4. Induction of human interferon gene expression is associated with a nuclear factor that interacts with the site of the human immunodeficiency virus-enhancer

    International Nuclear Information System (INIS)

    Hiscott, J.; Alper, D.; Cohen, L.; Leblanc, J.F.; Sportza, L.; Wong, A.; Xanthoudakis, S.

    1989-01-01

    The relationship between transcription of alpha and beta interferon (IFN-α and IFN-β) genes and the interaction of IFN promoter-binding transcription factors has been examined in monoblastoid U937 cells following priming with recombinant IFN-α2 (rIFN-α2) and Sendai virus induction. Pretreatment of U937 cells with rIFN-α2 prior to Sendai virus infection increased the mRNA levels of IFN-α1, IFN-α2, and IFN-β as well as the final yield of biologically active IFN. Analysis of nuclear protein-IFN promoter DNA interactions by electrophoretic mobility-shift assays demonstrated increased factor binding to IFN-α1 and IFN-β regulatory domains, although no new induction-specific complexes were identified. On the basis of competition electrophoretic mobility-shift assay results, factors interacting with the IFN-α1 and IFN-β promoters appear to be distinct DNA-binding proteins. Hybrid promoter-chloramphenicol acetyltransferase fusion plasmids, containing either the IFN-β regulatory element or the human immunodeficiency virus enhancer element linked to the simian virus 40 promoter, were analyzed for virus and phorbol ester inducibility in epithelial and lymphoid cells, respectively. These experiments suggest that induction of IFN gene expression may be controlled in part by transcription regulatory proteins binding to an NF-κB-like site within the IFN-β promoter

  5. Low doses of neutrons induce changes in gene expression

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Chang-Liu, C.M.; Panozzo, J.; Libertin, C.R.

    1993-01-01

    Studies were designed to identify genes induced following low-dose neutron but not following γ-ray exposure in fibroblasts. Our past work had shown differences in the expression of β-protein kinase C and c-fos genes, both being induced following γ-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not γ-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to γ rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure

  6. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  7. Knockdown of menin affects pre-mRNA processing and promoter fidelity at the interferon-gamma inducible IRF1 gene

    Directory of Open Access Journals (Sweden)

    Auriemma Lauren B

    2012-01-01

    Full Text Available Abstract Background The tumor suppressor menin (MEN1 is mutated in the inherited disease multiple endocrine neoplasia type I, and has several documented cellular roles, including the activation and repression of transcription effected by several transcription factors. As an activator, MEN1 is a component of the Set1-like mixed lineage leukemia (MLL MLL1/MLL2 methyltransferase complex that methylates histone H3 lysine 4 (H3K4. MEN1 is localized to the signal transducer and activator of transcription 1 (STAT1-dependent gene, interferon regulatory factor 1 (IRF1, and is further recruited when IRF1 transcription is triggered by interferon-γ signaling. Results RNAi-mediated knockdown of MEN1 alters the H3K4 dimethylation and H3 acetylation profiles, and the localization of histone deacetylase 3, at IRF1. While MEN1 knockdown does not impact the rate of transcription, IRF1 heteronuclear transcripts become enriched in MEN1-depleted cells. The processed mRNA and translated protein product are concomitantly reduced, and the antiviral state is attenuated. Additionally, the transcription start site at the IRF1 promoter is disrupted in the MEN1-depleted cells. The H3K4 demethylase, lysine specific demethylase 1, is also associated with IRF1, and its inhibition alters H3K4 methylation and disrupts the transcription start site as well. Conclusions Taken together, the data indicate that MEN1 contributes to STAT1-activated gene expression in a novel manner that includes defining the transcription start site and RNA processing.

  8. The microRNA machinery regulates fasting-induced changes in gene expression and longevity in Caenorhabditis elegans.

    Science.gov (United States)

    Kogure, Akiko; Uno, Masaharu; Ikeda, Takako; Nishida, Eisuke

    2017-07-07

    Intermittent fasting (IF) is a dietary restriction regimen that extends the lifespans of Caenorhabditis elegans and mammals by inducing changes in gene expression. However, how IF induces these changes and promotes longevity remains unclear. One proposed mechanism involves gene regulation by microRNAs (miRNAs), small non-coding RNAs (∼22 nucleotides) that repress gene expression and whose expression can be altered by fasting. To test this proposition, we examined the role of the miRNA machinery in fasting-induced transcriptional changes and longevity in C. elegans We revealed that fasting up-regulated the expression of the miRNA-induced silencing complex (miRISC) components, including Argonaute and GW182, and the miRNA-processing enzyme DRSH-1 (the ortholog of the Drosophila Drosha enzyme). Our lifespan measurements demonstrated that IF-induced longevity was suppressed by knock-out or knockdown of miRISC components and was completely inhibited by drsh-1 ablation. Remarkably, drsh-1 ablation inhibited the fasting-induced changes in the expression of the target genes of DAF-16, the insulin/IGF-1 signaling effector in C. elegans Fasting-induced transcriptome alterations were substantially and modestly suppressed in the drsh-1 null mutant and the null mutant of ain-1 , a gene encoding GW182, respectively. Moreover, miRNA array analyses revealed that the expression levels of numerous miRNAs changed after 2 days of fasting. These results indicate that components of the miRNA machinery, especially the miRNA-processing enzyme DRSH-1, play an important role in mediating IF-induced longevity via the regulation of fasting-induced changes in gene expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Ethylene-induced senescence-related gene expression requires protein synthesis

    International Nuclear Information System (INIS)

    Lawton, K.A.; Raghothama, K.G.; Woodson, W.R.

    1990-01-01

    We have investigated the effects of inhibiting protein synthesis on the ethylene-induced expression of 3 carnation senescence-related genes, pSR5, pSR8, and pSR12. Treatment of preclimacteric carnation petal discs with 1μg/ml of cycloheximide, a cytoplasmic protein synthesis inhibitor, for 3h inhibited protein synthesis by >80% as quantitated by the incorporation of [35S]methionine into protein. Pre-treatment of petal discs with cycloheximide prevented ethylene-induced SR transcript accumulation. Cycloheximide treatment of petal discs held in air did not result in increased levels of SR mRNA. These results indicate that ethylene does not interact with pre-formed factors but rather that the activation of SR gene expression by ethylene is mediated by labile protein factor(s) synthesized on cytoplasmic ribosomes. Experiments are currently underway to determine if cycloheximide exerts its effect at the transcriptional or post-transcriptional level

  10. Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes.

    Directory of Open Access Journals (Sweden)

    Samantha K Dunmire

    Full Text Available Epstein-Barr Virus (EBV causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza, respiratory syncytial virus (RSV, human rhinovirus (HRV, attenuated yellow fever virus (YFV, and Dengue fever virus (DENV, revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans.

  11. Primary EBV Infection Induces an Expression Profile Distinct from Other Viruses but Similar to Hemophagocytic Syndromes

    Science.gov (United States)

    Dunmire, Samantha K.; Odumade, Oludare A.; Porter, Jean L.; Reyes-Genere, Juan; Schmeling, David O.; Bilgic, Hatice; Fan, Danhua; Baechler, Emily C.; Balfour, Henry H.; Hogquist, Kristin A.

    2014-01-01

    Epstein-Barr Virus (EBV) causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza), respiratory syncytial virus (RSV), human rhinovirus (HRV), attenuated yellow fever virus (YFV), and Dengue fever virus (DENV), revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans. PMID:24465555

  12. Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xianglu Li

    2009-01-01

    Full Text Available HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization.

  13. Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Rødningen, Olaug Kristin; Børresen-Dale, Anne-Lise; Alsner, Jan

    2008-01-01

    BACKGROUND AND PURPOSE: Breast cancer patients show a large variation in normal tissue reactions after ionizing radiation (IR) therapy. One of the most common long-term adverse effects of ionizing radiotherapy is radiation-induced fibrosis (RIF), and several attempts have been made over the last...... years to develop predictive assays for RIF. Our aim was to identify basal and radiation-induced transcriptional profiles in fibroblasts from breast cancer patients that might be related to the individual risk of RIF in these patients. MATERIALS AND METHODS: Fibroblast cell lines from 31 individuals......-treated fibroblasts. Transcriptional differences in basal and radiation-induced gene expression profiles were investigated using 15K cDNA microarrays, and results analyzed by both SAM and PAM. RESULTS: Sixty differentially expressed genes were identified by applying SAM on 10 patients with the highest risk of RIF...

  14. RNA editing is induced by type I interferon in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zhang, Jinyao; Chen, Zhaoli; Tang, Zefang; Huang, Jianbing; Hu, Xueda; He, Jie

    2017-07-01

    In recent years, abnormal RNA editing has been shown to play an important role in the development of esophageal squamous cell carcinoma, as such abnormal editing is catalyzed by ADAR (adenosine deaminases acting on RNA). However, the regulatory mechanism of ADAR1 in esophageal squamous cell carcinomas remains largely unknown. In this study, we investigated ADAR1 expression and its association with RNA editing in esophageal squamous cell carcinomas. RNA sequencing applied to esophageal squamous cell carcinoma clinical samples showed that ADAR1 expression was correlated with the expression of STAT1, STAT2, and IRF9. In vitro experiments showed that the abundance of ADAR1 protein was associated with the induced activation of the JAK/STAT pathway by type I interferon. RNA sequencing results showed that treatment with type I interferon caused an increase in the number and degree of RNA editing in esophageal squamous cell carcinoma cell lines. In conclusion, the activation of the JAK/STAT pathway is a regulatory mechanism of ADAR1 expression and causes abnormal RNA editing profile in esophageal squamous cell carcinoma. This mechanism may serve as a new target for esophageal squamous cell carcinoma therapy.

  15. Gene expression profiles of immune-regulatory genes in whole blood of cattle with a subclinical infection of Mycobacterium avium subsp. paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Hyun-Eui Park

    Full Text Available Johne's disease is a chronic wasting disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP, resulting in inflammation of intestines and persistent diarrhea. The initial host response against MAP infections is mainly regulated by the Th1 response, which is characterized by the production of IFN-γ. With the progression of disease, MAP can survive in the host through the evasion of the host's immune response by manipulating the host immune response. However, the host response during subclinical phases has not been fully understood. Immune regulatory genes, including Th17-derived cytokines, interferon regulatory factors, and calcium signaling-associated genes, are hypothesized to play an important role during subclinical phases of Johne's disease. Therefore, the present study was conducted to analyze the expression profiles of immune regulatory genes during MAP infection in whole blood. Different expression patterns of genes were identified depending on the infection stages. Downregulation of IL-17A, IL-17F, IL-22, IL-26, HMGB1, and IRF4 and upregulation of PIP5K1C indicate suppression of the Th1 response due to MAP infection and loss of granuloma integrity. In addition, increased expression of IRF5 and IRF7 suggest activation of IFN-α/β signaling during subclinical stages, which induced indoleamine 2,3-dioxygenase mediated depletion of tryptophan metabolism. Increased expression of CORO1A indicate modulation of calcium signaling, which enhanced the survival of MAP. Taken together, distinct host gene expression induced by MAP infection indicates enhanced survival of MAP during subclinical stages.

  16. Stunned Silence: Gene Expression Programs in Human Cells Infected with Monkeypox or Vaccinia Virus

    Science.gov (United States)

    Rubins, Kathleen H.; Hensley, Lisa E.; Relman, David A.; Brown, Patrick O.

    2011-01-01

    Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV), an emerging human pathogen, and Vaccinia virus (VAC), a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated) MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA), or poly (I-C) was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C) induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection. PMID:21267444

  17. Identification of a novel gene family that includes the interferon-inducible human genes 6–16 and ISG12

    Directory of Open Access Journals (Sweden)

    Parker Nadeene

    2004-01-01

    Full Text Available Abstract Background The human 6–16 and ISG12 genes are transcriptionally upregulated in a variety of cell types in response to type I interferon (IFN. The predicted products of these genes are small (12.9 and 11.5 kDa respectively, hydrophobic proteins that share 36% overall amino acid identity. Gene disruption and over-expression studies have so far failed to reveal any biochemical or cellular roles for these proteins. Results We have used in silico analyses to identify a novel family of genes (the ISG12 gene family related to both the human 6–16 and ISG12 genes. Each ISG12 family member codes for a small hydrophobic protein containing a conserved ~80 amino-acid motif (the ISG12 motif. So far we have detected 46 family members in 25 organisms, ranging from unicellular eukaryotes to humans. Humans have four ISG12 genes: the 6–16 gene at chromosome 1p35 and three genes (ISG12(a, ISG12(b and ISG12(c clustered at chromosome 14q32. Mice have three family members (ISG12(a, ISG12(b1 and ISG12(b2 clustered at chromosome 12F1 (syntenic with human chromosome 14q32. There does not appear to be a murine 6–16 gene. On the basis of phylogenetic analyses, genomic organisation and intron-alignments we suggest that this family has arisen through divergent inter- and intra-chromosomal gene duplication events. The transcripts from human and mouse genes are detectable, all but two (human ISG12(b and ISG12(c being upregulated in response to type I IFN in the cell lines tested. Conclusions Members of the eukaryotic ISG12 gene family encode a small hydrophobic protein with at least one copy of a newly defined motif of ~80 amino-acids (the ISG12 motif. In higher eukaryotes, many of the genes have acquired a responsiveness to type I IFN during evolution suggesting that a role in resisting cellular or environmental stress may be a unifying property of all family members. Analysis of gene-function in higher eukaryotes is complicated by the possibility of

  18. Expression of interferon regulatory factor 4 in chronic myeloid leukemia: correlation with response to interferon alfa therapy.

    Science.gov (United States)

    Schmidt, M; Hochhaus, A; König-Merediz, S A; Brendel, C; Proba, J; Hoppe, G J; Wittig, B; Ehninger, G; Hehlmann, R; Neubauer, A

    2000-10-01

    Mice experiments have established an important role for interferon regulatory factor (IRF) family members in hematopoiesis. We wanted to study the expression of interferon regulatory factor 4 (IRF4) in various hematologic disorders, especially chronic myeloid leukemia (CML), and its association with response to interferon alfa (IFN-alpha) treatment in CML. Blood samples from various hematopoietic cell lines, different leukemia patients (70 CML, 29 acute myeloid leukemia [AML], 10 chronic myelomonocytic leukemia [CMMoL], 10 acute lymphoblastic leukemia, and 10 chronic lymphoid leukemia patients), and 33 healthy volunteers were monitored for IRF4 expression by reverse transcriptase polymerase chain reaction. Then, with a focus on CML, the IRF4 level was determined in sorted cell subpopulations from CML patients and healthy volunteers and in in vitro-stimulated CML cells. Furthermore, IRF4 expression was compared in the CML samples taken before IFN-alpha therapy and in 47 additional CML samples taken during IFN-alpha therapy. IRF4 expression was then correlated with cytogenetic response to IFN-alpha. IRF4 expression was significantly impaired in CML, AML, and CMMoL samples. The downregulation of IRF4 in CML samples was predominantly found in T cells. In CML patients during IFN-alpha therapy, a significant increase in IRF4 levels was detected, and this was also observed in sorted T cells from CML patients. The increase seen during IFN-alpha therapy was not due to different blood counts. In regard to the cytogenetic response with IFN-alpha, a good response was associated with high IRF4 expression. IRF4 expression is downregulated in T cells of CML patients, and its increase is associated with a good response to IFN-alpha therapy. These data suggest IRF4 expression as a useful marker to monitor, if not predict, response to IFN-alpha in CML.

  19. Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Shan Wan

    Full Text Available Low doses of anticancer drugs have been shown to enhance antitumor immune response and increase the efficacy of immunotherapy. The molecular basis for such effects remains elusive, although selective depletion of T regulatory cells has been demonstrated. In the current studies, we demonstrate that topotecan (TPT, a topoisomerase I-targeting drug with a well-defined mechanism of action, stimulates major histocompatibility complex class I (MHC I expression in breast cancer cells through elevated expression/secretion of interferon-β (IFN-β and activation of type I IFN signaling. First, we show that TPT treatment elevates the expression of both total and cell-surface MHC I in breast cancer cells. Second, conditioned media from TPT-treated breast cancer ZR-75-1 cells induce elevated expression of cell-surface MHC I in drug-naïve recipient cells, suggesting the involvement of cytokines and/or other secreted molecules. Consistently, TPT-treated cells exhibit elevated expression of multiple cytokines such as IFN-β, TNF-α, IL-6 and IL-8. Third, either knocking down the type I interferon receptor subunit 1 (IFNAR1 or addition of neutralizing antibody against IFN-β results in reduced MHC I expression in TPT-treated cells. Together, these results suggest that TPT induces increased IFN-β autocrine/paracrine signaling through type I IFN receptor, resulting in the elevated MHC I expression in tumor cells. Studies have also demonstrated that other chemotherapeutic agents (e.g. etoposide, cisplatin, paclitaxel and vinblastine similarly induce increased IFN-β secretion and elevated MHC I expression. In addition, conditioned media from γ-irradiated donor cells are shown to induce IFN-β-dependent MHC I expression in unirradiated recipient cells. In the aggregate, our results suggest that many cancer therapeutics induce elevated tumor antigen presentation through MHC I, which could represent a common mechanism for enhanced antitumor immune response through

  20. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  1. STAT1 is essential for the inhibition of hepatitis C virus replication by interferon-λ but not by interferon-α.

    Science.gov (United States)

    Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Honjoh, Chisato; Kato, Yuji; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao

    2016-12-08

    Interferon-α (IFN-α) and IFN-λ are structurally distinct cytokines that bind to different receptors, but induce expression of similar sets of genes through Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathways. The difference between IFN-α and IFN-λ signaling remains poorly understood. Here, using the CRISPR/Cas9 system, we examine the role of STAT1 and STAT2 in the inhibition of hepatitis C virus (HCV) replication by IFN-α and IFN-λ. Treatment with IFN-α increases expression of IFN-stimulated genes (ISGs) such as double-stranded RNA-activated protein kinase (PKR) and decreases viral RNA and protein levels in HCV-infected Huh-7.5 human hepatoma cells. These responses are only partially attenuated by knockout of STAT1 but are abolished by knockout of STAT2. In contrast, the inhibition of HCV replication by IFN-λ is abolished by knockout of STAT1 or STAT2. Microarray analysis reveals that IFN-α but not IFN-λ can induce expression of the majority of ISGs in STAT1 knockout cells. These findings suggest that IFN-α can inhibit HCV replication through a STAT2-dependent but STAT1-independent pathway, whereas IFN-λ induces ISG expression and inhibits HCV replication exclusively through a STAT1- and STAT2-dependent pathway.

  2. Gene expression profiles associated with anaemia and ITPA genotypes in patients with chronic hepatitis C (CH-C).

    Science.gov (United States)

    Birerdinc, A; Estep, M; Afendy, A; Stepanova, M; Younossi, I; Baranova, A; Younossi, Z M

    2012-06-01

    Anaemia is a common side effect of ribavirin (RBV) which is used for the treatment of hepatitis C. Inosine triphosphatase gene polymorphism (C to A) protects against RBV-induced anaemia. The aim of our study was to genotype patients for inosine triphosphatase gene polymorphism rs1127354 SNP (CC or CA) and associate treatment-induced anaemia with gene expression profile and genotypes. We used 67 hepatitis C patients with available gene expression, clinical, laboratory data and whole-blood samples. Whole blood was used to determine inosine triphosphatase gene polymorphism rs1127354 genotypes (CC or CA). The cohort with inosine triphosphatase gene polymorphism CA genotype revealed a distinct pattern of protection against anaemia and a lower drop in haemoglobin. A variation in the propensity of CC carriers to develop anaemia prompted us to look for additional predictors of anaemia during pegylated interferon (PEG-IFN) and RBV. Pretreatment blood samples of patients receiving a full course of PEG-IFN and RBV were used to assess expression of 153 genes previously implicated in host response to viral infections. The gene expression data were analysed according to presence of anaemia and inosine triphosphatase gene polymorphism genotypes. Thirty-six genes were associated with treatment-related anaemia, six of which are involved in the response to hypoxia pathway (HIF1A, AIF1, RHOC, PTEN, LCK and PDGFB). There was a substantial overlap between sustained virological response (SVR)-predicting and anaemia-related genes; however, of the nine JAK-STAT pathway-related genes associated with SVR, none were implicated in anaemia. These observations exclude the direct involvement of antiviral response in the development of anaemia associated with PEG-IFN and RBV treatment, whereas another, distinct component within the SVR-associated gene expression response may predict anaemia. We have identified baseline gene expression signatures associated with RBV-induced anaemia and identified

  3. The interferon response to intracellular DNA: why so many receptors?

    Science.gov (United States)

    Unterholzner, Leonie

    2013-11-01

    The detection of intracellular DNA has emerged to be a key event in the innate immune response to viruses and intracellular bacteria, and during conditions of sterile inflammation and autoimmunity. One of the consequences of the detection of DNA as a 'stranger' and a 'danger' signal is the production of type I interferons and pro-inflammatory cytokines. Much work has been dedicated to the elucidation of the signalling cascades that activate this DNA-induced gene expression programme. However, while many proteins have been proposed to act as sensors for intracellular DNA in recent years, none has been met with universal acceptance, and a theory linking all the recent observations is, as yet, lacking. This review presents the evidence for the various interferon-inducing DNA receptors proposed to date, and examines the hypotheses that might explain why so many different receptors appear to be involved in the innate immune recognition of intracellular DNA. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Haloperidol induces pharmacoepigenetic response by modulating miRNA expression, global DNA methylation and expression profiles of methylation maintenance genes and genes involved in neurotransmission in neuronal cells.

    Science.gov (United States)

    Swathy, Babu; Banerjee, Moinak

    2017-01-01

    Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects. SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study. Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in neurotransmission

  5. Haloperidol induces pharmacoepigenetic response by modulating miRNA expression, global DNA methylation and expression profiles of methylation maintenance genes and genes involved in neurotransmission in neuronal cells.

    Directory of Open Access Journals (Sweden)

    Babu Swathy

    Full Text Available Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects.SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study.Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in

  6. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity

    Science.gov (United States)

    Schoggins, John W.; MacDuff, Donna A.; Imanaka, Naoko; Gainey, Maria D.; Shrestha, Bimmi; Eitson, Jennifer L.; Mar, Katrina B.; Richardson, R. Blake; Ratushny, Alexander V.; Litvak, Vladimir; Dabelic, Rea; Manicassamy, Balaji; Aitchison, John D.; Aderem, Alan; Elliott, Richard M.; García-Sastre, Adolfo; Racaniello, Vincent; Snijder, Eric J.; Yokoyama, Wayne M.; Diamond, Michael S.; Virgin, Herbert W.; Rice, Charles M.

    2014-01-01

    The type I interferon (IFN) response protects cells from viral infection by inducing hundreds of interferon-stimulated genes (ISGs), some of which encode direct antiviral effectors. Recent screening studies have begun to catalogue ISGs with antiviral activity against several RNA and DNA viruses. However, antiviral ISG specificity across multiple distinct classes of viruses remains largely unexplored. Here we used an ectopic expression assay to screen a library of more than 350 human ISGs for effects on 14 viruses representing 7 families and 11 genera. We show that 47 genes inhibit one or more viruses, and 25 genes enhance virus infectivity. Comparative analysis reveals that the screened ISGs target positive-sense single-stranded RNA viruses more effectively than negative-sense single-stranded RNA viruses. Gene clustering highlights the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS, also known as MB21D1) as a gene whose expression also broadly inhibits several RNA viruses. In vitro, lentiviral delivery of enzymatically active cGAS triggers a STING-dependent, IRF3-mediated antiviral program that functions independently of canonical IFN/STAT1 signalling. In vivo, genetic ablation of murine cGAS reveals its requirement in the antiviral response to two DNA viruses, and an unappreciated contribution to the innate control of an RNA virus. These studies uncover new paradigms for the preferential specificity of IFN-mediated antiviral pathways spanning several virus families.

  7. Nucleotide Pool Depletion Induces G-Quadruplex-Dependent Perturbation of Gene Expression

    Directory of Open Access Journals (Sweden)

    Charikleia Papadopoulou

    2015-12-01

    Full Text Available Nucleotide pool imbalance has been proposed to drive genetic instability in cancer. Here, we show that slowing replication forks by depleting nucleotide pools with hydroxyurea (HU can also give rise to both transient and permanent epigenetic instability of a reporter locus, BU-1, in DT40 cells. HU induces stochastic formation of Bu-1low variants in dividing cells, which have lost the H3K4me3 present in untreated cells. This instability is potentiated by an intragenic G quadruplex, which also promotes local H2Ax phosphorylation and transient heterochromatinization. Genome-wide, gene expression changes induced by HU significantly overlap with those resulting from loss of the G4-helicases FANCJ, WRN, and BLM. Thus, the effects of global replication stress induced by nucleotide pool depletion can be focused by local replication impediments caused by G quadruplex formation to induce epigenetic instability and changes in gene expression, a mechanism that may contribute to selectable transcriptional changes in cancer.

  8. Precise integration of inducible transcriptional elements (PrIITE) enables absolute control of gene expression

    DEFF Research Database (Denmark)

    Pinto, Rita; Hansen, Lars; Hintze, John

    2017-01-01

    to be a limitation. Here, we report that the combined use of genome editing tools and last generation Tet-On systems can resolve these issues. Our principle is based on precise integration of inducible transcriptional elements (coined PrIITE) targeted to: (i) exons of an endogenous gene of interest (GOI) and (ii......Tetracycline-based inducible systems provide powerful methods for functional studies where gene expression can be controlled. However, the lack of tight control of the inducible system, leading to leakiness and adverse effects caused by undesirable tetracycline dosage requirements, has proven......) a safe harbor locus. Using PrIITE cells harboring a GFP reporter or CDX2 transcription factor, we demonstrate discrete inducibility of gene expression with complete abrogation of leakiness. CDX2 PrIITE cells generated by this approach uncovered novel CDX2 downstream effector genes. Our results provide...

  9. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression.

    Science.gov (United States)

    Carlin, Sean; Pugachev, Andrei; Sun, Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C Clifton; Humm, John L

    2009-10-01

    To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer (18)F-fluoromisonidazole ((18)F-FMISO). Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe (124)I-2'-fluoro-2'-deoxy-1-beta-d-arabinofuranosyl-5-iodouracil ((124)I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between (124)I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe (18)F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with (124)I-FIAU (3 h before sacrifice) and (18)F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between (18)F-FMISO and (124)I-FIAU on a pixel-by-pixel basis was performed. Correlation coefficients between (124)I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between (18)F-FMISO and (124)I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of this model for the

  10. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression

    International Nuclear Information System (INIS)

    Carlin, Sean; Pugachev, Andrei; Sun Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C. Clifton; Humm, John L.

    2009-01-01

    Purpose: To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer 18 F-fluoromisonidazole ( 18 F-FMISO). Methods: Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe 124 I-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil ( 124 I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between 124 I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe 18 F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with 124 I-FIAU (3 h before sacrifice) and 18 F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between 18 F-FMISO and 124 I-FIAU on a pixel-by-pixel basis was performed. Results: Correlation coefficients between 124 I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between 18 F-FMISO and 124 I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. Conclusions: We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of

  11. Postinduction represssion of the β-interferon gene is mediated through two positive regulatory domains

    International Nuclear Information System (INIS)

    Whittemore, L.A.; Maniatis, T.

    1990-01-01

    Virus induction of the human β-interferon (β-IFN) gene results in an increase in the rate of β-IFN mRNA synthesis, followed by a rapid postinduction decrease. In this paper, the authors show that two β-IFN promoter elements, positive regulatory domains I and II (PRDI and PRDII), which are required for virus induction of the β-IFN gene are also required for the postinduction turnoff. Although protein synthesis is not necessary for activation, it is necessary for repression of these promoter elements. Examination of nuclear extracts from cells infected with virus reveals the presence of virus-inducible, cycloheximide-sensitive, DNA-binding activities that interact specifically with PRDI or PRDII. They propose that the postinduction repression of β-IFN gene transcription involves virus inducible repressors that either bind directly to the positive regulatory elements of the β-IFN promoter or inactivate the positive regulatory factors bound to PRDI and PRDII

  12. Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engineering.

    Science.gov (United States)

    Dong, Hongjun; Tao, Wenwen; Zhang, Yanping; Li, Yin

    2012-01-01

    Clostridium acetobutylicum is an important solvent (acetone-butanol-ethanol) producing bacterium. However, a stringent, effective, and convenient-to-use inducible gene expression system that can be used for regulating the gene expression strength in C. acetobutylicum is currently not available. Here, we report an anhydrotetracycline-inducible gene expression system for solvent-producing bacterium C. acetobutylicum. This system consists of a functional chloramphenicol acetyltransferase gene promoter containing tet operators (tetO), Pthl promoter (thiolase gene promoter from C. acetobutylicum) controlling TetR repressor expression cassette, and the chemical inducer anhydrotetracycline (aTc). The optimized system, designated as pGusA2-2tetO1, allows gene regulation in an inducer aTc concentration-dependent way, with an inducibility of over two orders of magnitude. The stringency of TetR repression supports the introduction of the genes encoding counterselective marker into C. acetobutylicum, which can be used to increase the mutant screening efficiency. This aTc-inducible gene expression system will thus increase the genetic manipulation capability for engineering C. acetobutylicum. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Human T Cell Leukemia Virus Type I Tax-Induced IκB-ζ Modulates Tax-Dependent and Tax-Independent Gene Expression in T Cells

    Directory of Open Access Journals (Sweden)

    Ryuichiro Kimura

    2013-09-01

    Full Text Available Human T cell leukemia virus type I (HTLV-I is the etiologic agent of adult T cell leukemia (ATL and various inflammatory disorders including HTLV-I-associated myelopathy/tropical spastic paraparesis. HTLV-I oncoprotein Tax is known to cause permanent activation of many cellular transcription factors including nuclear factor-κB (NF-κB, cyclic adenosine 3′,5′-monophosphate response element-binding protein, and activator protein 1 (AP-1. Here, we show that NF-κB-binding cofactor inhibitor of NF-κB-ζ (IκB-ζ is constitutively expressed in HTLV-I-infected T cell lines and ATL cells, and Tax transactivates the IκB-ζ gene, mainly through NF-κB. Microarray analysis of IκB-ζ-expressing uninfected T cells demonstrated that IκB-ζ induced the expression of NF-κB. and interferon-regulatory genes such as B cell CLL/lymphoma 3 (Bcl3, guanylate-binding protein 1, and signal transducer and activator of transcription 1. The transcriptional activation domain, nuclear localization signal, and NF-κB-binding domain of IκB-ζ were required for Bcl3 induction, and IκB-ζ synergistically enhanced Tax-induced Bcl3 transactivation in an NF-κB-dependent manner. Interestingly, IκB-ζ inhibited Tax-induced NF-κB, AP-1 activation, and HTLV-I transcription. Furthermore, IκB-ζ interacted with Tax in vitro and this interaction was also observed in an HTLV-I-transformed T cell line. These results suggest that IκB-ζ modulates Tax-dependent and Tax-independent gene transcription in T cells. The function of IκB-ζ may be of significance in ATL genesis and pathogenesis of HTLV-I-associated diseases.

  14. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  15. Characterization of human septic sera induced gene expression modulation in human myocytes

    Science.gov (United States)

    Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem

    2009-01-01

    To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera. Septic sera treatment of myocytes resulted in the down-regulation of 178 genes and the up-regulation of 4 genes. Our data indicate that septic sera induced cell cycle, metabolic, transcription factor and apoptotic gene expression changes in human myocytes. Identification and characterization of gene expression changes that occur during sepsis may lead to the development of novel therapeutics and diagnostics. PMID:19684886

  16. Activation of CD147 with Cyclophilin A Induces the Expression of IFITM1 through ERK and PI3K in THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Ju-Young Kim

    2010-01-01

    Full Text Available CD147, as a receptor for Cyclophilins, is a multifunctional transmembrane glycoprotein. In order to identify genes that are induced by activation of CD147, THP-1 cells were stimulated with Cyclophilin A and differentially expressed genes were detected using PCR-based analysis. Interferon-induced transmembrane 1 (IFITM1 was detected to be induced and it was confirmed by RT-PCR and Western blot analysis. CD147-induced expression of IFITM1 was blocked by inhibitors of ERK, PI3K, or NF-κB, but not by inhibitors of p38, JNK, or PKC. IFITM1 appears to mediate inflammatory activation of THP-1 cells since cross-linking of IFITM1 with specific monoclonal antibody against it induced the expression of proinflammatory mediators such as IL-8 and MMP-9. These data indicate that IFITM1 is one of the pro-inflammatory mediators that are induced by signaling initiated by the activation of CD147 in macrophages and activation of ERK, PI3K, and NF-κB is required for the expression of IFITM1.

  17. Homozygous deletion of the α- and β1-interferon genes in human leukemia and derived cell lines

    International Nuclear Information System (INIS)

    Diaz, M.O.; Ziemin, S.; Le Beau, M.M.; Pitha, P.; Smith, S.D.; Chilcote, R.R.; Rowley, J.D.

    1988-01-01

    The loss of bands p21-22 from one chromosome 9 homologue as a consequence of a deletion of the short arm [del(9p)], unbalanced translocation, or monosomy 9 is frequently observed in the malignant cells of patients with lymphoid neoplasias, including acute lymphoblastic leukemia and non-Hodgkin lymphoma. The α- and β 1 -interferon genes have been assigned to this chromosome region (9p21-22). The authors now present evidence of the homozygous deletion of the interferon genes in neoplastic hematopoietic cell lines and primary leukemia cells in the presence or absence of chromosomal deletions that are detectable at the level of the light microscope. In these cell lines, the deletion of the interferon genes is accompanied by a deficiency of 5'-methylthioadenosine phosphorylase, an enzyme of purine metabolism. These homozygous deletions may be associated with the loss of a tumor-suppressor gene that is involved in the development of these neoplasias. The relevant genes may be either the interferon genes themselves or a gene that has a tumor-suppressor function and is closely linked to them

  18. Human B cells fail to secrete type I interferons upon cytoplasmic DNA exposure.

    Science.gov (United States)

    Gram, Anna M; Sun, Chenglong; Landman, Sanne L; Oosenbrug, Timo; Koppejan, Hester J; Kwakkenbos, Mark J; Hoeben, Rob C; Paludan, Søren R; Ressing, Maaike E

    2017-11-01

    Most cells are believed to be capable of producing type I interferons (IFN I) as part of an innate immune response against, for instance, viral infections. In macrophages, IFN I is potently induced upon cytoplasmic exposure to foreign nucleic acids. Infection of these cells with herpesviruses leads to triggering of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic GMP-AMP (cGAMP) synthase (cGAS). Thereby, the stimulator of interferon genes (STING) and the downstream molecules TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) are sequentially activated culminating in IFN I secretion. Human gamma-herpesviruses, such as Epstein-Barr virus (EBV), exploit B cells as a reservoir for persistent infection. In this study, we investigated whether human B cells, similar to macrophages, engage the cytoplasmic DNA sensing pathway to induce an innate immune response. We found that the B cells fail to secrete IFN I upon cytoplasmic DNA exposure, although they express the DNA sensors cGAS and IFI16 and the signaling components TBK1 and IRF3. In primary human B lymphocytes and EBV-negative B cell lines, this deficiency is explained by a lack of detectable levels of the central adaptor protein STING. In contrast, EBV-transformed B cell lines did express STING, yet both these lines as well as STING-reconstituted EBV-negative B cells did not produce IFN I upon dsDNA or cGAMP stimulation. Our combined data show that the cytoplasmic DNA sensing pathway is dysfunctional in human B cells. This exemplifies that certain cell types cannot induce IFN I in response to cytoplasmic DNA exposure providing a potential niche for viral persistence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Characterization of chemically induced liver injuries using gene co-expression modules.

    Directory of Open Access Journals (Sweden)

    Gregory J Tawa

    Full Text Available Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1 known biochemical pathways associated with liver injuries and 2 clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20% genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.

  20. Intrahepatic expression of interferon alpha & interferon alpha ...

    African Journals Online (AJOL)

    kemrilib

    IFN-α and IFN-α Receptor mRNA expression in the liver. All the patients showed IFN-α gene expression except one patient who had the highest degree of fibrosis (fibrosis grade 5) and HAI Index of 9. IFN- α Receptor mRNA was expressed in 30% (9/30). (Figure 4). Non of the patients with HCC had. IFNα-Rc expression and ...

  1. Stunned silence: gene expression programs in human cells infected with monkeypox or vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Kathleen H Rubins

    2011-01-01

    Full Text Available Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV, an emerging human pathogen, and Vaccinia virus (VAC, a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA, or poly (I-C was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection.

  2. Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults.

    Science.gov (United States)

    Lissner, Michelle M; Thomas, Brandon J; Wee, Kathleen; Tong, Ann-Jay; Kollmann, Tobias R; Smale, Stephen T

    2015-01-01

    A variety of age-related differences in the innate and adaptive immune systems have been proposed to contribute to the increased susceptibility to infection of human neonates and older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an unbiased, comprehensive, and quantitative view of gene expression differences in defined cell types from different age groups. An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults, and older adults, with an unexpectedly small number of genes exhibiting statistically significant age-dependent differences. By examining the differentially induced genes in the context of transcription factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously described deficiency in interferon response factor-3 activity could be implicated in most of the differences between newborns and young adults. Contrary to these observations, older adults exhibited elevated expression of inflammatory genes at baseline, yet the responses following stimulation correlated more closely with those observed in younger adults. Notably, major differences in the expression of constitutively expressed genes were not observed, suggesting that the age-related differences are driven by environmental influences rather than cell-autonomous differences in monocyte development.

  3. Antiviral Activity of Lambda Interferon in Chickens

    Science.gov (United States)

    Reuter, Antje; Soubies, Sebastien; Härtle, Sonja; Schusser, Benjamin; Kaspers, Bernd

    2014-01-01

    Interferons (IFNs) are essential components of the antiviral defense system of vertebrates. In mammals, functional receptors for type III IFN (lambda interferon [IFN-λ]) are found mainly on epithelial cells, and IFN-λ was demonstrated to play a crucial role in limiting viral infections of mucosal surfaces. To determine whether IFN-λ plays a similar role in birds, we produced recombinant chicken IFN-λ (chIFN-λ) and we used the replication-competent retroviral RCAS vector system to generate mosaic-transgenic chicken embryos that constitutively express chIFN-λ. We could demonstrate that chIFN-λ markedly inhibited replication of various virus strains, including highly pathogenic influenza A viruses, in ovo and in vivo, as well as in epithelium-rich tissue and cell culture systems. In contrast, chicken fibroblasts responded poorly to chIFN-λ. When applied in vivo to 3-week-old chickens, recombinant chIFN-λ strongly induced the IFN-responsive Mx gene in epithelium-rich organs, such as lungs, tracheas, and intestinal tracts. Correspondingly, these organs were found to express high transcript levels of the putative chIFN-λ receptor alpha chain (chIL28RA) gene. Transfection of chicken fibroblasts with a chIL28RA expression construct rendered these cells responsive to chIFN-λ treatment, indicating that receptor expression determines cell type specificity of IFN-λ action in chickens. Surprisingly, mosaic-transgenic chickens perished soon after hatching, demonstrating a detrimental effect of constitutive chIFN-λ expression. Our data highlight fundamental similarities between the IFN-λ systems of mammals and birds and suggest that type III IFN might play a role in defending mucosal surfaces against viral intruders in most if not all vertebrates. PMID:24371053

  4. UVB-induced gene expression in the skin of Xiphophorus maculatus Jp 163 B☆

    Science.gov (United States)

    Yang, Kuan; Boswell, Mikki; Walter, Dylan J.; Downs, Kevin P.; Gaston-Pravia, Kimberly; Garcia, Tzintzuni; Shen, Yingjia; Mitchell, David L.; Walter, Ronald B.

    2014-01-01

    Xiphophorus fish and interspecies hybrids represent long-standing models to study the genetics underlying spontaneous and induced tumorigenesis. The recent release of the Xiphophorus maculatus genome sequence will allow global genetic regulation studies of genes involved in the inherited susceptibility to UVB-induced melanoma within select backcross hybrids. As a first step toward this goal, we report results of an RNA-Seq approach to identify genes and pathways showing modulated transcription within the skin of X. maculatus Jp 163 B upon UVB exposure. X. maculatus Jp 163 B were exposed to various doses of UVB followed by RNA-Seq analysis at each dose to investigate overall gene expression in each sample. A total of 357 genes with a minimum expression change of 4-fold (p-adj fish skin to UVB exposure. PMID:24556253

  5. Human T Cell Leukemia Virus Type I Tax-Induced IκB-ζ Modulates Tax-Dependent and Tax-Independent Gene Expression in T Cells1

    Science.gov (United States)

    Kimura, Ryuichiro; Senba, Masachika; Cutler, Samuel J; Ralph, Stephen J; Xiao, Gutian; Mori, Naoki

    2013-01-01

    Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia (ATL) and various inflammatory disorders including HTLV-I-associated myelopathy/tropical spastic paraparesis. HTLV-I oncoprotein Tax is known to cause permanent activation of many cellular transcription factors including nuclear factor-κB (NF-κB), cyclic adenosine 3′,5′-monophosphate response element-binding protein, and activator protein 1 (AP-1). Here, we show that NF-κB-binding cofactor inhibitor of NF-κB-ζ (IκB-ζ) is constitutively expressed in HTLV-I-infected T cell lines and ATL cells, and Tax transactivates the IκB-ζ gene, mainly through NF-κB. Microarray analysis of IκB-ζ-expressing uninfected T cells demonstrated that IκB-ζ induced the expression of NF-κB. and interferon-regulatory genes such as B cell CLL/lymphoma 3 (Bcl3), guanylate-binding protein 1, and signal transducer and activator of transcription 1. The transcriptional activation domain, nuclear localization signal, and NF-κB-binding domain of IκB-ζ were required for Bcl3 induction, and IκB-ζ synergistically enhanced Tax-induced Bcl3 transactivation in an NF-κB-dependent manner. Interestingly, IκB-ζ inhibited Tax-induced NF-κB, AP-1 activation, and HTLV-I transcription. Furthermore, IκB-ζ interacted with Tax in vitro and this interaction was also observed in an HTLV-I-transformed T cell line. These results suggest that IκB-ζ modulates Tax-dependent and Tax-independent gene transcription in T cells. The function of IκB-ζ may be of significance in ATL genesis and pathogenesis of HTLV-I-associated diseases. PMID:24027435

  6. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.

    Science.gov (United States)

    Dieterich, Christine; Puey, Angela; Lin, Sylvia; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C; Ng, Hanna H

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription-polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury.

  7. Common changes in global gene expression induced by RNA polymerase inhibitors in Shigella flexneri.

    Directory of Open Access Journals (Sweden)

    Hua Fu

    Full Text Available Characterization of expression profile of organisms in response to antimicrobials provides important information on the potential mechanism of action of the drugs. The special expression signature can be used to predict whether other drugs act on the same target. Here, the common response of Shigella flexneri to two inhibitors of RNA polymerase was examined using gene expression profiling. Consistent with similar effects of the two drugs, the gene expression profiles indicated that responses of the bacteria to these drugs were roughly the same, with 225 genes affected commonly. Of them, 88 were induced and 137 were repressed. Real-time PCR was performed for selected genes to verify the microarray results. Analysis of the expression data revealed that more than 30% of the plasmid-encoded genes on the array were up-regulated by the antibiotics including virF regulon, other virulence-related genes, and genes responsible for plasmid replication, maintenance, and transfer. In addition, some chromosome-encoded genes involved in virulence and genes acquired from horizontal transfer were also significantly up-regulated. However, the expression of genes encoding the beta-subunit of RNA polymerase was increased moderately. The repressed genes include those that code for products associated with the ribosome, citrate cycle, glycolysis, thiamine biosynthesis, purine metabolism, fructose metabolism, mannose metabolism, and cold shock proteins. This study demonstrates that the two antibiotics induce rapid cessation of RNA synthesis resulting in inhibition of translation components. It also indicates that the production of virulence factors involved in intercellular dissemination, tissue invasion and inflammatory destruction may be enhanced through derepressing horizontal transfer genes by the drugs.

  8. Interferon in lyssavirus infection.

    Science.gov (United States)

    Rieder, Martina; Finke, Stefan; Conzelmann, Karl-Klaus

    2012-01-01

    Rabies is a zoonosis still claiming more than 50 000 human deaths per year. Typically, human cases are due to infection with rabies virus, the prototype of the Lyssavirus genus, but sporadic cases of rabies-like encephalitis caused by other lyssaviruses have been reported. In contrast to rabies virus, which has an extremely broad host range including many terrestrial warm-blooded animals, rabies-related viruses are associated predominantly with bats and rarely infect terrestrial species. In spite of a very close genetic relationship of rabies and rabies-related viruses, the factors determining the limited host range of rabies-related viruses are not clear. In the past years the importance of viral countermeasures against the host type I interferon system for establishment of an infection became evident. The rabies virus phosphoprotein (P) has emerged as a critical factor required for paralysing the signalling cascades leading to transcriptional activation of interferon genes as well as interferon signalling pathways, thereby limiting expression of antiviral and immune stimulatory genes. Comparative studies would be of interest in order to determine whether differential abilities of the lyssavirus P proteins contribute to the restricted host range of lyssaviruses.

  9. Experimental Neuromyelitis Optica Induces a Type I Interferon Signature in the Spinal Cord

    Science.gov (United States)

    Kaufmann, Nathalie; Zeka, Bleranda; Schanda, Kathrin; Fujihara, Kazuo; Illes, Zsolt; Dahle, Charlotte; Reindl, Markus; Lassmann, Hans; Bradl, Monika

    2016-01-01

    Neuromyelitis optica (NMO) is an acute inflammatory disease of the central nervous system (CNS) which predominantly affects spinal cord and optic nerves. Most patients harbor pathogenic autoantibodies, the so-called NMO-IgGs, which are directed against the water channel aquaporin 4 (AQP4) on astrocytes. When these antibodies gain access to the CNS, they mediate astrocyte destruction by complement-dependent and by antibody-dependent cellular cytotoxicity. In contrast to multiple sclerosis (MS) patients who benefit from therapies involving type I interferons (I-IFN), NMO patients typically do not profit from such treatments. How is I-IFN involved in NMO pathogenesis? To address this question, we made gene expression profiles of spinal cords from Lewis rat models of experimental neuromyelitis optica (ENMO) and experimental autoimmune encephalomyelitis (EAE). We found an upregulation of I-IFN signature genes in EAE spinal cords, and a further upregulation of these genes in ENMO. To learn whether the local I-IFN signature is harmful or beneficial, we induced ENMO by transfer of CNS antigen-specific T cells and NMO-IgG, and treated the animals with I-IFN at the very onset of clinical symptoms, when the blood-brain barrier was open. With this treatment regimen, we could amplify possible effects of the I-IFN induced genes on the transmigration of infiltrating cells through the blood brain barrier, and on lesion formation and expansion, but could avoid effects of I-IFN on the differentiation of pathogenic T and B cells in the lymph nodes. We observed that I-IFN treated ENMO rats had spinal cord lesions with fewer T cells, macrophages/activated microglia and activated neutrophils, and less astrocyte damage than their vehicle treated counterparts, suggesting beneficial effects of I-IFN. PMID:26990978

  10. Effect of ethylene action inhibitors upon wound-induced gene expression in tomato pericarp

    International Nuclear Information System (INIS)

    Henstrand, J.M.; Handa, A.K.

    1989-01-01

    The contribution of wound-ethylene to wound-induced gene expression was investigated in unripe tomato pericarp using inhibitors of ethylene action. Wounded unripe tomato pericarp was treated with 2,5-norbornadiene or silver thiosulfate to inhibit specifically the induction of ethylene-dependent mRNA species. Poly(A) + RNAs isolated from these tissues after 12 hours of wounding were translated in vitro in a rabbit reticulocyte lysate system and [ 35 S]methionine-labeled polypeptides were compared to unwounded controls after separation by one and two-dimensional polyacrylamide gel electrophoresis. Results show that mechanical wounding induces a dramatic shift in gene expression (over 50 mRNA species) but expression of less than 15% of these genes is affected by the treatment with ethylene action inhibitors. A selective decrease in mRNAs coding for a 37 kilodalton doublet and 75 kilodalton polypeptides is observed in 2,5-norbornadiene and silver thiosulfate treated wounded pericarp. Levels of hydroxyproline-rich glycoprotein mRNAs induced in wounded tissue were not influenced by inhibitors of ethylene action

  11. Granulomatous response to Coxiella burnetii, the agent of Q fever: the lessons from gene expression analysis

    Directory of Open Access Journals (Sweden)

    delphine efaugaret

    2014-12-01

    Full Text Available The formation of granulomas is associated with the resolution of Q fever, a zoonosis due to Coxiella burnetii; however the molecular mechanisms of granuloma formation remain poorly understood. We generated human granulomas with peripheral blood mononuclear cells and beads coated with C. burnetii, using BCG extracts as controls. A microarray analysis showed dramatic changes in gene expression in granuloma cells of which more than 50% were commonly modulated genes in response to C. burnetii and BCG. They included M1-related genes and genes related to chemotaxis. The inhibition of the chemokines, CCL2 and CCL5, directly interfered with granuloma formation. C. burnetii granulomas also expressed a specific transcriptional profile that was essentially enriched in genes associated with type I interferon response. Our results showed that granuloma formation is associated with a core of transcriptional response based on inflammatory genes. The specific granulomatous response to C. burnetii is characterized by the activation of type I interferon pathway.

  12. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor.

    Directory of Open Access Journals (Sweden)

    Rinki Minakshi

    2009-12-01

    Full Text Available The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV is reported to cause apoptosis of infected cells and several of its proteins including the 3a accessory protein, are pro-apoptotic. Since the 3a protein localizes to the endoplasmic reticulum (ER-Golgi compartment, its role in causing ER stress was investigated in transiently transfected cells. Cells expressing the 3a proteins showed ER stress based on activation of genes for the ER chaperones GRP78 and GRP94. Since ER stress can cause differential modulation of the unfolded protein response (UPR, which includes the inositol-requiring enzyme 1 (IRE-1, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK pathways, these were individually tested in 3a-expressing cells. Only the PERK pathway was found to be activated in 3a-expressing cells based on (1 increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2alpha and inhibitory effects of a dominant-negative form of eIF2alpha on GRP78 promoter activity, (2 increased translation of activating transcription factor 4 (ATF4 mRNA, and (3 ATF4-dependent activation of the C/EBP homologous protein (CHOP gene promoter. Activation of PERK affects innate immunity by suppression of type 1 interferon (IFN signaling. The 3a protein was found to induce serine phosphorylation within the IFN alpha-receptor subunit 1 (IFNAR1 degradation motif and to increase IFNAR1 ubiquitination. Confocal microscopic analysis showed increased translocation of IFNAR1 into the lysosomal compartment and flow cytometry showed reduced levels of IFNAR1 in 3a-expressing cells. These results provide further mechanistic details of the pro-apoptotic effects of the SARS-CoV 3a protein, and suggest a potential role for it in attenuating interferon responses and innate immunity.

  13. Human Cytomegalovirus Exploits Interferon-Induced Transmembrane Proteins To Facilitate Morphogenesis of the Virion Assembly Compartment

    Science.gov (United States)

    Xie, Maorong; Xuan, Baoqin; Shan, Jiaoyu; Pan, Deng; Sun, Yamei; Shan, Zhao; Zhang, Jinping; Yu, Dong

    2014-01-01

    ABSTRACT Recently, interferon-induced transmembrane proteins (IFITMs) have been identified to be key effector molecules in the host type I interferon defense system. The invasion of host cells by a large range of RNA viruses is inhibited by IFITMs during the entry step. However, the roles of IFITMs in DNA virus infections have not been studied in detail. In this study, we report that human cytomegalovirus (HCMV), a large human DNA virus, exploits IFITMs to facilitate the formation of the virion assembly compartment (vAC) during infection of human fibroblasts. We found that IFITMs were expressed constitutively in human embryonic lung fibroblasts (MRC5 cells). HCMV infection inhibited IFITM protein accumulation in the later stages of infection. Overexpression of an IFITM protein in MRC5 cells slightly enhanced HCMV production and knockdown of IFITMs by RNA interference reduced the virus titer by about 100-fold on day 8 postinfection, according to the findings of a virus yield assay at a low multiplicity of infection. Virus gene expression and DNA synthesis were not affected, but the typical round structure of the vAC was not formed after the suppression of IFITMs, thereby resulting in defective virion assembly and the production of less infectious virion particles. Interestingly, the replication of herpes simplex virus, a human herpesvirus that is closely related to HCMV, was not affected by the suppression of IFITMs in MRC5 cells. These results indicate that IFITMs are involved in a specific pathway required for HCMV replication. IMPORTANCE HCMV is known to repurpose the interferon-stimulated genes (ISGs) viperin and tetherin to facilitate its replication. Our results expand the range of ISGs that can be exploited by HCMV for its replication. This is also the first report of a proviral function of IFITMs in DNA virus replication. In addition, whereas previous studies showed that IFITMs modulate virus entry, which is a very early stage in the virus life cycle, we

  14. Elicitor and fusarium-induced expression of NPR-1 like genes in banana

    CSIR Research Space (South Africa)

    Endah, R

    2008-11-01

    Full Text Available NPR1 is an essential positive regulator of salicylic acid-induced PR gene expression and systemic acquired resistance. Two novel full-length NPR1-like genes; MNPR1A and MNPR1B, were isolated by application of the PCR and RACE techniques. The two...

  15. Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohui

    2008-05-01

    Full Text Available Abstract Background Cigarette smoking is a leading cause of preventable death and a significant cause of lung cancer and chronic obstructive pulmonary disease. Prior studies have demonstrated that smoking creates a field of molecular injury throughout the airway epithelium exposed to cigarette smoke. We have previously characterized gene expression in the bronchial epithelium of never smokers and identified the gene expression changes that occur in the mainstem bronchus in response to smoking. In this study, we explored relationships in whole-genome gene expression between extrathorcic (buccal and nasal and intrathoracic (bronchial epithelium in healthy current and never smokers. Results Using genes that have been previously defined as being expressed in the bronchial airway of never smokers (the "normal airway transcriptome", we found that bronchial and nasal epithelium from non-smokers were most similar in gene expression when compared to other epithelial and nonepithelial tissues, with several antioxidant, detoxification, and structural genes being highly expressed in both the bronchus and nose. Principle component analysis of previously defined smoking-induced genes from the bronchus suggested that smoking had a similar effect on gene expression in nasal epithelium. Gene set enrichment analysis demonstrated that this set of genes was also highly enriched among the genes most altered by smoking in both nasal and buccal epithelial samples. The expression of several detoxification genes was commonly altered by smoking in all three respiratory epithelial tissues, suggesting a common airway-wide response to tobacco exposure. Conclusion Our findings support a relationship between gene expression in extra- and intrathoracic airway epithelial cells and extend the concept of a smoking-induced field of injury to epithelial cells that line the mouth and nose. This relationship could potentially be utilized to develop a non-invasive biomarker for

  16. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    Science.gov (United States)

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  17. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    Directory of Open Access Journals (Sweden)

    S.C.F. Olinto

    2012-11-01

    Full Text Available The amino acid arginine (Arg is a recognized secretagogue of growth hormone (GH, and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO, which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (~250 g were removed, divided into two halves, pooled (three hemi-pituitaries and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM, the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM and a cyclic guanosine monophosphate (cGMP analogue (8-Br-cGMP, 1 mM increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM blunted the effect of SNP, and the combined treatment with Arg and L-NAME (a NO synthase (NOS inhibitor, 55 mM abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.

  18. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    Energy Technology Data Exchange (ETDEWEB)

    Olinto, S.C.F. [Faculdade de Ciências Integradas do Pontal, Universidade Federal de Uberlândia, Ituiutaba, MG (Brazil); Adrião, M.G. [Departamento de Morfologia e Fisiologia, Universidade Federal Rural de Pernambuco, Recife, PE (Brazil); Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.

  19. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    International Nuclear Information System (INIS)

    Olinto, S.C.F.; Adrião, M.G.; Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T.

    2012-01-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression

  20. IRF3 and type I interferons fuel a fatal response to myocardial infarction.

    Science.gov (United States)

    King, Kevin R; Aguirre, Aaron D; Ye, Yu-Xiang; Sun, Yuan; Roh, Jason D; Ng, Richard P; Kohler, Rainer H; Arlauckas, Sean P; Iwamoto, Yoshiko; Savol, Andrej; Sadreyev, Ruslan I; Kelly, Mark; Fitzgibbons, Timothy P; Fitzgerald, Katherine A; Mitchison, Timothy; Libby, Peter; Nahrendorf, Matthias; Weissleder, Ralph

    2017-12-01

    Interferon regulatory factor 3 (IRF3) and type I interferons (IFNs) protect against infections and cancer, but excessive IRF3 activation and type I IFN production cause autoinflammatory conditions such as Aicardi-Goutières syndrome and STING-associated vasculopathy of infancy (SAVI). Myocardial infarction (MI) elicits inflammation, but the dominant molecular drivers of MI-associated inflammation remain unclear. Here we show that ischemic cell death and uptake of cell debris by macrophages in the heart fuel a fatal response to MI by activating IRF3 and type I IFN production. In mice, single-cell RNA-seq analysis of 4,215 leukocytes isolated from infarcted and non-infarcted hearts showed that MI provokes activation of an IRF3-interferon axis in a distinct population of interferon-inducible cells (IFNICs) that were classified as cardiac macrophages. Mice genetically deficient in cyclic GMP-AMP synthase (cGAS), its adaptor STING, IRF3, or the type I IFN receptor IFNAR exhibited impaired interferon-stimulated gene (ISG) expression and, in the case of mice deficient in IRF3 or IFNAR, improved survival after MI as compared to controls. Interruption of IRF3-dependent signaling resulted in decreased cardiac expression of inflammatory cytokines and chemokines and decreased inflammatory cell infiltration of the heart, as well as in attenuated ventricular dilation and improved cardiac function. Similarly, treatment of mice with an IFNAR-neutralizing antibody after MI ablated the interferon response and improved left ventricular dysfunction and survival. These results identify IRF3 and the type I IFN response as a potential therapeutic target for post-MI cardioprotection.

  1. Central Role of ULK1 in Type I Interferon Signaling

    Directory of Open Access Journals (Sweden)

    Diana Saleiro

    2015-04-01

    Full Text Available We provide evidence that the Unc-51-like kinase 1 (ULK1 is activated during engagement of the type I interferon (IFN receptor (IFNR. Our studies demonstrate that the function of ULK1 is required for gene transcription mediated via IFN-stimulated response elements (ISRE and IFNγ activation site (GAS elements and controls expression of key IFN-stimulated genes (ISGs. We identify ULK1 as an upstream regulator of p38α mitogen-activated protein kinase (MAPK and establish that the regulatory effects of ULK1 on ISG expression are mediated possibly by engagement of the p38 MAPK pathway. Importantly, we demonstrate that ULK1 is essential for antiproliferative responses and type I IFN-induced antineoplastic effects against malignant erythroid precursors from patients with myeloproliferative neoplasms. Together, these data reveal a role for ULK1 as a key mediator of type I IFNR-generated signals that control gene transcription and induction of antineoplastic responses.

  2. Strain differences in the somnogenic effects of interferon inducers in mice.

    Science.gov (United States)

    Toth, L A

    1996-12-01

    Increased slow-wave sleep accompanies influenza infection in C57BL/6 mice but not BALB/c mice. These strains of mice possess different alleles of the genetic lucus If-1, which codes for high (If-1h; C57BL/6) and low (If-1(1); BALB/c) production of interferon (IFN), a putative sleep-inducing cytokine. To evaluate the contribution of the If-1 gene to differences in murine sleep propensity, sleep patterns were evaluated in mice treated with the IFN inducers polyinosinic:polycytidilic acid (pIC) or Newcastle disease virus (NDV), with influenza virus, or with murine interferon (IFN-alpha) or IFN-alpha/beta. As compared with baseline values, C57BL/6 mice exhibited increased slow-wave sleep after all three challenges, but BALB/c mice did not. Congenic B6.C-H28c mice, which bear the BALB/c allele for low IFN production on the C57BL/6 genetic background, showed enhanced slow-wave sleep after influenza infection but not after NDV. Exogenous IFN did not enhance slow-wave sleep in either C57BL/6 or BALB/c mice. These data suggest that the If-1 allele may influence the somnogenic responsiveness of mice under some conditions but that additional mechanisms may contribute to sleep enhancement during infectious disease.

  3. PTEN gene and phosphorylation of Akt protein expression in the LPS-induced lung fibroblast

    Directory of Open Access Journals (Sweden)

    Mao-lin HUANG

    2014-09-01

    Full Text Available Objective: To investigate PTEN gene expression and the Akt phosphorylation of protein expression in the LPS-induced lung fibroblast, to initially reveal the relation between PTEN gene and the Akt phosphorylated proteins to LPS-induced lung fibroblast proliferation mechanism. Methods: BrdU experiments was performed to evaluate the LPS-induced lung fibroblast proliferation,  RT-PCR and Western Blot analysis were used to analyze the PTEN gene expression and Western blot was performed to analyze Akt phosphorylated protein expression. Results: PTEN mRNA level of the experimental group were significantly lower than the control group (P<0.05 with LPS simulation for 24h and 72h , and there were no significant difference between the experimental group and control group the experimental group and control group (P>0.05 . PTEN protein expression levels of the experimental group were significantly lower than the control group (P<0.05 , at 72h, and PTEN mRNA levels had no significant differences between these of the experimental and control group at 6h,12h and 24h(p>0.05. Phosphorylation Akt protein level (relative to total Akt protein was significantly higer than the control group (P<0.05 at 24h and 72h, and phosphorylation Akt protein levels had no significant differences between these of the experimental and control group at 6h and 12h (P>0.05 .Conclusion: PTEN gene and phosphorylation Akt protein involve in LPS-induced lung fibroblast proliferation signal transduction pathway.

  4. Interferon-inducible MyD88 protein inhibits hepatitis B virus replication

    International Nuclear Information System (INIS)

    Xiong Wei; Wang Xun; Liu Xiaoying; Xiang Li; Zheng Lingjie; Yuan Zhenghong

    2004-01-01

    Myeloid differential primary response protein (MyD88) is a critical component in the signaling cascade through Toll-like receptors (TLRs) and is induced by α interferon (IFN-α). To examine the role of MyD88 in the antiviral activity of IFN-α against hepatitis B virus (HBV), we established MyD88 stably expressing cell lines and studied HBV replication in these lines after transient transfection. The levels of HBV proteins and viral replicative intermediates were effectively reduced in MyD88-expressing cells. A significant reduction of total and cytoplasmic viral RNAs in MyD88 stably expressing cells was also observed. Using a nuclear factor-κB (NF-κB) dependent reporter assay, it was shown that activation of NF-κB was moderately increased in the presence of expression of MyD88, and further significantly increased by co-expression of HBV. These results suggest a novel mechanism for the inhibition of HBV replication by IFN-α via expression of MyD88 protein involving activation of NF-κB signaling pathway and downregulation of viral transcription

  5. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  6. Gene expression in periodontal tissues following treatment

    Directory of Open Access Journals (Sweden)

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  7. Identification and isolation of stimulator of interferon genes (STING): an innate immune sensory and adaptor gene from camelids.

    Science.gov (United States)

    Premraj, A; Aleyas, A G; Nautiyal, B; Rasool, T J

    2013-10-01

    The mechanism by which type I interferon-mediated antiviral response is mounted by hosts against invading pathogen is an intriguing one. Of late, an endoplasmic reticulum transmembrane protein encoded by a gene called stimulator of interferon genes (STING) is implicated in the innate signalling pathways and has been identified and cloned in few mammalian species including human, mouse and pig. In this article, we report the identification of STING from three different species of a highly conserved family of mammals - the camelids. cDNAs encoding the STING of Old World camels - dromedary camel (Camelus dromedarius) and bactrian camel (Camelus bactrianus) and a New World camel - llama (Llama glama) were amplified using conserved primers and RACE. The complete STING cDNA of dromedary camel is 2171 bp long with a 706-bp 5' untranslated regions (UTR), an 1137-bp open reading frame (ORF) and a 328-bp 3' UTR. Sequence and phylogenetic analysis of the ORF of STING from these three camelids indicate high level of similarity among camelids and conservation of critical amino acid residues across different species. Quantitative real-time PCR analysis revealed high levels of STING mRNA expression in blood, spleen, lymph node and lung. The identification of camelid STING will help in better understanding of the role of this molecule in the innate immunity of the camelids and other mammals. © 2013 John Wiley & Sons Ltd.

  8. Association of a Network of Interferon-Stimulated Genes with a Locus Encoding a Negative Regulator of Non-conventional IKK Kinases and IFNB1

    Directory of Open Access Journals (Sweden)

    Saloua Jeidane

    2016-10-01

    Full Text Available Functional genomic analysis of gene expression in mice allowed us to identify a quantitative trait locus (QTL linked in trans to the expression of 190 gene transcripts and in cis to the expression of only two genes, one of which was Ypel5. Most of the trans-expression QTL genes were interferon-stimulated genes (ISGs, and their expression in mouse macrophage cell lines was stimulated in an IFNB1-dependent manner by Ypel5 silencing. In human HEK293T cells, YPEL5 silencing enhanced the induction of IFNB1 by pattern recognition receptors and phosphorylation of TBK1/IKBKE kinases, whereas co-immunoprecipitation experiments revealed that YPEL5 interacted physically with IKBKE. We thus found that the Ypel5 gene (contained in a locus linked to a network of ISGs in mice is a negative regulator of IFNB1 production and innate immune responses that interacts functionally and physically with TBK1/IKBKE kinases.

  9. Fitness Effects of Network Non-Linearity Induced by Gene Expression Noise

    Science.gov (United States)

    Ray, Christian; Cooper, Tim; Balazsi, Gabor

    2012-02-01

    In the non-equilibrium dynamics of growing microbial cells, metabolic enzymes can create non-linearities in metabolite concentration because of non-linear degradation (utilization): an enzyme can saturate in the process of metabolite utilization. Increasing metabolite production past the saturation point then results in an ultrasensitive metabolite response. If the production rate of a metabolite depends on a second enzyme or other protein-mediated process, uncorrelated gene expression noise can thus cause transient metabolite concentration bursts. Such bursts are physiologically unnecessary and may represent a source of selection against the ultrasensitive switch, especially if the fluctuating metabolic intermediate is toxic. Selection may therefore favor correlated gene expression fluctuations for enzymes in the same pathway, such as by same-operon membership in bacteria. Using a modified experimental lac operon system, we are undertaking a combined theoretical-experimental approach to demonstrate that (i) the lac operon has an implicit ultrasensitive switch that we predict is avoided by gene expression correlations induced by same-operon membership; (ii) bacterial growth rates are sensitive to crossing the ultrasensitive threshold. Our results suggest that correlations in intrinsic gene expression noise are exploited by evolution to ameliorate the detrimental effects of nonlinearities in metabolite concentrations.

  10. Subchronic inhalation of soluble manganese induces expression of hypoxia-associated angiogenic genes in adult mouse lungs

    International Nuclear Information System (INIS)

    Bredow, Sebastian; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-01-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE), these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m 3 for 5 days at 6 h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease

  11. Differential induction of Toll-like receptors & type 1 interferons by Sabin attenuated & wild type 1 polioviruses in human neuronal cells.

    Science.gov (United States)

    Mohanty, Madhu C; Deshpande, Jagadish M

    2013-01-01

    Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains) do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV) and Sabin attenuated type 1 poliovirus (Sabin PV) in cultured human neuronal cells. By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs) and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH) infected with Sabin PV and wild PV. Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5) m-RNA in neuronal cells at the beginning of infection (up to 4 h) as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies.

  12. Effect of homeopathic treatment on gene expression in Copenhagen rat tumor tissues.

    Science.gov (United States)

    Thangapazham, Rajesh L; Rajeshkumar, N V; Sharma, Anuj; Warren, Jim; Singh, Anoop K; Ives, John A; Gaddipati, Jaya P; Maheshwari, Radha K; Jonas, Wayne B

    2006-12-01

    Increasing evidence suggests that the inability to undergo apoptosis is an important factor in the development and progression of prostate cancer. Agents that induce apoptosis may inhibit tumor growth and provide therapeutic benefit. In a recent study, the authors found that certain homeopathic treatments produced anticancer effects in an animal model. In this study, the authors examined the immunomodulating and apoptotic effects of these remedies. The authors investigated the effect of a homeopathic treatment regimen containing Conium maculatum, Sabal serrulata, Thuja occidentalis, and a MAT-LyLu Carcinosin nosode on the expression of cytokines and genes that regulate apoptosis. This was assessed in prostate cancer tissues, extracted from animals responsive to these drugs, using ribonuclease protection assay or reverse transcription polymerase chain reaction. There were no significant changes in mRNA levels of the apoptotic genes bax, bcl-2, bcl-x, caspase-1, caspase-2, caspase-3, Fas, FasL, or the cytokines interleukin (IL)-1alpha, IL-1beta, tumor necrosis factor (TNF)-beta, IL-3, IL-4, IL-5, IL-6, IL-10, TNF-alpha, IL-2, and interferon-gamma in prostate tumor and lung metastasis after treatment with homeopathic medicines. This study indicates that treatment with the highly diluted homeopathic remedies does not alter the gene expression in primary prostate tumors or in lung metastasis. The therapeutic effect of homeopathic treatments observed in the in vivo experiments cannot be explained by mechanisms based on distinct alterations in gene expression related to apoptosis or cytokines. Future research should explore subtle modulations in the expression of multiple genes in different biological pathways.

  13. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kiyomiya, Hiroyasu [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Kaneuji, Takeshi [Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Mitsugi, Sho [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Sakurai, Takuma [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Habu, Manabu [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Yoshioka, Izumi [Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Tominaga, Kazuhiro [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); and others

    2015-05-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8.

  14. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    International Nuclear Information System (INIS)

    Kiyomiya, Hiroyasu; Ariyoshi, Wataru; Okinaga, Toshinori; Kaneuji, Takeshi; Mitsugi, Sho; Sakurai, Takuma; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro

    2015-01-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8

  15. Bifidobacterium breve - HT-29 cell line interaction: modulation of TNF-α induced gene expression.

    Science.gov (United States)

    Boesten, R J; Schuren, F H J; Willemsen, L E M; Vriesema, A; Knol, J; De Vos, W M

    2011-06-01

    To provide insight in the molecular basis for intestinal host-microbe interactions, we determined the genome-wide transcriptional response of human intestinal epithelial cells following exposure to cells of Bifidobacterium breve. To select an appropriate test system reflecting inflammatory conditions, the responsiveness to TNF-α was compared in T84, Caco-2 and HT-29 cells. The highest TNF-α response was observed in HT-29 cells and this cell line was selected for exposure to the B. breve strains M-16V, NR246 and UCC2003. After one hour of bacterial pre-incubation followed by two hours of additional TNF-α stimulation, B. breve M-16V (86%), but to a much lesser extent strains NR246 (50%) or UCC2003 (32%), showed a strain-specific reduction of the HT-29 transcriptional response to the inflammatory treatment. The most important functional groups of genes that were transcriptionally suppressed by the presence of B. breve M-16V, were found to be involved in immune regulation and apoptotic processes. About 54% of the TNF-α induced genes were solely suppressed by the presence of B. breve M-16V. These included apoptosis-related cysteine protease caspase 7 (CASP7), interferon regulatory factor 3 (IRF3), amyloid beta (A4) precursor proteinbinding family A member 1 (APBA1), NADPH oxidase (NOX5), and leukemia inhibitory factor receptor (LIFR). The extracellular IL-8 concentration was determined by an immunological assay but did not change significantly, indicating that B. breve M-16V only partially modulates the TNF-α pathway. In conclusion, this study shows that B. breve strains modulate gene expression in HT-29 cells under inflammatory conditions in a strain-specific way.

  16. Altered Gene Expression Profile in Mouse Bladder Cancers Induced by Hydroxybutyl(butylnitrosamine

    Directory of Open Access Journals (Sweden)

    Ruisheng Yao

    2004-09-01

    Full Text Available A variety of genetic alterations and gene expression changes are involved in the pathogenesis of bladder tumor. To explore these changes, oligonucleotide array analysis was performed on RNA obtained from carcinogen-induced mouse bladder tumors and normal mouse bladder epithelia using Affymetrix (Santa Clara, CA MGU74Av2 GeneChips. Analysis yielded 1164 known genes that were changed in the tumors. Certain of the upregulated genes included EGFR-Ras signaling genes, transcription factors, cell cycle-related genes, and intracellular signaling cascade genes. However, downregulated genes include mitogen-activated protein kinases, cell cycle checkpoint genes, Rab subfamily genes, Rho subfamily genes, and SH2 and SH3 domains-related genes. These genes are involved in a broad range of different pathways including control of cell proliferation, differentiation, cell cycle, signal transduction, and apoptosis. Using the pathway visualization tool GenMAPP, we found that several genes, including TbR-l, STAT1, Smad1, Smad2, Jun, NFκB, and so on, in the TGF-β signaling pathway and p115 RhoGEF, RhoGDl3, MEKK4A/MEKK4B, P13KA, and JNK in the G13 signaling pathway were differentially expressed in the tumors. In summary, we have determined the expression profiles of genes differentially expressed during mouse bladder tumorigenesis. Our results suggest that activation of the EGFR-Ras pathway, uncontrolled cell cycle, aberrant transcription factors, and G13 and TGF-β pathways are involved, and the cross-talk between these pathways seems to play important roles in mouse bladder tumorigenesis.

  17. Cytotoxic effects induced by interferongene lipofection through ROS generation and mitochondrial membrane potential disruption in feline mammary carcinoma cells.

    Science.gov (United States)

    Villaverde, Marcela Solange; Targovnik, Alexandra Marisa; Miranda, María Victoria; Finocchiaro, Liliana María Elena; Glikin, Gerardo Claudio

    2016-08-01

    Progress in comparative oncology promises advances in clinical cancer treatments for both companion animals and humans. In this context, feline mammary carcinoma (FMC) cells have been proposed as a suitable model to study human breast cancer. Based on our previous data about the advantages of using type I interferon gene therapy over the respective recombinant DNA derived protein, the present work explored the effects of feline interferongene (fIFNω) transfer on FMC cells. Three different cell variants derived from a single spontaneous highly aggressive FMC tumor were successfully established and characterized. Lipofection of the fIFNω gene displayed a significant cytotoxic effect on the three cell variants. The extent of the response was proportional to ROS generation, mitochondrial membrane potential disruption and calcium uptake. Moreover, a lower sensitivity to the treatment correlated with a higher malignant phenotype. Our results suggest that fIFNω lipofection could offer an alternative approach in veterinary oncology with equal or superior outcome and with less adverse effects than recombinant fIFNω therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A genetic screen identifies interferon-α effector genes required to suppress hepatitis C virus replication.

    Science.gov (United States)

    Fusco, Dahlene N; Brisac, Cynthia; John, Sinu P; Huang, Yi-Wen; Chin, Christopher R; Xie, Tiao; Zhao, Hong; Jilg, Nikolaus; Zhang, Leiliang; Chevaliez, Stephane; Wambua, Daniel; Lin, Wenyu; Peng, Lee; Chung, Raymond T; Brass, Abraham L

    2013-06-01

    Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease. Interferon-α (IFNα) is an important component of anti-HCV therapy; it up-regulates transcription of IFN-stimulated genes, many of which have been investigated for their antiviral effects. However, all of the genes required for the antiviral function of IFNα (IFN effector genes [IEGs]) are not known. IEGs include not only IFN-stimulated genes, but other nontranscriptionally induced genes that are required for the antiviral effect of IFNα. In contrast to candidate approaches based on analyses of messenger RNA (mRNA) expression, identification of IEGs requires a broad functional approach. We performed an unbiased genome-wide small interfering RNA screen to identify IEGs that inhibit HCV. Huh7.5.1 hepatoma cells were transfected with small interfering RNAs incubated with IFNα and then infected with JFH1 HCV. Cells were stained using HCV core antibody, imaged, and analyzed to determine the percent infection. Candidate IEGs detected in the screen were validated and analyzed further. The screen identified 120 previously unreported IEGs. From these, we more fully evaluated the following: asparagine-linked glycosylation 10 homolog (yeast, α-1,2-glucosyltransferase); butyrylcholinesterase; dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2); glucokinase (hexokinase 4) regulator; guanylate cyclase 1, soluble, β 3; MYST histone acetyltransferase 1; protein phosphatase 3 (formerly 2B), catalytic subunit, β isoform; peroxisomal proliferator-activated receptor-γ-DBD-interacting protein 1; and solute carrier family 27 (fatty acid transporter), member 2; and demonstrated that they enabled IFNα-mediated suppression of HCV at multiple steps of its life cycle. Expression of these genes had more potent effects against flaviviridae because a subset was required for IFNα to suppress dengue virus but not influenza A virus. In addition, many of the host genes detected in this

  19. Interferongene polymorphisms at +874T/A loci associated with response to treatment with hepatitis C virus

    Directory of Open Access Journals (Sweden)

    Hosein Norozian

    2016-02-01

    Full Text Available Background: Hepatitis C virus (HCV is a worldwide health problem, which associated with cirrhosis and hepatocellular carcinoma. Interferon-α and Ribavirin are only acceptable treatment regimen for these patients. These regimen are effective only on 50% of the patients. The aim of this study was to evaluate the response to treatment with interferon gamma gene polymorphism in patients with hepatitis C. Materials and Methods: In this study, a cross - sectional study, response or lack of response to treatment in 78 patients treated with interferon gamma gene polymorphism were studied at Shiraz Namazi Hospital from 2011-2012 . DNA samples extract by salt (salting out and interferon gamma gene polymorphism (+874T/A IFN–gamma was evaluate with ARMS-PCR technique. Data were analyzed using EPI Info2000 and SPSS 16 software (chi-square test. Results: Results showed that 39 patients (50% out of 78 studied patients had TT alleles, 11 patients (1.14% had AA alleles and 28 patients (9.39% had TA alleles. 49 patients (62.82% responded to treatment. TT genotype and allele frequencies between the studied groups showed significant differencey (P=0.002. Conclusion: Interferon gamma is a key cytokine in the immune response against hepatitis C. Polymorphism in the interferon-gamma gene is (+874T/AIFN–gamma One of the most important factors interferes with treatment response in hepatitis C patients.

  20. MicroRNA-302a suppresses influenza A virus-stimulated interferon regulatory factor-5 expression and cytokine storm induction.

    Science.gov (United States)

    Chen, Xueyuan; Zhou, Li; Peng, Nanfang; Yu, Haisheng; Li, Mengqi; Cao, Zhongying; Lin, Yong; Wang, Xueyu; Li, Qian; Wang, Jun; She, Yinglong; Zhu, Chengliang; Lu, Mengji; Zhu, Ying; Liu, Shi

    2017-12-29

    During influenza A virus (IAV) infection, cytokine storms play a vital and critical role in clinical outcomes. We have previously reported that microRNA (miR)-302c regulates IAV-induced IFN expression by targeting the 3'-UTR of nuclear factor κB (NF-κB)-inducing kinase. In the current study, we found that miR-302a, another member of the miR-302 cluster, controls the IAV-induced cytokine storm. According to results from cell-based and knockout mouse models, IAV induces a cytokine storm via interferon regulatory factor-5 (IRF-5). We also found that IAV infection up-regulates IRF-5 expression and that IRF-5 in turn promotes IAV replication. Furthermore, we observed that IRF-5 is a direct target of miR-302a, which down-regulated IRF-5 expression by binding its 3'-UTR. Moreover, IAV increased IRF-5 expression by down-regulating miR-302a expression. Interestingly, miR-302a inhibited IAV replication. In IAV-infected patients, miR-302a expression was down-regulated, whereas IRF-5 expression was up-regulated. Taken together, our work uncovers and defines a signaling pathway implicated in an IAV-induced cytokine storm. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. A systems biology analysis of the changes in gene expression via silencing of HPV-18 E1 expression in HeLa cells.

    Science.gov (United States)

    Castillo, Andres; Wang, Lu; Koriyama, Chihaya; Eizuru, Yoshito; Jordan, King; Akiba, Suminori

    2014-10-01

    Previous studies have reported the detection of a truncated E1 mRNA generated from HPV-18 in HeLa cells. Although it is unclear whether a truncated E1 protein could function as a replicative helicase for viral replication, it would still retain binding sites for potential interactions with different host cell proteins. Furthermore, in this study, we found evidence in support of expression of full-length HPV-18 E1 mRNA in HeLa cells. To determine whether interactions between E1 and cellular proteins play an important role in cellular processes other than viral replication, genome-wide expression profiles of HPV-18 positive HeLa cells were compared before and after the siRNA knockdown of E1 expression. Differential expression and gene set enrichment analysis uncovered four functionally related sets of genes implicated in host defence mechanisms against viral infection. These included the toll-like receptor, interferon and apoptosis pathways, along with the antiviral interferon-stimulated gene set. In addition, we found that the transcriptional coactivator E1A-binding protein p300 (EP300) was downregulated, which is interesting given that EP300 is thought to be required for the transcription of HPV-18 genes in HeLa cells. The observed changes in gene expression produced via the silencing of HPV-18 E1 expression in HeLa cells indicate that in addition to its well-known role in viral replication, the E1 protein may also play an important role in mitigating the host's ability to defend against viral infection.

  2. A type I interferon signature characterizes chronic antibody-mediated rejection in kidney transplantation.

    Science.gov (United States)

    Rascio, Federica; Pontrelli, Paola; Accetturo, Matteo; Oranger, Annarita; Gigante, Margherita; Castellano, Giuseppe; Gigante, Maddalena; Zito, Anna; Zaza, Gianluigi; Lupo, Antonio; Ranieri, Elena; Stallone, Giovanni; Gesualdo, Loreto; Grandaliano, Giuseppe

    2015-09-01

    Chronic antibody-mediated rejection (CAMR) represents the main cause of kidney graft loss. To uncover the molecular mechanisms underlying this condition, we characterized the molecular signature of peripheral blood mononuclear cells (PBMCs) and, separately, of CD4(+) T lymphocytes isolated from CAMR patients, compared to kidney transplant recipients with normal graft function and histology. We enrolled 29 patients with biopsy-proven CAMR, 29 stable transplant recipients (controls), and 8 transplant recipients with clinical and histological evidence of interstitial fibrosis/tubular atrophy. Messenger RNA and microRNA profiling of PBMCs and CD4(+) T lymphocytes was performed using Agilent microarrays in eight randomly selected patients per group from CAMR and control subjects. Results were evaluated statistically and by functional pathway analysis (Ingenuity Pathway Analysis) and validated in the remaining subjects. In PBMCs, 45 genes were differentially expressed between the two groups, most of which were up-regulated in CAMR and were involved in type I interferon signalling. In the same patients, 16 microRNAs were down-regulated in CAMR subjects compared to controls: four were predicted modulators of six mRNAs identified in the transcriptional analysis. In silico functional analysis supported the involvement of type I interferon signalling. To further confirm this result, we investigated the transcriptomic profiles of CD4(+) T lymphocytes in an independent group of patients, observing that the activation of type I interferon signalling was a specific hallmark of CAMR. In addition, in CAMR patients, we detected a reduction of circulating BDCA2(+) dendritic cells, the natural type I interferon-producing cells, and their recruitment into the graft along with increased expression of MXA, a type I interferon-induced protein, at the tubulointerstitial and vascular level. Finally, interferon alpha mRNA expression was significantly increased in CAMR compared to control

  3. Cannabidivarin (CBDV suppresses pentylenetetrazole (PTZ-induced increases in epilepsy-related gene expression

    Directory of Open Access Journals (Sweden)

    Naoki Amada

    2013-11-01

    Full Text Available To date, anticonvulsant effects of the plant cannabinoid, cannabidivarin (CBDV, have been reported in several animal models of seizure. However, these behaviourally observed anticonvulsant effects have not been confirmed at the molecular level. To examine changes to epilepsy-related gene expression following chemical convulsant treatment and their subsequent control by phytocannabinoid administration, we behaviourally evaluated effects of CBDV (400 mg/kg, p.o. on acute, pentylenetetrazole (PTZ: 95 mg/kg, i.p.-induced seizures, quantified expression levels of several epilepsy-related genes (Fos, Casp 3, Ccl3, Ccl4, Npy, Arc, Penk, Camk2a, Bdnf and Egr1 by qPCR using hippocampal, neocortical and prefrontal cortical tissue samples before examining correlations between expression changes and seizure severity. PTZ treatment alone produced generalised seizures (median: 5.00 and significantly increased expression of Fos, Egr1, Arc, Ccl4 and Bdnf. Consistent with previous findings, CBDV significantly decreased PTZ-induced seizure severity (median: 3.25 and increased latency to the first sign of seizure. Furthermore, there were correlations between reductions of seizure severity and mRNA expression of Fos, Egr1, Arc, Ccl4 and Bdnf in the majority of brain regions in the CBDV+PTZ treated group. When CBDV treated animals were grouped into CBDV responders (criterion: seizure severity ≤3.25 and non-responders (criterion: seizure severity >3.25, PTZ-induced increases of Fos, Egr1, Arc, Ccl4 and Bdnf expression were suppressed in CBDV responders. These results provide the first molecular confirmation of behaviourally observed effects of the non-psychoactive, anticonvulsant cannabinoid, CBDV, upon chemically-induced seizures and serve to underscore its suitability for clinical development.

  4. HEAT INDUCIBLE EXPRESSION OF ANTIFREEZE PROTEIN GENES FROM THE BEETLES Tenebrio molitor AND Microdera punctipennis.

    Science.gov (United States)

    Li, Jieqiong; Ma, Wenjing; Ma, Ji

    2016-01-01

    Antifreeze proteins (AFPs) play important roles in protecting poikilothermic organisms from cold damage. The expression of AFP genes (afps) is induced by low temperature. However, it is reported that heat can influence the expression of afps in the desert beetle Microdera punctipennis. To further detect whether heat also induce the expression of afps in other insects, and to determine the expression profiling of insect afps at different temperatures. The expression of antifreeze protein genes in the two beetles, Microdera punctipennis and Tenebrio molitor that have quite different living environment, under different temperatures were studied by using real-time quantitative PCR. Mild low temperatures (5~15 degree C), high temperature (38~47 degree C for M. punctipennis, or 37~42 degree C for T. molitor) and temperature difference (10~30 degree C) all stimulated strongly to the expression of AFP genes (Mpafps) in M. punctipennis which lives in the wild filed in desert. The mRNA level of Mpafps after M. punctipennis were exposed to these temperatures for 1h~5h was at least 30-fold of the control at 25 degree C. For T. molitor which is breeding in door with wheat bran all these temperatures stimulated significantly to the expression of Tmafps, while the extent and degree of the temperature stimulation on Tmafps expression were much lower than on Mpafps. After T. molitor were exposed to 5 degree C and 15 degree C for 1h~5h, the mRNA level of Tmafps was over 6-fold and 45-fold of the control at 25 degree C. High temperature (37~42 degree C) for 1h~3h treatments increased Tmafps mRNA level 4.8-fold of the control. Temperature difference of 10 degree C was effective in stimulating Tmafps expression. The expression of insect antifreeze protein genes both in M. punctipennis and T. molitor was induced by heat, suggesting that this phenomenon may be common in insects; the extent and degree of the influence differ in species that have different living conditions. The heat

  5. Identification and expression analysis of the sting gene, a sensor of viral DNA, in common carp Cyprinus carpio.

    Science.gov (United States)

    Cao, X L; Chen, J J; Cao, Y; Nie, G X; Su, J G

    2016-05-01

    Stimulator of interferon gene (sting) was identified and characterized from common carp Cyprinus carpio. The sting messenger (m)RNA encoded a polypeptide of 402 amino acids with a calculated molecular mass of 46·184 kDa and an isoelectronic point of 6·08. The deduced protein of sting contained a signal peptide, three transmembrane motifs in the N-terminal region and four putative motifs (RXR) found in resident endoplasmic reticulum proteins. mRNA expression of sting was present in twelve investigated tissues, and was up-regulated by koi herpesvirus (KHV) in vivo and in vitro. The transcription of sting was altered by poly(I:C) and poly(dT:dA) stimulation in vitro. The findings suggested that sting is an inducible gene involved in innate immunity against DNA- and RNA-derived pathogens. To investigate defence mechanisms in C. carpio development, sting level in embryos, larvae and juvenile fish was monitored following KHV challenge. The sting message was negligible in embryos prior to hatching, but observed at higher transcriptional levels throughout larval and juvenile stages. Investigation showed the mRNA expression profiles of genes encoding for proteins promoting various functions in the interferon pathway, from pattern recognition receptors to antiviral genes, to be significantly induced in all examined organs by in vivo infection with KHV. Following KHV infection, the ifn message was significantly downregulated in spleen, head kidney, brain and hepatopancreas but notably up-regulated in gill, intestine and skin, suggesting that ifn induction might be related to the mucosal immune system and virus anti-ifn mechanisms. These results provided the basis for further research into the role and mechanisms of sting in fishes. © 2016 The Fisheries Society of the British Isles.

  6. Induced expression of mRNA for IL-5, IL-6, TNF-alpha, MIP-2 and IFN-gamma in immunologically activated rat peritoneal mast cells: inhibition by dexamethasone and cyclosporin A.

    Science.gov (United States)

    Williams, C M; Coleman, J W

    1995-10-01

    We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs.

  7. Differential gene expression before and after ionizing radiation of subcutaneous fibroblasts identifies breast cancer patients resistant to radiation-induced fibrosis

    International Nuclear Information System (INIS)

    Alsner, Jan; Rodningen, Olaug K.; Overgaard, Jens

    2007-01-01

    Background and purpose: Differentially gene expression between patients with either very low or very high risk of radiation-induced fibrosis (RIF) in patient-derived fibroblasts after irradiation has previously been reported. In the present study, we are investigating the robustness of radiation-induced changes in gene expression in fibroblasts, whether differential expression is more pronounced when looking at the fold induction levels, taking into account the differences in background expression levels between patients, and whether there is a linear correlation between individual risk of RIF and changes in radiation-induced gene expression in fibroblasts. Material and methods: Gene expression was analysed by quantitative real-time PCR before and after a fractionated scheme with 3 x 3.5 Gy/3 days in fibroblasts derived from 26 patients with breast cancer treated with post-mastectomy radiotherapy. Results: Robust radiation-induced changes in gene expression were observed, with differential gene expression between low and high risk patients being most pronounced for the fold induction level ('after' value divided by 'before' value for each patient). When including patients with intermediate risk, there was no linear correlation between individual risk of RIF and differential expression of the genes investigated. Rather, differential gene expression could divide patients into two clearly separated groups, a larger, sensitive group and a smaller resistant group. Conclusions: Differential gene expression in irradiated fibroblasts might be an important tool in the identification of differences in the genetic background between patients with variable risk of RIF, and in the identification of new targets for prevention and intervention of the fibrotic process

  8. Interferons in Sjögren’s syndrome: genes, mechanisms, and effects

    Directory of Open Access Journals (Sweden)

    He eLi

    2013-09-01

    Full Text Available Sjögren’s syndrome (SS is a common, progressive autoimmune exocrinopathy distinguished by dry eyes and mouth and affects ~0.7% of European population. Overexpression of transcripts induced by interferons (IFN, termed as an ‘IFN signature’, has been found in SS patients. Four microarray studies have been published in SS that identified dysregulated genes within type I IFN signaling in either salivary glands or peripheral blood of SS patients. The mechanism of this type I IFN activation is still obscure, but several possible explanations have been proposed, including virus infection-initiated and immune-complex-initiated type I IFN production by plasmacytoid dendritic cells (pDCs. Genetic predisposition to increased type I IFN signaling is supported by candidate gene studies showing evidence for association of variants within IFN-related genes. Once activated, IFN signaling may contribute to numerous aspects of SS pathophysiology, including lymphocyte infiltration into exocrine glands, autoantibody production, and glandular cell apoptosis. Thus, dysregulation of IFN pathways is an important feature that can be potentially used as a serum biomarker for diagnosis and targeting of new treatments in this complex autoimmune disease.

  9. Improvement of In Vivo Expression of Genes Delivered by Self-Amplifying RNA Using Vaccinia Virus Immune Evasion Proteins

    Science.gov (United States)

    Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C.; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2017-01-01

    Among nucleic acid–based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned. PMID:28877647

  10. Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes.

    Science.gov (United States)

    Martin, Guiomar; Soy, Judit; Monte, Elena

    2016-01-01

    Members of the PIF quartet (PIFq; PIF1, PIF3, PIF4, and PIF5) collectively contribute to induce growth in Arabidopsis seedlings under short day (SD) conditions, specifically promoting elongation at dawn. Their action involves the direct regulation of growth-related and hormone-associated genes. However, a comprehensive definition of the PIFq-regulated transcriptome under SD is still lacking. We have recently shown that SD and free-running (LL) conditions correspond to "growth" and "no growth" conditions, respectively, correlating with greater abundance of PIF protein in SD. Here, we present a genomic analysis whereby we first define SD-regulated genes at dawn compared to LL in the wild type, followed by identification of those SD-regulated genes whose expression depends on the presence of PIFq. By using this sequential strategy, we have identified 349 PIF/SD-regulated genes, approximately 55% induced and 42% repressed by both SD and PIFq. Comparison with available databases indicates that PIF/SD-induced and PIF/SD-repressed sets are differently phased at dawn and mid-morning, respectively. In addition, we found that whereas rhythmicity of the PIF/SD-induced gene set is lost in LL, most PIF/SD-repressed genes keep their rhythmicity in LL, suggesting differential regulation of both gene sets by the circadian clock. Moreover, we also uncovered distinct overrepresented functions in the induced and repressed gene sets, in accord with previous studies in other examined PIF-regulated processes. Interestingly, promoter analyses showed that, whereas PIF/SD-induced genes are enriched in direct PIF targets, PIF/SD-repressed genes are mostly indirectly regulated by the PIFs and might be more enriched in ABA-regulated genes.

  11. Role of promoter element in c-mpl gene expression induced by TPO.

    Science.gov (United States)

    Sunohara, Masataka; Morikawa, Shigeru; Fuse, Akira; Sato, Iwao

    2013-01-01

    Thrombopoietin (TPO) and its receptor, c-Mpl, play the crucial role for the development of megakaryocyte and considered to regulate megakaryocytopoiesis. Previously we reported that TPO increased the c-mpl promoter activity determined by a transient expression system using a vector containing the luciferase gene as a reporter and the expression of the c-mpl gene is modulated by transcription through a protein kinase C (PKC)-dependent pathway in the megakaryoblastic cells. In this research, to elucidate the required elements in c-mpl promoter, the promoter activity of the deletion constructs and site-directed mutagenesis were measured by a transient transfection assay system. Destruction of -77GATA in c-mpl promoter decreased the activity by 22.8%. Our study elucidated that -77GATA involved in TPO-induced c-mpl gene expression in a human megakaryoblastic cell line, CMK.

  12. Differential gene expression before and after ionizing radiation of subcutaneous fibroblasts identifies breast cancer patients resistant to radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Alsner, Jan; Rødningen, Olaug K.; Overgaard, Jens

    2007-01-01

    BACKGROUND AND PURPOSE: Differentially gene expression between patients with either very low or very high risk of radiation-induced fibrosis (RIF) in patient-derived fibroblasts after irradiation has previously been reported. In the present study, we are investigating the robustness of radiation...... and changes in radiation-induced gene expression in fibroblasts. MATERIAL AND METHODS: Gene expression was analysed by quantitative real-time PCR before and after a fractionated scheme with 3x3.5Gy/3 days in fibroblasts derived from 26 patients with breast cancer treated with post-mastectomy radiotherapy....... RESULTS: Robust radiation-induced changes in gene expression were observed, with differential gene expression between low and high risk patients being most pronounced for the fold induction level ('after' value divided by 'before' value for each patient). When including patients with intermediate risk...

  13. Comparison of Nasal Epithelial Smoking-Induced Gene Expression on Affymetrix Exon 1.0 and Gene 1.0 ST Arrays

    Directory of Open Access Journals (Sweden)

    Xiaoling Zhang

    2013-01-01

    Full Text Available We have previously defined the impact of tobacco smoking on nasal epithelium gene expression using Affymetrix Exon 1.0 ST arrays. In this paper, we compared the performance of the Affymetrix GeneChip Human Gene 1.0 ST array with the Human Exon 1.0 ST array for detecting nasal smoking-related gene expression changes. RNA collected from the nasal epithelium of five current smokers and five never smokers was hybridized to both arrays. While the intersample correlation within each array platform was relatively higher in the Gene array than that in the Exon array, the majority of the genes most changed by smoking were tightly correlated between platforms. Although neither array dataset was powered to detect differentially expressed genes (DEGs at a false discovery rate (FDR <0.05, we identified more DEGs than expected by chance using the Gene ST array. These findings suggest that while both platforms show a high degree of correlation for detecting smoking-induced differential gene expression changes, the Gene ST array may be a more cost-effective platform in a clinical setting for gene-level genomewide expression profiling and an effective tool for exploring the host response to cigarette smoking and other inhaled toxins.

  14. Swine interferon-induced transmembrane protein, sIFITM3, inhibits foot-and-mouth disease virus infection in vitro and in vivo.

    Science.gov (United States)

    Xu, Jinfang; Qian, Ping; Wu, Qunfeng; Liu, Shasha; Fan, Wenchun; Zhang, Keshan; Wang, Rong; Zhang, Huawei; Chen, Huanchun; Li, Xiangmin

    2014-09-01

    The interferon-induced transmembrane protein 3 (IFITM3) is a widely expressed potent antiviral effector of the host innate immune system. It restricts a diverse group of pathogenic, enveloped viruses, by interfering with endosomal fusion. In this report, the swine IFITM3 (sIFITM3) gene was cloned. It shares the functionally conserved CD225 domain and multiple critical amino acid residues (Y19, F74, F77, R86 and Y98) with its human ortholog, which are essential for antiviral activity. Ectopic expression of sIFITM3 significantly inhibited non-enveloped foot-and-mouth disease virus (FMDV) infection in BHK-21 cells. Furthermore, sIFITM3 blocked FMDV infection at early steps in the virus life cycle by disrupting viral attachment to the host cell surface. Importantly, inoculation of 2-day-old suckling mice with a plasmid expressing sIFITM3 conferred protection against lethal challenge with FMDV. These results suggest that sIFITM3 is a promising antiviral agent and that can safeguard the host from infection with FMDV. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Differential Gene Expression Patterns in Chicken Cardiomyocytes during Hydrogen Peroxide-Induced Apoptosis.

    Science.gov (United States)

    Wan, Chunyun; Xiang, Jinmei; Li, Youwen; Guo, Dingzong

    2016-01-01

    Hydrogen peroxide (H2O2) is both an exogenous and endogenous cytotoxic agent that can reliably induce apoptosis in numerous cell types for studies on apoptosis signaling pathways. However, little is known of these apoptotic processes in myocardial cells of chicken, a species prone to progressive heart failure. Sequencing of mRNA transcripts (RNA-Seq) allows for the identification of differentially expressed genes under various physiological and pathological conditions to elucidate the molecular pathways involved, including cellular responses to exogenous and endogenous toxins. We used RNA-seq to examine genes differentially expressed during H2O2-induced apoptosis in primary cultures of embryonic chicken cardiomyocytes. Following control or H2O2 treatment, RNA was extracted and sequencing performed to identify novel transcripts up- or downregulated in the H2O2 treatment group and construct protein-protein interaction networks. Of the 19,268 known and 2,160 novel transcripts identified in both control and H2O2 treatment groups, 4,650 showed significant differential expression. Among them, 55.63% were upregulated and 44.37% downregulated. Initiation of apoptosis by H2O2 was associated with upregulation of caspase-8, caspase-9, and caspase-3, and downregulation of anti-apoptotic genes API5 and TRIA1. Many other differentially expressed genes were associated with metabolic pathways (including 'Fatty acid metabolism', 'Alanine, aspartate, and glutamate metabolism', and 'Biosynthesis of unsaturated fatty acids') and cell signaling pathways (including 'PPAR signaling pathway', 'Adipocytokine signaling pathway', 'TGF-beta signaling pathway', 'MAPK signaling pathway', and 'p53 signaling pathway'). In chicken cardiomyocytes, H2O2 alters the expression of numerous genes linked to cell signaling and metabolism as well as genes directly associated with apoptosis. In particular, H2O2 also affects the biosynthesis and processing of proteins and unsaturated fatty acids. These

  16. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway.

    Science.gov (United States)

    Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A; Pfeffer, Lawrence M

    2017-12-22

    Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro , and inhibited GBM tumorigenesis in vivo . Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro , and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway.

  17. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous Nepenthes plants.

    Science.gov (United States)

    Yilamujiang, Ayufu; Reichelt, Michael; Mithöfer, Axel

    2016-08-01

    Carnivorous Nepenthes plants use modified leaves forming pitfall traps to capture and digest prey, mainly insects, for additional nutrient supply. These traps, so called pitchers, contain a plant-derived fluid composed of many hydrolytic enzymes and defence-related proteins. In this study, the prey-induced induction of corresponding genes of those proteins and a role for phytohormones in this process was analysed. Tissue from insect prey-fed, chitin- and phytohormone-challenged pitchers was harvested and analysed for selected gene expressions by a quantitative PCR technique. Phytohormone levels were determined by LC-MS/MS. Nepenthesin proteolytic activities were measured in the digestive fluid using a fluorescence substrate. Insect prey in the pitchers induced the accumulation of phytohormones such as jasmonates as well as the transcription of studied genes encoding a chitinase 3 and a protease (nepenthesin I), whereas a defence-related protein (PR-1) gene was not induced. Treatment with chitin as a component of the insects' exoskeleton triggered the accumulation of jasmonates, the expression of nepenthesin I and chitinase 3 genes similar to jasmonic acid treatment, and induced protease activity in the fluid. All detectable responses were slowly induced. The results suggest that upon insect prey catch a sequence of signals is initiated: (1) insect-derived chitin, (2) jasmonate as endogenous phytohormone signal, (3) the induction of digestive gene expression and (4) protein expression. This resembles a similar hierarchy of events as described from plant pathogen/herbivore interactions, supporting the idea that carnivory evolved from plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Intratumoral Immunization by p19Arf and InterferonGene Transfer in a Heterotopic Mouse Model of Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    João Paulo Portela Catani

    2016-12-01

    Full Text Available Therapeutic strategies that act by eliciting and enhancing antitumor immunity have been clinically validated as an effective treatment modality but may benefit from the induction of both cell death and immune activation as primary stimuli. Using our AdRGD-PG adenovector platform, we show here for the first time that in situ gene transfer of p19Arf and interferon-β (IFNβ in the LLC1 mouse model of lung carcinoma acts as an immunotherapy. Although p19Arf is sufficient to induce cell death, only its pairing with IFNβ significantly induced markers of immunogenic cell death. In situ gene therapy with IFNβ, either alone or in combination with p19Arf, could retard tumor progression, but only the combined treatment was associated with a protective immune response. Specifically in the case of combined intratumoral gene transfer, we identified 167 differentially expressed genes when using microarray to evaluate tumors that were treated in vivo and confirmed the activation of CCL3, CXCL3, IL1α, IL1β, CD274, and OSM, involved in immune response and chemotaxis. Histologic evaluation revealed significant tumor infiltration by neutrophils, whereas functional depletion of granulocytes ablated the antitumor effect of our approach. The association of in situ gene therapy with cisplatin resulted in synergistic elimination of tumor progression. In all, in situ gene transfer with p19Arf and IFNβ acts as an immunotherapy involving recruitment of neutrophils, a desirable but previously untested outcome, and this approach may be allied with chemotherapy, thus providing significant antitumor activity and warranting further development for the treatment of lung carcinoma.

  19. Using PCR to Target Misconceptions about Gene Expression

    Directory of Open Access Journals (Sweden)

    Leslie K. Wright

    2013-02-01

    Full Text Available We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA and gene expression (mRNA/protein and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression.

  20. Cloning and expression analysis of innate immune genes from red sea bream to assess different susceptibility to megalocytivirus infection.

    Science.gov (United States)

    Jin, J W; Kim, Y C; Hong, S; Kim, M S; Jeong, J B; Jeong, H D

    2017-04-01

    As suggested by the Office International des Epizooties (OIE), fishes belonging to the genus Oplegnathus are more sensitive to megalocytivirus infection than other fish species including red sea bream (Pagrus major). To assess the roles of the innate immune response to these different susceptibilities, we cloned the genes encoding inflammatory factors including IL-8 and COX-2, and the antiviral factor like Mx from red sea bream for the first time and performed phylogenetic and structural analysis. Analysed expression levels of IL-1β, IL-8 and COX-2 and the antiviral factor like Mx genes performed with in vivo challenge experiment showed no difference in inflammatory gene expression or respiratory burst activity between red sea bream and rock bream (Oplegnathus fasciatus). However, the Mx gene expression levels in red sea bream were markedly higher than those in rock bream, suggesting the importance of type I interferon (IFN)-induced proteins, particularly Mx, during megalocytivirus infection, rather than inflammation-related genes. The in vitro challenge experiments using embryonic primary cultures derived from both fish species showed no difference in cytopathic effects (CPE), viral replication profiles, and inflammatory and Mx gene expression pattern between the two fish species. © 2016 John Wiley & Sons Ltd.

  1. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy.

    Science.gov (United States)

    Blakely, Collin M; Stoddard, Alexander J; Belka, George K; Dugan, Katherine D; Notarfrancesco, Kathleen L; Moody, Susan E; D'Cruz, Celina M; Chodosh, Lewis A

    2006-06-15

    Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.

  2. Low pH induces co-ordinate regulation of gene expression in oesophageal cells.

    Science.gov (United States)

    Duggan, Shane P; Gallagher, William M; Fox, Edward J P; Abdel-Latif, Mohammed M; Reynolds, John V; Kelleher, Dermot

    2006-02-01

    The development of gastro-oesophageal reflux disease (GORD) is known to be a causative risk factor in the evolution of adenocarcinoma of the oesophagus. The major component of this reflux is gastric acid. However, the impact of low pH on gene expression has not been extensively studied in oesophageal cells. This study utilizes a transcriptomic and bioinformatic approach to assess regulation of gene expression in response to low pH. In more detail, oesophageal adenocarcinoma cell lines were exposed to a range of pH environments. Affymetrix microarrays were used for gene-expression analysis and results were validated using cycle limitation and real-time RT-PCR analysis, as well as northern and western blotting. Comparative promoter transcription factor binding site (TFBS) analysis (MatInspector) of hierarchically clustered gene-expression data was employed to identify the elements which may co-ordinately regulate individual gene clusters. Initial experiments demonstrated maximal induction of EGR1 gene expression at pH 6.5. Subsequent array experimentation revealed significant induction of gene expression from such functional categories as DNA damage response (EGR1-4, ATF3) and cell-cycle control (GADD34, GADD45, p57). Changes in expression of EGR1, EGR3, ATF3, MKP-1, FOSB, CTGF and CYR61 were verified in separate experiments and in a variety of oesophageal cell lines. TFBS analysis of promoters identified transcription factors that may co-ordinately regulate gene-expression clusters, Cluster 1: Oct-1, AP4R; Cluster 2: NF-kB, EGRF; Cluster 3: IKRS, AP-1F. Low pH has the ability to induce genes and pathways which can provide an environment suitable for the progression of malignancy. Further functional analysis of the genes and clusters identified in this low pH study is likely to lead to new insights into the pathogenesis and therapeutics of GORD and oesophageal cancer.

  3. Differential induction of Toll-like receptors & type 1 interferons by Sabin attenuated & wild type 1 polioviruses in human neuronal cells

    Directory of Open Access Journals (Sweden)

    Madhu C Mohanty

    2013-01-01

    Full Text Available Background & objectives: Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV and Sabin attenuated type 1 poliovirus (Sabin PV in cultured human neuronal cells. Methods: By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH infected with Sabin PV and wild PV. Results: Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5 m-RNA in neuronal cells at the beginning of infection (up to 4 h as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Interpretation & conclusions: Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies.

  4. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Hye; Shin, Bo Yeon; Han, Jae Yun; Kim, Mi Gwang; Wi, Ji Eun [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Kim, Young Woo; Cho, Il Je; Kim, Sang Chan [Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715 (Korea, Republic of); Shin, Sang Mi [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of)

    2014-01-15

    Isorhamentin is a 3′-O-methylated metabolite of quercetin, and has been reported to have anti-inflammatory and anti-proliferative effects. However, the effects of isorhamnetin on Nrf2 activation and on the expressions of its downstream genes in hepatocytes have not been elucidated. Here, we investigated whether isorhamnetin has the ability to activate Nrf2 and induce phase II antioxidant enzyme expression, and to determine the protective role of isorhamnetin on oxidative injury in hepatocytes. In HepG2 cells, isorhamnetin increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, and consistently, increased antioxidant response element (ARE) reporter gene activity and the protein levels of hemeoxygenase (HO-1) and of glutamate cysteine ligase (GCL), which resulted in intracellular GSH level increases. The specific role of Nrf2 in isorhamnetin-induced Nrf2 target gene expression was verified using an ARE-deletion mutant plasmid and Nrf2-knockout MEF cells. Deletion of the ARE in the promoter region of the sestrin2 gene, which is recently identified as the Nrf2 target gene by us, abolished the ability of isorhamnetin to increase luciferase activity. In addition, Nrf2 deficiency completely blocked the ability of isorhamnetin to induce HO-1 and GCL. Furthermore, isorhamnetin pretreatment blocked t-BHP-induced ROS production and reversed GSH depletion by t-BHP and consequently, due to reduced ROS levels, decreased t-BHP-induced cell death. In addition isorhamnetin increased ERK1/2, PKCδ and AMPK phosphorylation. Finally, we showed that Nrf2 deficiency blocked the ability of isorhamnetin to protect cells from injury induced by t-BHP. Taken together, our results demonstrate that isorhamnetin is efficacious in protecting hepatocytes against oxidative stress by Nrf2 activation and in inducing the expressions of its downstream genes. - Highlights: • We investigated the effect of isorhamnetin on Nrf2 activation. • Isorhamnetin increased Nrf2

  5. Interferon induction by adenoviruses

    Energy Technology Data Exchange (ETDEWEB)

    Beladi, I; Bakay, M; Pusztai, R; Mucsi, I; Tarodi, B [University Medical School, Szeged (Hungary). Inst. of Microbiology

    1979-02-01

    All human, simian, bovine and avian adenovirus types tested so far and the canine hepatitis virus induce interferon production in chick cells. This finding indicated this property to be characteristic for viruses belonging to the adenovirus group. Trypsin treatment, which had no effect upon the infectivity, diminished or eliminated the interferon-inducing abilities of crude adenoviruses, and thus the need for a trypsin-sensitive protein in interferon induction was suggested. T antigen and interferon were formed simultaneously in chick embryo fibroblast cells infected with human adenovirus type 12, and there-fore the adenovirus-specific T antigen was resitant to the action of endogenous interferon synthetized by the same cells. In chicks inoculated with human types, the appearance of interferon was biphasic: an 'early' and a 'late' interferon could be demonstrated with maximum titre 4 and 10 hr, respectively, after virus infection. In chicks infected with adenoviruses, first interferon production and then a decreased primary immune response to sheep red blood cells was observed. It was assumed that in adenovirus-infected chicks the interferon produced by viral stimulus resulted in a transient immunosuppression.

  6. Differential gene expression in liver tissues of streptozotocin-induced diabetic rats in response to resveratrol treatment.

    Directory of Open Access Journals (Sweden)

    Gökhan Sadi

    Full Text Available This study was conducted to elucidate the genome-wide gene expression profile in streptozotocin induced diabetic rat liver tissues in response to resveratrol treatment and to establish differentially expressed transcription regulation networks with microarray technology. In addition to measure the expression levels of several antioxidant and detoxification genes, real-time quantitative polymerase chain reaction (qRT-PCR was also used to verify the microarray results. Moreover, gene and protein expressions as well as enzymatic activities of main antioxidant enzymes; superoxide dismutase (SOD-1 and SOD-2 and glutathione S-transferase (GST-Mu were analyzed. Diabetes altered 273 genes significantly and 90 of which were categorized functionally which suggested that genes in cellular catalytic activities, oxidation-reduction reactions, co-enzyme binding and terpenoid biosynthesis were dominated by up-regulated expression in diabetes. Whereas; genes responsible from cellular carbohydrate metabolism, regulation of transcription, cell signal transduction, calcium independent cell-to-cell adhesion and lipid catabolism were down-regulated. Resveratrol increased the expression of 186 and decreased the expression of 494 genes in control groups. While cellular and extracellular components, positive regulation of biological processes, biological response to stress and biotic stimulants, and immune response genes were up-regulated, genes responsible from proteins present in nucleus and nucleolus were mainly down-regulated. The enzyme assays showed a significant decrease in diabetic SOD-1 and GST-Mu activities. The qRT-PCR and Western-blot results demonstrated that decrease in activity is regulated at gene expression level as both mRNA and protein expressions were also suppressed. Resveratrol treatment normalized the GST activities towards the control values reflecting a post-translational effect. As a conclusion, global gene expression in the liver tissues is

  7. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chaohui, E-mail: zuochaohui@vip.sina.com [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Qiu, Xiaoxin [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Liu, Nianli; Yang, Darong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Xia, Man [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Liu, Jingshi [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Wang, Xiaohong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); and others

    2015-05-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4',6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors. - Highlights: ●The cytotoxic effect of TRAIL on a developed HCC HLCZ01 cells infected with HBV. ●IFN-α and celecoxib induced apoptosis in HLCZ01 cells infected with HBV. ●The combined regime reduced the growth of xenotransplanted HCCs in nude mice model.

  8. Predator-induced defences in Daphnia pulex: Selection and evaluation of internal reference genes for gene expression studies with real-time PCR

    Directory of Open Access Journals (Sweden)

    Gilbert Don

    2010-06-01

    Full Text Available Abstract Background The planktonic microcrustacean Daphnia pulex is among the best-studied animals in ecological, toxicological and evolutionary research. One aspect that has sustained interest in the study system is the ability of D. pulex to develop inducible defence structures when exposed to predators, such as the phantom midge larvae Chaoborus. The available draft genome sequence for D. pulex is accelerating research to identify genes that confer plastic phenotypes that are regularly cued by environmental stimuli. Yet for quantifying gene expression levels, no experimentally validated set of internal control genes exists for the accurate normalization of qRT-PCR data. Results In this study, we tested six candidate reference genes for normalizing transcription levels of D. pulex genes; alpha tubulin (aTub, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, TATA box binding protein (Tbp syntaxin 16 (Stx16, X-box binding protein 1 (Xbp1 and CAPON, a protein associated with the neuronal nitric oxide synthase, were selected on the basis of an earlier study and from microarray studies. One additional gene, a matrix metalloproteinase (MMP, was tested to validate its transcriptional response to Chaoborus, which was earlier observed in a microarray study. The transcription profiles of these seven genes were assessed by qRT-PCR from RNA of juvenile D. pulex that showed induced defences in comparison to untreated control animals. We tested the individual suitability of genes for expression normalization using the programs geNorm, NormFinder and BestKeeper. Intriguingly, Xbp1, Tbp, CAPON and Stx16 were selected as ideal reference genes. Analyses on the relative expression level using the software REST showed that both classical housekeeping candidate genes (aTub and GAPDH were significantly downregulated, whereas the MMP gene was shown to be significantly upregulated, as predicted. aTub is a particularly ill suited reference gene because five copies are

  9. Hepatic transcriptome analysis of hepatitis C virus infection in chimpanzees defines unique gene expression patterns associated with viral clearance.

    Directory of Open Access Journals (Sweden)

    Santosh Nanda

    Full Text Available Hepatitis C virus infection leads to a high rate of chronicity. Mechanisms of viral clearance and persistence are still poorly understood. In this study, hepatic gene expression analysis was performed to identify any molecular signature associated with the outcome of hepatitis C virus (HCV infection in chimpanzees. Acutely HCV-infected chimpanzees with self-limited infection or progression to chronicity were studied. Interferon stimulated genes were induced irrespective of the outcome of infection. Early induction of a set of genes associated with cell proliferation and immune activation was associated with subsequent viral clearance. Specifically, two of the genes: interleukin binding factor 3 (ILF3 and cytotoxic granule-associated RNA binding protein (TIA1, associated with robust T-cell response, were highly induced early in chimpanzees with self-limited infection. Up-regulation of genes associated with CD8+ T cell response was evident only during the clearance phase of the acute self-limited infection. The induction of these genes may represent an initial response of cellular injury and proliferation that successfully translates to a "danger signal" leading to induction of adaptive immunity to control viral infection. This primary difference in hepatic gene expression between self-limited and chronic infections supports the concept that successful activation of HCV-specific T-cell response is critical in clearance of acute HCV infection.

  10. Engineering an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species.

    Science.gov (United States)

    Liu, Yanbin; Koh, Chong Mei John; Ngoh, Si Te; Ji, Lianghui

    2015-10-26

    Rhodosporidium and Rhodotorula are two genera of oleaginous red yeast with great potential for industrial biotechnology. To date, there is no effective method for inducible expression of proteins and RNAs in these hosts. We have developed a luciferase gene reporter assay based on a new codon-optimized LUC2 reporter gene (RtLUC2), which is flanked with CAR2 homology arms and can be integrated into the CAR2 locus in the nuclear genome at >90 % efficiency. We characterized the upstream DNA sequence of a D-amino acid oxidase gene (DAO1) from R. toruloides ATCC 10657 by nested deletions. By comparing the upstream DNA sequences of several putative DAO1 homologs of Basidiomycetous fungi, we identified a conserved DNA motif with a consensus sequence of AGGXXGXAGX11GAXGAXGG within a 0.2 kb region from the mRNA translation initiation site. Deletion of this motif led to strong mRNA transcription under non-inducing conditions. Interestingly, DAO1 promoter activity was enhanced about fivefold when the 108 bp intron 1 was included in the reporter construct. We identified a conserved CT-rich motif in the intron with a consensus sequence of TYTCCCYCTCCYCCCCACWYCCGA, deletion or point mutations of which drastically reduced promoter strength under both inducing and non-inducing conditions. Additionally, we created a selection marker-free DAO1-null mutant (∆dao1e) which displayed greatly improved inducible gene expression, particularly when both glucose and nitrogen were present in high levels. To avoid adding unwanted peptide to proteins to be expressed, we converted the original translation initiation codon to ATC and re-created a translation initiation codon at the start of exon 2. This promoter, named P DAO1-in1m1 , showed very similar luciferase activity to the wild-type promoter upon induction with D-alanine. The inducible system was tunable by adjusting the levels of inducers, carbon source and nitrogen source. The intron 1-containing DAO1 promoters coupled with a DAO1 null

  11. Interferon Induced Focal Segmental Glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Yusuf Kayar

    2016-01-01

    Full Text Available Behçet’s disease is an inflammatory disease of unknown etiology which involves recurring oral and genital aphthous ulcers and ocular lesions as well as articular, vascular, and nervous system involvement. Focal segmental glomerulosclerosis (FSGS is usually seen in viral infections, immune deficiency syndrome, sickle cell anemia, and hyperfiltration and secondary to interferon therapy. Here, we present a case of FSGS identified with kidney biopsy in a patient who had been diagnosed with Behçet’s disease and received interferon-alpha treatment for uveitis and presented with acute renal failure and nephrotic syndrome associated with interferon.

  12. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    International Nuclear Information System (INIS)

    Chandrasekharan, Sabarinath; Kandasamy, Krishna Kumar; Dayalan, Pavithra; Ramamurthy, Viraragavan

    2013-01-01

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  13. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekharan, Sabarinath, E-mail: csab@bio.psgtech.ac.in [Department of Biotechnology, PSG College of Technology, Coimbatore 641004 (India); Kandasamy, Krishna Kumar [Max Planck Institute for Biology of Ageing, Cologne (Germany); Dayalan, Pavithra; Ramamurthy, Viraragavan [Department of Biotechnology, PSG College of Technology, Coimbatore 641004 (India)

    2013-08-02

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  14. Type I Interferon in the Pathogenesis of Lupus

    Science.gov (United States)

    Crow, Mary K.

    2014-01-01

    Investigations of patients with systemic lupus erythematosus (SLE) have applied insights from studies of the innate immune response to define type I interferon (IFN-I), with IFN-α the dominant mediator, as central to the pathogenesis of this prototype systemic autoimmune disease. Genetic association data identify regulators of nucleic acid degradation and components of TLR-independent, endosomal TLR-dependent, and IFN-I signaling pathways as contributors to lupus disease susceptibility. Together with a gene expression signature characterized by IFNI-induced gene transcripts in lupus blood and tissue, those data support the conclusion that many of the immunologic and pathologic features of this disease are a consequence of a persistent self-directed immune reaction driven by IFN-I and mimicking a sustained anti-virus response. This expanding knowledge of the role of IFN-I and the innate immune response suggests candidate therapeutic targets that are being tested in lupus patients. PMID:24907379

  15. Poly(ADP-ribose) polymerase inhibitors suppress UV-induced human immunodeficiency virus type 1 gene expression at the posttranscriptional level

    International Nuclear Information System (INIS)

    Yamagoe, S.; Kohda, T.; Oishi, M.

    1991-01-01

    Gene expression of human immunodeficiency virus type 1 (HIV-1) is induced not only by trans activation mediated through a gene product (tat) encoded by the virus but also by treatment of virus-carrying cells with DNA-damaging agents such as UV light. Employing an artificially constructed DNA in which the chloramphenicol acetyltransferase gene was placed under the control of the HIV-1 long terminal repeat, we analyzed the induction process in HeLa cells and found that inhibitors of poly(ADP-ribose) polymerase suppressed UV-induced HIV-1 gene expression but not tat-mediated expression. We also found that suppression occurs at the posttranscriptional level. These results indicate that HIV-1 gene expression is activated by at least two different mechanisms, one of which involves poly-ADP ribosylation. A possible new role of poly-ADP ribosylation in the regulation of specific gene expression is also discussed

  16. [Adenovirus-mediated canine interferon-gamma expression and its antiviral activity against canine parvovirus].

    Science.gov (United States)

    Zhang, Kao; Jin, Huijun; Zhong, Fei; Li, Xiujin; Neng, Changai; Chen, Huihui; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To construct recombinant adenovirus containing canine interferon-gamma (cIFN-gamma) gene and to investigate its antiviral activity against canine parvovirus in Madin-Darby canine kidney cells (MDCK). [Methods] The cIFN-gamma gene was inserted into adenovirus shuttle plasmid to construct pShuttle3-cIFN-gamma expression vector, from which the cIFN-gamma expression cassette was transferred into the adenovirus genomic plasmid pAdeno-X by specific restriction sites to generate recombinant adenovirus genomic plasmid pAd-cIFN-gamma. The pAd-cIFN-gamma plasmid was linearized by digestion and transfected into human embryonic kidney (HEK) 293T cells to generate the replication-defective cIFN-gamma recombinant adenovirus (Ad-cIFN-gamma). To analyze its anti-canine parvovirus activity, the MDCK cells were pre-infected by Ad-cIFN-gamma recombinant adenovirus, and then infected by canine parvovirus. The antiviral activity of the Ad-cIFN-gamma recombinant adenovirus against parvovirus was analyzed. The recombinant adenovirus containing cIFN-gamma gene was constructed by the ligation method. The recombinant adenovirus could mediates recombinant cIFN-gamma secretory expression in MDCK cells. The Ad-cIFN-gamma recombinant adenovirus could significantly inhibit canine parvovirus replication in MDCK cells pre-infected with the recombinant adenovirus. These results indicate that the Ad-cIFN-gamma recombinant adenovirus has the potent antiviral activity against canine parvovirus. The Ad-cIFN-gamma recombinant adenovirus was successfully constructed by the ligation method and possessed a powerful antiviral activity against canine parvovirus.

  17. Gene Expression Analysis Reveals New Possible Mechanisms of Vancomycin-Induced Nephrotoxicity and Identifies Gene Markers Candidates

    OpenAIRE

    Dieterich, Christine; Puey, Angela; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C.; Ng, Hanna H.

    2008-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and...

  18. Synthesis and processing in Escherichia coli of human leucocyte interferon fused with the signal sequence of Bacillus amyloliquefaciens a-amylase

    International Nuclear Information System (INIS)

    Sorokin, A.V.; Avakov, A.S.; Bogush, V.G.

    1985-01-01

    Earlier, the authors reported cloning of the alpha-amylase gene of B. amyloliquefaciens in B. subtilis and E. coli. Currently, the authors report results on the expression of the hybrid gene consisting of the DNA fragment coding for the leader part of B. amyloliquefaciens alpha-amylase and the structural part of the human interferon alpha-2 in E. coli cells. This gene contains an additional methionine codon at the 5'-terminal, which codes for the interferon structure (without its own signal peptide). The interferon gene was inserted into plasmid /sub p/TG 278 at the cleavage site of EcoRI. The structure of the plasmid thus obtained the signal peptide of amylase, five amino acids (Val-Gly-Glu-Phe-Met), and the structural part of the interferon. The E. coli C600 cells carrying plasmid pTGA6 were used to study interferon secretions. The interferon activity was determined radioimmunologically with the use of monoclonal anti-bodies NK2

  19. Irf3 polymorphism alters induction of interferon beta in response to Listeria monocytogenes infection.

    Directory of Open Access Journals (Sweden)

    Oleg Garifulin

    2007-09-01

    Full Text Available Genetic makeup of the host plays a significant role in the course and outcome of infection. Inbred strains of mice display a wide range of sensitivities to Listeria monocytogenes infection and thus serve as a good model for analysis of the effect of genetic polymorphism. The outcome of L. monocytogenes infection in mice is influenced by the ability of this bacterium to induce expression of interferon beta mRNA, encoded in mouse by the Ifnb1 (interferon beta 1, fibroblast gene. Mouse strains that lack components of the IFN beta signaling pathway are substantially more resistant to infection. We found that macrophages from the ByJ substrain of the common C57BL/6 inbred strain of mice are impaired in their ability to induce Ifnb1 expression in response to bacterial and viral infections. We mapped the locus that controls differential expression of Ifnb1 to a region on Chromosome 7 that includes interferon regulatory factor 3 (Irf3, which encodes a transcription factor responsible for early induction of Ifnb1 expression. In C57BL/6ByJ mice, Irf3 mRNA was inefficiently spliced, with a significant proportion of the transcripts retaining intron 5. Analysis of the Irf3 locus identified a single base-pair polymorphism and revealed that intron 5 of Irf3 is spliced by the atypical U12-type spliceosome. We found that the polymorphism disrupts a U12-type branchpoint and has a profound effect on the efficiency of splicing of Irf3. We demonstrate that a naturally occurring change in the splicing control element has a dramatic effect on the resistance to L. monocytogenes infection. Thus, the C57BL/6ByJ mouse strain serves as an example of how a mammalian host can counter bacterial virulence strategies by introducing subtle alteration of noncoding sequences.

  20. Trichloroethylene-induced gene expression and DNA methylation changes in B6C3F1 mouse liver.

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    Full Text Available Trichloroethylene (TCE, widely used as an organic solvent in the industry, is a common contaminant in air, soil, and water. Chronic TCE exposure induced hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE (0, 100, 500 and 1000 mg/kg b.w. per day for 5 days. After 5 days TCE treatment at a dose level of 1000 mg/kg b.w., a total of 431 differentially expressed genes were identified in mouse liver by microarray, of which 291 were up-regulated and 140 down-regulated. The expression changed genes were involved in key signal pathways including PPAR, proliferation, apoptosis and homologous recombination. Notably, the expression level of a number of vital genes involved in the regulation of DNA methylation, such as Utrf1, Tet2, DNMT1, DNMT3a and DNMT3b, were dysregulated. Although global DNA methylation change was not detected in the liver of mice exposed to TCE, the promoter regions of Cdkn1a and Ihh were found to be hypo- and hypermethylated respectively, which correlated negatively with their mRNA expression changes. Furthermore, the gene expression and DNA methylation changes induced by TCE were dose dependent. The overall data indicate that TCE exposure leads to aberrant DNA methylation changes, which might alter the expression of genes involved in the TCE-induced liver tumorgenesis.

  1. Expression of genes belonging to the interacting TLR cascades, NADPH-oxidase and mitochondrial oxidative phosphorylation in septic patients.

    Directory of Open Access Journals (Sweden)

    Laura A Nucci

    Full Text Available Sepsis is a complex disease that is characterized by activation and inhibition of different cell signaling pathways according to the disease stage. Here, we evaluated genes involved in the TLR signaling pathway, oxidative phosphorylation and oxidative metabolism, aiming to assess their interactions and resulting cell functions and pathways that are disturbed in septic patients.Blood samples were obtained from 16 patients with sepsis secondary to community acquired pneumonia at admission (D0, and after 7 days (D7, N = 10 of therapy. Samples were also collected from 8 healthy volunteers who were matched according to age and gender. Gene expression of 84 genes was performed by real-time polymerase chain reactions. Their expression was considered up- or down-regulated when the fold change was greater than 1.5 compared to the healthy volunteers. A p-value of ≤ 0.05 was considered significant.Twenty-two genes were differently expressed in D0 samples; most of them were down-regulated. When gene expression was analyzed according to the outcomes, higher number of altered genes and a higher intensity in the disturbance was observed in non-survivor than in survivor patients. The canonical pathways altered in D0 samples included interferon and iNOS signaling; the role of JAK1, JAK2 and TYK2 in interferon signaling; mitochondrial dysfunction; and superoxide radical degradation pathways. When analyzed according to outcomes, different pathways were disturbed in surviving and non-surviving patients. Mitochondrial dysfunction, oxidative phosphorylation and superoxide radical degradation pathway were among the most altered in non-surviving patients.Our data show changes in the expression of genes belonging to the interacting TLR cascades, NADPH-oxidase and oxidative phosphorylation. Importantly, distinct patterns are clearly observed in surviving and non-surviving patients. Interferon signaling, marked by changes in JAK-STAT modulation, had prominent changes in

  2. Genistein-induced alterations of radiation-responsive gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Grace, M.B. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: grace@afrri.usuhs.mil; Blakely, W.F.; Landauer, M.R. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)

    2007-07-15

    In order to clarify the molecular mechanism of radioprotection and understand biological dosimetry in the presence of medical countermeasure-radioprotectants, their effects on ionizing radiation (IR)-responsive molecular biomarkers must be examined. We used genistein in a radiation model system and measured gene expression by multiplex QRT-PCR assay in drug-treated healthy human blood cultures. Genistein has been demonstrated to be a radiosensitizer of malignant cells and a radioprotector against IR-induced lethality in a mouse model. Whole-blood cultures were supplemented with 50, 100, and 200{mu}M concentrations of genistein, 16 h prior to receiving a 2-Gy ({sup 60}Co-{gamma} rays, 10 cGy/min) dose of IR. Total RNA was isolated from whole blood 24 h postirradiation for assessments. Combination treatments of genistein and IR resulted in no significant genistein effects on ddb2 and bax downstream transcripts to p53, or proliferating cell-nuclear antigen, pcna, necessary for DNA synthesis and cell-cycle progression. Use of these radiation-responsive targets would be recommended for dose-assessment applications. We also observed decreased expression of pro-survival transcript, bcl-2. Genistein and IR-increased expression of cdkn1a and gadd45a, showing that genistein also stimulates p53 transcriptional activity. These results confirm published molecular signatures for genistein in numerous in vitro models. Evaluation of gene biomarkers may be further exploited for devising novel radiation countermeasure and/or therapeutic strategies.

  3. Pro-apoptotic signaling induced by Retinoic acid and dsRNA is under the control of Interferon Regulatory Factor-3 in breast cancer cells.

    Science.gov (United States)

    Bernardo, Ana R; Cosgaya, José M; Aranda, Ana; Jiménez-Lara, Ana M

    2017-07-01

    Breast cancer is one of the most lethal malignancies for women. Retinoic acid (RA) and double-stranded RNA (dsRNA) are considered signaling molecules with potential anticancer activity. RA, co-administered with the dsRNA mimic polyinosinic-polycytidylic acid (poly(I:C)), synergizes to induce a TRAIL (Tumor-Necrosis-Factor Related Apoptosis-Inducing Ligand)- dependent apoptotic program in breast cancer cells. Here, we report that RA/poly(I:C) co-treatment, synergically, induce the activation of Interferon Regulatory Factor-3 (IRF3) in breast cancer cells. IRF3 activation is mediated by a member of the pathogen recognition receptors, Toll-like receptor-3 (TLR3), since its depletion abrogates IRF3 activation by RA/poly(I:C) co-treatment. Besides induction of TRAIL, apoptosis induced by RA/poly(I:C) correlates with the increased expression of pro-apoptotic TRAIL receptors, TRAIL-R1/2, and the inhibition of the antagonistic receptors TRAIL-R3/4. IRF3 plays an important role in RA/poly(I:C)-induced apoptosis since IRF3 depletion suppresses caspase-8 and caspase-3 activation, TRAIL expression upregulation and apoptosis. Interestingly, RA/poly(I:C) combination synergizes to induce a bioactive autocrine/paracrine loop of type-I Interferons (IFNs) which is ultimately responsible for TRAIL and TRAIL-R1/2 expression upregulation, while inhibition of TRAIL-R3/4 expression is type-I IFN-independent. Our results highlight the importance of IRF3 and type-I IFNs signaling for the pro-apoptotic effects induced by RA and synthetic dsRNA in breast cancer cells.

  4. Pregnancy-induced gene expression changes in vivo among women with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Goin, Dana E; Smed, Mette Kiel; Pachter, Lior

    2017-01-01

    BACKGROUND: Little is known about gene expression changes induced by pregnancy in women with rheumatoid arthritis (RA) and healthy women because the few studies previously conducted did not have pre-pregnancy samples available as baseline. We have established a cohort of women with RA and healthy...

  5. The Role of Type III Interferons in Hepatitis C Virus Infection and Therapy

    Directory of Open Access Journals (Sweden)

    Janina Bruening

    2017-01-01

    Full Text Available The human interferon (IFN response is a key innate immune mechanism to fight virus infection. IFNs are host-encoded secreted proteins, which induce IFN-stimulated genes (ISGs with antiviral properties. Among the three classes of IFNs, type III IFNs, also called IFN lambdas (IFNLs, are an essential component of the innate immune response to hepatitis C virus (HCV. In particular, human polymorphisms in IFNL gene loci correlate with hepatitis C disease progression and with treatment response. To date, the underlying mechanisms remain mostly elusive; however it seems clear that viral infection of the liver induces IFNL responses. As IFNL receptors show a more restricted tissue expression than receptors for other classes of IFNs, IFNL treatment has reduced side effects compared to the classical type I IFN treatment. In HCV therapy, however, IFNL will likely not play an important role as highly effective direct acting antivirals (DAA exist. Here, we will review our current knowledge on IFNL gene expression, protein properties, signaling, ISG induction, and its implications on HCV infection and treatment. Finally, we will discuss the lessons learnt from the HCV and IFNL field for virus infections beyond hepatitis C.

  6. Gene expression of cyclin-dependent kinase inhibitors and effect of heparin on their expression in mice with hypoxia-induced pulmonary hypertension

    International Nuclear Information System (INIS)

    Yu Lunyin; Quinn, Deborah A.; Garg, Hari G.; Hales, Charles A.

    2006-01-01

    The balance between cell proliferation and cell quiescence is regulated delicately by a variety of mediators, in which cyclin-dependent kinases (CDK) and CDK inhibitors (CDKI) play a very important role. Heparin which inhibits pulmonary artery smooth muscle cell (PASMC) proliferation increases the levels of two CDKIs, p21 and p27, although only p27 is important in inhibition of PASMC growth in vitro and in vivo. In the present study we investigated the expression profile of all the cell cycle regulating genes, including all seven CDKIs (p21, p27, p57, p15, p16, p18, and p19), in the lungs of mice with hypoxia-induced pulmonary hypertension. A cell cycle pathway specific gene microarray was used to profile the 96 genes involved in cell cycle regulation. We also observed the effect of heparin on gene expression. We found that (a) hypoxic exposure for two weeks significantly inhibited p27 expression and stimulated p18 activity, showing a 98% decrease in p27 and 81% increase in p18; (b) other CDKIs, p21, p57, p15, p16, and p19 were not affected significantly in response to hypoxia; (c) heparin treatment restored p27 expression, but did not influence p18; (d) ERK1/2 and p38 were mediators in heparin upregulation of p27. This study provides an expression profile of cell cycle regulating genes under hypoxia in mice with hypoxia-induced pulmonary hypertension and strengthens the previous finding that p27 is the only CDKI involved in heparin regulation of PASMC proliferation and hypoxia-induced pulmonary hypertension

  7. Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Stirling Emma J

    2010-10-01

    Full Text Available Abstract Background Drosophila melanogaster females show changes in behavior and physiology after mating that are thought to maximize the number of progeny resulting from the most recent copulation. Sperm and seminal fluid proteins induce post-mating changes in females, however, very little is known about the resulting gene expression changes in female head and central nervous system tissues that contribute to the post-mating response. Results We determined the temporal gene expression changes in female head tissues 0-2, 24, 48 and 72 hours after mating. Females from each time point had a unique post-mating gene expression response, with 72 hours post-mating having the largest number of genes with significant changes in expression. At most time points, genes expressed in the head fat body that encode products involved in metabolism showed a marked change in expression. Additional analysis of gene expression changes in dissected brain tissues 24 hours post-mating revealed changes in transcript abundance of many genes, notably, the reduced transcript abundance of genes that encode ion channels. Conclusions Substantial changes occur in the regulation of many genes in female head tissues after mating, which might underlie aspects of the female post-mating response. These results provide new insights into the physiological and metabolic changes that accompany changes in female behaviors.

  8. Herbivory-induced glucose transporter gene expression in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Kikuta, Shingo; Nakamura, Yuki; Hattori, Makoto; Sato, Ryoichi; Kikawada, Takahiro; Noda, Hiroaki

    2015-09-01

    Nilaparvata lugens, the brown planthopper (BPH) feeds on rice phloem sap, containing high amounts of sucrose as a carbon source. Nutrients such as sugars in the digestive tract are incorporated into the body cavity via transporters with substrate selectivity. Eighteen sugar transporter genes of BPH (Nlst) were reported and three transporters have been functionally characterized. However, individual characteristics of NlST members associated with sugar transport remain poorly understood. Comparative gene expression analyses using oligo-microarray and quantitative RT-PCR revealed that the sugar transporter gene Nlst16 was markedly up-regulated during BPH feeding. Expression of Nlst16 was induced 2 h after BPH feeding on rice plants. Nlst16, mainly expressed in the midgut, appears to be involved in carbohydrate incorporation from the gut cavity into the hemolymph. Nlst1 (NlHT1), the most highly expressed sugar transporter gene in the midgut was not up-regulated during BPH feeding. The biochemical function of NlST16 was shown as facilitative glucose transport along gradients. Glucose uptake activity by NlST16 was higher than that of NlST1 in the Xenopus oocyte expression system. At least two NlST members are responsible for glucose uptake in the BPH midgut, suggesting that the midgut of BPH is equipped with various types of transporters having diversified manner for sugar uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. PA from an H5N1 highly pathogenic avian influenza virus activates viral transcription and replication and induces apoptosis and interferon expression at an early stage of infection

    Directory of Open Access Journals (Sweden)

    Wang Qiang

    2012-06-01

    Full Text Available Abstract Background Although gene exchange is not likely to occur freely, reassortment between the H5N1 highly pathogenic avian influenza virus (HPAIV and currently circulating human viruses is a serious concern. The PA polymerase subunit of H5N1 HPAIV was recently reported to activate the influenza replicon activity. Methods The replicon activities of PR8 and WSN strains (H1N1 of influenza containing PA from HPAIV A/Cambodia/P0322095/2005 (H5N1 and the activity of the chimeric RNA polymerase were analyzed. A reassortant WSN virus containing the H5N1 Cambodia PA (C-PA was then reconstituted and its growth in cells and pathogenicity in mice examined. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities of C-PA-infected cells were compared with those of WSN-infected cells. Results The activity of the chimeric RNA polymerase was slightly higher than that of WSN, and C-PA replicated better than WSN in cells. However, the multi-step growth of C-PA and its pathogenicity in mice were lower than those of WSN. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities were strongly induced in early infection in C-PA-infected cells but not in WSN-infected cells. Conclusions Apoptosis and interferon were strongly induced early in C-PA infection, which protected the uninfected cells from expansion of viral infection. In this case, these classical host-virus interactions contributed to the attenuation of this strongly replicating virus.

  10. Interferon and biologic signatures in dermatomyositis skin: specificity and heterogeneity across diseases.

    Directory of Open Access Journals (Sweden)

    David Wong

    Full Text Available BACKGROUND: Dermatomyositis (DM is an autoimmune disease that mainly affects the skin, muscle, and lung. The pathogenesis of skin inflammation in DM is not well understood. METHODOLOGY AND FINDINGS: We analyzed genome-wide expression data in DM skin and compared them to those from healthy controls. We observed a robust upregulation of interferon (IFN-inducible genes in DM skin, as well as several other gene modules pertaining to inflammation, complement activation, and epidermal activation and differentiation. The interferon (IFN-inducible genes within the DM signature were present not only in DM and lupus, but also cutaneous herpes simplex-2 infection and to a lesser degree, psoriasis. This IFN signature was absent or weakly present in atopic dermatitis, allergic contact dermatitis, acne vulgaris, systemic sclerosis, and localized scleroderma/morphea. We observed that the IFN signature in DM skin appears to be more closely related to type I than type II IFN based on in vitro IFN stimulation expression signatures. However, quantitation of IFN mRNAs in DM skin shows that the majority of known type I IFNs, as well as IFN g, are overexpressed in DM skin. In addition, both IFN-beta and IFN-gamma (but not other type I IFN transcript levels were highly correlated with the degree of the in vivo IFN transcriptional response in DM skin. CONCLUSIONS AND SIGNIFICANCE: As in the blood and muscle, DM skin is characterized by an overwhelming presence of an IFN signature, although it is difficult to conclusively define this response as type I or type II. Understanding the significance of the IFN signature in this wide array of inflammatory diseases will be furthered by identification of the nature of the cells that both produce and respond to IFN, as well as which IFN subtype is biologically active in each diseased tissue.

  11. Clinical Value of Thyrotropin Receptor Antibodies for the Differential Diagnosis of Interferon Induced Thyroiditis.

    Science.gov (United States)

    Benaiges, D; Garcia-Retortillo, M; Mas, A; Cañete, N; Broquetas, T; Puigvehi, M; Chillarón, J J; Flores-Le Roux, J A; Sagarra, E; Cabrero, B; Zaffalon, D; Solà, R; Pedro-Botet, J; Carrión, J A

    2016-01-01

    The clinical value of thyrotropin receptor antibodies for the differential diagnosis of thyrotoxicosis induced by pegylated interferon-alpha remains unknown. We analyzed the diagnostic accuracy of thyrotropin receptor antibodies in the differential diagnosis of thyrotoxicosis in patients with chronic hepatitis C (CHC) receiving pegylated interferon-alpha plus ribavirin. Retrospective analysis of 274 patients with CHC receiving pegylated interferon-alpha plus ribavirin. Interferon-induced thyrotoxicosis was classified according to clinical guidelines as Graves disease, autoimmune and non- autoimmune destructive thyroiditis. 48 (17.5%) patients developed hypothyroidism, 17 (6.2%) thyrotoxicosis (6 non- autoimmune destructive thyroiditis, 8 autoimmune destructive thyroiditis and 3 Graves disease) and 22 "de novo" thyrotropin receptor antibodies (all Graves disease, 2 of the 8 autoimmune destructive thyroiditis and 17 with normal thyroid function). The sensitivity and specificity of thyrotropin receptor antibodies for Graves disease diagnosis in patients with thyrotoxicosis were 100 and 85%, respectively. Patients with destructive thyroiditis developed hypothyroidism in 87.5% of autoimmune cases and in none of those with a non- autoimmune etiology (pthyroid scintigraphy for the differential diagnosis of thyrotoxicosis in CHC patients treated with pegylated interferon. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Muscle myeloid type I interferon gene expression may predict therapeutic responses to rituximab in myositis patients.

    Science.gov (United States)

    Nagaraju, Kanneboyina; Ghimbovschi, Svetlana; Rayavarapu, Sree; Phadke, Aditi; Rider, Lisa G; Hoffman, Eric P; Miller, Frederick W

    2016-09-01

    To identify muscle gene expression patterns that predict rituximab responses and assess the effects of rituximab on muscle gene expression in PM and DM. In an attempt to understand the molecular mechanism of response and non-response to rituximab therapy, we performed Affymetrix gene expression array analyses on muscle biopsy specimens taken before and after rituximab therapy from eight PM and two DM patients in the Rituximab in Myositis study. We also analysed selected muscle-infiltrating cell phenotypes in these biopsies by immunohistochemical staining. Partek and Ingenuity pathway analyses assessed the gene pathways and networks. Myeloid type I IFN signature genes were expressed at higher levels at baseline in the skeletal muscle of rituximab responders than in non-responders, whereas classic non-myeloid IFN signature genes were expressed at higher levels in non-responders at baseline. Also, rituximab responders have a greater reduction of the myeloid and non-myeloid type I IFN signatures than non-responders. The decrease in the type I IFN signature following administration of rituximab may be associated with the decreases in muscle-infiltrating CD19(+) B cells and CD68(+) macrophages in responders. Our findings suggest that high levels of myeloid type I IFN gene expression in skeletal muscle predict responses to rituximab in PM/DM and that rituximab responders also have a greater decrease in the expression of these genes. These data add further evidence to recent studies defining the type I IFN signature as both a predictor of therapeutic responses and a biomarker of myositis disease activity. Published by Oxford University Press on behalf British Society for Rheumatology 2016. This work is written by US Government employees and is in the public domain in the US.

  13. Interferon antagonist NSs of La Crosse virus triggers a DNA damage response-like degradation of transcribing RNA polymerase II.

    Science.gov (United States)

    Verbruggen, Paul; Ruf, Marius; Blakqori, Gjon; Överby, Anna K; Heidemann, Martin; Eick, Dirk; Weber, Friedemann

    2011-02-04

    La Crosse encephalitis virus (LACV) is a mosquito-borne member of the negative-strand RNA virus family Bunyaviridae. We have previously shown that the virulence factor NSs of LACV is an efficient inhibitor of the antiviral type I interferon system. A recombinant virus unable to express NSs (rLACVdelNSs) strongly induced interferon transcription, whereas the corresponding wt virus (rLACV) suppressed it. Here, we show that interferon induction by rLACVdelNSs mainly occurs through the signaling pathway leading from the pattern recognition receptor RIG-I to the transcription factor IRF-3. NSs expressed by rLACV, however, acts downstream of IRF-3 by specifically blocking RNA polymerase II-dependent transcription. Further investigations revealed that NSs induces proteasomal degradation of the mammalian RNA polymerase II subunit RPB1. NSs thereby selectively targets RPB1 molecules of elongating RNA polymerase II complexes, the so-called IIo form. This phenotype has similarities to the cellular DNA damage response, and NSs was indeed found to transactivate the DNA damage response gene pak6. Moreover, NSs expressed by rLACV boosted serine 139 phosphorylation of histone H2A.X, one of the earliest cellular reactions to damaged DNA. However, other DNA damage response markers such as up-regulation and serine 15 phosphorylation of p53 or serine 1524 phosphorylation of BRCA1 were not triggered by LACV infection. Collectively, our data indicate that the strong suppression of interferon induction by LACV NSs is based on a shutdown of RNA polymerase II transcription and that NSs achieves this by exploiting parts of the cellular DNA damage response pathway to degrade IIo-borne RPB1 subunits.

  14. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dokter Wim

    2010-06-01

    Full Text Available Abstract Background Glucocorticoids (GCs control expression of a large number of genes via binding to the GC receptor (GR. Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT and mice that have lost the ability to form GR dimers (GRdim. Results The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization. Conclusions This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs.

  15. [Blue-light induced expression of S-adenosy-L-homocysteine hydrolase-like gene in Mucor amphibiorum RCS1].

    Science.gov (United States)

    Gao, Ya; Wang, Shu; Fu, Mingjia; Zhong, Guolin

    2013-09-04

    To determine blue-light induced expression of S-adenosyl-L-homocysteine hydrolase-like (sahhl) gene in fungus Mucor amphibiorum RCS1. In the random process of PCR, a sequence of 555 bp was obtained from M. amphibiorum RCS1. The 555 bp sequence was labeled with digoxin to prepare the probe for northern hybridization. By northern hybridization, the transcription of sahhl gene was analyzed in M. amphibiorum RCS1 mycelia culture process from darkness to blue light to darkness. Simultaneously real-time PCR method was used to the sahhl gene expression analysis. Compared with the sequence of sahh gene from Homo sapiens, Mus musculus and some fungi species, a high homology of the 555 bp sequence was confirmed. Therefore, the preliminary confirmation has supported that the 555 bp sequence should be sahhl gene from M. amphibiorum RCS1. Under the dark pre-culture in 24 h, a large amounts of transcript of sahhl gene in the mycelia can be detected by northern hybridization and real-time PCR in the condition of 24 h blue light. But a large amounts of transcript of sahhl gene were not found in other detection for the dark pre-culture of 48 h, even though M. amphibiorum RCS1 mycelia were induced by blue light. Blue light can induce the expression of sahhl gene in the vigorous growth of M. amphibiorum RCS1 mycelia.

  16. [Alpha interferon induced hyperthyroidism: a case report and review of the literature].

    Science.gov (United States)

    Maiga, I; Valdes-Socin, H; Thiry, A; Delwaide, J; Sidibe, A T; Beckers, A

    2015-01-01

    Treatment with alpha interferon in hepatitis C triggers a thyroid autoimmunity in a variable percentage of cases (2-8%). This complication raises some questions about its screening, the possibility to continue anti-viral therapy and thyroid treatment. Alpha interferon has an immunomodulatory effect on the thyroid, but also an inhibitory effect on thyroid hormone synthesis. This explains the occurrence of cases of thyroid dysfunction, which often remain undetected because of their latency. Factors predicting thyroid dysfunction with interferon use are: female sex, history of thyroid disease and previous autoimmunity. Several clinical aspects are encountered including hypothyroidism (the most frequent depending on the series) and hyperthyroidism related to Graves' disease. For their detection, a cooperation between general practionners, gastroenterologists and endocrinologists is mandatory thyroid function tests are requested before, during and after treatment,with alpha interferon. Therapeutic aspects of thyroid disorders range from simple monitoring to symptomatic treatment, such as thyroxine prescription in the presence of hypothyroidism. Antithyroid drugs radioactive iodine or thyroid surgery are used in cases of severe or persistent Graves' disease induced by alpha interferon.

  17. Robust heat-inducible gene expression by two endogenous hsp70-derived promoters in transgenic Aedes aegypti

    Science.gov (United States)

    Carpenetti, Tiffany L. G.; Aryan, Azadeh; Myles, Kevin M.; Adelman, Zach N.

    2011-01-01

    Aedes aegypti is an important vector of the viruses that cause dengue fever, dengue hemorrhagic fever, and yellow fever. Reverse genetic approaches to the study of gene function in this mosquito have been limited by the lack of a robust inducible promoter to allow precise temporal control over a protein-encoding or hairpin RNA transgene. Likewise, investigations into the molecular and biochemical basis of vector competence would benefit from the ability to activate an anti-pathogen molecule at specific times during infection. We have characterized the ability of genomic sequences derived from two Ae. aegypti hsp70 genes to drive heat-inducible expression of a reporter in both transient and germline transformation contexts. AaHsp70-luciferase transcripts accumulated specifically after heat shock, and displayed a pattern of rapid induction and decay similar to endogenous AaHsp70 genes. Luciferase expression in transgenic Ae. aegypti increased by ∼25-50 fold in whole adults by four hours after heat-shock, with significant activity (∼20 fold) remaining at 24 hr. Heat-induced expression was even more dramatic in midgut tissues, with one strain showing a ∼2500-fold increase in luciferase activity. The AaHsp70 promoters described could be valuable for gene function studies as well as for the precise timing of the expression of anti-pathogen molecules. PMID:22142225

  18. Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1

    Directory of Open Access Journals (Sweden)

    Nur Aziz

    2018-05-01

    Full Text Available Interferon regulatory factor (IRF-3 is known to have a critical role in viral and bacterial innate immune responses by regulating the production of type I interferon (IFN. Thymoquinone (TQ is a compound derived from black cumin (Nigella sativa L. and is known to regulate immune responses by affecting transcription factors associated with inflammation, including nuclear factor-κB (NF-κB and activator protein-1 (AP-1. However, the role of TQ in the IRF-3 signaling pathway has not been elucidated. In this study, we explored the molecular mechanism of TQ-dependent regulation of enzymes in IRF-3 signaling pathways using the lipopolysaccharide (LPS-stimulated murine macrophage-like RAW264.7 cell line. TQ decreased mRNA expression of the interferon genes IFN-α and IFN-β in these cells. This inhibition was due to its suppression of the transcriptional activation of IRF-3, as shown by inhibition of IRF-3 PRD (III-I luciferase activity as well as the phosphorylation pattern of IRF-3 in the immunoblotting experiment. Moreover, TQ targeted the autophosphorylation of TANK-binding kinase 1 (TBK1, an upstream key enzyme responsible for IRF-3 activation. Taken together, these findings suggest that TQ can downregulate IRF-3 activation via inhibition of TBK1, which would subsequently decrease the production of type I IFN. TQ also regulated IRF-3, one of the inflammatory transcription factors, providing a novel insight into its anti-inflammatory activities.

  19. Arborvitae (Thuja plicata essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Xuesheng Han

    2017-06-01

    Full Text Available Arborvitae (Thuja plicata essential oil (AEO is becoming increasingly popular in skincare, although its biological activity in human skin cells has not been investigated. Therefore, we sought to study AEO's effect on 17 important protein biomarkers that are closely related to inflammation and tissue remodeling by using a pre-inflamed human dermal fibroblast culture model. AEO significantly inhibited the expression of vascular cell adhesion molecule 1 (VCAM-1, intracellular cell adhesion molecule 1 (ICAM-1, interferon gamma-induced protein 10 (IP-10, interferon-inducible T-cell chemoattractant (I-TAC, monokine induced by interferon gamma (MIG, and macrophage colony-stimulating factor (M-CSF. It also showed significant antiproliferative activity and robustly inhibited collagen-I, collagen-III, plasminogen activator inhibitor-1 (PAI-1, and tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2. The inhibitory effect of AEO on increased production of these protein biomarkers suggests it has anti-inflammatory property. We then studied the effect of AEO on the genome-wide expression of 21,224 genes in the same cell culture. AEO significantly and diversely modulated global gene expression. Ingenuity pathway analysis (IPA showed that AEO robustly affected numerous critical genes and signaling pathways closely involved in inflammatory and tissue remodeling processes. The findings of this study provide the first evidence of the biological activity and beneficial action of AEO in human skin cells.

  20. High-dimensional gene expression profiling studies in high and low responders to primary smallpox vaccination.

    Science.gov (United States)

    Haralambieva, Iana H; Oberg, Ann L; Dhiman, Neelam; Ovsyannikova, Inna G; Kennedy, Richard B; Grill, Diane E; Jacobson, Robert M; Poland, Gregory A

    2012-11-15

    The mechanisms underlying smallpox vaccine-induced variations in immune responses are not well understood, but are of considerable interest to a deeper understanding of poxvirus immunity and correlates of protection. We assessed transcriptional messenger RNA expression changes in 197 recipients of primary smallpox vaccination representing the extremes of humoral and cellular immune responses. The 20 most significant differentially expressed genes include a tumor necrosis factor-receptor superfamily member, an interferon (IFN) gene, a chemokine gene, zinc finger protein genes, nuclear factors, and histones (P ≤ 1.06E(-20), q ≤ 2.64E(-17)). A pathway analysis identified 4 enriched pathways with cytokine production by the T-helper 17 subset of CD4+ T cells being the most significant pathway (P = 3.42E(-05)). Two pathways (antiviral actions of IFNs, P = 8.95E(-05); and IFN-α/β signaling pathway, P = 2.92E(-04)), integral to innate immunity, were enriched when comparing high with low antibody responders (false discovery rate, < 0.05). Genes related to immune function and transcription (TLR8, P = .0002; DAPP1, P = .0003; LAMP3, P = 9.96E(-05); NR4A2, P ≤ .0002; EGR3, P = 4.52E(-05)), and other genes with a possible impact on immunity (LNPEP, P = 3.72E(-05); CAPRIN1, P = .0001; XRN1, P = .0001), were found to be expressed differentially in high versus low antibody responders. We identified novel and known immunity-related genes and pathways that may account for differences in immune response to smallpox vaccination.

  1. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.

    Science.gov (United States)

    Tran, Dinh Thi Minh; Phan, Trang Thi Phuong; Huynh, Thanh Kieu; Dang, Ngan Thi Kim; Huynh, Phuong Thi Kim; Nguyen, Tri Minh; Truong, Tuom Thi Tinh; Tran, Thuoc Linh; Schumann, Wolfgang; Nguyen, Hoang Duc

    2017-07-25

    Besides Escherichia coli, Bacillus subtilis is an important bacterial species for the production of recombinant proteins. Recombinant genes are inserted into shuttle expression vectors which replicate in both E. coli and in B. subtilis. The ligation products are first transformed into E. coli cells, analyzed for correct insertions, and the correct recombinant plasmids are then transformed into B. subtilis. A major problem using E. coli cells can be the strong basal level of expression of the recombinant protein which may interfere with the stability of the cells. To minimize this problem, we developed strong expression vectors being repressed in E. coli and inducer-free in B. subtilis. In general, induction of IPTG-inducible expression vectors is determined by the regulatory lacI gene encoding the LacI repressor in combination with the lacO operator on the promoter. To investigate the inducer-free properties of the vectors, we constructed inducer-free expression plasmids by removing the lacI gene and characterized their properties. First, we examined the ability to repress a reporter gene in E. coli, which is a prominent property facilitating the construction of the expression vectors carrying a target gene. The β-galactosidase (bgaB gene) basal levels expressed from Pgrac01-bgaB could be repressed at least twice in the E. coli cloning strain. Second, the inducer-free production of BgaB from four different plasmids with the Pgrac01 promoter in B. subtilis was investigated. As expected, BgaB expression levels of inducer-free constructs are at least 37 times higher than that of the inducible constructs in the absence of IPTG, and comparable to those in the presence of the inducer. Third, using efficient IPTG-inducible expression vectors containing the strong promoter Pgrac100, we could convert them into inducer-free expression plasmids. The BgaB production levels from the inducer-free plasmid in the absence of the inducer were at least 4.5 times higher than that of

  2. The impact of IL28B genotype on the gene expression profile of patients with chronic hepatitis C treated with pegylated interferon alpha and ribavirin

    Directory of Open Access Journals (Sweden)

    Younossi Zobair M

    2012-02-01

    Full Text Available Abstract Background Recent studies of CH-C patients have demonstrated a strong association between IL28B CC genotype and sustained virologic response (SVR after PEG-IFN/RBV treatment. We aimed to assess whether IL28B alleles rs12979860 genotype influences gene expression in response to PEG-IFN/RBV in CH-C patients. Methods Clinical data and gene expression data were available for 56 patients treated with PEG-IFN/RBV. Whole blood was used to determine IL28B genotypes. Differential expression of 153 human genes was assessed for each treatment time point (Days: 0, 1, 7, 28, 56 and was correlated with IL28B genotype (IL28B C/C or non-C/C over the course of the PEG-IFN/RBV treatment. Genes with statistically significant changes in their expression at each time point were used as an input for pathway analysis using KEGG Pathway Painter (KPP. Pathways were ranked based on number of gene involved separately per each study cohort. Results The most striking difference between the response patterns of patients with IL28B C/C and T* genotypes during treatment, across all pathways, is a sustained pattern of treatment-induced gene expression in patients carrying IL28B C/C. In the case of IL28B T* genotype, pre-activation of genes, the lack of sustained pattern of gene expression or a combination of both were observed. This observation could potentially provide an explanation for the lower rate of SVR observed in these patients. Additionally, when the lists of IL28B genotype-specific genes which were differentially expressed in patients without SVR were compared at their baseline, IRF2 and SOCS1 genes were down-regulated regardless of patients' IL28B genotype. Furthermore, our data suggest that CH-C patients who do not have the SOCS1 gene silenced have a better chance of achieving SVR. Our observations suggest that the action of SOCS1 is independent of IL28B genotype. Conclusions IL28B CC genotype patients with CH-C show a sustained treatment-induced gene

  3. The impact of IL28B genotype on the gene expression profile of patients with chronic hepatitis C treated with pegylated interferon alpha and ribavirin.

    Science.gov (United States)

    Younossi, Zobair M; Birerdinc, Aybike; Estep, Mike; Stepanova, Maria; Afendy, Arian; Baranova, Ancha

    2012-02-07

    Recent studies of CH-C patients have demonstrated a strong association between IL28B CC genotype and sustained virologic response (SVR) after PEG-IFN/RBV treatment. We aimed to assess whether IL28B alleles rs12979860 genotype influences gene expression in response to PEG-IFN/RBV in CH-C patients. Clinical data and gene expression data were available for 56 patients treated with PEG-IFN/RBV. Whole blood was used to determine IL28B genotypes. Differential expression of 153 human genes was assessed for each treatment time point (Days: 0, 1, 7, 28, 56) and was correlated with IL28B genotype (IL28B C/C or non-C/C) over the course of the PEG-IFN/RBV treatment. Genes with statistically significant changes in their expression at each time point were used as an input for pathway analysis using KEGG Pathway Painter (KPP). Pathways were ranked based on number of gene involved separately per each study cohort. The most striking difference between the response patterns of patients with IL28B C/C and T* genotypes during treatment, across all pathways, is a sustained pattern of treatment-induced gene expression in patients carrying IL28B C/C. In the case of IL28B T* genotype, pre-activation of genes, the lack of sustained pattern of gene expression or a combination of both were observed. This observation could potentially provide an explanation for the lower rate of SVR observed in these patients. Additionally, when the lists of IL28B genotype-specific genes which were differentially expressed in patients without SVR were compared at their baseline, IRF2 and SOCS1 genes were down-regulated regardless of patients' IL28B genotype. Furthermore, our data suggest that CH-C patients who do not have the SOCS1 gene silenced have a better chance of achieving SVR. Our observations suggest that the action of SOCS1 is independent of IL28B genotype. IL28B CC genotype patients with CH-C show a sustained treatment-induced gene expression profile which is not seen in non-CC genotype patients

  4. Comprehensive Analysis of Gene Expression Profiles of Sepsis-Induced Multiorgan Failure Identified Its Valuable Biomarkers.

    Science.gov (United States)

    Wang, Yumei; Yin, Xiaoling; Yang, Fang

    2018-02-01

    Sepsis is an inflammatory-related disease, and severe sepsis would induce multiorgan dysfunction, which is the most common cause of death of patients in noncoronary intensive care units. Progression of novel therapeutic strategies has proven to be of little impact on the mortality of severe sepsis, and unfortunately, its mechanisms still remain poorly understood. In this study, we analyzed gene expression profiles of severe sepsis with failure of lung, kidney, and liver for the identification of potential biomarkers. We first downloaded the gene expression profiles from the Gene Expression Omnibus and performed preprocessing of raw microarray data sets and identification of differential expression genes (DEGs) through the R programming software; then, significantly enriched functions of DEGs in lung, kidney, and liver failure sepsis samples were obtained from the Database for Annotation, Visualization, and Integrated Discovery; finally, protein-protein interaction network was constructed for DEGs based on the STRING database, and network modules were also obtained through the MCODE cluster method. As a result, lung failure sepsis has the highest number of DEGs of 859, whereas the number of DEGs in kidney and liver failure sepsis samples is 178 and 175, respectively. In addition, 17 overlaps were obtained among the three lists of DEGs. Biological processes related to immune and inflammatory response were found to be significantly enriched in DEGs. Network and module analysis identified four gene clusters in which all or most of genes were upregulated. The expression changes of Icam1 and Socs3 were further validated through quantitative PCR analysis. This study should shed light on the development of sepsis and provide potential therapeutic targets for sepsis-induced multiorgan failure.

  5. Development of a Gene Expression Assay for the Diagnosis of Mycobacterium bovis Infection in African Lions (Panthera leo).

    Science.gov (United States)

    Olivier, T T; Viljoen, I M; Hofmeyr, J; Hausler, G A; Goosen, W J; Tordiffe, A S W; Buss, P; Loxton, A G; Warren, R M; Miller, M A; van Helden, P D; Parsons, S D C

    2017-06-01

    Mycobacterium bovis infection, the cause of bovine tuberculosis (BTB), is endemic in wildlife in the Kruger National Park (KNP), South Africa. In lions, a high infection prevalence and BTB mortalities have been documented in the KNP; however, the ecological consequences of this disease are currently unknown. Sensitive assays for the detection of this infection in this species are therefore required. Blood from M. bovis-exposed, M. bovis-unexposed, M. tuberculosis-exposed and M. bovis-infected lions was incubated in QuantiFERON ® -TB Gold (QFT) tubes containing either saline or ESAT-6/CFP-10 peptides. Using qPCR, selected reference genes were evaluated for expression stability in these samples and selected target genes were evaluated as markers of antigen-dependent immune activation. The abundance of monokine induced by gamma interferon (MIG/CXCL9) mRNA, measured in relation to that of YWHAZ, was used as a marker of ESAT-6/CFP-10 sensitization. The gene expression assay results were compared between lion groups, and lenient and stringent diagnostic cut-off values were calculated. This CXCL9 gene expression assay combines a highly specific stimulation platform with a sensitive diagnostic marker that allows for discrimination between M. bovis-infected and M. bovis-uninfected lions. © 2015 Blackwell Verlag GmbH.

  6. Comparative analysis of TCDD-induced AhR-mediated gene expression in human, mouse and rat primary B cells

    Energy Technology Data Exchange (ETDEWEB)

    Kovalova, Natalia, E-mail: kovalova@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Nault, Rance, E-mail: naultran@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Crawford, Robert, E-mail: crawfo28@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Zacharewski, Timothy R., E-mail: tzachare@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Kaminski, Norbert E., E-mail: kamins11@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States)

    2017-02-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant that activates the aryl hydrocarbon receptor (AhR) resulting in altered gene expression. In vivo, in vitro, and ex vivo studies have demonstrated that B cells are directly impaired by TCDD, and are a sensitive target as evidenced by suppression of antibody responses. The window of sensitivity to TCDD-induced suppression of IgM secretion among mouse, rat and human B cells is similar. Specifically, TCDD must be present within the initial 12 h post B cell stimulation, indicating that TCDD disrupts early signaling network(s) necessary for B lymphocyte activation and differentiation. Therefore, we hypothesized that TCDD treatment across three different species (mouse, rat and human) triggers a conserved, B cell-specific mechanism that is involved in TCDD-induced immunosuppression. RNA sequencing (RNA-Seq) was used to identify B cell-specific orthologous genes that are differentially expressed in response to TCDD in primary mouse, rat and human B cells. Time course studies identified TCDD-elicited differential expression of 515 human, 2371 mouse and 712 rat orthologous genes over the 24-h period. 28 orthologs were differentially expressed in response to TCDD in all three species. Overrepresented pathways enriched in all three species included cytokine-cytokine receptor interaction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton and pathways in cancer. Differentially expressed genes functionally associated with cell-cell signaling in humans, immune response in mice, and oxidation reduction in rats. Overall, these results suggest that despite the conservation of the AhR and its signaling mechanism, TCDD elicits species-specific gene expression changes. - Highlights: • Kovalova TAAP Highlights Nov. 2016 • RNA-Seq identified TCDD-induced gene expression in PWM-activated primary B cells. • TCDD elicited differential expression of 515 human, 2371 mouse and 712

  7. The Arabidopsis histone chaperone FACT is required for stress-induced expression of anthocyanin biosynthetic genes.

    Science.gov (United States)

    Pfab, Alexander; Breindl, Matthias; Grasser, Klaus D

    2018-03-01

    The histone chaperone FACT is involved in the expression of genes encoding anthocyanin biosynthetic enzymes also upon induction by moderate high-light and therefore contributes to the stress-induced plant pigmentation. The histone chaperone FACT consists of the SSRP1 and SPT16 proteins and associates with transcribing RNAPII (RNAPII) along the transcribed region of genes. FACT can promote transcriptional elongation by destabilising nucleosomes in the path of RNA polymerase II, thereby facilitating efficient transcription of chromatin templates. Transcript profiling of Arabidopsis plants depleted in SSRP1 or SPT16 demonstrates that only a small subset of genes is differentially expressed relative to wild type. The majority of these genes is either up- or down-regulated in both the ssrp1 and spt16 plants. Among the down-regulated genes, those encoding enzymes of the biosynthetic pathway of the plant secondary metabolites termed anthocyanins (but not regulators of the pathway) are overrepresented. Upon exposure to moderate high-light stress several of these genes are up-regulated to a lesser extent in ssrp1/spt16 compared to wild type plants, and accordingly the mutant plants accumulate lower amounts of anthocyanin pigments. Moreover, the expression of SSRP1 and SPT16 is induced under these conditions. Therefore, our findings indicate that FACT is a novel factor required for the accumulation of anthocyanins in response to light-induction.

  8. Ebola virus infection induces irregular dendritic cell gene expression.

    Science.gov (United States)

    Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla

    2015-02-01

    Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.

  9. A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae.

    Directory of Open Access Journals (Sweden)

    Takayuki eFujiwara

    2015-08-01

    Full Text Available The unicellular red alga Cyanidioschyzon merolae is a model organism for studying the basic biology of photosynthetic organisms. The C. merolae cell is composed of an extremely simple set of organelles. The genome is completely sequenced. Gene targeting and a heat-shock inducible gene expression system has been recently established. However, a conditional gene knockdown system has not been established, which is required for the examination of function of genes that are essential to cell viability and primary mutant defects. In the current study, we first evaluated the expression of a transgene from two chromosomal neutral loci located in the intergenic region between CMD184C and CMD185C, and a region upstream of the URA5.3 gene. There was no significant difference in expression between them and this result suggests that both may be used as neutral loci. We then designed an inducible and repressible gene expression by using promoters of nitrate-assimilation genes. The expression of nitrate-assimilation genes such as NR (nitrate reductase, NIR (nitrite reductase and NRT (the nitrate/nitrite transporter are reversibly regulated by their dependence on nitrogen sources. We constructed stable strains in which a cassette containing the NR, NIR or NRT promoter and sfGFP gene was inserted in a region upstream of URA5.3 and examined the efficacy of the promoters. The NR, NIR, and NRT promoters were constitutively activated in the nitrate medium, whereas their activities were extremely low in presence of ammonium. The activation of each promoter was immediately inhibited within a period of 1 hour by the addition of ammonium. Thus, a conditional knockdown system in C. merolae was successfully established. The activity varies among the promoters, and each is selectable according to the expression level of a target gene estimated by RNA-sequencing. This method is applicable to defects in genes of interest in photosynthetic organism.

  10. Curcumin inhibits interferoninduced NF-κB and COX-2 in human A549 non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun; Kim, Joo Hyun; Park, Joon Oh; Kim, Kihyun; Kim, Won Seog; Ahn, Jin Seok; Jung, Chul Won; Park, Young Suk; Kang, Won Ki; Park, Keunchil

    2005-01-01

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-α treatment. The IFN-α-treated A549 cells showed increase in protein expression levels of NF-κB and COX-2. IFN-α induced NF-κB binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-α-induced COX-2 expression in A549 cells. Within 10 min, IFN-α rapidly induced the binding activity of a γ- 32 P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-α-induced activations of NF-κB and COX-2 were inhibited by the addition of curcumin in A549 cells

  11. Contrasting gene expression programs correspond with predator-induced phenotypic plasticity within and across generations in Daphnia.

    Science.gov (United States)

    Hales, Nicole R; Schield, Drew R; Andrew, Audra L; Card, Daren C; Walsh, Matthew R; Castoe, Todd A

    2017-10-01

    Research has shown that a change in environmental conditions can alter the expression of traits during development (i.e., "within-generation phenotypic plasticity") as well as induce heritable phenotypic responses that persist for multiple generations (i.e., "transgenerational plasticity", TGP). It has long been assumed that shifts in gene expression are tightly linked to observed trait responses at the phenotypic level. Yet, the manner in which organisms couple within- and TGP at the molecular level is unclear. Here we tested the influence of fish predator chemical cues on patterns of gene expression within- and across generations using a clone of Daphnia ambigua that is known to exhibit strong TGP but weak within-generation plasticity. Daphnia were reared in the presence of predator cues in generation 1, and shifts in gene expression were tracked across two additional asexual experimental generations that lacked exposure to predator cues. Initial exposure to predator cues in generation 1 was linked to ~50 responsive genes, but such shifts were 3-4× larger in later generations. Differentially expressed genes included those involved in reproduction, exoskeleton structure and digestion; major shifts in expression of genes encoding ribosomal proteins were also identified. Furthermore, shifts within the first-generation and transgenerational shifts in gene expression were largely distinct in terms of the genes that were differentially expressed. Such results argue that the gene expression programmes involved in within- vs. transgeneration plasticity are fundamentally different. Our study provides new key insights into the plasticity of gene expression and how it relates to phenotypic plasticity in nature. © 2017 John Wiley & Sons Ltd.

  12. SAMHD1 restricts HIV-1 replication and regulates interferon production in mouse myeloid cells.

    Directory of Open Access Journals (Sweden)

    Ruonan Zhang

    Full Text Available SAMHD1 restricts the replication of HIV-1 and other retroviruses in human myeloid and resting CD4(+ T cells and that is counteracted in SIV and HIV-2 by the Vpx accessory protein. The protein is a phosphohydrolase that lowers the concentration of deoxynucleoside triphosphates (dNTP, blocking reverse transcription of the viral RNA genome. Polymorphisms in the gene encoding SAMHD1 are associated with Aicardi-Goutières Syndrome, a neurological disorder characterized by increased type-I interferon production. SAMHD1 is conserved in mammals but its role in restricting virus replication and controlling interferon production in non-primate species is not well understood. We show that SAMHD1 is catalytically active and expressed at high levels in mouse spleen, lymph nodes, thymus and lung. siRNA knock-down of SAMHD1 in bone marrow-derived macrophages increased their susceptibility to HIV-1 infection. shRNA knock-down of SAMHD1 in the murine monocytic cell-line RAW264.7 increased its susceptibility to HIV-1 and murine leukemia virus and increased the levels of the dNTP pool. In addition, SAMHD1 knock-down in RAW264.7 cells induced the production of type-I interferon and several interferon-stimulated genes, modeling the situation in Aicardi-Goutières Syndrome. Our findings suggest that the role of SAMHD1 in restricting viruses is conserved in the mouse. The RAW264.7 cell-line serves as a useful tool to study the antiviral and innate immune response functions of SAMHD1.

  13. Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2014-12-01

    Full Text Available Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR. Host PRR for RNA viruses include Toll-like receptors (TLR and retinoic acid-inducible gene I (RIG-I like receptors (RLR. Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.

  14. Isosteviol has beneficial effects on palmitate-induced α-cell dysfunction and gene expression.

    Directory of Open Access Journals (Sweden)

    Xiaoping Chen

    Full Text Available BACKGROUND: Long-term exposure to high levels of fatty acids impairs insulin secretion and exaggerates glucagon secretion. The aim of this study was to explore if the antihyperglycemic agent, Isosteviol (ISV, is able to counteract palmitate-induced α-cell dysfunction and to influence α-cell gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Long-term incubation studies with clonal α-TC1-6 cells were performed in the presence of 0.5 mM palmitate with or without ISV. We investigated effects on glucagon secretion, glucagon content, cellular triglyceride (TG content, cell proliferation, and expression of genes involved in controlling glucagon synthesis, fatty acid metabolism, and insulin signal transduction. Furthermore, we studied effects of ISV on palmitate-induced glucagon secretion from isolated mouse islets. Culturing α-cells for 72-h with 0.5 mM palmitate in the presence of 18 mM glucose resulted in a 56% (p<0.01 increase in glucagon secretion. Concomitantly, the TG content of α-cells increased by 78% (p<0.01 and cell proliferation decreased by 19% (p<0.05. At 18 mM glucose, ISV (10(-8 and 10(-6 M reduced palmitate-stimulated glucagon release by 27% (p<0.05 and 27% (p<0.05, respectively. ISV (10(-6 M also counteracted the palmitate-induced hypersecretion of glucagon in mouse islets. ISV (10(-6 M reduced α-TC1-6 cell proliferation rate by 25% (p<0.05, but ISV (10(-8 and 10(-6 M had no effect on TG content in the presence of palmitate. Palmitate (0.5 mM increased Pcsk2 (p<0.001, Irs2 (p<0.001, Fasn (p<0.001, Srebf2 (p<0.001, Acaca (p<0.01, Pax6 (p<0.05 and Gcg mRNA expression (p<0.05. ISV significantly (p<0.05 up-regulated Insr, Irs1, Irs2, Pik3r1 and Akt1 gene expression in the presence of palmitate. CONCLUSIONS/SIGNIFICANCE: ISV counteracts α-cell hypersecretion and apparently contributes to changes in expression of key genes resulting from long-term exposure to palmitate. ISV apparently acts as a glucagonostatic drug with potential as a

  15. Gene expression profiling reveals underlying molecular mechanisms of the early stages of tamoxifen-induced rat hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Pogribny, Igor P.; Bagnyukova, Tetyana V.; Tryndyak, Volodymyr P.; Muskhelishvili, Levan; Rodriguez-Juarez, Rocio; Kovalchuk, Olga; Han Tao; Fuscoe, James C.; Ross, Sharon A.; Beland, Frederick A.

    2007-01-01

    Tamoxifen is a widely used anti-estrogenic drug for chemotherapy and, more recently, for the chemoprevention of breast cancer. Despite the indisputable benefits of tamoxifen in preventing the occurrence and re-occurrence of breast cancer, the use of tamoxifen has been shown to induce non-alcoholic steatohepatitis, which is a life-threatening fatty liver disease with a risk of progression to cirrhosis and hepatocellular carcinoma. In recent years, the high-throughput microarray technology for large-scale analysis of gene expression has become a powerful tool for increasing the understanding of the molecular mechanisms of carcinogenesis and for identifying new biomarkers with diagnostic and predictive values. In the present study, we used the high-throughput microarray technology to determine the gene expression profiles in the liver during early stages of tamoxifen-induced rat hepatocarcinogenesis. Female Fisher 344 rats were fed a 420 ppm tamoxifen containing diet for 12 or 24 weeks, and gene expression profiles were determined in liver of control and tamoxifen-exposed rats. The results indicate that early stages of tamoxifen-induced liver carcinogenesis are characterized by alterations in several major cellular pathways, specifically those involved in the tamoxifen metabolism, lipid metabolism, cell cycle signaling, and apoptosis/cell proliferation control. One of the most prominent changes during early stages of tamoxifen-induced hepatocarcinogenesis is dysregulation of signaling pathways in cell cycle progression from the G 1 to S phase, evidenced by the progressive and sustained increase in expression of the Pdgfc, Calb3, Ets1, and Ccnd1 genes accompanied by the elevated level of the PI3K, p-PI3K, Akt1/2, Akt3, and cyclin B, D1, and D3 proteins. The early appearance of these alterations suggests their importance in the mechanism of neoplastic cell transformation induced by tamoxifen

  16. Adenovirus-encoding virus-associated RNAs suppress HDGF gene expression to support efficient viral replication.

    Directory of Open Access Journals (Sweden)

    Saki Kondo

    Full Text Available Non-coding small RNAs are involved in many physiological responses including viral life cycles. Adenovirus-encoding small RNAs, known as virus-associated RNAs (VA RNAs, are transcribed throughout the replication process in the host cells, and their transcript levels depend on the copy numbers of the viral genome. Therefore, VA RNAs are abundant in infected cells after genome replication, i.e. during the late phase of viral infection. Their function during the late phase is the inhibition of interferon-inducible protein kinase R (PKR activity to prevent antiviral responses; recently, mivaRNAs, the microRNAs processed from VA RNAs, have been reported to inhibit cellular gene expression. Although VA RNA transcription starts during the early phase, little is known about its function. The reason may be because much smaller amount of VA RNAs are transcribed during the early phase than the late phase. In this study, we applied replication-deficient adenovirus vectors (AdVs and novel AdVs lacking VA RNA genes to analyze the expression changes in cellular genes mediated by VA RNAs using microarray analysis. AdVs are suitable to examine the function of VA RNAs during the early phase, since they constitutively express VA RNAs but do not replicate except in 293 cells. We found that the expression level of hepatoma-derived growth factor (HDGF significantly decreased in response to the VA RNAs under replication-deficient condition, and this suppression was also observed during the early phase under replication-competent conditions. The suppression was independent of mivaRNA-induced downregulation, suggesting that the function of VA RNAs during the early phase differs from that during the late phase. Notably, overexpression of HDGF inhibited AdV growth. This is the first report to show the function, in part, of VA RNAs during the early phase that may be contribute to efficient viral growth.

  17. Induced pluripotency with endogenous and inducible genes

    International Nuclear Information System (INIS)

    Duinsbergen, Dirk; Eriksson, Malin; Hoen, Peter A.C. 't; Frisen, Jonas; Mikkers, Harald

    2008-01-01

    The recent discovery that two partly overlapping sets of four genes induce nuclear reprogramming of mouse and even human cells has opened up new possibilities for cell replacement therapies. Although the combination of genes that induce pluripotency differs to some extent, Oct4 and Sox2 appear to be a prerequisite. The introduction of four genes, several of which been linked with cancer, using retroviral approaches is however unlikely to be suitable for future clinical applications. Towards developing a safer reprogramming protocol, we investigated whether cell types that express one of the most critical reprogramming genes endogenously are predisposed to reprogramming. We show here that three of the original four pluripotency transcription factors (Oct4, Klf4 and c-Myc or MYCER TAM ) induced reprogramming of mouse neural stem (NS) cells exploiting endogenous SoxB1 protein levels in these cells. The reprogrammed neural stem cells differentiated into cells of each germ layer in vitro and in vivo, and contributed to mouse development in vivo. Thus a combinatorial approach taking advantage of endogenously expressed genes and inducible transgenes may contribute to the development of improved reprogramming protocols

  18. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.

  19. Interferon-induced central retinal vein thrombosis

    International Nuclear Information System (INIS)

    Nazir, L.; Husain, A.; Haroon, W.; Shaikh, M.I.; Mirza, S.A.; Khan, Z.

    2012-01-01

    A middle-aged lady presented with sudden onset of unilateral central retinal vein thrombosis after completing 6 months course of interferon and ribavirin for chronic hepatitis C infection. She had no risk factors and all her thrombophilia workup was normal, however, she was found to be dyslipidemic which may have contributed to atherosclerosis and predispose to thrombosis. Despite anticoagulation, her visual acuity deteriorated. This case illustrates the possibility of unpredictable visual complication of interferon. Frequent eye examination should be undertaken in patients having underlying risk factors like diabetes, hypertension or dyslipidemia undergoing interferon therapy. (author)

  20. Interferon-induced central retinal vein thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, L; Husain, A; Haroon, W; Shaikh, M I; Mirza, S A; Khan, Z

    2012-11-15

    A middle-aged lady presented with sudden onset of unilateral central retinal vein thrombosis after completing 6 months course of interferon and ribavirin for chronic hepatitis C infection. She had no risk factors and all her thrombophilia workup was normal, however, she was found to be dyslipidemic which may have contributed to atherosclerosis and predispose to thrombosis. Despite anticoagulation, her visual acuity deteriorated. This case illustrates the possibility of unpredictable visual complication of interferon. Frequent eye examination should be undertaken in patients having underlying risk factors like diabetes, hypertension or dyslipidemia undergoing interferon therapy. (author)

  1. Interferoninduced microRNA-129-5p down-regulates HPV-18 E6 and E7 viral gene expression by targeting SP1 in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Jiarong Zhang

    Full Text Available Infection by human papillomavirus (HPV can cause cervical intraepithelial neoplasia (CIN and cancer. Down-regulation of E6 and E7 expression may be responsible for the positive clinical outcomes observed with IFN treatment, but the molecular basis has not been well determined. As miRNAs play an important role in HPV induced cervical carcinogenesis, we hypothesize that IFN-β can regulate the expressions of specific miRNAs in cervical cancer cells, and that these miRNAs can mediate E6 and E7 expression, thus modulate their oncogenic potential. In this study, we found that miR-129-5p to be a candidate IFN-β inducible miRNA. MiR-129-5p levels gradually decrease with the development of cervical intraepithelial lesions. Manipulation of miR-129-5p expression in Hela cells modulates HPV-18 E6 and E7 viral gene expression. Exogenous miR-129-5p inhibits cell proliferation in Hela cells, promotes apoptosis and blocks cell cycle progression in Hela cells. SP1 is a direct target of miR-129-5p in Hela cells. This study is the first report of a cellular miRNA with anti-HPV activity and provides new insights into regulatory mechanisms between the HPV and the IFN system in host cells at the miRNA level.

  2. Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep.

    Science.gov (United States)

    Peñagaricano, Francisco; Wang, Xin; Rosa, Guilherme Jm; Radunz, Amy E; Khatib, Hasan

    2014-11-28

    Maternal nutrition during different stages of pregnancy can induce significant changes in the structure, physiology, and metabolism of the offspring. These changes could have important implications on food animal production especially if these perturbations impact muscle and adipose tissue development. Here, we evaluated the impact of different maternal isoenergetic diets, alfalfa haylage (HY; fiber), corn (CN; starch), and dried corn distillers grains (DG; fiber plus protein plus fat), on the transcriptome of fetal muscle and adipose tissues in sheep. Prepartum diets were associated with notable gene expression changes in fetal tissues. In longissimus dorsi muscle, a total of 224 and 823 genes showed differential expression (FDR ≤0.05) in fetuses derived from DG vs. CN and HY vs. CN maternal diets, respectively. Several of these significant genes affected myogenesis and muscle differentiation. In subcutaneous and perirenal adipose tissues, 745 and 208 genes were differentially expressed (FDR ≤0.05), respectively, between CN and DG diets. Many of these genes are involved in adipogenesis, lipogenesis, and adipose tissue development. Pathway analysis revealed that several GO terms and KEGG pathways were enriched (FDR ≤0.05) with differentially expressed genes associated with tissue and organ development, chromatin biology, and different metabolic processes. These findings provide evidence that maternal nutrition during pregnancy can alter the programming of fetal muscle and fat tissues in sheep. The ramifications of the observed gene expression changes, in terms of postnatal growth, body composition, and meat quality of the offspring, warrant future investigation.

  3. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sárvári, Anitta K., E-mail: anittasarvari@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Veréb, Zoltán, E-mail: jzvereb@gmail.com [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Uray, Iván P., E-mail: ipuray@mdanderson.org [Clinical Cancer Prevention Department, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Fésüs, László, E-mail: fesus@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); MTA DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences (Hungary); Balajthy, Zoltán, E-mail: balajthy@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary)

    2014-08-08

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  4. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    International Nuclear Information System (INIS)

    Sárvári, Anitta K.; Veréb, Zoltán; Uray, Iván P.; Fésüs, László; Balajthy, Zoltán

    2014-01-01

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  5. Personality and gene expression: Do individual differences exist in the leukocyte transcriptome?

    Science.gov (United States)

    Vedhara, Kavita; Gill, Sana; Eldesouky, Lameese; Campbell, Bruce K; Arevalo, Jesusa M G; Ma, Jeffrey; Cole, Steven W

    2015-02-01

    The temporal and situational stability of personality has led generations of researchers to hypothesize that personality may have enduring effects on health, but the biological mechanisms of such relationships remain poorly understood. In the present study, we utilized a functional genomics approach to examine the relationship between the 5 major dimensions of personality and patterns of gene expression as predicted by 'behavioural immune response' theory. We specifically focussed on two sets of genes previously linked to stress, threat, and adverse socio-environmental conditions: pro-inflammatory genes and genes involved in Type I interferon and antibody responses. An opportunity sample of 121 healthy individuals was recruited (86 females; mean age 24 years). Individuals completed a validated measure of personality; questions relating to current health behaviours; and provided a 5ml sample of peripheral blood for gene expression analysis. Extraversion was associated with increased expression of pro-inflammatory genes and Conscientiousness was associated with reduced expression of pro-inflammatory genes. Both associations were independent of health behaviours, negative affect, and leukocyte subset distributions. Antiviral and antibody-related gene expression was not associated with any personality dimension. The present data shed new light on the long-observed epidemiological associations between personality, physical health, and human longevity. Further research is required to elucidate the biological mechanisms underlying these associations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis.

    Science.gov (United States)

    Wang, Likai; Zhang, Fan; Rode, Siddharth; Chin, Kevin K; Ko, Eun Esther; Kim, Jonghwan; Iyer, Vishwanath R; Qiao, Hong

    2017-07-17

    Histone acetylation and deacetylation are essential for gene regulation and have been implicated in the regulation of plant hormone responses. Many studies have indicated the role of histone acetylation in ethylene signaling; however, few studies have investigated how ethylene signaling regulates the genomic landscape of chromatin states. Recently, we found that ethylene can specifically elevate histone H3K14 acetylation and the non-canonical histone H3K23 acetylation in etiolated seedlings and the gene activation is positively associated with the elevation of H3K14Ac and H3K23Ac in response to ethylene. To assess the role of H3K9, H3K14, and H3K23 histone modifications in the ethylene response, we examined how ethylene regulates histone acetylation and the transcriptome at global level and in ethylene regulated genes both in wild type (Col-0) and ein2-5 seedlings. Our results revealed that H3K9Ac, H3K14Ac, and H3K23Ac are preferentially enriched around the transcription start sites and are positively correlated with gene expression levels in Col-0 and ein2-5 seedlings both with and without ethylene treatment. In the absence of ethylene, no combinatorial effect of H3K9Ac, H3K14Ac, and H3K23Ac on gene expression was detected. In the presence of ethylene, however, combined enrichment of the three histone acetylation marks was associated with high gene expression levels, and this ethylene-induced change was EIN2 dependent. In addition, we found that ethylene-regulated genes are expressed at medium or high levels, and a group of ethylene regulated genes are marked by either one of H3K9Ac, H3K14Ac or H3K23Ac. In this group of genes, the levels of H3K9Ac were altered by ethylene, but in the absence of ethylene the levels of H3K9Ac and peak breadths are distinguished in up- and down- regulated genes. In the presence of ethylene, the changes in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expressions. Our study reveals that

  7. 9-cis-retinoic acid represses estrogen-induced expression of the very low density apolipoprotein II gene.

    Science.gov (United States)

    Schippers, I J; Kloppenburg, M; Snippe, L; Ab, G

    1994-11-01

    The chicken very low density apolipoprotein II (apoVLDLII) gene is estrogen-inducible and specifically expressed in liver. We examined the possible involvement of the retinoid X receptor (RXR) and its ligand 9-cis-retinoic acid (9-cis-RA) in the activation of the apoVLDLII promoter. We first concentrated on a potential RXR recognition site, which deviates at only one position from a perfect direct A/GGGTCA repeat spaced by one nucleotide (DR-1) and was earlier identified as a common HNF-4/COUP-TF recognition site. However, band shift analysis revealed that this imperfect DR-1 motif does not interact with RXR alpha-homodimers. In accordance with this observation we found that this regulatory element does not mediate transactivation through RXR alpha in the presence of 9-cis-RA. However, our experiments revealed another, unexpected, effect of 9-cis-RA. Instead of stimulating, 9-cis-RA attenuated estrogen-induced expression of transfected estrogen-responsive VLDL-CAT reporter plasmids. This repression appeared to take place through the main estrogen response element (ERE) of the gene. Importantly, 9-cis-RA also strongly repressed the estrogen-induced expression of the endogenous apoVLDLII gene in cultured chicken hepatoma cells.

  8. Rare ADAR and RNASEH2B variants and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis.

    Science.gov (United States)

    Beyer, Ulrike; Brand, Frank; Martens, Helge; Weder, Julia; Christians, Arne; Elyan, Natalie; Hentschel, Bettina; Westphal, Manfred; Schackert, Gabriele; Pietsch, Torsten; Hong, Bujung; Krauss, Joachim K; Samii, Amir; Raab, Peter; Das, Anibh; Dumitru, Claudia A; Sandalcioglu, I Erol; Hakenberg, Oliver W; Erbersdobler, Andreas; Lehmann, Ulrich; Reifenberger, Guido; Weller, Michael; Reijns, Martin A M; Preller, Matthias; Wiese, Bettina; Hartmann, Christian; Weber, Ruthild G

    2017-12-01

    In search of novel germline alterations predisposing to tumors, in particular to gliomas, we studied a family with two brothers affected by anaplastic gliomas, and their father and paternal great-uncle diagnosed with prostate carcinoma. In this family, whole-exome sequencing yielded rare, simultaneously heterozygous variants in the Aicardi-Goutières syndrome (AGS) genes ADAR and RNASEH2B co-segregating with the tumor phenotype. AGS is a genetically induced inflammatory disease particularly of the brain, which has not been associated with a consistently increased cancer risk to date. By targeted sequencing, we identified novel ADAR and RNASEH2B variants, and a 3- to 17-fold frequency increase of the AGS mutations ADAR,c.577C>G;p.(P193A) and RNASEH2B,c.529G>A;p.(A177T) in the germline of familial glioma patients as well as in test and validation cohorts of glioblastomas and prostate carcinomas versus ethnicity-matched controls, whereby rare RNASEH2B variants were significantly more frequent in familial glioma patients. Tumors with ADAR or RNASEH2B variants recapitulated features of AGS, such as calcification and increased type I interferon expression. Patients carrying ADAR or RNASEH2B variants showed upregulation of interferon-stimulated gene (ISG) transcripts in peripheral blood as seen in AGS. An increased ISG expression was also induced by ADAR and RNASEH2B variants in tumor cells and was blocked by the JAK inhibitor Ruxolitinib. Our data implicate rare variants in the AGS genes ADAR and RNASEH2B and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis, consistent with a genetic basis underlying inflammation-driven malignant transformation in glioma and prostate carcinoma development.

  9. An Assay in Microtitre Plates for Absolute Abundance of Chicken Interferon Alpha Transcripts

    Directory of Open Access Journals (Sweden)

    Renata Novak Kujundžić

    2010-01-01

    Full Text Available Immunosuppression of commercial chickens is a serious animal health and economic problem in the poultry industry. The major causes of the immunosuppression are viruses that suppress transcription of interferon genes, especially interferon alpha. There is a need for monitoring immunosuppression in commercially bred chickens. For this purpose, the absolute abundance of interferon alpha transcripts can be measured in blood of chickens by a suitable assay. Such an assay was used to estimate abundance of chicken interferon alpha in a sample of splenic cells induced with polyinosinic polycytidylic acid. The abundance measured was 29 ± 2 attomoles/µg total RNA. This assay can be performed in microtitre plates using samples collected from chickens in poultry houses.

  10. Effects of C-phycocyanin and Spirulina on Salicylate-Induced Tinnitus, Expression of NMDA Receptor and Inflammatory Genes

    Science.gov (United States)

    Hwang, Juen-Haur; Chen, Jin-Cherng; Chan, Yin-Ching

    2013-01-01

    Effects of C-phycocyanin (C-PC), the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B), tumor necrosis factor–α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase type 2 (COX-2) genes in the cochlea and inferior colliculus (IC) of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes. PMID:23533584

  11. Effects of C-phycocyanin and Spirulina on salicylate-induced tinnitus, expression of NMDA receptor and inflammatory genes.

    Directory of Open Access Journals (Sweden)

    Juen-Haur Hwang

    Full Text Available Effects of C-phycocyanin (C-PC, the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and cyclooxygenase type 2 (COX-2 genes in the cochlea and inferior colliculus (IC of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes.

  12. Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Wendy J van Zuylen

    Full Text Available BACKGROUND: The ten mouse and six human members of the Schlafen (Slfn gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. METHODOLOGY/PRINCIPAL FINDINGS: Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM by the Toll-like Receptor (TLR4 agonist lipopolysaccharide (LPS, the TLR3 agonist Poly(I∶C, and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1⁻/⁻ BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. CONCLUSIONS: Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the

  13. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism.

    Science.gov (United States)

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H; Blesso, Christopher N; Fernandez, Maria Luz

    2017-06-22

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group ( p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group ( p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls ( p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.

  14. Cadmium induces cadmium-tolerant gene expression in the filamentous fungus Trichoderma harzianum.

    Science.gov (United States)

    Cacciola, Santa O; Puglisi, Ivana; Faedda, Roberto; Sanzaro, Vincenzo; Pane, Antonella; Lo Piero, Angela R; Evoli, Maria; Petrone, Goffredo

    2015-11-01

    The filamentous fungus Trichoderma harzianum, strain IMI 393899, was able to grow in the presence of the heavy metals cadmium and mercury. The main objective of this research was to study the molecular mechanisms underlying the tolerance of the fungus T. harzianum to cadmium. The suppression subtractive hybridization (SSH) method was used for the characterization of the genes of T. harzianum implicated in cadmium tolerance compared with those expressed in the response to the stress induced by mercury. Finally, the effects of cadmium exposure were also validated by measuring the expression levels of the putative genes coding for a glucose transporter, a plasma membrane ATPase, a Cd(2+)/Zn(2+) transporter protein and a two-component system sensor histidine kinase YcbA, by real-time-PCR. By using the aforementioned SSH strategy, it was possible to identify 108 differentially expressed genes of the strain IMI 393899 of T. harzianum grown in a mineral substrate with the addition of cadmium. The expressed sequence tags identified by SSH technique were encoding different genes that may be involved in different biological processes, including those associated to primary and secondary metabolism, intracellular transport, transcription factors, cell defence, signal transduction, DNA metabolism, cell growth and protein synthesis. Finally, the results show that in the mechanism of tolerance to cadmium a possible signal transduction pathway could activate a Cd(2+)/Zn(2+) transporter protein and/or a plasma membrane ATPase that could be involved in the compartmentalization of cadmium inside the cell.

  15. Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control.

    Science.gov (United States)

    Baumschlager, Armin; Aoki, Stephanie K; Khammash, Mustafa

    2017-11-17

    Light has emerged as a control input for biological systems due to its precise spatiotemporal resolution. The limited toolset for light control in bacteria motivated us to develop a light-inducible transcription system that is independent from cellular regulation through the use of an orthogonal RNA polymerase. Here, we present our engineered blue light-responsive T7 RNA polymerases (Opto-T7RNAPs) that show properties such as low leakiness of gene expression in the dark state, high expression strength when induced with blue light, and an inducible range of more than 300-fold. Following optimization of the system to reduce expression variability, we created a variant that returns to the inactive dark state within minutes once the blue light is turned off. This allows for precise dynamic control of gene expression, which is a key aspect for most applications using optogenetic regulation. The regulators, which only require blue light from ordinary light-emitting diodes for induction, were developed and tested in the bacterium Escherichia coli, which is a crucial cell factory for biotechnology due to its fast and inexpensive cultivation and well understood physiology and genetics. Opto-T7RNAP, with minor alterations, should be extendable to other bacterial species as well as eukaryotes such as mammalian cells and yeast in which the T7 RNA polymerase and the light-inducible Vivid regulator have been shown to be functional. We anticipate that our approach will expand the applicability of using light as an inducer for gene expression independent from cellular regulation and allow for a more reliable dynamic control of synthetic and natural gene networks.

  16. Tumor-produced, active Interleukin-1 β regulates gene expression in carcinoma-associated fibroblasts

    International Nuclear Information System (INIS)

    Dudas, Jozsef; Fullar, Alexandra; Bitsche, Mario; Schartinger, Volker; Kovalszky, Ilona; Sprinzl, Georg Mathias; Riechelmann, Herbert

    2011-01-01

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1β (IL1-β) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-β expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-β processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-β. IL1-β signaling was investigated by western blot and immunocytochemistry. IL1-β-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-β, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NFκBα. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-β reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-β-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-β in the tumor cells leads to IL1-β-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-β. PDL fibroblasts possess receptor for IL1-β, and its expression is increased 4.56-times in the presence of SCC-25 tumor cells. IL1-β receptor expression in

  17. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullar, Alexandra, E-mail: fullarsz@gmail.com [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Bitsche, Mario, E-mail: Mario.Bitsche@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Schartinger, Volker, E-mail: Volker.Schartinger@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: koval@korb1.sote.hu [1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Sprinzl, Georg Mathias, E-mail: Georg.Sprinzl@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: Herbert.Riechelmann@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the

  18. Type I interferon and pattern recognition receptor signaling following particulate matter inhalation

    Directory of Open Access Journals (Sweden)

    Erdely Aaron

    2012-07-01

    Full Text Available Abstract Background Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc – stainless steel (GMA-SS welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. Results The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10. In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3 were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88 to inhalation of GMA-SS. Conclusion This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure.

  19. Manganese Superoxide Dismutase Gene Expression Is Induced by Nanog and Oct4, Essential Pluripotent Stem Cells’ Transcription Factors

    Science.gov (United States)

    Solari, Claudia; Vázquez Echegaray, Camila; Cosentino, María Soledad; Petrone, María Victoria; Waisman, Ariel; Luzzani, Carlos; Francia, Marcos; Villodre, Emilly; Lenz, Guido; Miriuka, Santiago; Barañao, Lino; Guberman, Alejandra

    2015-01-01

    Pluripotent stem cells possess complex systems that protect them from oxidative stress and ensure genomic stability, vital for their role in development. Even though it has been reported that antioxidant activity diminishes along stem cell differentiation, little is known about the transcriptional regulation of the involved genes. The reported modulation of some of these genes led us to hypothesize that some of them could be regulated by the transcription factors critical for self-renewal and pluripotency in embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). In this work, we studied the expression profile of multiple genes involved in antioxidant defense systems in both ESCs and iPSCs. We found that Manganese superoxide dismutase gene (Mn-Sod/Sod2) was repressed during diverse differentiation protocols showing an expression pattern similar to Nanog gene. Moreover, Sod2 promoter activity was induced by Oct4 and Nanog when we performed a transactivation assay using two different reporter constructions. Finally, we studied Sod2 gene regulation by modulating the expression of Oct4 and Nanog in ESCs by shRNAs and found that downregulation of any of them reduced Sod2 expression. Our results indicate that pluripotency transcription factors positively modulate Sod2 gene transcription. PMID:26642061

  20. Mapping photothermally induced gene expression in living cells and tissues by nanorod-locked nucleic acid complexes.

    Science.gov (United States)

    Riahi, Reza; Wang, Shue; Long, Min; Li, Na; Chiou, Pei-Yu; Zhang, Donna D; Wong, Pak Kin

    2014-04-22

    The photothermal effect of plasmonic nanostructures has numerous applications, such as cancer therapy, photonic gene circuit, large cargo delivery, and nanostructure-enhanced laser tweezers. The photothermal operation can also induce unwanted physical and biochemical effects, which potentially alter the cell behaviors. However, there is a lack of techniques for characterizing the dynamic cell responses near the site of photothermal operation with high spatiotemporal resolution. In this work, we show that the incorporation of locked nucleic acid probes with gold nanorods allows photothermal manipulation and real-time monitoring of gene expression near the area of irradiation in living cells and animal tissues. The multimodal gold nanorod serves as an endocytic delivery reagent to transport the probes into the cells, a fluorescence quencher and a binding competitor to detect intracellular mRNA, and a plasmonic photothermal transducer to induce cell ablation. We demonstrate the ability of the gold nanorod-locked nucleic acid complex for detecting the spatiotemporal gene expression in viable cells and tissues and inducing photothermal ablation of single cells. Using the gold nanorod-locked nucleic acid complex, we systematically characterize the dynamic cellular heat shock responses near the site of photothermal operation. The gold nanorod-locked nucleic acid complex enables mapping of intracellular gene expressions and analyzes the photothermal effects of nanostructures toward various biomedical applications.

  1. Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes.

    Science.gov (United States)

    Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Lu, Lei; Levy, Daniel; Zhong, Shuping

    2015-02-01

    Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNA(Leu) and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A computational profiling of changes in gene expression and transcription factors induced by vFLIP K13 in primary effusion lymphoma.

    Directory of Open Access Journals (Sweden)

    Vasu Punj

    Full Text Available Infection with Kaposi's sarcoma associated herpesvirus (KSHV has been linked to the development of primary effusion lymphoma (PEL, a rare lymphoproliferative disorder that is characterized by loss of expression of most B cell markers and effusions in the body cavities. This unique clinical presentation of PEL has been attributed to their distinctive plasmablastic gene expression profile that shows overexpression of genes involved in inflammation, adhesion and invasion. KSHV-encoded latent protein vFLIP K13 has been previously shown to promote the survival and proliferation of PEL cells. In this study, we employed gene array analysis to characterize the effect of K13 on global gene expression in PEL-derived BCBL1 cells, which express negligible K13 endogenously. We demonstrate that K13 upregulates the expression of a number of NF-κB responsive genes involved in cytokine signaling, cell death, adhesion, inflammation and immune response, including two NF-κB subunits involved in the alternate NF-κB pathway, RELB and NFKB2. In contrast, CD19, a B cell marker, was one of the genes downregulated by K13. A comparison with K13-induced genes in human vascular endothelial cells revealed that although there was a considerable overlap among the genes induced by K13 in the two cell types, chemokines genes were preferentially induced in HUVEC with few exceptions, such as RANTES/CCL5, which was induced in both cell types. Functional studies confirmed that K13 activated the RANTES/CCL5 promoter through the NF-κB pathway. Taken collectively, our results suggest that K13 may contribute to the unique gene expression profile, immunophenotype and clinical presentation that are characteristics of KSHV-associated PEL.

  3. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  4. Nanoselenium prevents eimeriosis-induced inflammation and regulates mucin gene expression in mice jejunum

    Directory of Open Access Journals (Sweden)

    Alkhudhayri AA

    2018-04-01

    Full Text Available Abdulsalam A Alkhudhayri,1 Mohamed A Dkhil,1,2 Saleh Al-Quraishy1 1Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; 2Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt Background: Although elemental selenium has been found to be effective against Eimeria, no study has yet investigated the effects of selenium nanoparticles (SeNPs on the Eimeria parasite. The aim of this study, therefore, was to evaluate the ameliorative effect of SeNPs compared with elemental selenium on mice jejunum infected with sporulated oocysts of Eimeria papillata.Methods: The mice were divided into 4 groups, with the first being the non-infected, control group, and the second, third, and fourth groups being orally inoculated with 1,000 sporulated oocysts of E. papillata. The third and fourth groups also received, respectively, an oral dose of 0.1 mg/kg sodium selenite and 0.5 mg/kg SeNPs daily for 5 consecutive days.Results: The infection induced severe histopathological jejunal damage, reflected in the form of destroyed jejunal mucosa, increased jejunal oxidative damage, a reduction in the number of jejunal goblet cells, and increased production of pro-inflammatory cytokines, quantified by real-time polymerase chain reaction. Treatment of mice with SeNPs significantly decreased the oocyst output in the feces by ~80%. Furthermore, the number of parasitic stages counted in stained jejunal paraffin sections was significantly decreased after the mice were treated with SeNPs. In addition, the number of goblet cells increased from 42.6±7.3 to 95.3±8.5 cells/10 villus-crypt units after treatment. By day 5 post-infection with E. papillata, SeNPs could be seen to have significantly increased the activity of glutathione peroxidase from 263±10 to 402.4±9 mU/mL. Finally, SeNPs were able to regulate the gene expression of mucin 2, interleukin 1β, interleukin 6, interferon-γ, and tumor necrosis factor

  5. Nonstructural 5A Protein of Hepatitis C Virus Interferes with Toll-Like Receptor Signaling and Suppresses the Interferon Response in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Takeya Tsutsumi

    Full Text Available The hepatitis C virus nonstructural protein NS5A is involved in resistance to the host immune response, as well as the viral lifecycle such as replication and maturation. Here, we established transgenic mice expressing NS5A protein in the liver and examined innate immune responses against lipopolysaccharide (LPS in vivo. Intrahepatic gene expression levels of cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ were significantly suppressed after LPS injection in the transgenic mouse liver. Induction of the C-C motif chemokine ligand 2, 4, and 5 was also suppressed. Phosphorylation of the signal transducer and activator of transcription 3, which is activated by cytokines, was also reduced, and expression levels of interferon-stimulated genes, 2'-5' oligoadenylate synthase, interferon-inducible double-stranded RNA-activated protein kinase, and myxovirus resistance 1 were similarly suppressed. Since LPS binds to toll-like receptor 4 and stimulates the downstream pathway leading to induction of these genes, we examined the extracellular signal-regulated kinase and IκB-α. The phosphorylation levels of these molecules were reduced in transgenic mouse liver, indicating that the pathway upstream of the molecules was disrupted by NS5A. Further analyses revealed that the interaction between interleukin-1 receptor-associated kinase-1 and tumor necrosis factor receptor associated factor-6 was dispersed in transgenic mice, suggesting that NS5A may interfere with this interaction via myeloid differentiation primary response gene 88, which was shown to interact with NS5A. Since the gut microbiota, a source of LPS, is known to be associated with pathological conditions in liver diseases, our results suggest the involvement of NS5A in the pathogenesis of HCV infected-liver via the suppression of innate immunity.

  6. Chemical memory reactions induced bursting dynamics in gene expression.

    Science.gov (United States)

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.

  7. Icariin Is A PPARα Activator Inducing Lipid Metabolic Gene Expression in Mice

    Directory of Open Access Journals (Sweden)

    Yuan-Fu Lu

    2014-11-01

    Full Text Available Icariin is effective in the treatment of hyperlipidemia. To understand the effect of icariin on lipid metabolism, effects of icariin on PPARα and its target genes were investigated. Mice were treated orally with icariin at doses of 0, 100, 200, and 400 mg/kg, or clofibrate (500 mg/kg for five days. Liver total RNA was isolated and the expressions of PPARα and lipid metabolism genes were examined. PPARα and its marker genes Cyp4a10 and Cyp4a14 were induced 2-4 fold by icariin, and 4-8 fold by clofibrate. The fatty acid (FA binding and co-activator proteins Fabp1, Fabp4 and Acsl1 were increased 2-fold. The mRNAs of mitochondrial FA β-oxidation enzymes (Cpt1a, Acat1, Acad1 and Hmgcs2 were increased 2-3 fold. The mRNAs of proximal β-oxidation enzymes (Acox1, Ech1, and Ehhadh were also increased by icariin and clofibrate. The expression of mRNAs for sterol regulatory element-binding factor-1 (Srebf1 and FA synthetase (Fasn were unaltered by icariin. The lipid lysis genes Lipe and Pnpla2 were increased by icariin and clofibrate. These results indicate that icariin is a novel PPARα agonist, activates lipid metabolism gene expressions in liver, which could be a basis for its lipid-lowering effects and its beneficial effects against diabetes.

  8. [Gene Expression Profile of Apoptosis in Leukemia Cells Induced by Hsp90 Selective inhibitor 17-AAG].

    Science.gov (United States)

    Wang, Na-Na; Li, Zhi-Heng; Tao, Yan-Fang; Xu, Li-Xiao; Pan, Jian; Hu, Shao-Yan

    2016-06-01

    To investigate the apoptotic effects of Hsp90 selective inhibitor 17-AAG on human leukemia HL-60 and NB4 cells and analyse its possible mechanism. CCK-8 assay was used to quantify the growth inhibition of cells after exposure to 17-AAG for 24 hours. Flow cytometrve with annexin V/propidium iodide staining was used to detect apoptosis of leukemia cells. Then Western blot was used to detect the activation of apoptosis related protein caspase-3 and PARP level. Gene expression profile of NB4 cells treated with 17-AAG was analyzed with real-time PCR arrays. The inhibition of leukemia cell proliferation displayed a dose-dependent manner. Annexin V assay, cell cycle analysis and activation of PARP demonstrate that 17-AAG induced apoptosis leukemia cells. Real-time PCR array analysis showed that expression of 56 genes significantly up-regulated and expression of 23 genes were significantly down-regulated after 17-AAG treatment. The 17-AAG can inhibit the proliferation and induce the apoptosis of leukemia cells. After leukemia cells are treated with 17-AAG, the significant changes of apoptosis-related genes occured, and the cell apoptosis occurs via activating apoptosis related signaling pathway.

  9. Protective effects of the exopolysaccharide Lasiodiplodan against DNA damage and inflammation induced by doxorubicin in rats: Cytogenetic and gene expression assays

    International Nuclear Information System (INIS)

    Mello, M.B.; Machado, C.S.; Ribeiro, D.L.; Aissa, A.F.; Burim, R.V.; Alves da Cunha, M.A.; Barcelos, G.R.M.

    2017-01-01

    The lasiodiplodan (LS) is a β-(1 → 6)-D-glucan produced by the fungus Lasiodiplodia theobromae and some of the biological activities of LS were reported as hypoglycemic, anticoagulant, anti-proliferative and anticancer action; however, its effects on DNA instability and modulation of gene expression are still unclear. Aims of study were investigate the genotoxic effects of lasiodiplodan, and its protective activity against DNA damage induced by doxorubicin (DXR) and its impact on the expression of genes associated with DNA damage and inflammatory response pathways. Therefore, Wistar rats were treated (15 days) orally with LS (5.0; 10 and 20 mg/kg bw) alone and in combination with DXR (15 mg/kg bw; administrated intraperitoneally on 14th day) as well as their respective controls: distilled water and DXR. Monitoring of DNA damage was assessed by comet and micronucleus (MN) assays and gene expression was evaluated by PCR-Arrays. Treatments with LS alone did not induce disturbances on DNA; when LS was given in combination with DXR, comet and MN formations were reduced to those found in the respective controls. Moreover, LS was able to reduce the disturbances on gene expressions induced by DXR treatment, since the animals that receive LS associated with DXR showed no alteration in the expression of genes related to DNA damage response. Also, DXR induced several up- and down-regulation of several genes associated to inflammatory process, while the animals that received LS + DXR had their gene expression patterns similar to those found in the control group. In conclusion, our results showed that LS did not induce disturbances on DNA stability and significantly reduce the DNA damage and inflammation caused by DXR exposure. In addition, we give further information concerning the molecular mechanisms associated to LS protective effects which seems to be a promising nutraceutical with chemopreventive potential.

  10. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeon-Jae; Lee, Jin-Hwee [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-05-02

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.

  11. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1-activated transcription of the interferon regulatory factor 1 gene (IRF1

    Directory of Open Access Journals (Sweden)

    Buro Lauren J

    2010-09-01

    Full Text Available Abstract Background Signal transducer and activator of transcription (STAT activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. Results Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1. Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFNγ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD of Pol II are disrupted during gene activation as well. Conclusions H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.

  12. How Flaviviruses Activate and Suppress the Interferon Response

    Directory of Open Access Journals (Sweden)

    Brenda L. Fredericksen

    2010-02-01

    Full Text Available The flavivirus genus includes viruses with a remarkable ability to produce disease on a large scale. The expansion and increased endemicity of dengue and West Nile viruses in the Americas exemplifies their medical and epidemiological importance. The rapid detection of viral infection and induction of the innate antiviral response are crucial to determining the outcome of infection. The intracellular pathogen receptors RIG-I and MDA5 play a central role in detecting flavivirus infections and initiating a robust antiviral response. Yet, these viruses are still capable of producing acute illness in humans. It is now clear that flaviviruses utilize a variety of mechanisms to modulate the interferon response. The non-structural proteins of the various flaviviruses reduce expression of interferon dependent genes by blocking phosphorylation, enhancing degradation or down-regulating expression of major components of the JAK/STAT pathway. Recent studies indicate that interferon modulation is an important factor in the development of severe flaviviral illness. This suggests that an increased understanding of viral-host interactions will facilitate the development of novel therapeutics to treat these viral infections and improved biological models to study flavivirus pathogenesis.

  13. Host gene expression profiles in ferrets infected with genetically distinct henipavirus strains.

    Directory of Open Access Journals (Sweden)

    Alberto J Leon

    2018-03-01

    Full Text Available Henipavirus infection causes severe respiratory and neurological disease in humans that can be fatal. To characterize the pathogenic mechanisms of henipavirus infection in vivo, we performed experimental infections in ferrets followed by genome-wide gene expression analysis of lung and brain tissues. The Hendra, Nipah-Bangladesh, and Nipah-Malaysia strains caused severe respiratory and neurological disease with animals succumbing around 7 days post infection. Despite the presence of abundant viral shedding, animal-to-animal transmission did not occur. The host gene expression profiles of the lung tissue showed early activation of interferon responses and subsequent expression of inflammation-related genes that coincided with the clinical deterioration. Additionally, the lung tissue showed unchanged levels of lymphocyte markers and progressive downregulation of cell cycle genes and extracellular matrix components. Infection in the brain resulted in a limited breadth of the host responses, which is in accordance with the immunoprivileged status of this organ. Finally, we propose a model of the pathogenic mechanisms of henipavirus infection that integrates multiple components of the host responses.

  14. Regulatory T cells and other lymphocyte subpopulations in patients with melanoma developing interferon-induced thyroiditis during high-dose interferon-α2b treatment.

    Science.gov (United States)

    Soldevila, Berta; Alonso, Núria; Martínez-Arconada, Maria J; Granada, Maria L; Boada, Aram; Vallejos, Virginia; Fraile, Manuel; Fernández-Sanmartín, Marco A; Pujol-Borrell, Ricardo; Puig-Domingo, Manel; Sanmartí, Anna; Martínez-Cáceres, Eva M

    2013-04-01

    One of the side effects of interferon-alpha therapy is interferon-induced thyroiditis (IIT). The role of lymphocyte subpopulations in IIT melanoma patients remains to be defined. Our objective was to assess different peripheral blood lymphocyte subpopulations, mainly regulatory T cells (Tregs), in melanoma patients who developed IIT. From 30 melanoma patients receiving high-dose interferon (HDI)-alpha 2b (IFN-α2b) treatment, those who developed IIT (IIT patients) were selected and compared with patients who did not develop IIT (Co-MM) and healthy controls (Co-H). Peripheral blood mononuclear cells were obtained before treatment (BT), mid-treatment (MT), end of treatment (ET), 24 weeks post-treatment and at appearance of IIT (TT). Nine patients developed IIT (30%): four Hashimoto's thyroiditis and five destructive thyroiditis. An increase in Tregs was observed in both melanoma groups during HDI treatment. A decrease in CD3(+) , NKT lymphocyte subpopulations and Bcl2 expression on B cells was also observed in both groups. However, no changes were observed in the percentage of CD4(+) , CD8(+) , CD3(+) γδ(+) , CD19(+) , transitional B cells (CD24(high) CD38(high) CD19(+) CD27(-) ), natural killer (NK), invariant NKT (iNKT) lymphocytes and Th1/Th2 balance when BT was compared with ET. At TT, IIT patients had a higher Tregs percentage than Co-MM (P = 0·012) and Co-H (P = 0·004), a higher iNKT percentage than Co-MM (P = 0·011), a higher transitional B cells percentage than Co-H (P = 0·015), a lower CD3(+) percentage than Co-H (P = 0·001) and a lower Bcl2 expression on B cells than Co-H (P < 0·001). Our results point to the immunomodulatory effects of IFN-α on different lymphocyte subpopulations and a possible role of Tregs in melanoma patients who developed IIT. © 2012 Blackwell Publishing Ltd.

  15. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    International Nuclear Information System (INIS)

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-01-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca 2+ concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes

  16. Expression of immediate-early genes in the dorsal cochlear nucleus in salicylate-induced tinnitus.

    Science.gov (United States)

    Hu, Shou-Sen; Mei, Ling; Chen, Jian-Yong; Huang, Zhi-Wu; Wu, Hao

    2016-02-01

    Spontaneous neuronal activity in dorsal cochlear nucleus (DCN) may be involved in the physiological processes underlying salicylate-induced tinnitus. As a neuronal activity marker, immediate-early gene (IEG) expression, especially activity-dependent cytoskeletal protein (Arc/Arg3.1) and the early growth response gene-1 (Egr-1), appears to be highly correlated with sensory-evoked neuronal activity. However, their relationships with tinnitus induced by salicylate have rarely been reported in the DCN. In this study, we assessed the effect of acute and chronic salicylate treatment on the expression of N-methyl D-aspartate receptor subunit 2B (NR2B), Arg3.1, and Egr-1. We also observed ultrastructural alterations in the DCN synapses in an animal model of tinnitus. Levels of mRNA and protein expression of NR2B and Arg3.1 were increased in rats that were chronically administered salicylate (200 mg/kg, twice daily for 3, 7, or 14 days). These levels returned to baseline 14 days after cessation of treatment. However, no significant changes were observed in Egr-1 gene expression in any groups. Furthermore, rats subjected to long-term salicylate administration showed more presynaptic vesicles, thicker and longer postsynaptic densities, and increased synaptic interface curvature. Alterations of Arg3.1 and NR2B may be responsible for the changes in the synaptic ultrastructure. These changes confirm that salicylate can cause neural plasticity changes at the DCN level.

  17. Modulation of macrophage Ia expression by lipopolysaccharide: Stem cell requirements, accessory lymphocyte involvement, and IA-inducing factor production

    International Nuclear Information System (INIS)

    Wentworth, P.A.; Ziegler, H.K.

    1989-01-01

    The mechanism of induction of murine macrophage Ia expression by lipopolysaccharide (LPS) was studied. Intraperitoneal injection of 1 microgram of LPS resulted in a 3- to 10-fold increase in the number of IA-positive peritoneal macrophages (flow cytometry and immunofluorescence) and a 6-to 16-fold increase by radioimmunoassay. The isolated lipid A moiety of LPS was a potent inducer of macrophage Ia expression. Ia induction required a functional myelopoietic system as indicated by the finding that the response to LPS was eliminated in irradiated (900 rads) mice and reinstated by reconstitution with bone marrow cells. Comparison of LPS-induced Ia expression in normal and LPS-primed mice revealed a faster secondary response to LPS. The memory response could be adoptively transferred to normal mice with nonadherent spleen cells prepared 60 days after LPS injection. Spleen cells prepared 5 days after LPS injection caused Ia induction in LPS-nonresponder mice; such induction was not observed in irradiated (900 rads) recipients. The cell responsible for this phenomenon was identified as a Thy-1+, immunoglobulin-negative nonadherent cell. The biosynthesis and expression of Ia were not increased by direct exposure of macrophages to LPS in vitro. Small amounts of LPS inhibited Ia induction by gamma interferon. LPS showed positive regulatory effects on Ia expression by delaying the loss of Ia expression on cultured macrophages and by stimulating the production of Ia-inducing factors. Supernatants from cultured spleen cells stimulated with LPS in vitro contained antiviral and Ia-inducing activity that was acid labile, indicating that the active factor is gamma interferon. We conclude that induction of Ia expression by LPS in vivo is a bone-marrow-dependent, radiation-sensitive process which involves the stimulation of a gamma interferon-producing accessory lymphocyte and a delay in Ia turnover

  18. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    Science.gov (United States)

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  19. Cyclophilin B as a co-regulator of prolactin-induced gene expression and function in breast cancer cells.

    Science.gov (United States)

    Fang, Feng; Zheng, Jiamao; Galbaugh, Traci L; Fiorillo, Alyson A; Hjort, Elizabeth E; Zeng, Xianke; Clevenger, Charles V

    2010-06-01

    The effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells. CypB knockdown with two independent siRNAs was shown to impair PRL-induced reporter expression in breast cancer cell line. cDNA microarray analysis was performed on these cells to assess the effect of CypB reduction, and revealed a significant decrease in PRL-induced endogenous gene expression in two breast cancer cell lines. Parallel functional assays revealed corresponding alterations of both anchorage-independent cell growth and cell motility of breast cancer cells. Our results demonstrate that CypB expression levels significantly modulate PRL-induced function in breast cancer cells ultimately resulting in enhanced levels of PRL-responsive gene expression, cell growth, and migration. Given the increasingly appreciated role of PRL in the pathogenesis of breast cancer, the actions of CypB detailed here are of biological significance.

  20. A Luciferase Reporter Gene Assay to Measure Ebola Virus Viral Protein 35-Associated Inhibition of Double-Stranded RNA-Stimulated, Retinoic Acid-Inducible Gene 1-Mediated Induction of Interferon β.

    Science.gov (United States)

    Cannas, Valeria; Daino, Gian Luca; Corona, Angela; Esposito, Francesca; Tramontano, Enzo

    2015-10-01

    During Ebola virus (EBOV) infection, the type I interferon α/β (IFN-α/β) innate immune response is suppressed by EBOV viral protein 35 (VP35), a validated drug target. Identification of EBOV VP35 inhibitors requires a cellular system able to assess the VP35-based inhibitory functions of viral double-stranded RNA (dsRNA) IFN-β induction. We established a miniaturized luciferase gene reporter assay in A549 cells that measures IFN-β induction by viral dsRNA and is dose-dependently inhibited by VP35 expression. When compared to influenza A virus NS1 protein, EBOV VP35 showed improved inhibition of viral dsRNA-based IFN-β induction. This assay can be used to screen for EBOV VP35 inhibitors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes

    DEFF Research Database (Denmark)

    Ronchel, M.C.; Molina, L.; Witte, A.

    1998-01-01

    Active biological containment systems are based on the controlled expression of killing genes. These systems are of interest for the Pseudomonadaceae because of the potential applications of these microbes as bioremediation agents and biopesticides, The physiological effects that lead to cell dea...... protein was the killing agent. In both cases, cell death occurred as a result of impaired respiration, altered membrane permeability, and the release of some cytoplasmic contents to the extracellular medium.......Active biological containment systems are based on the controlled expression of killing genes. These systems are of interest for the Pseudomonadaceae because of the potential applications of these microbes as bioremediation agents and biopesticides, The physiological effects that lead to cell death......, respectively. Expression of the killing genes is controlled by the LacI protein, whose expression is initiated from the XylS-dependent Pm promoter. Under induced conditions, killing of P. putida CMC12 cells mediated by phi X174 lysis protein E was faster than that observed for P. putida CMC4, for which the Gef...

  2. A Functional Role for the Epigenetic Regulator ING1 in Activity-induced Gene Expression in Primary Cortical Neurons.

    Science.gov (United States)

    Leighton, Laura J; Zhao, Qiongyi; Li, Xiang; Dai, Chuanyang; Marshall, Paul R; Liu, Sha; Wang, Yi; Zajaczkowski, Esmi L; Khandelwal, Nitin; Kumar, Arvind; Bredy, Timothy W; Wei, Wei

    2018-01-15

    Epigenetic regulation of activity-induced gene expression involves multiple levels of molecular interaction, including histone and DNA modifications, as well as mechanisms of DNA repair. Here we demonstrate that the genome-wide deposition of inhibitor of growth family member 1 (ING1), which is a central epigenetic regulatory protein, is dynamically regulated in response to activity in primary cortical neurons. ING1 knockdown leads to decreased expression of genes related to synaptic plasticity, including the regulatory subunit of calcineurin, Ppp3r1. In addition, ING1 binding at a site upstream of the transcription start site (TSS) of Ppp3r1 depends on yet another group of neuroepigenetic regulatory proteins, the Piwi-like family, which are also involved in DNA repair. These findings provide new insight into a novel mode of activity-induced gene expression, which involves the interaction between different epigenetic regulatory mechanisms traditionally associated with gene repression and DNA repair. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Four inducible promoters for controlled gene expression in the oleaginous yeast Rhodotorula toruloides

    Directory of Open Access Journals (Sweden)

    Alexander Michael Bedford Johns

    2016-10-01

    Full Text Available Rhodotorula (Rhodosporidium toruloides is an oleaginous yeast with great biotechnological potential, capable of accumulating lipid up to 70 % of its dry biomass, and of carotenoid biosynthesis. However, few molecular genetic tools are available for manipulation of this basidiomycete yeast and its high genomic GC content can make routine cloning difficult. We have developed plasmid vectors for transformation of R. toruloides which include elements for Saccharomyces cerevisiae in-yeast assembly; this method is robust to the assembly of GC-rich DNA and of large plasmids. Using such vectors we screened for controllable promoters, and identified inducible promoters from the genes NAR1, ICL1, CTR3 and MET16. These four promoters have independent induction/repression conditions and exhibit different levels and rates of induction in R. toruloides, making them appropriate for controllable transgene expression in different experimental situations. Nested deletions were used to identify regulatory regions in the four promoters, and to delimit the minimal inducible promoters, which are as small as 200 bp for the NAR1 promoter. The NAR1 promoter shows very tight regulation under repressed conditions as determined both by an EGFP reporter gene and by conditional rescue of a leu2 mutant. These new tools facilitate molecular genetic manipulation and controllable gene expression in R. toruloides.

  4. Temporal gene expression profiling of the rat knee joint capsule during immobilization-induced joint contractures.

    Science.gov (United States)

    Wong, Kayleigh; Sun, Fangui; Trudel, Guy; Sebastiani, Paola; Laneuville, Odette

    2015-05-26

    Contractures of the knee joint cause disability and handicap. Recovering range of motion is recognized by arthritic patients as their preference for improved health outcome secondary only to pain management. Clinical and experimental studies provide evidence that the posterior knee capsule prevents the knee from achieving full extension. This study was undertaken to investigate the dynamic changes of the joint capsule transcriptome during the progression of knee joint contractures induced by immobilization. We performed a microarray analysis of genes expressed in the posterior knee joint capsule following induction of a flexion contracture by rigidly immobilizing the rat knee joint over a time-course of 16 weeks. Fold changes of expression values were measured and co-expressed genes were identified by clustering based on time-series analysis. Genes associated with immobilization were further analyzed to reveal pathways and biological significance and validated by immunohistochemistry on sagittal sections of knee joints. Changes in expression with a minimum of 1.5 fold changes were dominated by a decrease in expression for 7732 probe sets occurring at week 8 while the expression of 2251 probe sets increased. Clusters of genes with similar profiles of expression included a total of 162 genes displaying at least a 2 fold change compared to week 1. Functional analysis revealed ontology categories corresponding to triglyceride metabolism, extracellular matrix and muscle contraction. The altered expression of selected genes involved in the triglyceride biosynthesis pathway; AGPAT-9, and of the genes P4HB and HSP47, both involved in collagen synthesis, was confirmed by immunohistochemistry. Gene expression in the knee joint capsule was sensitive to joint immobility and provided insights into molecular mechanisms relevant to the pathophysiology of knee flexion contractures. Capsule responses to immobilization was dynamic and characterized by modulation of at least three

  5. Anchoring ethinylestradiol induced gene expression changes with testicular morphology and reproductive function in the medaka.

    Directory of Open Access Journals (Sweden)

    Hilary D Miller

    Full Text Available Environmental estrogens are ubiquitous in the environment and can cause detrimental effects on male reproduction. In fish, a multitude of effects from environmental estrogens have been observed including altered courting behavior and fertility, sex reversal, and gonadal histopathology. However, few studies in fish assess the impacts of estrogenic exposure on a physiological endpoint, such as reproduction, as well as the associated morphologic response and underlying global gene expression changes. This study assessed the implications of a 14 day sub-chronic exposure of ethinylestradiol (EE2; 1.0 or 10.0 µg/L EE2 on male medaka fertility, testicular histology and testicular gene expression. The findings demonstrate that a 14 day exposure to EE2 induced impaired male reproductive capacity and time- and dose-dependent alterations in testicular morphology and gene expression. The average fertilization rate/day following the exposure for control, 1.0 and 10.0 µg/L EE2 was 91.3% (±4.4, 62.8% (±8.3 and 28.8% (±5.8, respectively. The testicular morphologic alterations included increased germ cell apoptosis, decreased germinal epithelium and thickening of the interstitium. These changes were highly associated with testicular gene expression changes using a medaka-specific microarray. A pathway analysis of the differentially expressed genes emphasized genes and pathways associated with apoptosis, cell cycle and proliferation, collagen production/extracellular matrix organization, hormone signaling, male reproduction and protein ubiquitination among others. These findings highlight the importance of anchoring global gonadal gene expression changes with morphology and ultimately with tissue/organ function.

  6. Cloning of radiation-induced new gene RS1 expressed in mouse intestinal epithelium by enhanced RACE

    International Nuclear Information System (INIS)

    Wang Fengchao; Wang Junping; Su Yongping; Gao Jinsheng; Lou Shufen; Liu Xiaohong; Ren Jiong; Zhang Bo

    2003-01-01

    Objective: To obtain full-length cDNA of radiation-induced new gene RS1 expressed in mouse intestinal epithelium. Methods: The tissue expression profile of RS1 was analyzed by semi-quantitative RT-PCR to find the target tissue which highly expresses RS1. The total RNA extracted from the corresponding tissue was taken as the template for reverse-transcription. Enhanced RACE PCR was used to clone the full-length cDNA of RS1, including enrichment of the target gene through biotin-labeled probe for magnetic bead purification and nested PCR. Results: About a 2 kb long 3' end was successfully cloned and cloning of the 5' end proceeded well. Conclusion: The result is consistent with our experiment design. The set of combined techniques has been identified with the cloning of full-length cDNA from EST sequence especially when the optimal gene-specific primers are not available or the expression level of target gene is low

  7. Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy.

    Directory of Open Access Journals (Sweden)

    Franziska Altmüller

    2017-03-01

    Full Text Available Noonan syndrome (NS is characterized by reduced growth, craniofacial abnormalities, congenital heart defects, and variable cognitive deficits. NS belongs to the RASopathies, genetic conditions linked to mutations in components and regulators of the Ras signaling pathway. Approximately 50% of NS cases are caused by mutations in PTPN11. However, the molecular mechanisms underlying cognitive impairments in NS patients are still poorly understood. Here, we report the generation and characterization of a new conditional mouse strain that expresses the overactive Ptpn11D61Y allele only in the forebrain. Unlike mice with a global expression of this mutation, this strain is viable and without severe systemic phenotype, but shows lower exploratory activity and reduced memory specificity, which is in line with a causal role of disturbed neuronal Ptpn11 signaling in the development of NS-linked cognitive deficits. To explore the underlying mechanisms we investigated the neuronal activity-regulated Ras signaling in brains and neuronal cultures derived from this model. We observed an altered surface expression and trafficking of synaptic glutamate receptors, which are crucial for hippocampal neuronal plasticity. Furthermore, we show that the neuronal activity-induced ERK signaling, as well as the consecutive regulation of gene expression are strongly perturbed. Microarray-based hippocampal gene expression profiling revealed profound differences in the basal state and upon stimulation of neuronal activity. The neuronal activity-dependent gene regulation was strongly attenuated in Ptpn11D61Y neurons. In silico analysis of functional networks revealed changes in the cellular signaling beyond the dysregulation of Ras/MAPK signaling that is nearly exclusively discussed in the context of NS at present. Importantly, changes in PI3K/AKT/mTOR and JAK/STAT signaling were experimentally confirmed. In summary, this study uncovers aberrant neuronal activity-induced

  8. Distinct lithium-induced gene expression effects in lymphoblastoid cell lines from patients with bipolar disorder.

    Science.gov (United States)

    Fries, Gabriel R; Colpo, Gabriela D; Monroy-Jaramillo, Nancy; Zhao, Junfei; Zhao, Zhongming; Arnold, Jodi G; Bowden, Charles L; Walss-Bass, Consuelo

    2017-11-01

    Lithium is the most commonly prescribed medication for the treatment of bipolar disorder (BD), yet the mechanisms underlying its beneficial effects are still unclear. We aimed to compare the effects of lithium treatment in lymphoblastoid cell lines (LCLs) from BD patients and controls. LCLs were generated from sixty-two BD patients (based on DSM-IV) and seventeen healthy controls matched for age, sex, and ethnicity. Patients were recruited from outpatient clinics from February 2012 to October 2014. LCLs were treated with 1mM lithium for 7 days followed by microarray gene expression assay and validation by real-time quantitative PCR. Baseline differences between groups, as well as differences between vehicle- and lithium-treated cells within each group were analyzed. The biological significance of differentially expressed genes was examined by pathway enrichment analysis. No significant differences in baseline gene expression (adjusted p-value < 0.05) were detected between groups. Lithium treatment of LCLs from controls did not lead to any significant differences. However, lithium altered the expression of 236 genes in LCLs from patients; those genes were enriched for signaling pathways related to apoptosis. Among those genes, the alterations in the expression of PIK3CG, SERP1 and UPP1 were validated by real-time PCR. A significant correlation was also found between circadian functioning and CEBPG and FGF2 expression levels. In summary, our results suggest that lithium treatment induces expression changes in genes associated with the apoptosis pathway in BD LCLs. The more pronounced effects of lithium in patients compared to controls suggest a disease-specific effect of this drug. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  9. Polymorphisms in an interferon-gamma receptor-1 gene marker and susceptibility to periodontitis

    NARCIS (Netherlands)

    Fraser, DA; Loos, BG; Boman, U; van Winkelhoff, AJ; van der Velden, U; Schenck, K; Dembic, Z

    2003-01-01

    Chronic marginal periodontitis is an inflammatory condition in which the supporting tissues of the teeth are destroyed. Interferon (IFN)-gamma is a cytokine that plays a pivotal role in the defense against infection, and mutations in the gene coding for the ligand binding chain (alpha, RI) of the

  10. Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor.

    Science.gov (United States)

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2013-12-06

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. Copyright © 2014 Johnston et al.

  11. Spaceflight effects on T lymphocyte distribution, function and gene expression

    Science.gov (United States)

    Gridley, Daila S.; Slater, James M.; Luo-Owen, Xian; Rizvi, Asma; Chapes, Stephen K.; Stodieck, Louis S.; Ferguson, Virginia L.; Pecaut, Michael J.

    2009-01-01

    The immune system is highly sensitive to stressors present during spaceflight. The major emphasis of this study was on the T lymphocytes in C57BL/6NTac mice after return from a 13-day space shuttle mission (STS-118). Spleens and thymuses from flight animals (FLT) and ground controls similarly housed in animal enclosure modules (AEM) were evaluated within 3–6 h after landing. Phytohemagglutinin-induced splenocyte DNA synthesis was significantly reduced in FLT mice when based on both counts per minute and stimulation indexes (P < 0.05). Flow cytometry showed that CD3+ T and CD19+ B cell counts were low in spleens from the FLT group, whereas the number of NK1.1+ natural killer (NK) cells was increased (P < 0.01 for all three populations vs. AEM). The numerical changes resulted in a low percentage of T cells and high percentage of NK cells in FLT animals (P < 0.05). After activation of spleen cells with anti-CD3 monoclonal antibody, interleukin-2 (IL-2) was decreased, but IL-10, interferon-γ, and macrophage inflammatory protein-1α were increased in FLT mice (P < 0.05). Analysis of cancer-related genes in the thymus showed that the expression of 30 of 84 genes was significantly affected by flight (P < 0.05). Genes that differed from AEM controls by at least 1.5-fold were Birc5, Figf, Grb2, and Tert (upregulated) and Fos, Ifnb1, Itgb3, Mmp9, Myc, Pdgfb, S100a4, Thbs, and Tnf (downregulated). Collectively, the data show that T cell distribution, function, and gene expression are significantly modified shortly after return from the spaceflight environment. PMID:18988762

  12. The tobacco smoke component acrolein induces glucocorticoid resistant gene expression via inhibition of histone deacetylase.

    Science.gov (United States)

    Randall, Matthew J; Haenen, Guido R M M; Bouwman, Freek G; van der Vliet, Albert; Bast, Aalt

    2016-01-05

    Chronic obstructive pulmonary disease (COPD) is the leading cause of cigarette smoke-related death worldwide. Acrolein, a crucial reactive electrophile found in cigarette smoke mimics many of the toxic effects of cigarette smoke-exposure in the lung. In macrophages, cigarette smoke is known to hinder histone deacetylases (HDACs), glucocorticoid-regulated enzymes that play an important role in the pathogenesis of glucocorticoid resistant inflammation, a common feature of COPD. Thus, we hypothesize that acrolein plays a role in COPD-associated glucocorticoid resistance. To examine the role of acrolein on glucocorticoid resistance, U937 monocytes, differentiated with PMA to macrophage-like cells were treated with acrolein for 0.5h followed by stimulation with hydrocortisone for 8h, or treated simultaneously with LPS and hydrocortisone for 8h without acrolein. GSH and nuclear HDAC activity were measured, or gene expression was analyzed by qPCR. Acrolein-mediated TNFα gene expression was not suppressed by hydrocortisone whereas LPS-induced TNFα expression was suppressed. Acrolein also significantly inhibited nuclear HDAC activity in macrophage-like cells. Incubation of recombinant HDAC2 with acrolein led to the formation of an HDAC2-acrolein adduct identified by mass spectrometry. Therefore, these results suggest that acrolein-induced inflammatory gene expression is resistant to suppression by the endogenous glucocorticoid, hydrocortisone. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    Science.gov (United States)

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  14. Studies on Brucella interferon: Chromatographic behaviour and purification

    International Nuclear Information System (INIS)

    Bousquet-Ucla, C.; Wietzerbin, J.; Falcoff, E.

    1980-01-01

    Interferon was induced by infecting mice with Brucella suis. Serum containing interferon activity was analyzed by chromatography on Concanavalin A-Sepharose and Phenyl-Sepharose CL-4B columns. Antiviral activity was completely retained by the lectin column indicating that all the interferon molecules are glycosylated. The chromatographic behaviour of Brucella interferon on Phenyl-Sepharose CL-4B show that, like other interferons, Brucella interferon displays hydrophobic properties. However, the hydrophobicity of the interferon molecule was masked in the crude preparation and was only detectable when purified Brucella interferon was used for chromatography. The antigenic properties of Brucella interferon provided the means for developing an affinity chromatographic method resulting in about 60.000 fold purification. As in the case of viral interferon, treatment of L cells with Brucella interferon induced specific enhanced in vitro phosphorylation of a 67.000 molecular weight protein after incubation of cell extracts with doublestranded RNA and [γ- 32 p]ATP. (auth.)

  15. Development of a flexible and potent hypoxia-inducible promoter for tumor-targeted gene expression in attenuated Salmonella

    NARCIS (Netherlands)

    Mengesha, Asferd; Dubois, Ludwig; Lambin, Philippe; Landuyt, Willy; Chiu, Roland K; Wouters, Bradly G; Theys, Jan

    To increase the potential of attenuated Salmonella as gene delivery vectors for cancer treatment, we developed a hypoxia-inducible promoter system to limit gene expression specifically to the tumor. This approach is envisaged to not only increase tumor specificity, but also to target those cells

  16. Interferon-γ-induced protein 10 in Lyme disease.

    Science.gov (United States)

    Fallahi, P; Elia, G; Bonatti, A

    2017-01-01

    Lyme disease is an infectious disease caused by bacteria of the Borrelia type, that affects about 300,000 people a year in the USA and 65,000 people a year in Europe. Borrelia infection, and Lyme disease, following occupational exposure has been frequently reported in USA, Europe and Asia. The manifestations of Lyme disease include erythema migrans (EM), arthritis, neuroborrelliosis (NB), and others. Cytokines and chemokines primarily orchestrate leukocyte recruitment to the areas of Borrelia infection, and they are critical mediators of immune and inflammatory responses, in particular of the induction of interferon (IFN)-γ and IFN-γ dependent chemokines. In EM high levels of T helper (Th) 1 cells chemoattranctants [monokine induced by IFN-γ (MIG), IFN-γ-induced protein 10 (IP- 10), and IFN-inducible T cell alpha chemoattractant (I-TAC)] have been shown. Synovial tissues and fluids of patients with Lyme Arthritis (LA) (overall with antibiotic-refractory LA) contained exceptionally high levels of Th1 chemoattractants and cytokines, particularly MIG and IFN-γ. In NB concentrations of IP-10 and I-TAC in the cerebrospinal fluid (CSF) were significantly higher, suggesting that IP-10 and I-TAC create a chemokine gradient between the CSF and serum and recruite C-X-C chemokine receptor 3-expressing memory CD4+ T-cells into the CSF of these patients. A positive association between the disseminating capacity of B. burgdorferi and early type I IFN induction has also been shown. These results suggest that IFN-γ dependent chemokines are important biomarkers to monitor the progression and diffusion of the disease in patients with Borrelia infection; further larger studies are needed.

  17. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats

    International Nuclear Information System (INIS)

    Femia, Angelo Pietro; Luceri, Cristina; Toti, Simona; Giannini, Augusto; Dolara, Piero; Caderni, Giovanna

    2010-01-01

    Azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats. For gene expression analysis, 9 tumours (TUM) and their paired normal mucosa (NM) were hybridized on 4 × 44K Whole rat arrays (Agilent) and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH) was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent) and the results were analyzed by CGH Analytics (Agilent). Microarray gene expression analysis showed that Defcr4, Igfbp5, Mmp7, Nos2, S100A8 and S100A9 were among the most up-regulated genes in tumours (Fold Change (FC) compared with NM: 183, 48, 39, 38, 36 and 32, respectively), while Slc26a3, Mptx, Retlna and Muc2 were strongly down-regulated (FC: -500; -376, -167, -79, respectively). Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including Apc. The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a low degree of genomic imbalance, it is interesting to

  18. Interferon alpha treatment stimulates interferon gamma expression in type I NKT cells and enhances their antiviral effect against hepatitis C virus.

    Science.gov (United States)

    Miyaki, Eisuke; Hiraga, Nobuhiko; Imamura, Michio; Uchida, Takuro; Kan, Hiromi; Tsuge, Masataka; Abe-Chayama, Hiromi; Hayes, C Nelson; Makokha, Grace Naswa; Serikawa, Masahiro; Aikata, Hiroshi; Ochi, Hidenori; Ishida, Yuji; Tateno, Chise; Ohdan, Hideki; Chayama, Kazuaki

    2017-01-01

    Interferon (IFN) inhibits hepatitis C virus (HCV) replication through up-regulation of intrahepatic IFN-stimulated gene expression but also through activation of host immune cells. In the present study, we analyzed the immune cell-mediated antiviral effects of IFN-α using HCV-infected mice. Urokinase-type plasminogen activator (uPA)-severe combined immunodeficiency (SCID) mice with transplanted human hepatocytes were infected with genotype 1b HCV and injected with human peripheral blood mononuclear cells (PBMCs). IFN-α treatment following human PBMC transplantation resulted in a significant reduction in serum HCV RNA titers and a higher human CD45-positive mononuclear cell chimerism compared to mice without human PBMC transplantation. In mice with human PBMCs treated with IFN-α, serum concentrations of IFN-γ increased, and natural killer T (NKT) cells, especially type I NKT cells, produced IFN-γ. Mice in which IFN-γ signaling was blocked using antibody or in which transplanted PBMCs were depleted for type I NKT cells showed similar levels of anti-HCV effect compared with mice treated only with IFN-α. These results show that IFN-α stimulates IFN-γ expression in type 1 NKT cells and enhances the inhibition of HCV replication. We propose that type 1 NKT cells might represent a new therapeutic target for chronic hepatitis C patients.

  19. Interferon beta induces apoptosis in nasopharyngeal carcinoma cells via the TRAIL-signaling pathway.

    Science.gov (United States)

    Makowska, Anna; Wahab, Lora; Braunschweig, Till; Kapetanakis, Nikiforos-Ioannis; Vokuhl, Christian; Denecke, Bernd; Shen, Lian; Busson, Pierre; Kontny, Udo

    2018-03-06

    The combination of neoadjuvant chemotherapy, radiochemotherapy, and maintenance therapy with interferon beta (IFNβ) has led to superior results in the treatment of children and adolescents with nasopharyngeal carcinoma (NPC). However, nothing is known about the mechanism of the antitumor activity of IFNβ in NPC. Here, we investigate the role of IFNβ on apoptosis in NPC cells. Six NPC cell lines, one patient-derived NPC xenograft (PDX) and one SV40-transformed nasoepithelial cell line were used. Induction of apoptosis by IFNβ was measured by flow cytometric analysis of subG1-DNA-content, Hoechst 33258 staining and activation of caspase-3. Dissection of death ligand signaling pathways included measuring surface expression of its components by flow cytometry, activation by death ligands and neutralization with specific antibodies and siRNA. IFNβ induced apoptosis at concentrations achievable in humans in five of six NPC cell lines and in PDX cells but not in nasoepithelial cells. Inhibition of caspases-3 and -8 abrogated this effect suggesting IFNβ promoted apoptosis through the extrinsic pathway. IFNβ induced surface expression of TRAIL and TRAIL-R2 and the addition of an anti-TRAIL-antibody or transfection with TRAIL-siRNA blocked IFNβ-induced apoptosis. No induction of TRAIL-expression was noted in the IFNβ-resistant cell line. In conclusion, IFNβ leads to apoptosis in NPC cells in an autocrine way via the induction of TRAIL expression and subsequent activation of the TRAIL-signaling pathway. The mechanism described could at least partly explain the clinical benefit of IFNβ in the treatment of NPC. Further studies in a mouse-xenograft model are warranted to substantiate this effect in vivo .

  20. Expression of activation-induced cytidine deaminase gene in B lymphocytes of patients with common variable immunodeficiency.

    Science.gov (United States)

    Abolhassani, Hassan; Farrokhi, Amir Salek; Pourhamdi, Shabnam; Mohammadinejad, Payam; Sadeghi, Bamdad; Moazzeni, Seyed-Mohammad; Aghamohammadi, Asghar

    2013-08-01

    Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by reduced serum level of IgG, IgA or IgM and recurrent bacterial infections. Class switch recombination (CSR) as a critical process in immunoglobulin production is defective in a group of CVID patients. Activation-induced cytidine deaminase (AID) protein is an important molecule involving CSR process. The aim of this study was to investigate the AID gene mRNA production in a group of CVID patients indicating possible role of this molecule in this disorder. Peripheral blood mononuclear cells (PBMC) of 29 CVID patients and 21 healthy controls were isolated and stimulated by CD40L and IL-4 to induce AID gene expression. After 5 days AID gene mRNA production was investigated by real time polymerase chain reaction. AID gene was expressed in all of the studied patients. However the mean density of extracted AID mRNA showed higher level in CVID patients (230.95±103.04 ng/ml) rather than controls (210.00±44.72 ng/ml; P=0.5). CVID cases with lower level of AID had decreased total level of IgE (P=0.04) and stimulated IgE production (P=0.02); while cases with increased level of AID presented higher level of IgA (P=0.04) and numbers of B cells (P=0.02) and autoimmune disease (P=0.02). Different levels of AID gene expression may have important roles in dysregulation of immune system and final clinical presentation in CVID patients. Therefore investigating the expression of AID gene can help in classifying CVID patients.

  1. Delayed polarization of mononuclear phagocyte transcriptional program by type I interferon isoforms

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2005-06-01

    Full Text Available Abstract Background Interferon (IFN-α is considered a key modulator of immunopathological processes through a signature-specific activation of mononuclear phagocytes (MPs. This study utilized global transcript analysis to characterize the effects of the entire type I IFN family in comparison to a broad panel of other cytokines on MP previously exposed to Lipopolysaccharide (LPS stimulation in vitro. Results Immature peripheral blood CD14+ MPs were stimulated with LPS and 1 hour later with 42 separate soluble factors including cytokines, chemokines, interleukins, growth factors and IFNs. Gene expression profiling of MPs was analyzed 4 and 9 hours after cytokine stimulation. Four hours after stimulation, the transcriptional analysis of MPs revealed two main classes of cytokines: one associated with the alternative and the other with the classical pathway of MP activation without a clear polarization of type I IFNs effects. In contrast, after 9 hours of stimulation most type I IFN isoforms induced a characteristic and unique transcriptional pattern separate from other cytokines. These "signature" IFNs included; IFN-β, IFN-α2b/α2, IFN-αI, IFN-α2, IFN-αC, IFN-αJ1, IFN-αH2, and INF-α4B and induced the over-expression of 44 genes, all of which had known functional relationships with IFN such as myxovirus resistance (Mx-1, Mx-2, and interferon-induced hepatitis C-associated microtubular aggregation protein. A second group of type I IFNs segregated separately and in closer association with the type II IFN-γ. The phylogenetic relationship of amino acid sequences among type I IFNs did not explain their sub-classification, although differences at positions 94 through 109 and 175 through 189 were present between the signature and other IFNs. Conclusion Seven IFN-α isoforms and IFN-β participate in the late phase polarization of MPs conditioned by LPS. This information broadens the previous view of the central role played by IFN-α in

  2. Parental influenza virion nucleocapsids are efficiently transported into the nuclei of murine cells expressing the nuclear interferon-induced Mx protein.

    OpenAIRE

    Broni, B; Julkunen, I; Condra, J H; Davies, M E; Berry, M J; Krug, R M

    1990-01-01

    The interferon-induced murine Mx1 protein, which is localized in the nucleus, most likely specifically blocks influenza virus replication by inhibiting nuclear viral mRNA synthesis, including the mRNA synthesis catalyzed by inoculum (parental) virion nucleocapsids (R. M. Krug, M. Shaw, B. Broni, G. Shapiro, and O. Haller, J. Virol. 56:201-206, 1985). We tested two possible mechanisms for this inhibition. First, we determined whether the transport of parental nucleocapsids into the nucleus was...

  3. Kinetics and regional specificity of irinotecan-induced gene expression in the gastrointestinal tract

    International Nuclear Information System (INIS)

    Bowen, Joanne M.; Tsykin, Anna; Stringer, Andrea M.; Logan, Richard M.; Gibson, Rachel J.; Keefe, Dorothy M.K.

    2010-01-01

    Gastrointestinal toxicity remains a significant and dose-limiting complication of cancer treatment. While the pathophysiology is becoming clearer, considerable gaps in the knowledge remain surrounding the timing and site-specific gene changes which occur in response to insult. As such, this study aimed to assess gene expression profiles in a number of regions along the gastrointestinal tract following treatment with the chemotherapy agent, irinotecan, and correlate them with markers of cell death and tissue damage. Data analysis of microarray results found that genes involved in apoptosis, mitogen activated kinase (MAPK) signalling and inflammation were upregulated within 6 h, while genes involved in cell proliferation, wound healing and blood vessel formation were upregulated at later time points up to 72 h. Cell death was significantly increased at 6 and 24 h, and the stomach showed the lowest severity of overt tissue damage. Real time PCR of MAPK signalling pathway genes found that the jejunum and colon had significantly increased expression in a number of genes at 72 h, where as the stomach was unchanged. These results indicate that overall severity of tissue damage may be determined by precisely timed target gene responses specific to each region. Therapeutic targeting of key gene responses at the appropriate time point may prove to be effective for prevention of chemotherapy-induced gastrointestinal damage.

  4. Transcriptomic meta-analysis identifies gene expression characteristics in various samples of HIV-infected patients with nonprogressive disease.

    Science.gov (United States)

    Zhang, Le-Le; Zhang, Zi-Ning; Wu, Xian; Jiang, Yong-Jun; Fu, Ya-Jing; Shang, Hong

    2017-09-12

    A small proportion of HIV-infected patients remain clinically and/or immunologically stable for years, including elite controllers (ECs) who have undetectable viremia (10 years). However, the mechanism of nonprogression needs to be further resolved. In this study, a transcriptome meta-analysis was performed on nonprogressor and progressor microarray data to identify differential transcriptome pathways and potential biomarkers. Using the INMEX (integrative meta-analysis of expression data) program, we performed the meta-analysis to identify consistently differentially expressed genes (DEGs) in nonprogressors and further performed functional interpretation (gene ontology analysis and pathway analysis) of the DEGs identified in the meta-analysis. Five microarray datasets (81 cases and 98 controls in total), including whole blood, CD4 + and CD8 + T cells, were collected for meta-analysis. We determined that nonprogressors have reduced expression of important interferon-stimulated genes (ISGs), CD38, lymphocyte activation gene 3 (LAG-3) in whole blood, CD4 + and CD8 + T cells. Gene ontology (GO) analysis showed a significant enrichment in DEGs that function in the type I interferon signaling pathway. Upregulated pathways, including the PI3K-Akt signaling pathway in whole blood, cytokine-cytokine receptor interaction in CD4 + T cells and the MAPK signaling pathway in CD8 + T cells, were identified in nonprogressors compared with progressors. In each metabolic functional category, the number of downregulated DEGs was more than the upregulated DEGs, and almost all genes were downregulated DEGs in the oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle in the three types of samples. Our transcriptomic meta-analysis provides a comprehensive evaluation of the gene expression profiles in major blood types of nonprogressors, providing new insights in the understanding of HIV pathogenesis and developing strategies to delay HIV disease progression.

  5. Expression of immediate-early genes in the inferior colliculus and auditory cortex in salicylate-induced tinnitus in rat.

    Science.gov (United States)

    Hu, S S; Mei, L; Chen, J Y; Huang, Z W; Wu, H

    2014-03-12

    Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG) expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc) and the early growth response gene-1 (Egr-1), appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and Egr-1 will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS) paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the Arc gene and Egr-1 gene were decreased in the inferior colliculus (IC) and auditory cortex (AC), in contradiction of our hypothesis. Expression of N-methyl d-aspartate receptor subunit 2B (NR2B) was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus.

  6. Construction and identification of double-gene co-expression vector with radiation-inducible human TRAIL and endostatin

    International Nuclear Information System (INIS)

    Li Yanbo; Guo Caixia; Gong Pingsheng; Liu Yang; Liangshuo; Wang Hongfang; Wang Jianfeng; Gong Shouliang

    2010-01-01

    Objective: To construct a recombinant plasmid pshuttle-Egr1-shTRAIL-shES containing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and endostatin double genes. Methods: The secretary endostatin gene (shES) fragment was amplified from the pMD19T-endostatin vector by PCR. The shES gene was ligated to pMD19Tand sequenced. Finally, using the gene recombinant technique, the recombinant plasmid pshuttle-Egr1- shTRAIL-shES with radiation-inducible Egr1 promoter, secretary TRAIL and endostatin double-gene was constructed. Results: The sequence of the shES gene was in concordance with that anticipated indicating shES gene was acquired successfully.Moreover, the results acquired by PCR and restrictive digestion identification of the recombinant plasmid pshuttle-Egr1-shTRAIL-shES and all the vectors refered to its construction confirmed that pshuttle-Egr1-shTRAIL-shES was constructed correctly. Conclusion: The radiation-inducible double-gene co-expression vector pshuttle-Egr1-shTRAIL-shES is constructed successfully, which would set the experimental foundation for further study on the anti-tumor effect of TRAIL and endostatin double-gene-radiotherapy and its related mechanisms. (authors)

  7. Glucocorticoid-induced reversal of interleukin-1β-stimulated inflammatory gene expression in human oviductal cells.

    Directory of Open Access Journals (Sweden)

    Stéphanie Backman

    Full Text Available Studies indicate that high-grade serous ovarian carcinoma (HGSOC, the most common epithelial ovarian carcinoma histotype, originates from the fallopian tube epithelium (FTE. Risk factors for this cancer include reproductive parameters associated with lifetime ovulatory events. Ovulation is an acute inflammatory process during which the FTE is exposed to follicular fluid containing both pro- and anti-inflammatory molecules, such as interleukin-1 (IL1, tumor necrosis factor (TNF, and cortisol. Repeated exposure to inflammatory cytokines may contribute to transforming events in the FTE, with glucocorticoids exerting a protective effect. The global response of FTE cells to inflammatory cytokines or glucocorticoids has not been investigated. To examine the response of FTE cells and the ability of glucocorticoids to oppose this response, an immortalized human FTE cell line, OE-E6/E7, was treated with IL1β, dexamethasone (DEX, IL1β and DEX, or vehicle and genome-wide gene expression profiling was performed. IL1β altered the expression of 47 genes of which 17 were reversed by DEX. DEX treatment alone altered the expression of 590 genes, whereas combined DEX and IL1β treatment altered the expression of 784 genes. Network and pathway enrichment analysis indicated that many genes altered by DEX are involved in cytokine, chemokine, and cell cycle signaling, including NFκΒ target genes and interacting proteins. Quantitative real time RT-PCR studies validated the gene array data for IL8, IL23A, PI3 and TACC2 in OE-E6/E7 cells. Consistent with the array data, Western blot analysis showed increased levels of PTGS2 protein induced by IL1β that was blocked by DEX. A parallel experiment using primary cultured human FTE cells indicated similar effects on PTGS2, IL8, IL23A, PI3 and TACC2 transcripts. These findings support the hypothesis that pro-inflammatory signaling is induced in FTE cells by inflammatory mediators and raises the possibility that

  8. Lithium-Induced Neuroprotection is Associated with Epigenetic Modification of Specific BDNF Gene Promoter and Altered Expression of Apoptotic-Regulatory Proteins

    Directory of Open Access Journals (Sweden)

    Tushar eDwivedi

    2015-01-01

    Full Text Available Bipolar disorder (BD, one of the most debilitating mental disorders, is associated with increased morbidity and mortality. Lithium is the first line of treatment option for BD and is often used for maintenance therapy. Recently, the neuroprotective action of lithium has gained tremendous attention, given that BD is associated with structural and functional abnormalities of the brain. However, the precise molecular mechanism by which lithium exerts its neuroprotective action is not clearly understood. In hippocampal neurons, the effects of lithium on neuronal viability against glutamate-induced cytotoxicity, dendritic length and number, and expression and methylation of BDNF promoter exons and expression of apoptotic regulatory genes were studied. In rat hippocampal neurons, lithium not only increased dendritic length and number, but also neuronal viability against glutamate-induced cytotoxicity. While lithium increased the expression of BDNF as well as genes associated with neuroprotection such as Bcl2 and Bcl-XL, it decreased the expression of pro-apoptotic genes Bax, Bad, and caspases 3. Interestingly, lithium activated transcription of specific exon IV to induce BDNF gene expression. This was accompanied by hypomethylation of BDNF exon IV promoter. This study delineates mechanisms by which lithium mediates its effects in protecting neurons.

  9. Dynamic gene expression in fish muscle during recovery growth induced by a fasting-refeeding schedule

    Directory of Open Access Journals (Sweden)

    Esquerré Diane

    2007-11-01

    Full Text Available Abstract Background Recovery growth is a phase of rapid growth that is triggered by adequate refeeding of animals following a period of weight loss caused by starvation. In this study, to obtain more information on the system-wide integration of recovery growth in muscle, we undertook a time-course analysis of transcript expression in trout subjected to a food deprivation-refeeding sequence. For this purpose complex targets produced from muscle of trout fasted for one month and from muscle of trout fasted for one month and then refed for 4, 7, 11 and 36 days were hybridized to cDNA microarrays containing 9023 clones. Results Significance analysis of microarrays (SAM and temporal expression profiling led to the segregation of differentially expressed genes into four major clusters. One cluster comprising 1020 genes with high expression in muscle from fasted animals included a large set of genes involved in protein catabolism. A second cluster that included approximately 550 genes with transient induction 4 to 11 days post-refeeding was dominated by genes involved in transcription, ribosomal biogenesis, translation, chaperone activity, mitochondrial production of ATP and cell division. A third cluster that contained 480 genes that were up-regulated 7 to 36 days post-refeeding was enriched with genes involved in reticulum and Golgi dynamics and with genes indicative of myofiber and muscle remodelling such as genes encoding sarcomeric proteins and matrix compounds. Finally, a fourth cluster of 200 genes overexpressed only in 36-day refed trout muscle contained genes with function in carbohydrate metabolism and lipid biosynthesis. Remarkably, among the genes induced were several transcriptional regulators which might be important for the gene-specific transcriptional adaptations that underlie muscle recovery. Conclusion Our study is the first demonstration of a coordinated expression of functionally related genes during muscle recovery growth

  10. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    Science.gov (United States)

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H.; Blesso, Christopher N.; Fernandez, Maria Luz

    2017-01-01

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group (p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group (p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver. PMID:28640194

  11. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Manal Mused Almatrafi

    2017-06-01

    Full Text Available To investigate the mechanisms by which Moringa oleifera leaves (ML modulate hepatic lipids, guinea pigs were allocated to either control (0% ML, 10% Low Moringa (LM or 15% High Moringa (HM diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH and triglyceride (TG metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG with the lowest concentrations in the HM group (p < 0.001, consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL-1β and interferon-γ, were lowest in the HM group (p < 0.005. Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01. This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.

  12. The Contribution of Transactivation Subdomains 1 and 2 to p53-Induced Gene Expression Is Heterogeneous But Not Subdomain-Specific

    Directory of Open Access Journals (Sweden)

    Jennifer M. Smith

    2007-12-01

    Full Text Available Two adjacent regions within the transactivation domain of p53 are sufficient to support sequence-specific transactivation when fused to a heterologous DNA binding domain. It has been hypothesized that these two subdomains of p53 may contribute to the expression of distinct p53-responsive genes. Here we have used oligonucleotide microarrays to identify transcripts induced by variants of p53 with point mutations within subdomains 1, 2, or 1 and 2 (QS1, QS2, QS1/QS2, respectively. The expression of 254 transcripts was increased in response to wild-type p53 expression but most of these transcripts were poorly induced by these variants of p53. Strikingly, a number of known p53regulated transcripts including TNFRSF10B, BAX, BTG2, POLH were increased to wild-type levels by p53QS1 and p53QS2 but not p53QS1/QS2, indicating that either sub domain 1 or 2 is sufficient for p53-dependent expression of a small subset of p53-responsive genes. Unexpectedly, there was no evidence for p53QS1- or p53QS2-specific gene expression. Taken together, we found heterogeneity in the requirement for transactivation subdomains 1 and 2 of p53 without any subdomain-specific contribution to p53-induced gene expression.

  13. Diversity of interferon inducible Mx gene in horses and association of variations with susceptibility vis-à-vis resistance against equine influenza infection.

    Science.gov (United States)

    Manuja, Balvinder K; Manuja, Anju; Dahiya, Rajni; Singh, Sandeep; Sharma, R C; Gahlot, S K

    2014-10-01

    Equine influenza (EI) is primarily an infection of the upper respiratory tract and is one of the major infectious respiratory diseases of economic importance in equines. Re-emergence of the disease, species jumping by H3N8 virus in canines and possible threat of human pandemic due to the unpredictable nature of the virus have necessitated research on devising strategies for preventing the disease. The myxovirus resistance protein (Mx) has been reported to confer resistance to Orthomyxo virus infection by modifying cellular functions needed along the viral replication pathway. Polymorphisms and differential antiviral activities of Mx gene have been reported in pigs and chicken. Here we report the diversity of Mx gene, its expression in response to stimulation with interferon (IFN) α/β and their association with EI resistance and susceptibility in Marwari horses. Blood samples were collected from horses declared positive for equine influenza and in contact animals with a history of no clinical signs. Mx gene was amplified by reverse transcription from total RNA isolated from peripheral blood mononuclear cells (PBMCs) stimulated with IFN α/β using gene specific primers. The amplified gene products from representative samples were cloned and sequenced. Nucleotide sequences and deduced amino acid sequences were analyzed. Out of a total 24 amino acids substitutions sorting intolerant from tolerant (SIFT) analysis predicted 13 substitutions with functional consequences. Five substitutions (V67A, W123L, E346Y, N347Y, S689N) were observed only in resistant animals. Evolutionary distances based on nucleotide sequences with in equines ranged between 0.3-2.0% and 20-24% with other species. On phylogenetic analysis all equine sequences clustered together while other species formed separate clades. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Dose dependent activation of retinoic acid-inducible gene-I promotes both proliferation and apoptosis signals in human head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Jingzhou Hu

    Full Text Available The retinoic-acid-inducible gene (RIG-like receptor (RLR family proteins are major pathogen reorganization receptors (PRR responsible for detection of viral RNA, which initiates antiviral response. Here, we evaluated the functional role of one RLR family member, RIG-I, in human head and neck squamous cell carcinoma (HNSCC. RIG-I is abundantly expressed both in poorly-differentiated primary cancer and lymph node metastasis, but not in normal adjacent tissues. Activation of RIG-I by transfection with low dose of 5'-triphosphate RNA (3p-RNA induces low levels of interferon and proinflammatory cytokines and promotes NF-κB- and Akt-dependent cell proliferation, migration and invasion. In contrast, activation of RIG-I by a high dose of 3p-RNA induces robust mitochondria-derived apoptosis accompanied by decreased activation of Akt, which is independent of the interferon and TNFα receptor, but can be rescued by over-expression of constitutively active Akt. Furthermore, co-immunoprecipitation experiments indicate that the CARD domain of RIG-I is essential for inducing apoptosis by interacting with caspase-9. Together, our results reveal a dual role of RIG-I in HNSCC through regulating activation of Akt, in which RIG-I activation by low-dose viral dsRNA increases host cell survival, whereas higher level of RIG-I activation leads to apoptosis. These findings highlight the therapeutic potential of dsRNA mediated RIG-I activation in the treatment of HNSCC.

  15. MicroRNA Expression Changes during Interferon-Beta Treatment in the Peripheral Blood of Multiple Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    Georg Füllen

    2013-08-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNA molecules acting as post-transcriptional regulators of gene expression. They are involved in many biological processes, and their dysregulation is implicated in various diseases, including multiple sclerosis (MS. Interferon-beta (IFN-beta is widely used as a first-line immunomodulatory treatment of MS patients. Here, we present the first longitudinal study on the miRNA expression changes in response to IFN-beta therapy. Peripheral blood mononuclear cells (PBMC were obtained before treatment initiation as well as after two days, four days, and one month, from patients with clinically isolated syndrome (CIS and patients with relapsing-remitting MS (RRMS. We measured the expression of 651 mature miRNAs and about 19,000 mRNAs in parallel using real-time PCR arrays and Affymetrix microarrays. We observed that the up-regulation of IFN-beta-responsive genes is accompanied by a down-regulation of several miRNAs, including members of the mir-29 family. These differentially expressed miRNAs were found to be associated with apoptotic processes and IFN feedback loops. A network of miRNA-mRNA target interactions was constructed by integrating the information from different databases. Our results suggest that miRNA-mediated regulation plays an important role in the mechanisms of action of IFN-beta, not only in the treatment of MS but also in normal immune responses. miRNA expression levels in the blood may serve as a biomarker of the biological effects of IFN-beta therapy that may predict individual disease activity and progression.

  16. Evaluation of the immune response induced by DNA vaccines expressing MIF and MCD-1 genes of Trichinella spiralis in BALB/c mice.

    Science.gov (United States)

    Tang, F; Xu, L; Yan, R; Song, X; Li, X

    2012-12-01

    Plasmids expressing macrophage migration inhibitory factor (MIF) of Trichinella spiralis (TsMIF), multi-cystatin-like domain protein (MCD-1) of T. spiralis (TsMCD-1), or co-expressing TsMIF and TsMCD-1 were constructed with a pVAX1 vector. Their ability to generate a protective immune response against T. spiralis infection was evaluated in BALB/c mice. Groups of mice were immunized twice at 2-week intervals with 100 μg of recombinant plasmids pVAX1-Tsmif, pVAX1-Tsmcd-1 or pVAX1-Tsmif-Tsmcd-1. Control animals were immunized with phosphate-buffered saline (PBS) or blank vector plasmid. Specific antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, IgA, IgE) against the recombinant protein TsMIF-TsMCD-1, serum cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-5, transforming growth factor (TGF)-β1 and IL-17) and CD4+/CD8+ T cells were monitored. Challenge infection was performed 2 weeks following the second immunization and worm burden was assayed at 35 days post-challenge. Vaccination with pVAX1-Tsmif induced moderate serum IFN-γ and increases of CD4+ and CD8+ T cells, but no specific immunoglobulin antibody response. Vaccination with pVAX1-Tsmcd-1 induced a predominant Th1 antibody (IgG2a and IgG2b) response and strong levels of serum IFN-γ, and increases of CD4+ T cells. Importantly, co-expression of TsMIF and TsMCD-1 in DNA immunization produced more serum IFN-γ and markedly enhanced CD4+ and CD8+ T cells than the single DNA vaccine of the two genes. Challenge infection demonstrated that immunization with pVAX1-Tsmif-Tsmcd-1 reduced worm burdens (by 23.17%; P < 0.05).

  17. Connexin43 gene and its irradiation-induced expression

    International Nuclear Information System (INIS)

    Long Xianhui; Zhou Pingkun

    2005-01-01

    Gap junctions, composed of connexin protein subunits, provide the important channel for the intercellular communication. Connexin43, the most popular component of the connexin protein family, is widely expressed in multiple tissues and cell lines and plays an important role in cell proliferation, differention and tissue homeostasis. Recently it was reported that the expression of connexin43 gene is remarkedly up-regulated by low dose ionizing radiation, the available data suggest connexin43 gene to be a poten-tial sensitive bio-marker in radiation damage. (authors)

  18. Identification of potential crucial genes associated with steroid-induced necrosis of femoral head based on gene expression profile.

    Science.gov (United States)

    Lin, Zhe; Lin, Yongsheng

    2017-09-05

    The aim of this study was to explore potential crucial genes associated with the steroid-induced necrosis of femoral head (SINFH) and to provide valid biological information for further investigation of SINFH. Gene expression profile of GSE26316, generated from 3 SINFH rat samples and 3 normal rat samples were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified using LIMMA package. After functional enrichment analyses of DEGs, protein-protein interaction (PPI) network and sub-PPI network analyses were conducted based on the STRING database and cytoscape. In total, 59 up-regulated DEGs and 156 downregulated DEGs were identified. The up-regulated DEGs were mainly involved in functions about immunity (e.g. Fcer1A and Il7R), and the downregulated DEGs were mainly enriched in muscle system process (e.g. Tnni2, Mylpf and Myl1). The PPI network of DEGs consisted of 123 nodes and 300 interactions. Tnni2, Mylpf, and Myl1 were the top 3 outstanding genes based on both subgraph centrality and degree centrality evaluation. These three genes interacted with each other in the network. Furthermore, the significant network module was composed of 22 downregulated genes (e.g. Tnni2, Mylpf and Myl1). These genes were mainly enriched in functions like muscle system process. The DEGs related to the regulation of immune system process (e.g. Fcer1A and Il7R), and DEGs correlated with muscle system process (e.g. Tnni2, Mylpf and Myl1) may be closely associated with the progress of SINFH, which is still needed to be confirmed by experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. HTLV-1 bZIP factor induces inflammation through labile Foxp3 expression.

    Directory of Open Access Journals (Sweden)

    Nanae Yamamoto-Taguchi

    2013-09-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 causes both a neoplastic disease and inflammatory diseases, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. The HTLV-1 basic leucine zipper factor (HBZ gene is encoded in the minus strand of the proviral DNA and is constitutively expressed in infected cells and ATL cells. HBZ increases the number of regulatory T (Treg cells by inducing the Foxp3 gene transcription. Recent studies have revealed that some CD4⁺Foxp3⁺ T cells are not terminally differentiated but have a plasticity to convert to other T-cell subsets. Induced Treg (iTreg cells tend to lose Foxp3 expression, and may acquire an effector phenotype accompanied by the production of inflammatory cytokines, such as interferon-γ (IFN-γ. In this study, we analyzed a pathogenic mechanism of chronic inflammation related with HTLV-1 infection via focusing on HBZ and Foxp3. Infiltration of lymphocytes was observed in the skin, lung and intestine of HBZ-Tg mice. As mechanisms, adhesion and migration of HBZ-expressing CD4⁺ T cells were enhanced in these mice. Foxp3⁻CD4⁺ T cells produced higher amounts of IFN-γ compared to those from non-Tg mice. Expression of Helios was reduced in Treg cells from HBZ-Tg mice and HAM/TSP patients, indicating that iTreg cells are predominant. Consistent with this finding, the conserved non-coding sequence 2 region of the Foxp3 gene was hypermethylated in Treg cells of HBZ-Tg mice, which is a characteristic of iTreg cells. Furthermore, Treg cells in the spleen of HBZ-transgenic mice tended to lose Foxp3 expression and produced an excessive amount of IFN-γ, while Foxp3 expression was stable in natural Treg cells of the thymus. HBZ enhances the generation of iTreg cells, which likely convert to Foxp3⁻T cells producing IFN-γ. The HBZ-mediated proinflammatory phenotype of CD4⁺ T cells is implicated in the pathogenesis of HTLV-1-associated inflammation.

  20. The Interferon-signature of Sjögren’s Syndrome: How Unique Biomarkers Can Identify Underlying Inflammatory and Immunopathological Mechanisms of Specific Diseases

    Directory of Open Access Journals (Sweden)

    Cuong eNguyen

    2013-07-01

    Full Text Available Innate immune responses direct the nature and specificity of downstream adaptive responses in autoimmune diseases. One of the strongest markers of innate immunity is the up-regulated expression of interferon (IFN and IFN-responsive/stimulated genes (IRGs/ISGs. While multiple IRGs are induced during the innate phase of host responses, transcriptome data suggest unique IRG-signatures for different diseases. Sjögren’s syndrome (SjS is characterized by chronic immune attacks against exocrine glands leading to exocrine dysfunction, plus strong up-regulated expressions of IFN IRG transcripts. Genome-wide transcriptome analyses indicate that differentially-expressed IRGs are restricted during disease development and therefore define underlying etiopathological mechanisms. Here we review the innate immune-associated IFN-signature of SjS and show how differential gene expressions of IRG/ISG sets interact molecularly and biologically to identify critical details of SjS etiopathogenesis.

  1. Ultrasound-mediated interferon β gene transfection inhibits growth of malignant melanoma

    International Nuclear Information System (INIS)

    Yamaguchi, Kazuki; Feril, Loreto B.; Tachibana, Katsuro; Takahashi, Akira; Matsuo, Miki; Endo, Hitomi; Harada, Yoshimi; Nakayama, Juichiro

    2011-01-01

    Highlights: → Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-β genes both in vitro and in vivo. → Ultrasound-mediated IFN-β transfection inhibited proliferation of melanoma cells in vitro. → Ultrasound-mediated IFN-β transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon β (IFN-β) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-β in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-β genes mixed with microbubbles. Successful sonotransfection with IFN-β gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-β gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  2. Equivalent Gene Expression Profiles between Glatopa™ and Copaxone®.

    Directory of Open Access Journals (Sweden)

    Josephine S D'Alessandro

    Full Text Available Glatopa™ is a generic glatiramer acetate recently approved for the treatment of patients with relapsing forms of multiple sclerosis. Gene expression profiling was performed as a means to evaluate equivalence of Glatopa and Copaxone®. Microarray analysis containing 39,429 unique probes across the entire genome was performed in murine glatiramer acetate--responsive Th2-polarized T cells, a test system highly relevant to the biology of glatiramer acetate. A closely related but nonequivalent glatiramoid molecule was used as a control to establish assay sensitivity. Multiple probe-level (Student's t-test and sample-level (principal component analysis, multidimensional scaling, and hierarchical clustering statistical analyses were utilized to look for differences in gene expression induced by the test articles. The analyses were conducted across all genes measured, as well as across a subset of genes that were shown to be modulated by Copaxone. The following observations were made across multiple statistical analyses: the expression of numerous genes was significantly changed by treatment with Copaxone when compared against media-only control; gene expression profiles induced by Copaxone and Glatopa were not significantly different; and gene expression profiles induced by Copaxone and the nonequivalent glatiramoid were significantly different, underscoring the sensitivity of the test system and the multiple analysis methods. Comparative analysis was also performed on sets of transcripts relevant to T-cell biology and antigen presentation, among others that are known to be modulated by glatiramer acetate. No statistically significant differences were observed between Copaxone and Glatopa in the expression levels (magnitude and direction of these glatiramer acetate-regulated genes. In conclusion, multiple methods consistently supported equivalent gene expression profiles between Copaxone and Glatopa.

  3. Characteristic gene expression profiles in the progression from liver cirrhosis to carcinoma induced by diethylnitrosamine in a rat model

    Directory of Open Access Journals (Sweden)

    Zhu Jin

    2009-07-01

    Full Text Available Abstract Background Liver cancr is a heterogeneous disease in terms of etiology, biologic and clinical behavior. Very little is known about how many genes concur at the molecular level of tumor development, progression and aggressiveness. To explore the key genes involved in the development of liver cancer, we established a rat model induced by diethylnitrosamine to investigate the gene expression profiles of liver tissues during the transition to cirrhosis and carcinoma. Methods A rat model of liver cancer induced by diethylnitrosamine was established. The cirrhotic tissue, the dysplasia nodules, the early cancerous nodules and the cancerous nodules from the rats with lung metastasis were chosen to compare with liver tissue of normal rats to investigate the differential expression genes between them. Affymetrix GeneChip Rat 230 2.0 arrays were used throughout. The real-time quantity PCR was used to verify the expression of some differential expression genes in tissues. Results The pathological changes that occurred in the livers of diethylnitrosamine-treated rats included non-specific injury, fibrosis and cirrhosis, dysplastic nodules, early cancerous nodules and metastasis. There are 349 upregulated and 345 downregulated genes sharing among the above chosen tissues when compared with liver tissue of normal rats. The deregulated genes play various roles in diverse processes such as metabolism, transport, cell proliferation, apoptosis, cell adhesion, angiogenesis and so on. Among which, 41 upregulated and 27 downregulated genes are associated with inflammatory response, immune response and oxidative stress. Twenty-four genes associated with glutathione metabolism majorly participating oxidative stress were deregulated in the development of liver cancer. There were 19 members belong to CYP450 family downregulated, except CYP2C40 upregulated. Conclusion In this study, we provide the global gene expression profiles during the development and

  4. The human adenovirus type 5 E1B 55 kDa protein obstructs inhibition of viral replication by type I interferon in normal human cells.

    Directory of Open Access Journals (Sweden)

    Jasdave S Chahal

    Full Text Available Vectors derived from human adenovirus type 5, which typically lack the E1A and E1B genes, induce robust innate immune responses that limit their therapeutic efficacy. We reported previously that the E1B 55 kDa protein inhibits expression of a set of cellular genes that is highly enriched for those associated with anti-viral defense and immune responses, and includes many interferon-sensitive genes. The sensitivity of replication of E1B 55 kDa null-mutants to exogenous interferon (IFN was therefore examined in normal human fibroblasts and respiratory epithelial cells. Yields of the mutants were reduced at least 500-fold, compared to only 5-fold, for wild-type (WT virus replication. To investigate the mechanistic basis of such inhibition, the accumulation of viral early proteins and genomes was compared by immunoblotting and qPCR, respectively, in WT- and mutant-infected cells in the absence or presence of exogenous IFN. Both the concentration of viral genomes detected during the late phase and the numbers of viral replication centers formed were strongly reduced in IFN-treated cells in the absence of the E1B protein, despite production of similar quantities of viral replication proteins. These defects could not be attributed to degradation of entering viral genomes, induction of apoptosis, or failure to reorganize components of PML nuclear bodies. Nor was assembly of the E1B- and E4 Orf6 protein- E3 ubiquitin ligase required to prevent inhibition of viral replication by IFN. However, by using RT-PCR, the E1B 55 kDa protein was demonstrated to be a potent repressor of expression of IFN-inducible genes in IFN-treated cells. We propose that a primary function of the previously described transcriptional repression activity of the E1B 55 kDa protein is to block expression of IFN- inducible genes, and hence to facilitate formation of viral replication centers and genome replication.

  5. Peripheral Blood Cells from Patients with Autoimmune Addison's Disease Poorly Respond to Interferons In Vitro, Despite Elevated Serum Levels of Interferon-Inducible Chemokines

    Science.gov (United States)

    Bjånesøy, Trine; Hellesen, Alexander; Breivik, Lars; Bakke, Marit; Husebye, Eystein S.; Bratland, Eirik

    2015-01-01

    Autoimmune Addison's disease (AAD) is a disorder caused by an immunological attack on the adrenal cortex. The interferon (IFN)-inducible chemokine CXCL10 is elevated in serum of AAD patients, suggesting a peripheral IFN signature. However, CXCL10 can also be induced in adrenocortical cells stimulated with IFNs, cytokines, or microbial components. We therefore investigated whether peripheral blood mononuclear cells (PBMCs) from AAD patients display an enhanced propensity to produce CXCL10 and the related chemokine CXCL9, after stimulation with type I or II IFNs or the IFN inducer poly (I:C). Although serum levels of CXCL10 and CXCL9 were significantly elevated in patients compared with controls, IFN stimulated patient PBMC produced significantly less CXCL10/CXCL9 than control PBMC. Low CXCL10 production was not significantly associated with medication, disease duration, or comorbidities, but the low production of poly (I:C)-induced CXCL10 among patients was associated with an AAD risk allele in the phosphatase nonreceptor type 22 (PTPN22) gene. PBMC levels of total STAT1 and -2, and IFN-induced phosphorylated STAT1 and -2, were not significantly different between patients and controls. We conclude that PBMC from patients with AAD are deficient in their response to IFNs, and that the adrenal cortex itself may be responsible for the increased serum levels of CXCL10. PMID:25978633

  6. Peripheral Blood Cells from Patients with Autoimmune Addison's Disease Poorly Respond to Interferons In Vitro, Despite Elevated Serum Levels of Interferon-Inducible Chemokines.

    Science.gov (United States)

    Edvardsen, Kine; Bjånesøy, Trine; Hellesen, Alexander; Breivik, Lars; Bakke, Marit; Husebye, Eystein S; Bratland, Eirik

    2015-10-01

    Autoimmune Addison's disease (AAD) is a disorder caused by an immunological attack on the adrenal cortex. The interferon (IFN)-inducible chemokine CXCL10 is elevated in serum of AAD patients, suggesting a peripheral IFN signature. However, CXCL10 can also be induced in adrenocortical cells stimulated with IFNs, cytokines, or microbial components. We therefore investigated whether peripheral blood mononuclear cells (PBMCs) from AAD patients display an enhanced propensity to produce CXCL10 and the related chemokine CXCL9, after stimulation with type I or II IFNs or the IFN inducer poly (I:C). Although serum levels of CXCL10 and CXCL9 were significantly elevated in patients compared with controls, IFN stimulated patient PBMC produced significantly less CXCL10/CXCL9 than control PBMC. Low CXCL10 production was not significantly associated with medication, disease duration, or comorbidities, but the low production of poly (I:C)-induced CXCL10 among patients was associated with an AAD risk allele in the phosphatase nonreceptor type 22 (PTPN22) gene. PBMC levels of total STAT1 and -2, and IFN-induced phosphorylated STAT1 and -2, were not significantly different between patients and controls. We conclude that PBMC from patients with AAD are deficient in their response to IFNs, and that the adrenal cortex itself may be responsible for the increased serum levels of CXCL10.

  7. Interferon-α Subtypes in an Ex Vivo Model of Acute HIV-1 Infection: Expression, Potency and Effector Mechanisms.

    Directory of Open Access Journals (Sweden)

    Michael S Harper

    Full Text Available HIV-1 is transmitted primarily across mucosal surfaces and rapidly spreads within the intestinal mucosa during acute infection. The type I interferons (IFNs likely serve as a first line of defense, but the relative expression and antiviral properties of the 12 IFNα subtypes against HIV-1 infection of mucosal tissues remain unknown. Here, we evaluated the expression of all IFNα subtypes in HIV-1-exposed plasmacytoid dendritic cells by next-generation sequencing. We then determined the relative antiviral potency of each IFNα subtype ex vivo using the human intestinal Lamina Propria Aggregate Culture model. IFNα subtype transcripts from the centromeric half of the IFNA gene complex were highly expressed in pDCs following HIV-1 exposure. There was an inverse relationship between IFNA subtype expression and potency. IFNα8, IFNα6 and IFNα14 were the most potent in restricting HIV-1 infection. IFNα2, the clinically-approved subtype, and IFNα1 were both highly expressed but exhibited relatively weak antiviral activity. The relative potencies correlated with binding affinity to the type I IFN receptor and the induction levels of HIV-1 restriction factors Mx2 and Tetherin/BST-2 but not APOBEC3G, F and D. However, despite the lack of APOBEC3 transcriptional induction, the higher relative potency of IFNα8 and IFNα14 correlated with stronger inhibition of virion infectivity, which is linked to deaminase-independent APOBEC3 restriction activity. By contrast, both potent (IFNα8 and weak (IFNα1 subtypes significantly induced HIV-1 GG-to-AG hypermutation. The results unravel non-redundant functions of the IFNα subtypes against HIV-1 infection, with strong implications for HIV-1 mucosal immunity, viral evolution and IFNα-based functional cure strategies.

  8. Dexamethasone-induced radioresistance occurring independent of human papilloma virus gene expression in cervical carcinoma cells

    International Nuclear Information System (INIS)

    Rutz, H.P.; Mariotta, M.; Mirimanoff, R.O.; Knebel Doeberitz, M. von

    1998-01-01

    The aim of this study was to investigate the role of HPV 18 E6 and E7 gene products with respect to radiosensitivity of two cervical carcinoma cell lines. The two cervical carcinoma lines C4-1 and SW 756 were used in which treatment with dexamethasone allows to modulate expression levels of HPV 18 E6 and E7 genes: Upregulation in C4-1, down-regulation in SW 756. Effects of treatment with dexamethasone on plating efficiency and radiosensitivity were assessed using a clonogenic assay. Treatment with dexamethasone increased plating efficiency of the C4-1 cells, but did not affect plating efficiency of SW 756 cells. Treatment with dexamethasone induced enhanced radioresistance in both cell lines. Thus, in C4-1 cells the observed changes in radioresistance correlate to the enhancement in expression of HPV 18 genes E6/E7, whereas in SW 756, a reduced expression correlates negatively with the enhanced radioresistance. (orig./MG) [de

  9. Interferon lambda: opportunities, risks, and uncertainties in the fight against HCV.

    Science.gov (United States)

    Laidlaw, Stephen M; Dustin, Lynn B

    2014-01-01

    Innate immunity is key to the fight against the daily onslaught from viruses that our bodies are subjected to. Essential to this response are the interferons (IFNs) that prime our cells to block viral pathogens. Recent evidence suggests that the Type III (λ) IFNs are intimately associated with the immune response to hepatitis C virus (HCV) infection. Genome-wide association studies have identified polymorphisms within the IFN-λ gene locus that correlate with response to IFNα-based antiviral therapy and with spontaneous clearance of HCV infection. The mechanisms for these correlations are incompletely understood. Restricted expression of the IFN-λ receptor, and the ability of IFN-λ to induce IFN-stimulated genes in HCV-infected cells, suggest potential roles for IFN-λ in HCV therapy even in this era of directly acting antivirals. This review summarizes our current understanding of the IFN-λ family and the role of λ IFNs in the natural history of HCV infection.

  10. Chronic low-dose γ-irradiation of Drosophila melanogaster larvae induces gene expression changes and enhances locomotive behavior

    International Nuclear Information System (INIS)

    Kim, Cha Soon; Lee, Byung Sub; Lee, In Kyung; Yang, Kwang Hee; Kim, Ji-Young; Nam, Seon Young; Seong, Ki Moon

    2015-01-01

    Although radiation effects have been extensively studied, the biological effects of low-dose radiation (LDR) are controversial. This study investigates LDR-induced alterations in locomotive behavior and gene expression profiles of Drosophila melanogaster. We measured locomotive behavior using larval pupation height and the rapid iterative negative geotaxis (RING) assay after exposure to 0.1 Gy γ-radiation (dose rate of 16.7 mGy/h). We also observed chronic LDR effects on development (pupation and eclosion rates) and longevity (life span). To identify chronic LDR effects on gene expression, we performed whole-genome expression analysis using gene-expression microarrays, and confirmed the results using quantitative real-time PCR. The pupation height of the LDR-treated group at the first larval instar was significantly higher (∼2-fold increase in PHI value, P < 0.05). The locomotive behavior of LDR-treated male flies (∼3 − 5 weeks of age) was significantly increased by 7.7%, 29% and 138%, respectively (P < 0.01), but pupation and eclosion rates and life spans were not significantly altered. Genome-wide expression analysis identified 344 genes that were differentially expressed in irradiated larvae compared with in control larvae. We identified several genes belonging to larval behavior functional groups such as locomotion (1.1%), oxidation reduction (8.0%), and genes involved in conventional functional groups modulated by irradiation such as defense response (4.9%), and sensory and perception (2.5%). Four candidate genes were confirmed as differentially expressed genes in irradiated larvae using qRT-PCR (>2-fold change). These data suggest that LDR stimulates locomotion-related genes, and these genes can be used as potential markers for LDR. (author)

  11. 1,25-Dihydroxyvitamin-D3 Induces Avian β-Defensin Gene Expression in Chickens.

    Directory of Open Access Journals (Sweden)

    Long Zhang

    Full Text Available Host defense peptides (HDPs play a critical role in innate immunity. Specific modulation of endogenous HDP synthesis by dietary compounds has been regarded as a novel approach to boost immunity and disease resistance in animal production. 1,25-dihydroxy vitamin D3 (1,25D3 is well known as a powerful HDP inducer in humans, but limited information about the effect of 1,25D3 on HDPs in poultry is available. Here, we sought to examine whether 1,25D3 could stimulate avian β-defensin (AvBD expression in chickens. We used chicken embryo intestinal epithelial cells (CEIEPCs and peripheral blood mononuclear cells (PBMCs to study the effect of 1,25D3 on the expression of AvBDs. We observed that 1,25D3 is able to up-regulate the expression of several AvBDs in CEIEPCs and PBMCs, whereas it increased the amounts of AvBD4 mRNA in CEIEPCs only in the presence of lipopolysaccharide (LPS. On the other hand, LPS treatment not only inhibited the expression of CYP24A1 but also altered the expression pattern of VDR in CEIEPCs. Furthermore, AvBDs were not directly regulated by 1,25D3, as cycloheximide completely blocked 1,25D3-induced expression of AvBDs. Our observations suggest that 1,25D3 is capable of inducing AvBD gene expression and is a potential antibiotic alternative through augmentation of host innate immunity as well as disease control in chickens.

  12. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thi Kim Anh [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Department of Agriculture, Forestry and Fisheries, Vinh University, 182 Le Duan St., Vinh City, Nghe An (Viet Nam); MacFarlane, Geoff R. [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Kong, Richard Yuen Chong [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (China); O’Connor, Wayne A. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316 (Australia); Yu, Richard Man Kit, E-mail: Richard.Yu@newcastle.edu.au [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2016-10-15

    Highlights: • This is the first report on the putative promoter sequence of a molluscan ER gene. • The gene promoter contains putative binding sites for direct and indirect interaction with ER. • E2 upregulates ER gene expression in the ovary in vitro and in vivo. • E2-induced gene expression may require a novel ligand-dependent receptor. • The ER proximal promoter is hypomethylated regardless of gene expression levels. - Abstract: In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5′-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5′-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary

  13. Expression of immediate-early genes in the inferior colliculus and auditory cortex in salicylate-induced tinnitus in rat

    Directory of Open Access Journals (Sweden)

    S.S. Hu

    2014-03-01

    Full Text Available Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc and the early growth response gene-1 (Egr-1, appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and Egr-1 will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the Arc gene and Egr-1 gene were decreased in the inferior colliculus (IC and auditory cortex (AC, in contradiction of our hypothesis. Expression of N-methyl d-aspartate receptor subunit 2B (NR2B was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus.

  14. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    International Nuclear Information System (INIS)

    Yasmin, Tania; Takahashi-Yanaga, Fumi; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-01-01

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of β-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3β (GSK-3β) and inhibition of GSK-3β attenuated the DIF-1-induced β-catenin degradation, indicating the involvement of GSK-3β in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/β-catenin signaling, resulting in the suppression of cyclin D1 promoter activity

  15. Global Screening of Antiviral Genes that Suppress Baculovirus Transgene Expression in Mammalian Cells.

    Science.gov (United States)

    Wang, Chia-Hung; Naik, Nenavath Gopal; Liao, Lin-Li; Wei, Sung-Chan; Chao, Yu-Chan

    2017-09-15

    Although baculovirus has been used as a safe and convenient gene delivery vector in mammalian cells, baculovirus-mediated transgene expression is less effective in various mammalian cell lines. Identification of the negative regulators in host cells is necessary to improve baculovirus-based expression systems. Here, we performed high-throughput shRNA library screening, targeting 176 antiviral innate immune genes, and identified 43 host restriction factor genes in a human A549 lung carcinoma cell line. Among them, suppression of receptor interaction protein kinase 1 (RIP1, also known as RIPK1) significantly increased baculoviral transgene expression without resulting in significant cell death. Silencing of RIP1 did not affect viral entry or cell viability, but it did inhibit nuclear translocation of the IRF3 and NF-κB transcription factors. Also, activation of downstream signaling mediators (such as TBK1 and IRF7) was affected, and subsequent interferon and cytokine gene expression levels were abolished. Further, Necrostatin-1 (Nec-1)-an inhibitor of RIP1 kinase activity-dramatically increased baculoviral transgene expression in RIP1-silenced cells. Using baculovirus as a model system, this study presents an initial investigation of large numbers of human cell antiviral innate immune response factors against a "nonadaptive virus." In addition, our study has made baculovirus a more efficient gene transfer vector for some of the most frequently used mammalian cell systems.

  16. Retinoid-induced expression and activity of an immediate early tumor suppressor gene in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Streb

    2011-04-01

    Full Text Available Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β in cultured smooth muscle cells (SMC as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall.

  17. Carbon monoxide induced PPARγ SUMOylation and UCP2 block inflammatory gene expression in macrophages.

    Directory of Open Access Journals (Sweden)

    Arvand Haschemi

    Full Text Available Carbon monoxide (CO dampens pro-inflammatory responses in a peroxisome proliferator-activated receptor-γ (PPARγ and p38 mitogen-activated protein kinase (MAPK dependent manner. Previously, we demonstrated that CO inhibits lipopolysaccharide (LPS-induced expression of the proinflammatory early growth response-1 (Egr-1 transcription factor in macrophages via activation of PPARγ. Here, we further characterize the molecular mechanisms by which CO modulates the activity of PPARγ and Egr-1 repression. We demonstrate that CO enhances SUMOylation of PPARγ which we find was attributed to mitochondrial ROS generation. Ectopic expression of a SUMOylation-defective PPARγ-K365R mutant partially abolished CO-mediated suppression of LPS-induced Egr-1 promoter activity. Expression of a PPARγ-K77R mutant did not impair the effect of CO. In addition to PPARγ SUMOylation, CO-activated p38 MAPK was responsible for Egr-1 repression. Blocking both CO-induced PPARγ SUMOylation and p38 activation, completely reversed the effects of CO on inflammatory gene expression. In primary macrophages isolated form C57/BL6 male mice, we identify mitochondrial ROS formation by CO as the upstream trigger for the observed effects on Egr-1 in part through uncoupling protein 2 (UCP2. Macrophages derived from bone marrow isolated from Ucp2 gene Knock-Out C57/BL6 mice (Ucp2(-/-, produced significantly less ROS with CO exposure versus wild-type macrophages. Moreover, absence of UCP2 resulted in a complete loss of CO mediated Egr-1 repression. Collectively, these results indentify p38 activation, PPARγ-SUMOylation and ROS formation via UCP2 as a cooperative system by which CO impacts the inflammatory response.

  18. Reduced expression of Jak-1 and Tyk-2 proteins leads to interferon resistance in Hepatitis C virus replicon

    Directory of Open Access Journals (Sweden)

    Luftig Ronald

    2007-09-01

    Full Text Available Abstract Background Alpha interferon in combination with ribavirin is the standard therapy for hepatitis C virus infection. Unfortunately, a significant number of patients fail to eradicate their infection with this regimen. The mechanisms of IFN-resistance are unclear. The aim of this study was to determine the contribution of host cell factors to the mechanisms of interferon resistance using replicon cell lines. Results HCV replicons with high and low activation of the IFN-promoter were cultured for a prolonged period of time in the presence of interferon-alpha (IFN-alpha2b. Stable replicon cell lines with resistant phenotype were isolated and characterized by their ability to continue viral replication in the presence of IFN-alpha. Interferon resistant cell colonies developed only in replicons having lower activation of the IFN promoter and no resistant colonies arose from replicons that exhibit higher activation of the IFN promoter. Individual cell clones were isolated and nine IFN resistant cell lines were established. HCV RNA and protein levels in these cells were not altered by IFN- alpha2b. Reduced signaling and IFN-resistant phenotype was found in all Huh-7 cell lines even after eliminating HCV, suggesting that cellular factors are involved. Resistant phenotype in the replicons is not due to lack of interferon receptor expression. All the cell lines show defect in the JAK-STAT signaling and phosphorylation of STAT 1 and STAT 2 proteins were strongly inhibited due to reduced expression of Tyk2 and Jak-1 protein. Conclusion This in vitro study provides evidence that altered expression of the Jak-Stat signaling proteins can cause IFN resistance using HCV replicon cell clones.

  19. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression.

    Science.gov (United States)

    Knowlton, K U; Baracchini, E; Ross, R S; Harris, A N; Henderson, S A; Evans, S M; Glembotski, C C; Chien, K R

    1991-04-25

    To study the mechanisms which mediate the transcriptional activation of cardiac genes during alpha adrenergic stimulation, the present study examined the regulated expression of three cardiac genes, a ventricular embryonic gene (atrial natriuretic factor, ANF), a constitutively expressed contractile protein gene (cardiac MLC-2), and a cardiac sodium channel gene. alpha 1-Adrenergic stimulation activates the expression and release of ANF from neonatal ventricular cells. As assessed by RNase protection analyses, treatment with alpha-adrenergic agonists increases the steady-state levels of ANF mRNA by greater than 15-fold. However, a rat cardiac sodium channel gene mRNA is not induced, indicating that alpha-adrenergic stimulation does not lead to an increase in the expression of all cardiac genes. Studies employing a series of rat ANF luciferase and rat MLC-2 luciferase fusion genes identify 315- and 92-base pair cis regulatory sequences within an embryonic gene (ANF) and a constitutively expressed contractile protein gene (MLC-2), respectively, which mediate alpha-adrenergic-inducible gene expression. Transfection of various ANF luciferase reporters into neonatal rat ventricular cells demonstrated that upstream sequences which mediate tissue-specific expression (-3003 to -638) can be segregated from those responsible for inducibility. The lack of inducibility of a cardiac Na+ channel gene, and the segregation of ANF gene sequences which mediate cardiac specific from those which mediate inducible expression, provides further insight into the relationship between muscle-specific and inducible expression during cardiac myocyte hypertrophy. Based on these results, a testable model is proposed for the induction of embryonic cardiac genes and constitutively expressed contractile protein genes and the noninducibility of a subset of cardiac genes during alpha-adrenergic stimulation of neonatal rat ventricular cells.

  20. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne

    2007-01-01

    BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have...... caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  1. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells.

    Science.gov (United States)

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook

    2014-05-02

    Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum).

    Science.gov (United States)

    Dash, Prasanta K; Cao, Yongguo; Jailani, Abdul K; Gupta, Payal; Venglat, Prakash; Xiang, Daoquan; Rai, Rhitu; Sharma, Rinku; Thirunavukkarasu, Nepolean; Abdin, Malik Z; Yadava, Devendra K; Singh, Nagendra K; Singh, Jas; Selvaraj, Gopalan; Deyholos, Mike; Kumar, Polumetla Ananda; Datla, Raju

    2014-01-01

    A robust phenotypic plasticity to ward off adverse environmental conditions determines performance and productivity in crop plants. Flax (linseed), is an important cash crop produced for natural textile fiber (linen) or oilseed with many health promoting products. This crop is prone to drought stress and yield losses in many parts of the world. Despite recent advances in drought research in a number of important crops, related progress in flax is very limited. Since, response of this plant to drought stress has not been addressed at the molecular level; we conducted microarray analysis to capture transcriptome associated with induced drought in flax. This study identified 183 differentially expressed genes (DEGs) associated with diverse cellular, biophysical and metabolic programs in flax. The analysis also revealed especially the altered regulation of cellular and metabolic pathways governing photosynthesis. Additionally, comparative transcriptome analysis identified a plethora of genes that displayed differential regulation both spatially and temporally. These results revealed co-regulated expression of 26 genes in both shoot and root tissues with implications for drought stress response. Furthermore, the data also showed that more genes are upregulated in roots compared to shoots, suggesting that roots may play important and additional roles in response to drought in flax. With prolonged drought treatment, the number of DEGs increased in both tissue types. Differential expression of selected genes was confirmed by qRT-PCR, thus supporting the suggested functional association of these intrinsic genes in maintaining growth and homeostasis in response to imminent drought stress in flax. Together the present study has developed foundational and new transcriptome data sets for drought stress in flax.

  3. Expanding the molecular toolbox for Lactococcus lactis: construction of an inducible thioredoxin gene fusion expression system

    LENUS (Irish Health Repository)

    Douillard, Francois P

    2011-08-09

    Abstract Background The development of the Nisin Inducible Controlled Expression (NICE) system in the food-grade bacterium Lactococcus lactis subsp. cremoris represents a cornerstone in the use of Gram-positive bacterial expression systems for biotechnological purposes. However, proteins that are subjected to such over-expression in L. lactis may suffer from improper folding, inclusion body formation and\\/or protein degradation, thereby significantly reducing the yield of soluble target protein. Although such drawbacks are not specific to L. lactis, no molecular tools have been developed to prevent or circumvent these recurrent problems of protein expression in L. lactis. Results Mimicking thioredoxin gene fusion systems available for E. coli, two nisin-inducible expression vectors were constructed to over-produce various proteins in L. lactis as thioredoxin fusion proteins. In this study, we demonstrate that our novel L. lactis fusion partner expression vectors allow high-level expression of soluble heterologous proteins Tuc2009 ORF40, Bbr_0140 and Tuc2009 BppU\\/BppL that were previously insoluble or not expressed using existing L. lactis expression vectors. Over-expressed proteins were subsequently purified by Ni-TED affinity chromatography. Intact heterologous proteins were detected by immunoblotting analyses. We also show that the thioredoxin moiety of the purified fusion protein was specifically and efficiently cleaved off by enterokinase treatment. Conclusions This study is the first description of a thioredoxin gene fusion expression system, purposely developed to circumvent problems associated with protein over-expression in L. lactis. It was shown to prevent protein insolubility and degradation, allowing sufficient production of soluble proteins for further structural and functional characterization.

  4. Sequence and Expression Analysis of Interferon Regulatory Factor 10 (IRF10 in Three Diverse Teleost Fish Reveals Its Role in Antiviral Defense.

    Directory of Open Access Journals (Sweden)

    Qiaoqing Xu

    Full Text Available Interferon regulatory factor (IRF 10 was first found in birds and is present in the genome of other tetrapods (but not humans and mice, as well as in teleost fish. The functional role of IRF10 in vertebrate immunity is relatively unknown compared to IRF1-9. The target of this research was to clone and characterize the IRF10 genes in three economically important fish species that will facilitate future evaluation of this molecule in fish innate and adaptive immunity.In the present study, a single IRF10 gene was cloned in grass carp Ctenopharyngodon idella and Asian swamp eel Monopterus albus, and two, named IRF10a and IRF10b, in rainbow trout Oncorhynchus mykiss. The fish IRF10 molecules share highest identities to other vertebrate IRF10s, and have a well conserved DNA binding domain, IRF-associated domain, and an 8 exon/7 intron structure with conserved intron phase. The presence of an upstream ATG or open reading frame (ORF in the 5'-untranslated region of different fish IRF10 cDNA sequences suggests potential regulation at the translational level, and this has been verified by in vitro transcription/translation experiments of the trout IRF10a cDNA, but would still need to be validated in fish cells.Both trout IRF10 paralogues are highly expressed in thymus, blood and spleen but are relatively low in head kidney and caudal kidney. Trout IRF10b expression is significantly higher than IRF10a in integumentary tissues i.e. gills, scales, skin, intestine, adipose fin and tail fins, suggesting that IRF10b may be more important in mucosal immunity. The expression of both trout IRF10 paralogues is up-regulated by recombinant IFN-γ. The expression of the IRF10 genes is highly induced by Poly I:C in vitro and in vivo, and by viral infection, but is less responsive to peptidoglycan and bacterial infection, suggesting an important role of fish IRF10 in antiviral defense.

  5. Defining the expression of marker genes in equine mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Deborah J Guest

    2008-11-01

    Full Text Available Deborah J Guest1, Jennifer C Ousey1, Matthew RW Smith21Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU; 2Reynolds House Referrals, Greenwood Ellis and Partners, 166 High Street, Newmarket, Suffolk, CB8 9WS, UKAbstract: Mesenchymal stromal (MS cells have been derived from multiple sources in the horse including bone marrow, adipose tissue and umbilical cord blood. To date these cells have been investigated for their differentiation potential and are currently being used to treat damage to horse musculoskeletal tissues. However, no work has been done in horse MS cells to examine the expression profile of proteins and cell surface antigens that are expressed in human MS cells. The identification of such profiles in the horse will allow the comparison of putative MS cells isolated from different laboratories and different tissues. At present it is difficult to ascertain whether equivalent cells are being used in different reports. Here, we report on the expression of a range of markers used to define human MS cells. Using immunocytochemistry we show that horse MS cells homogenously express collagens, alkaline phosphatase activity, CD44, CD90 and CD29. In contrast, CD14, CD79α and the embryonic stem cell markers Oct-4, SSEA (stage specific embryonic antigen -1, -3, -4, TRA (tumor rejection antigen -1–60 and -1–81 are not expressed. The MS cells also express MHC class I antigens but do not express class II antigens, although they are inducible by treatment with interferon gamma (IFN-γ.Keywords: mesenchymal stem cells, equine, gene expression

  6. Gene expression and hormone autonomy in radiation-induced tumors of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Persinger, S.M.; Town, C.D.

    1989-01-01

    In order to study the molecular genetics of factor controlling plant cell growth, we have isolated a group of radiation-induced tumors from Arabidopsis thaliana. Tumors appeared on plants derived from 60 Co gamma-irradiated seed or seedlings, and are capable of hormone-autonomous growth in culture. We have used vertebrate oncogene probes to explore the hypothesis that the tumors arose by the radiation-induced activation of growth-regulating plant oncogenes. One probe, int-2, was used to isolate cDNA clones representing an mRNA differentially expressed between tumors and hormone-dependent callus tissue. The genomic organization and function of this and other differentially expressed Arabidopsis sequences are being further characterized. A second area of study concerns the hormonal status of individual tumors. Tumor tissue varies in color, texture, and degree of differentiation: while some tumors appear undifferentiated, one consistently produces roots, and others occasionally develop shoots or leaflets. The tumors have characteristic growth rates on hormone-free medium, and growth in response to exogenous hormones differs among the tumors themselves and from wild-type. Characterization of the relationships between hormonal status, morphogenesis, and gene expression should yield valuable insights into the mechanisms regulating plant growth and development

  7. Dexamethasone-induced radioresistance occurring independent of human papilloma virus gene expression in cervical carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, H.P.; Mariotta, M.; Mirimanoff, R.O. [Lab. de Radiobiologie, Service de Radio-Oncologie, CHUV, Lausanne (Switzerland); Knebel Doeberitz, M. von [Deutsches Krebsforschungszentrum, Heidelberg (Germany). Inst. fuer Virusforschung

    1998-02-01

    The aim of this study was to investigate the role of HPV 18 E6 and E7 gene products with respect to radiosensitivity of two cervical carcinoma cell lines. The two cervical carcinoma lines C4-1 and SW 756 were used in which treatment with dexamethasone allows to modulate expression levels of HPV 18 E6 and E7 genes: Upregulation in C4-1, down-regulation in SW 756. Effects of treatment with dexamethasone on plating efficiency and radiosensitivity were assessed using a clonogenic assay. Treatment with dexamethasone increased plating efficiency of the C4-1 cells, but did not affect plating efficiency of SW 756 cells. Treatment with dexamethasone induced enhanced radioresistance in both cell lines. Thus, in C4-1 cells the observed changes in radioresistance correlate to the enhancement in expression of HPV 18 genes E6/E7, whereas in SW 756, a reduced expression correlates negatively with the enhanced radioresistance. (orig./MG) [Deutsch] Das Ziel dieser Studie lag darin, die Rolle der HPV-18-Gene E6 und E7 in bezug auf die Strahlenempfindlichkeit von menschlichen Zervixkarzinomzellen zu untersuchen. Wir verwendeten zwei menschliche Zervixkarzinomzellinien, C4-1 und SW 756, in welchen die Expression der viralen Gene HPV 18 E6 und E7 mit Dexamethason moduliert werden kann: In C4-1 bewirkt die Behandlung mit Dexamethason eine Erhoehung der Expression dieser Gene, in SW 756 eine Verminderung. Die Wirkung auf die Wachstumsfaehigkeit der Zellen und auf die Wachstumshemmung durch die Bestrahlung wurde unter Verwendung eines klonogenen Assays bestimmt. Dexamethason bewirkte eine erhoehte Wachstumsfaehigkeit der C4-1 Zellen, ohne die Wachstumsfaehigkeit der SW-756-Zellen zu beeinflussen, wie schon frueher beschrieben. Die Resistenz beider Zellinien gegenueber Bestrahlung wurde erhoeht. Somit besteht in den C4-1-Zellen eine Korrelation der Expression der viralen Gene mit der Zunahme der Strahlenresistenz, wogegen in den SW-756-Zellen die Abnahme der Expression im Gegensatz zu

  8. Genome-wide analysis of DHEA- and DHT-induced gene expression in mouse hypothalamus and hippocampus.

    Science.gov (United States)

    Mo, Qianxing; Lu, Shifang; Garippa, Carrie; Brownstein, Michael J; Simon, Neal G

    2009-04-01

    Dehydroepiandrosterone (DHEA) is the most abundant steroid in humans and a multi-functional neuroactive steroid that has been implicated in a variety of biological effects in both the periphery and central nervous system. Mechanistic studies of DHEA in the periphery have emphasized its role as a prohormone and those in the brain have focused on effects exerted at cell surface receptors. Recent results demonstrated that DHEA is intrinsically androgenic. It competes with DHT for binding to androgen receptor (AR), induces AR-regulated reporter gene expression in vitro, and exogenous DHEA administration regulates gene expression in peripheral androgen-dependent tissues and LnCAP prostate cancer cells, indicating genomic effects and adding a level of complexity to functional models. The absence of information about the effect of DHEA on gene expression in the CNS is a significant gap in light of continuing clinical interest in the compound as a hormone replacement therapy in older individuals, patients with adrenal insufficiency, and as a treatment that improves sense of well-being, increases libido, relieves depressive symptoms, and serves as a neuroprotective agent. In the present study, ovariectomized CF-1 female mice, an established model for assessing CNS effects of androgens, were treated with DHEA (1mg/day), dihydrotestosterone (DHT, a potent androgen used as a positive control; 0.1mg/day) or vehicle (negative control) for 7 days. The effects of DHEA on gene expression were assessed in two regions of the CNS that are enriched in AR, hypothalamus and hippocampus, using DNA microarray, real-time RT-PCR, and immunohistochemistry. RIA of serum samples assessed treatment effects on circulating levels of major steroids. In hypothalamus, DHEA and DHT significantly up-regulated the gene expression of hypocretin (Hcrt; also called orexin), pro-melanin-concentrating hormone (Pmch), and protein kinase C delta (Prkcd), and down-regulated the expression of deleted in bladder

  9. Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep.

    Science.gov (United States)

    Lan, Xianyong; Cretney, Evan C; Kropp, Jenna; Khateeb, Karam; Berg, Mary A; Peñagaricano, Francisco; Magness, Ronald; Radunz, Amy E; Khatib, Hasan

    2013-01-01

    Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller's grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  10. Maternal diet during pregnancy induces gene expression and DNA methylation changes in fetal tissues in sheep

    Directory of Open Access Journals (Sweden)

    Xianyong eLan

    2013-04-01

    Full Text Available Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from d 67 ± 3 of gestation until necropsy (d 130 ± 1, they were fed one of three diets of alfalfa haylage (HY; fiber, corn (CN; starch, or dried corn distiller’s grains (DG; fiber plus protein plus fat. A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methylatransferase (DNMTs genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  11. Oxycodone Self-Administration Induces Alterations in Expression of Integrin, Semaphorin and Ephrin Genes in the Mouse Striatum

    Directory of Open Access Journals (Sweden)

    Vadim Yuferov

    2018-06-01

    Full Text Available Oxycodone is one a commonly used medication for pain, and is also a widely abused prescription opioid, like other short-acting MOPr agonists. Neurochemical and structural adaptations in brain following chronic MOPr-agonist administration are thought to underlie pathogenesis and persistence of opiate addiction. Many axon guidance molecules, such as integrins, semaphorins, and ephrins may contribute to oxycodone-induced neuroadaptations through alterations in axon-target connections and synaptogenesis, that may be implicated in the behaviors associated with opiate addiction. However, little is known about this important area. The aim of this study is to investigate alterations in expression of selected integrin, semaphorin, ephrins, netrin, and slit genes in the nucleus accumbens (NAc and caudate putamen (CPu of mice following extended 14-day oxycodone self-administration (SA, using RNAseq.Methods: Total RNA from the NAc and CPu were isolated from adult male C57BL/6J mice within 1 h after the last session of oxycodone in a 14-day self-administration paradigm (4h/day, 0.25 mg/kg/infusion, FR1 or from yoked saline controls. Gene expressions were examined using RNA sequencing (RNA-Seq technology. RNA-Seq libraries were prepared using Illumina's TruSeq® Stranded Total RNA LT kit. The reads were aligned to the mouse reference genome (version mm10 using STAR. DESeq2 was applied to the counts of protein coding genes to estimate the fold change between the treatment groups. False Discovery Rate (FDR q < 0.1 were used to select genes that have a significant expression change. For selection of a subset of genes related to axon guidance pathway, REACTOME was used.Results: Among 38 known genes of the integrin, semaphorin, and ephrin gene families, RNA-seq data revealed up-regulation of six genes in the NAc: heterodimer receptor, integrins Itgal, Itgb2, and Itgam, and its ligand semaphorin Sema7a, two semaphorin receptors, plexins Plxnd1 and Plxdc1. There was

  12. Angiotensin II modulates interleukin-1β-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-κB crosstalk

    International Nuclear Information System (INIS)

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun; Jiang, Bingbing

    2011-01-01

    Highlights: → We examine how angiotensin II modulates ERK-NF-κB crosstalk and gene expression. → Angiotensin II suppresses IL-1β-induced prolonged ERK and NF-κB activation. → ERK-RSK1 signaling is required for IL-1β-induced prolonged NF-κB activation. → Angiotensin II modulates NF-κB responsive genes via regulating ERK-NF-κB crosstalk. → ERK-NF-κB crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1β-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-κB, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1β-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1β, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE -/- ) mice. VCAM-1 and iNOS expression were higher in ApoE -/- than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE -/- mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells

  13. Gene expression patterns induced at different stages of rhinovirus infection in human alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Etemadi

    Full Text Available Human rhinovirus (HRV is the common virus that causes acute respiratory infection (ARI and is frequently associated with lower respiratory tract infections (LRTIs. We aimed to investigate whether HRV infection induces a specific gene expression pattern in airway epithelial cells. Alveolar epithelial cell monolayers were infected with HRV species B (HRV-B. RNA was extracted from both supernatants and infected monolayer cells at 6, 12, 24 and 48 hours post infection (hpi and transcriptional profile was analyzed using Affymetrix GeneChip and the results were subsequently validated using quantitative Real-time PCR method. HRV-B infects alveolar epithelial cells which supports implication of the virus with LRTIs. In total 991 genes were found differentially expressed during the course of infection. Of these, 459 genes were up-regulated whereas 532 genes were down-regulated. Differential gene expression at 6 hpi (187 genes up-regulated vs. 156 down-regulated were significantly represented by gene ontologies related to the chemokines and inflammatory molecules indicating characteristic of viral infection. The 75 up-regulated genes surpassed the down-regulated genes (35 at 12 hpi and their enriched ontologies fell into discrete functional entities such as regulation of apoptosis, anti-apoptosis, and wound healing. At later time points of 24 and 48 hpi, predominated down-regulated genes were enriched for extracellular matrix proteins and airway remodeling events. Our data provides a comprehensive image of host response to HRV infection. The study suggests the underlying molecular regulatory networks genes which might be involved in pathogenicity of the HRV-B and potential targets for further validations and development of effective treatment.

  14. Modulation of radiation-induced base excision repair pathway gene expression by melatonin

    Directory of Open Access Journals (Sweden)

    Saeed Rezapoor

    2017-01-01

    Full Text Available Objective: Approximately 70% of all cancer patients receive radiotherapy. Although radiotherapy is effective in killing cancer cells, it has adverse effects on normal cells as well. Melatonin (MLT as a potent antioxidant and anti-inflammatory agent has been proposed to stimulate DNA repair capacity. We investigated the capability of MLT in the modification of radiation-induced DNA damage in rat peripheral blood cells. Materials and Methods: In this experimental study, male rats (n = 162 were divided into 27 groups (n = 6 in each group including: irradiation only, vehicle only, vehicle with irradiation, 100 mg/kg MLT alone, 100 mg/kg MLT plus irradiation in 3 different time points, and control. Subsequently, they were irradiated with a single whole-body X-ray radiation dose of 2 and 8 Gy at a dose rate of 200 MU/min. Rats were given an intraperitoneal injection of MLT or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were also taken 8, 24, and 48 h postirradiation, in order to measure the 8-oxoguanine glycosylase1 (Ogg1, Apex1, and Xrcc1 expression using quantitative real-time-polymerase chain reaction. Results: Exposing to the ionizing radiation resulted in downregulation of Ogg1, Apex1, and Xrcc1 gene expression. The most obvious suppression was observed in 8 h after exposure. Pretreatments with MLT were able to upregulate these genes when compared to the irradiation-only and vehicle plus irradiation groups (P < 0.05 in all time points. Conclusion: Our results suggested that MLT in mentioned dose may result in modulation of Ogg1, Apex1, and Xrcc1 gene expression in peripheral blood cells to reduce X-ray irradiation-induced DNA damage. Therefore, administration of MLT may increase the normal tissue tolerance to radiation through enhancing the cell DNA repair capacity. We believed that MLT could play a radiation toxicity reduction role in patients who have undergone radiation treatment as a part of cancer radiotherapy.

  15. Gene cloning and induced expression pattern of IRF4 and IRF10 in the Asian swamp eel (Monopterus albus)

    Science.gov (United States)

    XU, Qiao-Qing; YANG, Dai-Qin; TUO, Rui; WAN, Jing; CHANG, Ming-Xian; NIE, Pin

    2014-01-01

    The Asian swamp eel (Monopterus albus) is one of the most economically important freshwater fish in East Asia, but data on the immune genes of M. albus are scarce compared to other commercially important fish. A better understanding of the eel’s immune responses may help in developing strategies for disease management, potentially improving yields and mitigating losses. In mammals, interferon regulatory factors (IRFs) play a vital role in both the innate and adaptive immune system; though among teleosts IRF4 and IRF10 have seldom been studied. In this study, we characterized IRF4 and IRF10 from M. albus (maIRF4 and maIRF10) and found that maIRF4 cDNA consists of 1 716 nucleotides encoding a 451 amino acid (aa) protein, while maIRF10 consists of 1 744 nucleotides including an open reading frame (ORF) of 1 236 nt encoding 411 aa. The maIRF10 gene was constitutively expressed at high levels in a variety of tissues, while maIRF4 showed a very limited expression pattern. Expression of maIRF4 and maIRF10 in head kidney, and spleen tissues was significantly up-regulated from 12 h to 48 h post-stimulation with polyinosinic: polycytidylic acid (poly I:C), lipopolysaccharide (LPS) and a common pathogenic bacteria Aeromonas hydrophila. These results suggest that IRF4 and IRF10 play roles in immune responses to both viral and bacterial infections in M. albus. PMID:25297077

  16. DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula.

    Science.gov (United States)

    Floss, Daniela S; Lévesque-Tremblay, Véronique; Park, Hee-Jin; Harrison, Maria J

    2016-01-01

    The majority of the vascular flowering plants form symbiotic associations with fungi from the phylum Glomeromycota through which both partners gain access to nutrients, either mineral nutrients in the case of the plant, or carbon, in the case of the fungus. (1) The association develops in the roots and requires substantial remodeling of the root cortical cells where branched fungal hyphae, called arbuscules, are housed in a new membrane-bound apoplastic compartment. (2) Nutrient exchange between the symbionts occurs over this interface and its development and maintenance is critical for symbiosis. Previously, we showed that DELLA proteins, which are well known as repressors of gibberellic acid signaling, also regulate development of AM symbiosis and are necessary to enable arbuscule development. (3) Furthermore, constitutive overexpression of a dominant DELLA protein (della1-Δ18) is sufficient to induce transcripts of several AM symbiosis-induced genes, even in the absence of the fungal symbiont. (4) Here we further extend this approach and identify AM symbiosis genes that respond transcriptionally to constitutive expression of a dominant DELLA protein and also genes that do respond to this treatment. Additionally, we demonstrate that DELLAs interact with REQUIRED FOR ARBUSCULE DEVELOPMENT 1 (RAD1) which further extends our knowledge of GRAS factor complexes that have the potential to regulate gene expression during AM symbiosis.

  17. Interferon gamma-inducible protein 16 (IFI16 and anti-IFI16 antibodies in primary Sjögren’s syndrome: findings in serum and minor salivary glands

    Directory of Open Access Journals (Sweden)

    A. Alunno

    2016-02-01

    Full Text Available The interferon (IFN signature, namely the overexpression of IFN-inducible genes is a crucial aspect in the pathogenesis of primary Sjögren’s syndrome (pSS. The IFN-inducible IFI16 protein, normally expressed in cell nuclei, may be overexpressed, mislocalized in the cytoplasm and secreted in the extracellular milieu in several autoimmune disorders including pSS. This leads to tolerance breaking to this self-protein and development of anti-IFI16 antibodies. The aim of this study was to identify pathogenic and clinical significance of IFI16 and anti-IFI16 autoantibodies in pSS. IFI16 and anti-IFI16 were assessed in the serum of 30 pSS patients and one-hundred healthy donors (HD by ELISA. IFI16 was also evaluated in 5 minor salivary glands (MSGs of pSS patients and 5 MSGs of non-pSS patients with sicca symptoms by immunohistochemistry. Normal MSGs do not constitutively express IFI16. Conversely, in pSS-MSGs a marked expression and cytoplasmic mislocalization of IFI16 by epithelial cells was observed with infiltrations in lymphocytes and peri/ intra-lesional endothelium. pSS patients display higher serum levels of both IFI16 and anti-IFI16 autoantibodies compared to HD. Our data suggest that IFI16 protein may be involved in the initiation and perpetuation of glandular inflammation occurring in pSS.

  18. Dose-effect of ionizing radiation-induced PIG3 gene expression alteration in human lymphoblastoid AHH-1 cells and human peripheral blood lymphocytes.

    Science.gov (United States)

    Liu, Qing-Jie; Zhang, De-Qin; Zhang, Qing-Zhao; Feng, Jiang-Bin; Lu, Xue; Wang, Xin-Ru; Li, Kun-Peng; Chen, De-Qing; Mu, Xiao-Feng; Li, Shuang; Gao, Ling

    2015-01-01

    To identify new ionizing radiation (IR)-sensitive genes and observe the dose-effect of gene expression alteration (GEA) induced by IR. Microarray was used to screen the differentially expressed genes in human lymphoblastoid cells (AHH-1) using three doses of (60)Co γ-rays (0.5-8 Gy at 1 Gy/min). Given that p53-inducible gene 3 (PIG3) was consistently upregulated, the GEA of PIG3 in AHH-1 cells and human peripheral blood lymphocytes (HPBL) induced by γ-rays (1 Gy/min) was measured at messenger RNA (mRNA) and protein levels. The GEA of PIG3 in AHH-1 cells exposed to neutron radiation (californium-252, 0.073 Gy/min) was also quantified. PIG3 was one of the seven differentially expressed genes found in the microarray analysis. The PIG3 mRNA and protein levels in AHH-1 cells were significantly increased from 1-10 Gy of γ-rays 8-72 h or 8-168 h after exposure, respectively. The enhancement was also observed in AHH-1 cells from 0.4-1.6 Gy of neutrons 48 h post-irradiation. The PIG3 mRNA levels (mRNA copy numbers) in HPBL were significantly increased from 1-8 Gy of γ-rays within 4-24 h post-irradiation, but the highest increase in signal-to-noise responsiveness is approximately two-fold, which was less than that of AHH-1 (approximately 20-fold). IR can upregulate the PIG3 gene expression in AHH-1 and HPBL in the early phase after exposure; however, the IR induced expression levels of PIG3 are greater in AHH-1 than HPBL.

  19. Pregnancy-Induced Changes in Systemic Gene Expression among Healthy Women and Women with Rheumatoid Arthritis.

    Directory of Open Access Journals (Sweden)

    Anuradha Mittal

    Full Text Available Pregnancy induces drastic biological changes systemically, and has a beneficial effect on some autoimmune conditions such as rheumatoid arthritis (RA. However, specific systemic changes that occur as a result of pregnancy have not been thoroughly examined in healthy women or women with RA. The goal of this study was to identify genes with expression patterns associated with pregnancy, compared to pre-pregnancy as baseline and determine whether those associations are modified by presence of RA.In our RNA sequencing (RNA-seq dataset from 5 healthy women and 20 women with RA, normalized expression levels of 4,710 genes were significantly associated with pregnancy status (pre-pregnancy, first, second and third trimesters over time, irrespective of presence of RA (False Discovery Rate (FDR-adjusted p value<0.05. These genes were enriched in pathways spanning multiple systems, as would be expected during pregnancy. A subset of these genes (n = 256 showed greater than two-fold change in expression during pregnancy compared to baseline levels, with distinct temporal trends through pregnancy. Another 98 genes involved in various biological processes including immune regulation exhibited expression patterns that were differentially associated with pregnancy in the presence or absence of RA.Our findings support the hypothesis that the maternal immune system plays an active role during pregnancy, and also provide insight into other systemic changes that occur in the maternal transcriptome during pregnancy compared to the pre-pregnancy state. Only a small proportion of genes modulated by pregnancy were influenced by presence of RA in our data.

  20. Changes in skeletal muscle gene expression following clenbuterol administration

    Directory of Open Access Journals (Sweden)

    McIntyre Lauren M

    2006-12-01

    Full Text Available Abstract Background Beta-adrenergic receptor agonists (BA induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Results Administration of clenbuterol stimulated anabolic activity, as indicated by decreased blood urea nitrogen (BUN; P P Conclusion Global evaluation of gene expression after administration of clenbuterol identified changes in gene expression and overrepresented functional categories of genes that may regulate BA-induced muscle hypertrophy. Changes in mRNA abundance of multiple genes associated with myogenic differentiation may indicate an important effect of BA on proliferation, differentiation, and/or recruitment of satellite cells into muscle fibers to promote muscle hypertrophy. Increased mRNA abundance of genes involved in the initiation of translation suggests that increased levels of protein synthesis often associated with BA administration may result from a general up-regulation of translational initiators. Additionally, numerous other genes and physiological pathways were identified that will be important targets for further investigations of the hypertrophic effect of BA on skeletal muscle.

  1. Identification of distal silencing elements in the murine interferon-A11 gene promoter.

    Science.gov (United States)

    Roffet, P; Lopez, S; Navarro, S; Bandu, M T; Coulombel, C; Vignal, M; Doly, J; Vodjdani, G

    1996-08-01

    The murine interferon-A11 (Mu IFN-A11) gene is a member of the IFN-A multigenic family. In mouse L929 cells, the weak response of the gene's promoter to viral induction is due to a combination of both a point mutation in the virus responsive element (VRE) and the presence of negatively regulating sequences surrounding the VRE. In the distal part of the promoter, the negatively acting E1E2 sequence was delimited. This sequence displays an inhibitory effect in either orientation or position on the inducibility of a virus-responsive heterologous promoter. It selectively represses VRE-dependent transcription but is not able to reduce the transcriptional activity of a VRE-lacking promoter. In a transient transfection assay, an E1E2-containing DNA competitor was able to derepress the native Mu IFN-A11 promoter. Specific nuclear factors bind to this sequence; thus the binding of trans-regulators participates in the repression of the Mu IFN-A11 gene. The E1E2 sequence contains an IFN regulatory factor (IRF)-binding site. Recombinant IRF2 binds this sequence and anti-IRF2 antibodies supershift a major complex formed with nuclear extracts. The protein composing the complex is 50 kDa in size, indicating the presence of IRF2 or antigenically related proteins in the complex. The Mu IFN-A11 gene is the first example within the murine IFN-A family, in which a distal promoter element has been identified that can negatively modulate the transcriptional response to viral induction.

  2. Gene expression changes induced by the tumorigenic pyrrolizidine alkaloid riddelliine in liver of Big Blue rats

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Liu, Ruqing; Fuscoe, James C; Chen, Tao

    2007-01-01

    Background Pyrrolizidine alkaloids (PAs) are probably the most common plant constituents that poison livestock, wildlife, and humans worldwide. Riddelliine is isolated from plants grown in the western United States and is a prototype of genotoxic PAs. Riddelliine was used to investigate the genotoxic effects of PAs via analysis of gene expression in the target tissue of rats in this study. Previously we observed that the mutant frequency in the liver of rats gavaged with riddelliine was 3-fold higher than that in the control group. Molecular analysis of the mutants indicated that there was a statistically significant difference between the mutational spectra from riddelliine-treated and control rats. Results Riddelliine-induced gene expression profiles in livers of Big Blue transgenic rats were determined. The female rats were gavaged with riddelliine at a dose of 1 mg/kg body weight 5 days a week for 12 weeks. Rat whole genome microarray was used to perform genome-wide gene expression studies. When a cutoff value of a two-fold change and a P-value less than 0.01 were used as gene selection criteria, 919 genes were identified as differentially expressed in riddelliine-treated rats compared to the control animals. By analysis with the Ingenuity Pathway Analysis Network, we found that these significantly changed genes were mainly involved in cancer, cell death, tissue development, cellular movement, tissue morphology, cell-to-cell signaling and interaction, and cellular growth and proliferation. We further analyzed the genes involved in metabolism, injury of endothelial cells, liver abnormalities, and cancer development in detail. Conclusion The alterations in gene expression were directly related to the pathological outcomes reported previously. These results provided further insight into the mechanisms involved in toxicity and carcinogenesis after exposure to riddelliine, and permitted us to investigate the interaction of gene products inside the signaling networks

  3. Interferon lambda 1-3 expression in infants hospitalized for RSV or HRV associated bronchiolitis.

    Science.gov (United States)

    Selvaggi, Carla; Pierangeli, Alessandra; Fabiani, Marco; Spano, Lucia; Nicolai, Ambra; Papoff, Paola; Moretti, Corrado; Midulla, Fabio; Antonelli, Guido; Scagnolari, Carolina

    2014-05-01

    The airway expression of type III interferons (IFNs) was evaluated in infants hospitalized for respiratory syncytial virus (RSV) or rhinovirus (HRV) bronchiolitis. As an additional objective we sought to determine whether a different expression of IFN lambda 1-3 was associated with different harboring viruses, the clinical course of bronchiolitis or with the levels of well established IFN stimulated genes (ISGs), such as mixovirus resistance A (MxA) and ISG56. The analysis was undertaken in 118 infants with RSV or HRV bronchiolitis. Nasopharyngeal washes were collected for virological studies and molecular analysis of type III IFN responses. RSV elicited higher levels of IFN lambda subtypes when compared with HRV. A similar expression of type III IFN was found in RSVA or RSVB infected infants and in those infected with HRVA or HRVC viruses. Results also indicate that IFN lambda 1 and IFN lambda 2-3 levels were correlated with each other and with MxA and ISG56-mRNAs. In addition, a positive correlation exists between the IFN lambda1 levels and the clinical score index during RSV infection. In particular, higher IFN lambda 1 levels are associated to an increase of respiratory rate. These findings show that differences in the IFN lambda 1-3 levels in infants with RSV or HRV infections are present and that the expression of IFN lambda 1 correlates with the severity of RSV bronchiolitis. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  4. Casticin induced apoptotic cell death and altered associated gene expression in human colon cancer colo 205 cells.

    Science.gov (United States)

    Shang, Hung-Sheng; Liu, Jia-You; Lu, Hsu-Feng; Chiang, Han-Sun; Lin, Chia-Hain; Chen, Ann; Lin, Yuh-Feng; Chung, Jing-Gung

    2017-08-01

    Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti-cancer characteristics. The anti-cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay was used to measure viable cell, cell cycle and sub-G1 phase, reactive oxygen species (ROS) and Ca 2+ productions, level of mitochondria membrane potential (ΔΨ m ) and caspase activity. Western blotting assay was used to detect expression of protein level associated with cell death. Casticin induced cell morphological changes, decreased cell viability and induced G2/M phase arrest in colo 205 cells. Casticin increased ROS production but decreased the levels of ΔΨ m , and Ca 2+ , increased caspase-3, -8, and -9 activities. The cDNA microarray indicated that some of the cell cycle associated genes were down-regulated such as cyclin-dependent kinase inhibitor 1A (CDKN1A) (p21, Cip1) and p21 protein (Cdc42/Rac)-activated kinase 3 (PAK3). TNF receptor-associated protein 1 (TRAP1), CREB1 (cAMP responsive element binding protein 1) and cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27, Kip1) genes were increased but matrix metallopeptidase 2 (MMP-2), toll-like receptor 4 (TLR4), PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, bet), and CaMK4 (calcium/calmodulin-dependent protein kinase IV) genes were inhibited. Results suggest that casticin induced cell apoptosis via the activation of the caspase- and/or mitochondria-dependent signaling cascade, the accumulation of ROS and altered associated gene expressions in colo 205 human colon cancer cells. © 2016 Wiley Periodicals, Inc.

  5. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro.

    Science.gov (United States)

    Sárvári, Anitta K; Veréb, Zoltán; Uray, Iván P; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin and adiponectin, suggesting that both glucose and fat metabolism may be affected by these drugs. These data further suggest that antipsychotic treatments in patients alter the gene expression patterns in adipocytes in a coordinated fashion and priming them for a low-level inflammatory state. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Gene Expression Profile in the Early Stage of Angiotensin II-induced Cardiac Remodeling: a Time Series Microarray Study in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Meng-Qiu Dang

    2015-01-01

    Full Text Available Background/Aims: Angiotensin II (Ang II plays a critical role in the cardiac remodeling contributing to heart failure. However, the gene expression profiles induced by Ang II in the early stage of cardiac remodeling remain unknown. Methods: Wild-type male mice (C57BL/6 background, 10-weeek-old were infused with Ang II (1500 ng/kg/min for 7 days. Blood pressure was measured. Cardiac function and remodeling were examined by echocardiography, H&E and Masson staining. The time series microarrays were then conducted to detected gene expression profiles. Results: Microarray results identified that 1,489 genes were differentially expressed in the hearts at day 1, 3 and 7 of Ang II injection. These genes were further classified into 26 profiles by hierarchical cluster analysis. Of them, 4 profiles were significant (No. 19, 8, 21 and 22 and contained 904 genes. Gene Ontology showed that these genes mainly participate in metabolic process, oxidation-reduction process, extracellular matrix organization, apoptotic process, immune response, and others. Significant pathways included focal adhesion, ECM-receptor interaction, cytokine-cytokine receptor interaction, MAPK and insulin signaling pathways, which were known to play important roles in Ang II-induced cardiac remodeling. Moreover, gene co-expression networks analysis suggested that serine/cysteine peptidase inhibitor, member 1 (Serpine1, also known as PAI-1 localized in the core of the network. Conclusions: Our results indicate that many genes are mainly involved in metabolism, inflammation, cardiac fibrosis and hypertrophy. Serpine1 may play a central role in the development of Ang II-induced cardiac remodeling at the early stage.

  7. Mel-18, a mammalian Polycomb gene, regulates angiogenic gene expression of endothelial cells.

    Science.gov (United States)

    Jung, Ji-Hye; Choi, Hyun-Jung; Maeng, Yong-Sun; Choi, Jung-Yeon; Kim, Minhyung; Kwon, Ja-Young; Park, Yong-Won; Kim, Young-Myeong; Hwang, Daehee; Kwon, Young-Guen

    2010-10-01

    Mel-18 is a mammalian homolog of Polycomb group (PcG) genes. Microarray analysis revealed that Mel-18 expression was induced during endothelial progenitor cell (EPC) differentiation and correlates with the expression of EC-specific protein markers. Overexpression of Mel-18 promoted EPC differentiation and angiogenic activity of ECs. Accordingly, silencing Mel-18 inhibited EC migration and tube formation in vitro. Gene expression profiling showed that Mel-18 regulates angiogenic genes including kinase insert domain receptor (KDR), claudin 5, and angiopoietin-like 2. Our findings demonstrate, for the first time, that Mel-18 plays a significant role in the angiogenic function of ECs by regulating endothelial gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Gene expression in cerebral ischemia: a new approach for neuroprotection.

    Science.gov (United States)

    Millán, Mónica; Arenillas, Juan

    2006-01-01

    Cerebral ischemia is one of the strongest stimuli for gene induction in the brain. Hundreds of genes have been found to be induced by brain ischemia. Many genes are involved in neurodestructive functions such as excitotoxicity, inflammatory response and neuronal apoptosis. However, cerebral ischemia is also a powerful reformatting and reprogramming stimulus for the brain through neuroprotective gene expression. Several genes may participate in both cellular responses. Thus, isolation of candidate genes for neuroprotection strategies and interpretation of expression changes have been proven difficult. Nevertheless, many studies are being carried out to improve the knowledge of the gene activation and protein expression following ischemic stroke, as well as in the development of new therapies that modify biochemical, molecular and genetic changes underlying cerebral ischemia. Owing to the complexity of the process involving numerous critical genes expressed differentially in time, space and concentration, ongoing therapeutic efforts should be based on multiple interventions at different levels. By modification of the acute gene expression induced by ischemia or the apoptotic gene program, gene therapy is a promising treatment but is still in a very experimental phase. Some hurdles will have to be overcome before these therapies can be introduced into human clinical stroke trials. Copyright 2006 S. Karger AG, Basel.

  9. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya; Gafencu, Anca V., E-mail: anca.gafencu@icbp.ro

    2015-05-29

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition.

  10. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    International Nuclear Information System (INIS)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya; Gafencu, Anca V.

    2015-01-01

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition

  11. Effects of lipopolysaccharide-induced inflammation on expression of growth-associated genes by corticospinal neurons

    Directory of Open Access Journals (Sweden)

    Lieberman AR

    2006-01-01

    Full Text Available Abstract Background Inflammation around cell bodies of primary sensory neurons and retinal ganglion cells enhances expression of neuronal growth-associated genes and stimulates axonal regeneration. We have asked if inflammation would have similar effects on corticospinal neurons, which normally show little response to spinal cord injury. Lipopolysaccharide (LPS was applied onto the pial surface of the motor cortex of adult rats with or without concomitant injury of the corticospinal tract at C4. Inflammation around corticospinal tract cell bodies in the motor cortex was assessed by immunohistochemistry for OX42 (a microglia and macrophage marker. Expression of growth-associated genes c-jun, ATF3, SCG10 and GAP-43 was investigated by immunohistochemistry or in situ hybridisation. Results Application of LPS induced a gradient of inflammation through the full depth of the motor cortex and promoted c-Jun and SCG10 expression for up to 2 weeks, and GAP-43 upregulation for 3 days by many corticospinal neurons, but had very limited effects on neuronal ATF3 expression. However, many glial cells in the subcortical white matter upregulated ATF3. LPS did not promote sprouting of anterogradely labelled corticospinal axons, which did not grow into or beyond a cervical lesion site. Conclusion Inflammation produced by topical application of LPS promoted increased expression of some growth-associated genes in the cell bodies of corticospinal neurons, but was insufficient to promote regeneration of the corticospinal tract.

  12. Screening for interaction effects in gene expression data.

    Directory of Open Access Journals (Sweden)

    Peter J Castaldi

    Full Text Available Expression quantitative trait (eQTL studies are a powerful tool for identifying genetic variants that affect levels of messenger RNA. Since gene expression is controlled by a complex network of gene-regulating factors, one way to identify these factors is to search for interaction effects between genetic variants and mRNA levels of transcription factors (TFs and their respective target genes. However, identification of interaction effects in gene expression data pose a variety of methodological challenges, and it has become clear that such analyses should be conducted and interpreted with caution. Investigating the validity and interpretability of several interaction tests when screening for eQTL SNPs whose effect on the target gene expression is modified by the expression level of a transcription factor, we characterized two important methodological issues. First, we stress the scale-dependency of interaction effects and highlight that commonly applied transformation of gene expression data can induce or remove interactions, making interpretation of results more challenging. We then demonstrate that, in the setting of moderate to strong interaction effects on the order of what may be reasonably expected for eQTL studies, standard interaction screening can be biased due to heteroscedasticity induced by true interactions. Using simulation and real data analysis, we outline a set of reasonable minimum conditions and sample size requirements for reliable detection of variant-by-environment and variant-by-TF interactions using the heteroscedasticity consistent covariance-based approach.

  13. The endogenous retroviral insertion in the human complement C4 gene modulates the expression of homologous genes by antisense inhibition.

    Science.gov (United States)

    Schneider, P M; Witzel-Schlömp, K; Rittner, C; Zhang, L

    2001-02-01

    Intron 9 contains the complete endogenous retrovirus HERV-K(C4) as a 6.4-kb insertion in 60% of human C4 genes. The retroviral insertion is in reverse orientation to the C4 coding sequence. Therefore, expression of C4 could lead to the transcription of an antisense RNA, which might protect against exogenous retroviral infections. To test this hypothesis, open reading frames from the HERV sequence were subcloned in sense orientiation into a vector allowing expression of a beta-galactosidase fusion protein. Mouse L cells which had been stably transfected with either the human C4A or C4B gene both carrying the HERV insertion (LC4 cells), and L(Tk-) cells without the C4 gene were transiently transfected either with a retroviral construct or with the wild-type vector. Expression was monitored using an enzymatic assay. We demonstrated that (1) HERV-K(C4) antisense mRNA transcripts are present in cells constitutively expressing C4, (2) expression of retroviral-like constructs is significantly downregulated in cells expressing C4, and (3) this downregulation is further modulated in a dose-dependent fashion following interferon-gamma stimulation of C4 expression. These results support the hypothesis of a genomic antisense strategy mediated by the HERV-K(C4) insertion as a possible defense mechanism against exogenous retroviral infections.

  14. Cisplatin induces expression of drug resistance-related genes through c-jun N-terminal kinase pathway in human lung cancer cells.

    Science.gov (United States)

    Xu, Li; Fu, Yingya; Li, Youlun; Han, Xiaoli

    2017-08-01

    Change of multidrug resistance-related genes (e.g., lung resistance protein, LRP) and overexpression of anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are responsible for cisplatin resistance. In our study, we investigated the mechanism by which cisplatin induces LRP, Bcl-2, Bcl-xL, XIAP, and Survivin expression in human lung adenocarcinoma A549 cells and human H446 small cell lung cancer cells at mRNA and protein levels. In our study, cell proliferation was assessed with CCK-8 assays, and cell apoptosis was assessed with flow cytometric analysis and Annexin-V/PI staining. qPCR was used to complete RNA experiments. Protein expression was assessed with Western blotting. Cisplatin increased Bcl-2, LRP, and Survivin expression, but decreased Bcl-xL and XIAP expression in a dose-dependent manner. Preincubation with JNK-specific inhibitor, SP600125, significantly inhibited these genes' expression at mRNA and protein levels, enhanced chemosensitivity of lung cancer cells to cisplatin, and promoted cisplatin-induced apoptosis. Our data suggest that the JNK signaling pathway plays an important role in cisplatin resistance. Lung resistance protein (LRP) and anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are involved in the process. The results reminded us of a novel therapy target for lung cancer treatment.

  15. Inhibition of interleukin-3- and interferon- α-induced JAK/STAT signaling by the synthetic α-X-2',3,4,4'-tetramethoxychalcones α-Br-TMC and α-CF3-TMC.

    Science.gov (United States)

    Jobst, Belinda; Weigl, Julia; Michl, Carina; Vivarelli, Fabio; Pinz, Sophia; Amslinger, Sabine; Rascle, Anne

    2016-11-01

    The JAK/STAT pathway is an essential mediator of cytokine signaling, often upregulated in human diseases and therefore recognized as a relevant therapeutic target. We previously identified the synthetic chalcone α-bromo-2',3,4,4'-tetramethoxychalcone (α-Br-TMC) as a novel JAK2/STAT5 inhibitor. We also found that treatment with α-Br-TMC resulted in a downward shift of STAT5 proteins in SDS-PAGE, suggesting a post-translational modification that might affect STAT5 function. In the present study, we show that a single cysteine within STAT5 is responsible for the α-Br-TMC-induced protein shift, and that this modification does not alter STAT5 transcriptional activity. We also compared the inhibitory activity of α-Br-TMC to that of another synthetic chalcone, α-trifluoromethyl-2',3,4,4'-tetramethoxychalcone (α-CF3-TMC). We found that, like α-Br-TMC, α-CF3-TMC inhibits JAK2 and STAT5 phosphorylation in response to interleukin-3, however without altering STAT5 mobility in SDS-PAGE. Moreover, we demonstrate that both α-Br-TMC and α-CF3-TMC inhibit interferon-α-induced activation of STAT1 and STAT2, by inhibiting their phosphorylation and the expression of downstream interferon-stimulated genes. Together with the previous finding that α-Br-TMC and α-CF3-TMC inhibit the response to inflammation by inducing Nrf2 and blocking NF-κB activities, our data suggest that synthetic chalcones might be useful as anti-inflammatory, anti-cancer and immunomodulatory agents in the treatment of human diseases.

  16. Interferon-alpha triggers B cell effector 1 (Be1 commitment.

    Directory of Open Access Journals (Sweden)

    Marie-Ghislaine de Goër de Herve

    Full Text Available B-cells can contribute to the pathogenesis of autoimmune diseases not only through auto-antibody secretion but also via cytokine production. Therapeutic depletion of B-cells influences the functions and maintenance of various T-cell subsets. The mechanisms governing the functional heterogeneity of B-cell subsets as cytokine-producing cells are poorly understood. B-cells can differentiate into two functionally polarized effectors, one (B-effector-1-cells producing a Th-1-like cytokine pattern and the other (Be2 producing a Th-2-like pattern. IL-12 and IFN-γ play a key role in Be1 polarization, but the initial trigger of Be1 commitment is unclear. Type-I-interferons are produced early in the immune response and prime several processes involved in innate and adaptive responses. Here, we report that IFN-α triggers a signaling cascade in resting human naive B-cells, involving STAT4 and T-bet, two key IFN-γ gene imprinting factors. IFN-α primed naive B-cells for IFN-γ production and increased IFN-γ gene responsiveness to IL-12. IFN-γ continues this polarization by re-inducing T-bet and up-regulating IL-12Rβ2 expression. IFN-α and IFN-γ therefore pave the way for the action of IL-12. These results point to a coordinated action of IFN-α, IFN-γ and IL-12 in Be1 polarization of naive B-cells, and may provide new insights into the mechanisms by which type-I-interferons favor autoimmunity.

  17. Gene expression profile identifies potential biomarkers for human intervertebral disc degeneration.

    Science.gov (United States)

    Guo, Wei; Zhang, Bin; Li, Yan; Duan, Hui-Quan; Sun, Chao; Xu, Yun-Qiang; Feng, Shi-Qing

    2017-12-01

    The present study aimed to reveal the potential genes associated with the pathogenesis of intervertebral disc degeneration (IDD) by analyzing microarray data using bioinformatics. Gene expression profiles of two regions of the intervertebral disc were compared between patients with IDD and controls. GSE70362 containing two groups of gene expression profiles, 16 nucleus pulposus (NP) samples from patients with IDD and 8 from controls, and 16 annulus fibrosus (AF) samples from patients with IDD and 8 from controls, was downloaded from the Gene Expression Omnibus database. A total of 93 and 114 differentially expressed genes (DEGs) were identified in NP and AF samples, respectively, using a limma software package for the R programming environment. Gene Ontology (GO) function enrichment analysis was performed to identify the associated biological functions of DEGs in IDD, which indicated that the DEGs may be involved in various processes, including cell adhesion, biological adhesion and extracellular matrix organization. Pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated that the identified DEGs were potentially involved in focal adhesion and the p53 signaling pathway. Further analysis revealed that there were 35 common DEGs observed between the two regions (NP and AF), which may be further regulated by 6 clusters of microRNAs (miRNAs) retrieved with WebGestalt. The genes in the DEG‑miRNA regulatory network were annotated using GO function and KEGG pathway enrichment analysis, among which extracellular matrix organization was the most significant disrupted biological process and focal adhesion was the most significant dysregulated pathway. In addition, the result of protein‑protein interaction network modules demonstrated the involvement of inflammatory cytokine interferon signaling in IDD. These findings may not only advance the understanding of the pathogenesis of IDD, but also identify novel potential

  18. Exogenous Methyl Jasmonate and Salicylic Acid Induce Subspecies-Specific Patterns of Glucosinolate Accumulation and Gene Expression in Brassica oleracea L.

    Science.gov (United States)

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Hwang, Byung Ho; Nou, Ill-Sup

    2016-10-24

    Glucosinolates have anti-carcinogenic properties. In the recent decades, the genetics of glucosinolate biosynthesis has been widely studied, however, the expression of specific genes involved in glucosinolate biosynthesis under exogenous phytohormone treatment has not been explored at the subspecies level in Brassica oleracea . Such data are vital for strategies aimed at selective exploitation of glucosinolate profiles. This study quantified the expression of 38 glucosinolate biosynthesis-related genes in three B. oleracea subspecies, namely cabbage, broccoli and kale, and catalogued associations between gene expression and increased contents of individual glucosinolates under methyl jasmonate (MeJA) and salicylic acid (SA) treatments. Glucosinolate accumulation and gene expression in response to phytohormone elicitation was subspecies specific. For instance, cabbage leaves showed enhanced accumulation of the aliphatic glucoiberin, progoitrin, sinigrin and indolic neoglucobrassicin under both MeJA and SA treatment. MeJA treatment induced strikingly higher accumulation of glucobrassicin (GBS) in cabbage and kale and of neoglucobrassicin (NGBS) in broccoli compared to controls. Notably higher expression of ST5a (Bol026200), CYP81F1 (Bol028913, Bol028914) and CYP81F4 genes was associated with significantly higher GBS accumulation under MeJA treatment compared to controls in all three subspecies. CYP81F4 genes, trans-activated by MYB34 genes, were expressed at remarkably high levels in all three subspecies under MeJA treatment, which also induced in higher indolic NGBS accumulation in all three subspecies. Remarkably higher expression of MYB28 (Bol036286), ST5b , ST5c , AOP2 , FMOGS-OX5 (Bol031350) and GSL-OH (Bol033373) was associated with much higher contents of aliphatic glucosinolates in kale leaves compared to the other two subspecies. The genes expressed highly could be utilized in strategies to selectively increase glucosinolate compounds in B. oleracea

  19. Human apolipoprotein CIII gene expression is regulated by positive and negative cis-acting elements and tissue-specific protein factors

    International Nuclear Information System (INIS)

    Reue, K.; Leff, T.; Breslow, J.L.

    1988-01-01

    Apolipoprotein CIII (apoCIII) is a major protein constituent of triglyceride-rich lipoproteins and is synthesized primarily in the liver. Cis-acting DNA elements required for liver-specific apoCIII gene transcription were identified with transient expression assays in the human hepatoma (HepG2) and epithelial carcinoma (HeLa) cell lines. In liver cells, 821 nucleotides of the human apoCIII gene 5'-flanking sequence were required for maximum levels of gene expression, while the proximal 110 nucleotides alone were sufficient. No expression was observed in similar studies with HeLa cells. The level of expression was modulated by a combination of positive and negative cis-acting sequences, which interact with distinct sets of proteins from liver and HeLa cell nuclear extracts. The proximal positive regulatory region shares homology with similarly located sequences of other genes strongly expressed in the liver, including α 1 -antitrypsin and other apolipoprotein genes. The negative regulatory region is striking homologous to the human β-interferon gene regulatory element. The distal positive region shares homology with some viral enhancers and has properties of a tissue-specific enhancer. The regulation of the apoCIII gene is complex but shares features with other genes, suggesting shuffling of regulatory elements as a common mechanism for cell type-specific gene expression

  20. ZNF804A Transcriptional Networks in Differentiating Neurons Derived from Induced Pluripotent Stem Cells of Human Origin.

    Directory of Open Access Journals (Sweden)

    Jian Chen

    Full Text Available ZNF804A (Zinc Finger Protein 804A has been identified as a candidate gene for schizophrenia (SZ, autism spectrum disorders (ASD, and bipolar disorder (BD in replicated genome wide association studies (GWAS and by copy number variation (CNV analysis. Although its function has not been well-characterized, ZNF804A contains a C2H2-type zinc-finger domain, suggesting that it has DNA binding properties, and consequently, a role in regulating gene expression. To further explore the role of ZNF804A on gene expression and its downstream targets, we used a gene knockdown (KD approach to reduce its expression in neural progenitor cells (NPCs derived from induced pluripotent stem cells (iPSCs. KD was accomplished by RNA interference (RNAi using lentiviral particles containing shRNAs that target ZNF804A mRNA. Stable transduced NPC lines were generated after puromycin selection. A control cell line expressing a random (scrambled shRNA was also generated. Neuronal differentiation was induced, RNA was harvested after 14 days and transcriptome analysis was carried out using RNA-seq. 1815 genes were found to be differentially expressed at a nominally significant level (p<0.05; 809 decreased in expression in the KD samples, while 1106 increased. Of these, 370 achieved genome wide significance (FDR<0.05; 125 were lower in the KD samples, 245 were higher. Pathway analysis showed that genes involved in interferon-signaling were enriched among those that were down-regulated in the KD samples. Correspondingly, ZNF804A KD was found to affect interferon-alpha 2 (IFNA2-mediated gene expression. The findings suggest that ZNF804A may affect a differentiating neuron's response to inflammatory cytokines, which is consistent with models of SZ and ASD that support a role for infectious disease, and/or autoimmunity in a subgroup of patients.

  1. Analysis of Transcriptional Signatures in Response to Listeria monocytogenes Infection Reveals Temporal Changes That Result from Type I Interferon Signaling

    Science.gov (United States)

    Potempa, Krzysztof; Graham, Christine M.; Moreira-Teixeira, Lucia; McNab, Finlay W.; Howes, Ashleigh; Stavropoulos, Evangelos; Pascual, Virginia; Banchereau, Jacques; Chaussabel, Damien; O’Garra, Anne

    2016-01-01

    Analysis of the mouse transcriptional response to Listeria monocytogenes infection reveals that a large set of genes are perturbed in both blood and tissue and that these transcriptional responses are enriched for pathways of the immune response. Further we identified enrichment for both type I and type II interferon (IFN) signaling molecules in the blood and tissues upon infection. Since type I IFN signaling has been reported widely to impair bacterial clearance we examined gene expression from blood and tissues of wild type (WT) and type I IFNαβ receptor-deficient (Ifnar1-/-) mice at the basal level and upon infection with L. monocytogenes. Measurement of the fold change response upon infection in the absence of type I IFN signaling demonstrated an upregulation of specific genes at day 1 post infection. A less marked reduction of the global gene expression signature in blood or tissues from infected Ifnar1-/- as compared to WT mice was observed at days 2 and 3 after infection, with marked reduction in key genes such as Oasg1 and Stat2. Moreover, on in depth analysis, changes in gene expression in uninfected mice of key IFN regulatory genes including Irf9, Irf7, Stat1 and others were identified, and although induced by an equivalent degree upon infection this resulted in significantly lower final gene expression levels upon infection of Ifnar1-/- mice. These data highlight how dysregulation of this network in the steady state and temporally upon infection may determine the outcome of this bacterial infection and how basal levels of type I IFN-inducible genes may perturb an optimal host immune response to control intracellular bacterial infections such as L. monocytogenes. PMID:26918359

  2. MOLECULAR CLONING, SEQUENCING, EXPRESSION AND BIOLOGICAL ACTIVITY OF GIANT PANDA (AILUROPODA MELANOLEUCA) INTERFERON-GAMMA.

    Science.gov (United States)

    Zhu, Hui; Wang, Wen-Xiu; Wang, Bao-Qin; Zhu, Xiao-Fu; Wu, Xu-Jin; Ma, Qing-Yi; Chen, De-Kun

    2012-06-29

    The giant panda (Ailuropoda melanoleuca) is an endangered species and indigenous to China. Interferon-gamma (IFN-γ) is the only member of type □ IFN and is vital for the regulation of host adapted immunity and inflammatory response. Little is known aboutthe FN-γ gene and its roles in giant panda.In this study, IFN-γ gene of Qinling giant panda was amplified from total blood RNA by RT-CPR, cloned, sequenced and analysed. The open reading frame (ORF) of Qinling giant panda IFN-γ encodes 152 amino acidsand is highly similar to Sichuan giant panda with an identity of 99.3% in cDNA sequence. The IFN-γ cDNA sequence was ligated to the pET32a vector and transformed into E. coli BL21 competent cells. Expression of recombinant IFN-γ protein of Qinling giant panda in E. coli was confirmed by SDS-PAGE and Western blot analysis. Biological activity assay indicated that the recombinant IFN-γ protein at the concentration of 4-10 µg/ml activated the giant panda peripheral blood lymphocytes,while at 12 µg/mlinhibited. the activation of the lymphocytes.These findings provide insights into the evolution of giant panda IFN-γ and information regarding amino acid residues essential for their biological activity.

  3. Learning-Induced Gene Expression in the Hippocampus Reveals a Role of Neuron -Astrocyte Metabolic Coupling in Long Term Memory

    KAUST Repository

    Tadi, Monika; Allaman, Igor; Lengacher, Sylvain; Grenningloh, Gabriele; Magistretti, Pierre J.

    2015-01-01

    We examined the expression of genes related to brain energy metabolism and particularly those encoding glia (astrocyte)-specific functions in the dorsal hippocampus subsequent to learning. Context-dependent avoidance behavior was tested in mice using the step-through Inhibitory Avoidance (IA) paradigm. Animals were sacrificed 3, 9, 24, or 72 hours after training or 3 hours after retention testing. The quantitative determination of mRNA levels revealed learning-induced changes in the expression of genes thought to be involved in astrocyte-neuron metabolic coupling in a time dependent manner. Twenty four hours following IA training, an enhanced gene expression was seen, particularly for genes encoding monocarboxylate transporters 1 and 4 (MCT1, MCT4), alpha2 subunit of the Na/K-ATPase and glucose transporter type 1. To assess the functional role for one of these genes in learning, we studied MCT1 deficient mice and found that they exhibit impaired memory in the inhibitory avoidance task. Together, these observations indicate that neuron-glia metabolic coupling undergoes metabolic adaptations following learning as indicated by the change in expression of key metabolic genes.

  4. Learning-Induced Gene Expression in the Hippocampus Reveals a Role of Neuron -Astrocyte Metabolic Coupling in Long Term Memory

    KAUST Repository

    Tadi, Monika

    2015-10-29

    We examined the expression of genes related to brain energy metabolism and particularly those encoding glia (astrocyte)-specific functions in the dorsal hippocampus subsequent to learning. Context-dependent avoidance behavior was tested in mice using the step-through Inhibitory Avoidance (IA) paradigm. Animals were sacrificed 3, 9, 24, or 72 hours after training or 3 hours after retention testing. The quantitative determination of mRNA levels revealed learning-induced changes in the expression of genes thought to be involved in astrocyte-neuron metabolic coupling in a time dependent manner. Twenty four hours following IA training, an enhanced gene expression was seen, particularly for genes encoding monocarboxylate transporters 1 and 4 (MCT1, MCT4), alpha2 subunit of the Na/K-ATPase and glucose transporter type 1. To assess the functional role for one of these genes in learning, we studied MCT1 deficient mice and found that they exhibit impaired memory in the inhibitory avoidance task. Together, these observations indicate that neuron-glia metabolic coupling undergoes metabolic adaptations following learning as indicated by the change in expression of key metabolic genes.

  5. Melatonin-Induced Temporal Up-Regulation of Gene Expression Related to Ubiquitin/Proteasome System (UPS in the Human Malaria Parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Fernanda C. Koyama

    2014-12-01

    Full Text Available There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.

  6. Regulated gene expression in cultured type II cells of adult human lung.

    Science.gov (United States)

    Ballard, Philip L; Lee, Jae W; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R; Fischer, Horst; Illek, Beate; Gonzales, Linda W; Kolla, Venkatadri; Matthay, Michael A

    2010-07-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at approximately 95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days. In freshly isolated cells, highly expressed genes included SFTPA/B/C, SCGB1A, IL8, CXCL2, and SFN in addition to ubiquitously expressed genes. Transcript abundance was correlated between fetal and adult cells (r = 0.88), with a subset of 187 genes primarily related to inflammation and immunity that were expressed >10-fold higher in adult cells. During control culture, expression increased for 8.1% of expressed genes and decreased for approximately 4% including 118 immune response and 10 surfactant-related genes. DCI treatment promoted lamellar body production and increased expression of approximately 3% of probed genes by > or =1.5-fold; 40% of these were also induced in fetal cells. Highly induced genes (> or =10-fold) included PGC, ZBTB16, DUOX1, PLUNC, CIT, and CRTAC1. Twenty-five induced genes, including six genes related to surfactant (SFTPA/B/C, PGC, CEBPD, and ADFP), also had decreased expression during control culture and thus are candidates for hormonal regulation in vivo. Our results further define the adult human type II cell molecular phenotype and demonstrate that a subset of genes remains hormone responsive in cultured adult cells.

  7. Inducible and reversible suppression of Npm1 gene expression using stably integrated small interfering RNA vector in mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Wang Beibei; Lu Rui; Wang Weicheng; Jin Ying

    2006-01-01

    The tetracycline (Tc)-inducible small interference RNA (siRNA) is a powerful tool for studying gene function in mammalian cells. However, the system is infrequently utilized in embryonic stem (ES) cells. Here, we present First application of the Tc-inducible, stably integrated plasmid-based siRNA system in mouse ES cells to down-regulate expression of Npm1, an essential gene for embryonic development. The physiological role of Npm1 in ES cells has not been defined. Our data show that the knock-down of Npm1 expression by this siRNA system was not only highly efficient, but also Tc- dose- and induction time-dependent. Particularly, the down-regulation of Npm1 expression was reversible. Importantly, suppression of Npm1 expression in ES cells resulted in reduced cell proliferation. Taken together, this system allows for studying gene function in a highly controlled manner, otherwise difficult to achieve in ES cells. Moreover, our results demonstrate that Npm1 is essential for ES cell proliferation

  8. Fungal and plant gene expression in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Balestrini, Raffaella; Lanfranco, Luisa

    2006-11-01

    Arbuscular mycorrhizas (AMs) are a unique example of symbiosis between two eukaryotes, soil fungi and plants. This association induces important physiological changes in each partner that lead to reciprocal benefits, mainly in nutrient supply. The symbiosis results from modifications in plant and fungal cell organization caused by specific changes in gene expression. Recently, much effort has gone into studying these gene expression patterns to identify a wider spectrum of genes involved. We aim in this review to describe AM symbiosis in terms of current knowledge on plant and fungal gene expression profiles.

  9. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-20

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  10. Heavy metal-induced gene expression in fish and fish cell lines

    International Nuclear Information System (INIS)

    Price-Haughey, J.; Bonham, K.; Gedamu, L.

    1986-01-01

    Two isoforms of metallothionein (MT) have been isolated from rainbow trout livers following CdCl 2 injections. These MTs have been identified by standard procedures and appear to be similar to mammalian MTs. Total RNA from such induced livers was shown to contain high levels of MT-mRNA activity when translated in cell free systems. This activity was demonstrated to be in the 8 to 10S region of a sucrose gradient. The RNA fractions also showed homology to a mouse MT-I cDNA probe. The exposure of rainbow trout hepatoma (RTH) cells to various concentrations of CdCl 2 and ZnCl 2 induced the expression of MT and MT-mRNA. Exposure of Chinook salmon embryonic (CHSE) cells to these metals, however, did not result in MT synthesis, suggesting that the MT genes have not become committed to transcription. Instead, an unknown low molecular weight (MW = 14 kDa) protein was induced. This metal-inducible protein (MIP) was capable of binding 109 Cd and was stable to heating, while the binding of the metal to this protein was not. These characteristics have been reported for a protein induced in rainbow trout liver following environmental exposure to cadmium

  11. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco.

    Science.gov (United States)

    Baek, Eseul; Yoon, Ju-Yeon; Palukaitis, Peter

    2017-10-01

    To facilitate quantification of gene expression changes in virus-infected tobacco plants, eight housekeeping genes were evaluated for their stability of expression during infection by one of three systemically-infecting viruses (cucumber mosaic virus, potato virus X, potato virus Y) or a hypersensitive-response-inducing virus (tobacco mosaic virus; TMV) limited to the inoculated leaf. Five reference-gene validation programs were used to establish the order of the most stable genes for the systemically-infecting viruses as ribosomal protein L25 > β-Tubulin > Actin, and the least stable genes Ubiquitin-conjugating enzyme (UCE) genes were EF1α > Cysteine protease > Actin, and the least stable genes were GAPDH genes, three defense responsive genes were examined to compare their relative changes in gene expression caused by each virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Toll-like receptor 7 agonist GS-9620 induces prolonged inhibition of HBV via a type I interferon-dependent mechanism.

    Science.gov (United States)

    Niu, Congrong; Li, Li; Daffis, Stephane; Lucifora, Julie; Bonnin, Marc; Maadadi, Sarah; Salas, Eduardo; Chu, Ruth; Ramos, Hilario; Livingston, Christine M; Beran, Rudolf K; Garg, Abhishek V; Balsitis, Scott; Durantel, David; Zoulim, Fabien; Delaney, William E; Fletcher, Simon P

    2018-05-01

    GS-9620, an oral agonist of toll-like receptor 7 (TLR7), is in clinical development for the treatment of chronic hepatitis B (CHB). GS-9620 was previously shown to induce prolonged suppression of serum viral DNA and antigens in the woodchuck and chimpanzee models of CHB. Herein, we investigated the molecular mechanisms that contribute to the antiviral response to GS-9620 using in vitro models of hepatitis B virus (HBV) infection. Cryopreserved primary human hepatocytes (PHH) and differentiated HepaRG (dHepaRG) cells were infected with HBV and treated with GS-9620, conditioned media from human peripheral blood mononuclear cells treated with GS-9620 (GS-9620 conditioned media [GS-9620-CM]), or other innate immune stimuli. The antiviral and transcriptional response to these agents was determined. GS-9620 had no antiviral activity in HBV-infected PHH, consistent with low level TLR7 mRNA expression in human hepatocytes. In contrast, GS-9620-CM induced prolonged reduction of HBV DNA, RNA, and antigen levels in PHH and dHepaRG cells via a type I interferon (IFN)-dependent mechanism. GS-9620-CM did not reduce covalently closed circular DNA (cccDNA) levels in either cell type. Transcriptional profiling demonstrated that GS-9620-CM strongly induced various HBV restriction factors - although not APOBEC3A or the Smc5/6 complex - and indicated that established HBV infection does not modulate innate immune sensing or signaling in cryopreserved PHH. GS-9620-CM also induced expression of immunoproteasome subunits and enhanced presentation of an immunodominant viral peptide in HBV-infected PHH. Type I IFN induced by GS-9620 durably suppressed HBV in human hepatocytes without reducing cccDNA levels. Moreover, HBV antigen presentation was enhanced, suggesting additional components of the TLR7-induced immune response played a role in the antiviral response to GS-9620 in animal models of CHB. GS-9620 is a drug currently being tested in clinical trials for the treatment of chronic

  13. Enhancement of immune response induced by DNA vaccine cocktail expressing complete LACK and TSA genes against Leishmania major.

    Science.gov (United States)

    Ghaffarifar, Fatemeh; Jorjani, Ogholniaz; Sharifi, Zohreh; Dalimi, Abdolhossein; Hassan, Zuhair M; Tabatabaie, Fatemeh; Khoshzaban, Fariba; Hezarjaribi, Hajar Ziaei

    2013-04-01

    Leishmaniasis is an important disease in humans. Leishmania homologue of receptor for Activated C Kinase (LACK) and thiol specific antioxidant (TSA) as immuno-dominant antigens of Leishmania major are considered the most promising molecules for a DNA vaccine. We constructed a DNA cocktail, containing plasmids encoding LACK and TSA genes of Leishmania major and evaluated the immune response and survival rate in BALB/c mice. IgG and Interferon gamma values were noticeably increased in the immunized group with DNA cocktail vaccine, which were significantly higher than those in the single-gene vaccinated and control groups (p 0.05). The immunized mice with the cocktail DNA vaccine presented a considerable reduction in diameter of lesion compared to other groups and a significant difference was observed (p < 0.05) in this regard. The survival time of the immunized mice with the cocktail DNA vaccine was significantly higher than that in the other groups (p < 0.05) after their being challenged with Leishmania major. The findings of this study indicated that the cocktail DNA vaccine increased the cellular response and survival rate and induced protection against infection with Leishmania in the mice. © 2012 The Authors © 2012 APMIS.

  14. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  15. Defense gene expression in root galls induced by Nacobbus aberrans in CM334 chilli plants

    Directory of Open Access Journals (Sweden)

    Villar-Luna E.

    2015-02-01

    Full Text Available Capsicum annuum L. CM334 is susceptible to Nacobbus aberrans but highly resistant to Phy-tophthora capsici. Resistance to P. capsici is associated with the over-expression of various defense genes such as those encoding pathogenesis-related proteins. The transcriptional alterations of defense-related genes were determined in galls induced by N. aberrans (Na in CM334 chili roots. Transcripts accumulation of WRKY-a, WRKY1, POX (peroxidase, PR-1 (pathogenesis-related protein 1, and EAS (5-epiaristolochene synthase was estimated by qRT-PCR, and they were compared with those recorded in the incompatible CM334- P. capsici (Pc interaction. The levels of all studied genes were significantly (P s 0.05 lower (WRKY1, POX and PR-1 or down-regulated (WRKY-a and EAS in the presence of N. aberrans; in contrast, in the incompatible interaction, all genes were significantly up-regulated. The alterations induced by N. aberrans could be necessary to ensure the successful completion of its life cycle in CM334 chili roots.

  16. Type 1 Diabetes and Interferon Therapy

    OpenAIRE

    Nakamura, Kan; Kawasaki, Eiji; Imagawa, Akihisa; Awata, Takuya; Ikegami, Hiroshi; Uchigata, Yasuko; Kobayashi, Tetsuro; Shimada, Akira; Nakanishi, Koji; Makino, Hideichi; Maruyama, Taro; Hanafusa, Toshiaki

    2011-01-01

    OBJECTIVE Interferon therapy can trigger induction of several autoimmune diseases, including type 1 diabetes. To assess the clinical, immunologic, and genetic characteristics of type 1 diabetes induced by interferon therapy, we conducted a nationwide cross-sectional survey. RESEARCH DESIGN AND METHODS Clinical characteristics, anti-islet autoantibodies, and HLA-DR typing were examined in 91 patients for whom type 1 diabetes developed during or shortly after interferon therapy. RESULTS Median ...

  17. Gene Expression Patterns during the Early Stages of Chemically Induced Larval Metamorphosis and Settlement of the Coral Acropora millepora

    Science.gov (United States)

    Siboni, Nachshon; Abrego, David; Motti, Cherie A.; Tebben, Jan; Harder, Tilmann

    2014-01-01

    The morphogenetic transition of motile coral larvae into sessile primary polyps is triggered and genetically programmed upon exposure to environmental biomaterials, such as crustose coralline algae (CCA) and bacterial biofilms. Although the specific chemical cues that trigger coral larval morphogenesis are poorly understood there is much more information available on the genes that play a role in this early life phase. Putative chemical cues from natural biomaterials yielded defined chemical samples that triggered different morphogenetic outcomes: an extract derived from a CCA-associated Pseudoalteromonas bacterium that induced metamorphosis, characterized by non-attached metamorphosed juveniles; and two fractions of the CCA Hydrolithon onkodes (Heydrich) that induced settlement, characterized by attached metamorphosed juveniles. In an effort to distinguish the genes involved in these two morphogenetic transitions, competent larvae of the coral Acropora millepora were exposed to these predictable cues and the expression profiles of 47 coral genes of interest (GOI) were investigated after only 1 hour of exposure using multiplex RT–qPCR. Thirty-two GOI were differentially expressed, indicating a putative role during the early regulation of morphogenesis. The most striking differences were observed for immunity-related genes, hypothesized to be involved in cell recognition and adhesion, and for fluorescent protein genes. Principal component analysis of gene expression profiles resulted in separation between the different morphogenetic cues and exposure times, and not only identified those genes involved in the early response but also those which influenced downstream biological changes leading to larval metamorphosis or settlement. PMID:24632854

  18. [Effect of melafen on expression of Elip1 and Elip2 genes encoding chloroplast light-induced stress proteins in barley].

    Science.gov (United States)

    Osipenkova, O V; Ermokhina, O V; Belkina, G G; Oleskina, Iu P; Fattakhov, S G; Iurina, N P

    2008-01-01

    The effect of melafen, a plant growth regulator of a new generation, on the growth, pigment composition, and expression of nuclear genes Elip1 and Elip2 encoding chloroplast light-stress proteins in barley (Hordeum vulgare L) seedlings was studied. It is shown that the height of seedlings treated with melafen at concentrations of 0.5 x 10(-10) and 0.5 x 10(-8) M increased by approximately 10 and 20%, respectively, as compared to the control. At high concentrations (10(-5) and 10(-3) M), melafen had no effect on the growth of seedlings. The content of chlorophylls and carotenoids in chloroplasts barely differed from the control at all melafen concentrations tested. Reverse transcription-polymerase chain reaction (RT-PCR) showed that melafen did not influence the expression of the nuclear gene encoding the low-molecular-weight plastid stress protein ELIP1. At the same time, the expression of the nuclear gene encoding the high-molecular-weight light-inducible stress protein ELIP2 in the plants treated with melafen at a concentration of 0.5 x 10(-8) M, increased by approximately 70 %. At higher concentrations, melafen suppressed the Elip2 gene expression. Thus, melafen affects the expression of the Elip2 gene, which is involved in the regulation of chlorophyll synthesis and chloroplast biogenesis, which, in turn, may lead to changes in the resistance of plants to light-induced stress.

  19. Interferon Lambda: Modulating Immunity in Infectious Diseases.

    Science.gov (United States)

    Syedbasha, Mohammedyaseen; Egli, Adrian

    2017-01-01

    Interferon lambdas (IFN-λs; IFNL1-4) modulate immunity in the context of infections and autoimmune diseases, through a network of induced genes. IFN-λs act by binding to the heterodimeric IFN-λ receptor (IFNLR), activating a STAT phosphorylation-dependent signaling cascade. Thereby hundreds of IFN-stimulated genes are induced, which modulate various immune functions via complex forward and feedback loops. When compared to the well-characterized IFN-α signaling cascade, three important differences have been discovered. First, the IFNLR is not ubiquitously expressed: in particular, immune cells show significant variation in the expression levels of and susceptibilities to IFN-λs. Second, the binding affinities of individual IFN-λs to the IFNLR varies greatly and are generally lower compared to the binding affinities of IFN-α to its receptor. Finally, genetic variation in the form of a series of single-nucleotide polymorphisms (SNPs) linked to genes involved in the IFN-λ signaling cascade has been described and associated with the clinical course and treatment outcomes of hepatitis B and C virus infection. The clinical impact of IFN-λ signaling and the SNP variations may, however, reach far beyond viral hepatitis. Recent publications show important roles for IFN-λs in a broad range of viral infections such as human T-cell leukemia type-1 virus, rotaviruses, and influenza virus. IFN-λ also potentially modulates the course of bacterial colonization and infections as shown for Staphylococcus aureus and Mycobacterium tuberculosis . Although the immunological processes involved in controlling viral and bacterial infections are distinct, IFN-λs may interfere at various levels: as an innate immune cytokine with direct antiviral effects; or as a modulator of IFN-α-induced signaling via the suppressor of cytokine signaling 1 and the ubiquitin-specific peptidase 18 inhibitory feedback loops. In addition, the modulation of adaptive immune functions via macrophage

  20. Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells

    DEFF Research Database (Denmark)

    Weiss, Gudrun Margarethe; Rasmussen, Simon; Fink, Lisbeth Nielsen

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing...... cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium...

  1. The CXC chemokines gamma interferon (IFN-gamma)-inducible protein 10 and monokine induced by IFN-gamma are released during severe melioidosis

    NARCIS (Netherlands)

    Lauw, F. N.; Simpson, A. J.; Prins, J. M.; van Deventer, S. J.; Chaowagul, W.; White, N. J.; van der Poll, T.

    2000-01-01

    Gamma interferon (IFN-gamma)-inducible protein 10 (IP-10) and monokine induced by IFN-gamma (Mig) are related CXC chemokines which bind to the CXCR3 receptor and specifically target activated T lymphocytes and natural killer (NK) cells. The production of IP-10 and Mig by various cell types in vitro

  2. Heterologous gene expression driven by carbonic anhydrase gene promoter in Dunaliella salina

    Science.gov (United States)

    Yurong, Chai; Yumin, Lu; Tianyun, Wang; Weihong, Hou; Lexun, Xue

    2006-12-01

    Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaCl. These features of D. salina make it an ideal host for the production of antibodies, oral vaccine, and commercially valuable polypeptides. To produce high level of heterologous proteins from D. salina, highly efficient promoters are required to drive expression of target genes under controlled condition. In the present study, we cloned a 5' franking region of 1.4 kb from the carbonic anhydrase ( CAH) gene of D. salina by genomic walking and PCR. The fragment was ligated to the pMD18-T vector and characterized. Sequence analysis indicated that this region contained conserved motifs, including a TATA- like box and CAAT-box. Tandem (GT)n repeats that had a potential role of transcriptional control, were also found in this region. The transcription start site (TSS) of the CAH gene was determined by 5' RACE and nested PCR method. Transformation assays showed that the 1.4 kb fragment was able to drive expression of the selectable bar (bialaphos resistance) gene when the fusion was transformed into D. salina by biolistics. Northern blotting hybridizations showed that the bar transcript was most abundant in cells grown in 2 mol/L NaCl, and less abundant in 0.5 mol/L NaCl, indicating that expression of the bar gene was induced at high salinity. These results suggest the potential use of the CAH gene promoter to induce the expression of heterologous genes in D. salina under varied salt condition.

  3. Identifying Candidate Reprogramming Genes in Mouse Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Gao, Fang; Li, Jingyu; Zhang, Heng; Yang, Xu; An, Tiezhu

    2017-08-01

    Factor-based induced reprogramming approaches have tremendous potential for human regenerative medicine, but the efficiencies of these approaches are still low. In this study, we analyzed the global transcriptional profiles of mouse induced pluripotent stem cells (miPSCs) and mouse embryonic stem cells (mESCs) from seven different labs and present here the first successful clustering according to cell type, not by lab of origin. We identified 2131 different expression genes (DEs) as candidate pluripotency-associated genes by comparing mESCs/miPSCs with somatic cells and 720 DEs between miPSCs and mESCs. Interestingly, there was a significant overlap between the two DE sets. Therefore, we defined the overlap DEs as "consensus DEs" including 313 miPSC-specific genes expressed at a higher level in miPSCs versus mESCs and 184 mESC-specific genes in total and reasoned that these may contribute to the differences in pluripotency between mESCs and miPSCs. A classification of "consensus DEs" according to their different expression levels between somatic cells and mESCs/miPSCs shows that 86% of the miPSC-specific genes are more highly expressed in somatic cells, while 73% of mESC-specific genes are highly expressed in mESCs/miPSCs, indicating that the miPSCs have not efficiently silenced the expression pattern of the somatic cells from which they are derived and failed to completely induce the genes with high expression levels in mESCs. We further revealed a strong correlation between oocyte-enriched factors and insufficiently induced mESC-specific genes and identified 11 hub genes via network analysis. In light of these findings, we postulated that these key hub genes might not only drive somatic cell nuclear transfer (SCNT) reprogramming but also augment the efficiency and quality of miPSC reprogramming.

  4. AICAR Protects against High Palmitate/High Insulin-Induced Intramyocellular Lipid Accumulation and Insulin Resistance in HL-1 Cardiac Cells by Inducing PPAR-Target Gene Expression

    Directory of Open Access Journals (Sweden)

    Ricardo Rodríguez-Calvo

    2015-01-01

    Full Text Available Here we studied the impact of 5-aminoimidazole-4-carboxamide riboside (AICAR, a well-known AMPK activator, on cardiac metabolic adaptation. AMPK activation by AICAR was confirmed by increased phospho-Thr172-AMPK and phospho-Ser79-ACC protein levels in HL-1 cardiomyocytes. Then, cells were exposed to AICAR stimulation for 24 h in the presence or absence of the AMPK inhibitor Compound C, and the mRNA levels of the three PPARs were analyzed by real-time RT-PCR. Treatment with AICAR induced gene expression of all three PPARs, but only the Ppara and Pparg regulation were dependent on AMPK. Next, we exposed HL-1 cells to high palmitate/high insulin (HP/HI conditions either in presence or in absence of AICAR, and we evaluated the expression of selected PPAR-targets genes. HP/HI induced insulin resistance and lipid storage was accompanied by increased Cd36, Acot1, and Ucp3 mRNA levels. AICAR treatment induced the expression of Acadvl and Glut4, which correlated to prevention of the HP/HI-induced intramyocellular lipid build-up, and attenuation of the HP/HI-induced impairment of glucose uptake. These data support the hypothesis that AICAR contributes to cardiac metabolic adaptation via regulation of transcriptional mechanisms.

  5. Serial analysis of gene expression (SAGE) in rat liver regeneration

    International Nuclear Information System (INIS)

    Cimica, Velasco; Batusic, Danko; Haralanova-Ilieva, Borislava; Chen, Yonglong; Hollemann, Thomas; Pieler, Tomas; Ramadori, Giuliano

    2007-01-01

    We have applied serial analysis of gene expression for studying the molecular mechanism of the rat liver regeneration in the model of 70% partial hepatectomy. We generated three SAGE libraries from a normal control liver (NL library: 52,343 tags), from a sham control operated liver (Sham library: 51,028 tags), and from a regenerating liver (PH library: 53,061 tags). By SAGE bioinformatics analysis we identified 40 induced genes and 20 repressed genes during the liver regeneration. We verified temporal expression of such genes by real time PCR during the regeneration process and we characterized 13 induced genes and 3 repressed genes. We found connective tissue growth factor transcript and protein induced very early at 4 h after PH operation before hepatocytes proliferation is triggered. Our study suggests CTGF as a growth factor signaling mediator that could be involved directly in the mechanism of liver regeneration induction

  6. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  7. Human p38δ MAP kinase mediates UV irradiation induced up-regulation of the gene expression of chemokine BRAK/CXCL14

    International Nuclear Information System (INIS)

    Ozawa, Shigeyuki; Ito, Shin; Kato, Yasumasa; Kubota, Eiro; Hata, Ryu-Ichiro

    2010-01-01

    The mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38α, β, γ and δ. The UV stimulation of p38 phosphorylation was not inhibited by the presence of SB203580 or PD169316, inhibitors of p38α and β, suggesting p38 phosphorylation was not dependent on these 2 isoforms and that p38γ and/or δ was responsible for the phosphorylation. In fact, inhibition of each of these 4 p38 isoforms by the introduction of short hairpin (sh) RNAs for respective isoforms revealed that only shRNA for p38δ attenuated the UV-induced up-regulation of BRAK/CXCL14 gene expression. In addition, over-expression of p38 isoforms in the cells showed the association of p38δ with ERK1 and 2, concomitant with down-regulation of ERK phosphorylation. The usage of p38δ isoform by UV irradiation is not merely due to the abundance of this p38 isoform in the cells. Because serum deprivation of the cells also induced an increase in BRAK/CXCL14 gene expression, and in this case p38α and/or β isoform is responsible for up-regulation of BRAK/CXCL14 gene expression. Taken together, the data indicate that the respective stress-dependent action of p38 isoforms is responsible for the up-regulation of the gene expression of the chemokine BRAK/CXCL14.

  8. Gene expression in skin tumors induced in hairless mice by chronic exposure to ultraviolet B irradiation

    International Nuclear Information System (INIS)

    Sato, Hiromi; Tanaka, Misao; Kobayashi, Shizuko; Suzuki, Junko S.; Ogiso, Manabu; Tohyama, Chiharu

    1997-01-01

    We investigated the expressions of c-Ha-ras, c-jun, c-fos, c-myc genes and p53 protein in the development of skin tumours induced by chronic exposure to UVB without a photosensitizer using hairless mice. When mice were exposed to UVB at a dose of 2 kJ/m 2 three times a week, increased c-Ha-ras and c-myc transcripts were detected after only 5 weeks of exposure, while no tumour appeared on the exposed skin. The increase in gene expression continued until 25 weeks, when tumours, identified pathologically as mainly squamous cell carcinomas (SCC), developed in the dorsal skin. In these SCC, overexpression of c-fos mRNA was also observed along with the increases in c-Ha-ras and c-myc. A single dose of UVB (2 kJ/m 2 ) applied to the backs of hairless mice transiently induced overexpression of the early event genes c-fos, c-jun and c-myc, but not c-Ha-ras, in the exposed area of skin. Accumulation of p53 protein was determined by Western blotting analysis of immunohistochemistry using monoclonal antibodies PAb 240 or 246, which recognize mutant or wide type, respectively. In the SCC, a mutant p53 protein accumulated in the cytoplasm and nucleus. After single-dose irradiation, the increased wild-type p53 protein was observed in the nuclei of epidermal cells. The present results suggest that overexpression of the c-fos, c-myc and c-Ha-ras genes, and the mutational changes in p53 protein might be associated with skin photocarcinogenesis. Moreover, overexpression of the c-Ha-ras and c-myc genes might be an early event in the development of UVB-induced skin tumors in mice. (author)

  9. Evaluation of a nanotechnology-based approach to induce gene-expression in human THP-1 macrophages under inflammatory conditions.

    Science.gov (United States)

    Bernal, Laura; Alvarado-Vázquez, Abigail; Ferreira, David Wilson; Paige, Candler A; Ulecia-Morón, Cristina; Hill, Bailey; Caesar, Marina; Romero-Sandoval, E Alfonso

    2017-02-01

    Macrophages orchestrate the initiation and resolution of inflammation by producing pro- and anti-inflammatory products. An imbalance in these mediators may originate from a deficient or excessive immune response. Therefore, macrophages are valid therapeutic targets to restore homeostasis under inflammatory conditions. We hypothesize that a specific mannosylated nanoparticle effectively induces gene expression in human macrophages under inflammatory conditions without undesirable immunogenic responses. THP-1 macrophages were challenged with lipopolysaccharide (LPS, 5μg/mL). Polyethylenimine (PEI) nanoparticles grafted with a mannose receptor ligand (Man-PEI) were used as a gene delivery method. Nanoparticle toxicity, Man-PEI cellular uptake rate and gene induction efficiency (GFP, CD14 or CD68) were studied. Potential immunogenic responses were evaluated by measuring the production of tumor necrosis factor-alpha (TNF-α), Interleukin (IL)-6 and IL-10. Man-PEI did not produce cytotoxicity, and it was effectively up-taken by THP-1 macrophages (69%). This approach produced a significant expression of GFP (mRNA and protein), CD14 and CD68 (mRNA), and transiently and mildly reduced IL-6 and IL-10 levels in LPS-challenged macrophages. Our results indicate that Man-PEI is suitable for inducing an efficient gene overexpression in human macrophages under inflammatory conditions with limited immunogenic responses. Our promising results set the foundation to test this technology to induce functional anti-inflammatory genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein

    Energy Technology Data Exchange (ETDEWEB)

    Hoenen, Antje [School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane (Australia); Gillespie, Leah [Department of Microbiology, La Trobe University, Melbourne (Australia); Department of Microbiology and Immunology, University of Melbourne, Melbourne (Australia); Morgan, Garry; Heide, Peter van der [Institute for Molecular Bioscience, University of Queensland, Brisbane (Australia); Khromykh, Alexander [School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane (Australia); Australian Infectious Diseases Research Centre, University of Queensland, Brisbane (Australia); Mackenzie, Jason, E-mail: jason.mackenzie@unimelb.edu.au [Department of Microbiology, La Trobe University, Melbourne (Australia); Department of Microbiology and Immunology, University of Melbourne, Melbourne (Australia)

    2014-01-05

    Flaviviruses have evolved means to evade host innate immune responses. Recent evidence suggests this is due to prevention of interferon production and signaling in flavivirus-infected cells. Here we show that the interferon-induced MxA protein can sequester the West Nile virus strain Kunjin virus (WNV{sub KUN}) capsid protein in cytoplasmic tubular structures in an expression-replication system. This sequestering resulted in reduced titers of secreted WNV{sub KUN} particles. We show by electron microscopy, tomography and 3D modeling that these cytoplasmic tubular structures form organized bundles. Additionally we show that recombinant ER-targeted MxA can restrict production of infectious WNV{sub KUN} under conditions of virus infection. Our results indicate a co-ordinated and compartmentalized WNV{sub KUN} assembly process may prevent recognition of viral components by MxA, particularly the capsid protein. This recognition can be exploited if MxA is targeted to intracellular sites of WNV{sub KUN} assembly. This results in further understanding of the mechanisms of flavivirus evasion from the immune system. - Highlights: • We show that the ISG MxA can recognize the West Nile virus capsid protein. • Interaction between WNV C protein and MxA induces cytoplasmic fibrils. • MxA can be retargeted to the ER to restrict WNV particle release. • WNV assembly process is a strategy to avoid MxA recognition.

  11. Low-dose Norfloxacin-treated leptospires induce less IL-1β release in J774A.1 cells following discrepant leptospiral gene expression.

    Science.gov (United States)

    Cao, Yongguo; Xie, Xufeng; Zhang, Wenlong; Wu, Dianjun; Tu, Changchun

    2018-06-01

    Currently, accumulating evidence is challenging subtherapeutic therapy. Low-dose Norfloxacin (Nor) has been reported to suppress the immune response and worsen leptospirosis. In this study, we investigated the influence of low-dose Nor (0.03 μg/ml, 0.06 μg/ml, 0.125 μg/ml) on leptospiral gene expression and analyzed the immunomodulatory effects of low-dose Nor-treated leptospires in J774A.1 cells. To study the expression profiles of low-dose Nor-treated leptospires, we chose LipL71/LipL21 as reference genes determined by the geNorm applet in this experiment. The results showed that low-dose Nor up-regulated the expression of FlaB and inhibited the expression of 16S rRNA, LipL32, LipL41, Loa22, KdpA, and KdpB compared with the untreated leptospires. These results indicated that low-dose Nor could regulate leptospiral gene expression. Using RT-PCR, the gene expression of IL-1β and TNF-α in J774A.1 cells was detected. Nor-treated leptospires induced higher expression levels of both IL-1β and TNF-α. However, when analyzed by ELISA, the release of mature IL-1β was reduced compared with that observed in cells induced with no Nor-treated leptospires, although the TNF-α protein level showed no significant change. Our study indicated that the gene expression of leptospires could be modulated by low-dose Nor, which induced less IL-1β release in J774A.1 cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells

    Science.gov (United States)

    2011-01-01

    Background During functional studies on the rat stress-inducible Hspa1b (hsp70.1) gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA), Lipofectin and Lipofectamine 2000. This work was aimed to understand better the mechanism of this phenomenon and its potential biological and practical consequences. Results We found that a reporter gene driven by Hspa1b promoter is activated both in the case of transient transfections and in the stably transfected cells treated with LA. Using several deletion clones containing different fragments of Hspa1b promoter, we found that the regulatory elements responsible for most efficient LA-driven inducibility were located between nucleotides -269 and +85, relative to the transcription start site. Further studies showed that the induction mechanism was independent of the classical HSE-HSF interaction that is responsible for gene activation during heat stress. Using DNA microarrays we also detected significant activation of the endogenous Hspa1b gene in cells treated with Lipofectamine 2000. Several other stress genes were also induced, along with numerous genes involved in cellular metabolism, cell cycle control and pro-apoptotic pathways. Conclusions Our observations suggest that i) some cationic liposomes may not be suitable for functional studies on hsp promoters, ii) lipofection may cause unintended changes in global gene expression in the transfected cells. PMID:21663599

  13. Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells

    Directory of Open Access Journals (Sweden)

    Lisowska Katarzyna Marta

    2011-06-01

    Full Text Available Abstract Background During functional studies on the rat stress-inducible Hspa1b (hsp70.1 gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA, Lipofectin and Lipofectamine 2000. This work was aimed to understand better the mechanism of this phenomenon and its potential biological and practical consequences. Results We found that a reporter gene driven by Hspa1b promoter is activated both in the case of transient transfections and in the stably transfected cells treated with LA. Using several deletion clones containing different fragments of Hspa1b promoter, we found that the regulatory elements responsible for most efficient LA-driven inducibility were located between nucleotides -269 and +85, relative to the transcription start site. Further studies showed that the induction mechanism was independent of the classical HSE-HSF interaction that is responsible for gene activation during heat stress. Using DNA microarrays we also detected significant activation of the endogenous Hspa1b gene in cells treated with Lipofectamine 2000. Several other stress genes were also induced, along with numerous genes involved in cellular metabolism, cell cycle control and pro-apoptotic pathways. Conclusions Our observations suggest that i some cationic liposomes may not be suitable for functional studies on hsp promoters, ii lipofection may cause unintended changes in global gene expression in the transfected cells.

  14. Gene expression patterns associated with neurological disease in human HIV infection.

    Directory of Open Access Journals (Sweden)

    Pietro Paolo Sanna

    Full Text Available The pathogenesis and nosology of HIV-associated neurological disease (HAND remain incompletely understood. Here, to provide new insight into the molecular events leading to neurocognitive impairments (NCI in HIV infection, we analyzed pathway dysregulations in gene expression profiles of HIV-infected patients with or without NCI and HIV encephalitis (HIVE and control subjects. The Gene Set Enrichment Analysis (GSEA algorithm was used for pathway analyses in conjunction with the Molecular Signatures Database collection of canonical pathways (MSigDb. We analyzed pathway dysregulations in gene expression profiles of patients from the National NeuroAIDS Tissue Consortium (NNTC, which consists of samples from 3 different brain regions, including white matter, basal ganglia and frontal cortex of HIV-infected and control patients. While HIVE is characterized by widespread, uncontrolled inflammation and tissue damage, substantial gene expression evidence of induction of interferon (IFN, cytokines and tissue injury is apparent in all brain regions studied, even in the absence of NCI. Various degrees of white matter changes were present in all HIV-infected subjects and were the primary manifestation in patients with NCI in the absence of HIVE. In particular, NCI in patients without HIVE in the NNTC sample is associated with white matter expression of chemokines, cytokines and β-defensins, without significant activation of IFN. Altogether, the results identified distinct pathways differentially regulated over the course of neurological disease in HIV infection and provide a new perspective on the dynamics of pathogenic processes in the course of HIV neurological disease in humans. These results also demonstrate the power of the systems biology analyses and indicate that the establishment of larger human gene expression profile datasets will have the potential to provide novel mechanistic insight into the pathogenesis of neurological disease in HIV

  15. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Risom, Lotte

    2004-07-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  16. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    International Nuclear Information System (INIS)

    Risom, Lotte

    2004-01-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  17. Voluntary wheel running reverses age-induced changes in hippocampal gene expression.

    Directory of Open Access Journals (Sweden)

    Rachel A Kohman

    Full Text Available Normal aging alters expression of numerous genes within the brain. Some of these transcription changes likely contribute to age-associated cognitive decline, reduced neural plasticity, and the higher incidence of neuropathology. Identifying factors that modulate brain aging is crucial for improving quality of life. One promising intervention to counteract negative effects of aging is aerobic exercise. Aged subjects that exercise show enhanced cognitive performance and increased hippocampal neurogenesis and synaptic plasticity. Currently, the mechanisms behind the anti-aging effects of exercise are not understood. The present study conducted a microarray on whole hippocampal samples from adult (3.5-month-old and aged (18-month-old male BALB/c mice that were individually housed with or without running wheels for 8 weeks. Results showed that aging altered genes related to chromatin remodeling, cell growth, immune activity, and synapse organization compared to adult mice. Exercise was found to modulate many of the genes altered by aging, but in the opposite direction. For example, wheel running increased expression of genes related to cell growth and attenuated expression of genes involved in immune function and chromatin remodeling. Collectively, findings show that even late-onset exercise may attenuate age-related changes in gene expression and identifies possible pathways through which exercise may exert its beneficial effects.

  18. A three-component gene expression system and its application for inducible flavonoid overproduction in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Feng, Yue; Cao, Cong-Mei; Vikram, Meenu; Park, Sunghun; Kim, Hye Jin; Hong, Jong Chan; Cisneros-Zevallos, Luis; Koiwa, Hisashi

    2011-03-08

    Inducible gene expression is a powerful tool to study and engineer genes whose overexpression could be detrimental for the host organisms. However, only limited systems have been adopted in plant biotechnology. We have developed an osmotically inducible system using three components of plant origin, RD29a (Responsive to Dehydration 29A) promoter, CBF3 (C-repeat Binding Factor 3) transcription factor and cpl1-2 (CTD phosphatase-like 1) mutation. The osmotic stress responsible RD29a promoter contains the CBF3 binding sites and thus RD29A-CBF3 feedforward cassette enhances induction of RD29a promoter under stress. The cpl1-2 mutation in a host repressor CPL1 promotes stress responsible RD29a promoter expression. The efficacy of this system was tested using PAP1 (Production of Anthocyanin Pigment 1) transgene, a model transcription factor that regulates the anthocyanin pathway in Arabidopsis. While transgenic plants with only one or two of three components did not reproducibly accumulate anthocyanin pigments above the control level, transgenic cpl1 plants containing homozygous RD29a-PAP1 and RD29a-CBF3 transgenes produced 30-fold higher level of total anthocyanins than control plants upon cold treatment. Growth retardation and phytochemical production of transgenic plants were minimum under normal conditions. The flavonoid profile in cold-induced transgenic plants was determined by LC/MS/MS, which resembled that of previously reported pap1-D plants but enriched for kaempferol derivatives. These results establish the functionality of the inducible three-component gene expression system in plant metabolic engineering. Furthermore, we show that PAP1 and environmental signals synergistically regulate the flavonoid pathway to produce a unique flavonoid blend that has not been produced by PAP1 overexpression or cold treatment alone.

  19. A three-component gene expression system and its application for inducible flavonoid overproduction in transgenic Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yue Feng

    Full Text Available Inducible gene expression is a powerful tool to study and engineer genes whose overexpression could be detrimental for the host organisms. However, only limited systems have been adopted in plant biotechnology. We have developed an osmotically inducible system using three components of plant origin, RD29a (Responsive to Dehydration 29A promoter, CBF3 (C-repeat Binding Factor 3 transcription factor and cpl1-2 (CTD phosphatase-like 1 mutation. The osmotic stress responsible RD29a promoter contains the CBF3 binding sites and thus RD29A-CBF3 feedforward cassette enhances induction of RD29a promoter under stress. The cpl1-2 mutation in a host repressor CPL1 promotes stress responsible RD29a promoter expression. The efficacy of this system was tested using PAP1 (Production of Anthocyanin Pigment 1 transgene, a model transcription factor that regulates the anthocyanin pathway in Arabidopsis. While transgenic plants with only one or two of three components did not reproducibly accumulate anthocyanin pigments above the control level, transgenic cpl1 plants containing homozygous RD29a-PAP1 and RD29a-CBF3 transgenes produced 30-fold higher level of total anthocyanins than control plants upon cold treatment. Growth retardation and phytochemical production of transgenic plants were minimum under normal conditions. The flavonoid profile in cold-induced transgenic plants was determined by LC/MS/MS, which resembled that of previously reported pap1-D plants but enriched for kaempferol derivatives. These results establish the functionality of the inducible three-component gene expression system in plant metabolic engineering. Furthermore, we show that PAP1 and environmental signals synergistically regulate the flavonoid pathway to produce a unique flavonoid blend that has not been produced by PAP1 overexpression or cold treatment alone.

  20. Reduced RAR-β gene expression in Benzo(a)Pyrene induced lung cancer mice is upregulated by DOTAP lipo-ATRA treatment.

    Science.gov (United States)

    Viswanathan, S; Berlin Grace, V M

    2018-05-16

    Molecular targeted therapy for specific genes is an emerging research. Retinoic Acid Receptor (RAR-β) is a key tumor suppressor which is found to be lost drastically during much cancer progression. We hence, analyzed the expression level of RAR-β gene during B(a)P induced lung cancer development in mice and studied the lung cancer targeted action of All Trans Retinoic Acid (ATRA) in DOTAP liposomal formulation. The effect of its treatment on lung cancer was determined by histopathological analysis. RAR-β gene expression was assessed by RT-PCR and qPCR. A distinct band for RAR-β gene (density - 0.5123 for lung and 0.5160 for liver) was observed in normal mice, whereas no visible band was observed in cancer induced group, indicating loss of RAR-β gene expression. Both ATRA and lipo-ATRA treated groups showed detectable RAR-β expression with relatively lesser density than the normal group. The expression was more intense in lipo-ATRA treatment (density-0.2973) compared with free ATRA treatment (density-0.1549) in lung tissues. The qPCR results also have highlighted a highly significant (p ≤ 0.01) variation RQ values between lipo-ATRA group (15.46 ± 1.54) and free ATRA group (7.58 ± 1.30) in lung tissue sample on 30th day. The mean RQ value for normal lung on 30th day was 20.86 ± 2.58 against the cancer control. The 120th day mice also showed the similar RAR-β expression pattern with further declined expression levels as there was no treatment given after 30 days. Interestingly, the lipo-ATRA treatment could show a highly significant (p ≤ 0.001) expression (12.00 ± 2.31) when compared with free ATRA treatment (3.31 ± 0.58) which implies that the lipo-ATRA formulation could result in sustained delivery of ATRA in target site. Histopathology of lung and liver on 120th day also revealed an effective therapeutic indication in lipo-ATRA treatment compared to free ATRA treatment due to lipo-ATRA's stealth property and it