WorldWideScience

Sample records for interferon regulator factor

  1. Mechanisms of regulation in the interferon factor 3 (IRF- 3) pathway

    OpenAIRE

    Limmer, Kirsten

    2008-01-01

    Interferon regulatory factor 3 (IRF-3) plays a critical role in the host cell response to both bacterial and viral infection. IRF-3 is activated by Toll-like receptors (TLRs) and cytoplasmic nucleic acid sensors, and serves to upregulate interferon beta and interferon stimulated genes (ISGs), thereby providing a quick and effective response to infection. In this work, two novel mechanisms of regulation in the IRF-3 pathway are revealed. The first part of this thesis work shows that upon bindi...

  2. Differential regulation of type I interferon and epidermal growth factor pathways by a human Respirovirus virulence factor.

    Directory of Open Access Journals (Sweden)

    Grégory Caignard

    2009-09-01

    Full Text Available A number of paramyxoviruses are responsible for acute respiratory infections in children, elderly and immuno-compromised individuals, resulting in airway inflammation and exacerbation of chronic diseases like asthma. To understand the molecular pathogenesis of these infections, we searched for cellular targets of the virulence protein C of human parainfluenza virus type 3 (hPIV3-C. We found that hPIV3-C interacts directly through its C-terminal domain with STAT1 and GRB2, whereas C proteins from measles or Nipah viruses failed to do so. Binding to STAT1 explains the previously reported capacity of hPIV3-C to block type I interferon signaling, but the interaction with GRB2 was unexpected. This adaptor protein bridges Epidermal Growth Factor (EGF receptor to MAPK/ERK pathway, a signaling cascade recently found to be involved in airway inflammatory response. We report that either hPIV3 infection or transient expression of hPIV3-C both increase cellular response to EGF, as assessed by Elk1 transactivation and phosphorylation levels of ERK1/2, 40S ribosomal subunit protein S6 and translation initiation factor 4E (eIF4E. Furthermore, inhibition of MAPK/ERK pathway with U0126 prevented viral protein expression in infected cells. Altogether, our data provide molecular basis to explain the role of hPIV3-C as a virulence factor and determinant of pathogenesis and demonstrate that Paramyxoviridae have evolved a single virulence factor to block type I interferon signaling and to boost simultaneous cellular response to growth factors.

  3. Human keratinocytes produce the complement inhibitor factor H: synthesis is regulated by interferon-gamma

    NARCIS (Netherlands)

    Timár, Krisztina K.; Pasch, Marcel C.; van den Bosch, Norbert H. A.; Jarva, Hanna; Junnikkala, Sami; Meri, Seppo; Bos, Jan D.; Asghar, Syed S.

    2006-01-01

    Locally synthesized complement is believed to play an important role in host defense and inflammation at organ level. In the epidermis, keratinocytes have so far been shown to synthesize two complement components, C3 and factor B. Here, we studied the synthesis of factor H by human keratinocytes. We

  4. Negative Regulation of Interferon-β Production by Alternative Splicing of Tumor Necrosis Factor Receptor-Associated Factor 3 in Ducks

    Directory of Open Access Journals (Sweden)

    Xiaoqin Wei

    2018-03-01

    Full Text Available Tumor necrosis factor receptor-associated factor 3 (TRAF3, an intracellular signal transducer, is identified as an important component of Toll-like receptors and RIG-I-like receptors induced type I interferon (IFN signaling pathways. Previous studies have clarified TRAF3 function in mammals, but little is known about the role of TRAF3 in ducks. Here, we cloned and characterized the full-length duck TRAF3 (duTRAF3 gene and an alternatively spliced isoform of duTRAF3 (duTRAF3-S lacking the fragment encoding amino acids 217–319, from duck embryo fibroblasts (DEFs. We found that duTRAF3 and duTRAF3-S played different roles in regulating IFN-β production in DEFs. duTRAF3 through its TRAF domain interacted with duMAVS or duTRIF, leading to the production of IFN-β. However, duTRAF3-S, containing the TRAF domain, was unable to bind duMAVS or duTRIF due to the intramolecular binding between the N- and C-terminal of duTRAF3-S that blocked the function of its TRAF domain. Further analysis identified that duTRAF3-S competed with duTRAF3 itself for binding to duTRAF3, perturbing duTRAF3 self-association, which impaired the assembly of duTRAF3-duMAVS/duTRIF complex, ultimately resulted in a reduced production of IFN-β. These findings suggest that duTRAF3 is an important regulator of duck innate immune signaling and reveal a novel mechanism for the negative regulation of IFN-β production via changing the formation of the homo-oligomerization of wild molecules, implying a novel regulatory role of truncated proteins.

  5. Factors regulated by interferon gamma and hypoxia-inducible factor 1A contribute to responses that protect mice from Coccidioides immitis infection

    Directory of Open Access Journals (Sweden)

    Woelk Christopher H

    2012-09-01

    Full Text Available Abstract Background Coccidioidomycosis results from airborne infections caused by either Coccidioides immitis or C. posadasii. Both are pathogenic fungi that live in desert soil in the New World and can infect normal hosts, but most infections are self-limited. Disseminated infections occur in approximately 5% of cases and may prove fatal. Mouse models of the disease have identified strains that are resistant (e.g. DBA/2 or susceptible (e.g. C57BL/6 to these pathogens. However, the genetic and immunological basis for this difference has not been fully characterized. Results Microarray technology was used to identify genes that were differentially expressed in lung tissue between resistant DBA/2 and sensitive C57BL/6 mice after infection with C. immitis. Differentially expressed genes were mapped onto biological pathways, gene ontologies, and protein interaction networks, which revealed that innate immune responses mediated by Type II interferon (i.e., IFNG and the signal transducer and activator of transcription 1 (STAT1 contribute to the resistant phenotype. In addition, upregulation of hypoxia inducible factor 1A (HIF1A, possibly as part of a larger inflammatory response mediated by tumor necrosis factor alpha (TNFA, may also contribute to resistance. Microarray gene expression was confirmed by real-time quantitative PCR for a subset of 12 genes, which revealed that IFNG HIF1A and TNFA, among others, were significantly differentially expressed between the two strains at day 14 post-infection. Conclusion These results confirm the finding that DBA/2 mice express more Type II interferon and interferon stimulated genes than genetically susceptible strains and suggest that differential expression of HIF1A may also play a role in protection.

  6. Src Family Kinases Regulate Interferon Regulatory Factor 1 K63 Ubiquitination following Activation by TLR7/8 Vaccine Adjuvant in Human Monocytes and B Cells

    Directory of Open Access Journals (Sweden)

    Lorenza Tulli

    2018-03-01

    Full Text Available Toll-like receptors (TLRs play a key role in the activation of innate immune cells, in which their engagement leads to production of cytokines and co-stimulatory molecules. TLRs signaling requires recruitment of toll/IL-1R (TIR domain-containing adaptors, such as MyD88 and/or TRIF, and leads to activation of several transcription factors, such as NF-κB, the AP1 complex, and various members of the interferon regulatory factor (IRF family, which in turn results in triggering of several cellular functions associated with these receptors. A role for Src family kinases (SFKs in this signaling pathway has also been established. Our work and that of others have shown that this type of kinases is activated following engagement of several TLRs, and that this event is essential for the initiation of specific downstream cellular response. In particular, we have previously demonstrated that activation of SFKs is required for balanced production of pro-inflammatory cytokines by monocyte-derived dendritic cells after stimulation with R848, an agonist of human TLRs 7/8. We also showed that TLR7/8 triggering leads to an increase in interferon regulatory factor 1 (IRF-1 protein levels and that this effect is abolished by inhibition of SFKs, suggesting a critical role of these kinases in IRF-1 regulation. In this study, we first confirmed the key role of SFKs in TLR7/8 signaling for cytokine production and accumulation of IRF-1 protein in monocytes and in B lymphocytes, two other type of antigen-presenting cells. Then, we demonstrate that TLR7 triggering leads to an increase of K63-linked ubiquitination of IRF-1, which is prevented by SFKs inhibition, suggesting a key role of these kinases in posttranslational regulation of IRF-1 in the immune cells. In order to understand the mechanism that links SFKs activation to IRF-1 K63-linked ubiquitination, we examined SFKs and IRF-1 possible interactors and proved that activation of SFKs is necessary for their

  7. DMPD: Type I interferon [corrected] gene induction by the interferon regulatory factorfamily of transcription factors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16979567 Type I interferon [corrected] gene induction by the interferon regulatory factorfamily...ng) (.svg) (.html) (.csml) Show Type I interferon [corrected] gene induction by the interferon regulatory factorfamily...orrected] gene induction by the interferon regulatory factorfamily of transcription factors. Authors Honda K

  8. Combination of interferon-alpha and 5-fluorouracil inhibits endothelial cell growth directly and by regulation of angiogenic factors released by tumor cells

    International Nuclear Information System (INIS)

    Wada, Hiroshi; Tanemura, Masahiro; Umeshita, Koji; Doki, Yuichiro; Mori, Masaki; Nagano, Hiroaki; Yamamoto, Hirofumi; Noda, Takehiro; Murakami, Masahiro; Kobayashi, Shogo; Marubashi, Shigeru; Eguchi, Hidetoshi; Takeda, Yutaka

    2009-01-01

    The combination therapy of interferon (IFN)-alpha and 5-fluorouracil (5-FU) improved the prognosis of the patients with hepatocellular carcinoma (HCC). To determine the molecular mechanisms of the anti-tumor and anti-angiogenic effects, we examined the direct anti-proliferative effects on human umbilical vein endothelial cells (HUVEC) and indirect effects by regulating secretion of angiogenic factors from HCC cells. The direct effects on HUVEC were examined by TUNEL, Annexin-V assays and cell cycles analysis. For analysis of the indirect effects, the apoptosis induced by the conditioned medium from HCC cell treated by IFN-alpha/5-FU and expression of angiogenic factors was examined. IFN-alpha and 5-FU alone had anti-proliferative properties on HUVEC and their combination significantly inhibited the growth (compared with control, 5-FU or IFN alone). TUNEL and Annexin-V assays showed no apoptosis. Cell cycle analysis revealed that IFN-alpha and 5-FU delayed cell cycle progression in HUVEC with S-phase accumulation. The conditioned medium from HuH-7 cells after treatment with IFN/5-FU significantly inhibited HUVEC growth and induced apoptosis, and contained high levels of angiopoietin (Ang)-1 and low levels of vascular endothelial growth factor (VEGF) and Ang-2. Knockdown of Ang-1 in HuH-7 cells abrogated the anti-proliferative effects on HUVEC while knockdown of Ang-2 partially rescue the cells. These results suggested that IFN-alpha and 5-FU had direct growth inhibitory effects on endothelial cells, as well as anti-angiogenic effects through regulation of angiogenic factors released from HCC cells. Modulation of VEGF and Angs secretion by IFN-alpha and 5-FU may contribute to their anti-angiogenic and anti-tumor effects on HCC

  9. Interferon-Lambda: A Potent Regulator of Intestinal Viral Infections.

    Science.gov (United States)

    Lee, Sanghyun; Baldridge, Megan T

    2017-01-01

    Interferon-lambda (IFN-λ) is a recently described cytokine found to be of critical importance in innate immune regulation of intestinal viruses. Endogenous IFN-λ has potent antiviral effects and has been shown to control multiple intestinal viruses and may represent a factor that contributes to human variability in response to infection. Importantly, recombinant IFN-λ has therapeutic potential against enteric viral infections, many of which lack other effective treatments. In this mini-review, we describe recent advances regarding IFN-λ-mediated regulation of enteric viruses with important clinical relevance including rotavirus, reovirus, and norovirus. We also briefly discuss IFN-λ interactions with other cytokines important in the intestine, and how IFN-λ may play a role in regulation of intestinal viruses by the commensal microbiome. Finally, we indicate currently outstanding questions regarding IFN-λ control of enteric infections that remain to be explored to enhance our understanding of this important immune molecule.

  10. Interferon Regulator Factor 8 (IRF8 Limits Ocular Pathology during HSV-1 Infection by Restraining the Activation and Expansion of CD8+ T Cells.

    Directory of Open Access Journals (Sweden)

    Lin Sun

    Full Text Available Interferon Regulatory Factor-8 (IRF8 is constitutively expressed in monocytes and B cell lineages and plays important roles in immunity to pathogens and cancer. Although IRF8 expression is induced in activated T cells, the functional relevance of IRF8 in T cell-mediated immunity is not well understood. In this study, we used mice with targeted deletion of Irf8 in T-cells (IRF8KO to investigate the role of IRF8 in T cell-mediated responses during herpes simplex virus 1 (HSV-1 infection of the eye. In contrast to wild type mice, HSV-1-infected IRF8KO mice mounted a more robust anti-HSV-1 immune response, which included marked expansion of HSV-1-specific CD8+ T cells, increased infiltration of inflammatory cells into the cornea and trigeminal ganglia (TG and enhanced elimination of virus within the trigeminal ganglion. However, the consequence of the enhanced immunological response was the development of ocular inflammation, limbitis, and neutrophilic infiltration into the cornea of HSV-1-infected IRF8KO mice. Surprisingly, we observed a marked increase in virus-specific memory precursor effector cells (MPEC in IRF8KO mice, suggesting that IRF8 might play a role in regulating the differentiation of effector CD8+ T cells to the memory phenotype. Together, our data suggest that IRF8 might play a role in restraining excess lymphocyte proliferation. Thus, modulating IRF8 levels in T cells can be exploited therapeutically to prevent immune-mediated ocular pathology during autoimmune and infectious diseases of the eye.

  11. Opposing roles for interferon regulatory factor-3 (IRF-3 and type I interferon signaling during plague.

    Directory of Open Access Journals (Sweden)

    Ami A Patel

    Full Text Available Type I interferons (IFN-I broadly control innate immunity and are typically transcriptionally induced by Interferon Regulatory Factors (IRFs following stimulation of pattern recognition receptors within the cytosol of host cells. For bacterial infection, IFN-I signaling can result in widely variant responses, in some cases contributing to the pathogenesis of disease while in others contributing to host defense. In this work, we addressed the role of type I IFN during Yersinia pestis infection in a murine model of septicemic plague. Transcription of IFN-β was induced in vitro and in vivo and contributed to pathogenesis. Mice lacking the IFN-I receptor, Ifnar, were less sensitive to disease and harbored more neutrophils in the later stage of infection which correlated with protection from lethality. In contrast, IRF-3, a transcription factor commonly involved in inducing IFN-β following bacterial infection, was not necessary for IFN production but instead contributed to host defense. In vitro, phagocytosis of Y. pestis by macrophages and neutrophils was more effective in the presence of IRF-3 and was not affected by IFN-β signaling. This activity correlated with limited bacterial growth in vivo in the presence of IRF-3. Together the data demonstrate that IRF-3 is able to activate pathways of innate immunity against bacterial infection that extend beyond regulation of IFN-β production.

  12. DMPD: The interferon-alpha/beta system in antiviral responses: a multimodal machineryof gene regulation by the IRF family of transcription factors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available ineryof gene regulation by the IRF family of transcription factors. Taniguchi T, Takaoka A. Curr Opin Immuno...sponses: a multimodal machineryof gene regulation by the IRF family of transcript...achineryof gene regulation by the IRF family of transcription factors. Authors Taniguchi T, Takaoka A. Publi

  13. DMPD: Interferon gene regulation: not all roads lead to Tolls. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16095970 Interferon gene regulation: not all roads lead to Tolls. Jefferies CA, Fit...zgerald KA. Trends Mol Med. 2005 Sep;11(9):403-11. (.png) (.svg) (.html) (.csml) Show Interferon gene regulation: not all roads... lead to Tolls. PubmedID 16095970 Title Interferon gene regulation: not all roads lead to

  14. Targeting Interferon Regulatory Factor for Cardiometabolic Diseases: Opportunities and Challenges.

    Science.gov (United States)

    Zhang, Yaxing; Zhang, Xiao-Jing; Li, Hongliang

    2017-01-01

    The pathological activation of innate immune system may contribute to the development of cardiometabolic diseases. The interferon regulatory factor (IRF) family members, which are the major transcription factors in innate immune signaling, are implicated in cardiometabolic diseases. The aim of this review is to summary the current knowledge of the biological functions of IRFs in innate immune responses and immune cell development, and highlight our contemporary understanding of the functions and molecular mechanisms of IRFs in metabolic diseases, cardiovascular remodeling, and stroke. IRFs are the essential regulators of cardiometabolic diseases via immune-dependent and - independent manners. IRFs signaling is the promising target to manage the initiation and progression of cardiometabolic disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Interferon γ-inducible protein (IFI) 16 transcriptionally regulates type i interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses.

    Science.gov (United States)

    Thompson, Mikayla R; Sharma, Shruti; Atianand, Maninjay; Jensen, Søren B; Carpenter, Susan; Knipe, David M; Fitzgerald, Katherine A; Kurt-Jones, Evelyn A

    2014-08-22

    The interferon γ-inducible protein 16 (IFI16) has recently been linked to the detection of nuclear and cytosolic DNA during infection with herpes simplex virus-1 and HIV. IFI16 binds dsDNA via HIN200 domains and activates stimulator of interferon genes (STING), leading to TANK (TRAF family member-associated NF-κB activator)-binding kinase-1 (TBK1)-dependent phosphorylation of interferon regulatory factor (IRF) 3 and transcription of type I interferons (IFNs) and related genes. To better understand the role of IFI16 in coordinating type I IFN gene regulation, we generated cell lines with stable knockdown of IFI16 and examined responses to DNA and RNA viruses as well as cyclic dinucleotides. As expected, stable knockdown of IFI16 led to a severely attenuated type I IFN response to DNA ligands and viruses. In contrast, expression of the NF-κB-regulated cytokines IL-6 and IL-1β was unaffected in IFI16 knockdown cells, suggesting that the role of IFI16 in sensing these triggers was unique to the type I IFN pathway. Surprisingly, we also found that knockdown of IFI16 led to a severe attenuation of IFN-α and the IFN-stimulated gene retinoic acid-inducible gene I (RIG-I) in response to cyclic GMP-AMP, a second messenger produced by cyclic GMP-AMP synthase (cGAS) as well as RNA ligands and viruses. Analysis of IFI16 knockdown cells revealed compromised occupancy of RNA polymerase II on the IFN-α promoter in these cells, suggesting that transcription of IFN-stimulated genes is dependent on IFI16. These results indicate a broader role for IFI16 in the regulation of the type I IFN response to RNA and DNA viruses in antiviral immunity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Interferon

    CERN Multimedia

    De Somer,P

    1975-01-01

    Le Prof.Pierre de Somer est né en Belgique et a fait ses études de médecine à l'Université de Louvin où il a obtenu en 1942 son diplôme. En 1961 il a été nommé professeur ordinaire d'hygiène et de microbiologie à cette même Université et depuis 1967 il est recteur de l'Université catholique flamande de Louvin, président de la société belge de microbiologie et expert de l'O.M.S. Il nous parle de l'interferon et de ses perspectives dans le traitement de maladies virales avec présentation des clichées.

  17. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1-activated transcription of the interferon regulatory factor 1 gene (IRF1

    Directory of Open Access Journals (Sweden)

    Buro Lauren J

    2010-09-01

    Full Text Available Abstract Background Signal transducer and activator of transcription (STAT activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. Results Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1. Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFNγ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD of Pol II are disrupted during gene activation as well. Conclusions H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.

  18. Bim nuclear translocation and inactivation by viral interferon regulatory factor.

    Directory of Open Access Journals (Sweden)

    Young Bong Choi

    2010-08-01

    Full Text Available Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by infection of the host cell. Human herpesvirus 8 (HHV-8 uses several strategies to block the host's innate antiviral defenses via interference with interferon and apoptotic signaling. Contributors include the four viral interferon regulatory factors (vIRFs 1-4, which function in dominant negative fashion to block cellular IRF activities in addition to targeting IRF signaling-induced proteins such as p53 and inhibiting other inducers of apoptosis such as TGFbeta receptor-activated Smad transcription factors. Here we identify direct targeting by vIRF-1 of BH3-only pro-apoptotic Bcl-2 family member Bim, a key negative regulator of HHV-8 replication, to effect its inactivation via nuclear translocation. vIRF-1-mediated relocalization of Bim was identified in transfected cells, by both immunofluorescence assay and western analysis of fractionated cell extracts. Also, co-localization of vIRF-1 and Bim was detected in nuclei of lytically infected endothelial cells. In vitro co-precipitation assays using purified vIRF-1 and Bim revealed direct interaction between the proteins, and Bim-binding residues of vIRF-1 were mapped by deletion and point mutagenesis. Generation and experimental utilization of Bim-refractory vIRF-1 variants revealed the importance of vIRF-1:Bim interaction, specifically, in pro-replication and anti-apoptotic activity of vIRF-1. Furthermore, blocking of the interaction with cell-permeable peptide corresponding to the Bim-binding region of vIRF-1 confirmed the relevance of vIRF-1:Bim association to vIRF-1 pro-replication activity. To our knowledge, this is the first report of an IRF protein that interacts with a Bcl-2 family member and of nuclear sequestration of Bim or any other member of the family as a means of inactivation. The data presented reveal a novel mechanism utilized by a virus to control

  19. Kallikrein–Kinin System Suppresses Type I Interferon Responses: A Novel Pathway of Interferon Regulation

    Directory of Open Access Journals (Sweden)

    Alecia Seliga

    2018-02-01

    Full Text Available The Kallikrein–Kinin System (KKS, comprised of kallikreins (klks, bradykinins (BKs angiotensin-converting enzyme (ACE, and many other molecules, regulates a number of physiological processes, including inflammation, coagulation, angiogenesis, and control of blood pressure. In this report, we show that KKS regulates Type I IFN responses, thought to be important in lupus pathogenesis. We used CpG (TLR9 ligand, R848 (TLR7 ligand, or recombinant IFN-α to induce interferon-stimulated genes (ISGs and proteins, and observed that this response was markedly diminished by BKs, klk1 (tissue kallikrein, or captopril (an ACE inhibitor. BKs significantly decreased the ISGs induced by TLRs in vitro and in vivo (in normal and lupus-prone mice, and in human PBMCs, especially the induction of Irf7 gene (p < 0.05, the master regulator of Type I IFNs. ISGs induced by IFN-α were also suppressed by the KKS. MHC Class I upregulation, a classic response to Type I IFNs, was reduced by BKs in murine dendritic cells (DCs. BKs decreased phosphorylation of STAT2 molecules that mediate IFN signaling. Among the secreted pro-inflammatory cytokines/chemokines analyzed (IL-6, IL12p70, and CXCL10, the strongest suppressive effect was on CXCL10, a highly Type I IFN-dependent cytokine, upon CpG stimulation, both in normal and lupus-prone DCs. klks that break down into BKs, also suppressed CpG-induced ISGs in murine DCs. Captopril, a drug that inhibits ACE and increases BK, suppressed ISGs, both in mouse DCs and human PBMCs. The effects of BK were reversed with indomethacin (compound that inhibits production of PGE2, suggesting that BK suppression of IFN responses may be mediated via prostaglandins. These results highlight a novel regulatory mechanism in which members of the KKS control the Type I IFN response and suggest a role for modulators of IFNs in the pathogenesis of lupus and interferonopathies.

  20. Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3.

    Science.gov (United States)

    Chang, Ruey-Yi; Hsu, Ta-Wen; Chen, Yen-Lin; Liu, Shu-Fan; Tsai, Yi-Jer; Lin, Yun-Tong; Chen, Yi-Shiuan; Fan, Yi-Hsin

    2013-09-27

    Noncoding RNA (ncRNA) plays a critical role in modulating a broad range of diseases. All arthropod-borne flaviviruses produce short fragment ncRNA (sfRNA) collinear with highly conserved regions of the 3'-untranslated region (UTR) in the viral genome. We show that the molar ratio of sfRNA to genomic RNA in Japanese encephalitis virus (JEV) persistently infected cells is greater than that in acutely infected cells, indicating an sfRNA role in establishing persistent infection. Transfecting excess quantities of sfRNA into JEV-infected cells reduced interferon-β (IFN-β) promoter activity by 57% and IFN-β mRNA levels by 52%, compared to mock-transfected cells. Transfection of sfRNA into JEV-infected cells also reduced phosphorylation of interferon regulatory factor-3 (IRF-3), the IFN-β upstream regulator, and blocked roughly 30% of IRF-3 nuclear localization. Furthermore, JEV-infected sfRNA transfected cells produced 23% less IFN-β-stimulated apoptosis than mock-transfected groups did. Taken together, these results suggest that sfRNA plays a role against host-cell antiviral responses, prevents cells from undergoing apoptosis, and thus contributes to viral persistence. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Interferon beta 1, an intermediate in the tumor necrosis factor alpha- induced increased MHC class I expression and an autocrine regulator of the constitutive MHC class I expression

    OpenAIRE

    1987-01-01

    In conclusion, our observations indicate that the constitutive MHC class I expression is regulated by autocrine production of IFN-beta 1. TNF-alpha acts as an enhancer of the autocrine production of IFN-beta 1, and consequently as an enhancer of the MHC class I expression and viral protection.

  2. Fluoxetine regulates cell growth inhibition of interferon-α.

    Science.gov (United States)

    Lin, Yu-Min; Yu, Bu-Chin; Chiu, Wen-Tai; Sun, Hung-Yu; Chien, Yu-Chieh; Su, Hui-Chen; Yen, Shu-Yang; Lai, Hsin-Wen; Bai, Chyi-Huey; Young, Kung-Chia; Tsao, Chiung-Wen

    2016-10-01

    Fluoxetine, a well-known anti-depression agent, may act as a chemosensitizer to assist and promote cancer therapy. However, how fluoxetine regulates cellular signaling to enhance cellular responses against tumor cell growth remains unclear. In the present study, addition of fluoxetine promoted growth inhibition of interferon-alpha (IFN-α) in human bladder carcinoma cells but not in normal uroepithelial cells through lessening the IFN-α-induced apoptosis but switching to cause G1 arrest, and maintaining the IFN-α-mediated reduction in G2/M phase. Activations and signal transducer and transactivator (STAT)-1 and peroxisome proliferator-activated receptor alpha (PPAR-α) were involved in this process. Chemical inhibitions of STAT-1 or PPAR-α partially rescued bladder carcinoma cells from IFN-α-mediated growth inhibition via blockades of G1 arrest, cyclin D1 reduction, p53 downregulation and p27 upregulation in the presence of fluoxetine. However, the functions of both proteins were not involved in the control of fluoxetine over apoptosis and maintained the declined G2/M phase of IFN-α. These results indicated that activation of PPAR-α and STAT-1 participated, at least in part, in growth inhibition of IFN-α in the presence of fluoxetine.

  3. Interferon regulatory factor 5 gene polymorphism in Egyptian children with systemic lupus erythematosus.

    Science.gov (United States)

    Hammad, A; Mossad, Y M; Nasef, N; Eid, R

    2017-07-01

    Background Increased expression of interferon-inducible genes is implicated in the pathogenesis of systemic lupus erythematosus (SLE). Interferon regulatory factor 5 (IRF5) is one of the transcription factors regulating interferon and was proved to be implicated in the pathogenesis of SLE in different populations. Objectives The objective of this study was to investigate the correlation between polymorphisms of the IRF5 gene and SLE susceptibility in a cohort of Egyptian children and to investigate their association with clinico-pathological features, especially lupus nephritis. Subjects and methods Typing of interferon regulatory factor 5 rs10954213, rs2004640 and rs2280714 polymorphisms were done using polymerase chain reaction-restriction fragment length polymorphism for 100 children with SLE and 100 matched healthy controls. Results Children with SLE had more frequent T allele and TT genotype of rs2004640 ( P c  = 0.003 and 0.024, respectively) compared to controls. Patients with nephritis had more frequent T allele of rs2004640 compared to controls ( P c  = 0.003). However the allele and genotype frequencies of the three studied polymorphisms did not show any difference in patients with nephritis in comparison to those without nephritis. Haplotype GTA of rs10954213, rs2004640 and rs2280714, respectively, was more frequent in lupus patients in comparison to controls ( p = 0.01) while the haplotype GGG was more frequent in controls than lupus patients ( p = 0.011). Conclusion The rs2004640 T allele and TT genotype and GTA haplotype of rs rs10954213, rs2004640, and rs2280714, respectively, can be considered as risk factors for the development of SLE. The presence of the rs2004640 T allele increases the risk of nephritis development in Egyptian children with SLE.

  4. Interferon Lambda Genetics and Biology in Regulation of Viral Control

    Directory of Open Access Journals (Sweden)

    Emily A. Hemann

    2017-12-01

    Full Text Available Type III interferons, also known as interferon lambdas (IFNλs, are the most recent addition to the IFN family following their discovery in 2003. Initially, IFNλ was demonstrated to induce expression of interferon-stimulated genes and exert antiviral properties in a similar manner to type I IFNs. However, while IFNλ has been described to have largely overlapping expression and function with type I IFNs, it has become increasingly clear that type III IFNs also have distinct functions from type I IFNs. In contrast to type I IFNs, whose receptor is ubiquitously expressed, type III IFNs signal and function largely at barrier epithelial surfaces, such as the respiratory and gastrointestinal tracts, as well as the blood–brain barrier. In further support of unique functions for type III IFNs, single nucleotide polymorphisms in IFNL genes in humans are strongly associated with outcomes to viral infection. These biological linkages have also been more directly supported by studies in mice highlighting roles of IFNλ in promoting antiviral immune responses. In this review, we discuss the current understanding of type III IFNs, and how their functions are similar to, and different from, type I IFN in various immune cell subtypes and viral infections.

  5. DMPD: The interferon regulatory factor family in host defense: mechanism of action. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502370 The interferon regulatory factor family in host defense: mechanism of acti....html) (.csml) Show The interferon regulatory factor family in host defense: mechanism of action. PubmedID 1...7502370 Title The interferon regulatory factor family in host defense: mechanism

  6. Regulation of interferon receptor expression in human blood lymphocytes in vitro and during interferon therapy

    International Nuclear Information System (INIS)

    Lau, A.S.; Hannigan, G.E.; Freedman, M.H.; Williams, B.R.

    1986-01-01

    Interferons (IFN) elicit antiviral and antineoplastic activities by binding to specific receptors on the cell surface. The binding characteristics of IFN to human lymphocytes were studied using IFN alpha 2 labeled with 125 I to high specific activity. The specific binding curves generated were analyzed by the LIGAND program of Munson and Rodbard to determine receptor numbers. The number of receptors in peripheral blood lymphocytes (PBL) and tonsillar B-lymphocytes (TBL) from normal individuals were 505 +/- 293 (n = 10) and 393 +/- 147 (n = 3) respectively. When these cells were preincubated in vitro with unlabeled IFN alpha 2, the receptor number decreased to 82 +/- 45 and 61 +/- 16 respectively. Receptor binding activities recovered gradually over a period of 72 h when the cells were incubated in IFN-free medium. This recovery of receptors could be blocked by the addition of actinomycin D to the incubation medium. A similar decrease in receptor expression was observed in vivo in PBL from patients being treated daily with 5 X 10(6) units/m2 per d of IFN alpha 2 by subcutaneous injection, for acute lymphoblastic leukemia or papilloma virus infections. Receptor numbers in PBL in vivo were further reduced concurrent with the progression of IFN therapy. Thus, the reduction in IFN receptor expression observed in vitro can be demonstrated in vivo. These studies indicate that monitoring IFN receptor expression in vivo can provide information regarding the availability of IFN receptors at the cell surface for the mediation of IFN actions during the course of IFN therapy

  7. Expression of interferon regulatory factor 4 in chronic myeloid leukemia: correlation with response to interferon alfa therapy.

    Science.gov (United States)

    Schmidt, M; Hochhaus, A; König-Merediz, S A; Brendel, C; Proba, J; Hoppe, G J; Wittig, B; Ehninger, G; Hehlmann, R; Neubauer, A

    2000-10-01

    Mice experiments have established an important role for interferon regulatory factor (IRF) family members in hematopoiesis. We wanted to study the expression of interferon regulatory factor 4 (IRF4) in various hematologic disorders, especially chronic myeloid leukemia (CML), and its association with response to interferon alfa (IFN-alpha) treatment in CML. Blood samples from various hematopoietic cell lines, different leukemia patients (70 CML, 29 acute myeloid leukemia [AML], 10 chronic myelomonocytic leukemia [CMMoL], 10 acute lymphoblastic leukemia, and 10 chronic lymphoid leukemia patients), and 33 healthy volunteers were monitored for IRF4 expression by reverse transcriptase polymerase chain reaction. Then, with a focus on CML, the IRF4 level was determined in sorted cell subpopulations from CML patients and healthy volunteers and in in vitro-stimulated CML cells. Furthermore, IRF4 expression was compared in the CML samples taken before IFN-alpha therapy and in 47 additional CML samples taken during IFN-alpha therapy. IRF4 expression was then correlated with cytogenetic response to IFN-alpha. IRF4 expression was significantly impaired in CML, AML, and CMMoL samples. The downregulation of IRF4 in CML samples was predominantly found in T cells. In CML patients during IFN-alpha therapy, a significant increase in IRF4 levels was detected, and this was also observed in sorted T cells from CML patients. The increase seen during IFN-alpha therapy was not due to different blood counts. In regard to the cytogenetic response with IFN-alpha, a good response was associated with high IRF4 expression. IRF4 expression is downregulated in T cells of CML patients, and its increase is associated with a good response to IFN-alpha therapy. These data suggest IRF4 expression as a useful marker to monitor, if not predict, response to IFN-alpha in CML.

  8. Borna disease virus nucleoprotein inhibits type I interferon induction through the interferon regulatory factor 7 pathway

    International Nuclear Information System (INIS)

    Song, Wuqi; Kao, Wenping; Zhai, Aixia; Qian, Jun; Li, Yujun; Zhang, Qingmeng; Zhao, Hong; Hu, Yunlong; Li, Hui; Zhang, Fengmin

    2013-01-01

    Highlights: •IRF7 nuclear localisation was inhibited by BDV persistently infected. •BDV N protein resistant to IFN induction both in BDV infected OL cell and N protein plasmid transfected OL cell. •BDV N protein is related to the inhibition of IRF7 nuclear localisation. -- Abstract: The expression of type I interferon (IFN) is one of the most potent innate defences against viral infection in higher vertebrates. Borna disease virus (BDV) establishes persistent, noncytolytic infections in animals and in cultured cells. Early studies have shown that the BDV phosphoprotein can inhibit the activation of type I IFN through the TBK1–IRF3 pathway. The function of the BDV nucleoprotein in the inhibition of IFN activity is not yet clear. In this study, we demonstrated IRF7 activation and increased IFN-α/β expression in a BDV-persistently infected human oligodendroglia cell line following RNA interference-mediated BDV nucleoprotein silencing. Furthermore, we showed that BDV nucleoprotein prevented the nuclear localisation of IRF7 and inhibited endogenous IFN induction by poly(I:C), coxsackie virus B3 and IFN-β. Our findings provide evidence for a previously undescribed mechanism by which the BDV nucleoprotein inhibits type I IFN expression by interfering with the IRF7 pathway

  9. Interleukin 12 in part regulates gamma interferon release in human whole blood stimulated with Leptospira interrogans

    NARCIS (Netherlands)

    de Fost, Maaike; Hartskeerl, Rudy A.; Groenendijk, Martijn R.; van der Poll, Tom

    2003-01-01

    Heat-killed pathogenic Leptospira interrogans serovar rachmati induced the production of gamma interferon (IFN-gamma) and the IFN-gamma-inducing cytokines interleukin-12p40 (IL-12p40) and tumor necrosis factor alpha in human whole blood in vitro. The production of IFN-gamma was largely dependent on

  10. Human endogenous retrovirus expression is inversely related with the up-regulation of interferon-inducible genes in the skin of patients with lichen planus.

    Science.gov (United States)

    Nogueira, Marcelle Almeida de Sousa; Gavioli, Camila Fátima Biancardi; Pereira, Nátalli Zanete; de Carvalho, Gabriel Costa; Domingues, Rosana; Aoki, Valéria; Sato, Maria Notomi

    2015-04-01

    Lichen planus (LP) is a common inflammatory skin disease of unknown etiology. Reports of a common transactivation of quiescent human endogenous retroviruses (HERVs) support the connection of viruses to the disease. HERVs are ancient retroviral sequences in the human genome and their transcription is often deregulated in cancer and autoimmune diseases. We explored the transcriptional activity of HERV sequences as well as the antiviral restriction factor and interferon-inducible genes in the skin from LP patients and healthy control (HC) donors. The study included 13 skin biopsies from patients with LP and 12 controls. Real-time PCR assay identified significant decrease in the HERV-K gag and env mRNA expression levels in LP subjects, when compared to control group. The expressions of HERV-K18 and HERV-W env were also inhibited in the skin of LP patients. We observed a strong correlation between HERV-K gag with other HERV sequences, regardless the down-modulation of transcripts levels in LP group. In contrast, a significant up-regulation of the cytidine deaminase APOBEC 3G (apolipoprotein B mRNA-editing), and the GTPase MxA (Myxovirus resistance A) mRNA expression level was identified in the LP skin specimens. Other transcript expressions, such as the master regulator of type I interferon-dependent immune responses, STING (stimulator of interferon genes) and IRF-7 (interferon regulatory factor 7), IFN-β and the inflammassome NALP3, had increased levels in LP, when compared to HC group. Our study suggests that interferon-inducible factors, in addition to their role in innate immunity against exogenous pathogens, contribute to the immune control of HERVs. Evaluation of the balance between HERV and interferon-inducible factor expression could possibly contribute to surveillance of inflammatory/malignant status of skin diseases.

  11. Eosinophils Regulate Interferon Alpha Production in Plasmacytoid Dendritic Cells Stimulated with Components of Neutrophil Extracellular Traps.

    Science.gov (United States)

    Skrzeczynska-Moncznik, Joanna; Zabieglo, Katarzyna; Bossowski, Jozef P; Osiecka, Oktawia; Wlodarczyk, Agnieszka; Kapinska-Mrowiecka, Monika; Kwitniewski, Mateusz; Majewski, Pawel; Dubin, Adam; Cichy, Joanna

    2017-03-01

    Eosinophils constitute an important component of helminth immunity and are not only associated with various allergies but are also linked to autoinflammatory disorders, including the skin disease psoriasis. Here we demonstrate the functional relationship between eosinophils and plasmacytoid dendritic cells (pDCs) as related to skin diseases. We previously showed that pDCs colocalize with neutrophil extracellular traps (NETs) in psoriatic skin. Here we demonstrate that eosinophils are found in psoriatic skin near neutrophils and NETs, suggesting that pDC responses can be regulated by eosinophils. Eosinophils inhibited pDC function in vitro through a mechanism that did not involve cell contact but depended on soluble factors. In pDCs stimulated by specific NET components, eosinophil-conditioned media attenuated the production of interferon α (IFNα) but did not affect the maturation of pDCs as evidenced by the unaltered expression of the costimulatory molecules CD80 and CD86. As pDCs and IFNα play a key role in autoimmune skin inflammation, these data suggest that eosinophils may influence autoinflammatory responses through their impact on the production of IFNα by pDCs.

  12. Interferon-gamma regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, Carmen; Penkowa, Milena; Sáez-Torres, Irene

    2002-01-01

    disease eliciting secretion of proinflammatory cytokines like IFN-gamma or TNF-alpha, and it has been suggested that cytokine-induced oxidative stress could have a role in EAE neuropathology. However, the individual roles of these and other cytokines in the pathogenesis of the disease are still uncertain....... Here we analyze the role of IFN-gamma during EAE by using both IFN-gamma receptor-knockout (IFN-gamma R(-/-)) and wild-type mice, both strains immunized with peptide 40-55 from rat myelin oligodendrocyte glycoprotein. The levels of oxidative stress were determined through the analysis...... of immunoreactivity for inducible NO synthase, nitrotyrosine, and malondialdehyde, as well as through the expression of the tissue-protective antioxidant factors metallothionein I+II (MT-I+II). We also examined the number of cells undergoing apoptosis as judged by using the TUNEL technique. The levels of oxidative...

  13. Interferon regulatory factor-7 modulates experimental autoimmune encephalomyelitis in mice

    DEFF Research Database (Denmark)

    Salem, Mohammad; Mony, Jyothi T; Lobner, Morten

    2011-01-01

    . Furthermore, IRF7-deficient mice developed more severe disease. Flow cytometric analysis showed that the extent of leukocyte infiltration into the CNS was higher in IRF7-deficient mice with significantly higher number of infiltrating macrophages and T cells, and the distribution of infiltrates within......ABSTRACT: BACKGROUND: Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) with unknown etiology. Interferon-beta (IFN-beta), a member of the type I IFN family, is used as a therapeutic for MS and the IFN signaling pathway is implicated in MS susceptibility...... of MS-like disease in mice. Methods The role of IRF7 in development of EAE was studied by immunizing IRF7-KO and C57BL/6 (WT) mice with myelin oligodendrocyte glycoprotein using a standard protocol for the induction of EAE. We measured leukocyte infiltration and localization in the CNS using flow...

  14. C7L family of poxvirus host range genes inhibits antiviral activities induced by type I interferons and interferon regulatory factor 1.

    Science.gov (United States)

    Meng, Xiangzhi; Schoggins, John; Rose, Lloyd; Cao, Jingxin; Ploss, Alexander; Rice, Charles M; Xiang, Yan

    2012-04-01

    Vaccinia virus (VACV) K1L and C7L function equivalently in many mammalian cells to support VACV replication and antagonize antiviral activities induced by type I interferons (IFNs). While K1L is limited to orthopoxviruses, genes that are homologous to C7L are found in diverse mammalian poxviruses. In this study, we showed that the C7L homologues from sheeppox virus and swinepox virus could rescue the replication defect of a VACV mutant deleted of both K1L and C7L (vK1L(-)C7L(-)). Interestingly, the sheeppox virus C7L homologue could rescue the replication of vK1L(-)C7L(-) in human HeLa cells but not in murine 3T3 and LA-4 cells, in contrast to all other C7L homologues. Replacing amino acids 134 and 135 of the sheeppox virus C7L homologue, however, made it functional in the two murine cell lines, suggesting that these two residues are critical for antagonizing a putative host restriction factor which has some subtle sequence variation in human and murine cells. Furthermore, the C7L family of host range genes from diverse mammalian poxviruses were all capable of antagonizing type I IFN-induced antiviral activities against VACV. Screening of a library of more than 350 IFN-stimulated genes (ISGs) identified interferon-regulated factor 1 (IRF1) as an inhibitor of vK1L(-)C7L(-) but not wild-type VACV. Expression of either K1L or C7L, however, rendered vK1L(-)C7L(-) resistant to IRF1-induced antiviral activities. Altogether, our data show that K1L and C7L antagonize IRF1-induced antiviral activities and that the host modulation function of C7L is evolutionally conserved in all poxviruses that can readily replicate in tissue-cultured mammalian cells.

  15. DMPD: The role of the interferon regulatory factor (IRF) family in dendritic celldevelopment and function. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17702640 The role of the interferon regulatory factor (IRF) family in dendritic celldevelopment and function...in dendritic celldevelopment and function. PubmedID 17702640 Title The role of th...e interferon regulatory factor (IRF) family in dendritic celldevelopment and function. Authors Gabriele L, O

  16. mRNA Expression of Interferon Regulatory Factors during Acute Rejection of Liver Transplants in Patients with Autoimmune Hepatitis.

    Science.gov (United States)

    Nasiri, M; Geramizadeh, B; Nabavizadeh, S H; Male-Hosseini, S A; Karimi, M H; Saadat, I

    2018-01-01

    Interferon regulatory factors (IRFs) can play a critical role in the regulation of many facets of innate and adaptive immune responses through transcriptional activation of type I interferons, other proinflammatory cytokines, and chemokines. However, their roles in transplantation immunity still remain to be elucidated. To evaluate the time course of mRNA expression of all 9 members of IRFs family of transcription factors during liver allograft acute rejection. Blood samples of 19 patients with autoimmune hepatitis receiving liver transplants were collected on days 1, 3, 5, and 7 post-transplantation. The patients were followed for 6 months after transplantation and divided into two groups of acute rejection (AR) (n=4) and non-acute rejection (non-AR) (n=15). All of the studied transcription factors were down-regulated in AR-group on days 3, 5, and 7 post-transplantation compared to non-AR group. The mean±SEM IRF5 on day 7 post-transplantation was significantly (p=0.005) lower in AR-group than in non-AR group (0.7±0.21 vs . 1.91±0.27, respectively); expression of other IRFs family members was not significantly different between the two groups on days 3, 5, and 7 post-transplantation. IRF5 may have an important role during the acute rejection of liver transplants.

  17. Gamma Interferon-Induced Guanylate Binding Protein 1 Is a Novel Actin Cytoskeleton Remodeling Factor

    OpenAIRE

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J. K.; Schubert, Dirk W.; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin a...

  18. Interferon Regulatory Factor 6 Has a Protective Role in the Host Response to Endotoxic Shock.

    Directory of Open Access Journals (Sweden)

    Sophie Joly

    Full Text Available Interferon Regulatory Factor (IRF 6, a member of the IRF family, is essential for epidermal and orofacial embryonic development. Irf6 is strongly expressed in keratinocytes, in which it regulates epidermal proliferation, differentiation, and migration. A recent role for Irf6 in Toll-like receptor 2-dependent chemokine gene expression was also reported in an epithelial cell line. However, a function for Irf6 in innate immune cells was not previously reported. In the present study, we investigated the expression and function of Irf6 in bone marrow-derived neutrophils and macrophages. We show here, using a conditional knockout of Irf6 in lysosymeM expressing cells, that Irf6 is required for resistance to LPS-induced endotoxic shock. In addition, Irf6-deficient bone marrow-derived neutrophils exhibited increased chemotactic index and velocity compared with wild-type cells in vitro. TLR4-specific KC and IL6 secretions were upregulated in Irf6-deficient bone marrow-derived macrophages in vitro. These cells also exhibited an increased level of phosphorylated IkBa. Collectively, our findings suggest a role for Irf6 in the resistance to endotoxic shock due to NFk-B-mediated alteration of cytokine production.

  19. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression

    International Nuclear Information System (INIS)

    Kamitani, Shinya; Ohbayashi, Norihiko; Ikeda, Osamu; Togi, Sumihito; Muromoto, Ryuta; Sekine, Yuichi; Ohta, Kazuhide; Ishiyama, Hironobu; Matsuda, Tadashi

    2008-01-01

    Signal transducers and activators of transcription (STATs) mediate cell proliferation, differentiation, and survival in immune responses, hematopoiesis, neurogenesis, and other biological processes. Recently, we showed that KAP1 is a novel STAT-binding partner that regulates STAT3-mediated transactivation. KAP1 is a universal co-repressor protein for the KRAB zinc finger protein superfamily of transcriptional repressors. In this study, we found KAP1-dependent repression of interferon (IFN)/STAT1-mediated signaling. We also demonstrated that endogenous KAP1 associates with endogenous STAT1 in vivo. Importantly, a small-interfering RNA-mediated reduction in KAP1 expression enhanced IFN-induced STAT1-dependent IRF-1 gene expression. These results indicate that KAP1 may act as an endogenous regulator of the IFN/STAT1 signaling pathway

  20. fundTPL-2 – ERK1/2 Signaling Promotes Host Resistance against Intracellular Bacterial Infection by Negative Regulation of Type I Interferon Production3

    Science.gov (United States)

    McNab, Finlay W.; Ewbank, John; Rajsbaum, Ricardo; Stavropoulos, Evangelos; Martirosyan, Anna; Redford, Paul S.; Wu, Xuemei; Graham, Christine M.; Saraiva, Margarida; Tsichlis, Philip; Chaussabel, Damien; Ley, Steven C.; O’Garra, Anne

    2013-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of mortality and morbidity worldwide, causing approximately 1.4 million deaths per year. Key immune components for host protection during tuberculosis include the cytokines IL-12, IL-1 and TNF-α, as well as IFN-γ and CD4+ Th1 cells. However, immune factors determining whether individuals control infection or progress to active tuberculosis are incompletely understood. Excess amounts of type I interferon have been linked to exacerbated disease during tuberculosis in mouse models and to active disease in patients, suggesting tight regulation of this family of cytokines is critical to host resistance. In addition, the immunosuppressive cytokine IL-10 is known to inhibit the immune response to Mtb in murine models through the negative regulation of key pro-inflammatory cytokines and the subsequent Th1 response. We show here, using a combination of transcriptomic analysis, genetics and pharmacological inhibitors that the TPL-2-ERK1/2 signaling pathway is important in mediating host resistance to tuberculosis through negative regulation of type I interferon production. The TPL-2-ERK1/2 signalling pathway regulated production by macrophages of several cytokines important in the immune response to Mtb as well as regulating induction of a large number of additional genes, many in a type I IFN dependent manner. In the absence of TPL-2 in vivo, excess type I interferon promoted IL-10 production and exacerbated disease. These findings describe an important regulatory mechanism for controlling tuberculosis and reveal mechanisms by which type I interferon may promote susceptibility to this important disease. PMID:23842752

  1. MicroRNA-302a suppresses influenza A virus-stimulated interferon regulatory factor-5 expression and cytokine storm induction.

    Science.gov (United States)

    Chen, Xueyuan; Zhou, Li; Peng, Nanfang; Yu, Haisheng; Li, Mengqi; Cao, Zhongying; Lin, Yong; Wang, Xueyu; Li, Qian; Wang, Jun; She, Yinglong; Zhu, Chengliang; Lu, Mengji; Zhu, Ying; Liu, Shi

    2017-12-29

    During influenza A virus (IAV) infection, cytokine storms play a vital and critical role in clinical outcomes. We have previously reported that microRNA (miR)-302c regulates IAV-induced IFN expression by targeting the 3'-UTR of nuclear factor κB (NF-κB)-inducing kinase. In the current study, we found that miR-302a, another member of the miR-302 cluster, controls the IAV-induced cytokine storm. According to results from cell-based and knockout mouse models, IAV induces a cytokine storm via interferon regulatory factor-5 (IRF-5). We also found that IAV infection up-regulates IRF-5 expression and that IRF-5 in turn promotes IAV replication. Furthermore, we observed that IRF-5 is a direct target of miR-302a, which down-regulated IRF-5 expression by binding its 3'-UTR. Moreover, IAV increased IRF-5 expression by down-regulating miR-302a expression. Interestingly, miR-302a inhibited IAV replication. In IAV-infected patients, miR-302a expression was down-regulated, whereas IRF-5 expression was up-regulated. Taken together, our work uncovers and defines a signaling pathway implicated in an IAV-induced cytokine storm. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Effects of interferon-gamma and tumor necrosis factor-alpha on macrophage enzyme levels

    Science.gov (United States)

    Pierangeli, Silvia S.; Sonnenfeld, Gerald

    1989-01-01

    Murine peritoneal macrophages were treated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF). Measurements of changes in acid phosphatase and beta-glucuronidase levels were made as an indication of activation by cytokine treatment. IFN-gamma or TNF-gamma treatment resulted in a significant increase in the activities of both enzymes measured in the cell lysates. This increase was observable after 6 h of incubation, but reached its maximum level after 24 h of incubation. The effect of the treatment of the cell with both cytokines together was additive. No synergistic effect of addition of both cytokines on the enzyme levels was observed.

  3. Dengue Virus Infection Differentially Regulates Endothelial Barrier Function over Time through Type I Interferon Effects

    Science.gov (United States)

    Liu, Ping; Woda, Marcia; Ennis, Francis A.; Libraty, Daniel H.

    2013-01-01

    Background The morbidity and mortality resulting from dengue hemorrhagic fever (DHF) are largely caused by endothelial barrier dysfunction and a unique vascular leakage syndrome. The mechanisms that lead to the location and timing of vascular leakage in DHF are poorly understood. We hypothesized that direct viral effects on endothelial responsiveness to inflammatory and angiogenesis mediators can explain the DHF vascular leakage syndrome. Methods We used an in vitro model of human endothelium to study the combined effects of dengue virus (DENV) type 2 (DENV2) infection and inflammatory mediators on paracellular macromolecule permeability over time. Results Over the initial 72 h after infection, DENV2 suppressed tumor necrosis factor (TNF)–α–mediated hyperpermeability in human umbilical vein endothelial cell (HUVEC) monolayers. This suppressive effect was mediated by type I interferon (IFN). By 1 week, TNF-α stimulation of DENV2-infected HUVECs synergistically increased cell cycling, angiogenic changes, and macromolecule permeability. This late effect could be prevented by the addition of exogenous type I IFN. Conclusions DENV infection of primary human endothelial cells differentially modulates TNF-α–driven angiogenesis and hyperpermeability over time. Type I IFN plays a central role in this process. Our findings suggest a rational model for the DHF vascular leakage syndrome. PMID:19530939

  4. Tumor Necrosis Factors, Interferons and Matrix Metalloproteinase-9 in Sera of Non-Hodgkin's Lymphoma Patients

    International Nuclear Information System (INIS)

    Abdel Malak, C.A.; Karawya, E.M.; Hammouda, G.A.; Zakhary, N.I.

    2003-01-01

    In the present study, the serum levels of some cytokines and the matrix metalloproteinase-9 (MMP-9) were studied in an attempt to find suitable markers for early diagnosis of non- Hodgkin's lymphoma (NHL) and to assess their role in differentiating between disseminated and non disseminated cases. The present study was conducted on 60 patients with non disseminated NHL, 14 patients with disseminated NHL, in addition to 10 healthy controls. Their sera were used to determine tumor necrosis factor-α (TNF--α), tumor necrosis factor--β (TNF-β), interferon---α), (IFN--α), interferon-γ (IFN--γ) and Matrix Metalloproteinase-9 (MMP-9) using the ELISA technique. The results showed that the serum level of TNF---α), and IFN---α), can be used to differentiate between the control group and the group of NHL patients. However, they could not differentiate between non disseminated NHL (nd- NHL) and disseminated NHL (d- NHL). On the other hand, the serum level of TNF-β) can be used to differentiate between nd- NHL and d- NHL, but not between the control group and nd-NHL. Each of [FN--γ and MMP-9 were not useful in discrimination between the control group and the diseased ones. Our data revealed no correlation between serum level of the parameters investigated and the gender of the patients. The present results revealed that TNF-α) and INF-α), can be used as diagnostic tools for NHL. On the other hand, TNF-β) is useful in the differentiation between nd-NHL and d-NHL

  5. The Role of Interferon Regulatory Factor-1 (IRF1) in Overcoming Antiestrogen Resistance in the Treatment of Breast Cancer

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Shajahan, A.N.; Clarke, R.

    2011-01-01

    Resistance to endocrine therapy is common among breast cancer patients with estrogen receptor alpha-positive (ER+) tumors and limits the success of this therapeutic strategy. While the mechanisms that regulate endocrine responsiveness and cell fate are not fully understood, interferon regulatory factor-1 (IRF1) is strongly implicated as a key regulatory node in the underlying signaling network. IRF1 is a tumor suppressor that mediates cell fate by facilitating apoptosis and can do so with or without functional p53. Expression of IRF1 is down regulated in endocrine-resistant breast cancer cells, protecting these cells from IRF1-induced inhibition of proliferation and/or induction of cell death. Nonetheless, when IRF1 expression is induced following IFN treatment, antiestrogen sensitivity is restored by a process that includes the inhibition of pro survival BCL2 family members and caspase activation. These data suggest that a combination of endocrine therapy and compounds that effectively induce IRF1 expression may be useful for the treatment of many ER+ breast cancers. By understanding IRF1 signaling in the context of endocrine responsiveness, we may be able to develop novel therapeutic strategies and better predict how patients will respond to endocrine therapy

  6. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    International Nuclear Information System (INIS)

    Wang, Dang; Fang, Liurong; Luo, Rui; Ye, Rui; Fang, Ying; Xie, Lilan; Chen, Huanchun; Xiao, Shaobo

    2010-01-01

    Research highlights: → FMDV L pro inhibits poly(I:C)-induced IFN-α1/β mRNA expression. → L pro inhibits MDA5-mediated activation of the IFN-α1/β promoter. → L pro significantly reduced the transcription of multiple IRF-responsive genes. → L pro inhibits IFN-α1/β promoter activation by decreasing IRF-3/7 in protein levels. → The ability to process eIF-4G of L pro is not necessary to inhibit IFN-α1/β activation. -- Abstract: The leader proteinase (L pro ) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-β (IFN-β) antagonist that disrupts the integrity of transcription factor nuclear factor κB (NF-κB). In this study, we showed that the reduction of double stranded RNA (dsRNA)-induced IFN-α1/β expression caused by L pro was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-α/β. Furthermore, overexpression of L pro significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L pro mutants indicated that the ability to process eIF-4G of L pro is not required for suppressing dsRNA-induced activation of the IFN-α1/β promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-κB, L pro also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.

  7. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dang; Fang, Liurong; Luo, Rui; Ye, Rui; Fang, Ying; Xie, Lilan; Chen, Huanchun [Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); Xiao, Shaobo, E-mail: shaoboxiao@yahoo.com [Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China)

    2010-08-13

    Research highlights: {yields} FMDV L{sup pro} inhibits poly(I:C)-induced IFN-{alpha}1/{beta} mRNA expression. {yields} L{sup pro} inhibits MDA5-mediated activation of the IFN-{alpha}1/{beta} promoter. {yields} L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes. {yields} L{sup pro} inhibits IFN-{alpha}1/{beta} promoter activation by decreasing IRF-3/7 in protein levels. {yields} The ability to process eIF-4G of L{sup pro} is not necessary to inhibit IFN-{alpha}1/{beta} activation. -- Abstract: The leader proteinase (L{sup pro}) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-{beta} (IFN-{beta}) antagonist that disrupts the integrity of transcription factor nuclear factor {kappa}B (NF-{kappa}B). In this study, we showed that the reduction of double stranded RNA (dsRNA)-induced IFN-{alpha}1/{beta} expression caused by L{sup pro} was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-{alpha}/{beta}. Furthermore, overexpression of L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L{sup pro} mutants indicated that the ability to process eIF-4G of L{sup pro} is not required for suppressing dsRNA-induced activation of the IFN-{alpha}1/{beta} promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-{kappa}B, L{sup pro} also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.

  8. Interferon lambda 4 signals via the IFNλ receptor to regulate antiviral activity against HCV and coronaviruses

    DEFF Research Database (Denmark)

    Hamming, Ole Jensen; Terczynska-Dyla, Ewa; Vieyres, Gabrielle

    2013-01-01

    The IFNL4 gene is a recently discovered type III interferon, which in a significant fraction of the human population harbours a frameshift mutation abolishing the IFNλ4 ORF. The expression of IFNλ4 is correlated with both poor spontaneous clearance of hepatitis C virus (HCV) and poor response to ...

  9. Leishmania major Infection Activates NF-κB and Interferon Regulatory Factors 1 and 8 in Human Dendritic Cells▿

    Science.gov (United States)

    Jayakumar, Asha; Donovan, Michael J.; Tripathi, Vinita; Ramalho-Ortigao, Marcelo; McDowell, Mary Ann

    2008-01-01

    The salient feature of dendritic cells (DC) is the initiation of appropriate adaptive immune responses by discriminating between pathogens. Using a prototypic model of intracellular infection, we previously showed that Leishmania major parasites prime human DC for efficient interleukin-12 (IL-12) secretion. L. major infection is associated with self-limiting cutaneous disease and powerful immunity. In stark contrast, the causative agent of visceral leishmaniasis, Leishmania donovani, does not prime human DC for IL-12 production. Here, we report that DC priming by L. major infection results in the early activation of NF-κB transcription factors and the up-regulation and nuclear translocation of interferon regulatory factor 1 (IRF-1) and IRF-8. The inhibition of NF-κB activation by the pretreatment of DC with caffeic acid phenethyl ester blocks L. major-induced IRF-1 and IRF-8 activation and IL-12 expression. We further demonstrate that IRF-1 and IRF-8 obtained from L. major-infected human DC specifically bind to their consensus binding sites on the IL-12p35 promoter, indicating that L. major infection either directly stimulates a signaling cascade or induces an autocrine pathway that activates IRF-1 and IRF-8, ultimately resulting in IL-12 transcription. PMID:18316378

  10. SAMHD1 restricts HIV-1 replication and regulates interferon production in mouse myeloid cells.

    Directory of Open Access Journals (Sweden)

    Ruonan Zhang

    Full Text Available SAMHD1 restricts the replication of HIV-1 and other retroviruses in human myeloid and resting CD4(+ T cells and that is counteracted in SIV and HIV-2 by the Vpx accessory protein. The protein is a phosphohydrolase that lowers the concentration of deoxynucleoside triphosphates (dNTP, blocking reverse transcription of the viral RNA genome. Polymorphisms in the gene encoding SAMHD1 are associated with Aicardi-Goutières Syndrome, a neurological disorder characterized by increased type-I interferon production. SAMHD1 is conserved in mammals but its role in restricting virus replication and controlling interferon production in non-primate species is not well understood. We show that SAMHD1 is catalytically active and expressed at high levels in mouse spleen, lymph nodes, thymus and lung. siRNA knock-down of SAMHD1 in bone marrow-derived macrophages increased their susceptibility to HIV-1 infection. shRNA knock-down of SAMHD1 in the murine monocytic cell-line RAW264.7 increased its susceptibility to HIV-1 and murine leukemia virus and increased the levels of the dNTP pool. In addition, SAMHD1 knock-down in RAW264.7 cells induced the production of type-I interferon and several interferon-stimulated genes, modeling the situation in Aicardi-Goutières Syndrome. Our findings suggest that the role of SAMHD1 in restricting viruses is conserved in the mouse. The RAW264.7 cell-line serves as a useful tool to study the antiviral and innate immune response functions of SAMHD1.

  11. Gamma interferon-induced guanylate binding protein 1 is a novel actin cytoskeleton remodeling factor.

    Science.gov (United States)

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J K; Schubert, Dirk W; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies.

  12. Product related factors influencing the immunogenicity of interferon beta-1b

    NARCIS (Netherlands)

    Haji Abdolvahab, M.

    2016-01-01

    Therapeutic interferon beta is the first line treatment of relapsing remitting Multiple Sclerosis. However, despite their success in improving patient wellbeing, all IFNβ products encounter a significant problem: immunogenicity. In some patients, IFNβ products induce the formation of antidrug

  13. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors.

    Directory of Open Access Journals (Sweden)

    Sachin Gupta

    Full Text Available Type I interferon is known to inhibit HIV-1 replication through the induction of interferon stimulated genes (ISG, including a number of HIV-1 restriction factors. To better understand interferon-mediated HIV-1 restriction, we constructed a constitutively active form of the RIG-I adapter protein MAVS. Constitutive MAVS was generated by fusion of full length MAVS to a truncated form of the Epstein Barr virus protein LMP1 (ΔLMP1. Supernatant from ΔLMP1-MAVS-transfected 293T cells contained high levels of type I interferons and inhibited HIV replication in both TZM-bl and primary human CD4+ T cells. Supernatant from ΔLMP1-MAVS-transfected 293T cells also inhibited replication of VSV-G pseudotyped single cycle SIV in TZM-bl cells, suggesting restriction was post-entry and common to both HIV and SIV. Gene array analysis of ΔLMP1-MAVS-transfected 293T cells and trans-activated CD4+ T cells showed significant upregulation of ISG, including previously characterized HIV restriction factors Viperin, Tetherin, MxB, and ISG56. Interferon blockade studies implicated interferon-beta in this response. In addition to direct viral inhibition, ΔLMP1-MAVS markedly enhanced secretion of IFN-β and IL-12p70 by dendritic cells and the activation and maturation of dendritic cells. Based on this immunostimulatory activity, an adenoviral vector (Ad5 expressing ΔLMP1-MAVS was tested as a molecular adjuvant in an HIV vaccine mouse model. Ad5-Gag antigen combined with Ad5-ΔLMP1-MAVS enhanced control of vaccinia-gag replication in a mouse challenge model, with 4/5 animals showing undetectable virus following challenge. Overall, ΔLMP1-MAVS is a promising reagent to inhibit HIV-1 replication in infected tissues and enhance vaccine-mediated immune responses, while avoiding toxicity associated with systemic type I interferon administration.

  14. Analysis of the factors motivating HCV-infected patients to accept interferon therapy

    Directory of Open Access Journals (Sweden)

    Nagao Yumiko

    2012-08-01

    Full Text Available Abstract Background The aims of this study were to analyze factors motivating the acceptance of interferon (IFN therapy and to clarify the prevalence of oral mucosal diseases in hepatitis C virus (HCV-infected Japanese patients treated with IFN. Findings A total of 94 HCV-infected patients who were admitted to our hospital for IFN therapy were asked questions regarding their motivation to accept IFN therapy and were investigated for the presence of oral lichen planus (OLP before and during IFN treatment. Recommendation and encouragement from other people were the most common factors motivating the acceptance of IFN therapy (49/94, 52.13%. The other motivators were independent decision (30.85%, economic reasons (5.32%, and others. According to multivariate analysis, three factors – sex (male, retreatment after previous IFN therapy, and independent decision to accept IFN therapy - were associated with patients after curative treatment of hepatocellular carcinoma (HCC. The adjusted odds ratios for these three factors were 26.06, 14.17, and 8.72, respectively. The most common oral mucosal lesions included OLP in 11 cases (11.70%. One patient with OLP had postoperative squamous cell carcinoma of the tongue. The rate of sustained virological response (SVR was 45.45% in cases with OLP and 54.55% in cases without OLP. There were no patients who discontinued IFN therapy because of side effects such as oral mucosal diseases. Conclusions We should give full explanation and recommend a course of treatment for a patient to accept IFN therapy. The system to support liver disease as well as oral diseases is also necessary for patient treated for IFN therapy.

  15. Characteristics of the interferon regulatory factor 5 (IRF5) and its expression in response to LCDV and poly I:C challenges in Japanese flounder, Paralichthys olivaceus.

    Science.gov (United States)

    Hu, Guo-Bin; Lou, Hui-Min; Dong, Xian-Zhi; Liu, Qiu-Ming; Zhang, Shi-Cui

    2012-10-01

    Interferon regulatory factor 5 (IRF5) has been identified as a key transcriptional mediator regulating expression of both type I interferons (IFNs) and proinflammatory cytokines. In this study, the cDNA and genomic sequences of IRF5 were isolated from Japanese flounder, Paralichthys olivaceus. The gene of Japanese flounder (Jf)IRF5 is 7326 bp long, contains 9 exons and 8 introns and encodes a putative protein of 472 amino acids. The predicted protein sequence shares 61.1-81.9% identity to fish IRF5 and possesses a DNA-binding domain (DBD), a middle region (MR), an IRF association domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) conserved in all known IRF5s. Phylogenetic analysis clustered it into the teleost IRF5 subgroup within vertebrate IRF5 group. JfIRF5 mRNA was constitutively expressed in all tissues examined, with higher levels observed in the gills and head kidney. Gene expression of JfIRF5 was analyzed over a 7-day time course in the gills, head kidney, spleen and muscle of Japanese flounders challenged with lymphocystis disease virus (LCDV) and polyinosinic:polycytidylic acid (poly I:C). The data showed that JfIRF5 expression was slightly up-regulated by LCDV, but its induction time was clearly moved up; in contrast, the induction upon poly I:C challenge started not earlier than day 2 post-injection and was stronger and more persistent with a later peak time in all four organs. The late and long-lasting inductive expression of JfIRF5 following poly I:C challenge suggests that it might be an interferon stimulated gene (ISG), the induction of which is driven by poly I:C-induced type I IFNs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Ancient duplications and functional divergence in the interferon regulatory factors of vertebrates provide insights into the evolution of vertebrate immune systems.

    Science.gov (United States)

    Du, Kang; Zhong, Zaixuan; Fang, Chengchi; Dai, Wei; Shen, Yanjun; Gan, Xiaoni; He, Shunping

    2018-04-01

    Interferon regulatory factors (IRFs) were first discovered as transcription factors that regulate the transcription of human interferon (IFN)-β. Increasing evidence shows that they might be important players involved in Adaptive immune system (AIS) evolution. Although numbers of IRFs have been identified in chordates, the evolutionary history and functional diversity of this gene family during the early evolution of vertebrates have remained obscure. Using IRF HMM profile and HMMER searches, we identified 148 IRFs in 11 vertebrates and 4 protochordates. For them, we reconstructed the phylogenetic relationships, determined the synteny conservation, investigated the profile of natural selection, and analyzed the expression patterns in four "living fossil" vertebrates: lamprey, elephant shark, coelacanth and bichir. The results from phylogeny and synteny analysis imply that vertebrate IRFs evolved from three predecessors, instead of four as suggested in a previous study, as results from an ancient duplication followed by special expansions and lost during the vertebrate evolution. The profile of natural selection and expression reveals functional dynamics during the process. Together, they suggest that the 2nd whole-genome duplication (2WGD) provided raw materials for innovation in the IRF family, and that the birth of type-I IFN might be an important factor inducing the establishment of IRF-mediated immune networks. As a member involved in the AIS evolution, IRF provide insights into the process and mechanism involved in the complexity and novelties of vertebrate immune systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Coordinate viral induction of tumor necrosis factor α and interferon β in human B cells and monocytes

    International Nuclear Information System (INIS)

    Goldfeld, A.E.; Maniatis, T.

    1989-01-01

    Human tumor necrosis factor α (TNF-α) gene expression can be induced primarily in cells of the monocyte/macrophage lineage by a variety of inducers, including lipopolysaccharide, phorbol esters such as phorbol 12-myristate 13-acetate, and virus or synthetic double-stranded RNA [poly(I)·poly(C)]. In this paper the authors show that the TNF-α gene also responds to virus and phorbol 12-myristate 13-acetate in B lymphocytes and that virus is the most potent inducer of TNF-α mRNA in both monocyte and B-cell lines. In addition, they show that viral infection coinduces the expression of TNF-α and interferon β mRNA and that viral induction of both genes is blocked by the kinase inhibitor 2-aminopurine. Inhibition of protein synthesis with cycloheximide had no effect on mRNA expression of the genes in one of three cell lines tested (U937) but blocked the viral induction of both genes in another (Namalwa). Thus, the regulatory factors required for mRNA induction of both genes are present prior to the addition of virus in U937 but not in Namalwa cells. However, in a third cell line (JY), cycloheximide blocked viral induction of the interferon β gene but not the TNF-α gene. Taken together, these observations suggest that viral induction of TNF-α and interferon β gene expression may involve overlapping pathways with both common and distinct regulatory factors

  18. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells.

    Science.gov (United States)

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook

    2014-05-02

    Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Interferonregulates glutaminase 1 promoter through STAT1 phosphorylation: relevance to HIV-1 associated neurocognitive disorders.

    Directory of Open Access Journals (Sweden)

    Lixia Zhao

    Full Text Available HIV-1 associated neurocognitive disorders (HAND develop during progressive HIV-1 infection and affect up to 50% of infected individuals. Activated microglia and macrophages are critical cell populations that are involved in the pathogenesis of HAND, which is specifically related to the production and release of various soluble neurotoxic factors including glutamate. In the central nervous system (CNS, glutamate is typically derived from glutamine by mitochondrial enzyme glutaminase. Our previous study has shown that glutaminase is upregulated in HIV-1 infected monocyte-derived-macrophages (MDM and microglia. However, how HIV-1 leads to glutaminase upregulation, or how glutaminase expression is regulated in general, remains unclear. In this study, using a dual-luciferase reporter assay system, we demonstrated that interferon (IFN α specifically activated the glutaminase 1 (GLS1 promoter. Furthermore, IFN-α treatment increased signal transducer and activator of transcription 1 (STAT1 phosphorylation and glutaminase mRNA and protein levels. IFN-α stimulation of GLS1 promoter activity correlated to STAT1 phosphorylation and was reduced by fludarabine, a chemical that inhibits STAT1 phosphorylation. Interestingly, STAT1 was found to directly bind to the GLS1 promoter in MDM, an effect that was dependent on STAT1 phosphorylation and significantly enhanced by IFN-α treatment. More importantly, HIV-1 infection increased STAT1 phosphorylation and STAT1 binding to the GLS1 promoter, which was associated with increased glutamate levels. The clinical relevance of these findings was further corroborated with investigation of post-mortem brain tissues. The glutaminase C (GAC, one isoform of GLS1 mRNA levels in HIV associated-dementia (HAD individuals correlate with STAT1 (p<0.01, IFN-α (p<0.05 and IFN-β (p<0.01. Together, these data indicate that both HIV-1 infection and IFN-α treatment increase glutaminase expression through STAT1 phosphorylation and

  20. AGO2 Negatively Regulates Type I Interferon Signaling Pathway by Competition Binding IRF3 with CBP/p300

    Directory of Open Access Journals (Sweden)

    Shengyu Wang

    2017-05-01

    Full Text Available Viral infection triggers a series of signaling cascades and host innate immune responses, including interferon (IFN production, which depends on coordinated activity of multiple transcription factors. IFN regulatory factor 3 (IRF3 and transcriptional coactivator CREB binding protein (CBP and/or p300 are core factors that participate in transcriptional complex formation in the nucleus. In general, cells balance the production of IFNs through suppressive and stimulative mechanisms, but viral infections can disrupt such equilibrium. This study determined that H5N1 viral infection reduced the distribution of human argonaute 2 (AGO2 in A549 cell nucleus. AGO2 did not block phosphorylation, nuclear translocation, and DNA binding ability of IRF3 but inhibited its association with CBP. Therefore, this newly revealed mechanism shows that cellular response leads to transfer of AGO2 from cell nucleus and promotes IFN-β expression to increase host survival during viral infection.

  1. Differential Regulation of Interferon Responses by Ebola and Marburg Virus VP35 Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Megan R.; Liu, Gai; Mire, Chad E.; Sureshchandra, Suhas; Luthra, Priya; Yen, Benjamin; Shabman, Reed S.; Leung, Daisy W.; Messaoudi, Ilhem; Geisbert, Thomas W.; Amarasinghe, Gaya K.; Basler, Christopher F.

    2016-02-11

    Suppression of innate immune responses during filoviral infection contributes to disease severity. Ebola (EBOV) and Marburg (MARV) viruses each encode a VP35 protein that suppresses RIG-I-like receptor signaling and interferon-α/β (IFN-α/β) production by several mechanisms, including direct binding to double stranded RNA (dsRNA). Here, we demonstrate that in cell culture, MARV infection results in a greater upregulation of IFN responses as compared to EBOV infection. This correlates with differences in the efficiencies by which EBOV and MARV VP35s antagonize RIG-I signaling. Furthermore, structural and biochemical studies suggest that differential recognition of RNA elements by the respective VP35 C-terminal IFN inhibitory domain (IID) rather than affinity for RNA by the respective VP35s is critical for this observation. Our studies reveal functional differences in EBOV versus MARV VP35 RNA binding that result in unexpected differences in the host response to deadly viral pathogens.

  2. Proliferative and antiproliferative effects of interferon-gamma and tumor necrosis factor-alpha on cell lines derived from cervical and ovarian malignancies

    International Nuclear Information System (INIS)

    Mutch, D.G.; Massad, L.S.; Kao, M.S.; Collins, J.L.

    1990-01-01

    Four human cell lines derived from cervical carcinomas (ME-180, SiHa, HT-3, and MS751) and three human cell lines derived from ovarian carcinomas (SK-OV-3, Caov-3, and NIH:OVCAR-3) were analyzed in vitro to determine the effect of recombinant interferon-gamma and recombinant human tumor necrosis factor-alpha on cell growth and survival. The effects of interferon-gamma, tumor necrosis factor-alpha, and both interferon-gamma and tumor necrosis factor-alpha on cell growth were measured after 24 and 72 hours of incubation by the incorporation of chromium 51. The results of this analysis showed that all seven cell lines were resistant to the antiproliferative action of tumor necrosis factor-alpha, that the growth of most cell lines was inhibited by interferon-gamma by 72 hours of incubation, and that after 72 hours of incubation all cell lines demonstrated a synergistic antiproliferative response to the combination of interferon-gamma and tumor necrosis factor-alpha. However, the effects of these cytokines on cell growth were found to differ among cell lines and varied with the concentration and the duration of incubation. The growth of one cell line (Caov-3) was stimulated by both tumor necrosis factor-alpha and interferon-gamma. These results suggest that the clinical effects of these cytokines on the growth of gynecologic cancers may be more complex than previously supposed

  3. An activating mutation of interferon regulatory factor 4 (IRF4) in adult T cell leukemia.

    Science.gov (United States)

    Cherian, Mathew A; Olson, Sydney; Sundaramoorthi, Hemalatha; Cates, Kitra; Cheng, Xiaogang; Harding, John; Martens, Andrew; Challen, Grant A; Tyagi, Manoj; Ratner, Lee; Rauch, Daniel

    2018-03-14

    The human T cell leukemia virus-1 (HTLV-1) oncoprotein Tax drives cell proliferation and resistance to apoptosis early in the pathogenesis of adult T-cell leukemia (ATL). Subsequently, likely as a result of specific immuno-editing, Tax expression is downregulated and functionally replaced by somatic driver mutations of the host genome. Both amplification and point mutations of interferon regulatory factor 4 (IRF4) have been previously detected in ATL, and the K59R mutation is the most common single-nucleotide variation in IRF4 and is found exclusively in ATL. Here high throughput whole-exome sequencing revealed recurrent activating genetic alterations in the T cell receptor, CD28, and NF-kB pathways. Moreover, we found that IRF4, which is transcriptionally activated downstream of these pathways, is frequently mutated in ATL. IRF4 RNA, protein, and IRF4 transcriptional targets are uniformly elevated in HTLV transformed cells and ATL cell lines, and IRF4 was bound to genomic regulatory DNA of many of these transcriptional targets in HTLV-1 transformed cell lines. We further noted that the K59R IRF4 mutant is expressed at higher levels in the nucleus than is wild-type IRF4, and is transcriptionally more active. Expression of both wild-type and the K59R mutant of IRF4 from a constitutive promoter in retrovirally transduced murine bone marrow cells increased the abundance of T lymphocytes but not myeloid cells or B lymphocytes in mice. IRF4 may represent a therapeutic target in ATL since ATL cells select for a mutant of IRF4 with higher nuclear expression and transcriptional activity, and over-expression of IRF4 induces the expansion of T lymphocytes in vivo. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Interferon-β-induced activation of c-Jun NH2-terminal kinase mediates apoptosis through up-regulation of CD95 in CH31 B lymphoma cells

    International Nuclear Information System (INIS)

    Takada, Eiko; Shimo, Kuniaki; Hata, Kikumi; Abiake, Maira; Mukai, Yasuo; Moriyama, Masami; Heasley, Lynn; Mizuguchi, Junichiro

    2005-01-01

    Type I interferon (IFN)-induced antitumor action is due in part to apoptosis, but the molecular mechanisms underlying IFN-induced apoptosis remain largely unresolved. In the present study, we demonstrate that IFN-β induced apoptosis and the loss of mitochondrial membrane potential (ΔΨm) in the murine CH31 B lymphoma cell line, and this was accompanied by the up-regulation of CD95, but not CD95-ligand (CD95-L), tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL). Pretreatment with anti-CD95-L mAb partially prevented the IFN-β-induced loss of ΔΨm, suggesting that the interaction of IFN-β-up-regulated CD95 with CD95-L plays a crucial role in the induction of fratricide. IFN-β induced a sustained activation of c-Jun NH 2 -terminal kinase 1 (JNK1), but not extracellular signal-regulated kinases (ERKs). The IFN-β-induced apoptosis and loss of ΔΨm were substantially compromised in cells overexpressing a dominant-negative form of JNK1 (dnJNK1), and it was slightly enhanced in cells carrying a constitutively active JNK construct, MKK7-JNK1 fusion protein. The IFN-β-induced up-regulation of CD95 together with caspase-8 activation was also abrogated in the dnJNK1 cells while it was further enhanced in the MKK7-JNK1 cells. The levels of cellular FLIP (c-FLIP), competitively interacting with caspase-8, were down-regulated by stimulation with IFN-β but were reversed by the proteasome inhibitor lactacystin. Collectively, the IFN-β-induced sustained activation of JNK mediates apoptosis, at least in part, through up-regulation of CD95 protein in combination with down-regulation of c-FLIP protein

  5. Gene regulation by growth factors

    International Nuclear Information System (INIS)

    Metz, R.; Gorham, J.; Siegfried, Z.; Leonard, D.; Gizang-Ginsberg, E.; Thompson, M.A.; Lawe, D.; Kouzarides, T.; Vosatka, R.; MacGregor, D.; Jamal, S.; Greenberg, M.E.; Ziff, E.B.

    1988-01-01

    To coordinate the proliferation and differentiation of diverse cell types, cells of higher eukaryotes communicate through the release of growth factors. These peptides interact with specific transmembrane receptors of other cells and thereby generate intracellular messengers. The many changes in cellular physiology and activity that can be induced by growth factors imply that growth factor-induced signals can reach the nucleus and control gene activity. Moreover, current evidence also suggests that unregulated signaling along such pathways can induce aberrant proliferation and the formation of tumors. This paper reviews investigations of growth factor regulation of gene expression conducted by the authors' laboratory

  6. Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling

    DEFF Research Database (Denmark)

    Argetsinger, L S; Norstedt, G; Billestrup, Nils

    1996-01-01

    In this report, we demonstrate that insulin receptor substrate-2 (IRS-2) is tyrosyl-phosphorylated following stimulation of 3T3-F442A fibroblasts with growth hormone (GH), leukemia inhibitory factor and interferon-gamma. In response to GH and leukemia inhibitory factor, IRS-2 is immediately...... for GH is further demonstrated by the finding that GH stimulates association of IRS-2 with the 85-kDa regulatory subunit of phosphatidylinositol 3'-kinase and with the protein-tyrosine phosphatase SHP2. These results are consistent with the possibility that IRS-2 is a downstream signaling partner...

  7. AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA

    Directory of Open Access Journals (Sweden)

    Yuki Nakaya

    2017-07-01

    Full Text Available Cytosolic DNAs derived from retrotransposons serve as pathogen-associated molecular patterns for pattern recognition receptors (PRRs that stimulate the induction of interferons (IFNs and other cytokines, leading to autoimmune disease. Cyclic GMP-AMP synthase is one PRR that senses retrotransposon DNA, activating type I IFN responses through the stimulator of IFN genes (STING. Absent in melanoma 2 (AIM2-like receptors (ALRs have also been implicated in these pathways. Here we show that the mouse ALR IFI205 senses cytosolic retrotransposon DNA independently of cyclic GMP-AMP production. AIM2 antagonizes IFI205-mediated IFN induction activity by sequestering it from STING. We also found that the complement of genes located in the ALR locus in C57BL/6 and AIM2 knockout mice are different and unique, which has implications for interpretation of the sensing of pathogens in different mouse strains. Our data suggest that members of the ALR family are critical to the host IFN response to endogenous DNA.

  8. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution.

    Science.gov (United States)

    Okpeku, Moses; Esmailizadeh, Ali; Adeola, Adeniyi C; Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M; Imumorin, Ikhide G; Peters, Sunday O; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats' populations. Fu and Li tests were significantly positive but Tajima's D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat IRF3

  9. AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA.

    Science.gov (United States)

    Nakaya, Yuki; Lilue, Jingtao; Stavrou, Spyridon; Moran, Eileen A; Ross, Susan R

    2017-07-05

    Cytosolic DNAs derived from retrotransposons serve as pathogen-associated molecular patterns for pattern recognition receptors (PRRs) that stimulate the induction of interferons (IFNs) and other cytokines, leading to autoimmune disease. Cyclic GMP-AMP synthase is one PRR that senses retrotransposon DNA, activating type I IFN responses through the stimulator of IFN genes (STING). Absent in melanoma 2 (AIM2)-like receptors (ALRs) have also been implicated in these pathways. Here we show that the mouse ALR IFI205 senses cytosolic retrotransposon DNA independently of cyclic GMP-AMP production. AIM2 antagonizes IFI205-mediated IFN induction activity by sequestering it from STING. We also found that the complement of genes located in the ALR locus in C57BL/6 and AIM2 knockout mice are different and unique, which has implications for interpretation of the sensing of pathogens in different mouse strains. Our data suggest that members of the ALR family are critical to the host IFN response to endogenous DNA. IMPORTANCE Autoimmune diseases like Aicardi-Goutières syndrome and lupus erythematosus arise when cells of the immune system become activated and attack host cells and tissues. We found that DNA generated by endogenous retroviruses and retroelements in inbred mice and mouse cells is recognized by several host proteins found in macrophages that are members of the ALR family and that these proteins both suppress and activate the pathways leading to the generation of cytokines and IFNs. We also show that there is great genetic diversity between different inbred mouse strains in the ALR genes, which might contribute to differential susceptibility to autoimmunity. Understanding how immune cells become activated is important to the control of disease. Copyright © 2017 Nakaya et al.

  10. Deciphering of the Human Interferon-Regulated Proteome by Mass Spectrometry-Based Quantitative Analysis Reveals Extent and Dynamics of Protein Induction and Repression.

    Science.gov (United States)

    Megger, Dominik A; Philipp, Jos; Le-Trilling, Vu Thuy Khanh; Sitek, Barbara; Trilling, Mirko

    2017-01-01

    Interferons (IFNs) are pleotropic cytokines secreted upon encounter of pathogens and tumors. Applying their antipathogenic, antiproliferative, and immune stimulatory capacities, recombinant IFNs are frequently prescribed as drugs to treat different diseases. IFNs act by changing the gene expression profile of cells. Due to characteristics such as rapid gene induction and signaling, IFNs also represent prototypical model systems for various aspects of biomedical research (e.g., signal transduction). In regard to the signaling and activated promoters, IFNs can be subdivided into two groups. Here, alterations of the cellular proteome of human cells treated with IFNα and IFNγ were elucidated in a time-resolved manner by quantitative proteome analysis. The majority of protein regulations were strongly IFN type and time dependent. In addition to the expected upregulation of IFN-responsive proteins, an astonishing number of proteins became profoundly repressed especially by IFNγ. Thus, our comprehensive analysis revealed important insights into the human IFN-regulated proteome and its dynamics of protein induction and repression. Interestingly, the new class of IFN-repressed genes comprises known host factors for highly relevant pathogens such as HIV, dengue virus, and hepatitis C virus.

  11. Deciphering of the Human Interferon-Regulated Proteome by Mass Spectrometry-Based Quantitative Analysis Reveals Extent and Dynamics of Protein Induction and Repression

    Directory of Open Access Journals (Sweden)

    Dominik A. Megger

    2017-09-01

    Full Text Available Interferons (IFNs are pleotropic cytokines secreted upon encounter of pathogens and tumors. Applying their antipathogenic, antiproliferative, and immune stimulatory capacities, recombinant IFNs are frequently prescribed as drugs to treat different diseases. IFNs act by changing the gene expression profile of cells. Due to characteristics such as rapid gene induction and signaling, IFNs also represent prototypical model systems for various aspects of biomedical research (e.g., signal transduction. In regard to the signaling and activated promoters, IFNs can be subdivided into two groups. Here, alterations of the cellular proteome of human cells treated with IFNα and IFNγ were elucidated in a time-resolved manner by quantitative proteome analysis. The majority of protein regulations were strongly IFN type and time dependent. In addition to the expected upregulation of IFN-responsive proteins, an astonishing number of proteins became profoundly repressed especially by IFNγ. Thus, our comprehensive analysis revealed important insights into the human IFN-regulated proteome and its dynamics of protein induction and repression. Interestingly, the new class of IFN-repressed genes comprises known host factors for highly relevant pathogens such as HIV, dengue virus, and hepatitis C virus.

  12. Factors Associated with Quality of Life in Chronic Hepatitis C Patients Who Received Interferon Plus Ribavirin Therapy

    Directory of Open Access Journals (Sweden)

    Shu-Chuan Chang

    2008-06-01

    Conclusion: The study found that patients with chronic hepatitis C who received interferon plus ribavirin therapy had poor quality of life during the treatment period. There was significant difference among patients with different financial stress, and a negative relationship between tangible support and hepatitis quality of life. Financial stress and tangible support are predictors of quality of life for all subjects. The results of this study might assist healthcare personnel to comprehend the quality of life and its related factors in patients with chronic hepatitis C treated with antiviral therapy.

  13. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeon-Jae; Lee, Jin-Hwee [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-05-02

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.

  14. Interferon-regulated chemokine score associated with improvement in disease activity in refractory myositis patients treated with rituximab.

    Science.gov (United States)

    López De Padilla, Consuelo M; Crowson, Cynthia S; Hein, Molly S; Strausbauch, Michael A; Aggarwal, Rohit; Levesque, Marc C; Ascherman, Dana P; Oddis, Chester V; Reed, Ann M

    2015-01-01

    The purpose of this study was to investigate whether serum interferon (IFN)-regulated chemokine and distinct cytokine response profiles are associated with clinical improvement in patients with refractory inflammatory myopathy treated with rituximab. In a randomised, placebo-phase trial Rituximab in Myositis Trial (RIM), 200 refractory adult and paediatric myositis subjects received rituximab. Following rituximab, clinical response and disease activity were assessed. Serum samples and clinical data were collected at baseline and several time-points after rituximab treatment. Multiplexed sandwich immunoassays quantified serum levels of IFN-regulated chemokines and other pro-inflammatory cytokines. Composite IFN-regulated chemokine and Th1, Th2, Th17 and regulatory cytokine scores were computed. Baseline IFN-regulated chemokine, Th1, Th2, Th17 and regulatory cytokine scores correlated with baseline physician global VAS, whereas the baseline Th1, Th2 and Th17 cytokine scores correlated with baseline muscle VAS. We also found baseline IFN-regulated chemokine scores correlated with specific non-muscular targets such as baseline cutaneous (r=0.29; p=0.002) and pulmonary (r=0.18; p=0.02) VAS scores. Among all cytokine/chemokines examined, the baseline score of IFN-regulated chemokines demonstrated the best correlation with changes in muscle VAS at 8 (r=-0.19; p=0.01) and 16 weeks (r=-0.17; p=0.03) following rituximab and physician global VAS at 16 weeks (r=-0.16; p=0.04). In vitro experiments showed increased levels of IL-8 (p=0.04), MCP-1 (p=0.04), IL-6 (p=0.03), IL-1β (p=0.04), IL-13 (p=0.04), IL-10 (p=0.02), IL-2 (p=0.04) and IFN-γ (p=0.02) in supernatants of TLR-3 stimulated PBMCs from non-responder compared to patients responders to rituximab. IFN-regulated chemokines before treatment is associated with improvement in disease activity measures in refractory myositis patients treated with rituximab.

  15. Risk factors for retinopathy associated with interferon α-2b and ribavirin combination therapy in patients with chronic hepatitis C

    Institute of Scientific and Technical Information of China (English)

    Chiaki Okuse; Hiroshi Yotsuyanagi; Yoshihiko Nagase; Yuhtaro Kobayashi; Kiyomi Yasuda; Kazuhiko Koike; Shiro Iino; Michihiro Suzuki; Fumio Itoh

    2006-01-01

    AIM: To elucidate the frequency and risk factors for retinopathy in patients with chronic hepatitis C who are treated by interferon-ribavirin combination therapy.METHODS: We prospectively analyzed 73 patients with histologically confirmed chronic hepatitis C, who underwent combination therapy for 24 wk. Optic fundi were examined before, and 2, 4, 12 and 24 wk after the start of combination therapy.RESULTS: Fourteen patients (19%) developed retinopathy, which was initially diagnosed by the appearance of a cotton wool spot in 12 patients. Retinal hemorrhage was observed in 5 patients. No patient complained of visual disturbance. Retinopathy disappeared in 9 patients (64%)despite the continuation of combination therapy. However, retinopathy persisted in 5 patients with retinal hemorrhage. A comparison of the clinical background between the groups with and without retinopathy showed no significant differences in age, gender, viral genotype, RNA level, white blood cell count, platelet count, prothrombin time, complications by diabetes mellitus or hypertension,or pretreatment arteriosclerotic changes in the optic fundj. However, multiple logistic regression analysis revealed that complication by hypertension was observed with a high frequency in the group with retinopathy (P=0.004,OR=245.918, 95% CI=5.6-10786.2).CONCLUSION: Retinopathy associated with combination therapy of interferon α-2b and ribavirin tends to develop in patients with hypertension.

  16. Identification of orange-spotted grouper (Epinephelus coioides) interferon regulatory factor 3 involved in antiviral immune response against fish RNA virus.

    Science.gov (United States)

    Huang, Youhua; Huang, Xiaohong; Cai, Jia; OuYang, Zhengliang; Wei, Shina; Wei, Jingguang; Qin, Qiwei

    2015-02-01

    Interferon regulatory factor 3 (IRF3) is an important transcription factor which regulates the expression of interferon (IFN) and IFN-stimulated genes (ISGs) following virus recognition. In this study, a novel IRF3 gene was cloned from grouper Epinephelus coioides (EcIRF3) and its effects against Singapore grouper iridovirus (SGIV) and red spotted grouper nervous necrosis virus (RGNNV) was investigated. The full-length of EcIRF3 cDNA was composed of 2513 bp and encoded a polypeptide of 458 amino acids which shared 82% identity with European seabass (Dicentrarchus labrax). EcIRF3 contained three conserved domains including a DNA-binding domain (DBD), an IRF associated domain (IAD) and a serine-rich domain. Expression profile analysis revealed that EcIRF3 was abundant in head kidney, kidney, spleen and gill. Upon different stimuli in vitro, the transcript of EcIRF3 was significantly up-regulated after RGNNV infection or treatment with polyinosin-polycytidylic acid (poly I:C). During SGIV infection, the increase of the EcIRF3 transcription was only detected at the late stage, suggesting that EcIRF3 was differently regulated by different stimuli. Immune fluorescence assay indicated that the fluorescence signal of EcIRF3 was increased significantly after infection with RGNNV or treatment with poly I:C, but moderately at the late stage of SGIV infection. Reporter gene assay showed that EcIRF3 activated zebrafish type I IFN and type III IFN promoter in vitro. The viral gene transcription and virus production of RGNNV were significantly decreased in EcIRF3 overexpressing cells. However, the ectopic expression of EcIRF3 did not affect the gene transcription and virus production of SGIV. Moreover, the mRNA expression levels of type I IFN and IFN-inducible genes (MxI, ISG15 and ISG56) were increased in RGNNV infected EcIRF3 overexpressing cells compared to empty vector transfected cells. Together, our results demonstrated that IFN immune response mediated by grouper IRF3 was

  17. Interferonregulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO.

    Directory of Open Access Journals (Sweden)

    Juliana Croitoru-Lamoury

    Full Text Available The kynurenine pathway (KP of tryptophan metabolism is linked to antimicrobial activity and modulation of immune responses but its role in stem cell biology is unknown. We show that human and mouse mesenchymal and neural stem cells (MSCs and NSCs express the complete KP, including indoleamine 2,3 dioxygenase 1 (IDO and IDO2, that it is highly regulated by type I (IFN-β and II interferons (IFN-γ, and that its transcriptional modulation depends on the type of interferon, cell type and species. IFN-γ inhibited proliferation and altered human and mouse MSC neural, adipocytic and osteocytic differentiation via the activation of IDO. A functional KP present in MSCs, NSCs and perhaps other stem cell types offers novel therapeutic opportunities for optimisation of stem cell proliferation and differentiation.

  18. Interferon β protects against avascular osteonecrosis through interleukin 6 inhibition and silent information regulator transcript-1 upregulation.

    Science.gov (United States)

    Kim, Kyoung Min; Wagle, Sajeev; Moon, Young Jae; Wang, Sung Il; Park, Byung-Hyun; Jang, Kyu Yun; Kim, Jung Ryul

    2018-01-09

    Synovitis of the affected joint is a common in avascular osteonecrosis (AVN). Increased levels of pro-inflammatory cytokine interleukin-6 (IL-6) have been reported in AVN, but the mechanism of this increase remains unclear. Silent information regulator transcript-1 (SIRT1), an NAD-dependent deacetylase, inhibits the release of inflammatory cytokines. Interferon β (IFN-β) has clear anti-inflammatory properties. We sought to investigate the effects of IFN-β treatment on AVN and to evaluate the specific signal pathway relating to IL-6 and SIRT1 affected during AVN. Using a dissection microscope, AVN was surgically induced in the distal femurs of mice. Exogenous IFN-β was administered to the model mice. The effects of exogenous IFN-β on AVN model mice were assessed using hematoxylin eosin and safranin-O staining, and bone resorption activity was measured using tartrate-resistant acid phosphatase (TRAP) and CD68 staining. Western blots, real-time RT-PCR, and immunohistochemical staining were performed to evaluate the production of SIRT1 and IL-6 in tissues. The RAW 264.7 cell line and bone marrow derived osteoclasts treated with exogenous IFN-β. Histological findings indicated well preserved trabecular bone and decreased osteoclast bone resorption activity in IFN-β treated mice compared with mice in the AVN group. Treatment with IFN-β increased SIRT1 expression and inhibited secretion of IL-6 in this AVN mouse model. IFN-β decreased IL-6 secretion by activating SIRT1 in the RAW 264.7 cell and bone marrow derived osteoclasts. Our work suggests that IFN-β could be used to treat AVN and that both SIRT1 and IL-6 are useful targets for treating patients with AVN.

  19. Temporal Regulation of Natural Killer T Cell Interferon Gamma Responses by β-Catenin-Dependent and -Independent Wnt Signaling.

    Science.gov (United States)

    Kling, Jessica C; Jordan, Margaret A; Pitt, Lauren A; Meiners, Jana; Thanh-Tran, Thao; Tran, Le Son; Nguyen, Tam T K; Mittal, Deepak; Villani, Rehan; Steptoe, Raymond J; Khosrotehrani, Kiarash; Berzins, Stuart P; Baxter, Alan G; Godfrey, Dale I; Blumenthal, Antje

    2018-01-01

    Natural killer T (NKT) cells are prominent innate-like lymphocytes in the liver with critical roles in immune responses during infection, cancer, and autoimmunity. Interferon gamma (IFN-γ) and IL-4 are key cytokines rapidly produced by NKT cells upon recognition of glycolipid antigens presented by antigen-presenting cells (APCs). It has previously been reported that the transcriptional coactivator β-catenin regulates NKT cell differentiation and functionally biases NKT cell responses toward IL-4, at the expense of IFN-γ production. β-Catenin is not only a central effector of Wnt signaling but also contributes to other signaling networks. It is currently unknown whether Wnt ligands regulate NKT cell functions. We thus investigated how Wnt ligands and β-catenin activity shape liver NKT cell functions in vivo in response to the glycolipid antigen, α-galactosylceramide (α-GalCer) using a mouse model. Pharmacologic targeting of β-catenin activity with ICG001, as well as myeloid-specific genetic ablation of Wntless (Wls) , to specifically target Wnt protein release by APCs, enhanced early IFN-γ responses. By contrast, within several hours of α-GalCer challenge, myeloid-specific Wls deficiency, as well as pharmacologic targeting of Wnt release using the small molecule inhibitor IWP-2 impaired α-GalCer-induced IFN-γ responses, independent of β-catenin activity. These data suggest that myeloid cell-derived Wnt ligands drive early Wnt/β-catenin signaling that curbs IFN-γ responses, but that, subsequently, Wnt ligands sustain IFN-γ expression independent of β-catenin activity. Our analyses in ICG001-treated mice confirmed a role for β-catenin activity in driving early IL-4 responses by liver NKT cells. However, neither pharmacologic nor genetic perturbation of Wnt production affected the IL-4 response, suggesting that IL-4 production by NKT cells in response to α-GalCer is not driven by released Wnt ligands. Collectively, these data reveal complex temporal

  20. Temporal Regulation of Natural Killer T Cell Interferon Gamma Responses by β-Catenin-Dependent and -Independent Wnt Signaling

    Directory of Open Access Journals (Sweden)

    Jessica C. Kling

    2018-03-01

    Full Text Available Natural killer T (NKT cells are prominent innate-like lymphocytes in the liver with critical roles in immune responses during infection, cancer, and autoimmunity. Interferon gamma (IFN-γ and IL-4 are key cytokines rapidly produced by NKT cells upon recognition of glycolipid antigens presented by antigen-presenting cells (APCs. It has previously been reported that the transcriptional coactivator β-catenin regulates NKT cell differentiation and functionally biases NKT cell responses toward IL-4, at the expense of IFN-γ production. β-Catenin is not only a central effector of Wnt signaling but also contributes to other signaling networks. It is currently unknown whether Wnt ligands regulate NKT cell functions. We thus investigated how Wnt ligands and β-catenin activity shape liver NKT cell functions in vivo in response to the glycolipid antigen, α-galactosylceramide (α-GalCer using a mouse model. Pharmacologic targeting of β-catenin activity with ICG001, as well as myeloid-specific genetic ablation of Wntless (Wls, to specifically target Wnt protein release by APCs, enhanced early IFN-γ responses. By contrast, within several hours of α-GalCer challenge, myeloid-specific Wls deficiency, as well as pharmacologic targeting of Wnt release using the small molecule inhibitor IWP-2 impaired α-GalCer-induced IFN-γ responses, independent of β-catenin activity. These data suggest that myeloid cell-derived Wnt ligands drive early Wnt/β-catenin signaling that curbs IFN-γ responses, but that, subsequently, Wnt ligands sustain IFN-γ expression independent of β-catenin activity. Our analyses in ICG001-treated mice confirmed a role for β-catenin activity in driving early IL-4 responses by liver NKT cells. However, neither pharmacologic nor genetic perturbation of Wnt production affected the IL-4 response, suggesting that IL-4 production by NKT cells in response to α-GalCer is not driven by released Wnt ligands. Collectively, these data reveal

  1. Lack of association of interferon regulatory factor 1 with severe malaria in affected child-parental trio studies across three African populations.

    Directory of Open Access Journals (Sweden)

    Valentina D Mangano

    Full Text Available Interferon Regulatory Factor 1 (IRF-1 is a member of the IRF family of transcription factors, which have key and diverse roles in the gene-regulatory networks of the immune system. IRF-1 has been described as a critical mediator of IFN-gamma signalling and as the major player in driving TH1 type responses. It is therefore likely to be crucial in both innate and adaptive responses against intracellular pathogens such as Plasmodium falciparum. Polymorphisms at the human IRF1 locus have been previously found to be associated with the ability to control P. falciparum infection in populations naturally exposed to malaria. In order to test whether genetic variation at the IRF1 locus also affects the risk of developing severe malaria, we performed a family-based test of association for 18 Single Nucleotide Polymorphisms (SNPs across the gene in three African populations, using genotype data from 961 trios consisting of one affected child and his/her two parents (555 from The Gambia, 204 from Kenya and 202 from Malawi. No significant association with severe malaria or severe malaria subphenotypes (cerebral malaria and severe malaria anaemia was observed for any of the SNPs/haplotypes tested in any of the study populations. Our results offer no evidence that the molecular pathways regulated by the transcription factor IRF-1 are involved in the immune-based pathogenesis of severe malaria.

  2. Differential Delivery of Genomic Double-Stranded RNA Causes Reovirus Strain-Specific Differences in Interferon Regulatory Factor 3 Activation.

    Science.gov (United States)

    Stuart, Johnasha D; Holm, Geoffrey H; Boehme, Karl W

    2018-05-01

    Serotype 3 (T3) reoviruses induce substantially more type 1 interferon (IFN-I) secretion than serotype 1 (T1) strains. However, the mechanisms underlying differences in IFN-I production between T1 and T3 reoviruses remain undefined. Here, we found that differences in IFN-I production between T1 and T3 reoviruses correlate with activation of interferon regulatory factor 3 (IRF3), a key transcription factor for the production of IFN-I. T3 strain rsT3D activated IRF3 more rapidly and to a greater extent than the T1 strain rsT1L, in simian virus 40 (SV40) immortalized endothelial cells (SVECs). Differences in IRF3 activation between rsT1L and rsT3D were observed in the first hours of infection and were independent of de novo viral RNA and protein synthesis. NF-κB activation mirrored IRF3 activation, with rsT3D inducing more NF-κB activity than rsT1L. We also found that IRF3 and NF-κB are activated in a mitochondrial antiviral-signaling protein (MAVS)-dependent manner. rsT1L does not suppress IRF3 activation, as IRF3 phosphorylation could be induced in rsT1L-infected cells. Transfected rsT1L and rsT3D RNA induced IRF3 phosphorylation, indicating that genomic RNA from both strains has the capacity to activate IRF3. Finally, bypassing the normal route of reovirus entry by transfecting in vitro -generated viral cores revealed that rsT1L and rsT3D core particles induced equivalent IRF3 activation. Taken together, our findings indicate that entry-related events that occur after outer capsid disassembly, but prior to deposition of viral cores into the cytoplasm, influence the efficiency of IFN-I responses to reovirus. This work provides further insight into mechanisms by which nonenveloped viruses activate innate immune responses. IMPORTANCE Detection of viral nucleic acids by the host cell triggers type 1 interferon (IFN-I) responses, which are critical for containing and clearing viral infections. Viral RNA is sensed in the cytoplasm by cellular receptors that initiate

  3. Impairment of interferon regulatory factor-3 activation by hepatitis C virus core protein basic amino acid region 1.

    Science.gov (United States)

    Inoue, Kazuaki; Tsukiyama-Kohara, Kyoko; Matsuda, Chiho; Yoneyama, Mitsutoshi; Fujita, Takashi; Kuge, Shusuke; Yoshiba, Makoto; Kohara, Michinori

    2012-11-30

    Interferon regulatory factor-3 (IRF-3), a key transcriptional factor in the type I interferon system, is frequently impaired by hepatitis C virus (HCV), in order to establish persistent infection. However, the exact mechanism by which the virus establishes persistent infection has not been fully understood yet. The present study aimed to investigate the effects of various HCV proteins on IRF-3 activation, and elucidate the underlying mechanisms. To achieve this, full-length HCV and HCV subgenomic constructs corresponding to structural and each of the nonstructural proteins were transiently transfected into HepG2 cells. IFN-β induction, plaque formation, and IRF-3 dimerization were elicited by Newcastle disease virus (NDV) infection. The expressions of IRF-3 homodimer and its monomer, Ser386-phosphorylated IRF-3, and HCV core protein were detected by immunofluorescence and western blotting. IFN-β mRNA expression was quantified by real-time PCR (RT-PCR), and IRF-3 activity was measured by the levels of IRF-3 dimerization and phosphorylation, induced by NDV infection or polyriboinosinic:polyribocytidylic acid [poly(I:C)]. Switching of the expression of the complete HCV genome as well as the core proteins, E1, E2, and NS2, suppressed IFN-β mRNA levels and IRF-3 dimerization, induced by NDV infection. Our study revealed a crucial region of the HCV core protein, basic amino acid region 1 (BR1), to inhibit IRF-3 dimerization as well as its phosphorylation induced by NDV infection and poly (I:C), thus interfering with IRF-3 activation. Therefore, our study suggests that rescue of the IRF-3 pathway impairment may be an effective treatment for HCV infection. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Effects of tumor necrosis factor-alpha and interferon-gamma on expressions of matrix metalloproteinase-2 and -9 in human bladder cancer cells.

    Science.gov (United States)

    Shin, K Y; Moon, H S; Park, H Y; Lee, T Y; Woo, Y N; Kim, H J; Lee, S J; Kong, G

    2000-10-31

    We have investigated the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon (INF-gamma), the potent Bacillus Calmette-Guerin (BCG)-induced cytokines on the production of MMP-2, MMP-9, TIMP-1, TIMP-2 and MT1-MMP in high grade human bladder cancer cell lines, T-24, J-82 and HT-1376 cell lines. MMP-2 expression and activity were decreased in T-24 cells treated with both cytokines in a dose dependent manner. However, J-82 cells treated with TNF-alpha and INF-gamma revealed dose dependent increases of MMP-9 expression and activity with similar baseline expression and activity of MMP-2. HT-1376 cells after exposure to TNF-alpha only enhanced the expression and activity of MMP-9. These results indicate that TNF-alpha and INF-gamma could regulate the production of MMP-2 or MMP-9 on bladder cancer cells and their patterns of regulation are cell specific. Furthermore, this diverse response of bladder cancer cells to TNF-alpha and INF-gamma suggests that BCG immunotherapy may enhance the invasiveness of bladder cancer in certain conditions with induction of MMPs.

  5. fundTPL-2 – ERK1/2 Signaling Promotes Host Resistance against Intracellular Bacterial Infection by Negative Regulation of Type I Interferon Production3

    OpenAIRE

    McNab, Finlay W.; Ewbank, John; Rajsbaum, Ricardo; Stavropoulos, Evangelos; Martirosyan, Anna; Redford, Paul S.; Wu, Xuemei; Graham, Christine M.; Saraiva, Margarida; Tsichlis, Philip; Chaussabel, Damien; Ley, Steven C.; O’Garra, Anne

    2013-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of mortality and morbidity worldwide, causing approximately 1.4 million deaths per year. Key immune components for host protection during tuberculosis include the cytokines IL-12, IL-1 and TNF-α, as well as IFN-γ and CD4+ Th1 cells. However, immune factors determining whether individuals control infection or progress to active tuberculosis are incompletely understood. Excess amounts of type I interferon have bee...

  6. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens.

    Directory of Open Access Journals (Sweden)

    Victoria A Meliopoulos

    2016-08-01

    Full Text Available The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β. Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.

  7. Unity power factor switching regulator

    Science.gov (United States)

    Rippel, Wally E. (Inventor)

    1983-01-01

    A single or multiphase boost chopper regulator operating with unity power factor, for use such as to charge a battery is comprised of a power section for converting single or multiphase line energy into recharge energy including a rectifier (10), one inductor (L.sub.1) and one chopper (Q.sub.1) for each chopper phase for presenting a load (battery) with a current output, and duty cycle control means (16) for each chopper to control the average inductor current over each period of the chopper, and a sensing and control section including means (20) for sensing at least one load parameter, means (22) for producing a current command signal as a function of said parameter, means (26) for producing a feedback signal as a function of said current command signal and the average rectifier voltage output over each period of the chopper, means (28) for sensing current through said inductor, means (18) for comparing said feedback signal with said sensed current to produce, in response to a difference, a control signal applied to the duty cycle control means, whereby the average inductor current is proportionate to the average rectifier voltage output over each period of the chopper, and instantaneous line current is thereby maintained proportionate to the instantaneous line voltage, thus achieving a unity power factor. The boost chopper is comprised of a plurality of converters connected in parallel and operated in staggered phase. For optimal harmonic suppression, the duty cycles of the switching converters are evenly spaced, and by negative coupling between pairs 180.degree. out-of-phase, peak currents through the switches can be reduced while reducing the inductor size and mass.

  8. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway

    Science.gov (United States)

    Robertson, Kevin A.; Hsieh, Wei Yuan; Forster, Thorsten; Blanc, Mathieu; Lu, Hongjin; Crick, Peter J.; Yutuc, Eylan; Watterson, Steven; Martin, Kimberly; Griffiths, Samantha J.; Enright, Anton J.; Yamamoto, Mami; Pradeepa, Madapura M.; Lennox, Kimberly A.; Behlke, Mark A.; Talbot, Simon; Haas, Jürgen; Dölken, Lars; Griffiths, William J.; Wang, Yuqin; Angulo, Ana; Ghazal, Peter

    2016-01-01

    In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway. PMID:26938778

  9. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway.

    Directory of Open Access Journals (Sweden)

    Kevin A Robertson

    2016-03-01

    Full Text Available In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1. Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.

  10. Enhanced actions of insulin-like growth factor-I and interferon-alpha co-administration in experimental cirrhosis.

    Science.gov (United States)

    Tutau, Federico; Rodríguez-Ortigosa, Carlos; Puche, Juan Enrique; Juanarena, Nerea; Monreal, Iñigo; García Fernández, María; Clavijo, Encarna; Castilla, Alberto; Castilla-Cortázar, Inma

    2009-01-01

    Cirrhosis is a diffuse process of hepatic fibrosis and regenerative nodule formation. The liver is the major source of circulating insulin-like growth factor-I (IGF-I) whose plasma levels are diminished in cirrhosis. IGF-I supplementation has been shown to induce beneficial effects in cirrhosis, including antifibrogenic and hepatoprotective effects. On other hand, interferon-alpha (IFN-alpha) therapy seems to suppress the progression of hepatic fibrosis. The aim of this study was to investigate the effect of the co-administration of IGF-I+IFN-alpha to Wistar rats with CCl(4)-induced cirrhosis, exploring liver function tests, hepatic lipid peroxidation and histopathology. The mechanisms underlying the effects of these agents were studied by reverse transcription-polymerase chain reaction, determining the expression of some factors [hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-beta), alpha-smooth muscle actin, collagen, tissular inhibitor of metalloproteinases-1 and pregnane X receptor (PXR)] involved in fibrogenesis, fibrolysis and/or hepatoprotection. Both IGF-I and IFN-alpha exerted significant effects on fibrogenesis. IGF-I significantly increased serum albumin and HGF whereas IFN-alpha-therapy did not. The inhibition of TGF-beta expression was only observed by the effect of IFN-alpha-therapy. In addition, only the co-administration of IGF-I and IFN-alpha was able to increase the PXR. The combined therapy with both factors improved liver function tests, hepatic lipid peroxidation and reduced fibrosis, inducing a relevant histological improvement, reducing fibrosis and recovering hepatic architecture. The co-administration IGF-I+IFN enhanced all the beneficial effects observed with each factor separately, showing an additive action on histopathology and PXR expression, which is involved in the inhibition of fibrogenesis.

  11. Molecular effects of autoimmune-risk promoter polymorphisms on expression, exon choice, and translational efficiency of interferon regulatory factor 5.

    Science.gov (United States)

    Clark, Daniel N; Lambert, Jared P; Till, Rodney E; Argueta, Lissenya B; Greenhalgh, Kathryn E; Henrie, Brandon; Bills, Trieste; Hawkley, Tyson F; Roznik, Marinya G; Sloan, Jason M; Mayhew, Vera; Woodland, Loc; Nelson, Eric P; Tsai, Meng-Hsuan; Poole, Brian D

    2014-05-01

    The rs2004640 single nucleotide polymorphism and the CGGGG copy-number variant (rs77571059) are promoter polymorphisms within interferon regulatory factor 5 (IRF5). They have been implicated as susceptibility factors for several autoimmune diseases. IRF5 uses alternative promoter splicing, where any of 4 first exons begin the mRNA. The CGGGG indel is in exon 1A's promoter; the rs2004640 allele creates a splicing recognition site, enabling usage of exon 1B. This study aimed at characterizing alterations in IRF5 mRNA due to these polymorphisms. Cells with risk polymorphisms exhibited ~2-fold higher levels of IRF5 mRNA and protein, but demonstrated no change in mRNA stability. Quantitative PCR demonstrated decreased usage of exons 1C and 1D in cell lines with the risk polymorphisms. RNA folding analysis revealed a hairpin in exon 1B; mutational analysis showed that the hairpin shape decreased translation 5-fold. Although translation of mRNA that uses exon 1B is low due to a hairpin, increased IRF5 mRNA levels in individuals with the rs2004640 risk allele lead to higher overall protein expression. In addition, several new splice variants of IRF5 were sequenced. IRF5's promoter polymorphisms alter first exon usage and increase transcription levels. High levels of IRF5 may bias the immune system toward autoimmunity.

  12. Synthesis of interleukin 6 (interferon-β2/B cell stimulatory factor 2) in human fibroblasts is triggered by an increase in intracellular cyclic AMP

    International Nuclear Information System (INIS)

    Zhange, Y.; Lin, J.X.; Vilcek, J.

    1988-01-01

    Interleukin 6 (IL-6; also referred to as interferon-β 2 , 26-kDa protein, and B cell stimulatory factor 2) is a cytokine whose actions include a stimulation of immunoglobulin synthesis, enhancement of B cell growth, and modulation of acute phase protein synthesis by hepatocytes. Synthesis of IL-6 is stimulated by interleukin 1 (IL-1), tumor necrosis factor (TNF), or platelet-derived growth factor. The authors examined the role of the cyclic AMP (cAMP)-dependent signal transduction pathway in IL-6 gene expression. Several activators of adenylate cyclase, including prostaglandin E1, forskolin, and cholera toxin, as well as the phosphodiesterase inhibitor isobutylmethylxanthine and the cAMP analog dibutyryl cAMP, shared the ability to cause a dramatic and sustained increase in IL-6 mRNA levels in human FS-4 fibroblasts. Actinomycin D treatment abolished this enhancement. Treatments that increased intracellular cAMP also stimulated the secretion of the IL-6 protein in a biologically active form. Increased intracellular cAMP appears to enhance IL-6 gene expression by a protein kinase C-independent mechanism because down-regulation of protein kinase C by a chronic exposure of cells to a high dose of 12-O-tetradecanoylphorbol 13-acetate did not abolish the enhancement of IL-6 expression by treatments that increase cAMP. IL-1 and TNF too increased IL-6 mRNA levels by a protein kinase C-independent mechanism. The results suggest a role for the cAMP-dependent pathway(s) in IL-6 gene activation by TNF and IL-1

  13. Characterization of common carp (Cyprinus carpio L.) interferon regulatory factor 5 (IRF5) and its expression in response to viral and bacterial challenges.

    Science.gov (United States)

    Zhu, Yaoyao; Qi, Chenchen; Shan, Shijuan; Zhang, Fumiao; Li, Hua; An, Liguo; Yang, Guiwen

    2016-06-27

    Common carp (Cyprinus carpio L.), one of the most economically valuable commercial farming fish species in China, is often infected by a variety of viruses. As the first line of defence against microbial pathogens, the innate immune system plays a crucial role in teleost fish, which are lower vertebrates. Interferon (IFN) regulatory factor 5 (IRF5) is a key molecule in antiviral immunity that regulating the expression of IFN and other pro-inflammatory cytokines. It is necessary to gain more insight into the common carp IFN system and the function of fish IRF5 in the antiviral and antibacterial response. In the present study, we characterized the cDNA and genomic sequence of the IRF5 gene in common carp, and analysed tissue distribution and expression profile of this gene in response to polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharides (LPS) treatment. The common carp IRF5 (ccIRF5) gene is 5790 bp in length and is composed of 9 exons and 8 introns. The open reading frame (ORF) of ccIRF5 is 1554 bp, and encodes 517 amino acid protein. The putative ccIRF5 protein shares identity (65.4-90.0 %) with other fish IRF5s and contains a DNA binding domain (DBD), a middle region (MR), an IRF-associated domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) similar to those found in vertebrate IRF5. Phylogenetic analysis clustered ccIRF5 into the IRF5 subfamily with other vertebrate IRF5 and IRF6 genes. Real-time PCR analysis revealed that ccIRF5 mRNA was expressed in all examined tissues of healthy carps, with high levels observed in the gills and the brain. After poly I:C challenge, expression levels of ccIRF5, tumour-necrosis factor α (ccTNFα) and two IFN stimulated genes [ISGs (ccISG5 and ccPKR)] were up-regulated in seven immune-related tissues (liver, spleen, head kidney, foregut, hindgut, skin and gills). Furthermore, all four genes were up-regulated in vitro upon poly I:C and LPS challenges. Our findings suggest

  14. Factors that regulate embryonic gustatory development

    Directory of Open Access Journals (Sweden)

    Krimm Robin F

    2007-09-01

    Full Text Available Abstract Numerous molecular factors orchestrate the development of the peripheral taste system. The unique anatomy/function of the taste system makes this system ideal for understanding the mechanisms by which these factors function; yet the taste system is underutilized for this role. This review focuses on some of the many factors that are known to regulate gustatory development, and discusses a few topics where more work is needed. Some attention is given to factors that regulate epibranchial placode formation, since gustatory neurons are thought to be primarily derived from this region. Epibranchial placodes appear to arise from a pan-placodal region and a number of regulatory factors control the differentiation of individual placodes. Gustatory neuron differentiation is regulated by a series of transcription factors and perhaps bone morphongenic proteins (BMP. As neurons differentiate, they also proliferate such that their numbers exceed those in the adult, and this is followed by developmental death. Some of these cell-cycling events are regulated by neurotrophins. After gustatory neurons become post-mitotic, axon outgrowth occurs. Axons are guided by multiple chemoattractive and chemorepulsive factors, including semaphorins, to the tongue epithelium. Brain derived neurotrophic factor (BDNF, functions as a targeting factor in the final stages of axon guidance and is required for gustatory axons to find and innervate taste epithelium. Numerous factors are involved in the development of gustatory papillae including Sox-2, Sonic hedge hog and Wnt-β-catenin signaling. It is likely that just as many factors regulate taste bud differentiation; however, these factors have not yet been identified. Studies examining the molecular factors that regulate terminal field formation in the nucleus of the solitary tract are also lacking. However, it is possible that some of the factors that regulate geniculate ganglion development, outgrowth, guidance and

  15. Epidemiology, risk factors and prognosis of Interferon alpha induced thyroid disorders. A Prospective Clinical Study

    Directory of Open Access Journals (Sweden)

    Łukasz Obołończyk

    2017-09-01

    In conclusion: Thyroid disorders are common during IFN-α therapy. Previous epidemiological data seem to be underestimated. Important risk factors for IITD development are: female sex, elevated serum TSH concentration (≥2.5 μU/mL, positive TPO-Ab and increased blood velocity in thyroid arteries.

  16. Interferon-alpha suppressed granulocyte colony stimulating factor production is reversed by CL097, a TLR7/8 agonist.

    LENUS (Irish Health Repository)

    Tajuddin, Tariq

    2012-02-01

    BACKGROUND AND AIM: Neutropenia, a major side-effect of interferon-alpha (IFN-alpha) therapy can be effectively treated by the recombinant form of granulocyte colony stimulating factor (G-CSF), an important growth factor for neutrophils. We hypothesized that IFN-alpha might suppress G-CSF production by peripheral blood mononuclear cells (PBMCs), contributing to the development of neutropenia, and that a toll-like receptor (TLR) agonist might overcome this suppression. METHODS: Fifty-five patients who were receiving IFN-alpha\\/ribavirin combination therapy for chronic hepatitis C virus (HCV) infection were recruited. Absolute neutrophil counts (ANC), monocyte counts and treatment outcome data were recorded. G-CSF levels in the supernatants of PBMCs isolated from the patients and healthy controls were assessed by enzyme-linked immunosorbent assay following 18 h of culture in the absence or presence of IFN- alpha or the TLR7\\/8 agonist, CL097. RESULTS: Therapeutic IFN-alpha caused a significant reduction in neutrophil counts in all patients, with 15 patients requiring therapeutic G-CSF. The reduction in ANC over the course of IFN-alpha treatment was paralleled by a decrease in the ability of PBMCs to produce G-CSF. In vitro G-CSF production by PBMCs was suppressed in the presence of IFN-alpha; however, co-incubation with a TLR7\\/8 agonist significantly enhanced G-CSF secretion by cells obtained both from HCV patients and healthy controls. CONCLUSIONS: Suppressed G-CSF production in the presence of IFN-alpha may contribute to IFN-alpha-induced neutropenia. However, a TLR7\\/8 agonist elicits G-CSF secretion even in the presence of IFN-alpha, suggesting a possible therapeutic role for TLR agonists in treatment of IFN-alpha-induced neutropenia.

  17. Interferon Antagonism as a Common Virulence Factor of Hemorrhagic Fever Viruses

    Science.gov (United States)

    2008-02-01

    of hSRP1 gamma, a tissue-specific nuclear transport factor. Proc Natl Acad Sci U S A 95:582-7. 18. Prescott , J., C. Ye, G. Sen, and B. Hjelle. 2005...1Department of Microbiology 2Department of Medicine, Division of Infectious Diseases 3Emerging Pathogens Institute Mount Sinai School of Medicine, New...York, NY 10029, USA 4Department of Pathology and Immunology, Department of Molecular Microbiology 5Department of Medicine Washington University

  18. Effects of type I/type II interferons and transforming growth factor-beta on B-cell differentiation and proliferation. Definition of costimulation and cytokine requirements for immunoglobulin synthesis and expression.

    Science.gov (United States)

    Estes, D M; Tuo, W; Brown, W C; Goin, J

    1998-12-01

    In this report, we sought to determine the role of selected type I interferons [interferon-alpha (IFN-alpha) and interferon-tau (IFN-tau)], IFN-gamma and transforming growth factor-beta (TGF-beta) in the regulation of bovine antibody responses. B cells were stimulated via CD40 in the presence or absence of B-cell receptor (BCR) cross-linking. IFN-alpha enhanced IgM, IgG2 and IgA responses but did not enhance IgG1 responses. BCR signalling alone was more effective at inducing IgG2 responses with IFN-alpha than dual cross-linking with CD40. Recombinant ovine IFN-tau was less effective at inducing IgG2 responses when compared with IFN-alpha, though IgA responses were similar in magnitude following BCR cross-linking. At higher concentrations, IFN-tau enhanced IgA responses greater than twofold over the levels observed with IFN-alpha. Previous studies have shown that addition of IFN-gamma to BCR or pokeweed mitogen-activated bovine B cells stimulates IgG2 production. However, following CD40 stimulation alone, IFN-gamma was relatively ineffective at stimulating high-rate synthesis of any non-IgM isotype. Dual cross-linking via CD40 and the BCR resulted in decreased synthesis of IgM with a concomitant increase in IgA and similar levels of IgG2 production to those obtained via the BCR alone. We also assessed the effects of endogenous and exogenous TGF-beta on immunoglobulin synthesis by bovine B cells. Exogenous TGF-beta stimulates both IgG2 and IgA production following CD40 and BCR cross-linking in the presence of IL-2. Blocking endogenous TGF-beta did not inhibit the up-regulation of IgG2 or IgA by interferons.

  19. Interferons: between structure and function

    Directory of Open Access Journals (Sweden)

    Katarzyna Bandurska

    2014-05-01

    Full Text Available Interferons are a family of proteins that are released by a variety of cells in response to infections caused by viruses. Currently, we distinguish three types of interferons. They are classified based on the nucleotide sequence, interaction with specific receptors, chromosomal location, structure and physicochemical properties. The following interferons are classified as type I: α, β, ω, κ, ε, ζ, τ, δ, ν. They are recognized and bound by a receptor formed by two peptides, IFN-αR1 and IFN-αR2. Representative of type II interferons is interferon-γ. It binds to a receptor composed of chains IFNGR-1 and IFNGR-2. The recently classified type III interferons comprise IFN-λ1, IFN-λ2, and IFN-λ3. They act on receptors formed by λR1 IFN-and IL-10R2 subunits. A high level of antiviral protection is achieved by IFN-α, IFN-β and IFN-λ. Antiviral activity of interferons is based on the induction and regulation of innate and acquired immune mechanisms. By binding to transmembrane receptors, IFN interacts with target cells mainly by activating the JAK/STAT, but also other signaling pathways. This leads to induction and activation of many antiviral agents, such as protein kinase RNA-activated (PKR, ribonuclease 2-5A pathway, and Mx proteins, as well as numerous apoptotic pathways. As a result of the protective effect of interferons, the virus binding to cells and viral particles penetration into cells is stopped, and the release of the nucleocapsid from an envelope is suppressed. Disruption of transcription and translation processes of the structural proteins prevents the formation of virions or budding of viruses, and as a result degradation of the viral mRNA; the started processes inhibit the chain synthesis of viral proteins and therefore further stimulate the immune system cells.

  20. Overlapping positive and negative regulatory domains of the human β-interferon gene

    International Nuclear Information System (INIS)

    Goodbourn, S.; Maniatis, T.

    1988-01-01

    Virus of poly(I) x poly(C) induction of human β-interferon gene expression requires a 40-base-pair DNA sequence designated the interferon gene regulatory element (IRE). Previous studies have shown that the IRE contains both positive and negative regulatory DNA sequences. To localize these sequences and study their interactions, the authors have examined the effects of a large number of single-base mutations within the IRE on β-interferon gene regulation. They find that the IRE consists of two genetically separable positive regulatory domains and an overlapping negative control sequence. They propose that the β-interferon gene is switched off in uninduced cells by a repressor that blocks the interaction between one of the two positive regulatory sequences and a specific transcription factor. Induction would then lead to inactivation or displacement of the repressor and binding of transcription factors to both positive regulatory domains

  1. Interferon in lyssavirus infection.

    Science.gov (United States)

    Rieder, Martina; Finke, Stefan; Conzelmann, Karl-Klaus

    2012-01-01

    Rabies is a zoonosis still claiming more than 50 000 human deaths per year. Typically, human cases are due to infection with rabies virus, the prototype of the Lyssavirus genus, but sporadic cases of rabies-like encephalitis caused by other lyssaviruses have been reported. In contrast to rabies virus, which has an extremely broad host range including many terrestrial warm-blooded animals, rabies-related viruses are associated predominantly with bats and rarely infect terrestrial species. In spite of a very close genetic relationship of rabies and rabies-related viruses, the factors determining the limited host range of rabies-related viruses are not clear. In the past years the importance of viral countermeasures against the host type I interferon system for establishment of an infection became evident. The rabies virus phosphoprotein (P) has emerged as a critical factor required for paralysing the signalling cascades leading to transcriptional activation of interferon genes as well as interferon signalling pathways, thereby limiting expression of antiviral and immune stimulatory genes. Comparative studies would be of interest in order to determine whether differential abilities of the lyssavirus P proteins contribute to the restricted host range of lyssaviruses.

  2. Association of a Network of Interferon-Stimulated Genes with a Locus Encoding a Negative Regulator of Non-conventional IKK Kinases and IFNB1

    Directory of Open Access Journals (Sweden)

    Saloua Jeidane

    2016-10-01

    Full Text Available Functional genomic analysis of gene expression in mice allowed us to identify a quantitative trait locus (QTL linked in trans to the expression of 190 gene transcripts and in cis to the expression of only two genes, one of which was Ypel5. Most of the trans-expression QTL genes were interferon-stimulated genes (ISGs, and their expression in mouse macrophage cell lines was stimulated in an IFNB1-dependent manner by Ypel5 silencing. In human HEK293T cells, YPEL5 silencing enhanced the induction of IFNB1 by pattern recognition receptors and phosphorylation of TBK1/IKBKE kinases, whereas co-immunoprecipitation experiments revealed that YPEL5 interacted physically with IKBKE. We thus found that the Ypel5 gene (contained in a locus linked to a network of ISGs in mice is a negative regulator of IFNB1 production and innate immune responses that interacts functionally and physically with TBK1/IKBKE kinases.

  3. Identification of a phosphorylation-dependent nuclear localization motif in interferon regulatory factor 2 binding protein 2.

    Directory of Open Access Journals (Sweden)

    Allen C T Teng

    Full Text Available Interferon regulatory factor 2 binding protein 2 (IRF2BP2 is a muscle-enriched transcription factor required to activate vascular endothelial growth factor-A (VEGFA expression in muscle. IRF2BP2 is found in the nucleus of cardiac and skeletal muscle cells. During the process of skeletal muscle differentiation, some IRF2BP2 becomes relocated to the cytoplasm, although the functional significance of this relocation and the mechanisms that control nucleocytoplasmic localization of IRF2BP2 are not yet known.Here, by fusing IRF2BP2 to green fluorescent protein and testing a series of deletion and site-directed mutagenesis constructs, we mapped the nuclear localization signal (NLS to an evolutionarily conserved sequence (354ARKRKPSP(361 in IRF2BP2. This sequence corresponds to a classical nuclear localization motif bearing positively charged arginine and lysine residues. Substitution of arginine and lysine with negatively charged aspartic acid residues blocked nuclear localization. However, these residues were not sufficient because nuclear targeting of IRF2BP2 also required phosphorylation of serine 360 (S360. Many large-scale phosphopeptide proteomic studies had reported previously that serine 360 of IRF2BP2 is phosphorylated in numerous human cell types. Alanine substitution at this site abolished IRF2BP2 nuclear localization in C(2C(12 myoblasts and CV1 cells. In contrast, substituting serine 360 with aspartic acid forced nuclear retention and prevented cytoplasmic redistribution in differentiated C(2C(12 muscle cells. As for the effects of these mutations on VEGFA promoter activity, the S360A mutation interfered with VEGFA activation, as expected. Surprisingly, the S360D mutation also interfered with VEGFA activation, suggesting that this mutation, while enforcing nuclear entry, may disrupt an essential activation function of IRF2BP2.Nuclear localization of IRF2BP2 depends on phosphorylation near a conserved NLS. Changes in phosphorylation status

  4. Shape-dependent regulation of proliferation in normal and malignant human cells and its alteration by interferon

    International Nuclear Information System (INIS)

    Kulesh, D.A.; Greene, J.J.

    1986-01-01

    The relationship between cell morphology, proliferation, and contact inhibition was studied in normal and malignant human cells which varied in their sensitivity to contact inhibition. Their ability to proliferate was examined under conditions where the cells were constrained into different shapes by plating onto plastic surfaces coated with poly(2-hydroxyethyl methacrylate). Poly(2-hydroxyethyl methacrylate) can precisely vary the shape of cells without toxicity. Cell proliferation was quantitated by cell counts and labeling indices were determined by autoradiography. The normal JHU-1 foreskin fibroblasts and IMR-90 lung fibroblasts exhibited contact-inhibited growth with a saturation density of 2.9 X 10(5) and 2.0 X 10(5) cells/cm2, respectively. These cells also exhibited stringent dependency on cell shape with a mitotic index of less than 3% at poly(2-hydroxyethyl methacrylate) concentrations at which the cells were rounded versus a labeling index of 75-90% when the cells were flat. The malignant bladder carcinoma line RT-4 exhibited partial contact-inhibited growth. Its dependency on cell shape was less stringent than that of normal cells with a mitotic index of 37-40% when rounded and 79% when flat. The malignant fibrosarcoma line, HT1080, was not contact inhibited and was entirely shape independent with a mitotic index of 70-90% regardless of cell shape. Treatment of HT1080 cells with low concentration of human fibroblast interferon (less than 40 units/ml) restored shape-dependent proliferation while having little effect on normal cells. Subantiproliferative doses of interferon were also shown to restore contact-inhibited proliferation control to malignant cells previously lacking it

  5. Differential Impact of Interferon Regulatory Factor 7 in Initiation of the Type I Interferon Response in the Lymphocytic Choriomeningitis Virus-Infected Central Nervous System versus the Periphery

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; Fenger, Christina; Issazadeh-Navikas, Shohreh

    2012-01-01

    in the LCMV-infected CNS, whereas concurrent elimination of both factors markedly reduces the virus-induced host response. This is unlike the situation in the periphery, where deficiency of IRF7 almost eliminates the LCMV-induced production of the type I IFNs. This difference is seemingly related to the local...... environment, as peripheral production of type I IFNs is severely reduced in intracerebrally (i.c.) infected IRF7-deficient mice, which undergo a combined infection of the CNS and peripheral organs, such as spleen and lymph nodes. Interestingly, despite the redundancy of IRF7 in initiating the type I IFN...

  6. Tumor necrosis factor beta and ultraviolet radiation are potent regulators of human keratinocyte ICAM-1 expression

    International Nuclear Information System (INIS)

    Krutmann, J.; Koeck, A.S.; Schauer, E.; Parlow, F.; Moeller, A.K.; Kapp, A.; Foerster, E.S.; Schoepf, E.L.; Luger, T.A.

    1990-01-01

    Intercellular adhesion molecule-1 (ICAM-1) functions as a ligand of leukocyte function-associated antigen-1 (LFA-1), as well as a receptor for human picorna virus, and its regulation thus affects various immunologic and inflammatory reactions. The weak, constitutive ICAM-1 expression on human keratinocytes (KC) can be up-regulated by cytokines such as interferon-gamma (IFN gamma) and tumor necrosis factor alpha (TNF alpha). In order to further examine the regulation of KC ICAM-1 expression, normal human KC or epidermoid carcinoma cells (KB) were incubated with different cytokines and/or exposed to ultraviolet (UV) radiation. Subsequently, ICAM-1 expression was monitored cytofluorometrically using a monoclonal anti-ICAM-1 antibody. Stimulation of cells with recombinant human (rh) interleukin (IL) 1 alpha, rhIL-4, rhIL-5, rhIL-6, rh granulocyte/macrophage colony-stimulating factor (GM-CSF), rh interferon alpha (rhIFN alpha), and rh transforming growth factor beta (TGF beta) did not increase ICAM-1 surface expression. In contrast, rhTNF beta significantly up-regulated ICAM-1 expression in a time- and dose-dependent manner. Moreover, the combination of rhTNF beta with rhIFN gamma increased the percentage of ICAM-1-positive KC synergistically. This stimulatory effect of rhTNF beta was further confirmed by the demonstration that rhTNF beta was capable of markedly enhancing ICAM-1 mRNA expression in KC. Finally, exposure of KC in vitro to sublethal doses of UV radiation (0-100 J/m2) prior to cytokine (rhIFN tau, rhTNF alpha, rhTNF beta) stimulation inhibited ICAM-1 up-regulation in a dose-dependent fashion. These studies identify TNF beta and UV light as potent regulators of KC ICAM-1 expression, which may influence both attachment and detachment of leukocytes and possibly viruses to KC

  7. Power factor regulation for household usage

    Science.gov (United States)

    Daud, Nik Ghazali Nik; Hashim, Fakroul Ridzuan; Tarmizi, Muhammad Haziq Ahmad

    2018-02-01

    Power factor regulator technology has recently drawn attention to the consumer and to power generation company in order for consumers to use electricity efficiently. Controlling of power factor for efficient usage can reduce the production of power in fulfilment demands hence reducing the greenhouse effect. This paper presents the design method of power factor controller for household usage. There are several methods to improve the power factor. The power factor controller used by this method is by using capacitors. Total harmonic distortion also has become a major problem for the reliability of the electrical appliances and techniques to control it will be discussed.

  8. The Critical, Clinical Role of Interferon-Beta in Regulating Cancer Stem Cell Properties in Triple-Negative Breast Cancer.

    Science.gov (United States)

    Doherty, Mary R; Jackson, Mark W

    2018-05-11

    Triple-negative breast cancer (TNBC) the deadliest form of this disease currently lacks a targeted therapy and is characterized by increased risk of metastasis and presence of therapeutically resistant cancer stem cells (CSC). Recent evidence has demonstrated that the presence of an interferon (IFN)/signal transducer of activated transcription 1 (STAT1) gene signature correlates with improved therapeutic response and overall survival in TNBC patients. In agreement with these clinical observations, our recent work has demonstrated, in a cell model of TNBC that CSC have intrinsically repressed IFN signaling. Administration of IFN-β represses CSC properties, inducing a less aggressive non-CSC state. Moreover, an elevated IFN-β gene signature correlated with repressed CSC-related genes and an increased presence of tumor-infiltrating lymphocytes in TNBC specimens. We therefore propose that IFN-β be considered as a potential therapeutic option in the treatment of TNBC, to repress the CSC properties responsible for therapy failure. Future studies aim to improve methods to target delivery of IFN-β to tumors, to maximize therapeutic efficacy while minimizing systemic side effects.

  9. Sequence and Expression Analysis of Interferon Regulatory Factor 10 (IRF10 in Three Diverse Teleost Fish Reveals Its Role in Antiviral Defense.

    Directory of Open Access Journals (Sweden)

    Qiaoqing Xu

    Full Text Available Interferon regulatory factor (IRF 10 was first found in birds and is present in the genome of other tetrapods (but not humans and mice, as well as in teleost fish. The functional role of IRF10 in vertebrate immunity is relatively unknown compared to IRF1-9. The target of this research was to clone and characterize the IRF10 genes in three economically important fish species that will facilitate future evaluation of this molecule in fish innate and adaptive immunity.In the present study, a single IRF10 gene was cloned in grass carp Ctenopharyngodon idella and Asian swamp eel Monopterus albus, and two, named IRF10a and IRF10b, in rainbow trout Oncorhynchus mykiss. The fish IRF10 molecules share highest identities to other vertebrate IRF10s, and have a well conserved DNA binding domain, IRF-associated domain, and an 8 exon/7 intron structure with conserved intron phase. The presence of an upstream ATG or open reading frame (ORF in the 5'-untranslated region of different fish IRF10 cDNA sequences suggests potential regulation at the translational level, and this has been verified by in vitro transcription/translation experiments of the trout IRF10a cDNA, but would still need to be validated in fish cells.Both trout IRF10 paralogues are highly expressed in thymus, blood and spleen but are relatively low in head kidney and caudal kidney. Trout IRF10b expression is significantly higher than IRF10a in integumentary tissues i.e. gills, scales, skin, intestine, adipose fin and tail fins, suggesting that IRF10b may be more important in mucosal immunity. The expression of both trout IRF10 paralogues is up-regulated by recombinant IFN-γ. The expression of the IRF10 genes is highly induced by Poly I:C in vitro and in vivo, and by viral infection, but is less responsive to peptidoglycan and bacterial infection, suggesting an important role of fish IRF10 in antiviral defense.

  10. Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to Pseudomonas aeruginosa infection.

    Directory of Open Access Journals (Sweden)

    Sonali Singh

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF, on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1 and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human

  11. Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to Pseudomonas aeruginosa infection.

    Science.gov (United States)

    Singh, Sonali; Barr, Helen; Liu, Yi-Chia; Robins, Adrian; Heeb, Stephan; Williams, Paul; Fogarty, Andrew; Cámara, Miguel; Martínez-Pomares, Luisa

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages

  12. Interferon Potentiates Toll-Like Receptor-Induced Prostaglandin D2 Production through Positive Feedback Regulation between Signal Transducer and Activators of Transcription 1 and Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Ji-Yun Kim

    2017-12-01

    Full Text Available Prostaglandin D2 (PGD2 is a potent lipid mediator that controls inflammation, and its dysregulation has been implicated in diverse inflammatory disorders. Despite significant progress made in understanding the role of PGD2 as a key regulator of immune responses, the molecular mechanism underlying PGD2 production remains unclear, particularly upon challenge with different and multiple inflammatory stimuli. Interferons (IFNs potentiate macrophage activation and act in concert with exogenous inflammatory mediators such as toll-like receptor (TLR ligands to amplify inflammatory responses. A recent study found that IFN-γ enhanced lipopolysaccharide-induced PGD2 production, indicating a role of IFNs in PGD2 regulation. Here, we demonstrate that TLR-induced PGD2 production by macrophages was significantly potentiated by signaling common to IFN-β and IFN-γ in a signal transducer and activators of transcription (STAT1-dependent mechanism. Such potentiation by IFNs was also observed for PGE2 production, despite the differential regulation of PGD synthase and PGE synthase isoforms mediating PGD2 and PGE2 production under inflammatory conditions. Mechanistic analysis revealed that the generation of intracellular reactive oxygen species (ROS was remarkably potentiated by IFNs and required for PGD2 production, but was nullified by STAT1 deficiency. Conversely, the regulation of STAT1 level and activity by IFNs was largely dependent on ROS levels. Using a model of zymosan-induced peritonitis, the relevance of this finding in vivo was supported by marked inhibition of PGD2 and ROS produced in peritoneal exudate cells by STAT1 deficiency. Collectively, our findings suggest that IFNs, although not activating on their own, are potent amplifiers of TLR-induced PGD2 production via positive-feedback regulation between STAT1 and ROS.

  13. Retinoic Acid Modulates Interferon-γ Production by Hepatic Natural Killer T Cells via Phosphatase 2A and the Extracellular Signal-Regulated Kinase Pathway

    Science.gov (United States)

    Chang, Heng-Kwei

    2015-01-01

    Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune function, such as defending against infections and immune regulation. Although RA affects various types of immune cells, including antigen-presenting cells, B lymphocytes, and T lymphocytes, whether it affects natural killer T (NKT) cells remain unknown. In this study, we found that RA decreased interferon (IFN)-γ production by activated NKT cells through T-cell receptor (TCR) and CD28. We also found that RA reduced extracellular signal-regulated kinase (ERK) phosphorylation, but increased phosphatase 2A (PP2A) activity in TCR/CD28-stimulated NKT cells. The increased PP2A activity, at least partly, contributed to the reduction of ERK phosphorylation. Since inhibition of ERK activation decreases IFN-γ production by TCR/CD28-stimulated NKT cells, RA may downregulate IFN-γ production by TCR/CD28-stimulated NKT cells through the PP2A-ERK pathway. Our results demonstrated a novel function of RA in modulating the IFN-γ expression by activated NKT cells. PMID:25343668

  14. Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection.

    Science.gov (United States)

    Zainal, Nurhafiza; Chang, Chih-Peng; Cheng, Yi-Lin; Wu, Yan-Wei; Anderson, Robert; Wan, Shu-Wen; Chen, Chia-Ling; Ho, Tzong-Shiann; AbuBakar, Sazaly; Lin, Yee-Shin

    2017-02-20

    Dengue is one of the most significant mosquito-borne virus diseases worldwide, particularly in tropical and subtropical regions. This study sought to examine the antiviral activity of resveratrol (RESV), a phytoalexin secreted naturally by plants, against dengue virus (DENV) infection. Our data showed that RESV inhibits the translocation of high mobility group box 1 (HMGB1), a DNA binding protein that normally resides in the nucleus, into the cytoplasm and extracellular milieu. HMGB1 migrates out of the nucleus during DENV infection. This migration is inhibited by RESV treatment and is mediated by induction of Sirt1 which leads to the retention of HMGB1 in the nucleus and consequently helps in the increased production of interferon-stimulated genes (ISGs). Nuclear HMGB1 was found to bind to the promoter region of the ISG and positively regulated the expression of ISG. The enhanced transcription of ISGs by nuclear HMGB1 thus contributes to the antiviral activity of RESV against DENV. To the best of our knowledge, this is the first report to demonstrate that RESV antagonizes DENV replication and that nuclear HMGB1 plays a role in regulating ISG production.

  15. Macrophage-Lineage Cells Negatively Regulate the Hematopoietic Stem Cell Pool in Response to Interferon Gamma at Steady State and During Infection.

    Science.gov (United States)

    McCabe, Amanda; Zhang, Yubin; Thai, Vinh; Jones, Maura; Jordan, Michael B; MacNamara, Katherine C

    2015-07-01

    Bone marrow (BM) resident macrophages (Mϕs) regulate hematopoietic stem cell (HSC) mobilization; however, their impact on HSC function has not been investigated. We demonstrate that depletion of BM resident Mϕs increases HSC proliferation as well as the pool of quiescent HSCs. At the same time, during bacterial infection where BM resident Mϕs are selectively increased we observe a decrease in HSC numbers. Moreover, strategies that deplete or reduce Mϕs during infection prevent HSC loss and rescue HSC function. We previously found that the transient loss of HSCs during infection is interferon-gamma (IFNγ)-dependent. We now demonstrate that IFNγ signaling specifically in Mϕs is critical for both the diminished HSC pool and maintenance of BM resident Mϕs during infection. In addition to the IFNγ-dependent loss of BM HSC and progenitor cells (HSPCs) during infection, IFNγ reduced circulating HSPC numbers. Importantly, under infection conditions AMD3100 or G-CSF-induced stem cell mobilization was impaired. Taken together, our data show that IFNγ acts on Mϕs, which are a negative regulator of the HSC pool, to drive the loss in BM and peripheral HSCs during infection. Our findings demonstrate that modulating BM resident Mϕ numbers can impact HSC function in vivo, which may be therapeutically useful for hematologic conditions and refinement of HSC transplantation protocols. © 2015 AlphaMed Press.

  16. Interferons, properties and applications

    NARCIS (Netherlands)

    H. Schellekens (Huub); W. Weimar (Willem)

    1980-01-01

    textabstractThe main theme of this thesis is the clinical evaluation of interferon. From the biology of the interferon system and animal experiments it can be expected that exogenous interferon will exert its optimum effect when used to prevent acute infections or to modulate chronic

  17. Opposite role of interferon-gamma and interleukin-4 on the regulation of blood pressure in mice

    NARCIS (Netherlands)

    Heuven-Nolsen, van D.; Kimpe, de S.J.; Muis, T.; Ark, van I.; Savelkoul, H.F.J.; Beems, R.B.; Oosterhout, van A.J.M.; Nijkamp, F.P.

    1999-01-01

    There is growing evidence that T-lymphocyte dysfunction contributes to the development of hypertension. IL-4 and IFN- are important regulators of T-lymphocyte function. Therefore, we investigated the effect of neutralizing antibodies against IL-4 (-IL-4) and IFN- (-IFN-) on the development of

  18. Interferon-induced central retinal vein thrombosis

    International Nuclear Information System (INIS)

    Nazir, L.; Husain, A.; Haroon, W.; Shaikh, M.I.; Mirza, S.A.; Khan, Z.

    2012-01-01

    A middle-aged lady presented with sudden onset of unilateral central retinal vein thrombosis after completing 6 months course of interferon and ribavirin for chronic hepatitis C infection. She had no risk factors and all her thrombophilia workup was normal, however, she was found to be dyslipidemic which may have contributed to atherosclerosis and predispose to thrombosis. Despite anticoagulation, her visual acuity deteriorated. This case illustrates the possibility of unpredictable visual complication of interferon. Frequent eye examination should be undertaken in patients having underlying risk factors like diabetes, hypertension or dyslipidemia undergoing interferon therapy. (author)

  19. Interferon-induced central retinal vein thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, L; Husain, A; Haroon, W; Shaikh, M I; Mirza, S A; Khan, Z

    2012-11-15

    A middle-aged lady presented with sudden onset of unilateral central retinal vein thrombosis after completing 6 months course of interferon and ribavirin for chronic hepatitis C infection. She had no risk factors and all her thrombophilia workup was normal, however, she was found to be dyslipidemic which may have contributed to atherosclerosis and predispose to thrombosis. Despite anticoagulation, her visual acuity deteriorated. This case illustrates the possibility of unpredictable visual complication of interferon. Frequent eye examination should be undertaken in patients having underlying risk factors like diabetes, hypertension or dyslipidemia undergoing interferon therapy. (author)

  20. Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1

    DEFF Research Database (Denmark)

    Argetsinger, L S; Hsu, G W; Myers, M G

    1995-01-01

    ), the principle substrate of the insulin receptor. Tyrosyl phosphorylation of IRS-1 is a critical step in insulin signaling and provides binding sites for proteins with the appropriate Src homology 2 domains, including the 85-kDa regulatory subunit of phosphatidylinositol (PI) 3'-kinase. In 3T3-F442A fibroblasts......., Campbell, G. S., Allevato, G., Billestrup, N., Norstedt, G., and Carter-Su, C. (1994) J. Biol. Chem. 269, 21709-21717). When other cytokines that activate JAK2 were tested for the ability to stimulate the tyrosyl phosphorylation of IRS-1, stimulation was detected with interferon-gamma and leukemia...... to JAK2. GH is also shown to stimulate binding of IRS-1 to the 85-kDa regulatory subunit of PI 3'-kinase. The ability of GH to stimulate tyrosyl phosphorylation of IRS-1 and its association with PI 3'-kinase provides a biochemical basis for responses shared by insulin and GH including the well...

  1. Interferon-¿- and tumour necrosis factor-a-producing cells in humans who are immune to cutaneous leishmaniasis

    DEFF Research Database (Denmark)

    Kemp, K; Theander, T G; Hviid, L

    1999-01-01

    Individuals infected with Leishmania major usually acquire immunity to cutaneous leishmaniasis. In this study we have investigated peripheral blood mononuclear cells (PBMC) stimulated by Leishmania antigens in two groups of Sudanese individuals, one with a history of cutaneous leishmaniasis and one...... leishmaniasis produced significantly higher levels of IFN-gamma and TNF-alpha than cells from individuals without a history of the disease. Similar levels of IL-10 were found in the two groups. Flow cytometric analysis revealed high numbers of CD3+ cells producing IFN-gamma and TNF-alpha, and only a few CD3......+ cells containing IL-10, in the PBMC cultures from the individuals with a history of cutaneous leishmaniasis. Interferon-gamma and TNF-alpha were predominantly produced by CD4+ T cells rather than CD8+ T cells. The results suggest that cellular immunity against cutaneous leishmaniasis is mediated...

  2. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization.

    Science.gov (United States)

    Veeranki, Sudhakar; Choubey, Divaker

    2012-01-01

    The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein. Published by Elsevier Ltd.

  3. TANK-Binding Kinase 1 (TBK1 Isoforms Negatively Regulate Type I Interferon Induction by Inhibiting TBK1-IRF3 Interaction and IRF3 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Yi Wei Hu

    2018-01-01

    Full Text Available TANK-binding kinase 1 (TBK1 is an important serine/threonine-protein kinase that mediates phosphorylation and nuclear translocation of IRF3, which contributes to induction of type I interferons (IFNs in the innate antiviral response. In mammals, TBK1 spliced isoform negatively regulates the virus-triggered IFN-β signaling pathway by disrupting the interaction between retinoic acid-inducible gene I (RIG-I and mitochondria antiviral-signaling protein (MAVS. However, it is still unclear whether alternative splicing patterns and the function of TBK1 isoform(s exist in teleost fish. In this study, we identify two alternatively spliced isoforms of TBK1 from zebrafish, termed TBK1_tv1 and TBK1_tv2. Both TBK1_tv1 and TBK1_tv2 contain an incomplete STKc_TBK1 domain. Moreover, the UBL_TBK1_like domain is also missing for TBK1_tv2. TBK1_tv1 and TBK1_tv2 are expressed in zebrafish larvae. Overexpression of TBK1_tv1 and TBK1_tv2 inhibits RIG-I-, MAVS-, TBK1-, and IRF3-mediated activation of IFN promoters in response to spring viremia of carp virus infection. Also, TBK1_tv1 and TBK1_tv2 inhibit expression of IFNs and IFN-stimulated genes induced by MAVS and TBK1. Mechanistically, TBK1_tv1 and TBK1_tv2 competitively associate with TBK1 and IRF3 to disrupt the formation of a functional TBK1-IRF3 complex, impeding the phosphorylation of IRF3 mediated by TBK1. Collectively, these results demonstrate that TBK1 spliced isoforms are dominant negative regulators in the RIG-I/MAVS/TBK1/IRF3 antiviral pathway by targeting the functional TBK1-IRF3 complex formation. Identification and functional characterization of piscine TBK1 spliced isoforms may contribute to understanding the role of TBK1 expression in innate antiviral response.

  4. Two Distinct Interferon-γ in the Orange-Spotted Grouper (Epinephelus coioides: Molecular Cloning, Functional Characterization, and Regulation in Toll-Like Receptor Pathway by Induction of miR-146a

    Directory of Open Access Journals (Sweden)

    Wan Peng

    2018-02-01

    Full Text Available Interferon gamma (IFNγ is a Th1 cytokine that is critical for innate and adaptive immunity. Toll-like receptors (TLRs signaling pathways are critical in early host defense against invading pathogens. miR-146a has been reported to participate in the regulation of host immunity. The known mechanisms of integrations between the IFNγ and TLR signaling pathways are incompletely understood, especially in teleosts. In this study, orange-spotted grouper (Epinephelus coioides IFNγ1 and IFNγ2, their biological activities, especially their involvements in TLR pathway, were explored. We identified and cloned two IFNγ genes of E. coioides, namely EcIFNγ1 and EcIFNγ2. The produced recombinant E. coioides IFNγ1 (rEcIFNγ1 and IFNγ2 (rEcIFNγ2 proteins showed functions, which are similar to those of other bony fishes, such as enhancing nitric oxide responses and respiratory burst response. rEcIFNγ2 could regulate TLR pathway by enhancing the promoter activity of miR-146a upstream sequence and thus increasing the expression level of miR-146a, which possibly targets TNF receptor-associated factor 6 (TRAF6, a key adapter molecule in TLR signaling pathway. Taken together, these findings unravel a novel regulatory mechanism of anti-inflammatory response by IFNγ2, which could mediate TLR pathway through IFNγ2–miR-146a–TRAF6 negative regulation loop. It is suggested that IFNγ2 may provide a promising therapeutic, which may help to fine tune the immune response.

  5. A Novel Nuclear Trafficking Module Regulates the Nucleocytoplasmic Localization of the Rabies Virus Interferon Antagonist, P Protein*

    Science.gov (United States)

    Oksayan, Sibil; Wiltzer, Linda; Rowe, Caitlin L.; Blondel, Danielle; Jans, David A.; Moseley, Gregory W.

    2012-01-01

    Regulated nucleocytoplasmic transport of proteins is central to cellular function and dysfunction during processes such as viral infection. Active protein trafficking into and out of the nucleus is dependent on the presence within cargo proteins of intrinsic specific modular signals for nuclear import (nuclear localization signals, NLSs) and export (nuclear export signals, NESs). Rabies virus (RabV) phospho (P) protein, which is largely responsible for antagonising the host anti-viral response, is expressed as five isoforms (P1–P5). The subcellular trafficking of these isoforms is thought to depend on a balance between the activities of a dominant N-terminal NES (N-NES) and a distinct C-terminal NLS (C-NLS). Specifically, the N-NES-containing isoforms P1 and P2 are cytoplasmic, whereas the shorter P3–P5 isoforms, which lack the N-NES, are believed to be nuclear through the activity of the C-NLS. Here, we show for the first time that RabV P contains an additional strong NLS in the N-terminal region (N-NLS), which, intriguingly, overlaps with the N-NES. This arrangement represents a novel nuclear trafficking module where the N-NLS is inactive in P1 but becomes activated in P3, concomitant with truncation of the N-NES, to become the principal targeting signal conferring nuclear accumulation. Understanding this unique switch arrangement of overlapping, co-regulated NES/NLS sequences is vital to delineating the critical role of RabV P protein in viral infection. PMID:22700958

  6. Interferon-gamma and tumor necrosis factor-alpha sensitize primarily resistant human endometrial stromal cells to Fas-mediated apoptosis

    DEFF Research Database (Denmark)

    Fluhr, Herbert; Krenzer, Stefanie; Stein, Gerburg M

    2007-01-01

    The subtle interaction between the implanting embryo and the maternal endometrium plays a pivotal role during the process of implantation. Human endometrial stromal cells (ESCs) express Fas and the implanting trophoblast cells secrete Fas ligand (FASLG, FasL), suggesting a possible role for Fas......-mediated signaling during early implantation. Here we show that ESCs are primarily resistant to Fas-mediated apoptosis independently of their state of hormonal differentiation. Pre-treatment of ESCs with interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha sensitizes them to become apoptotic upon stimulation...... of Fas by an agonistic anti-Fas antibody. Incubation of ESCs with the early embryonic signal human chorionic gonadotropin (hCG, CGB) does not influence their reaction to Fas stimulation. The sensitizing effect of IFN-gamma and TNF-alpha was accompanied by a significant upregulation of Fas and FLICE...

  7. Pro-apoptotic signaling induced by Retinoic acid and dsRNA is under the control of Interferon Regulatory Factor-3 in breast cancer cells.

    Science.gov (United States)

    Bernardo, Ana R; Cosgaya, José M; Aranda, Ana; Jiménez-Lara, Ana M

    2017-07-01

    Breast cancer is one of the most lethal malignancies for women. Retinoic acid (RA) and double-stranded RNA (dsRNA) are considered signaling molecules with potential anticancer activity. RA, co-administered with the dsRNA mimic polyinosinic-polycytidylic acid (poly(I:C)), synergizes to induce a TRAIL (Tumor-Necrosis-Factor Related Apoptosis-Inducing Ligand)- dependent apoptotic program in breast cancer cells. Here, we report that RA/poly(I:C) co-treatment, synergically, induce the activation of Interferon Regulatory Factor-3 (IRF3) in breast cancer cells. IRF3 activation is mediated by a member of the pathogen recognition receptors, Toll-like receptor-3 (TLR3), since its depletion abrogates IRF3 activation by RA/poly(I:C) co-treatment. Besides induction of TRAIL, apoptosis induced by RA/poly(I:C) correlates with the increased expression of pro-apoptotic TRAIL receptors, TRAIL-R1/2, and the inhibition of the antagonistic receptors TRAIL-R3/4. IRF3 plays an important role in RA/poly(I:C)-induced apoptosis since IRF3 depletion suppresses caspase-8 and caspase-3 activation, TRAIL expression upregulation and apoptosis. Interestingly, RA/poly(I:C) combination synergizes to induce a bioactive autocrine/paracrine loop of type-I Interferons (IFNs) which is ultimately responsible for TRAIL and TRAIL-R1/2 expression upregulation, while inhibition of TRAIL-R3/4 expression is type-I IFN-independent. Our results highlight the importance of IRF3 and type-I IFNs signaling for the pro-apoptotic effects induced by RA and synthetic dsRNA in breast cancer cells.

  8. Interferon induction by adenoviruses

    Energy Technology Data Exchange (ETDEWEB)

    Beladi, I; Bakay, M; Pusztai, R; Mucsi, I; Tarodi, B [University Medical School, Szeged (Hungary). Inst. of Microbiology

    1979-02-01

    All human, simian, bovine and avian adenovirus types tested so far and the canine hepatitis virus induce interferon production in chick cells. This finding indicated this property to be characteristic for viruses belonging to the adenovirus group. Trypsin treatment, which had no effect upon the infectivity, diminished or eliminated the interferon-inducing abilities of crude adenoviruses, and thus the need for a trypsin-sensitive protein in interferon induction was suggested. T antigen and interferon were formed simultaneously in chick embryo fibroblast cells infected with human adenovirus type 12, and there-fore the adenovirus-specific T antigen was resitant to the action of endogenous interferon synthetized by the same cells. In chicks inoculated with human types, the appearance of interferon was biphasic: an 'early' and a 'late' interferon could be demonstrated with maximum titre 4 and 10 hr, respectively, after virus infection. In chicks infected with adenoviruses, first interferon production and then a decreased primary immune response to sheep red blood cells was observed. It was assumed that in adenovirus-infected chicks the interferon produced by viral stimulus resulted in a transient immunosuppression.

  9. Respiratory Syncytial Virus-Infected Mesenchymal Stem Cells Regulate Immunity via Interferon Beta and Indoleamine-2,3-Dioxygenase.

    Directory of Open Access Journals (Sweden)

    Michael B Cheung

    Full Text Available Respiratory syncytial virus (RSV has been reported to infect human mesenchymal stem cells (MSCs but the consequences are poorly understood. MSCs are present in nearly every organ including the nasal mucosa and the lung and play a role in regulating immune responses and mediating tissue repair. We sought to determine whether RSV infection of MSCs enhances their immune regulatory functions and contributes to RSV-associated lung disease. RSV was shown to replicate in human MSCs by fluorescence microscopy, plaque assay, and expression of RSV transcripts. RSV-infected MSCs showed differentially altered expression of cytokines and chemokines such as IL-1β, IL6, IL-8 and SDF-1 compared to epithelial cells. Notably, RSV-infected MSCs exhibited significantly increased expression of IFN-β (~100-fold and indoleamine-2,3-dioxygenase (IDO (~70-fold than in mock-infected MSCs. IDO was identified in cytosolic protein of infected cells by Western blots and enzymatic activity was detected by tryptophan catabolism assay. Treatment of PBMCs with culture supernatants from RSV-infected MSCs reduced their proliferation in a dose dependent manner. This effect on PBMC activation was reversed by treatment of MSCs with the IDO inhibitors 1-methyltryptophan and vitamin K3 during RSV infection, a result we confirmed by CRISPR/Cas9-mediated knockout of IDO in MSCs. Neutralizing IFN-β prevented IDO expression and activity. Treatment of MSCs with an endosomal TLR inhibitor, as well as a specific inhibitor of the TLR3/dsRNA complex, prevented IFN-β and IDO expression. Together, these results suggest that RSV infection of MSCs alters their immune regulatory function by upregulating IFN-β and IDO, affecting immune cell proliferation, which may account for the lack of protective RSV immunity and for chronicity of RSV-associated lung diseases such as asthma and COPD.

  10. Fluorescence Imaging Analysis of Upstream Regulators and Downstream Targets of STAT3 in Melanoma Precursor Lesions Obtained from Patients Before and After Systemic Low-Dose Interferon-α Treatment

    Directory of Open Access Journals (Sweden)

    Amanda Pfaff Smith

    2003-01-01

    Full Text Available Atypical nevi are the precursors and risk markers of melanoma. Apart from persistently monitoring these nevocytic lesions and resecting them at the earliest signs of clinical changes, there is as yet no systemic clinical treatment available to interfere with their progression to melanoma. To explore clinical treatments that might interfere with and possibly prevent atypical nevus progression, a previous study documented that 3 months systemic low-dose interferon-α (IFN-α treatment of patients with a clinical history of melanoma and numerous atypical nevi, led to inactivation of the STAT1 and STAT3 transcription factors in atypical nevi. Based upon this finding, we initiated a second study to determine whether systemic low-dose IFN-α treatment also impairs the expression of upstream regulators and downstream targets of STAT1 and STAT3 in atypical nevi. Using cyanine dye-conjugated antibodies, fluorescence imaging analysis revealed expression of JAK2, JNK1, AKT1, NF-κB, and IFN-αβ receptor in benign and atypical nevi, and early- and advanced-stage melanomas. To determine possible changes in the level of expression of these molecules in atypical nevi, excised before and after 3 months of systemic low-dose IFN-α treatment, newly designed optical imaging software was used to quantitate the captured fluorescent hybridization signals on a cell-by-cell basis and across an entire nevus section. The results of this analysis did not provide evidence that systemic low-dose IFN-α treatment alters the level of expression of upstream regulators or downstream targets of STAT1 and STAT3.

  11. Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9

    International Nuclear Information System (INIS)

    Zhang, Ruoxi; Fang, Liurong; Wang, Dang; Cai, Kaimei; Zhang, Huan; Xie, Lilan; Li, Yi; Chen, Huanchun; Xiao, Shaobo

    2015-01-01

    To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9). Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses. - Highlights: • Porcine bocavirus (PBoV) NP1 interferes with the IFN α/β signaling pathway. • PBoV NP1 does not prevent STAT1/STAT2 phosphorylation and nuclear translocation. • PBoV NP1 inhibits the DNA-binding activity of ISGF3. • PBoV NP1 interacts with the DNA-binding domain of IRF9.

  12. Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruoxi [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Fang, Liurong, E-mail: fanglr@mail.hzau.edu.cn [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Wang, Dang; Cai, Kaimei; Zhang, Huan [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Xie, Lilan; Li, Yi [College of Life Science and Technology, Wuhan Institute of Bioengineering, Wuhan 430415 (China); Chen, Huanchun; Xiao, Shaobo [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China)

    2015-11-15

    To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9). Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses. - Highlights: • Porcine bocavirus (PBoV) NP1 interferes with the IFN α/β signaling pathway. • PBoV NP1 does not prevent STAT1/STAT2 phosphorylation and nuclear translocation. • PBoV NP1 inhibits the DNA-binding activity of ISGF3. • PBoV NP1 interacts with the DNA-binding domain of IRF9.

  13. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    Science.gov (United States)

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  14. Factors associated with the performance of a blood-based interferon-γ release assay in diagnosing tuberculosis.

    Directory of Open Access Journals (Sweden)

    Sally Banfield

    Full Text Available BACKGROUND: Indeterminate results are a recognised limitation of interferon-γ release assays (IGRA in the diagnosis of latent tuberculosis (TB infection (LTBI and TB disease, especially in children. We investigated whether age and common co-morbidities were associated with IGRA performance in an unselected cohort of resettled refugees. METHODS: A retrospective cross-sectional study of refugees presenting for their post-resettlement health assessment during 2006 and 2007. Refugees were investigated for prevalent infectious diseases, including TB, and for common nutritional deficiencies and haematological abnormalities as part of standard clinical screening protocols. Tuberculosis screening was performed by IGRA; QuantiFERON-TB Gold in 2006 and QuantiFERON-TBGold In-Tube in 2007. RESULTS: Complete data were available on 1130 refugees, of whom 573 (51% were children less than 17 years and 1041 (92% were from sub-Saharan Africa. All individuals were HIV negative. A definitive IGRA result was obtained in 1004 (89% refugees, 264 (26% of which were positive; 256 (97% had LTBI and 8 (3% had TB disease. An indeterminate IGRA result was obtained in 126 (11% refugees (all failed positive mitogen control. In multivariate analysis, younger age (linear OR= 0.93 [95% CI 0.91-0.95], P<0.001, iron deficiency anaemia (2.69 [1.51-4.80], P = 0.001, malaria infection (3.04 [1.51-6.09], P = 0.002, and helminth infection (2.26 [1.48-3.46], P<0.001, but not vitamin D deficiency or insufficiency, were associated with an indeterminate IGRA result. CONCLUSIONS: Younger age and a number of common co-morbidities are significantly and independently associated with indeterminate IGRA results in resettled predominantly African refugees.

  15. Induction of human interferon gene expression is associated with a nuclear factor that interacts with the site of the human immunodeficiency virus-enhancer

    International Nuclear Information System (INIS)

    Hiscott, J.; Alper, D.; Cohen, L.; Leblanc, J.F.; Sportza, L.; Wong, A.; Xanthoudakis, S.

    1989-01-01

    The relationship between transcription of alpha and beta interferon (IFN-α and IFN-β) genes and the interaction of IFN promoter-binding transcription factors has been examined in monoblastoid U937 cells following priming with recombinant IFN-α2 (rIFN-α2) and Sendai virus induction. Pretreatment of U937 cells with rIFN-α2 prior to Sendai virus infection increased the mRNA levels of IFN-α1, IFN-α2, and IFN-β as well as the final yield of biologically active IFN. Analysis of nuclear protein-IFN promoter DNA interactions by electrophoretic mobility-shift assays demonstrated increased factor binding to IFN-α1 and IFN-β regulatory domains, although no new induction-specific complexes were identified. On the basis of competition electrophoretic mobility-shift assay results, factors interacting with the IFN-α1 and IFN-β promoters appear to be distinct DNA-binding proteins. Hybrid promoter-chloramphenicol acetyltransferase fusion plasmids, containing either the IFN-β regulatory element or the human immunodeficiency virus enhancer element linked to the simian virus 40 promoter, were analyzed for virus and phorbol ester inducibility in epithelial and lymphoid cells, respectively. These experiments suggest that induction of IFN gene expression may be controlled in part by transcription regulatory proteins binding to an NF-κB-like site within the IFN-β promoter

  16. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system.

    Science.gov (United States)

    Walsh, Matthew C; Lee, JangEun; Choi, Yongwon

    2015-07-01

    Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is an adapter protein that mediates a wide array of protein-protein interactions via its TRAF domain and a RING finger domain that possesses non-conventional E3 ubiquitin ligase activity. First identified nearly two decades ago as a mediator of interleukin-1 receptor (IL-1R)-mediated activation of NFκB, TRAF6 has since been identified as an actor downstream of multiple receptor families with immunoregulatory functions, including members of the TNFR superfamily, the Toll-like receptor (TLR) family, tumor growth factor-β receptors (TGFβR), and T-cell receptor (TCR). In addition to NFκB, TRAF6 may also direct activation of mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and interferon regulatory factor pathways. In the context of the immune system, TRAF6-mediated signals have proven critical for the development, homeostasis, and/or activation of B cells, T cells, and myeloid cells, including macrophages, dendritic cells, and osteoclasts, as well as for organogenesis of thymic and secondary lymphoid tissues. In multiple cellular contexts, TRAF6 function is essential not only for proper activation of the immune system but also for maintaining immune tolerance, and more recent work has begun to identify mechanisms of contextual specificity for TRAF6, involving both regulatory protein interactions, and messenger RNA regulation by microRNAs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Tumor necrosis factor receptor associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system

    Science.gov (United States)

    Walsh, Matthew C.; Lee, JangEun; Choi, Yongwon

    2016-01-01

    Summary Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is an adaptor protein that mediates a wide array of protein-protein interactions via its TRAF domain and a RING finger domain that possesses non-conventional E3 ubiquitin ligase activity. First identified nearly two decades ago as a mediator of IL-1 receptor (IL-1R)-mediated activation of NFκB, TRAF6 has since been identified as an actor downstream of multiple receptor families with immunoregulatory functions, including members of the TNFR superfamily, the toll-like receptor (TLR) family, tumor growth factor-β receptors (TGFβR), and T cell receptor (TCR). In addition to NFκB, TRAF6 may also direct activation of mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and interferon regulatory factor (IRF) pathways. In the context of the immune system, TRAF6-mediated signals have proven critical for the development, homeostasis, and/or activation of B cells, T cells, and myeloid cells, including macrophages, dendritic cells, and osteoclasts, as well as for organogenesis of thymic and secondary lymphoid tissues. In multiple cellular contexts, TRAF6 function is essential not only for proper activation of the immune system, but also for maintaining immune tolerance, and more recent works have begun to identify mechanisms of contextual specificity for TRAF6, involving both regulatory protein interactions, and messenger RNA regulation by microRNAs. PMID:26085208

  18. Innate Interferons Regulate CNS Inflammation

    DEFF Research Database (Denmark)

    Dieu, Ruthe; Khorooshi, Reza M. H.; Mariboe, Anne

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) whose pathology is characterised by demyelination and axonal damage. This results from interplay between CNS-resident glia, infiltrating leukocytes and a plethora of cytokines and chemokines. Currently...... potential IFN-inducing receptor that signals through NF-kB. Receptor activator of NF-kB (RANK) belongs to the TNF-receptor superfamily and has been shown to induce IFN-beta in medullary thymic epithelial cells affecting autoimmune regulatory processes and osteoclast precursor cells in association to bone...

  19. Fibroblast growth factor signaling in metabolic regulation

    Directory of Open Access Journals (Sweden)

    Vera eNies

    2016-01-01

    Full Text Available The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases, and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed.In this review we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease, and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  20. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes

    Science.gov (United States)

    Purcell, M.K.; Laing, K.J.; Woodson, J.C.; Thorgaard, G.H.; Hansen, J.D.

    2009-01-01

    The genes encoding the type I and type II interferons (IFNs) have previously been identified in rainbow trout and their proteins partially characterized. These previous studies reported a single type II IFN (rtIFN-??) and three rainbow trout type I IFN genes that are classified into either group I (rtIFN1, rtIFN2) or group II (rtIFN3). In this present study, we report the identification of a novel IFN-?? gene (rtIFN-??2) and a novel type I group II IFN (rtIFN4) in homozygous rainbow trout and predict that additional IFN genes or pseudogenes exist in the rainbow trout genome. Additionally, we provide evidence that short and long forms of rtIFN1 are actively and differentially transcribed in homozygous trout, and likely arose due to alternate splicing of the first exon. Quantitative reverse transcriptase PCR (qRT-PCR) assays were developed to systematically profile all of the rainbow trout IFN transcripts, with high specificity at an individual gene level, in na??ve fish and after stimulation with virus or viral-related molecules. Cloned PCR products were used to ensure the specificity of the qRT-PCR assays and as absolute standards to assess transcript abundance of each gene. All IFN genes were modulated in response to Infectious hematopoietic necrosis virus (IHNV), a DNA vaccine based on the IHNV glycoprotein, and poly I:C. The most inducible of the type I IFN genes, by all stimuli tested, were rtIFN3 and the short transcript form of rtIFN1. Gene expression of rtIFN-??1 and rtIFN-??2 was highly up-regulated by IHNV infection and DNA vaccination but rtIFN-??2 was induced to a greater magnitude. The specificity of the qRT-PCR assays reported here will be useful for future studies aimed at identifying which cells produce IFNs at early time points after infection. ?? 2008 Elsevier Ltd.

  1. Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma

    Czech Academy of Sciences Publication Activity Database

    Šípová, Hana; Ševců, Veronika; Kuchař, Milan; Ahmad, Jawid Nazir; Mikulecký, Pavel; Osičková, Adriana; Malý, Petr; Homola, Jiří

    2012-01-01

    Roč. 174, č. 11 (2012), s. 306-311 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional support: RVO:67985882 ; RVO:61388971 ; RVO:86652036 Keywords : Interferon gamma * Surface plasmon resonance * Biosensor Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.535, year: 2012

  2. Increased Th1, Th17 and pro-fibrotic responses in hepatitis C-infected patients are down-regulated after 12 weeks of treatment with pegylated interferon plus ribavirin.

    Science.gov (United States)

    Jimenez-Sousa, Maria Angeles; Almansa, Raquel; de la Fuente, Concha; Caro-Paton, Agustín; Ruiz, Lourdes; Sanchez-Antolín, Gloria; Gonzalez, Jose Manuel; Aller, Rocio; Alcaide, Noelia; Largo, Pilar; Resino, Salvador; de Lejarazu, Raul Ortiz; Bermejo-Martin, Jesus F

    2010-06-01

    Hepatitis C virus causes significant morbidity and mortality worldwide. The infection induces up-regulation of cytokine and chemokines commonly linked to the development of cellular and pro-inflammatory antiviral responses. The current standard in hepatitis C treatment consists of combination regimens of pegylated interferon-alpha plus ribavirin. The impact of combined treatment in the host immune response is still poorly understood. In the present study, we profiled 27 cytokines, chemokines and growth factors involved in the innate and adaptive responses to the virus in the serum of 27 hepatitis C virus-infected patients, before and after 12 weeks of combined treatment, and compared them to 10 healthy controls. Hepatitis C virus infection induced not only the secretion of chemokines and cytokines participating in Th1 responses (MIP-1 alpha, IP-10, TNF-alpha, IL-12p70, IL-2), but also cytokines involved in the development of Th17 responses (IL-6, IL-8, IL-9 and IL-17) and two pro-fibrotic factors (FGF-b, VEGF). The most important increases included MIP-1 alpha (4.7-fold increase compared to the control group), TNF-alpha (3.0-fold), FGF-b (3.4-fold), VEGF (3.5-fold), IP-10 (3.6-fold), IL-17 (107.0-fold), IL-9 (7.5-fold), IL-12p70 (7.0-fold), IL-2 (5.6-fold) and IL-7 (5.6-fold). Combined treatment with pegylated interferon-alpha plus ribavirin down-modulated the secretion of key Th1 and Th17 pro-inflammatory mediators, and pro-fibrotic growth factors as early as 12 weeks after treatment initiation. MIP-1 alpha, FGF-b, IL-17 decreased in a more dramatic manner in the group of responder patients than in the group of non-responders (fold-change in cEVR; fold-change in NcEVR): MIP-1 alpha (4.72;1.71), FGF-b (4.54;1.21), IL-17 (107.1;1.8). Correlation studies demonstrated that the decreases in the levels of these mediators were significantly associated with each other, pointing to a coordinated effect of the treatment on their secretion (r coefficient; p value): [ FGF

  3. Fatty Acid–Regulated Transcription Factors in the Liver

    Science.gov (United States)

    Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.

    2014-01-01

    Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177

  4. Combinatorial regulation of tissue specification by GATA and FOG factors

    Science.gov (United States)

    Chlon, Timothy M.; Crispino, John D.

    2012-01-01

    The development of complex organisms requires the formation of diverse cell types from common stem and progenitor cells. GATA family transcriptional regulators and their dedicated co-factors, termed Friend of GATA (FOG) proteins, control cell fate and differentiation in multiple tissue types from Drosophila to man. FOGs can both facilitate and antagonize GATA factor transcriptional regulation depending on the factor, cell, and even the specific gene target. In this review, we highlight recent studies that have elucidated mechanisms by which FOGs regulate GATA factor function and discuss how these factors use these diverse modes of gene regulation to control cell lineage specification throughout metazoans. PMID:23048181

  5. Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1

    Directory of Open Access Journals (Sweden)

    Nur Aziz

    2018-05-01

    Full Text Available Interferon regulatory factor (IRF-3 is known to have a critical role in viral and bacterial innate immune responses by regulating the production of type I interferon (IFN. Thymoquinone (TQ is a compound derived from black cumin (Nigella sativa L. and is known to regulate immune responses by affecting transcription factors associated with inflammation, including nuclear factor-κB (NF-κB and activator protein-1 (AP-1. However, the role of TQ in the IRF-3 signaling pathway has not been elucidated. In this study, we explored the molecular mechanism of TQ-dependent regulation of enzymes in IRF-3 signaling pathways using the lipopolysaccharide (LPS-stimulated murine macrophage-like RAW264.7 cell line. TQ decreased mRNA expression of the interferon genes IFN-α and IFN-β in these cells. This inhibition was due to its suppression of the transcriptional activation of IRF-3, as shown by inhibition of IRF-3 PRD (III-I luciferase activity as well as the phosphorylation pattern of IRF-3 in the immunoblotting experiment. Moreover, TQ targeted the autophosphorylation of TANK-binding kinase 1 (TBK1, an upstream key enzyme responsible for IRF-3 activation. Taken together, these findings suggest that TQ can downregulate IRF-3 activation via inhibition of TBK1, which would subsequently decrease the production of type I IFN. TQ also regulated IRF-3, one of the inflammatory transcription factors, providing a novel insight into its anti-inflammatory activities.

  6. Effect of soluble factors derived from oral cancer cells on the production of interferon-γ from peripheral blood mononuclear cells following stimulation with OK-432.

    Science.gov (United States)

    Ohe, Go; Sasai, Akiko; Uchida, Daisuke; Tamatani, Tetsuya; Nagai, Hirokazu; Miyamoto, Youji

    2013-08-01

    The streptococcal antitumor agent OK-432 is commonly used as an immunopotentiator for immunotherapy in various types of malignant tumors including oral cancer. It has been demonstrated that OK-432 elicits an antitumor effect by stimulating immunocompetent cells, thereby inducing multiple cytokines including interferon (IFN)-γ, interleukin (IL)-2 and IL-12. Serum concentrations of IFN-γ in patients with oral cancer were examined 24 h after administration of OK-432. Serum concentrations of IFN-γ in patients with advanced cancer were significantly lower than those in patients with early cancer. These results suggested that some soluble factors produced by cancer cells may inhibit IFN-γ production with OK-432. Thus, in the present study, an in vitro simulation model was established for the immune status of patients with oral cancer by adding conditioned medium (CM) derived from oral cancer cell lines into a culture of peripheral blood mononuclear cells (PBMCs) derived from a healthy volunteer. We investigated whether soluble factors derived from oral cancer cells affected IFN-γ production from PBMCs following stimulation with OK-432. PBMCs stimulated with OK-432 produced a large amount of IFN-γ; however, both IFN-γ production and cytotoxic activity from PBMCs induced by OK-432 were inhibited by the addition of CM in a dose-dependent manner. In order to examine these inhibitory effects against IFN-γ production, the contribution of inhibitory cytokines such as IL-4, IL-6, IL-10, transforming growth factor-β and vascular endothelial growth factor was investigated. However, neutralization of these inhibitory cytokines did not recover IFN-γ production inhibited by CM. These results indicated that unknown molecules may inhibit IFN-γ production from PBMCs following stimulation with OK-432.

  7. Myxoma virus M-T7, a secreted homolog of the interferon-gamma receptor, is a critical virulence factor for the development of myxomatosis in European rabbits.

    Science.gov (United States)

    Mossman, K; Nation, P; Macen, J; Garbutt, M; Lucas, A; McFadden, G

    1996-01-01

    Myxoma virus is a leporipoxvirus of New World rabbits (Sylvilagus sp.) that induces a rapidly lethal infection known as myxomatosis in the European rabbit (Oryctolagus cuniculus). Like all poxviruses, myxoma virus encodes a plethora of proteins to circumvent or inhibit a variety of host antiviral immune mechanisms. M-T7, the most abundantly secreted protein of myxoma virus-infected cells, was originally identified as an interferon-gamma receptor homolog (Upton, Mossman, and McFadden, Science 258, 1369-1372, 1992). Here, we demonstrate that M-T7 is dispensable for virus replication in cultured cells but is a critical virulence factor for virus pathogenesis in European rabbits. Disruption of both copies of the M-T7 gene in myxoma virus was achieved by the deletion of 372 bp of M-T7 coding sequences, replacement with a selectable marker, p7.5Ecogpt, and selection of a recombinant virus (vMyxlac-T7gpt) resistant to mycophenolic acid. vMyxlac-T7gpt expressed no detectable M-T7 protein and infected cells supernatants were devoid of any detectable interferon-gamma binding activities. Immunohistochemical staining with anti-beta-galactosidase and anti-CD43 antibodies demonstrated that in vMyxlac-T7gpt-infected rabbits the loss of M-T7 not only caused a dramatic reduction in disease symptoms and viral dissemination to secondary sites, but also dramatically influenced host leukocyte behavior. Notably, primary lesions in wild-type virus infections were generally underlayed by large masses of inflammatory cells that did not effectively migrate into the dermal sites of viral replication, whereas in vMyxlac-T7gpt infections this apparent block to leukocyte influx was relieved. A second major phenotypic distinction noted for the M-T7 knockout virus was the extensive activation of lymphocytes in secondary immune organs, particularly the spleen and lymph nodes, by Day 4 of the infection. This is in stark contrast to infection by wild-type myxoma virus, which results in relatively

  8. Variants of Interferon Regulatory Factor 5 are Associated with Neither Neuromyelitis Optica Nor Multiple Sclerosis in the Southeastern Han Chinese Population

    Institute of Scientific and Technical Information of China (English)

    Qi-Bing Liu; Lei Wu; Gui-Xian Zhao; Ping-Ping Cai; Zhen-Xin Li; Zhi-Ying Wu

    2015-01-01

    Background:Neuromyelitis optica (NMO) and multiple sclerosis (MS) are demyelinating disorders of the central nervous system.Interferon regulatory factor 5 (IRF5) is a common susceptibility gene to different autoimmune disorders.However,the association of IRF5 variants with NMO and MS patients has not been well studied.Therefore,we aimed to evaluate whether IRF5 variants were associated with NMO and MS in the Southeastern Han Chinese population.Methods:Four single nucleotide polymorphisms (SNPs) were selected and genotyped by matrix-assisted laser desorption/ionization time of flight mass spectrometry in 111 NMO patients,145 MS patients and 300 controls from Southeastern China.Results:None of these 4 SNPs was associated with NMO or MS patients.Conclusions:Our preliminary study indicates that genetic variants in IRF5 may affect neither NMO nor MS in the Southeastern Han Chinese population.Further studies with a large sample size and diverse ancestry populations are needed to clarify this issue.

  9. Effects of Different Concentrations of Opium on the Secretion of Interleukin-6, Interferon-γ and Transforming Growth Factor Beta Cytokines from Jurkat Cells.

    Science.gov (United States)

    Asadikaram, Gholamreza; Igder, Somayeh; Jamali, Zahra; Shahrokhi, Nader; Najafipour, Hamid; Shokoohi, Mostafa; Jafarzadeh, Abdollah; Kazemi-Arababadi, Mohammad

    2015-01-01

    The risk of infectious, autoimmune and immunodeficiency diseases and cancers rise in opioid addicts due to changes in innate and acquired immune responses. Three types of opioid receptors (К-δ-μ) are expressed on the surface of lymphocytes and mononuclear phagocytes. The present study was designed to examine the effects of different concentrations of opium on the secretion of some cytokines produced by lymphocyte cells. Jurkat cells were exposed to different concentrations of opium for periods of 6, 24 and 72 h in cell culture medium. The amount of interleukin-6 (IL-6), interferon-γ (IFN-γ) and transforming growth factor-b (TGF-β) were then measured using enzyme-linked immunosorbent assay (ELISA) method. The results showed that opium increases the secretion of IL-6 in different concentration of opium in 6 h. The amount of IFN-γ decreased in 6 h and increased in 24 h significantly compared with control. On the other hand, opium had an inhibitory effect on the TGF-β secretion in 6, 24 and 72 h. Overall, the study showed that opium stimulates pro-inflammatory and suppressed anti-inflammatory cytokine secretion in Jurkat cells. This may account for the negative effect of opium on the immune system leading to chronic inflammation and a base for many disorders in opium addicts.

  10. Evaluation of accuracy and uncertainty of ELISA assays for the determination of interleukin-4, interleukin-5, interferon-gamma and tumor necrosis factor-alpha

    DEFF Research Database (Denmark)

    Borg, Lone; Kristiansen, Jesper; Christensen, Jytte M

    2002-01-01

    . However, models for establishing the traceability and uncertainty of immunoassay results are lacking. Sandwich enzyme-linked immunosorbent assays (ELISAs) were developed for determination of the human cytokines interleukin-4 (IL-4), interleukin-5 (IL-5), interferon-y (IFN-gamma) and tumor necrosis factor-alpha...... (TNF-alpha). The accuracy of each of the assays was evaluated in the ranges of 1-15 microg/l (IL-4), 0.001-1 microg/l (IL-5), 0.5-2.5 microg/l (IFN-T) and 0.14-2.2 microg/l (TNF-alpha). Other evaluated performance characteristics were the limit of detection (LOD), immunological specificity......) of the assessed ELISAs was found to be in the range of 11-18%, except for IL-5 where RSDA increased at decreasing concentrations. The LOD was 0.12 microg/l, 0.0077 microg/l, 0.0069 microg/l and 0.0063 microg/l for IL-4, IL-5, IFN-gamma and TNF-alpha, respectively. Traceability to the WHO IS was established...

  11. Quantitation of multiple myeloma oncogene 1/interferon-regulatory factor 4 gene expression in malignant B-cell proliferations and normal leukocytes.

    Science.gov (United States)

    Yamada, M; Asanuma, K; Kobayashi, D; Moriai, R; Yajima, T; Yagihashi, A; Yamamori, S; Watanabe, N

    2001-01-01

    We studied multiple myeloma oncogene 1/interferon-regulatory factor 4 (MUM1/IRF4) mRNA expression in various malignant human hematopoietic cell lines and normal leukocyte fractions. A quantitative reverse transcription-polymerase chain reaction was used to assess expression and chromosomes were examined for anomalies by fluorescent in situ hybridization. Among 12 cell lines examined, mRNA transcripts were expressed only in B-lymphoblastic and myeloma cell lines. Myeloma cells and malignant cell lines derived from mature B cells expressed more transcript than cell lines derived from immature B cells. Transcript levels, however, showed no association with chromosomal translocations. Expression in B-cell fractions from healthy donors was much less than in the malignant cells. In addition, MUM1/IRF4 mRNA expressed in samples from patients with acute lymphoblastic leukemia derived from B cells but not T cells. Our results suggested that MUM1/IRF4 gene expression is related to stage of differentiation of malignant B cells and they indicated the possibility that the quantitative analysis of MUM1/IRF4 gene is a useful tool for detection of malignant B-cell proliferations in clinical laboratory tests.

  12. How Flaviviruses Activate and Suppress the Interferon Response

    Directory of Open Access Journals (Sweden)

    Brenda L. Fredericksen

    2010-02-01

    Full Text Available The flavivirus genus includes viruses with a remarkable ability to produce disease on a large scale. The expansion and increased endemicity of dengue and West Nile viruses in the Americas exemplifies their medical and epidemiological importance. The rapid detection of viral infection and induction of the innate antiviral response are crucial to determining the outcome of infection. The intracellular pathogen receptors RIG-I and MDA5 play a central role in detecting flavivirus infections and initiating a robust antiviral response. Yet, these viruses are still capable of producing acute illness in humans. It is now clear that flaviviruses utilize a variety of mechanisms to modulate the interferon response. The non-structural proteins of the various flaviviruses reduce expression of interferon dependent genes by blocking phosphorylation, enhancing degradation or down-regulating expression of major components of the JAK/STAT pathway. Recent studies indicate that interferon modulation is an important factor in the development of severe flaviviral illness. This suggests that an increased understanding of viral-host interactions will facilitate the development of novel therapeutics to treat these viral infections and improved biological models to study flavivirus pathogenesis.

  13. Toll-like receptors and interferon associated immune factors responses to spring viraemia of carp virus infection in common carp (Cyprinus carpio).

    Science.gov (United States)

    Wei, Xinxian; Li, Xiao Zheng; Zheng, Xiaocong; Jia, Peng; Wang, Jinjin; Yang, Xianle; Yu, Li; Shi, Xiujie; Tong, Guixiang; Liu, Hong

    2016-08-01

    Pattern recognition receptor (PRR) toll-like receptors (TLRs), antiviral agent interferon (IFN) and the effector IFN stimulated genes (ISGs) play a fundamental role in the innate immune response against viruses among all vertebrate classes. Common carp is a host for spring viraemia of carp virus (Rhabdovirus carpio, SVCV), which belong to Rhabdoviridae family. The present in-vivo experiment was conducted to investigate the expression of these innate immune factors in early phase as well as during recovery of SVCV infection by real-time quantitative reverse transcriptase polymerase chain reaction. A less lethal SVCV infection was generated in common carp (Cyprinus carpio) and was sampled at 3, 6, 12 h post infection (hpi), 1, 3, 5, 7 and 10 days post infection (dpi). At 3 hpi, the SVCV N gene was detected in all three fish and all three fish showed a relative fold increase of TLR2, TLR3 and TLR7, IFNa1, ISG15 and Vig1. Viral copies rapidly increased at 12 hpi then remained high until 5 dpi. When viral copy numbers were high, a higher expression of immune genes TLR2, TLR3, TLR7, IFNa1, IFNa2, IFNa1S, IFN regulatory factor 3 (IRF3), IRF7, interleukin 1β (IL1β), IL6, IL10, ADAR, ISG15, Mx1, PKR and Vig1 were observed. Viral copies were gradually reduced in 5 to 10 dpi fish, and also the immune response was considerably reduced but remained elevated. A high degree of correlation was observed between immune genes and viral copy number in each of the sampled fish at 12 hpi. The quick and prolonged elevated expression of the immune genes indicates their crucial role in survival of host against SVCV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Heartland virus NSs protein disrupts host defenses by blocking the TBK1 kinase-IRF3 transcription factor interaction and signaling required for interferon induction.

    Science.gov (United States)

    Ning, Yun-Jia; Feng, Kuan; Min, Yuan-Qin; Deng, Fei; Hu, Zhihong; Wang, Hualin

    2017-10-06

    Heartland virus (HRTV) is a pathogenic phlebovirus related to the severe fever with thrombocytopenia syndrome virus (SFTSV), another phlebovirus causing life-threatening disease in humans. Previous findings have suggested that SFTSV can antagonize the host interferon (IFN) system via viral nonstructural protein (NSs)-mediated sequestration of antiviral signaling proteins into NSs-induced inclusion bodies. However, whether and how HRTV counteracts the host innate immunity is unknown. Here, we report that HRTV NSs (HNSs) also antagonizes IFN and cytokine induction and bolsters viral replication, although no noticeable inclusion body formation was observed in HNSs-expressing cells. Furthermore, HNSs inhibited the virus-triggered activation of IFN-β promoter by specifically targeting the IFN-stimulated response element but not the NF-κB response element. Consistently, HNSs blocked the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3, an IFN-stimulated response element-activating transcription factor). Reporter gene assays next showed that HNSs blockades the antiviral signaling mediated by RIG-I-like receptors likely at the level of TANK-binding kinase 1 (TBK1). Indeed, HNSs strongly interacts with TBK1 as indicated by confocal microscopy and pulldown analyses, and we also noted that the scaffold dimerization domain of TBK1 is required for the TBK1-HNSs interaction. Finally, pulldown assays demonstrated that HNSs expression dose-dependently diminishes a TBK1-IRF3 interaction, further explaining the mechanism for HNSs function. Collectively, these data suggest that HNSs, an antagonist of host innate immunity, interacts with TBK1 and thereby hinders the association of TBK1 with its substrate IRF3, thus blocking IRF3 activation and transcriptional induction of the cellular antiviral responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Insulin-like growth factor-binding protein 7 alters the sensitivity to interferon-based anticancer therapy in hepatocellular carcinoma cells.

    Science.gov (United States)

    Tomimaru, Y; Eguchi, H; Wada, H; Noda, T; Murakami, M; Kobayashi, S; Marubashi, S; Takeda, Y; Tanemura, M; Umeshita, K; Doki, Y; Mori, M; Nagano, H

    2010-05-11

    A striking efficiency of interferon (IFN)-based anticancer therapy for advanced hepatocellular carcinoma (HCC) has been reported. Because its clinical efficiency greatly depends on each patient's local response, prediction of local response is crucial. Continuous exposure of IFN-alpha to parental PLC/PRF/5 cells (PLC-P) and a limiting dilution method resulted in the establishment of IFN-resistant cell clones (PLC-Rs). Microarray analyses of PLC-P and PLC-Rs identified insulin-like growth factor-binding protein 7 (IGFBP7) as one of the most significantly downregulated genes in PLC-Rs. Changes in anticancer effects of IFN-alpha were examined in HCC cells after genetic manipulation of IGFBP7 expression. The correlation between immunohistochemically determined IGFBP7 expression and the response to IFN-alpha/5-fluorouracil (5-FU) therapy was investigated in surgically resected HCC specimens. PLC-R cells showed a remarkable downregulation of IGFBP7 and resistance to IFN-alpha, compared with PLC-P. Parental PLC/PRF/5 cells transfected with short hairpin RNA against IGFBP7 showed a significant resistance to IFN-alpha relative to control cells (IC(50) fold increase=14.38 times). Insulin-like growth factor-binding protein 7 transfection into PLC-R restored sensitivity to IFN-alpha. In resected specimens, IGFBP7 expression significantly correlated with the response to IFN-alpha/5-FU therapy. IGFBP7 could be a useful predictor of the response to IFN-based therapy in advanced HCC.

  16. Comparison of interferon {gamma} release assays and conventional screening tests before tumour necrosis factor {alpha} blockade in patients with inflammatory arthritis.

    LENUS (Irish Health Repository)

    Martin, J

    2012-02-01

    OBJECTIVE: To compare the performance of two interferon gamma release assays (IGRAs) and conventional screening tests in patients with inflammatory arthritis undergoing screening for latent tuberculosis infection (LTBI) before treatment with anti-tumour necrosis factor alpha (anti-TNFalpha) compounds. METHODS: Successive patients were subjected to conventional LTBI screening, including a tuberculin skin test (TST). The T-SPOT.TB test was performed on all patients and the QuantiFERON-TB Gold test was performed on a large subset. The results of the IGRAs were compared with the results of conventional screening tests. RESULTS: A total 150 patients were evaluated. The majority (57.9%) had rheumatoid arthritis. Previous vaccination with Bacille Calmette-Guerin was confirmed in 82% of patients. No patient had received prior anti-TB treatment. A total of 57 patients (38.0%) had at least one positive conventional risk factor. In contrast, an unequivocally positive T-SPOT.TB test was seen in only 14\\/143 (9.8%). There was 98.2% agreement between the two IGRAs. Statistically significant associations were found between each of the IGRAs and both TST and risk history, but not chest x-ray (CXR). A positive IGRA result was significantly associated with increased age. TB was not reactivated in any patient during the follow-up period. Interpretation: This study suggests that IGRAs may be useful when screening for LTBI before anti-TNFalpha therapy in patients with immune-mediated inflammatory diseases. The observations reported here also highlight the inadequate performance of CXR as a marker of LTBI.

  17. The Identification of Interferon-gamma as a Key Supportive Factor for Retinal Differentiation of Murine Mesenchymal Stem Cells

    Czech Academy of Sciences Publication Activity Database

    Heřmánková, Barbora; Kössl, Jan; Javorková, Eliška; Boháčová, Pavla; Hájková, Michaela; Zajícová, Alena; Krulová, Magdaléna; Holáň, Vladimír

    2017-01-01

    Roč. 26, č. 19 (2017), s. 1399-1408 ISSN 1547-3287 R&D Projects: GA ČR(CZ) GA17-04800S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : mesenchymal stem cell * differentiation * retina Subject RIV: FF - HEENT, Dentistry OBOR OECD: Cell biology Impact factor: 3.562, year: 2016

  18. Radioprotective effect of interferon

    Energy Technology Data Exchange (ETDEWEB)

    Zasukhina, G.

    1984-12-18

    A cycle of experiments performed jointly with associations of the Moscow Engineering Physics Institute reportedly demonstrated that interferons protect human cells cultivated in a test tube against the action of fast neutrons and gamma radiation. Cells treated in advance with interferon not only survived irradiation but were almost totally protected against harmful effects of fast neutrons on the structure of chromosomes, according to the author. She mentions that the laboratory has also been studying effects produced on cells by compounds of heavy metals and other chemical compounds, including ones which cause breaks in the DNA molecule. Interferon's ability to protect cells against effects of chemical compounds has been studied in this connection. Another direction of the laboratory's work is research on interferon's effects on blood cells of persons suffering from certain hereditary diseases in which restorative processes of cells are impaired. The purpose of this is to develop courses of treatment which will not cause irreversible damages to chromosomes, the author explains. Interferon has been found to stimulate the reparation systems of cells in cases of Marfan's syndrome, for example.

  19. Autocrine secretion of tumor necrosis factor under the influence of interferon-γ amplifies HLA-DR gene induction in human monocytes

    International Nuclear Information System (INIS)

    Arenzana-Seisdedos, F.; Mogensen, S.C.; Vuillier, F.; Fiers, W.; Virelizier, J.L.

    1988-01-01

    Recombinant interferon-γ (IFN-γ) induced HLA-DR gene expression in both U937 and THP-1 human monocytic cell lines, although the former was only very weakly inducible. Combination of recombinant tumor necrosis factor (TNF) and IFN-γ resulted in a synergistic enhancement of DR mRNA and protein induction in both cell lines. TNF alone increased the constitutive expression of the DR gene in THP-1 cells. In the HLA class II-negative U937 cells, TNF used alone was not able to induce DR gene expression. Such a negative result was not due to a lack of TNF receptor expression in U937 cells, since TNF clearly induced HLA class I and TNF gene expression in this cell line. THP-1, but not U937, cells secreted TNF under the influence of IFN-γ. Neutralization of TNF by a specific antibody decreased IFN-γ-induced DR antigen expression in THP-1 cultures. These observations indicate that TNF is not able to directly induce DR gene expression, but rather amplifies ongoing expression of this gene, whether constitutive or induced by IFN-γ. In the two cell lines tested, the level of DR inducibility under the influence of IFN-γ used alone depended on a different inducibility of TNF secretion by IFN-γ. Altogether, the observations indicate that TNF, whether exogenous or endogenously produced under the influence of IFN-γ, amplifies DR gene expression in monocytes, a phenomenon that may provide to such antigen-presenting cells a selective sensitivity to the DR-inducing effects of IFN-γ

  20. Inhibition of sup 125 I organification and thyroid hormone release by interleukin-1, tumor necrosis factor-alpha, and interferon-gamma in human thyrocytes in suspension culture

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Satoh, T.; Shizume, K.; Ozawa, M.; Han, D.C.; Imamura, H.; Tsushima, T.; Demura, H.; Kanaji, Y.; Ito, Y. (Institute of Clinical Endocrinology, Tokyo (Japan))

    1990-06-01

    To elucidate the mechanism of decreased 131I uptake by the thyroid gland in patients with subacute thyroiditis and painless thyroiditis, human thyroid follicles were cultured with interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF alpha), and/or interferon-gamma (IFN gamma), and the effects of these cytokines on thyroid function were studied in vitro. When human thyrocytes were cultured in RPMI-1640 medium containing 0.5% fetal calf serum and TSH for 5-8 days, the cells incorporated 125I, synthesized de novo (125I)iodotyrosines and (125I)iodothyronines, and secreted (125I)T4 and (125I)T3 into the medium. IL-1 alpha and IL-1 beta inhibited 125I incorporation and (125I)iodothyronine release in a concentration-dependent manner. The minimal inhibitory effect was detected at 10 pg/ml. Electron microscopic examination revealed a marked decrease in lysosome formation in IL-1-treated thyrocytes. TNF alpha and IFN gamma also inhibited thyroid function in a concentration-dependent manner. Furthermore, when thyrocytes were cultured with IL-1, TNF alpha and IFN gamma, these cytokines more than additively inhibited thyroid function. Although the main mechanism of 131I uptake suppression in the thyroid gland in subacute thyroiditis is due to cellular damage and suppression of TSH release, our present findings suggest that IL-1, TNF alpha, and IFN gamma produced in the inflammatory process within the thyroid gland further inhibit iodine incorporation and at least partly account for the decreased 131I uptake by the thyroid gland in destruction-induced hyperthyroidism.

  1. Inhibition of 125I organification and thyroid hormone release by interleukin-1, tumor necrosis factor-alpha, and interferon-gamma in human thyrocytes in suspension culture

    International Nuclear Information System (INIS)

    Sato, K.; Satoh, T.; Shizume, K.; Ozawa, M.; Han, D.C.; Imamura, H.; Tsushima, T.; Demura, H.; Kanaji, Y.; Ito, Y.

    1990-01-01

    To elucidate the mechanism of decreased 131I uptake by the thyroid gland in patients with subacute thyroiditis and painless thyroiditis, human thyroid follicles were cultured with interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF alpha), and/or interferon-gamma (IFN gamma), and the effects of these cytokines on thyroid function were studied in vitro. When human thyrocytes were cultured in RPMI-1640 medium containing 0.5% fetal calf serum and TSH for 5-8 days, the cells incorporated 125I, synthesized de novo [125I]iodotyrosines and [125I]iodothyronines, and secreted [125I]T4 and [125I]T3 into the medium. IL-1 alpha and IL-1 beta inhibited 125I incorporation and [125I]iodothyronine release in a concentration-dependent manner. The minimal inhibitory effect was detected at 10 pg/ml. Electron microscopic examination revealed a marked decrease in lysosome formation in IL-1-treated thyrocytes. TNF alpha and IFN gamma also inhibited thyroid function in a concentration-dependent manner. Furthermore, when thyrocytes were cultured with IL-1, TNF alpha and IFN gamma, these cytokines more than additively inhibited thyroid function. Although the main mechanism of 131I uptake suppression in the thyroid gland in subacute thyroiditis is due to cellular damage and suppression of TSH release, our present findings suggest that IL-1, TNF alpha, and IFN gamma produced in the inflammatory process within the thyroid gland further inhibit iodine incorporation and at least partly account for the decreased 131I uptake by the thyroid gland in destruction-induced hyperthyroidism

  2. Proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma alter tight junction structure and function in the rat parotid gland Par-C10 cell line.

    Science.gov (United States)

    Baker, Olga J; Camden, Jean M; Redman, Robert S; Jones, Jonathan E; Seye, Cheikh I; Erb, Laurie; Weisman, Gary A

    2008-11-01

    Sjögren's syndrome (SS) is an autoimmune disorder characterized by inflammation and dysfunction of salivary glands, resulting in impaired secretory function. The production of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) is elevated in exocrine glands of patients with SS, although little is known about the effects of these cytokines on salivary epithelial cell functions necessary for saliva secretion, including tight junction (TJ) integrity and the establishment of transepithelial ion gradients. The present study demonstrates that chronic exposure of polarized rat parotid gland (Par-C10) epithelial cell monolayers to TNF-alpha and IFN-gamma decreases transepithelial resistance (TER) and anion secretion, as measured by changes in short-circuit current (I(sc)) induced by carbachol, a muscarinic cholinergic receptor agonist, or UTP, a P2Y(2) nucleotide receptor agonist. In contrast, TNF-alpha and IFN-gamma had no effect on agonist-induced increases in the intracellular calcium concentration [Ca(2+)](i) in Par-C10 cells. Furthermore, treatment of Par-C10 cell monolayers with TNF-alpha and IFN-gamma increased paracellular permeability to normally impermeant proteins, altered cell and TJ morphology, and downregulated the expression of the TJ protein, claudin-1, but not other TJ proteins expressed in Par-C10 cells. The decreases in TER, agonist-induced transepithelial anion secretion, and claudin-1 expression caused by TNF-alpha, but not IFN-gamma, were reversible by incubation of Par-C10 cell monolayers with cytokine-free medium for 24 h, indicating that IFN-gamma causes irreversible inhibition of cellular activities associated with fluid secretion in salivary glands. Our results suggest that cytokine production is an important contributor to secretory dysfunction in SS by disrupting TJ integrity of salivary epithelium.

  3. A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication.

    Science.gov (United States)

    Griffiths, Samantha J; Koegl, Manfred; Boutell, Chris; Zenner, Helen L; Crump, Colin M; Pica, Francesca; Gonzalez, Orland; Friedel, Caroline C; Barry, Gerald; Martin, Kim; Craigon, Marie H; Chen, Rui; Kaza, Lakshmi N; Fossum, Even; Fazakerley, John K; Efstathiou, Stacey; Volpi, Antonio; Zimmer, Ralf; Ghazal, Peter; Haas, Jürgen

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to

  4. A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication.

    Directory of Open Access Journals (Sweden)

    Samantha J Griffiths

    Full Text Available Herpes simplex virus type 1 (HSV-1 is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi screen with a druggable genome small interfering RNA (siRNA library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome

  5. Association of Tumor Growth Factor-β and Interferon-γ Serum Levels With Insulin Resistance in Normal Pregnancy.

    Science.gov (United States)

    Sotoodeh Jahromi, Abdolreza; Sanie, Mohammad Sadegh; Yusefi, Alireza; Zabetian, Hassan; Zareian, Parvin; Hakimelahi, Hossein; Madani, Abdolhossien; Hojjat-Farsangi, Mohammad

    2015-09-28

    Pregnancy is related to change in glucose metabolism and insulin production. The aim of our study was to determine the association of serum IFN-γ and TGF- β levels with insulin resistance during normal pregnancy. This cross sectional study was carried out on 97 healthy pregnant (in different trimesters) and 28 healthy non-pregnant women. Serum TGF-β and IFN- γ level were measured by ELISA method. Pregnant women had high level TGF-β and low level IFN-γ as compared non-pregnant women. Maternal serum TGF-β concentration significantly increased in third trimester as compared first and second trimester of pregnancy. Maternal serum IFN-γ concentration significantly decreased in third trimester as compared first and second trimester of pregnancy. Pregnant women exhibited higher score of HOMA IR as compared non-pregnant women. There were association between gestational age with body mass index (r=0.28, P=0.005), TGF-β (r=0.45, PInsulin resistance and TGF-β (r=0.17, p=0.05). Our findings suggest that changes in maternal cytokine level in healthy pregnant women were anti-inflammatory. Furthermore, Tumor Growth Factor-β appears has a role in induction insulin resistance in healthy pregnant women. However, further studies needed to evaluate role of different cytokines on insulin resistance in normal pregnancy.

  6. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 genome editing enhances antiviral response in porcine cells

    Science.gov (United States)

    Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...

  7. Interferon Gamma-1b Injection

    Science.gov (United States)

    Interferon gamma-1b injection is used to reduce the frequency and severity of serious infections in people with chronic ... severe, malignant osteopetrosis (an inherited bone disease). Interferon gamma-1b is in a class of medications called ...

  8. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease.

    Directory of Open Access Journals (Sweden)

    Thérèse Couderc

    2008-02-01

    Full Text Available Chikungunya virus (CHIKV is a re-emerging arbovirus responsible for a massive outbreak currently afflicting the Indian Ocean region and India. Infection from CHIKV typically induces a mild disease in humans, characterized by fever, myalgia, arthralgia, and rash. Cases of severe CHIKV infection involving the central nervous system (CNS have recently been described in neonates as well as in adults with underlying conditions. The pathophysiology of CHIKV infection and the basis for disease severity are unknown. To address these critical issues, we have developed an animal model of CHIKV infection. We show here that whereas wild type (WT adult mice are resistant to CHIKV infection, WT mouse neonates are susceptible and neonatal disease severity is age-dependent. Adult mice with a partially (IFN-alpha/betaR(+/- or totally (IFN-alpha/betaR(-/- abrogated type-I IFN pathway develop a mild or severe infection, respectively. In mice with a mild infection, after a burst of viral replication in the liver, CHIKV primarily targets muscle, joint, and skin fibroblasts, a cell and tissue tropism similar to that observed in biopsy samples of CHIKV-infected humans. In case of severe infections, CHIKV also disseminates to other tissues including the CNS, where it specifically targets the choroid plexuses and the leptomeninges. Together, these data indicate that CHIKV-associated symptoms match viral tissue and cell tropisms, and demonstrate that the fibroblast is a predominant target cell of CHIKV. These data also identify the neonatal phase and inefficient type-I IFN signaling as risk factors for severe CHIKV-associated disease. The development of a permissive small animal model will expedite the testing of future vaccines and therapeutic candidates.

  9. Transcriptional expression of type I interferon response genes and stability of housekeeping genes in the human endometrium and endometriosis

    DEFF Research Database (Denmark)

    Vestergaard, Anna L; Knudsen, Ulla B; Munk, Torben

    2011-01-01

    Endometriosis is a painful chronic female disease defined by the presence of endometrial tissue implants in ectopic locations. The pathogenesis is much debated, and type I interferons could be involved. The expression of genes of the type I interferon response were profiled by a specific PCR Array...... of RNA obtained from ectopic and eutopic endometrium collected from 9 endometriosis patients and 9 healthy control women. Transcriptional expression levels of selected interferon-regulated and housekeeping genes were investigated by real-time quantitative reverse transcriptase PCR (qRT-PCR). Stably...... expressed housekeeping genes for valid normalization of transcriptional studies of endometrium and endometriosis have not yet been published. Here, seven housekeeping genes were evaluated for stability using the GeNorm and NormFinder software. A normalization factor based on HMBS, TBP, and YWHAZ expression...

  10. Transcriptional regulation by competing transcription factor modules.

    Directory of Open Access Journals (Sweden)

    Rutger Hermsen

    2006-12-01

    Full Text Available Gene regulatory networks lie at the heart of cellular computation. In these networks, intracellular and extracellular signals are integrated by transcription factors, which control the expression of transcription units by binding to cis-regulatory regions on the DNA. The designs of both eukaryotic and prokaryotic cis-regulatory regions are usually highly complex. They frequently consist of both repetitive and overlapping transcription factor binding sites. To unravel the design principles of these promoter architectures, we have designed in silico prokaryotic transcriptional logic gates with predefined input-output relations using an evolutionary algorithm. The resulting cis-regulatory designs are often composed of modules that consist of tandem arrays of binding sites to which the transcription factors bind cooperatively. Moreover, these modules often overlap with each other, leading to competition between them. Our analysis thus identifies a new signal integration motif that is based upon the interplay between intramodular cooperativity and intermodular competition. We show that this signal integration mechanism drastically enhances the capacity of cis-regulatory domains to integrate signals. Our results provide a possible explanation for the complexity of promoter architectures and could be used for the rational design of synthetic gene circuits.

  11. A Molecular Analysis of the Induction of Class II Major Histocompatibility Antigen Expression on Murine Macrophages by Interferon-Gamma and Its Down-Regulation by Interferon-Alpha/Beta and Dexamethasone

    Science.gov (United States)

    1989-11-09

    thyrotoxicosis (a hyperthyroid condition) has been characterized, in part, by the production of thyroid-stimulating antibody that binds to the receptor for...helper T cell (reviewed in Unanue and Allen, 1987). IL 1 causes an increase in receptors for the T cell growth factor, Interleukin 2 (IL 2), and also... thyrotoxicosis (Bottazzo et al., 1983), have provided additional evidence in support of a "self-reactive" hypothesis of autoimmunity. Grave’s

  12. Exploring the factors influencing clinical students' self-regulated learning

    NARCIS (Netherlands)

    Berkhout, Joris J.; Helmich, Esther; Teunissen, Pim W.; van den Berg, Joost W.; van der Vleuten, Cees P. M.; Jaarsma, A. Debbie C.

    2015-01-01

    The importance of self-regulated learning (SRL) has been broadly recognised by medical education institutions and regulatory bodies. Supporting the development of SRL skills has proven difficult because self-regulation is a complex interactive process and we know relatively little about the factors

  13. Value of combined detection of interferon-γ, vascular endothelial growth factor, C-reactive protein and adenosine deaminase in differential diagnosis of tuberculous and malignant pleural effusion

    International Nuclear Information System (INIS)

    Li Guo'an; Han Sugui; Zhou Xiuyan; He Weishe; Sun Fangchu

    2012-01-01

    Objective: To explore the value of interferon II, vascular endothelial growth factor, C-reactive protein and adenosine deaminase in differential diagnosis of tuberculous and malignant pleural effusion. Methods: 122 cases with tuberculous pleurisy, 56 cases of malignant pleural effusion, 48 cases of tuberculous pleural effusion, 18 cases of inflammatory and other pleural fluid were studied. The serum and pleural fluid levels of IFN-γ, VEGF-C, CRP and ADA serum in those patients were detected. Results: The IFN-γ, CRP and ADA levels in tuberculous pleural effusion were higher than in malignant pleural effusion(P<0.01). According to the receiver operator characteristic (ROC) curve, when 100 ng/L was regarded as critical value of IFN-γ, the sensitivity and specificity of IFN-γ in diagnosing tuberculous pleural effusion were 83.1% and 92.3% respectively. When 45 U/L ADA was regarded as critical value of ADA, the sensitivity and specificity of ADA in diagnosing tuberculous pleural effusion were 85.6% and 96.3% respectively. When 110 mg/L was regarded as critical value of CRP, the sensitivity and specificity of CRP were 79.1% and 84.2% respectively. When combine detection of three markers, the diagnosis sensitivity and specificity were 87.8% and 86.0% respectively. The VEGF-C concentration in malignant pleural effusion was higher than that in tuberculous pleural effusion and inflammatory and other pleural effusion (P<0.01). When the ratio of VEGF-C to ADA≥8, the sensitivity and specificity in diagnosis of malignant pleural effusion were 86.3% and 82.6% respectively, and the ration VEGF-C to ADA≤3, the sensitivity and specificity in diagnosis of tuberculous pleural effusion were 85.1% and 87.1% respectively. Conclusion: The combined detection of IFN-γ, CRP and ADA could improve sensitivity and specificity in diagnosing tuberculous pleurisy. The concentration ratios of VEGF-C to ADA have clinical value in differential diagnosis of pleural effusions. (authors)

  14. Regulation of Specialized Metabolism by WRKY Transcription Factors

    Science.gov (United States)

    Schluttenhofer, Craig; Yuan, Ling

    2015-01-01

    WRKY transcription factors (TFs) are well known for regulating plant abiotic and biotic stress tolerance. However, much less is known about how WRKY TFs affect plant-specialized metabolism. Analysis of WRKY TFs regulating the production of specialized metabolites emphasizes the values of the family outside of traditionally accepted roles in stress tolerance. WRKYs with conserved roles across plant species seem to be essential in regulating specialized metabolism. Overall, the WRKY family plays an essential role in regulating the biosynthesis of important pharmaceutical, aromatherapy, biofuel, and industrial components, warranting considerable attention in the forthcoming years. PMID:25501946

  15. Chemistry of fog: Factors regulating its composition

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, L.; Stumm, W.; Zobrist, J.; Zuercher, F.

    1987-05-01

    Fog droplets acquire their composition, in principle, by similar mechanisms as cloudwater droplets. The solute concentrations of fogwater (H/sup +/, NH/sub 4/+, NO/sub 3//sup -/, SO/sub 4//sup 2-/, Cl/sup -/, organic acids, and trace metals) are 10-50 times higher than those of rainwater. Urban fogs reflect in their composition the effect of local emissions. Occasionally, very acidic fogs, often due to HCl contamination, with pH values as low as 2 were observed. Fogs can affect ecosystems by concentrating, moving, and depositing chemicals and atmospheric pollutants. Basically, the major composition of fogwater results from the interaction of SO/sub 2/, NO/sub x/, CO/sub 2/, HCl, and NH/sub 3/ with H/sub 2/O in an oxidative environment (O/sub 2/, O/sub 3/, OH/sup ./, H/sub 2/O/sub 2/, sunlight) and in the presence of some traces that may act as redox catalysts (metals such as Cu, Fe, Mn, organic material such as hydrocarbons, and dust and soot surfaces). - The composition of numerous (radiation type) ground-level fogs, and their variation with time from formation to dissipation, have been investigated in Duebendorf (near Zuerich) in order to evaluate the factors that influence the composition; specifically to explore the mechanisms of NO/sub 3//sup -/ and SO/sub 4//sup 2/ incorperation Surprisingly constant motor propertions of NH/sub 4//sup +/:SO/sub 4//sup 2-/:NO/sub 3//sup -/ were observed in the fog. The results do not permit to establish unambiguously to what extent the inclusion of SO/sub 4//sup 2-/ and NO/sub 3//sup -/ into the fogwater is due to the oxidation of absorbed and dissolved SO/sub 2/ and the scavenging of gaseous HNO/sub 3/ or by dissolution of ambient previously formed ammonium sulfate and ammonium nitrate aerosols.

  16. Regulation of CD95 expression and CD95-mediated cell death by interferon-gamma in acute lymphoblastic leukemia with chromosomal translocation t(4;11).

    Science.gov (United States)

    Dörrie, J; Schuh, W; Keil, A; Bongards, E; Greil, J; Fey, G H; Zunino, S J

    1999-10-01

    The regulatory effects of IFNgamma on CD95 expression and CD95-mediated cell death were investigated in three high-risk pro-B acute lymphoblastic leukemia (ALL) lines that carry the chromosomal translocation t(4;11)(q21;q23). These leukemias are characteristically refractory to conventional chemotherapeutic treatments operating through the induction of apoptosis. However, the mechanisms leading to increased cell survival and resistance to cell death in these leukemias are largely unknown. Interferon-gamma (IFNgamma), a potent inhibitor of hematopoiesis, acts in part by upregulating CD95 and sensitizing cells to CD95-induced apoptosis. The t(4;11) lines SEM, RS4;11, and MV4;11 expressed low levels of CD95, but were completely resistant to CD95-mediated death. Addition of IFNgamma markedly upregulated CD95 expression in SEM (8-9-fold), RS4;11 (2-3-fold), and MV4;11 (2-3-fold) lines. However, after treatment with IFNgamma, only an 11% increase in sensitivity to CD95-mediated cell death was observed in SEM cells, whereas RS4;11 and MV4;11 cells remained resistant. Cycloheximide, but not actinomycin D or brefeldin A, increased CD95-specific cell death only in IFNgamma-treated RS4;11 cells by approximately 12%. Abundant levels of Bcl-2 and Bcl-XL, known to inhibit CD95-signaling in some cells, were present suggesting a possible role for both molecules in the resistance to CD95-mediated cell death. Resistance of the leukemic blasts to CD95-mediated cell death and the failure of IFNgamma to substantially sensitize the CD95-signaling pathway may contribute to the highly malignant phenotype of pro-B ALL with translocation t(4;11).

  17. Interferonregulates the function of mesenchymal stem cells from oral lichen planus via indoleamine 2,3-dioxygenase activity.

    Science.gov (United States)

    Zhang, Zhihui; Han, Ying; Song, Jiangyuan; Luo, Ruxi; Jin, Xin; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Ren, Yan-Fang; Liu, Hongwei

    2015-01-01

    Little is known about mesenchymal stem cells (MSCs) in normal or inflammatory oral mucosal tissues, such as in oral lichen planus (OLP). Our objectives were to identify, isolate, and characterize MSCs from normal human oral mucosa and OLP lesions, and to evaluate indoleamine 2,3 dioxygenase (IDO) activity in mediating immunomodulation of MSCs from these tissues. Expressions of MSCs-related markers were examined in isolated cells by flow cytometry. Self-renewal and multilineage differentiations were studied to characterize these MSCs. Interferon-γ (IFN-γ), IDO, and STRO-1 were assessed by immunofluorescence. MSCs from oral mucosa and OLP or IFN-γ-pretreated MSCs were co-cultured with allogeneic mixed lymphocyte reaction assays (MLR). Proliferation and apoptosis of MLR or MSCs were detected by CCK8 and the annexin V-FITC apoptosis detection kit, respectively. IDO expression and activity were measured by real-time PCR, Western blotting, and high-performance liquid chromatography. Isolated cells from oral mucosa and OLP expressed MSC-related markers STRO-1, CD105, and CD90 but were absent for hematopoietic stem cell markers CD34. Besides, they all showed self-renewal and multilineage differentiation capacities. MSCs in OLP presented STRO-1/IDO+ phenotype by immunofluorescence. MSCs and IFN-γ-pretreated MSCs could inhibit lymphocyte proliferation via IDO activity, but not via cell apoptosis. Long-term IFN-γ could also inhibit MSC proliferation via IDO activity. Mesenchymal stem cells can be isolated from human oral mucosa and OLP tissues. Besides self-renewal and multilineage differentiation properties, these cells may participate in immunomodulation mediated by IFN-γ via IDO activity in human OLP. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Virulence regulation in Staphylococcus aureus: the need for in vivo analysis of virulence factor regulation.

    Science.gov (United States)

    Pragman, Alexa A; Schlievert, Patrick M

    2004-10-01

    Staphylococcus aureus is a pathogenic microorganism that is responsible for a wide variety of clinical infections. These infections can be relatively mild, but serious, life-threatening infections may result from the expression of staphylococcal virulence factors that are coordinated by virulence regulators. Much work has been done to characterize the actions of staphylococcal virulence regulators in broth culture. Recently, several laboratories showed that transcriptional analyses of virulence regulators in in vivo animal models or in human infection did not correlate with transcriptional analyses accomplished in vitro. In describing the differences between in vitro and in vivo transcription of staphylococcal virulence regulators, we hope to encourage investigators to study virulence regulators using infection models whenever possible.

  19. Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960

  20. Endogenous versus exogenous growth factor regulation of articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-β1 stimulated these reparative functions, while endogenous TGF-β1 had little effect. Endogenous TGF-β1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-β1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. Published 2013 by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. This article is a U.S. Government work and is in the public domain in the USA.

  1. Small RNA profiling of influenza A virus-infected cells identifies miR-449b as a regulator of histone deacetylase 1 and interferon beta.

    Directory of Open Access Journals (Sweden)

    William A Buggele

    Full Text Available The mammalian antiviral response relies on the alteration of cellular gene expression, to induce the production of antiviral effectors and regulate their activities. Recent research has indicated that virus infections can induce the accumulation of cellular microRNA (miRNA species that influence the stability of host mRNAs and their protein products. To determine the potential for miRNA regulation of cellular responses to influenza A virus infection, small RNA profiling was carried out using next generation sequencing. Comparison of miRNA expression profiles in uninfected human A549 cells to cells infected with influenza A virus strains A/Udorn/72 and A/WSN/33, revealed virus-induced changes in miRNA abundance. Gene expression analysis identified mRNA targets for a cohort of highly inducible miRNAs linked to diverse cellular functions. Experiments demonstrate that the histone deacetylase, HDAC1, can be regulated by influenza-inducible miR-449b, resulting in altered mRNA and protein levels. Expression of miR-449b enhances virus and poly(I:C activation of the IFNβ promoter, a process known to be negatively regulated by HDAC1. These findings demonstrate miRNA induction by influenza A virus infection and elucidate an example of miRNA control of antiviral gene expression in human cells, defining a role for miR-449b in regulation of HDAC1 and antiviral cytokine signaling.

  2. Impact of Environmental Factors on the Regulation of Cyanotoxin Production

    Science.gov (United States)

    Boopathi, Thangavelu; Ki, Jang-Seu

    2014-01-01

    Cyanobacteria are capable of thriving in almost all environments. Recent changes in climatic conditions due to increased human activities favor the occurrence and severity of harmful cyanobacterial bloom all over the world. Knowledge of the regulation of cyanotoxins by the various environmental factors is essential for effective management of toxic cyanobacterial bloom. In recent years, progress in the field of molecular mechanisms involved in cyanotoxin production has paved the way for assessing the role of various factors on the cyanotoxin production. In this review, we present an overview of the influence of various environmental factors on the production of major group of cyanotoxins, including microcystins, nodularin, cylindrospermopsin, anatoxins and saxitoxins. PMID:24967641

  3. Mapping and identification of interferon gamma-regulated HeLa cell proteins separated by immobilized pH gradient two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Shaw, A.; Larsen, M.; Roepstorff, P.

    1999-01-01

    magnitude of IFN-gamma responsive genes has been reported previously. Our goal is to identify and map IFN-gamma-regulated HeLa cell proteins to the two-dimensional polyacrylamide gel electrophoresis with the immobilized pH gradient (IPG) two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) system...

  4. INFLUENZA-INDUCED UP-REGULATION OF TLR3 IN RESPIRATORY EPITHELIAL CELLS MAY OCCUR THROUGH A POSITIVE FEEDBACK LOOP INVOLVING TYPE I INTERFERON

    Science.gov (United States)

    Toll-like receptor 3 (TLR3) plays an important role in the host defense responses against viral infections, including Influenza virus infections. Based on our previous observations showing that Influenza infection of respiratory epithelial cells results in an up-regulation of Tol...

  5. Von Willebrand factor regulation of blood vessel formation.

    Science.gov (United States)

    Randi, Anna M; Smith, Koval E; Castaman, Giancarlo

    2018-06-04

    Several important physiological processes, from permeability to inflammation to haemostasis, take place at the vessel wall and are regulated by endothelial cells (EC). Thus, proteins that have been identified as regulators of one process are increasingly found to be involved in other vascular functions. Such is the case for Von Willebrand Factor (VWF), a large glycoprotein best known for its critical role in haemostasis. In vitro and in vivo studies have shown that lack of VWF causes enhanced vascularisation, both constitutively and following ischemia. This evidence is supported by studies on blood outgrowth endothelial cells (BOEC) from patients with lack of VWF synthesis (type 3 von Willebrand disease [VWD]). The molecular pathways are likely to involve VWF binding partners, such as integrin αvβ3, and components of Weibel Palade bodies (WPB), such as Angiopoietin-2 and Galectin-3, whose storage is regulated by VWF; these converge on the master regulator of angiogenesis and endothelial homeostasis, vascular endothelial growth factor (VEGF) signalling. Recent studies suggest that the roles of VWF may be tissue-specific. The ability of VWF to regulate angiogenesis has clinical implications for a subset of VWD patients with severe, intractable gastrointestinal bleeding due to vascular malformations. In this article, we review the evidence showing that VWF is involved in blood vessel formation, discuss the role of VWF high molecular weight multimers in regulating angiogenesis, and the value of studies on BOEC in developing a precision medicine approach to validate novel treatments for angiodysplasia in congenital VWD and acquired von Willebrand syndrome. Copyright © 2018 American Society of Hematology.

  6. Exploring the factors influencing clinical students' self-regulated learning.

    Science.gov (United States)

    Berkhout, Joris J; Helmich, Esther; Teunissen, Pim W; van den Berg, Joost W; van der Vleuten, Cees P M; Jaarsma, A Debbie C

    2015-06-01

    The importance of self-regulated learning (SRL) has been broadly recognised by medical education institutions and regulatory bodies. Supporting the development of SRL skills has proven difficult because self-regulation is a complex interactive process and we know relatively little about the factors influencing this process in real practice settings. The aim of our study was therefore to identify factors that support or hamper medical students' SRL in a clinical context. We conducted a constructivist grounded theory study using semi-structured interviews with 17 medical students from two universities enrolled in clerkships. Participants were purposively sampled to ensure variety in age, gender, experience and current clerkship. The Day Reconstruction Method was used to help participants remember their activities of the previous day. The interviews were transcribed verbatim and analysed iteratively using constant comparison and open, axial and interpretive coding. Self-regulated learning by students in the clinical environment was influenced by the specific goals perceived by students, the autonomy they experienced, the learning opportunities they were given or created themselves, and the anticipated outcomes of an activity. All of these factors were affected by personal, contextual and social attributes. Self-regulated learning of medical students in the clinical environment is different for every individual. The factors influencing this process are affected by personal, social and contextual attributes. Some of these are similar to those known from previous research in classroom settings, but others are unique to the clinical environment and include the facilities available, the role of patients, and social relationships pertaining to peers and other hospital staff. To better support students' SRL, we believe it is important to increase students' metacognitive awareness and to offer students more tailored learning opportunities. © 2015 John Wiley & Sons Ltd.

  7. Interferon Induced Focal Segmental Glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Yusuf Kayar

    2016-01-01

    Full Text Available Behçet’s disease is an inflammatory disease of unknown etiology which involves recurring oral and genital aphthous ulcers and ocular lesions as well as articular, vascular, and nervous system involvement. Focal segmental glomerulosclerosis (FSGS is usually seen in viral infections, immune deficiency syndrome, sickle cell anemia, and hyperfiltration and secondary to interferon therapy. Here, we present a case of FSGS identified with kidney biopsy in a patient who had been diagnosed with Behçet’s disease and received interferon-alpha treatment for uveitis and presented with acute renal failure and nephrotic syndrome associated with interferon.

  8. Ribavirin plus interferon versus interferon for chronic hepatitis C

    DEFF Research Database (Denmark)

    Brok, Jesper; Gluud, Lise Lotte; Gluud, Christian

    2010-01-01

    Hepatitis C is a major cause of liver-related morbidity and mortality. Standard therapy is ribavirin plus pegylated interferon to achieve undetectable level of virus in the blood, but the effect on clinical outcomes is controversial.......Hepatitis C is a major cause of liver-related morbidity and mortality. Standard therapy is ribavirin plus pegylated interferon to achieve undetectable level of virus in the blood, but the effect on clinical outcomes is controversial....

  9. Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor.

    Science.gov (United States)

    Kim, So Young; Choi, Yong Jun; Joung, Sun Myung; Lee, Byung Ho; Jung, Yi-Sook; Lee, Joo Young

    2010-04-01

    Toll-like receptors (TLRs) are germline-encoded innate immune receptors that recognize invading micro-organisms and induce immune and inflammatory responses. Deregulation of TLRs is known to be closely linked to various immune disorders and inflammatory diseases. Cells at sites of inflammation are exposed to hypoxic stress, which further aggravates inflammatory processes. We have examined if hypoxic stress modulates the TLR activity of macrophages. Hypoxia and CoCl(2) (a hypoxia mimetic) enhanced the expression of TLR4 messenger RNA and protein in macrophages (RAW264.7 cells), whereas the messenger RNA of other TLRs was not increased. To determine the underlying mechanism, we investigated the role of hypoxia-inducible factor 1 (HIF-1) in the regulation of TLR4 expression. Knockdown of HIF-1alpha expression by small interfering RNA inhibited hypoxia-induced and CoCl(2)-induced TLR4 expression in macrophages, while over-expression of HIF-1alpha potentiated TLR4 expression. Chromatin immunoprecipitation assays revealed that HIF-1alpha binds to the TLR4 promoter region under hypoxic conditions. In addition, deletion or mutation of a putative HIF-1-binding motif in the TLR4 promoter greatly attenuated HIF-1alpha-induced TLR4 promoter reporter expression. Up-regulation of TLR4 expression by hypoxic stress enhanced the response of macrophages to lipopolysaccharide, resulting in increased expression of cyclooxygenase-2, interleukin-6, regulated on activation normal T cell expressed and secreted, and interferon-inducible protein-10. These results demonstrate that TLR4 expression in macrophages is up-regulated via HIF-1 in response to hypoxic stress, suggesting that hypoxic stress at sites of inflammation enhances susceptibility to subsequent infection and inflammatory signals by up-regulating TLR4.

  10. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition

    International Nuclear Information System (INIS)

    Versteeg, Gijs A.; Bredenbeek, Peter J.; Worm, Sjoerd H.E. van den; Spaan, Willy J.M.

    2007-01-01

    Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main general mechanism for coronaviruses to prevent IFN induction

  11. Role of cytokine gene (interferon-γ, transforming growth factor-β1, tumor necrosis factor-α, interleukin-6, and interleukin-10 polymorphisms in the risk of oral precancerous lesions in Taiwanese

    Directory of Open Access Journals (Sweden)

    Han-Jen Hsu

    2014-11-01

    Full Text Available Oral squamous cell carcinoma can be preceded by some benign oral lesions with malignant potential, including leukoplakia, erythroplakia, oral lichen planus, and oral submucous fibrosis. There are different degrees of inflammatory cells infiltration in histopathology. Inflammatory cytokines may play a pathogenic role in the development of oral precancerous lesions (OPCLs. Genetic polymorphisms of cytokine-encoding genes are known to predispose to malignant disease. We hypothesized that the risk of OPCLs might be associated with cytokine gene polymorphisms of interferon (IFN-γ, transforming growth factor (TGF-β1, tumor necrosis factor (TNF-α, interleukin (IL-6, and IL-10. In the present study, 42 OPCL patients and 128 controls were analyzed for eight polymorphisms in five different cytokine genes [IFN-γ (+874 T/A, TGF-β1 (codons 10 T/C and 25 G/C, TNF-α (−308 G/A, IL-6 (−174 G/C, and IL-10 (−1082 A/G, –819 T/C, and −592 A/C]. Cytokine genotyping was determined by the polymerase chain reaction sequence-specific primer technique using commercial primers. Allele and genotype data were analyzed for significance of differences between cases and controls using the Chi-square (χ2 test. Two-sided p < 0.05 were considered to be statistically significant. A series of multivariate logistic regression models, adjusted for age, sex, betel quid chewing, alcohol consumption, and smoking, was constructed in order to access the contribution of homozygous or heterozygous variant genotypes of polymorphisms. The TNF-α (−308 polymorphism was significantly associated with OPCLs. There were significant differences in the distribution of AA, GA, and GG genotypes between OPCL patients and controls (p = 0.0004. Patients with the AA or GA genotype had a 3.63-fold increased risk of OPCLs. The TGF-β1 (codon 10 and 25 polymorphism was also significantly associated with OPCLs (p < 0.001. The IL-6 polymorphism was significantly associated with OPCLs

  12. Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis.

    Science.gov (United States)

    Luna-Zurita, Luis; Stirnimann, Christian U; Glatt, Sebastian; Kaynak, Bogac L; Thomas, Sean; Baudin, Florence; Samee, Md Abul Hassan; He, Daniel; Small, Eric M; Mileikovsky, Maria; Nagy, Andras; Holloway, Alisha K; Pollard, Katherine S; Müller, Christoph W; Bruneau, Benoit G

    2016-02-25

    Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. MGMT expression: insights into its regulation. 1. Epigenetic factors

    Directory of Open Access Journals (Sweden)

    Iatsyshyna A. P.

    2013-03-01

    Full Text Available O6-methylguanine-DNA methyltransferase (MGMT is the DNA repair enzyme responsible for removing of alkylation adducts from the O6-guanine in DNA. Despite MGMT prevents mutations and cell death, this enzyme can provide resistance of cancer cells to alkylating agents of chemotherapy. The high intra- and inter-individual variations in the human MGMT expression level have been observed indicating to a complicated regulation of this gene. This review is focused on the study of epigenetic factors which could be potentially involved in regulation of the human MGMT gene expression. These include chromatin remodeling via histone modifications and DNA methylation of promoter region and gene body, as well as RNA-based mechanisms, alternative splicing, protein post- translational modifications, and other.

  14. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    Science.gov (United States)

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Addition of interferon-alpha to a standard maturation cocktail induces CD38 up-regulation and increases dendritic cell function

    DEFF Research Database (Denmark)

    Trepiakas, Redas; Pedersen, Anders Elm; Met, Ozcan

    2009-01-01

    Monocyte-derived dendritic cells (DCs) are used as adjuvant cells in cancer immunotherapy and have shown promising results. In order to obtain full functional capacity, these DCs need to be maturated, and the current "gold standard" for this process is maturation with TNF-alpha, IL-1beta, IL-6...... a functional relationship between CD38, IFN-alpha and TLR3. Thus, CD38 appear to be a relevant marker for activation by TLR3 or IFN-alpha. Addition of IFN-alpha to the sDC cocktail results in up-regulation of both CD38 and CD83 and improved capacity for induction of autologous T-cell responses despite few...... other changes in DC phenotype and cytokine secretion. Our observations suggest that IFN-alpha could be included in maturation protocols for clinical grade DCs used for immunotherapy against cancer and should be included if DCs are used for CD8+ T-cell stimulation in vitro....

  16. Regulation of Memory Formation by the Transcription Factor XBP1

    Directory of Open Access Journals (Sweden)

    Gabriela Martínez

    2016-02-01

    Full Text Available Contextual memory formation relies on the induction of new genes in the hippocampus. A polymorphism in the promoter of the transcription factor XBP1 was identified as a risk factor for Alzheimer’s disease and bipolar disorders. XBP1 is a major regulator of the unfolded protein response (UPR, mediating adaptation to endoplasmic reticulum (ER stress. Using a phenotypic screen, we uncovered an unexpected function of XBP1 in cognition and behavior. Mice lacking XBP1 in the nervous system showed specific impairment of contextual memory formation and long-term potentiation (LTP, whereas neuronal XBP1s overexpression improved performance in memory tasks. Gene expression analysis revealed that XBP1 regulates a group of memory-related genes, highlighting brain-derived neurotrophic factor (BDNF, a key component in memory consolidation. Overexpression of BDNF in the hippocampus reversed the XBP1-deficient phenotype. Our study revealed an unanticipated function of XBP1 in cognitive processes that is apparently unrelated to its role in ER stress.

  17. Regulation of cardiac microRNAs by serum response factor

    Directory of Open Access Journals (Sweden)

    Wei Jeanne Y

    2011-02-01

    Full Text Available Abstract Serum response factor (SRF regulates certain microRNAs that play a role in cardiac and skeletal muscle development. However, the role of SRF in the regulation of microRNA expression and microRNA biogenesis in cardiac hypertrophy has not been well established. In this report, we employed two distinct transgenic mouse models to study the impact of SRF on cardiac microRNA expression and microRNA biogenesis. Cardiac-specific overexpression of SRF (SRF-Tg led to altered expression of a number of microRNAs. Interestingly, downregulation of miR-1, miR-133a and upregulation of miR-21 occurred by 7 days of age in these mice, long before the onset of cardiac hypertrophy, suggesting that SRF overexpression impacted the expression of microRNAs which contribute to cardiac hypertrophy. Reducing cardiac SRF level using the antisense-SRF transgenic approach (Anti-SRF-Tg resulted in the expression of miR-1, miR-133a and miR-21 in the opposite direction. Furthermore, we observed that SRF regulates microRNA biogenesis, specifically the transcription of pri-microRNA, thereby affecting the mature microRNA level. The mir-21 promoter sequence is conserved among mouse, rat and human; one SRF binding site was found to be in the mir-21 proximal promoter region of all three species. The mir-21 gene is regulated by SRF and its cofactors, including myocardin and p49/Strap. Our study demonstrates that the downregulation of miR-1, miR-133a, and upregulation of miR-21 can be reversed by one single upstream regulator, SRF. These results may help to develop novel therapeutic interventions targeting microRNA biogenesis.

  18. CD98 Heavy Chain Is a Potent Positive Regulator of CD4+ T Cell Proliferation and Interferon-γ Production In Vivo.

    Directory of Open Access Journals (Sweden)

    Takeshi Kurihara

    Full Text Available Upon their recognition of antigens presented by the MHC, T cell proliferation is vital for clonal expansion and the acquisition of effector functions, which are essential for mounting adaptive immune responses. The CD98 heavy chain (CD98hc, Slc3a2 plays a crucial role in the proliferation of both CD4+ and CD8+ T cells, although it is unclear if CD98hc directly regulates the T cell effector functions that are not linked with T cell proliferation in vivo. Here, we demonstrate that CD98hc is required for both CD4+ T cell proliferation and Th1 functional differentiation. T cell-specific deletion of CD98hc did not affect T cell development in the thymus. CD98hc-deficient CD4+ T cells proliferated in vivo more slowly as compared with control T cells. C57BL/6 mice lacking CD98hc in their CD4+ T cells could not control Leishmania major infections due to lowered IFN-γ production, even with massive CD4+ T cell proliferation. CD98hc-deficient CD4+ T cells exhibited lower IFN-γ production compared with wild-type T cells, even when comparing IFN-γ expression in cells that underwent the same number of cell divisions. Therefore, these data indicate that CD98hc is required for CD4+ T cell expansion and functional Th1 differentiation in vivo, and suggest that CD98hc might be a good target for treating Th1-mediated immune disorders.

  19. Guarding the frontiers: the biology of type III interferons

    DEFF Research Database (Denmark)

    Wack, Andreas; Terczynska-Dyla, Ewa; Hartmann, Rune

    2015-01-01

    Type III interferons (IFNs) or IFN-λs regulate a similar set of genes as type I IFNs, but whereas type I IFNs act globally, IFN-λs primarily target mucosal epithelial cells and protect them against the frequent viral attacks that are typical for barrier tissues. IFN-λs thereby help to maintain...

  20. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    Directory of Open Access Journals (Sweden)

    H. Susana Marinho

    2014-01-01

    Full Text Available The regulatory mechanisms by which hydrogen peroxide (H2O2 modulates the activity of transcription factors in bacteria (OxyR and PerR, lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4 and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1 are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1 synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for

  1. Nuclear Trafficking of the Rabies Virus Interferon Antagonist P-Protein Is Regulated by an Importin-Binding Nuclear Localization Sequence in the C-Terminal Domain.

    Directory of Open Access Journals (Sweden)

    Caitlin L Rowe

    Full Text Available Rabies virus P-protein is expressed as five isoforms (P1-P5 which undergo nucleocytoplasmic trafficking important to roles in immune evasion. Although nuclear import of P3 is known to be mediated by an importin (IMP-recognised nuclear localization sequence in the N-terminal region (N-NLS, the mechanisms underlying nuclear import of other P isoforms in which the N-NLS is inactive or has been deleted have remained unresolved. Based on the previous observation that mutation of basic residues K214/R260 of the P-protein C-terminal domain (P-CTD can result in nuclear exclusion of P3, we used live cell imaging, protein interaction analysis and in vitro nuclear transport assays to examine in detail the nuclear trafficking properties of this domain. We find that the effect of mutation of K214/R260 on P3 is largely dependent on nuclear export, suggesting that nuclear exclusion of mutated P3 involves the P-CTD-localized nuclear export sequence (C-NES. However, assays using cells in which nuclear export is pharmacologically inhibited indicate that these mutations significantly inhibit P3 nuclear accumulation and, importantly, prevent nuclear accumulation of P1, suggestive of effects on NLS-mediated import activity in these isoforms. Consistent with this, molecular binding and transport assays indicate that the P-CTD mediates IMPα2/IMPβ1-dependent nuclear import by conferring direct binding to the IMPα2/IMPβ1 heterodimer, as well as to a truncated form of IMPα2 lacking the IMPβ-binding autoinhibitory domain (ΔIBB-IMPα2, and IMPβ1 alone. These properties are all dependent on K214 and R260. This provides the first evidence that P-CTD contains a genuine IMP-binding NLS, and establishes the mechanism by which P-protein isoforms other than P3 can be imported to the nucleus. These data underpin a refined model for P-protein trafficking that involves the concerted action of multiple NESs and IMP-binding NLSs, and highlight the intricate regulation of P

  2. Canonical and Non-Canonical Aspects of JAK-STAT Signaling: Lessons from Interferons for Cytokine Responses.

    Science.gov (United States)

    Majoros, Andrea; Platanitis, Ekaterini; Kernbauer-Hölzl, Elisabeth; Rosebrock, Felix; Müller, Mathias; Decker, Thomas

    2017-01-01

    Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signal transduction mediates cytokine responses. Canonical signaling is based on STAT tyrosine phosphorylation by activated JAKs. Downstream of interferon (IFN) receptors, activated JAKs cause the formation of the transcription factors IFN-stimulated gene factor 3 (ISGF3), a heterotrimer of STAT1, STAT2 and interferon regulatory factor 9 (IRF9) subunits, and gamma interferon-activated factor (GAF), a STAT1 homodimer. In recent years, several deviations from this paradigm were reported. These include kinase-independent JAK functions as well as extra- and intranuclear activities of U-STATs without phosphotyrosines. Additionally, transcriptional control by STAT complexes resembling neither GAF nor ISGF3 contributes to transcriptome changes in IFN-treated cells. Our review summarizes the contribution of non-canonical JAK-STAT signaling to the innate antimicrobial immunity imparted by IFN. Moreover, we touch upon functions of IFN pathway proteins beyond the IFN response. These include metabolic functions of IRF9 as well as the regulation of natural killer cell activity by kinase-dead TYK2 and different phosphorylation isoforms of STAT1.

  3. Canonical and Non-Canonical Aspects of JAK–STAT Signaling: Lessons from Interferons for Cytokine Responses

    Science.gov (United States)

    Majoros, Andrea; Platanitis, Ekaterini; Kernbauer-Hölzl, Elisabeth; Rosebrock, Felix; Müller, Mathias; Decker, Thomas

    2017-01-01

    Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signal transduction mediates cytokine responses. Canonical signaling is based on STAT tyrosine phosphorylation by activated JAKs. Downstream of interferon (IFN) receptors, activated JAKs cause the formation of the transcription factors IFN-stimulated gene factor 3 (ISGF3), a heterotrimer of STAT1, STAT2 and interferon regulatory factor 9 (IRF9) subunits, and gamma interferon-activated factor (GAF), a STAT1 homodimer. In recent years, several deviations from this paradigm were reported. These include kinase-independent JAK functions as well as extra- and intranuclear activities of U-STATs without phosphotyrosines. Additionally, transcriptional control by STAT complexes resembling neither GAF nor ISGF3 contributes to transcriptome changes in IFN-treated cells. Our review summarizes the contribution of non-canonical JAK–STAT signaling to the innate antimicrobial immunity imparted by IFN. Moreover, we touch upon functions of IFN pathway proteins beyond the IFN response. These include metabolic functions of IRF9 as well as the regulation of natural killer cell activity by kinase-dead TYK2 and different phosphorylation isoforms of STAT1. PMID:28184222

  4. Regulation of basophil and mast cell development by transcription factors

    Directory of Open Access Journals (Sweden)

    Haruka Sasaki

    2016-04-01

    Full Text Available Basophils and mast cells play important roles in host defense against parasitic infections and allergic responses. Several progenitor populations, either shared or specific, for basophils and/or mast cells have been identified, thus elucidating the developmental pathways of these cells. Multiple transcription factors essential for their development and the relationships between them have been also revealed. For example, IRF8 induces GATA2 expression to promote the generation of both basophils and mast cells. The STAT5-GATA2 axis induces C/EBPα and MITF expression, facilitating the differentiation into basophils and mast cells, respectively. In addition, C/EBPα and MITF mutually suppress each other's expression. This review provides an overview of recent advances in our understanding of how transcription factors regulate the development of basophils and mast cells.

  5. Fibroblast Growth Factor 21 Mediates Glycemic Regulation by Hepatic JNK

    Directory of Open Access Journals (Sweden)

    Santiago Vernia

    2016-03-01

    Full Text Available The cJun NH2-terminal kinase (JNK-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21 is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.

  6. Role of interferon in resistance and immunity to protozoa

    Science.gov (United States)

    Sonnenfeld, G.; Degee, A. L. W.; Mansfield, J. M.; Newsome, A. L.; Arnold, R. R.

    1985-01-01

    Production of interferon (I) in response to protozoan infection, and the interferon-mediated inhibition of parasite replication were studied in order to determine if these effects may be related to immunologic-mediated resistance of the hosts. Two extracellular parasites-Trypanosoma brucei rhodesiense and Naegleria fowlei were used. Upon infection with the trypanosome, only resistant strains of mice produced I. An early peak of alpha/beta I is followed by appearance of gamma I, which coincided with antibody production and a drop in parasitemia. In case of the amoeba, pretreatment of its suspension with alpha/beta I inhibits its replication in vitro, and appears to protect mice from the infection and the disease. It is proposed that production of interferon, with its regulatory effect on the immune responses, may play a major role in regulating the processes of protozoan-caused diseases.

  7. Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels.

    Science.gov (United States)

    Zhang, Ren

    2012-08-10

    The metabolic syndrome, a common disorder including glucose intolerance and dyslipidemia, poses a major public health issue. Patients with high blood lipids, such as triglycerides, are at high risk in developing atherosclerotic cardiovascular diseases. To identify genes involved in metabolism, we performed RNA-seq experiments on the liver and fat in mice treated with a high-fat diet or fasting, and identified Gm6484 (named Lipasin) as a novel nutritionally regulated gene. Human LIPASIN is liver specific, while the mouse one is enriched in the liver and fat, including both brown and white adipose tissues. Obesity increases liver Lipasin, whereas fasting reduces its expression in fat. ANGPTL3 (Angiopoietin-like 3) and ANGPTL4 are critical regulators of blood lipids. LIPASIN shares homology with ANGPTL3's N-terminal domain that is needed for lipid regulation, and with ANGPTL4's N-terminal segment that mediates lipoprotein lipase (LPL) binding. Lipasin overexpression by adenoviruses in mice increases serum triglyceride levels, and a recombinant Lipasin inhibits LPL activity. Therefore, a potential mechanism for Lipasin-mediated triglyceride elevation is through reduced triglyceride clearance by LPL inhibition. Lipasin is thus a novel nutritionally-regulated liver-enriched factor that plays a role in lipid metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. A randomized, double-blind, phase I/II trial of tumor necrosis factor and interferon-gamma for treatment of AIDS-related complex (Protocol 025 from the AIDS Clinical Trials Group).

    Science.gov (United States)

    Agosti, J M; Coombs, R W; Collier, A C; Paradise, M A; Benedetti, J K; Jaffe, H S; Corey, L

    1992-05-01

    To determine safety and efficacy of tumor necrosis factor (TNF) and interferon-gamma (IFN gamma) in the treatment of patients with acquired immunodeficiency syndrome (AIDS)-related complex, a randomized, double-blind study was conducted. Twenty-five patients with AIDS-related complex and CD4 lymphocytes less than or equal to 500 x 10(6)/L attended an AIDS Clinical Trials Unit of a tertiary referral center. Patients were administered tumor necrosis factor (TNF) (10 micrograms/m2) or IFN gamma (10 micrograms/m2), or both intramuscularly three times weekly for 16 weeks. Side effects from all three preparations included fever, constitutional symptoms, and local reactions. No significant hematologic, hepatic, renal, or coagulation abnormalities were observed. CD4 lymphocyte counts, beta 2-microglobulin, p24 antigen levels, and anti-p24 antibody did not change significantly during therapy. Similarly, no significant change was noted in rates of HIV isolation from peripheral blood mononuclear cells or plasma. TNF and IFN gamma were tolerable after premedication with acetaminophen; however, no significant change in markers of human immunodeficiency virus infection was demonstrated. These cytokines alone do not appear to be of benefit, nor do they appear to hasten the progression of HIV infection.

  9. HIV-1 Tat C-mediated regulation of tumor necrosis factor receptor-associated factor-3 by microRNA 32 in human microglia

    Directory of Open Access Journals (Sweden)

    Mishra Ritu

    2012-06-01

    Full Text Available Abstract Background HIV-1 Tat protein is known to be associated with neuroinflammation, a condition that develops in almost half of patients infected with HIV-1. HIV-1 Tat can alter glial neuroprotective functions, leading to neurotoxicity within the CNS. HIV-1 Tat is known to be secreted from productively infected cells and can affect neighboring uninfected cells by modulating cellular gene expression in a bystander fashion. Methods We were interested to study whether exogenous exposure to HIV-1 Tat-C protein perturbs the microRNA (miRNA expression profile of human microglial cells, leading to altered protein expression. We used protein expression and purification, miRNA overexpression, miRNA knockdown, transfection, site-directed mutagenesis, real-time PCR, luciferase assay and western blotting techniques to perform our study. Results HIV-1 Tat-C treatment of human microglial cells resulted in a dose-dependent increase in miR-32 expression. We found that tumor necrosis factor-receptor–associated factor 3 TRAF3 is a direct target for miR-32, and overexpression of miR-32 in CHME3 cells decreased TRAF3 both at the mRNA and the protein level. Recovery of TRAF3 protein expression after transfection of anti-miR-32 and the results of the luciferase reporter assay provided direct evidence of TRAF3 regulation by miR-32. We found that the regulation of interferon regulatory factor 3 (IRF3 and IRF7 is controlled by cellular levels of TRAF3 protein in microglial cells, as after overexpression of miR-32 and application of anti-miR-32, expression levels of IRF3 and IRF7 were inversely regulated by expression levels of TRAF3. Thus, our results suggest a novel miRNA mediated mechanism for regulation of TRAF3 in human microglial cells exposed to HIV-1 Tat C protein. These results may help to elucidate the detrimental neuroinflammatory consequences of HIV-1 Tat C protein in bystander fashion. Conclusion HIV-1 Tat protein can modulate TRAF3 expression through

  10. Regulation of bitter taste responses by tumor necrosis factor.

    Science.gov (United States)

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A; Huang, Liquan; Wang, Hong

    2015-10-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Myocardin-related transcription factor regulates Nox4 protein expression

    DEFF Research Database (Denmark)

    Rozycki, Matthew; Bialik, Janne Folke; Speight, Pam

    2016-01-01

    translocation of MRTF. Because the Nox4 promoter harbors a serum response factor/MRTF cis-element (CC(A/T)6GG box), we asked if MRTF (and thus cytoskeleton organization) could regulate Nox4 expression. We show that Nox4 protein is robustly induced in kidney tubular cells exclusively by combined application...... TGFβ/contact disruption-provoked Nox4 protein and mRNA expression, Nox4 promoter activation, and reactive oxygen species production. Mutation of the CC(A/T)6GG box eliminates the synergistic activation of the Nox4 promoter. Jasplakinolide-induced actin polymerization synergizes with TGFβ to facilitate...... MRTF-dependent Nox4 mRNA expression/promoter activation. Moreover, MRTF inhibition prevents Nox4 expression during TGFβ-induced fibroblast-myofibroblast transition as well. Although necessary, MRTF is insufficient; Nox4 expression also requires TGFβ-activated Smad3 and TAZ/YAP, two contact...

  12. Efficacy of peg-interferon based treatment in patients with hepatitis C refractory to previous conventional interferon-based treatment

    International Nuclear Information System (INIS)

    Shaikh, S.; Devrajani, B.R.; Kalhoro, M.

    2012-01-01

    Objective: To determine the efficacy of peg-interferon-based therapy in patients refractory to previous conventional interferon-based treatment and factors predicting sustained viral response (SVR). Study Design: Analytical study. Place and Duration of Study: Medical Unit IV, Liaquat University Hospital, Jamshoro, from July 2009 to June 2011. Methodology: This study included consecutive patients of hepatitis C who were previously treated with conventional interferon-based treatment for 6 months but were either non-responders, relapsed or had virologic breakthrough and stage = 2 with fibrosis on liver biopsy. All eligible patients were provided peg-interferon at the dosage of 180 mu g weekly with ribavirin thrice a day for 6 months. Sustained Viral Response (SVR) was defined as absence of HCV RNA at twenty four week after treatment. All data was processed on SPSS version 16. Results: Out of 450 patients enrolled in the study, 192 were excluded from the study on the basis of minimal fibrosis (stage 0 and 1). Two hundred and fifty eight patients fulfilled the inclusion criteria and 247 completed the course of peg-interferon treatment. One hundred and sixty one (62.4%) were males and 97 (37.6%) were females. The mean age was 39.9 +- 6.1 years, haemoglobin was 11.49 +- 2.45 g/dl, platelet count was 127.2 +- 50.6 10/sup 3/ /mm/sup 3/, ALT was 99 +- 65 IU/L. SVR was achieved in 84 (32.6%). The strong association was found between SVR and the pattern of response (p = 0. 001), degree of fibrosis and early viral response (p = 0.001). Conclusion: Peg-interferon based treatment is an effective and safe treatment option for patients refractory to conventional interferon-based treatment. (author)

  13. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors.

    Science.gov (United States)

    Aprelikova, Olga; Chandramouli, Gadisetti V R; Wood, Matthew; Vasselli, James R; Riss, Joseph; Maranchie, Jodi K; Linehan, W Marston; Barrett, J Carl

    2004-06-01

    Hypoxia and induction of hypoxia-inducible factors (HIF-1alpha and HIF-2alpha) is a hallmark of many tumors. Under normal oxygen tension HIF-alpha subunits are rapidly degraded through prolyl hydroxylase dependent interaction with the von Hippel-Lindau (VHL) tumor suppressor protein, a component of E3 ubuiquitin ligase complex. Using microarray analysis of VHL mutated and re-introduced cells, we found that one of the prolyl hydroxylases (PHD3) is coordinately expressed with known HIF target genes, while the other two family members (PHD1 and 2) did not respond to VHL. We further tested the regulation of these genes by HIF-1 and HIF-2 and found that siRNA targeted degradation of HIF-1alpha and HIF-2alpha results in decreased hypoxia-induced PHD3 expression. Ectopic overexpression of HIF-2alpha in two different cell lines provided a much better induction of PHD3 gene than HIF-1alpha. In contrast, we demonstrate that PHD2 is not affected by overexpression or downregulation of HIF-2alpha. However, induction of PHD2 by hypoxia has HIF-1-independent and -dependent components. Short-term hypoxia (4 h) results in induction of PHD2 independent of HIF-1, while PHD2 accumulation by prolonged hypoxia (16 h) was decreased by siRNA-mediated degradation of HIF-1alpha subunit. These data further advance our understanding of the differential role of HIF factors and putative feedback loop in HIF regulation. Copyright 2004 Wiley-Liss, Inc.

  14. Bilateral Ischemic Optic Neuropathy Developed under Interferon Therapy

    Directory of Open Access Journals (Sweden)

    Fatih Selcukbiricik

    2012-01-01

    Full Text Available Introduction. Interferon is a glycoprotein produced by assigned cells of immune system. It has been used in many different diseases. Although flu-like syndrome, myalgia, rash, hypotension, thrombocytopenia and peripheral neuropathy due to interferon use are encountered frequently, ocular side effects are rare, generally mild and transient. Case Report. 47-year-old female patient, presented with a mass lesion in right renal pelvis. Right radical nephrectomy was applied and the histopathological examination was consistent with papillary renal cell carcinoma. Interferon alpha treatment was started subcutaneously at the dose of 5 MIU/3 times in a week. Four weeks after the interferon therapy, suddenly bilateral visual loss developed. We discussed the diagnosis, followup, and treatment of the patient who developed irreversible ischemic optic neuropathy and had no previous known primary systemic disease to cause this condition. Conclusion. We suggest that patients should be screened for risk factors causing optic ischemic neuropathy, before interferon therapy. Although there was no adequate information in the literature for the followup, patients should be monitorized before, 1 month after, and 2 months after the treatment. And if there is no complication, we suggest that they should be followed up at 3-month intervals.

  15. Regulation of stem cell factor expression in inflammation and asthma

    Directory of Open Access Journals (Sweden)

    Carla A Da Silva

    2005-03-01

    Full Text Available Stem cell factor (SCF is a major mast cell growth factor, which could be involved in the local increase of mast cell number in the asthmatic airways. In vivo, SCF expression increases in asthmatic patients and this is reversed after treatment with glucocorticoids. In vitro in human lung fibroblasts in culture, IL-1beta, a pro-inflammatory cytokine, confirms this increased SCF mRNA and protein expression implying the MAP kinases p38 and ERK1/2 very early post-treatment, and glucocorticoids confirm this decrease. Surprisingly, glucocorticoids potentiate the IL-1beta-enhanced SCF expression at short term treatment, implying increased SCF mRNA stability and SCF gene transcription rate. This potentiation involves p38 and ERK1/2. Transfection experiments with the SCF promoter including intron1 also confirm this increase and decrease of SCF expression by IL-1beta and glucocorticoids, and the potentiation by glucocorticoids of the IL-1beta-induced SCF expression. Deletion of the GRE or kappaB sites abolishes this potentiation, and the effect of IL-1beta or glucocorticoids alone. DNA binding of GR and NF-kappaB are also demonstrated for these effects. In conclusion, this review concerns new mechanisms of regulation of SCF expression in inflammation that could lead to potential therapeutic strategy allowing to control mast cell number in the asthmatic airways.

  16. Interferons and their potential in the treatment of ocular inflammation

    Directory of Open Access Journals (Sweden)

    Friederike Mackensen

    2009-10-01

    Full Text Available Friederike Mackensen,1 Regina Max,2 Matthias D Becker31Department of Ophthalmology, 2Department of Internal Medicine, Interdisciplinary Uveitis Center, University of Heidelberg, Germany; 3Department of Ophthalmology, Triemli Hospital Zürich, SwitzerlandAbstract: Since their discovery in the 1950s interferons have been the scope of investigation in many diseases as therapeutic as well as pathogenetic factors. We know they have immune stimulatory and immune regulatory effects. This apparently counter-intuitive mechanism can be summarized as immunomodulatory action and seems to be very effective in a number of ocular inflammatory diseases. We review the current knowledge of interferons in immunity and autoimmunity and show their use in clinical ophthalmologic practice.Keywords: interferon, uveitis, treatment, inflammation

  17. Arthritis is inhibited in Borrelia-primed and infected interleukin-17A-deficient mice after administration of anti-gamma-interferon, anti-tumor necrosis factor alpha and anti-interleukin-6 antibodies.

    Science.gov (United States)

    Kuo, Joseph; Warner, Thomas F; Schell, Ronald F

    2017-08-31

    The role that cytokines play in the induction of Lyme arthritis is gradually being delineated. We showed previously that severe arthritis developed in a T-cell-driven murine model, even in mice lacking interleukin-17A (IL-17A) and administered anti-gamma-interferon (IFN-γ) antibody. Increased levels of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), two pro-inflammatory cytokines, were detected in cultures of popliteal lymph node cells obtained from these mice. We hypothesized that concomitantly administered anti-IL-6, anti-TNF-α and anti-IFN-γ antibodies would inhibit the development of arthritis in IL-17A-deficient mice. Our results showed that swelling of the hind paws and histopathological changes consistent with arthritis were significantly reduced in IL-17A-deficient mice that administered the three anti-cytokine antibodies. These results suggest that treatment with multiple anti-cytokine antibodies can abrogate the induction of Lyme arthritis in mice. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis

    Directory of Open Access Journals (Sweden)

    Zuzanna Rzepka

    2016-06-01

    Full Text Available Melanins are natural pigments of skin, hair and eyes and can be classified into two main types: brown to black eumelanin and yellow to reddish-brown pheomelanin. Biosynthesis of melanins takes place in melanosomes, which are specialized cytoplasmic organelles of melanocytes - dendritic cells located in the basal layer of the epidermis, uveal tract of the eye, hair follicles, as well as in the inner ear, central nervous system and heart. Melanogenesis is a multistep process and begins with the conversion of amino acid L-tyrosine to DOPAquinone. The addition of cysteine or glutathione to DOPAquinone leads to the intermediates formation, followed by subsequent transformations and polymerization to the final product, pheomelanin. In the absence of thiol compounds DOPAquinone undergoes an intramolecular cyclization and oxidation to form DOPAchrome, which is then converted to 5,6-dihydroksyindole (DHI or 5,6-dihydroxyindole-2-carboxylic acid (DHICA. Eumelanin is formed by polymerization of DHI and DHICA and their quinones. Regulation of melanogenesis is achieved by physical and biochemical factors. The article presents the intracellular signaling pathways: cAMP/PKA/CREB/MITF cascade, MAP kinases cascade, PLC/DAG/PKCβ cascade and NO/cGMP/PKG cascade, which are involved in the regulation of expression and activity of the melanogenesis-related proteins by ultraviolet radiation and endogenous agents (cytokines, hormones. Activity of the key melanogenic enzyme, tyrosinase, is also affected by pH and temperature. Many pharmacologically active substances are able to inhibit or stimulate melanin biosynthesis, as evidenced by in vitro studies on cultured pigment cells.

  19. No Love Lost Between Viruses and Interferons.

    Science.gov (United States)

    Fensterl, Volker; Chattopadhyay, Saurabh; Sen, Ganes C

    2015-11-01

    The interferon system protects mammals against virus infections. There are several types of interferons, which are characterized by their ability to inhibit virus replication and resultant pathogenesis by triggering both innate and cell-mediated immune responses. Virus infection is sensed by a variety of cellular pattern-recognition receptors and triggers the synthesis of interferons, which are secreted by the infected cells. In uninfected cells, cell surface receptors recognize the secreted interferons and activate intracellular signaling pathways that induce the expression of interferon-stimulated genes; the proteins encoded by these genes inhibit different stages of virus replication. To avoid extinction, almost all viruses have evolved mechanisms to defend themselves against the interferon system. Consequently, a dynamic equilibrium of survival is established between the virus and its host, an equilibrium that can be shifted to the host's favor by the use of exogenous interferon as a therapeutic antiviral agent.

  20. Factors affecting the regulation of pacing: current perspectives

    Directory of Open Access Journals (Sweden)

    Mauger AR

    2014-09-01

    Full Text Available Alexis R Mauger Endurance Research Group, School of Sport and Exercise Sciences, Faculty of Science, University of Kent, Chatham, UK Abstract: During prolonged dynamic and rhythmic exercise, muscular pain and discomfort arises as a result of an increased concentration of deleterious metabolites. Sensed by peripheral nociceptors and transmitted via afferent feedback to the brain, this provides important information regarding the physiological state of the muscle. These sensations ultimately contribute to what is termed "exercise-induced pain". Despite being well recognized by athletes and coaches, and suggested to be integral to exercise performance, this construct has largely escaped attention in experimental work. This perspective article highlights the current understanding of pacing in endurance performance, and the causes of exercise-induced pain. A new perspective is described, which proposes how exercise-induced pain may be a contributing factor in helping individuals to regulate their work rate during exercise and thus provides an important construct in pacing. Keywords: pain, exercise-induced pain, discomfort, exercise performance, self-paced

  1. The forkhead transcription factor FoxY regulates Nanos.

    Science.gov (United States)

    Song, Jia L; Wessel, Gary M

    2012-10-01

    FoxY is a member of the forkhead transcription factor family that appeared enriched in the presumptive germ line of sea urchins (Ransick et al. Dev Biol 2002;246:132). Here, we test the hypothesis that FoxY is involved in germ line determination in this animal. We found two splice forms of FoxY that share the same DNA-binding domain, but vary in the carboxy-terminal trans-activation/repression domain. Both forms of the FoxY protein are present in the egg and in the early embryo, and their mRNAs accumulate to their highest levels in the small micromeres and adjacent non-skeletogenic mesoderm. Knockdown of FoxY resulted in a dramatic decrease in Nanos mRNA and protein levels as well as a loss of coelomic pouches in 2-week-old larvae. Our results indicate that FoxY positively regulates Nanos at the transcriptional level and is essential for reproductive potential in this organism. Copyright © 2012 Wiley Periodicals, Inc.

  2. p53 Tumor Suppressor Protein Stability and Transcriptional Activity Are Targeted by Kaposi's Sarcoma-Associated Herpesvirus-Encoded Viral Interferon Regulatory Factor 3

    Czech Academy of Sciences Publication Activity Database

    Barešová, P.; Musilová, J.; Pitha, P. M.; Lubyová, Barbora

    2014-01-01

    Roč. 34, č. 3 (2014), s. 386-399 ISSN 0270-7306 Grant - others:GA ČR(CZ) GA204/09/0773 Institutional support: RVO:61388963 Keywords : ATM -dependent phosphorylation * primary effusion lymphoma * DNA-damage Subject RIV: CE - Biochemistry Impact factor: 4.777, year: 2014

  3. Interferon antagonist NSs of La Crosse virus triggers a DNA damage response-like degradation of transcribing RNA polymerase II.

    Science.gov (United States)

    Verbruggen, Paul; Ruf, Marius; Blakqori, Gjon; Överby, Anna K; Heidemann, Martin; Eick, Dirk; Weber, Friedemann

    2011-02-04

    La Crosse encephalitis virus (LACV) is a mosquito-borne member of the negative-strand RNA virus family Bunyaviridae. We have previously shown that the virulence factor NSs of LACV is an efficient inhibitor of the antiviral type I interferon system. A recombinant virus unable to express NSs (rLACVdelNSs) strongly induced interferon transcription, whereas the corresponding wt virus (rLACV) suppressed it. Here, we show that interferon induction by rLACVdelNSs mainly occurs through the signaling pathway leading from the pattern recognition receptor RIG-I to the transcription factor IRF-3. NSs expressed by rLACV, however, acts downstream of IRF-3 by specifically blocking RNA polymerase II-dependent transcription. Further investigations revealed that NSs induces proteasomal degradation of the mammalian RNA polymerase II subunit RPB1. NSs thereby selectively targets RPB1 molecules of elongating RNA polymerase II complexes, the so-called IIo form. This phenotype has similarities to the cellular DNA damage response, and NSs was indeed found to transactivate the DNA damage response gene pak6. Moreover, NSs expressed by rLACV boosted serine 139 phosphorylation of histone H2A.X, one of the earliest cellular reactions to damaged DNA. However, other DNA damage response markers such as up-regulation and serine 15 phosphorylation of p53 or serine 1524 phosphorylation of BRCA1 were not triggered by LACV infection. Collectively, our data indicate that the strong suppression of interferon induction by LACV NSs is based on a shutdown of RNA polymerase II transcription and that NSs achieves this by exploiting parts of the cellular DNA damage response pathway to degrade IIo-borne RPB1 subunits.

  4. High maternal expression of SIGLEC1 on monocytes as a surrogate marker of a type I interferon signature is a risk factor for the development of autoimmune congenital heart block.

    Science.gov (United States)

    Lisney, Anna R; Szelinski, Franziska; Reiter, Karin; Burmester, Gerd R; Rose, Thomas; Dörner, Thomas

    2017-08-01

    Autoimmune congenital heart block (CHB) is associated with placental transcytosis of maternal autoantibodies directed against Ro/SS-A and La/SS-B. However, only about 2% of children born to mothers with the respective antibodies are affected, indicating that further risk factors exist, which are not yet fully understood. In this study, we investigated whether a maternal type I interferon (IFN) signature represents a risk factor for the development of CHB. Blood samples, clinical data and serological parameters from 9 women with CHB pregnancies, 14 pregnant women with antibodies against Ro/SS-A but without a CHB complication and another 30 healthy pregnant women as controls were studied. SIGLEC1 expression was measured by flow cytometry and was correlated to plasma IFN-α levels measured by ELISA, and IFN-γ-induced protein 10 (IP-10) levels measured by Bio-Plex technique. Mothers of affected children had a significantly higher expression of SIGLEC1 (p=0.0034) and IFN-α (p=0.014), but not of IP-10 (p=0.14, all MWU) compared to mothers of unaffected children. SIGLEC1 and IFN-α expression were reduced by hydroxychloroquine and oral glucocorticoids. High expression of SIGLEC1 in pregnant women with autoantibodies against Ro/SS-A indicates an enhanced risk for CHB development, and these women may benefit especially from IFN-α directed therapy, for example with hydroxychloroquine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Tumor inherent interferons: Impact on immune reactivity and immunotherapy.

    Science.gov (United States)

    Brockwell, Natasha K; Parker, Belinda S

    2018-04-19

    Immunotherapy has revolutionized cancer treatment, with sustained responses to immune checkpoint inhibitors reported in a number of malignancies. Such therapeutics are now being trialed in aggressive or advanced cancers that are heavily reliant on untargeted therapies, such as triple negative breast cancer. However, responses have been underwhelming to date and are very difficult to predict, leading to an inability to accurately weigh up the benefit-to-risk ratio for their implementation. The tumor immune microenvironment has been closely linked to immunotherapeutic response, with superior responses observed in patients with T cell-inflamed or 'hot' tumors. One class of cytokines, the type I interferons, are a major dictator of tumor immune infiltration and activation. Tumor cell inherent interferon signaling dramatically influences the immune microenvironment and the expression of immune checkpoint proteins, hence regulators and targets of this pathway are candidate biomarkers of immunotherapeutic response. In support of a link between IFN signaling and immunotherapeutic response, the combination of type I interferon inducers with checkpoint immunotherapy has recently been demonstrated critical for a sustained anti-tumor response in aggressive breast cancer models. Here we review evidence that links type I interferons with a hot tumor immune microenvironment, response to checkpoint inhibitors and reduced risk of metastasis that supports their use as biomarkers and therapeutics in oncology. Copyright © 2018. Published by Elsevier Ltd.

  6. A pea chloroplast translation elongation factor that is regulated by abiotic factors

    International Nuclear Information System (INIS)

    Singh, B.N.; Mishra, R.N.; Agarwal, Pradeep K.; Goswami, Mamta; Nair, Suresh; Sopory, S.K.; Reddy, M.K.

    2004-01-01

    We report the cloning and characterization of both the cDNA (tufA) and genomic clones encoding for a chloroplast translation elongation factor (EF-Tu) from pea. The analysis of the deduced amino acids of the cDNA clone reveals the presence of putative transit peptide sequence and four GTP binding domains and two EF-Tu signature motifs in the mature polypeptide region. Using in vivo immunostaining followed by confocal microscopy pea EF-Tu was localized to chloroplast. The steady state transcript level of pea tufA was high in leaves and not detectable in roots. The expression of this gene is stimulated by light. The differential expression of this gene in response to various abiotic stresses showed that it is down-regulated in response to salinity and ABA and up-regulated in response to low temperature and salicylic acid treatment. These results indicate that regulation of pea tufA may have an important role in plant adaptation to environmental stresses

  7. Developmental regulation of human truncated nerve growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R. (Abbott Laboratories, Abbott Park, IL (USA))

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system.

  8. Developmental regulation of human truncated nerve growth factor receptor

    International Nuclear Information System (INIS)

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R.

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system

  9. Interferon Treatment of Multiple Sclerosis

    OpenAIRE

    Alajbegovic, Azra; Deljo, Dervis; Alajbegovic, Salem; Djelilovic-Vranic, Jasminka; Todorovic, Ljubica; Tiric-Campara, Merita

    2012-01-01

    Introduction: In the treatment of Multiple Sclerosis (MS) differ: treatment of relapse, treatment slow the progression of the disease (immunomodulators and immunosuppression), and symptomatic treatment. The aim: The aim of this study is to analyze the application of interferon therapy in the treatment of MS-E: Process the disease, patients with multiple sclerosis who have passed the commission for multiple sclerosis at the Neurology Clinic of Clinical Center of Sarajevo University as a refere...

  10. Exploring the factors influencing clinical students' self-regulated learning

    NARCIS (Netherlands)

    Berkhout, Joris J.; Helmich, Esther; Teunissen, Pim W.; van den Berg, Joost W.; van der Vleuten, Cees P. M.; Jaarsma, A. Debbie C.

    OBJECTIVES: The importance of self-regulated learning (SRL) has been broadly recognised by medical education institutions and regulatory bodies. Supporting the development of SRL skills has proven difficult because self-regulation is a complex interactive process and we know relatively little about

  11. Exploring the factors influencing clinical students' self-regulated learning

    NARCIS (Netherlands)

    Berkhout, J.J.; Helmich, E.; Teunissen, P.W.; Berg, J.W. Ten; Vleuten, C.P.M. van der; Jaarsma, A.D.

    2015-01-01

    OBJECTIVES: The importance of self-regulated learning (SRL) has been broadly recognised by medical education institutions and regulatory bodies. Supporting the development of SRL skills has proven difficult because self-regulation is a complex interactive process and we know relatively little about

  12. Reducing behavioural risk factors for cancer: An affect regulation perspective.

    Science.gov (United States)

    O'Leary, Daniel; Suri, Gaurav; Gross, James J

    2018-01-01

    Nearly half of all cancer deaths are attributable to preventable causes, primarily unhealthy behaviours such as tobacco use, alcohol use and overeating. In this review, we argue that people engage in these behaviours, at least in part, as a means of regulating their affective states. To better understand why people engage in these behaviours and how researchers might design interventions to promote the selection of healthier methods for regulating affect, we propose a conceptual model of affect regulation. We synthesise research from both the stress and coping tradition as well as the emotion and emotion regulation tradition, two literatures that are not typically integrated. In so doing, we indicate where researchers have made headway in understanding these behaviours as affect regulation and note how our model could be used to structure future work in a way that would be particularly advantageous to cancer control efforts.

  13. Prevalence of scrub typhus in pyrexia of unknown origin and assessment of interleukin-8, tumor necrosis factor-alpha, and interferon-gamma levels in scrub typhus-positive patients.

    Science.gov (United States)

    Rizvi, Meher; Sultan, Asfia; Chowdhry, Madhav; Azam, Mohd; Khan, Fatima; Shukla, Indu; Khan, Haris M

    2018-01-01

    Scrub typhus is lesser known cause of fever of unknown origin in India. Even if there have been reports documenting the prevalence of scrub typhus in different parts of India, it is still an unknown entity, and clinicians usually do not consider it as differential diagnosis. The present study was performed to document the prevalence of scrub typhus among febrile patients in western part of Uttar Pradesh and to assess the clinical profile of infected patients on the one hand and knowledge, attitude, and practices among clinicians on the other. A total of 357 adult patients with fever of more than 5-day duration were recruited. All patients underwent complete physical examination, and detailed clinical history was elicited as per predesigned pro forma. After primary screening to rule out malaria, enteric fever, and leptospirosis infection, secondary screening for scrub typhus was done by rapid screen test and IgM ELISA. Scrub typhus infection was positive in 91 (25.5%) cases. The most common symptoms among the patients were fever (100%), pain in abdomen (79.1%), pedal edema 56 (61.5%), rash 44 (48.3%), headache 44 (48.3%), vomiting 42 (46.1%), constipation 33 (36.2%), cough 28 (30.7%), and lymphadenopathy 20 (21.9%). The median values of interleukin-8, interferon-gamma, and tumor necrosis factor-alpha in healthy controls were 15.54 pg/ml, 7.77 pg/ml, and 54.1 pg/ml, respectively, while the median values of these cytokines in scrub typhus-positive patients were 21.04 pg/ml, 8.74 pg/ml, and 73.8 pg/ml, respectively. Our results highlight that scrub typhus infection is an important cause of pyrexia of unknown origin, and active surveillance is necessary to assess the exact magnitude and distribution of the disease.

  14. Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-γ and tumor necrosis factor-α stimulation.

    Science.gov (United States)

    Cuerquis, Jessica; Romieu-Mourez, Raphaëlle; François, Moïra; Routy, Jean-Pierre; Young, Yoon Kow; Zhao, Jing; Eliopoulos, Nicoletta

    2014-02-01

    Mesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α-pretreated human bone marrow-derived MSCs on resting or activated T cells. MSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed. Unprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions. Unprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. Grazing dairy cows had decreased interferon-γ, tumor necrosis factor, and interleukin-17, and increased expression of interleukin-10 during the first week after calving.

    Science.gov (United States)

    Heiser, Axel; McCarthy, Allison; Wedlock, Neil; Meier, Susanne; Kay, Jane; Walker, Caroline; Crookenden, Mallory A; Mitchell, Murray D; Morgan, Stuart; Watkins, Kate; Loor, Juan J; Roche, John R

    2015-02-01

    Peripartum, and especially during the transition period, dairy cows undergo dramatic physiological changes. These coincide with an increased risk of disease during the first 2 wk after calving and have been linked to dairy cows failing to achieve production as well as reproductive targets. Previous evidence suggests that these physiological changes affect the immune system and that transition dairy cows experience some form of reduced immunocompetence. However, almost all of these studies were undertaken in high-production, housed dairy cows. Grazing cows have much lower levels of production and this study aimed to provide clarity whether or not the dysfunctional attributes of the peripartum immune system reported in high production housed cows are evident in these animals. Therefore, cell culture techniques, flow cytometry, and quantitative PCR were applied to analyze the cellular composition of peripheral blood mononuclear cells from transition dairy cows as well as the performance of these cells in an in vitro assay. First, a combination of in vitro stimulation and quantitative PCR for cytokines was validated as a quantifiable immunocompetence assay in 29 cattle and a correlation of quantitative PCR and ELISA demonstrated. Second, the relative number of T helper cells, cytotoxic T cells, B cells, γδ T cells, natural killer cells, and monocytes in peripheral blood was measured, of which B cells and natural killer cells increased in number postcalving (n=29) compared with precalving. Third, following in vitro stimulation cytokine profiles indicated decreased expression of IFNγ, tumor necrosis factor, and IL-17 and increased expression of IL-10 wk 1 after calving, which later all returned to precalving values (n=39). Additionally, treatment of transition cows with a nonsteroidal anti-inflammatory drug (i.e., carprofen) administered on d 1, 3, and 5 postcalving (n=19; untreated control n=20) did not affect the cytokine expression at any time point. In conclusion

  16. Type I interferons in tuberculosis: Foe and occasionally friend.

    Science.gov (United States)

    Moreira-Teixeira, Lúcia; Mayer-Barber, Katrin; Sher, Alan; O'Garra, Anne

    2018-05-07

    Tuberculosis remains one of the leading causes of mortality worldwide, and, despite its clinical significance, there are still significant gaps in our understanding of pathogenic and protective mechanisms triggered by Mycobacterium tuberculosis infection. Type I interferons (IFN) regulate a broad family of genes that either stimulate or inhibit immune function, having both host-protective and detrimental effects, and exhibit well-characterized antiviral activity. Transcriptional studies have uncovered a potential deleterious role for type I IFN in active tuberculosis. Since then, additional studies in human tuberculosis and experimental mouse models of M. tuberculosis infection support the concept that type I IFN promotes both bacterial expansion and disease pathogenesis. More recently, studies in a different setting have suggested a putative protective role for type I IFN. In this study, we discuss the mechanistic and contextual factors that determine the detrimental versus beneficial outcomes of type I IFN induction during M. tuberculosis infection, from human disease to experimental mouse models of tuberculosis. © 2018 Moreira-Teixeira et al.

  17. Interferon-γ Promotes Inflammation and Development of T-Cell Lymphoma in HTLV-1 bZIP Factor Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Yu Mitagami

    2015-08-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 is an etiological agent of several inflammatory diseases and a T-cell malignancy, adult T-cell leukemia (ATL. HTLV-1 bZIP factor (HBZ is the only viral gene that is constitutively expressed in HTLV-1-infected cells, and it has multiple functions on T-cell signaling pathways. HBZ has important roles in HTLV-1-mediated pathogenesis, since HBZ transgenic (HBZ-Tg mice develop systemic inflammation and T-cell lymphomas, which are similar phenotypes to HTLV-1-associated diseases. We showed previously that in HBZ-Tg mice, HBZ causes unstable Foxp3 expression, leading to an increase in regulatory T cells (Tregs and the consequent induction of IFN-γ-producing cells, which in turn leads to the development of inflammation in the mice. In this study, we show that the severity of inflammation is correlated with the development of lymphomas in HBZ-Tg mice, suggesting that HBZ-mediated inflammation is closely linked to oncogenesis in CD4+ T cells. In addition, we found that IFN-γ-producing cells enhance HBZ-mediated inflammation, since knocking out IFN-γ significantly reduced the incidence of dermatitis as well as lymphoma. Recent studies show the critical roles of the intestinal microbiota in the development of Tregs in vivo. We found that even germ-free HBZ-Tg mice still had an increased number of Tregs and IFN-γ-producing cells, and developed dermatitis, indicating that an intrinsic activity of HBZ evokes aberrant T-cell differentiation and consequently causes inflammation. These results show that immunomodulation by HBZ is implicated in both inflammation and oncogenesis, and suggest a causal connection between HTLV-1-associated inflammation and ATL.

  18. Type 1 Diabetes and Interferon Therapy

    OpenAIRE

    Nakamura, Kan; Kawasaki, Eiji; Imagawa, Akihisa; Awata, Takuya; Ikegami, Hiroshi; Uchigata, Yasuko; Kobayashi, Tetsuro; Shimada, Akira; Nakanishi, Koji; Makino, Hideichi; Maruyama, Taro; Hanafusa, Toshiaki

    2011-01-01

    OBJECTIVE Interferon therapy can trigger induction of several autoimmune diseases, including type 1 diabetes. To assess the clinical, immunologic, and genetic characteristics of type 1 diabetes induced by interferon therapy, we conducted a nationwide cross-sectional survey. RESEARCH DESIGN AND METHODS Clinical characteristics, anti-islet autoantibodies, and HLA-DR typing were examined in 91 patients for whom type 1 diabetes developed during or shortly after interferon therapy. RESULTS Median ...

  19. Ethylene, a key factor in the regulation of seed dormancy

    Directory of Open Access Journals (Sweden)

    Françoise eCORBINEAU

    2014-10-01

    Full Text Available Ethylene is an important component of the gaseous environment, and regulates numerous plant developmental processes including seed germination and seedling establishment. Dormancy, the inability to germinate in apparently favorable conditions, has been demonstrated to be regulated by the hormonal balance between abscisic acid (ABA and gibberellins (GAs. Ethylene plays a key role in dormancy release in numerous species, the effective concentrations allowing the germination of dormant seeds ranging between 0.1 and 200 μL L-1. Studies using inhibitors of ethylene biosynthesis or of ethylene action and analysis of mutant lines altered in genes involved in the ethylene signaling pathway (etr1, ein2, ain1, etr1, and erf1 demonstrate the involvement of ethylene in the regulation of germination and dormancy. Ethylene counteracts ABA effects through a regulation of ABA metabolism and signaling pathways. Moreover, ethylene insensitive mutants in Arabidopsis are more sensitive to ABA and the seeds are more dormant. Numerous data also show an interaction between ABA, GAs and ethylene metabolism and signaling pathways. It has been increasingly demonstrated that reactive oxygen species (ROS may play a significant role in the regulation of seed germination interacting with hormonal signaling pathways. In the present review the responsiveness of seeds to ethylene will be described, and the key role of ethylene in the regulation of seed dormancy via a cross-talk between hormones and other signals will be discussed.

  20. Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Ploug; Lauridsen, Anne-Marie; Kristensen, Poul

    2006-01-01

    . Adrm1 has been described as an interferon-gamma-inducible, heavily glycosylated membrane protein of 110 kDa. However, we found Adrm1 in mouse tissues only as a 42 kDa peptide, corresponding to the mass of the non-glycosylated peptide chain, and it could not be induced in HeLa cells with interferon...

  1. Cytokinin response factors regulate PIN-FORMED auxin transporters

    Czech Academy of Sciences Publication Activity Database

    Šimášková, M.; O'Brien, J.A.; Khan, M.; Van Noorden, G.; Ötvös, K.; Vieten, A.; De Clercq, E.; Van Haperen, J.M.A.; Cuesta, C.; Hoyerová, Klára; Vanneste, S.; Marhavý, P.; Wabnik, K.; Van Breusegem, F.; Nowack, M.; Murphy, A.; Friml, J.; Weijers, D.; Beeckman, T.; Benková, E.

    2015-01-01

    Roč. 6, NOV (2015), s. 8717 ISSN 2041-1723 Institutional support: RVO:61389030 Keywords : ARABIDOPSIS -THALIANA * ROOT-MERISTEM * TRANSCRIPTION FACTORS Subject RIV: ED - Physiology Impact factor: 11.329, year: 2015

  2. Regulation of hippocampal neurogenesis by systemic factors including stress, glucocorticoids, sleep, and inflammation

    NARCIS (Netherlands)

    Lucassen, P.J.; Oomen, C.; van Dam, A.-M.; Czéh, B.; Gage, F.H.; Kempermann, G.; Song, H.

    2008-01-01

    This review summarizes and discusses the regulation of adult neurogenesis and hippocampal cellular plasticity by systemic factors. We focus on the role of stress, glucocorticoids, and related factors such as sleep deprivation and inflammation.

  3. Identification of DreI as an antiviral factor regulated by RLR signaling pathway.

    Directory of Open Access Journals (Sweden)

    Shun Li

    Full Text Available BACKGROUND: Retinoic acid-inducible gene I (RIG-I-like receptors (RLRs had been demonstrated to prime interferon (IFN response against viral infection via the conserved RLR signaling in fish, and a novel fish-specific gene, the grass carp reovirus (GCRV-induced gene 2 (Gig2, had been suggested to play important role in host antiviral response. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we cloned and characterized zebrafish Gig2 homolog (named Danio rerio Gig2-I, DreI, and revealed its antiviral role and expressional regulation signaling pathway. RT-PCR, Western blot and promoter activity assay indicate that DreI can be induced by poly I:C, spring viremia of carp virus (SVCV and recombinant IFN (rIFN, showing that DreI is a typical ISG. Using the pivotal signaling molecules of RLR pathway, including RIG-I, MDA5 and IRF3 from crucian carp, it is found that DreI expression is regulated by RLR cascade and IRF3 plays an important role in this regulation. Furthermore, promoter mutation assay confirms that the IFN-stimulated regulatory elements (ISRE in the 5' flanking region of DreI is essential for its induction. Finally, overexpression of DreI leads to establish a strong antiviral state against SVCV and Rana grylio virus (RGV infection in EPC (Epithelioma papulosum cyprinid cells. CONCLUSIONS/SIGNIFICANCE: These data indicate that DreI is an antiviral protein, which is regulated by RLR signaling pathway.

  4. Behavioural laterality as a factor in emotional regulation.

    Science.gov (United States)

    Rempala, Daniel M

    2014-01-01

    Individuals who perform a variety of tasks using one side of their bodies (i.e., high-dominance people) are thought to differ from individuals who perform a variety of tasks with both sides of their body (i.e., low-dominance people) in several neurological and cognitive characteristics. We examined whether behavioural laterality predicted the efficacy of different emotional regulation strategies. Specifically, we thought that behavioural laterality would influence verbal strategies (associated with left hemisphere activation) when regulating anxiety (associated with right hemisphere activation). In three studies participants presented in front of small audiences. Behavioural laterality (as measured by a modified handedness inventory) positively correlated with presentation anxiety, such that "low-dominance" participants reported less anxiety than "high-dominance" participants, but only when using cognitive reappraisal (a verbal strategy), not attention deployment or response modulation (behavioural strategies). These results provide preliminary evidence that individual differences in behavioural laterality mediate the efficacy of certain emotional regulation strategies.

  5. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Sollome, James; Martin, Elizabeth [Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Sethupathy, Praveen [Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC (United States); Fry, Rebecca C., E-mail: rfry@unc.edu [Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC (United States)

    2016-12-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression.

  6. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    International Nuclear Information System (INIS)

    Sollome, James; Martin, Elizabeth; Sethupathy, Praveen; Fry, Rebecca C.

    2016-01-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression

  7. Effects of Interferon-α/β on HBV Replication Determined by Viral Load

    Science.gov (United States)

    Tian, Yongjun; Chen, Wen-ling; Ou, Jing-hsiung James

    2011-01-01

    Interferons α and β (IFN-α/β) are type I interferons produced by the host to control microbial infections. However, the use of IFN-α to treat hepatitis B virus (HBV) patients generated sustained response to only a minority of patients. By using HBV transgenic mice as a model and by using hydrodynamic injection to introduce HBV DNA into the mouse liver, we studied the effect of IFN-α/β on HBV in vivo. Interestingly, our results indicated that IFN-α/β could have opposite effects on HBV: they suppressed HBV replication when viral load was high and enhanced HBV replication when viral load was low. IFN-α/β apparently suppressed HBV replication via transcriptional and post-transcriptional regulations. In contrast, IFN-α/β enhanced viral replication by inducing the transcription factor HNF3γ and activating STAT3, which together stimulated HBV gene expression and replication. Further studies revealed an important role of IFN-α/β in stimulating viral growth and prolonging viremia when viral load is low. This use of an innate immune response to enhance its replication and persistence may represent a novel strategy that HBV uses to enhance its growth and spread in the early stage of viral infection when the viral level is low. PMID:21829354

  8. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon

    Science.gov (United States)

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio

    2010-01-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241

  9. Genome Binding and Gene Regulation by Stem Cell Transcription Factors

    NARCIS (Netherlands)

    J.H. Brandsma (Johan)

    2016-01-01

    markdownabstractNearly all cells of an individual organism contain the same genome. However, each cell type transcribes a different set of genes due to the presence of different sets of cell type-specific transcription factors. Such transcription factors bind to regulatory regions such as promoters

  10. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis

    NARCIS (Netherlands)

    Kinashi, Hiroshi; Falke, Lucas L.; Nguyen, Tri Q.; Bovenschen, Niels; Aten, Jan; Leask, Andrew; Ito, Yasuhiko; Goldschmeding, Roel

    2017-01-01

    Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor beta induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its

  11. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis

    NARCIS (Netherlands)

    Kinashi, Hiroshi; Falke, Lucas L.; Nguyen, Tri Q.; Bovenschen, Niels; Aten, Jan; Leask, Andrew; Ito, Yasuhiko; Goldschmeding, Roel

    2017-01-01

    Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor β induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its

  12. Interferon-α treatment in systemic mastocytosis

    DEFF Research Database (Denmark)

    Bjerrum, Ole Weis

    2011-01-01

    classification need treatment. This review on interferon treatment in systemic mastocytosis documents an effect of this biological agent in some patients with mastocytosis. However, the place of interferon-a, as mono- or combination therapy, in the treatment algorithm may only be definitely established...

  13. Association of interferon regulatory factor 4 gene polymorphisms rs12203592 and rs872071 with skin cancer and haematological malignancies susceptibility: a meta-analysis of 19 case–control studies

    International Nuclear Information System (INIS)

    Wang, Songtao; Yan, Qing; Chen, Pin; Zhao, Peng; Gu, Aihua

    2014-01-01

    Research has indicated that the rs12203592 and rs872071 interferon regulatory factor 4 (IRF4) gene polymorphisms correlate with the risk of cancer, especially skin cancer and haematological malignancies, but the results remain controversial. To understand better the effects of these two polymorphisms on skin cancer and haematological malignancies susceptibility, a cumulative meta-analysis was performed. We conducted a search using the PubMed and Web of Science databases for relevant case-control studies published before April 2014. Summary odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were estimated using fixed- or random-effects models where appropriate. Heterogeneity test, publication bias test, and sensitivity analysis were also performed. In total, 11 articles comprised of 19 case–control studies were identified; five focused on the rs12203592 polymorphism with 7,992 cases and 8,849 controls, and six were on the rs872071 polymorphism with 3108 cases and 8300 controls. As for rs12203592, a significant correlation with overall skin cancer and haematological malignancies risk was found with the homozygote comparison model (OR = 1.566, 95% CI 1.087-2.256) and recessive model (OR = 1.526, 95% CI 1.107-2.104). For rs872071, a significantly elevated haematological malignancies risk was observed in all genetic models (homozygote comparison: OR = 1.805, 95% CI 1.402-2.323; heterozygote comparison: OR = 1.427, 95% CI 1.203-1.692; dominant: OR = 1.556, 95% CI 1.281-1.891; recessive: OR = 1.432, 95% CI 1.293-1.587; additive: OR = 1.349, 95% CI 1.201-1.515). Similarly, increased skin cancer and haematological malignancies risk was also identified after stratification of the SNP data by cancer type, ethnicity and source of controls for both polymorphisms. Our meta-analysis indicated that the rs12203592 and rs872071 IRF4 gene polymorphisms are associated with individual susceptibility to skin cancer and haematological malignancies. Moreover, the effect

  14. Factors Influencing Self-Regulation in E-Learning 2.0: Confirmatory Factor Model

    Science.gov (United States)

    Zhao, Hong

    2016-01-01

    The importance of self-regulation in e-learning has been well noted in research. Relevant studies have shown a consistent positive correlation between learners' self-regulation and their success rate in e-learning. Increasing attention has been paid to developing learners' self-regulated abilities in e-learning. For students, what and how to learn…

  15. Interferon-γ Inhibits Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Bethany A Rhein

    Full Text Available Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  16. Interferon-γ Inhibits Ebola Virus Infection.

    Science.gov (United States)

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  17. Studies on Brucella interferon: Chromatographic behaviour and purification

    International Nuclear Information System (INIS)

    Bousquet-Ucla, C.; Wietzerbin, J.; Falcoff, E.

    1980-01-01

    Interferon was induced by infecting mice with Brucella suis. Serum containing interferon activity was analyzed by chromatography on Concanavalin A-Sepharose and Phenyl-Sepharose CL-4B columns. Antiviral activity was completely retained by the lectin column indicating that all the interferon molecules are glycosylated. The chromatographic behaviour of Brucella interferon on Phenyl-Sepharose CL-4B show that, like other interferons, Brucella interferon displays hydrophobic properties. However, the hydrophobicity of the interferon molecule was masked in the crude preparation and was only detectable when purified Brucella interferon was used for chromatography. The antigenic properties of Brucella interferon provided the means for developing an affinity chromatographic method resulting in about 60.000 fold purification. As in the case of viral interferon, treatment of L cells with Brucella interferon induced specific enhanced in vitro phosphorylation of a 67.000 molecular weight protein after incubation of cell extracts with doublestranded RNA and [γ- 32 p]ATP. (auth.)

  18. Defense of single-factor models of population regulation

    International Nuclear Information System (INIS)

    Tamarin, R.H.

    1978-01-01

    I reject a multifactorial approach to the study of the regulation of animal populations for two reasons. First, a mechanism suggested by Chitty, that has natural selection at its base, has not been adequately tested. Second, the multifactorial model suggested by Lidicker is untestable because of its vagueness. As a middle ground, I suggest a model that has natural selection as its mechanism, but is multifacturial because it allows many parameters to be the selective agents. I particularly emphasize prediction and selective dispersal. Methods to test this model are suggested

  19. Cytokines and growth factors which regulate bone cell function

    Science.gov (United States)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  20. Psychosocial and behavioural factors in the regulation of weight: Self-regulation, self-efficacy and locus control.

    Science.gov (United States)

    Menéndez-González, Lara; Orts-Cortés, María Isabel

    To identify the relationship and behaviour of the variables of self-control, self-efficacy and locus control in weight regulation of obese, overweight and normal weight adults. Transversal study undertaken in the Health Centre of El Coto (Gijón) from 1st April to 30th July 2015. Subjects between 18-65 years of age with a body mass index recording within the last two years. serious medical illness, eating disorders or pregnant women. Behavioural variables: self-regulation of body weight (Inventory of self-control of body weight), perceived self-efficacy in weight regulation (Inventory of perceived self-efficacy in weight regulation) and locus control in weight regulation (Inventory of locus control in weight regulation). Anthropometric variables: weight (kg) and height (m), body mass index. One hundred and six participants were included: 32 were obese, 28 overweight and 46 normal weight. Significant differences were found between the 3 study groups for total scale of self-efficacy (F=61.77; pcontrol (F=13.92; p=.019), other weighty influences of locus control (F=9.21; pcontrol (F=3.50; p=.011). The relationship between body mass index and behavioural variables of self-efficacy, self-regulation and locus control, suggests the need for healthcare professionals to include psychological factors of behaviour in any preventive action and intervention directed at weight control. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  1. A quantitative model of regulator's preference factor (RPF) in electricity-environment coordinated regulation system

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yulong; Fu, Shijun [Economy and Business Administration School of Chongqing University, Chongqing 400030 (China)

    2010-12-15

    This paper explores quantification of regulator's preference factor (RPF) in electricity-environment coordinated regulation system. Based on social welfare economics, we articulately depict RPF's qualitative concept and its economic meaning. Then, applying abstract functions (i.e., abstract social welfare function, abstract utility function, and abstract production function), we deduce the partial-social-welfare elasticity, and build the mathematics model of maximizing social welfare. We nest this elasticity into the model's Kuhn-Tucker conditions, and obtain RPF's definition formula. By solving the Kuhn-Tucker conditions, we get RPF's quantitative formula, which solves the problem of hard to quantify regulator's preference in electricity-environment coordinated regulation system. The result shows that RPF only has relationship to subsystems' production function, and is independent of social welfare function and subsystems' utility function. Finally, we provide an empirical research based on the western region of China from year 1995 to 2004. It reveals that regulator has relative stability preference to mitigating pollutants. And validity test confirms that the empirical result is fit well to the practice. The RPF is truly a more general and valid instrument to measure regulator's preference in its regulated field. (author)

  2. Histones Induce the Procoagulant Phenotype of Endothelial Cells through Tissue Factor Up-Regulation and Thrombomodulin Down-Regulation.

    Science.gov (United States)

    Kim, Ji Eun; Yoo, Hyun Ju; Gu, Ja Yoon; Kim, Hyun Kyung

    2016-01-01

    The high circulating levels of histones found in various thrombotic diseases may compromise the anticoagulant barrier of endothelial cells. We determined how histones affect endothelial procoagulant tissue factor (TF) and anticoagulant thrombomodulin (TM). Surface antigens, soluble forms, and mRNA levels of TF and TM were measured by flow cytometry, ELISA, and real-time RT-PCR, respectively. TF and TM activity were measured using procoagulant activity, thrombin generation, or chromogenic assays. Involvement of the toll-like receptor (TLR) was assessed using the neutralizing antibodies. Histones dose-dependently induced surface antigens, activity and mRNA levels of endothelial TF. Histone-treated endothelial cells significantly shortened the lag time and enhanced the endogenous thrombin potential of normal plasma, which was normalized by a TF neutralizing antibody. Histones induced phosphatidylserine and protein-disulfide isomerase expression in endothelial cells. Histones also reduced the surface antigen, activity, and mRNA levels of endothelial TM. Polysialic acid and heparin reversed the histone-induced TF up-regulation and TM down-regulation. Activated protein C did not affect the TF up-regulation, but interrupted TM down-regulation. TLR2, and TLR4 inhibitors partially blocked the TF up-regulation. Histones induced the endothelial procoagulant phenotype through TF up-regulation and TM down-regulation. The effects of histones were partly mediated by TLR2, TLR4. Strategies to inhibit the harmful effects of histones in endothelial cells may be required in order to prevent a thrombotic environment.

  3. Regulation of follicular development by peptidic intraovarian factors

    OpenAIRE

    Lanuza, Guillermo

    1999-01-01

    El objetivo de esta tesis es el estudio de factores regulatorios, de producción y acción local, que controlan el desarrollo del folículo ovárico en mamíferos. En particular, se estudió el papel fisiológico de factores relacionados con el factor de crecimiento transformante-β (TGF-β).El modelo utilizado consistió en células de la granulosa inmaduras de rata cultivadas en condiciones definidas. Se determinó que las células de la granulosa producen TGF-β bioactivo, encontrándose su secreción baj...

  4. TNF blockade induces a dysregulated type I interferon response without autoimmunity in paradoxical psoriasis.

    Science.gov (United States)

    Conrad, Curdin; Di Domizio, Jeremy; Mylonas, Alessio; Belkhodja, Cyrine; Demaria, Olivier; Navarini, Alexander A; Lapointe, Anne-Karine; French, Lars E; Vernez, Maxime; Gilliet, Michel

    2018-01-02

    Although anti-tumor necrosis factor (TNF) agents are highly effective in the treatment of psoriasis, 2-5% of treated patients develop psoriasis-like skin lesions called paradoxical psoriasis. The pathogenesis of this side effect and its distinction from classical psoriasis remain unknown. Here we show that skin lesions from patients with paradoxical psoriasis are characterized by a selective overexpression of type I interferons, dermal accumulation of plasmacytoid dendritic cells (pDC), and reduced T-cell numbers, when compared to classical psoriasis. Anti-TNF treatment prolongs type I interferon production by pDCs through inhibition of their maturation. The resulting type I interferon overexpression is responsible for the skin phenotype of paradoxical psoriasis, which, unlike classical psoriasis, is independent of T cells. These findings indicate that paradoxical psoriasis represents an ongoing overactive innate inflammatory process, driven by pDC-derived type I interferon that does not lead to T-cell autoimmunity.

  5. Regulation of archicortical arealization by the transcription factor Zbtb20

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga; Tonchev, Anton B; Stoykova, Anastassia

    2012-01-01

    The molecular mechanisms of regionalization of the medial pallium (MP), the anlage of the hippocampus, and transitional (cingulate and retrosplenial) cortices are largely unknown. Previous analyses have outlined an important role of the transcription factor (TF) Zbtb20 for hippocampal CA1 field...

  6. Activating transcription factor 3 regulates immune and metabolic homeostasis

    Czech Academy of Sciences Publication Activity Database

    Ryneš, J.; Donohoe, C. D.; Frommolt, P.; Brodesser, S.; Jindra, Marek; Uhlířová, M.

    2012-01-01

    Roč. 32, č. 19 (2012), s. 3949-3962 ISSN 0270-7306 R&D Projects: GA ČR(CZ) GD204/09/H058 Institutional support: RVO:60077344 Keywords : metabolic homeostasis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.372, year: 2012

  7. Incorporating Human Factors into design change processes - a regulator's perspective

    International Nuclear Information System (INIS)

    Staples, L.; McRobbie, H.

    2003-01-01

    Nuclear power plants in Canada must receive written approval from the Canadian Nuclear Safety Commission (CNSC) when making certain changes that are defined in their licenses. The CNSC expects the design change process to include a method for ensuring that the human-machine interface and workplace design support the safe and reliable performance of required tasks. When reviewing design changes for approval, the CNSC looks for evidence of analysis work, use of appropriate human factors design guide-lines, and verification and validation testing of the design. In addition to reviewing significant design changes, evaluations are conducted to ensure design change processes adequately address human performance. Findings from reviews and evaluations highlight the need to integrate human factors into the design change process, provide human factors training and support to engineering staff, establish processes to ensure coordination between the various groups with a vested interest in human factors, and develop more rigorous methods to validate changes to maintenance, field operations and testing interfaces. (author)

  8. Membrane-bound transcription factors: regulated release by RIP or RUP.

    Science.gov (United States)

    Hoppe, T; Rape, M; Jentsch, S

    2001-06-01

    Regulated nuclear transport of transcription factors from cytoplasmic pools is a major route by which eukaryotes control gene expression. Exquisite examples are transcription factors that are kept in a dormant state in the cytosol by membrane anchors; such proteins are released from membranes by proteolytic cleavage, which enables these transcription factors to enter the nucleus. Cleavage can be mediated either by regulated intramembrane proteolysis (RIP) catalysed by specific membrane-bound proteases or by regulated ubiquitin/proteasome-dependent processing (RUP). In both cases processing can be controlled by cues that originate at or in the vicinity of the membrane.

  9. Two Modes of the Axonal Interferon Response Limit Alphaherpesvirus Neuroinvasion

    Directory of Open Access Journals (Sweden)

    Ren Song

    2016-02-01

    Full Text Available Infection by alphaherpesviruses, including herpes simplex virus (HSV and pseudorabies virus (PRV, typically begins at epithelial surfaces and continues into the peripheral nervous system (PNS. Inflammatory responses are induced at the infected peripheral site prior to invasion of the PNS. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which includes the interferons (IFNs. The fundamental question is how do PNS cell bodies respond to these distant, potentially damaging events experienced by axons. Using compartmented cultures that physically separate neuron axons from cell bodies, we found that pretreating isolated axons with beta interferon (IFN-β or gamma interferon (IFN-γ significantly diminished the number of herpes simplex virus 1 (HSV-1 and PRV particles moving in axons toward the cell bodies in a receptor-dependent manner. Exposing axons to IFN-β induced STAT1 phosphorylation (p-STAT1 only in axons, while exposure of axons to IFN-γ induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated antiviral effects induced by IFN-γ, but not those induced by IFN-β. Proteomic analysis of IFN-β- or IFN-γ-treated axons identified several differentially regulated proteins. Therefore, unlike treatment with IFN-γ, IFN-β induces a noncanonical, local antiviral response in axons. The activation of a local IFN response in axons represents a new paradigm for cytokine control of neuroinvasion.

  10. An Expandable, Inducible Hemangioblast State Regulated by Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    David T. Vereide

    2014-12-01

    Full Text Available During development, the hematopoietic and vascular lineages are thought to descend from common mesodermal progenitors called hemangioblasts. Here we identify six transcription factors, Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1, that “trap” murine cells in a proliferative state and endow them with a hemangioblast potential. These “expandable” hemangioblasts (eHBs are capable, once released from the control of the ectopic factors, to give rise to functional endothelial cells, multilineage hematopoietic cells, and smooth muscle cells. The eHBs can be derived from embryonic stem cells, from fetal liver cells, or poorly from fibroblasts. The eHBs reveal a central role for fibroblast growth factor, which not only promotes their expansion, but also facilitates their ability to give rise to endothelial cells and leukocytes, but not erythrocytes. This study serves as a demonstration that ephemeral progenitor states can be harnessed in vitro, enabling the creation of tractable progenitor cell lines.

  11. Prediction of response to interferon therapy in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Søndergaard, Helle Bach; Koch-Henriksen, N

    2014-01-01

    OBJECTIVE: Single nucleotide polymorphisms (SNPs) in the genes encoding interferon response factor (IRF)-5, IRF-8 and glypican-5 (GPC5) have been associated with disease activity in multiple sclerosis (MS) patients treated with interferon (IFN)-β. We analysed whether SNPs in the IRF5, IRF8 and GPC5...... genes are associated with clinical disease activity in MS patients beginning de novo treatment with IFN-β. METHODS: The SNPs rs2004640, rs3807306 and rs4728142 in IRF5, rs13333054 and rs17445836 in IRF8 and rs10492503 in GPC5 were genotyped in 575 patients with relapsing-remitting MS followed...... prospectively after the initiation of their first treatment with IFN-β. RESULTS: 62% of patients experienced relapses during the first 2 years of treatment, and 32% had disability progression during the first 5 years of treatment. Patients with a pretreatment annualized relapse rate >1 had an increased risk...

  12. Identification of transcription factors linked to cell cycle regulation in Arabidopsis

    OpenAIRE

    Dehghan Nayeri, Fatemeh

    2014-01-01

    Cell cycle is an essential process in growth and development of living organisms consists of the replication and mitotic phases separated by 2 gap phases; G1 and G2. It is tightly controlled at the molecular level and especially at the level of transcription. Precise regulation of the cell cycle is of central significance for plant growth and development and transcription factors are global regulators of gene expression playing essential roles in cell cycle regulation. This study has uncovere...

  13. The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization.

    Science.gov (United States)

    Lindsey, Stephan; Papoutsakis, Eleftherios T

    2011-02-01

    We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR-null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3·6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations. © 2011 Blackwell Publishing Ltd.

  14. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway.

    Science.gov (United States)

    Sun, Lijun; Wu, Jiaxi; Du, Fenghe; Chen, Xiang; Chen, Zhijian J

    2013-02-15

    The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers host immune responses such as the production of type I interferons. Cytosolic DNA induces interferons through the production of cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced interferon-β in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and interferon-β induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP.

  15. Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis

    DEFF Research Database (Denmark)

    Polman, Chris H; Bertolotto, Antonio; Deisenhammer, Florian

    2010-01-01

    in MS and NAbs to interferon-beta therapy convened in Amsterdam, Netherlands, under the auspices of the Neutralizing Antibodies on Interferon beta in Multiple Sclerosis consortium, a European-based project of the 6th Framework Programme of the European Commission, to review and discuss data on NAbs......The identification of factors that can affect the efficacy of immunomodulatory drugs in relapsing-remitting multiple sclerosis (MS) is important. For the available interferon-beta products, neutralising antibodies (NAb) have been shown to affect treatment efficacy. In June, 2009, a panel of experts...... and their practical consequences for the treatment of patients with MS on interferon beta. The panel believed that information about NAbs and other markers of biological activity of interferons (ie, myxovirus resistance protein A [MxA]) can be integrated with clinical and imaging indicators to guide individual...

  16. Heat shock transcription factors regulate heat induced cell death in a ...

    Indian Academy of Sciences (India)

    2007-03-29

    Mar 29, 2007 ... Heat shock transcription factors regulate heat induced cell death in a rat ... the synthesis of heat shock proteins (Hsps) which is strictly regulated by ... The lack of Hsp synthesis in these cells was due to a failure in HSF1 DNA ...

  17. JUNGBRUNNEN1, a Reactive Oxygen Species–Responsive NAC Transcription Factor, Regulates Longevity in Arabidopsis

    NARCIS (Netherlands)

    Wu, A.; Devi Allu, A.; Garapati, P.; Siddiqui, H.; Dortay, H.; Zanor, M.I.; Amparo Asensi-Fabado, M.; Munne´ -Bosch, S.; Antonio, C.; Tohge, T.; Fernie, A.R.; Kaufmann, K.; Xue, G.P.; Mueller-Roeber, B.; Balazadeh, S.

    2012-01-01

    The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H2O2)-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1

  18. Age-Related Differences in Emotion Regulation Strategies: Examining the Role of Contextual Factors

    Science.gov (United States)

    Schirda, Brittney; Valentine, Thomas R.; Aldao, Amelia; Prakash, Ruchika Shaurya

    2016-01-01

    Increasing age is characterized by greater positive affective states. However, there is mixed evidence on the implementation of emotion regulation strategies across the life span. To clarify the discrepancies in the literature, we examined the modulating influence of contextual factors in understanding emotion regulation strategy use in older and…

  19. Interferon α subtypes in HIV infection.

    Science.gov (United States)

    Sutter, Kathrin; Dickow, Julia; Dittmer, Ulf

    2018-02-13

    Type I interferons (IFN), which are immediately induced after most virus infections, are central for direct antiviral immunity and link innate and adaptive immune responses. However, several viruses have evolved strategies to evade the IFN response by preventing IFN induction or blocking IFN signaling pathways. Thus, therapeutic application of exogenous type I IFN or agonists inducing type I IFN responses are a considerable option for future immunotherapies against chronic viral infections. An important part of the type I IFN family are 12 IFNα subtypes, which all bind the same receptor, but significantly differ in their biological activities. Up to date only one IFNα subtype (IFNα2) is being used in clinical treatment against chronic virus infections, however its therapeutic success rate is rather limited, especially during Human Immunodeficiency Virus (HIV) infection. Recent studies addressed the important question if other IFNα subtypes would be more potent against retroviral infections in in vitro and in vivo experiments. Indeed, very potent IFNα subtypes were defined and their antiviral and immunomodulatory properties were characterized. In this review we summarize the recent findings on the role of individual IFNα subtypes during HIV and Simian Immunodeficiency Virus infection. This includes their induction during HIV/SIV infection, their antiretroviral activity and the regulation of immune response against HIV by different IFNα subtypes. The findings might facilitate novel strategies for HIV cure or functional cure studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Contextual Factors for Establishing Nursing Regulation in Iran: A Qualitative Content Analysis.

    Science.gov (United States)

    Nejatian, Ahmad; Joulaei, Hassan

    2018-04-01

    Professional regulation is one of the strategies of the governments which protect the public's right. Nursing practice is not an exception; hence, it is regulated to protect the public against nursing services' adverse effects. Although modern nursing in Iran started from 100 years ago, documents show that there was no regulation mechanism for nursing in Iran till 2016. Hence, this study was conducted to illuminate the contextual factors affecting the nursing regulation process in Iran. To explore the contextual elements of late establishment of nursing registration as an important part of nursing regulation, we applied directed qualitative content analysis. For this purpose, all the historical events and related materials including articles published in scientific journals, gray literature, statements, news articles, and interviews in the period of 2006-2016 were reviewed and analyzed by expert panel and categorized in predetermined groups. Pooled analysis data showed four contributing elements that affected the emerging nursing regulation in Iran. These elements include 1) cultural determinants, 2) structural determinants, 3) situational determinants, and 4) international or exogenous determinants. Nursing regulation is an important health policy issue in Iran which needs to be facilitated by contextual factors. These factors are complicated and country-specific. Political willingness should be accompanied by nursing association willingness to establish and improve nursing regulation. Other researches are recommended to explore actors and process and content of nursing regulation policy in Iran.

  1. Source to sink transport and regulation by environmental factors

    Directory of Open Access Journals (Sweden)

    Remi eLemoine

    2013-07-01

    Full Text Available Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air and soil pollutants and biotic (mutualistic and pathogenic microbes, viruses, aphids and parasitic plants factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favoured in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g. by callose deposition and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses… also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.

  2. A review on environmental factors regulating arsenic methylation in humans

    International Nuclear Information System (INIS)

    Tseng, C.-H.

    2009-01-01

    Subjects exposed to arsenic show significant inter-individual variation in urinary patterns of arsenic metabolites but insignificant day-to-day intra-individual variation. The inter-individual variation in arsenic methylation can be partly responsible for the variation in susceptibility to arsenic toxicity. Wide inter-ethnic variation and family correlation in urinary arsenic profile suggest a genetic effect on arsenic metabolism. In this paper the environmental factors affecting arsenic metabolism are reviewed. Methylation capacity might reduce with increasing dosage of arsenic exposure. Furthermore, women, especially at pregnancy, have better methylation capacity than their men counterparts, probably due to the effect of estrogen. Children might have better methylation capacity than adults and age shows inconsistent relevance in adults. Smoking and alcohol consumption might be associated with a poorer methylation capacity. Nutritional status is important in the methylation capacity and folate may facilitate the methylation and excretion of arsenic. Besides, general health conditions and medications might influence the arsenic methylation capacity; and technical problems can cause biased estimates. The consumption of seafood, seaweed, rice and other food with high arsenic contents and the extent of cooking and arsenic-containing water used in food preparation may also interfere with the presentation of the urinary arsenic profile. Future studies are necessary to clarify the effects of the various arsenic metabolites including the trivalent methylated forms on the development of arsenic-induced human diseases with the consideration of the effects of confounding factors and the interactions with other effect modifiers

  3. [Distribution of neural memory, loading factor, its regulation and optimization].

    Science.gov (United States)

    Radchenko, A N

    1999-01-01

    Recording and retrieving functions of the neural memory are simulated as a control of local conformational processes in neural synaptic fields. The localization of conformational changes is related to the afferent temporal-spatial pulse pattern flow, the microstructure of connections and a plurality of temporal delays in synaptic fields and afferent pathways. The loci of conformations are described by sets of afferent addresses named address domains. Being superimposed on each other, address domains form a multilayer covering of the address space of the neuron or the ensemble. The superposition factor determines the dissemination of the conformational process, and the fuzzing of memory, and its accuracy and reliability. The engram is formed as detects in the packing of the address space and hence can be retrieved in inverse form. The accuracy of the retrieved information depends on the threshold level of conformational transitions, the distribution of conformational changes in synaptic fields of the neuronal population, and the memory loading factor. The latter is represented in the model by a slow potential. It reflects total conformational changes and displaces the membrane potential to monostable conformational regimes, by governing the exit from the recording regime, the potentiation of the neurone, and the readiness to reproduction. A relative amplitude of the slow potential and the coefficient of postconformational modification of ionic conductivity, which provides maximum reliability, accuracy, and capacity of memory, are calculated.

  4. Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0152 TITLE: Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-14-1-0152 Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism... chromatin immunoprecipitation-next generation DNA sequencing (ChIP-seq) and integrative network modeling to identify the SAFB1 cistrome and the extent of

  5. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  6. DMPD: Nuclear factor-kappaB: activation and regulation during toll-like receptorsignaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17349209 Nuclear factor-kappaB: activation and regulation during toll-like receptorsignaling. Carmody...uclear factor-kappaB: activation and regulation during toll-like receptorsignaling. Authors Carmody

  7. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  8. Gamma-interferon alters globin gene expression in neonatal and adult erythroid cells

    International Nuclear Information System (INIS)

    Miller, B.A.; Perrine, S.P.; Antognetti, G.; Perlmutter, D.H.; Emerson, S.G.; Sieff, C.; Faller, D.V.

    1987-01-01

    The effect of gamma-interferon on fetal hemoglobin synthesis by purified cord blood, fetal liver, and adult bone marrow erythroid progenitors was studied with a radioligand assay to measure hemoglobin production by BFU-E-derived erythroblasts. Coculture with recombinant gamma-interferon resulted in a significant and dose-dependent decrease in fetal hemoglobin production by neonatal and adult, but not fetal, BFU-E-derived erythroblasts. Accumulation of fetal hemoglobin by cord blood BFU-E-derived erythroblasts decreased up to 38.1% of control cultures (erythropoietin only). Synthesis of both G gamma/A gamma globin was decreased, since the G gamma/A gamma ratio was unchanged. Picograms fetal hemoglobin per cell was decreased by gamma-interferon addition, but picograms total hemoglobin was unchanged, demonstrating that a reciprocal increase in beta-globin production occurred in cultures treated with gamma-interferon. No toxic effect of gamma-interferon on colony growth was noted. The addition of gamma-interferon to cultures resulted in a decrease in the percentage of HbF produced by adult BFU-E-derived cells to 45.6% of control. Fetal hemoglobin production by cord blood, fetal liver, and adult bone marrow erythroid progenitors, was not significantly affected by the addition of recombinant GM-CSF, recombinant interleukin 1 (IL-1), recombinant IL-2, or recombinant alpha-interferon. Although fetal progenitor cells appear unable to alter their fetal hemoglobin program in response to any of the growth factors added here, the interaction of neonatal and adult erythroid progenitors with gamma-interferon results in an altered expression of globin genes

  9. Type I interferon signature in systemic lupus erythematosus.

    Science.gov (United States)

    Bezalel, Shira; Guri, Keren Mahlab; Elbirt, Daniel; Asher, Ilan; Sthoeger, Zev Moshe

    2014-04-01

    Type I interferons (IFN) are primarily regarded as an inhibitor of viral replication. However, type I IFN, mainly IFNalpha, plays a major role in activation of both the innate and adaptive immune systems. Systemic lupus erythematosus (SLE) is a chronic, multi-systemic, inflammatory autoimmune disease with undefined etiology. SLE is characterized by dysregulation of both the innate and the adaptive immune systems. An increased expression of type I IFN-regulated genes, termed IFN signature, has been reported in patients with SLE. We review here the role of IFNalpha in the pathogenesis and course of SLE and the possible role of IFNalpha inhibition as a novel treatment for lupus patients.

  10. Laboratory evaluation of commercial interferon preparations

    International Nuclear Information System (INIS)

    Schoub, B.D.; Lyons, S.F.; Crespi, M.; Chiu, M.-N.; Lomnitzer, R.

    1983-01-01

    The antiviral, antiproliferative and natural killer-cell (NKC) stimulatory activities of four commercial therapeutic interferon preparations were assayed in a laboratory. The antiviral and antiproliferative activities of each preparation were relatively similar, but an unexpectedly high NKC stimulatory activity was found in one of them. In-house determination of antiviral activity and evaluation of the antiproliferative and NKC stimulation potential of interferon preparations are essential before rational clinical trials of this agent are carried out

  11. ZNF143 protein is an important regulator of the myeloid transcription factor C/EBP

    Czech Academy of Sciences Publication Activity Database

    Gonzalez, D.; Luyten, A.; Bartholdy, B.; Zhou, Q.; Kardošová, Miroslava; Ebralidze, A.; Swanson, K.D.; Radomska, H.S.; Zhang, P.; Kobayashi, S.S.; Welner, R.S.; Levantini, E.; Steidl, U.; Chong, G.; Collombet, S.; Choi, M.H.; Friedman, A.D.; Scott, L.M.; Alberich-Jorda, Meritxell; Tenen, D.G.

    2017-01-01

    Roč. 292, č. 46 (2017), s. 18924-18936 ISSN 0021-9258 Institutional support: RVO:68378050 Keywords : CCAAT-enhancer-binding protein * gene regulation * hematopoiesis * promoter * transcription factor * EBPalpha * ZNF143 Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 4.125, year: 2016

  12. Effects of irradiation on the production of factors regulating humoral hematopoiesis

    International Nuclear Information System (INIS)

    Seki, Masatoshi; Yoshida, Kazuko

    1974-01-01

    Changes in factors regulating humoral hematopoiesis after irradiation were studied by intraperitoneal insertion of cellulose acetate membrane (CA membrane). There is little possibility that regulation factors is produced by macrophage itself. The growth of the colony depends mainly on increase or decrease of regulation factors in the host. However, there is a possibility that the macrophage interferes the action of these regulation factors. From the fact that there is no action of EPO (erythropoiesis) in Sl/slsup(d) mice having abnormal function of microenvironment, it is suggested that the action of EPO is brought about through the function of the microenvironment. In the analysis of the colony formation by intraperitoneal insertion of CA membrane, it is considered that the erythroblastic colony can be formed by the macrophage through the action of EPO. In short, it is concluded that factors regulating humoral hematopoiesis increased in the body of the mouse which have been irradiated to the whole body, and the increase in these factors is not constant, but remarkably changes with time. (Namekawa, K.)

  13. Factors affecting self-regulated learning in medical students: a qualitative study.

    Science.gov (United States)

    Jouhari, Zahra; Haghani, Fariba; Changiz, Tahereh

    2015-01-01

    Clinical courses are required of all medical students and means that they must develop the key skill of self-regulation during learning. The ability to self-regulate learning strategies is affected by different factors. This study determined the views of medical students on the factors affecting self-regulated learning (SRL). This study uses a qualitative approach and the content analysis method. Nineteen medical students in their fourth, fifth, and sixth years of study at Isfahan University of Medical Science participated in semi-structured, in-depth interviews. The students were selected using purposive sampling based on their overall grade point average (GPA). Five main themes were found to affect SRL. These themes included family with the two subthemes of family supervisory and supportive roles; peers with the two subthemes of facilitating and inhibiting roles; instructors with the two subthemes of personal and educational instructor's characteristics; educational environment with the two subthemes of facilitator and inhibitor roles; and student with the two subthemes of facilitating and inhibiting personal factors. The outcomes of student understanding of the factors affecting self-regulation indicate that facilitating factors should be used on an individual basis to reduce the effect of inhibiting factors to improve self-regulation in students.

  14. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    International Nuclear Information System (INIS)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting

    2014-01-01

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd 2+ uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance

  15. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting, E-mail: qixiaoting@cnu.edu.cn

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  16. Expression of biologically active human interferon alpha 2 in aloe vera

    Science.gov (United States)

    We have developed a system for transgenic expression of proteins in Aloe Vera. Using this approach we have generated plants expressing the human gene interferon alpha 2, IFNa2. IFNa2 is a small secreted cytokine that plays a vital role in regulating the body’s immune response to viral infections a...

  17. Acetaminophen modulates the transcriptional response to recombinant interferon-beta.

    Directory of Open Access Journals (Sweden)

    Aaron Farnsworth

    Full Text Available BACKGROUND: Recombinant interferon treatment can result in several common side effects including fever and injection-site pain. Patients are often advised to use acetaminophen or other over-the-counter pain medications as needed. Little is known regarding the transcriptional changes induced by such co-administration. METHODOLOGY/PRINCIPAL FINDINGS: We tested whether the administration of acetaminophen causes a change in the response normally induced by interferon-beta treatment. CD-1 mice were administered acetaminophen (APAP, interferon-beta (IFN-beta or a combination of IFN-beta+APAP and liver and serum samples were collected for analysis. Differential gene expression was determined using an Agilent 22 k whole mouse genome microarray. Data were analyzed by several methods including Gene Ontology term clustering and Gene Set Enrichment Analysis. We observed a significant change in the transcription profile of hepatic cells when APAP was co-administered with IFN-beta. These transcriptional changes included a marked up-regulation of genes involved in signal transduction and cell differentiation and down-regulation of genes involved in cellular metabolism, trafficking and the IkappaBK/NF-kappaB cascade. Additionally, we observed a large decrease in the expression of several IFN-induced genes including Ifit-3, Isg-15, Oasl1, Zbp1 and predicted gene EG634650 at both early and late time points. CONCLUSIONS/SIGNIFICANCE: A significant change in the transcriptional response was observed following co-administration of IFN-beta+APAP relative to IFN-beta treatment alone. These results suggest that administration of acetaminophen has the potential to modify the efficacy of IFN-beta treatment.

  18. X - FACTOR EVALUATION UNDER RPI-X REGULATION FOR INDIAN ELECTRICITY DISTRIBUTION UTILITIES

    Directory of Open Access Journals (Sweden)

    PAVAN KHETRAPAL

    2017-07-01

    Full Text Available With regulators’ growing interest in improving operational efficiency and quality supply, the time is nearing when performance based regulation will become norm for regulating the distribution tariff in Indian electricity distribution sector. In this context, the State Electricity Regulatory Commissions proposed replacing rate-of-return regulation with most commonly used performance based regulatory regime, i.e., Price Cap regulation also known as RPI-X (Retail Price Index - Productivity Offset regulatory framework. However, the potential problem associated with applying price cap regulation scheme in practice is the determination of productivity offset or X factor used in price caps setting. This paper proposed an approach to calculate the X-factor for 58 government-owned and privately-owned electricity distribution utilities in India during a five year period from 2007/08 to 2011/12. A Stochastic Frontier model through an input distance function is first applied to compute the Malmquist Total Factor Productivity (TFP and the estimated TFP is then used to calculate the utility-specific X-factor. With rely on calculated X-factor, the distribution utilities would be able to cap either on prices or revenues thus accounting the inflation in the tariff determination. This will be more realistic approach as compared to cost plus approach.

  19. Social anxiety and emotion regulation flexibility: considering emotion intensity and type as contextual factors.

    Science.gov (United States)

    O'Toole, Mia S; Zachariae, Robert; Mennin, Douglas S

    2017-11-01

    Individuals with social anxiety disorder have often been considered inflexible in their emotion regulation. The aim of this study was to investigate emotion regulation flexibility in socially anxious individuals in response to two contextual factors, namely different levels of emotion intensity and emotion type. A daily diary approach was employed, investigating emotion regulation (i.e., experiential avoidance, expressive suppression and cognitive reappraisal) in college students scoring high (N = 62; HSA) and low (N = 52; LSA) on social anxiety. Results revealed that HSAs were found to use more experiential avoidance than LSAs, especially at higher levels of negative intensity. The use of this emotion regulation strategy appeared to be driven by guilt, nervousness, and sadness. There were no between-group differences concerning the other strategies in response to varying levels of emotional intensity. Together, the results provide evidence for inflexible emotion regulation in HSAs, reflected in an unwillingness to experience negative emotions.

  20. Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyunjin; Ansong, Charles; McDermott, Jason E.; Gritsenko, Marina A.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.

    2011-06-28

    Background: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two of these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.

  1. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    International Nuclear Information System (INIS)

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R.

    2006-01-01

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML

  2. Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    International Nuclear Information System (INIS)

    Lesinski, Gregory B; Zimmerer, Jason M; Kreiner, Melanie; Trefry, John; Bill, Matthew A; Young, Gregory S; Becknell, Brian; Carson, William E III

    2010-01-01

    Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells. Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr 701 -phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR. SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr 701 -phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation. These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ

  3. Modulation of gene expression in a human cell line caused by poliovirus, vaccinia virus and interferon

    Directory of Open Access Journals (Sweden)

    Hoddevik Gunnar

    2007-03-01

    Full Text Available Abstract Background The project was initiated to describe the response of a human embryonic fibroblast cell line to the replication of two different viruses, and, more specifically, to look for candidate genes involved in viral defense. For this purpose, the cells were synchronously infected with poliovirus in the absence or presence of interferon-alpha, or with vaccinia virus, a virus that is not inhibited by interferon. By comparing the changes in transcriptosome due to these different challenges, it should be possible to suggest genes that might be involved in defense. Results The viral titers were sufficient to yield productive infection in a majority of the cells. The cells were harvested in triplicate at various time-points, and the transcriptosome compared with mock infected cells using oligo-based, global 35 k microarrays. While there was very limited similarities in the response to the different viruses, a large proportion of the genes up-regulated by interferon-alpha were also up-regulated by poliovirus. Interferon-alpha inhibited poliovirus replication, but there were no signs of any interferons being induced by poliovirus. The observations suggest that the cells do launch an antiviral response to poliovirus in the absence of interferon. Analyses of the data led to a list of candidate antiviral genes. Functional information was limited, or absent, for most of the candidate genes. Conclusion The data are relevant for our understanding of how the cells respond to poliovirus and vaccinia virus infection. More annotations, and more microarray studies with related viruses, are required in order to narrow the list of putative defence-related genes.

  4. Tetherin Suppresses Type I Interferon Signaling by Targeting MAVS for NDP52-Mediated Selective Autophagic Degradation in Human Cells.

    Science.gov (United States)

    Jin, Shouheng; Tian, Shuo; Luo, Man; Xie, Weihong; Liu, Tao; Duan, Tianhao; Wu, Yaoxing; Cui, Jun

    2017-10-19

    Tetherin (BST2/CD317) is an interferon-inducible antiviral factor known for its ability to block the release of enveloped viruses from infected cells. Yet its role in type I interferon (IFN) signaling remains poorly defined. Here, we demonstrate that Tetherin is a negative regulator of RIG-I like receptor (RLR)-mediated type I IFN signaling by targeting MAVS. The induction of Tetherin by type I IFN accelerates MAVS degradation via ubiquitin-dependent selective autophagy in human cells. Moreover, Tetherin recruits E3 ubiquitin ligase MARCH8 to catalyze K27-linked ubiquitin chains on MAVS at lysine 7, which serves as a recognition signal for NDP52-dependent autophagic degradation. Taken together, our findings reveal a negative feedback loop of RLR signaling generated by Tetherin-MARCH8-MAVS-NDP52 axis and provide insights into a better understanding of the crosstalk between selective autophagy and optimal deactivation of type I IFN signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Interferon-alpha triggers B cell effector 1 (Be1 commitment.

    Directory of Open Access Journals (Sweden)

    Marie-Ghislaine de Goër de Herve

    Full Text Available B-cells can contribute to the pathogenesis of autoimmune diseases not only through auto-antibody secretion but also via cytokine production. Therapeutic depletion of B-cells influences the functions and maintenance of various T-cell subsets. The mechanisms governing the functional heterogeneity of B-cell subsets as cytokine-producing cells are poorly understood. B-cells can differentiate into two functionally polarized effectors, one (B-effector-1-cells producing a Th-1-like cytokine pattern and the other (Be2 producing a Th-2-like pattern. IL-12 and IFN-γ play a key role in Be1 polarization, but the initial trigger of Be1 commitment is unclear. Type-I-interferons are produced early in the immune response and prime several processes involved in innate and adaptive responses. Here, we report that IFN-α triggers a signaling cascade in resting human naive B-cells, involving STAT4 and T-bet, two key IFN-γ gene imprinting factors. IFN-α primed naive B-cells for IFN-γ production and increased IFN-γ gene responsiveness to IL-12. IFN-γ continues this polarization by re-inducing T-bet and up-regulating IL-12Rβ2 expression. IFN-α and IFN-γ therefore pave the way for the action of IL-12. These results point to a coordinated action of IFN-α, IFN-γ and IL-12 in Be1 polarization of naive B-cells, and may provide new insights into the mechanisms by which type-I-interferons favor autoimmunity.

  6. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    Science.gov (United States)

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  7. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhong Xin [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Sun, Cong Cong [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zheng, Jia Yong [Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Zhou, Xuan [Ningbo First Hospital, Ningbo, Zhejiang (China); Cong, Wei Tao [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Xiao Kun, E-mail: proflxk@163.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Jin, Li Tai, E-mail: jin_litai@126.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2017-06-15

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  8. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    International Nuclear Information System (INIS)

    Zhu, Zhong Xin; Sun, Cong Cong; Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui; Zheng, Jia Yong; Zhou, Xuan; Cong, Wei Tao; Li, Xiao Kun; Jin, Li Tai

    2017-01-01

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  9. Is pegylated interferon superior to interferon, with ribavarin, in chronic hepatitis C genotypes 2/3?

    Institute of Scientific and Technical Information of China (English)

    Ijaz S Jamall; Shafaq Yusuf; Maimoona Azhar; Selene Jamall

    2008-01-01

    Over the past decade,significant improvements have been made in the treatment of chronic hepatitis C(CHC),especially with the introduction of combined therapy using both interferon and ribavarin.The optimal dose and duration of treatment is still a matter of debate and,importantly,the efficacy of this combined treatment varies with the viral genotype responsible for infection.In general,patients infected with viral genotypes 2 or 3 more readily achieve a sustained viral response than those infected with viral genotype 1.The introduction of a pegylated version of interferon in the past decade has produced better clinical outcomes in patients infected with viral genotype 1.However,the published literature shows no improvement in clinical outcomes in patients infected with viral genotypes 2 or 3 when they are treated with pegylated interferon as opposed to nonpegylated interferon,both given in combination with ribavarin.This is significant because the cost of a 24-wk treatment with pegylated interferon in lessdeveloped countries is between six and 30 times greater than that of treatment with interferon.Thus,clinicians need to carefully consider the cost-versusbenefit of using pegylated interferon to treat CHC,particularly when there is no evidence for clinically measurable benefits in patients with genotypes 2 and 3 infections.

  10. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia.

    Directory of Open Access Journals (Sweden)

    Zhong Hua

    Full Text Available MicroRNAs (miRNAs are a class of 20-24 nt non-coding RNAs that regulate gene expression primarily through post-transcriptional repression or mRNA degradation in a sequence-specific manner. The roles of miRNAs are just beginning to be understood, but the study of miRNA function has been limited by poor understanding of the general principles of gene regulation by miRNAs. Here we used CNE cells from a human nasopharyngeal carcinoma cell line as a cellular system to investigate miRNA-directed regulation of VEGF and other angiogenic factors under hypoxia, and to explore the principles of gene regulation by miRNAs. Through computational analysis, 96 miRNAs were predicted as putative regulators of VEGF. But when we analyzed the miRNA expression profile of CNE and four other VEGF-expressing cell lines, we found that only some of these miRNAs could be involved in VEGF regulation, and that VEGF may be regulated by different miRNAs that were differentially chosen from 96 putative regulatory miRNAs of VEGF in different cells. Some of these miRNAs also co-regulate other angiogenic factors (differential regulation and co-regulation principle. We also found that VEGF was regulated by multiple miRNAs using different combinations, including both coordinate and competitive interactions. The coordinate principle states that miRNAs with independent binding sites in a gene can produce coordinate action to increase the repressive effect of miRNAs on this gene. By contrast, the competitive principle states when multiple miRNAs compete with each other for a common binding site, or when a functional miRNA competes with a false positive miRNA for the same binding site, the repressive effects of miRNAs may be decreased. Through the competitive principle, false positive miRNAs, which cannot directly repress gene expression, can sometimes play a role in miRNA-mediated gene regulation. The competitive principle, differential regulation, multi-miRNA binding sites, and false

  11. Interferon alfa with or without ribavirin for chronic hepatitis C

    DEFF Research Database (Denmark)

    Kjaergard, L L; Krogsgaard, K; Gluud, C

    2001-01-01

    To assess the efficacy and safety of interferon alfa with or without ribavirin for treatment of chronic hepatitis C.......To assess the efficacy and safety of interferon alfa with or without ribavirin for treatment of chronic hepatitis C....

  12. Coordinate Regulation of Yeast Sterol Regulatory Element-binding Protein (SREBP) and Mga2 Transcription Factors.

    Science.gov (United States)

    Burr, Risa; Stewart, Emerson V; Espenshade, Peter J

    2017-03-31

    The Mga2 and Sre1 transcription factors regulate oxygen-responsive lipid homeostasis in the fission yeast Schizosaccharomyces pombe in a manner analogous to the mammalian sterol regulatory element-binding protein (SREBP)-1 and SREBP-2 transcription factors. Mga2 and SREBP-1 regulate triacylglycerol and glycerophospholipid synthesis, whereas Sre1 and SREBP-2 regulate sterol synthesis. In mammals, a shared activation mechanism allows for coordinate regulation of SREBP-1 and SREBP-2. In contrast, distinct pathways activate fission yeast Mga2 and Sre1. Therefore, it is unclear whether and how these two related pathways are coordinated to maintain lipid balance in fission yeast. Previously, we showed that Sre1 cleavage is defective in the absence of mga2 Here, we report that this defect is due to deficient unsaturated fatty acid synthesis, resulting in aberrant membrane transport. This defect is recapitulated by treatment with the fatty acid synthase inhibitor cerulenin and is rescued by addition of exogenous unsaturated fatty acids. Furthermore, sterol synthesis inhibition blocks Mga2 pathway activation. Together, these data demonstrate that Sre1 and Mga2 are each regulated by the lipid product of the other transcription factor pathway, providing a source of coordination for these two branches of lipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts

    International Nuclear Information System (INIS)

    DiCicco-Bloom, E.; Black, I.B.

    1988-01-01

    While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. The authors have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating [ 3 H]thymidine into their nuclei. They used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of [ 3 H]thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. The observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain

  14. Krüppel-like factor 15: Regulator of BCAA metabolism and circadian protein rhythmicity.

    Science.gov (United States)

    Fan, Liyan; Hsieh, Paishiun N; Sweet, David R; Jain, Mukesh K

    2018-04-01

    Regulation of nutrient intake, utilization, and storage exhibits a circadian rhythmicity that allows organisms to anticipate and adequately respond to changes in the environment across day/night cycles. The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are important modulators of metabolism and metabolic health - for example, their catabolism yields carbon substrates for gluconeogenesis during periods of fasting. Krüppel-like factor 15 (KLF15) has recently emerged as a critical transcriptional regulator of BCAA metabolism, and the absence of this transcription factor contributes to severe pathologies such as Duchenne muscular dystrophy and heart failure. This review highlights KLF15's role as a central regulator of BCAA metabolism during periods of fasting, throughout day/night cycles, and in experimental models of muscle disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Undifferentiated Embryonic Cell Transcription Factor 1 Regulates ESC Chromatin Organization and Gene Expression

    NARCIS (Netherlands)

    Kooistra, Susanne M.; van den Boom, Vincent; Thummer, Rajkumar P.; Johannes, Frank; Wardenaar, Rene; Tesson, Bruno M.; Veenhoff, Liesbeth M.; Fusetti, Fabrizia; O'Neill, Laura P.; Turner, Bryan M.; de Haan, Gerald; Eggen, Bart J. L.; O’Neill, Laura P.

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES

  16. Factor structure of the Self-Regulation Questionnaire (SRQ) at Spanish universities.

    Science.gov (United States)

    Pichardo, Carmen; Justicia, Fernando; de la Fuente, Jesús; Martínez-Vicente, José Manuel; Berbén, Ana B G

    2014-08-04

    The Self-Regulation Questionnaire (SRQ) has been used in psychology research during the last decade. The instrument has been used in a variety of life domains: psychological well-being, dispositional happiness, depressive symptoms and career adaptability. This investigation studies the factor structure and internal consistency of the SRQ, extracting a short version in the Spanish context and examining its relation to academic variables (self-regulated learning and grades). The analysis started from a version with 63 items, representing seven conceptual dimensions. This version was administered to a sample of 834 students from Education and Psychology. The data from the above-mentioned sample were randomly divided into two sets, each containing 50% of the students (n = 417): exploratory and confirmatory. In the exploratory sample, exploratory factor analysis findings suggested a more parsimonious measurement model, with 17 items and 4 first-order factors. The confirmatory sample was used in the confirmatory factor analysis. The results show evidence for the internal consistency of the Short Self-Regulation Questionnaire (SSRQ) in the Spanish context, with indices greater than .90 and errors around .05. Regarding academic variables, both versions are related to self-regulated learning (r = .40, p < .01) and students' grades (r = .15, p < .01). Differences from other studies done in North America are discussed, as well as similarities to a study from North-West University (in South Africa).

  17. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hua eCassan-Wang

    2013-06-01

    Full Text Available The presence of lignin in secondary cell walls (SCW is a major factor preventing hydrolytic enzymes from gaining access to cellulose, thereby limiting the saccharification potential of plant biomass. To understand how lignification is regulated is a prerequisite for selecting plant biomass better adapted to bioethanol production. Because transcriptional regulation is a major mechanism controlling the expression of genes involved in lignin biosynthesis, our aim was to identify novel transcription factors dictating lignin profiles in the model plant Arabidopsis. To this end, we have developed a post-genomic approach by combining four independent in-house SCW-related transcriptome datasets obtained from (i the fiber cell wall-deficient wat1 Arabidopsis mutant, (ii Arabidopsis lines over-expressing either the master regulatory activator EgMYB2 or (iii the repressor EgMYB1 and finally (iv Arabidopsis orthologs of Eucalyptus xylem-expressed genes. This allowed us to identify 502 up- or down-regulated transcription factors. We preferentially selected those present in more than one dataset and further analyzed their in silico expression patterns as an additional selection criteria. This selection process led to 80 candidates. Notably, 16 of them were already proven to regulate SCW formation, thereby validating the overall strategy. Then, we phenotyped 43 corresponding mutant lines focusing on histological observations of xylem and interfascicular fibers. This phenotypic screen revealed six mutant lines exhibiting altered lignification patterns. Two of them (blh6 and a zinc finger transcription factor presented hypolignified SCW. Three others (myb52, myb-like TF, hb5 showed hyperlignified SCW whereas the last one (hb15 showed ectopic lignification. In addition, our meta-analyses highlighted a reservoir of new potential regulators adding to the gene network regulating SCW but also opening new avenues to ultimately improve SCW composition for biofuel

  18. Some biological properties of the human amniotic membrane interferon

    Directory of Open Access Journals (Sweden)

    P. C. P. Ferreira

    1992-03-01

    Full Text Available Human amniotic interferon was investigated to define the species specificity of its antiviral action and compare its anti-cellular and NK cell stimulating activities with those of other human interferons. The antiviral effect was titrated in bovine (RV-IAL and monkey (VERO cells. Amniotic interferon exhibited, in bovine cells, 5% of the activity seen in monkey cells, while alpha interferon displayed 200%. No effect was detected with either beta or gamma interferon in bovine cells. Daudi cells were exposed to different concentrations of various interferons and the cell numbers were determined. The anticellular effect of the amniotic interferon reached its peak on the third day of incubation. Results suggested a higher activity for alpha and gamma interferons and a lower activity for beta when compared to amniotic interferon. Using total mononuclear cells as effector cells and K 562 as target cell in a 51Cr release assay, it was demonstrated that low concentrations of amniotic interferon consistently stimulated NK cell activity in cells derived from several donors, the results indicating a higher level of activity with this interferon than with alpha and beta interferons.

  19. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis.

    NARCIS (Netherlands)

    Rudick, R.A.; Stuart, W.H.; Calabresi, P.A.; Confavreux, C.; Galetta, S.L.; Radue, E.W.; Lublin, F.D.; Weinstock-Guttman, B.; Wynn, D.R.; Lynn, F.; Panzara, M.A.; Sandrock, A.W.

    2006-01-01

    BACKGROUND: Interferon beta is used to modify the course of relapsing multiple sclerosis. Despite interferon beta therapy, many patients have relapses. Natalizumab, an alpha4 integrin antagonist, appeared to be safe and effective alone and when added to interferon beta-1a in preliminary studies.

  20. [Alpha interferon induced hyperthyroidism: a case report and review of the literature].

    Science.gov (United States)

    Maiga, I; Valdes-Socin, H; Thiry, A; Delwaide, J; Sidibe, A T; Beckers, A

    2015-01-01

    Treatment with alpha interferon in hepatitis C triggers a thyroid autoimmunity in a variable percentage of cases (2-8%). This complication raises some questions about its screening, the possibility to continue anti-viral therapy and thyroid treatment. Alpha interferon has an immunomodulatory effect on the thyroid, but also an inhibitory effect on thyroid hormone synthesis. This explains the occurrence of cases of thyroid dysfunction, which often remain undetected because of their latency. Factors predicting thyroid dysfunction with interferon use are: female sex, history of thyroid disease and previous autoimmunity. Several clinical aspects are encountered including hypothyroidism (the most frequent depending on the series) and hyperthyroidism related to Graves' disease. For their detection, a cooperation between general practionners, gastroenterologists and endocrinologists is mandatory thyroid function tests are requested before, during and after treatment,with alpha interferon. Therapeutic aspects of thyroid disorders range from simple monitoring to symptomatic treatment, such as thyroxine prescription in the presence of hypothyroidism. Antithyroid drugs radioactive iodine or thyroid surgery are used in cases of severe or persistent Graves' disease induced by alpha interferon.

  1. Synchronization of developmental processes and defense signaling by growth regulating transcription factors.

    Directory of Open Access Journals (Sweden)

    Jinyi Liu

    Full Text Available Growth regulating factors (GRFs are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways.

  2. Coagulation factor VII is regulated by androgen receptor in breast cancer.

    Science.gov (United States)

    Naderi, Ali

    2015-02-01

    Androgen receptor (AR) is widely expressed in breast cancer; however, there is limited information on the key molecular functions and gene targets of AR in this disease. In this study, gene expression data from a cohort of 52 breast cancer cell lines was analyzed to identify a network of AR co-expressed genes. A total of 300 genes, which were significantly enriched for cell cycle and metabolic functions, showed absolute correlation coefficients (|CC|) of more than 0.5 with AR expression across the dataset. In this network, a subset of 35 "AR-signature" genes were highly co-expressed with AR (|CC|>0.6) that included transcriptional regulators PATZ1, NFATC4, and SPDEF. Furthermore, gene encoding coagulation factor VII (F7) demonstrated the closest expression pattern with AR (CC=0.716) in the dataset and factor VII protein expression was significantly associated to that of AR in a cohort of 209 breast tumors. Moreover, functional studies demonstrated that AR activation results in the induction of factor VII expression at both transcript and protein levels and AR directly binds to a proximal region of F7 promoter in breast cancer cells. Importantly, AR activation in breast cancer cells induced endogenous factor VII activity to convert factor X to Xa in conjunction with tissue factor. In summary, F7 is a novel AR target gene and AR activation regulates the ectopic expression and activity of factor VII in breast cancer cells. These findings have functional implications in the pathobiology of thromboembolic events and regulation of factor VII/tissue factor signaling in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    International Nuclear Information System (INIS)

    Brady, Robert T.; O'Brien, Fergal J.; Hoey, David A.

    2015-01-01

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  4. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Robert T. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); O' Brien, Fergal J. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Hoey, David A., E-mail: david.hoey@ul.ie [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); The Centre for Applied Biomedical Engineering Research, University of Limerick (Ireland); Materials & Surface Science Institute, University of Limerick (Ireland)

    2015-03-27

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  5. Zinc finger transcription factors displaced SREBP proteins as the major Sterol regulators during Saccharomycotina evolution.

    Directory of Open Access Journals (Sweden)

    Sarah L Maguire

    2014-01-01

    Full Text Available In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs, which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1 and C. albicans (Cph2 have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1 and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina.

  6. Zinc Finger Transcription Factors Displaced SREBP Proteins as the Major Sterol Regulators during Saccharomycotina Evolution

    Science.gov (United States)

    Maguire, Sarah L.; Wang, Can; Holland, Linda M.; Brunel, François; Neuvéglise, Cécile; Nicaud, Jean-Marc; Zavrel, Martin; White, Theodore C.; Wolfe, Kenneth H.; Butler, Geraldine

    2014-01-01

    In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs), which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1) and C. albicans (Cph2) have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1) and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina. PMID:24453983

  7. On the use of risk-informed regulation including organizational factors

    International Nuclear Information System (INIS)

    Gibelli, S.M.O.; Alvarenga, M.A.B.

    1998-01-01

    Risk-Informed Regulation (RIR) can be applied by using Probabilistic Safety Assessment (PSA) as a basic tool. Traditionally, PSA methodology encompasses the calculation of failure probabilities of Structures, Systems and Components (SSCs) and direct associated human errors. However, there are indirect causes related to human failures, associated with Organizational Factors, which are normally not included in fault trees, that may influence plant risk evaluation. This paper discusses on possible applications of RIR and on Organizational Factors. It also presents a classification of Angra-1 NPP unresolved issues, aiming a future inclusion of these factors into a PSA calculation. (author)

  8. Regulation of cell proliferation by the E2F transcription factors

    DEFF Research Database (Denmark)

    Helin, K

    1998-01-01

    Experimental data generated in the past year have further emphasized the essential role for the E2F transcription factors in the regulation of cell proliferation. Genetic studies have shown that E2F activity is required for normal development in fruitflies, and the generation of E2F-1(-/-) mice h......Fs in the proteasomes. Novel target genes for the E2F transcription factors have been identified that link the E2Fs directly to the initiation of DNA replication.......Experimental data generated in the past year have further emphasized the essential role for the E2F transcription factors in the regulation of cell proliferation. Genetic studies have shown that E2F activity is required for normal development in fruitflies, and the generation of E2F-1(-/-) mice has...... demonstrated that individual members of the E2F transcription factor family are likely to have distinct roles in mammalian development and homeostasis. Additional mechanisms regulating the activity of the E2F transcription factors have been reported, including subcellular localization and proteolysis of the E2...

  9. The Onecut Transcription Factors Regulate Differentiation and Distribution of Dorsal Interneurons during Spinal Cord Development

    Directory of Open Access Journals (Sweden)

    Karolina U. Kabayiza

    2017-05-01

    Full Text Available During embryonic development, the dorsal spinal cord generates numerous interneuron populations eventually involved in motor circuits or in sensory networks that integrate and transmit sensory inputs from the periphery. The molecular mechanisms that regulate the specification of these multiple dorsal neuronal populations have been extensively characterized. In contrast, the factors that contribute to their diversification into smaller specialized subsets and those that control the specific distribution of each population in the developing spinal cord remain unknown. Here, we demonstrate that the Onecut transcription factors, namely Hepatocyte Nuclear Factor-6 (HNF-6 (or OC-1, OC-2 and OC-3, regulate the diversification and the distribution of spinal dorsal interneuron (dINs. Onecut proteins are dynamically and differentially distributed in spinal dINs during differentiation and migration. Analyzes of mutant embryos devoid of Onecut factors in the developing spinal cord evidenced a requirement in Onecut proteins for proper production of a specific subset of dI5 interneurons. In addition, the distribution of dI3, dI5 and dI6 interneuron populations was altered. Hence, Onecut transcription factors control genetic programs that contribute to the regulation of spinal dIN diversification and distribution during embryonic development.

  10. Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes.

    Science.gov (United States)

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF-fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF-fVII complex. Here, we discuss the roles of the TF-fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF-fVII function.

  11. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes

    Science.gov (United States)

    Das, Hiranmoy; Kumar, Ajay; Lin, Zhiyong; Patino, Willmar D.; Hwang, Paul M.; Feinberg, Mark W.; Majumder, Pradip K.; Jain, Mukesh K.

    2006-01-01

    The mechanisms regulating activation of monocytes remain incompletely understood. Herein we provide evidence that Kruppel-like factor 2 (KLF2) inhibits proinflammatory activation of monocytes. In vitro, KLF2 expression in monocytes is reduced by cytokine activation or differentiation. Consistent with this observation, KLF2 expression in circulating monocytes is reduced in patients with chronic inflammatory conditions such as coronary artery disease. Adenoviral overexpression of KLF2 inhibits the LPS-mediated induction of proinflammatory factors, cytokines, and chemokines and reduces phagocytosis. Conversely, short interfering RNA-mediated reduction in KLF2 increased inflammatory gene expression. Reconstitution of immunodeficient mice with KLF2-overexpressing monocytes significantly reduced carrageenan-induced acute paw edema formation. Mechanistically, KLF2 inhibits the transcriptional activity of both NF-κB and activator protein 1, in part by means of recruitment of transcriptional coactivator p300/CBP-associated factor. These observations identify KLF2 as a novel negative regulator of monocytic activation. PMID:16617118

  12. Thyroid dysfunction in hepatitis C individuals treated with interferon-alpha and ribavirin: a review

    Directory of Open Access Journals (Sweden)

    Luis Jesuíno de Oliveira Andrade

    Full Text Available Hepatitis C (HCV is now the main cause of chronic hepatic disease, cirrhosis and hepatocellular carcinoma. Several extrahepatic diseases have been associated with chronic HCV infection, and in most cases appear to be directly related to the viral infection. Thyroid disorders are common in patients with chronic HCV. Some patients with chronic hepatitis C experience thyroid problems, and thyroid dysfunction may also be a side effect of interferon-based treatment. The principal risk factor for developing thyroid disease in the course of antiviral therapy is the previous positivity for anti-thyroid antibodies (anti-thyroid peroxidase especially in older women. Screening for autoantibodies and serum thyroid-stimulating hormone is recommended before, during and after interferon-alpha treatment, and patients should be informed of the risk of thyroid dysfunction. This review includes a summary of thyroid disease associated with chronic HCV infection, interferon-alpha and ribavirin for treatment of HCV and potential to induce thyroid dysfunction.

  13. Interferon induced IFIT family genes in host antiviral defense.

    Science.gov (United States)

    Zhou, Xiang; Michal, Jennifer J; Zhang, Lifan; Ding, Bo; Lunney, Joan K; Liu, Bang; Jiang, Zhihua

    2013-01-01

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals.

  14. Regulation of TCF ETS-domain transcription factors by helix-loop-helix motifs.

    Science.gov (United States)

    Stinson, Julie; Inoue, Toshiaki; Yates, Paula; Clancy, Anne; Norton, John D; Sharrocks, Andrew D

    2003-08-15

    DNA binding by the ternary complex factor (TCF) subfamily of ETS-domain transcription factors is tightly regulated by intramolecular and intermolecular interactions. The helix-loop-helix (HLH)-containing Id proteins are trans-acting negative regulators of DNA binding by the TCFs. In the TCF, SAP-2/Net/ERP, intramolecular inhibition of DNA binding is promoted by the cis-acting NID region that also contains an HLH-like motif. The NID also acts as a transcriptional repression domain. Here, we have studied the role of HLH motifs in regulating DNA binding and transcription by the TCF protein SAP-1 and how Cdk-mediated phosphorylation affects the inhibitory activity of the Id proteins towards the TCFs. We demonstrate that the NID region of SAP-1 is an autoinhibitory motif that acts to inhibit DNA binding and also functions as a transcription repression domain. This region can be functionally replaced by fusion of Id proteins to SAP-1, whereby the Id moiety then acts to repress DNA binding in cis. Phosphorylation of the Ids by cyclin-Cdk complexes results in reduction in protein-protein interactions between the Ids and TCFs and relief of their DNA-binding inhibitory activity. In revealing distinct mechanisms through which HLH motifs modulate the activity of TCFs, our results therefore provide further insight into the role of HLH motifs in regulating TCF function and how the inhibitory properties of the trans-acting Id HLH proteins are themselves regulated by phosphorylation.

  15. [Pegylation and interferons in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Diego Centonze

    2016-07-01

    Full Text Available Pegylation is a procedure used for drug development since the 1970s and consists of the conjugation of a polyethylene glycol molecule (PEG to a drug. PEG has shown to be safe and effective in improving the pharmacokinetic and pharmacodynamic profile of drugs. Recently, a 20 kDa linear chain of PEG was conjugated to interferon beta-1a with the aim to offer a new treatment option to relapsing-remitting multiple sclerosis (RRMS patients. Due to a prolonged bioavailability, this new drug can be administered less frequently (every two weeks than the other interferons beta available, thus allowing to hypothesize a better adherence to the treatment, which, in turn, should result in better clinical and economic outcomes. A phase III clinical trial has proven its effectiveness compared to placebo in RRMS patients, as well as a safety profile comparable to that found in other interferon beta preparations. The immunogenicity of this new molecule is < 1%, thus minimizing the suppression or reduction of interferon beta biological activity that could come from the development of Neutralizing Antibodies (NAbs. [Article in Italian

  16. Interferon alfa and ribavirin induced hair changes

    International Nuclear Information System (INIS)

    Amir, S.; Taj, A.; Muhamud, T.H.; Iqbal, Z.; Yaqub, F.

    2007-01-01

    Combination therapy of Interferon alfa and ribavirin in chronic hepatitis C has well documented cutaneous adverse effects. Most interesting of these has been reported on hair physiology. This study was conducted to determine the frequency and pattern of adverse effects involving hair in patients receiving combination of interferon alfa 2a and ribavirin for chronic hepatitis C. The study was conducted in Department of Dermatology, Division of Medicine Shaikh Zayed Hospital. Thirty Eight patients who completed treatment with interferon alfa (3 MIU subcutaneously thrice weekly) and 1200 mg ribavirin daily for 24 weeks were enrolled in this single-center study. The patient's response and examination finding particularly regarding involvement of hair was noted on a Proforma. Thirty Two out of thirty eight (84%) patients noted adverse effects involving hair. The most frequent was diffuse hair loss and occurred in 27 patients (71%). Hypertrichosis of eyelashes (trichomegaly) and eyebrows (synophyrs) was observed in 18 (47%) and 16 (42%) patients respectively. Graying of hair was noted in 4 patients (11%), while discoloration of moustache hair was seen in 2 patients (5%). Epilation at the site of subcutaneous injection was noted in 10 patients (26%). Alopecia areata was reported in 2 patients (5%). It is concluded that adverse effects involving hair are frequent and varied (hair loss to excess hair growth) during combination therapy with Interferon alfa-2a and Ribavirin for chronic hepatitis C. (author)

  17. Interferon alpha association with neuromyelitis optica

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Voss, Anne; Steenstrup, Troels

    2013-01-01

    Interferon-alpha (IFN- α ) has immunoregulatory functions in autoimmune inflammatory diseases. The goal of this study was to determine occurrence and clinical consequences of IFN- α in neuromyelitis optica (NMO) patients. Thirty-six NMO and 41 multiple sclerosis (MS) patients from a population...

  18. Interferons in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Khorooshi, Reza M. H.; Wlodarczyk, Agnieszka

    2014-01-01

    Interferons (IFNs) are implicated as an important component of the innate immune system influencing viral infections, inflammation, and immune surveillance. We review here the complex biological activity of IFNs in the central nervous system (CNS) and associated glial–immune interactions...

  19. Regulation of vascular endothelial growth factor expression by homeodomain-interacting protein kinase-2

    Directory of Open Access Journals (Sweden)

    D'Orazi Gabriella

    2008-07-01

    Full Text Available Abstract Background Homeodomain-interacting protein kinase-2 (HIPK2 plays an essential role in restraining tumor progression as it may regulate, by itself or within multiprotein complexes, many proteins (mainly transcription factors involved in cell growth and apoptosis. This study takes advantage of the recent finding that HIPK2 may repress the β-catenin transcription activity. Thus, we investigated whether HIPK2 overexpression may down-regulate vascular endothelial growth factor (VEGF levels (a β-catenin target gene and the role of β-catenin in this regulation, in order to consider HIPK2 as a tool for novel anti-tumoral therapeutical approaches. Methods The regulation of VEGF expression by HIPK2 was evaluated by using luciferase assay with VEGF reporter construct, after overexpression of the β-catenin transcription factor. Relative quantification of VEGF and β-catenin mRNAs were assessed by reverse-transcriptase-PCR (RT-PCR analyses, following HIPK2 overexpression, while β-catenin protein levels were evaluated by western immunoblotting. Results HIPK2 overexpression in tumor cells downregulated VEGF mRNA levels and VEGF promoter activity. The VEGF downregulation was partly depending on HIPK2-mediated β-catenin regulation. Thus, HIPK2 could induce β-catenin protein degradation that was prevented by cell treatment with proteasome inhibitor MG132. The β-catenin degradation was dependent on HIPK2 catalytic activity and independent of p53 and glycogen synthase kinase 3β (GSK-3β activities. Conclusion These results suggest that VEGF might be a target of HIPK2, at least in part, through regulation of β-catenin activity. These findings support the function of HIPK2 as tumor suppressor and hypothesise a role for HIPK2 as antiangiogenic tool in tumor therapy approaches.

  20. Nonstructural 5A Protein of Hepatitis C Virus Interferes with Toll-Like Receptor Signaling and Suppresses the Interferon Response in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Takeya Tsutsumi

    Full Text Available The hepatitis C virus nonstructural protein NS5A is involved in resistance to the host immune response, as well as the viral lifecycle such as replication and maturation. Here, we established transgenic mice expressing NS5A protein in the liver and examined innate immune responses against lipopolysaccharide (LPS in vivo. Intrahepatic gene expression levels of cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ were significantly suppressed after LPS injection in the transgenic mouse liver. Induction of the C-C motif chemokine ligand 2, 4, and 5 was also suppressed. Phosphorylation of the signal transducer and activator of transcription 3, which is activated by cytokines, was also reduced, and expression levels of interferon-stimulated genes, 2'-5' oligoadenylate synthase, interferon-inducible double-stranded RNA-activated protein kinase, and myxovirus resistance 1 were similarly suppressed. Since LPS binds to toll-like receptor 4 and stimulates the downstream pathway leading to induction of these genes, we examined the extracellular signal-regulated kinase and IκB-α. The phosphorylation levels of these molecules were reduced in transgenic mouse liver, indicating that the pathway upstream of the molecules was disrupted by NS5A. Further analyses revealed that the interaction between interleukin-1 receptor-associated kinase-1 and tumor necrosis factor receptor associated factor-6 was dispersed in transgenic mice, suggesting that NS5A may interfere with this interaction via myeloid differentiation primary response gene 88, which was shown to interact with NS5A. Since the gut microbiota, a source of LPS, is known to be associated with pathological conditions in liver diseases, our results suggest the involvement of NS5A in the pathogenesis of HCV infected-liver via the suppression of innate immunity.

  1. Effects of Interferon Therapy on Heart

    International Nuclear Information System (INIS)

    Faisal, A. W. K.; Ali, S. A.; Nisar, S.; Ahmad, F.

    2016-01-01

    Background: Hepatitis C virus (HCV) infection is a major health problem worldwide. Around 185 million people are suffering from HCV infection all over the world, out of which 10 million people are residing in Pakistan. 4.7 percent (2-14 percent by different studies) of Pakistanis are suffering from this deadly disease. Interferon+Ribavarin IFN/RIB is the mainstay of treatment for this infection. Various cardiovascular adverse reactions have been reported of this therapy. We conducted this study at Punjab Institute of cardiology to look for the cardiac safety of interferon therapy in our population. Methods: We studied HCV infected patients planned for interferon therapy between 21st of November 2012 to 20th of August 2014. Echocardiography was performed before, during and after the completion of therapy. Pegylated interferon once a week plus ribavirin therapy was given to the patients. Patients received 16-40 injections of pegylated interferon depending upon the decision of hepatologist. Patients with prior structural heart disease, patients who did not start the treatment or patients who did not turn up on follow up were excluded from the study. Results: A total of 102 patients planned to have interferon therapy were screened echocardiographically. One patient died after 5 injections due to infection (a non-cardiac cause). 46 patients completed the treatment and the follow up. None of the patients had any acute cardiac event. All patients had normal biventricular systolic function at the end of study. None of the patients had significant valvular heart disease or pulmonary hypertension. Reversal of E/A ratio or E/A ratio>2, parameters of diastolic dysfunction and mild pericardial effusion were noted in a statistically significant number of patients. Conclusion: Interferon therapy for HCV infection is cardiac safe in patients who have structurally normal heart. Female patients have propensity of adverse events like severe diastolic dysfunction and mild pericardial

  2. Situational Awareness: Regulation of the Myb Transcription Factor in Differentiation, the Cell Cycle and Oncogenesis

    Energy Technology Data Exchange (ETDEWEB)

    George, Olivia L.; Ness, Scott A., E-mail: sness@salud.unm.edu [Department of Internal Medicine, Section of Molecular Medicine, University of New Mexico Health Sciences Center, MSC07 4025-CRF 121, 1 University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-10-02

    This review summarizes the mechanisms that control the activity of the c-Myb transcription factor in normal cells and tumors, and discusses how c-Myb plays a role in the regulation of the cell cycle. Oncogenic versions of c-Myb contribute to the development of leukemias and solid tumors such as adenoid cystic carcinoma, breast cancer and colon cancer. The activity and specificity of the c-Myb protein seems to be controlled through changes in protein-protein interactions, so understanding how it is regulated could lead to the development of novel therapeutic strategies.

  3. Mga2 transcription factor regulates an oxygen-responsive lipid homeostasis pathway in fission yeast

    DEFF Research Database (Denmark)

    Burr, Risa; Stewart, Emerson V; Shao, Wei

    2016-01-01

    -binding protein (SREBP) transcription factors regulate lipid homeostasis. In mammals, SREBP-2 controls cholesterol biosynthesis, whereas SREBP-1 controls triacylglycerol and glycerophospholipid biosynthesis. In the fission yeast Schizosaccharomyces pombe, the SREBP-2 homolog Sre1 regulates sterol homeostasis....... In the absence of mga2, fission yeast exhibited growth defects under both normoxia and low oxygen conditions. Mga2 transcriptional targets were enriched for lipid metabolism genes, and mga2Δ cells showed disrupted triacylglycerol and glycerophospholipid homeostasis, most notably with an increase in fatty acid...

  4. Interferon-tau and oxytocin receptor in bovien placentomes through out pregnancy

    DEFF Research Database (Denmark)

    Dantzer, Vibeke; Ivell, R.; Balvers, M.

    Objective: Interferon-tau (IFNT) secreted by the conceptus is an important factor in the maintenance of luteal function in cows during early pregnancy until day 36. In this multiplex, synepitheliochorial placenta the expression of oxytocin receptor (OXTR) is resumed in the intercaruncular but not....../or OXTR expression until parturition. Supported by a grant from the Deutsche Forschungsgemeinschaft to R.I....

  5. What on "irf" is this gene 4? Irf4 transcription-factor-dependent dendritic cells are required for T helper 2 cell responses in murine skin.

    Science.gov (United States)

    Flutter, Barry; Nestle, Frank O

    2013-10-17

    Interferon regulatory factors play an important role in the transcriptional regulation of immunity. In this issue of Immunity, Kumamoto et al. (2013) and Gao et al. (2013) identify an Irf4-dependent migratory dendritic cell subset required for T helper 2 cell polarization following cutaneous challenge. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Inter- and intra-combinatorial regulation by transcription factors and microRNAs

    Directory of Open Access Journals (Sweden)

    Chang Joseph T

    2007-10-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a novel class of non-coding small RNAs. In mammalian cells, miRNAs repress the translation of messenger RNAs (mRNAs or degrade mRNAs. miRNAs play important roles in development and differentiation, and they are also implicated in aging, and oncogenesis. Predictions of targets of miRNAs suggest that they may regulate more than one-third of all genes. The overall functions of mammalian miRNAs remain unclear. Combinatorial regulation by transcription factors alone or miRNAs alone offers a wide range of regulatory programs. However, joining transcriptional and post-transcriptional regulatory mechanisms enables higher complexity regulatory programs that in turn could give cells evolutionary advantages. Investigating coordinated regulation of genes by miRNAs and transcription factors (TFs from a statistical standpoint is a first step that may elucidate some of their roles in various biological processes. Results Here, we studied the nature and scope of coordination among regulators from the transcriptional and miRNA regulatory layers in the human genome. Our findings are based on genome wide statistical assessment of regulatory associations ("interactions" among the sets of predicted targets of miRNAs and sets of putative targets of transcription factors. We found that combinatorial regulation by transcription factor pairs and miRNA pairs is much more abundant than the combinatorial regulation by TF-miRNA pairs. In addition, many of the strongly interacting TF-miRNA pairs involve a subset of master TF regulators that co-regulate genes in coordination with almost any miRNA. Application of standard measures for evaluating the degree of interaction between pairs of regulators show that strongly interacting TF-miRNA, TF-TF or miRNA-miRNA pairs tend to include TFs or miRNAs that regulate very large numbers of genes. To correct for this potential bias we introduced an additional Bayesian measure that incorporates

  7. Literature systematic review on the ophthalmological side effects of interferons

    Directory of Open Access Journals (Sweden)

    Yara Dadalti Fragoso

    2011-08-01

    Full Text Available Interferons alpha and beta have been used worldwide for a few decades, altering the natural history of several severe diseases including hepatitis C, cancer and immune-mediated conditions such as multiple sclerosis. The adverse events profile of interferons is well established, but only isolated reports of ophthalmological complications of interferon therapy have been published. The objective of this study was to carry out a literature systematic review on the subject, bringing to light the need for careful ophthalmological monitoring of patients undergoing interferon treatment. Nearly 500 cases of ophthalmological complications related to interferon have been reported. The most frequent findings were soft exudates, hemorrhages and retina ischemia.

  8. Cystic craniopharyngioma: intratumoral chemotherapy with alpha interferon

    Directory of Open Access Journals (Sweden)

    Patrícia Alessandra Dastoli

    2011-02-01

    Full Text Available OBJECTIVE: To assess whether the cystic craniopharyngiomas can be controlled with the use of intratumoral applications of interferon alpha. METHOD: Nineteen patients with the diagnosis of cystic craniopharyngioma were treated with intratumoral chemotherapy with interferon alpha from January 2002 to April 2006. All patients underwent placement of an intracystic catheter connected to an Ommaya reservoir. Through this reservoir were made applications during chemotherapy cycles. Each cycle corresponded to application of 3,000,000 units of interferon alpha three times per week on alternate days totalizing 36,000,000 units. Response to treatment was evaluated by calculating the tumor volume on MRI control after one, three and six months after the end of each cycle. Patients who developed worsening of symptoms or who had insignificant reduction in tumor volume during follow-up underwent repeat cycle chemotherapy. RESULTS: Four patients received four cycles of chemotherapy, three patients received three cycles, six patients received two cycles and six patients received one. The lower percentage of reduction in tumor volume was 60% and the bigger reduction was 98.37%. Eleven patients had a reduction greater than 90%. Five patients had a tumor reduction between 75 and 90% and in three patients the tumors were reduced by less than 75%. No deaths occurred during treatment and side effects of interferon alpha were well tolerated. No treatment was discontinued. Follow-up after the last application ranged from one year and five months to three years and nine months. CONCLUSION: The intratumoral chemotherapy with interferon alpha decreases the volume of cystic craniopharyngiomas and so far can be considered a new therapeutic alternative.

  9. Interferon-β induced microRNA-129-5p down-regulates HPV-18 E6 and E7 viral gene expression by targeting SP1 in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Jiarong Zhang

    Full Text Available Infection by human papillomavirus (HPV can cause cervical intraepithelial neoplasia (CIN and cancer. Down-regulation of E6 and E7 expression may be responsible for the positive clinical outcomes observed with IFN treatment, but the molecular basis has not been well determined. As miRNAs play an important role in HPV induced cervical carcinogenesis, we hypothesize that IFN-β can regulate the expressions of specific miRNAs in cervical cancer cells, and that these miRNAs can mediate E6 and E7 expression, thus modulate their oncogenic potential. In this study, we found that miR-129-5p to be a candidate IFN-β inducible miRNA. MiR-129-5p levels gradually decrease with the development of cervical intraepithelial lesions. Manipulation of miR-129-5p expression in Hela cells modulates HPV-18 E6 and E7 viral gene expression. Exogenous miR-129-5p inhibits cell proliferation in Hela cells, promotes apoptosis and blocks cell cycle progression in Hela cells. SP1 is a direct target of miR-129-5p in Hela cells. This study is the first report of a cellular miRNA with anti-HPV activity and provides new insights into regulatory mechanisms between the HPV and the IFN system in host cells at the miRNA level.

  10. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.

    Science.gov (United States)

    Shi, Yihao; Huang, Jiaying; Sun, Tianshu; Wang, Xuefei; Zhu, Chenqi; Ai, Yuxi; Gu, Hongya

    2017-02-01

    The transcription factors CBF1/2/3 are reported to play a dominant role in the cold responsive network of Arabidopsis by directly regulating the expression levels of cold responsive (COR) genes. In this study, we obtained CRISPR/Cas9-mediated loss-of-function mutants of cbf1∼3. Over 3,000 COR genes identified by RNA-seq analysis showed a slight but significant change in their expression levels in the mutants compared to the wild-type plants after being treated at 4 °C for 12 h. The C-repeat (CRT) motif (5'-CCGAC-3') was enriched in promoters of genes that were up-regulated by CBF2 and CBF3 but not in promoters of genes up-regulated by CBF1. These data suggest that CBF2 and CBF3 play a more important role in directing the cold response by regulating different sets of downstream COR genes. More than 2/3 of COR genes were co-regulated by two or three CBFs and were involved mainly in cellular signal transduction and metabolic processes; less than 1/3 of the genes were regulated by one CBF, and those genes up-regulated were enriched in cold-related abiotic stress responses. Our results indicate that CBFs play an important role in the trade-off between cold tolerance and plant growth through the precise regulation of COR genes in the complicated transcriptional network. © 2016 The Authors. Journal of Integrative Plant Biology Published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  11. Emerging roles and regulation of MiT/TFE transcriptional factors.

    Science.gov (United States)

    Yang, Min; Liu, En; Tang, Li; Lei, Yuanyuan; Sun, Xuemei; Hu, Jiaxi; Dong, Hui; Yang, Shi-Ming; Gao, Mingfa; Tang, Bo

    2018-06-15

    The MiT/TFE transcription factors play a pivotal role in the regulation of autophagy and lysosomal biogenesis. The subcellular localization and activity of MiT/TFE proteins are primarily regulated through phosphorylation. And the phosphorylated protein is retained in the cytoplasm and subsequently translocates to the nucleus upon dephosphorylation, where it stimulates the expression of hundreds of genes, leading to lysosomal biogenesis and autophagy induction. The transcription factor-mediated lysosome-to-nucleus signaling can be directly controlled by several signaling molecules involved in the mTORC1, PKC, and AKT pathways. MiT/TFE family members have attracted much attention owing to their intracellular clearance of pathogenic factors in numerous diseases. Recently, multiple studies have also revealed the MiT/TFE proteins as master regulators of cellular metabolic reprogramming, converging on autophagic and lysosomal function and playing a critical role in cancer, suggesting that novel therapeutic strategies could be based on the modulation of MiT/TFE family member activity. Here, we present an overview of the latest research on MiT/TFE transcriptional factors and their potential mechanisms in cancer.

  12. A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Guillem Casanovas

    2014-01-01

    Full Text Available Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.

  13. Regulation of the human ADAMTS-4 promoter by transcription factors and cytokines

    International Nuclear Information System (INIS)

    Thirunavukkarasu, Kannan; Pei, Yong; Moore, Terry L.; Wang, He; Yu, Xiao-peng; Geiser, Andrew G.; Chandrasekhar, Srinivasan

    2006-01-01

    ADAMTS-4 (aggrecanase-1) is a metalloprotease that plays a role in aggrecan degradation in the cartilage extracellular matrix. In order to understand the regulation of ADAMTS-4 gene expression we have cloned and characterized a functional 4.5 kb human ADAMTS-4 promoter. Sequence analysis of the promoter revealed the presence of putative binding sites for nuclear factor of activated T cells (NFAT) and Runx family of transcription factors that are known to regulate chondrocyte maturation and differentiation. Using promoter-reporter assays and mRNA analysis we have analyzed the role of chondrocyte-expressed transcription factors NFATp and Runx2 and have shown that ADAMTS-4 is a potential downstream target of these two factors. Our results suggest that inhibition of the expression/function of NFATp and/or Runx2 may enable us to modulate aggrecan degradation in normal physiology and/or in degenerative joint diseases. The ADAMTS-4 promoter would serve as a valuable mechanistic tool to better understand the regulation of ADAMTS-4 expression by signaling pathways that modulate cartilage matrix breakdown

  14. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    Science.gov (United States)

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  15. Interaction with extracellular matrix proteins influences Lsh/Ity/Bcg (candidate Nramp) gene regulation of macrophage priming/activation for tumour necrosis factor-alpha and nitrite release.

    Science.gov (United States)

    Formica, S; Roach, T I; Blackwell, J M

    1994-05-01

    The murine resistance gene Lsh/Ity/Bcg regulates activation of macrophages for tumour necrosis factor-alpha (TNF-alpha)-dependent production of nitric oxide mediating antimicrobial activity against Leishmania, Salmonella and Mycobacterium. As Lsh is differentially expressed in macrophages from different tissue sites, experiments were performed to determine whether interaction with extracellular matrix (ECM) proteins would influence the macrophage TNF-alpha response. Plating of bone marrow-derived macrophages onto purified fibrinogen or fibronectin-rich L929 cell-derived matrices, but not onto mannan, was itself sufficient to stimulate TNF-alpha release, with significantly higher levels released from congenic B10.L-Lshr compared to C57BL/10ScSn (Lshs) macrophages. Only macrophages plated onto fibrinogen also released measurable levels of nitrites, again higher in Lshr compared to Lshs macrophages. Addition of interferon-gamma (IFN-gamma), but not bacterial lipopolysaccharide or mycobacterial lipoarabinomannan, as a second signal enhanced the TNF-alpha and nitrite responses of macrophages plated onto fibrinogen, particularly in the Lshr macrophages. Interaction with fibrinogen and fibronectin also primed macrophages for an enhanced TNF-alpha response to leishmanial parasites, but this was only translated into enhanced nitrite responses in the presence of IFN-gamma. In these experiments, Lshr macrophages remained superior in their TNF-alpha responses throughout, but to a degree which reflected the magnitude of the difference observed on ECM alone. Hence, the specificity for the enhanced TNF-alpha responses of Lshr macrophages lay in their interaction with fibrinogen and fibronectin ECM, while a differential nitrite response was only observed with fibrinogen and/or IFN-gamma. The results are discussed in relation to the possible function of the recently cloned candidate gene Nramp, which has structural identity to eukaryote transporters and an N-terminal cytoplasmic

  16. Similarities of cellular receptors for interferon and cortisol

    International Nuclear Information System (INIS)

    Filipic, B.; Schauer, P.; Likar, M.

    1977-01-01

    Cellular receptors are molecules located on the cell membrane. Their function is to bind different molecules to the cell surface. These molecules can penetrate into the cytoplasm and trigger cellular changes. One kind of such bound molecules are interferons and corticosteroids. Until very recently very little was known about interferon's receptors on the cell surface, mechanisms of interferon's binding to them or about kinetics of such binding. On the basis of results published elsewhere and on the basis of experimental results, the authors suggest: receptors for interferon and cortisol are glycoproteins located on the cell surface, in analogy with PHA receptors they are chemically sialoglycoproteins, binding kinetics of cortisol and interferon is similar, interferon and cortisol compete for cellular receptors, binding of cortisol or interferon is dependent on allosteric configuration of receptor molecules. (author)

  17. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease.

    Science.gov (United States)

    Beck, Michael W; Derrick, Jeffrey S; Kerr, Richard A; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D; Kim, Kwang S; Lee, Joo-Yong; Ruotolo, Brandon T; Lim, Mi Hee

    2016-10-13

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  18. Post-transcriptional regulation of vascular endothelial growth factor: Implications for tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Peter S Yoo; Abby L Mulkeen; Charles H Cha

    2006-01-01

    Vascular endothelial growth factor (VEGF) is a potent secreted mitogen critical for physiologic and tumor angiogenesis. Regulation of VEGF occurs at several levels, including transcription, mRNA stabilization,translation, and differential cellular localization of various isoforms. Recent advances in our understanding of posttranscriptional regulation of VEGF include identification of the stabilizing mRNA binding protein, HuR, and the discovery of internal ribosomal entry sites in the 5'UTR of the VEGF mRNA. Monoclonal anti-VEGF antibody was recently approved for use in humans, but suffers from the need for high systemic doses. RNA interference (RNAi)technology is being used in vitro and in animal models with promising results. Here, we review the literature on post-transcriptional regulation of VEGF and describe recent progress in targeting these mechanisms for therapeutic benefit.

  19. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor.

    Science.gov (United States)

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-11-28

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3'-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF.

  20. The secret life of tethers: the role of tethering factors in SNARE complex regulation

    Directory of Open Access Journals (Sweden)

    Michelle L Dubuke

    2016-05-01

    Full Text Available Trafficking in eukaryotic cells is a tightly regulated process to ensure correct cargo delivery to the proper destination organelle or plasma membrane. In this review, we focus on how the vesicle fusion machinery, the SNARE complex, is regulated by the interplay of the multisubunit tethering complexes (MTC with the SNAREs and Sec1/Munc18 (SM proteins. Although these factors are used in different stages of membrane trafficking, e.g. Golgi to plasma membrane transport vs vacuolar fusion, and in a variety of diverse eukaryotic cell types, many commonalities between their functions are being revealed. We explore the various protein-protein interactions and findings from functional reconstitution studies in order to highlight both their common features and the differences in their modes of regulation. These studies serve as a starting point for mechanistic explorations in other systems.

  1. Meningioma growth and interferon beta-1b treated multiple sclerosis: coincidence or relationship?

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, A.; Xinou, E. [AHEPA University Hospital, Aristotele University School of Medicine, Department of Radiology, Thessaloniki (Greece); Karacostas, D.; Parissis, D.; Milonas, I. [AHEPA University Hospital, Aristotele University School of Medicine, B' Department of Neurology, Thessaloniki (Greece); Karkavelas, G. [AHEPA University Hospital, Aristotele University School of Medicine, Laboratory of Pathology, Thessaloniki (Greece)

    2005-07-01

    Although the coincidence of multiple sclerosis (MS) and central nervous system (CNS) tumors has been reported in over 30 cases in English literature, meningioma growth was associated with interferon-beta (INF-b) treated MS only in two of them. We report the case of a 19-year-old woman with clinically possible, laboratory supported MS, and a concomitant right intraventricular tumor with magnetic resonance imaging (MRI) characteristics consistent with meningioma (similar signal with grey matter on T1 and T2-weighted images and homogenous, intense enhancement). Two years after initiation of INF-b treatment, follow-up brain MRI revealed enlargement of the intraventricular mass and relative increase in the number of white matter lesions without significant clinical deterioration. She underwent almost total resection of the mass and histology confirmed the diagnosis of papillary meningioma. Based on the immunohistochemistry results, we speculate that INF-b resulted in meningioma growth by enhancing platelet derived growth factor (PDGF) receptors or/and down-regulating transforming growth factor receptors on the tumor itself. (orig.)

  2. Meningioma growth and interferon beta-1b treated multiple sclerosis: coincidence or relationship?

    International Nuclear Information System (INIS)

    Drevelegas, A.; Xinou, E.; Karacostas, D.; Parissis, D.; Milonas, I.; Karkavelas, G.

    2005-01-01

    Although the coincidence of multiple sclerosis (MS) and central nervous system (CNS) tumors has been reported in over 30 cases in English literature, meningioma growth was associated with interferon-beta (INF-b) treated MS only in two of them. We report the case of a 19-year-old woman with clinically possible, laboratory supported MS, and a concomitant right intraventricular tumor with magnetic resonance imaging (MRI) characteristics consistent with meningioma (similar signal with grey matter on T1 and T2-weighted images and homogenous, intense enhancement). Two years after initiation of INF-b treatment, follow-up brain MRI revealed enlargement of the intraventricular mass and relative increase in the number of white matter lesions without significant clinical deterioration. She underwent almost total resection of the mass and histology confirmed the diagnosis of papillary meningioma. Based on the immunohistochemistry results, we speculate that INF-b resulted in meningioma growth by enhancing platelet derived growth factor (PDGF) receptors or/and down-regulating transforming growth factor receptors on the tumor itself. (orig.)

  3. The Canadian Natural Health Products (NHP regulations: industry perceptions and compliance factors

    Directory of Open Access Journals (Sweden)

    Boon Heather

    2006-05-01

    Full Text Available Abstract Background The use of natural health products, such as vitamins, minerals, and herbs, by Canadians has been increasing with time. As a result of consumer concern about the quality of these products, the Canadian Department of Health created the Natural Health Products (NHP Regulations. The new Canadian regulations raise questions about whether and how the NHP industry will be able to comply and what impact they will have on market structure. The objectives of this study were to explore who in the interview sample is complying with Canada's new NHP Regulations (i.e., submitted product licensing applications on time; and explore the factors that affect regulatory compliance. Methods Twenty key informant interviews were conducted with employees of the NHP industry. The structured interviews focused on the level of satisfaction with the Regulations and perceptions of compliance and non-compliance. Interviews were tape recorded and then transcribed verbatim. Data were independently coded, using qualitative content analysis. Team meetings were held after every three to four interviews to discuss emerging themes. Results The major finding of this study is that most (17 out of 20 companies interviewed were beginning to comply with the new regulatory regime. The factors that contribute to likelihood of regulatory compliance were: perceptions and knowledge of the regulations and business size. Conclusion The Canadian case can be instructive for other countries seeking to implement regulatory standards for natural health products. An unintended consequence of the Canadian NHP regulations may be the exit of smaller firms, leading to industry consolidation.

  4. Environmental factors related to water level regulation - a comparative study in northern Finland

    International Nuclear Information System (INIS)

    Hellsten, S.K.

    1997-01-01

    The environmental conditions of the littoral zone were studied in the regulated Lake Ontojaervi and the unregulated Lake Lentua in northern Finland. The general aims of the study were to analyse the environmental factors related to water level regulation in the littoral zone and to produce information for assessing the effects of hydroelectric development in northern lakes. The study was basically carried out by comparing the littoral environments of the two study lakes. The most visible effects of water level regulation were related to the raised water level, which yielded erosion of sandy shores at the beginning of the regulation. Another effect of lake regulation was the altered fluctuation of the water level, which led to bottom instability and increased the size of the frozen and ice penetration zones. The effect of ice penetration was also easy to recognize on the shores of Lake Ontojaervi, where the surface sediment was frozen to a greater depth and across wider areas than in Lake Lentua. Below the freezing zone, the ice just pressed down on the sediment. The shores of Lake Ontojaervi were steeper than those of Lake Lentua, which affected the distribution of bottom types, with sandy bottoms being more common in Lake Lentua than in Lake Ontojaervi. The factors related to site exposure included effective fetch and the shape of the shoreline. The sedimentation level correlated only with the slope and was not predicted by the fetch or shape. The vertical reduction of light was estimated on the basis of water colour. The main environmental factors from the two lakes were used in a discriminant analysis to predict the bottom type distribution of the littoral (r 2 = 0.41). (orig.) 66 refs

  5. Environmental factors related to water level regulation - a comparative study in northern Finland

    Energy Technology Data Exchange (ETDEWEB)

    Hellsten, S K [VTT Communities and Infrastructure. Water Engineering and Ecotechnology, Oulu (Finland)

    1998-12-31

    The environmental conditions of the littoral zone were studied in the regulated Lake Ontojaervi and the unregulated Lake Lentua in northern Finland. The general aims of the study were to analyse the environmental factors related to water level regulation in the littoral zone and to produce information for assessing the effects of hydroelectric development in northern lakes. The study was basically carried out by comparing the littoral environments of the two study lakes. The most visible effects of water level regulation were related to the raised water level, which yielded erosion of sandy shores at the beginning of the regulation. Another effect of lake regulation was the altered fluctuation of the water level, which led to bottom instability and increased the size of the frozen and ice penetration zones. The effect of ice penetration was also easy to recognize on the shores of Lake Ontojaervi, where the surface sediment was frozen to a greater depth and across wider areas than in Lake Lentua. Below the freezing zone, the ice just pressed down on the sediment. The shores of Lake Ontojaervi were steeper than those of Lake Lentua, which affected the distribution of bottom types, with sandy bottoms being more common in Lake Lentua than in Lake Ontojaervi. The factors related to site exposure included effective fetch and the shape of the shoreline. The sedimentation level correlated only with the slope and was not predicted by the fetch or shape. The vertical reduction of light was estimated on the basis of water colour. The main environmental factors from the two lakes were used in a discriminant analysis to predict the bottom type distribution of the littoral (r{sup 2} = 0.41). (orig.) 66 refs.

  6. Transcriptional factor PU.1 regulates decidual C1q expression in early pregnancy in human

    Directory of Open Access Journals (Sweden)

    Priyaa Madhukaran Raj

    2015-02-01

    Full Text Available C1q is the first recognition subcomponent of the complement classical pathway, which in addition to being synthesized in the liver, is also expressed by macrophages and dendritic cells. Trophoblast invasion during early placentation results in accumulation of debris that triggers the complement system. Hence, both early and late components of the classical pathway are widely distributed in the placenta and decidua. In addition, C1q has recently been shown to significantly contribute to feto-maternal tolerance, trophoblast migration, and spiral artery remodeling, although the exact mechanism remains unknown. Pregnancy in mice, genetically deficient in C1q, mirrors symptoms similar to that of human preeclampsia. Thus, regulated complement activation has been proposed as an essential requirement for normal successful pregnancy. Little is known about the molecular pathways that regulate C1q expression in pregnancy. PU.1, an Ets-family transcription factor, is required for the development of hematopoietic myeloid lineage immune cells, and its expression is tissue- specific. Recently, PU.1 has been shown to regulate C1q gene expression in dendritic cells and macrophages. Here, we have examined if PU.1 transcription factor regulates decidual C1q expression. We used immune-histochemical analysis, PCR and immunostaining to localize and study the gene expression of PU.1 transcription factor in early human decidua. PU.1 was highly expressed at gene and protein level in early human decidual cells including trophoblast and stromal cells. Surprisingly, nuclear as well as cytoplasmic PU.1 expression was observed. Decidual cells with predominantly nuclear PU.1 expression had higher C1q expression. It is likely that nuclear and cytoplasmic PU.1 localization has a role to play in early pregnancy via regulating C1q expression in the decidua during implantation.

  7. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    Science.gov (United States)

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis.

    Science.gov (United States)

    Aviner, Ranen; Hofmann, Sarah; Elman, Tamar; Shenoy, Anjana; Geiger, Tamar; Elkon, Ran; Ehrlich, Marcelo; Elroy-Stein, Orna

    2017-06-02

    Precise regulation of mRNA translation is critical for proper cell division, but little is known about the factors that mediate it. To identify mRNA-binding proteins that regulate translation during mitosis, we analyzed the composition of polysomes from interphase and mitotic cells using unbiased quantitative mass-spectrometry (LC-MS/MS). We found that mitotic polysomes are enriched with a subset of proteins involved in RNA processing, including alternative splicing and RNA export. To demonstrate that these may indeed be regulators of translation, we focused on heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a test case and confirmed that it is recruited to elongating ribosomes during mitosis. Then, using a combination of pulsed SILAC, metabolic labeling and ribosome profiling, we showed that knockdown of hnRNP C affects both global and transcript-specific translation rates and found that hnRNP C is specifically important for translation of mRNAs that encode ribosomal proteins and translation factors. Taken together, our results demonstrate how proteomic analysis of polysomes can provide insight into translation regulation under various cellular conditions of interest and suggest that hnRNP C facilitates production of translation machinery components during mitosis to provide daughter cells with the ability to efficiently synthesize proteins as they enter G1 phase. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    Science.gov (United States)

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  10. Regulation of Hepatic Stellate Cells and Fibrogenesis by Fibroblast Growth Factors

    Directory of Open Access Journals (Sweden)

    Justin D. Schumacher

    2016-01-01

    Full Text Available Fibroblast growth factors (FGFs are a family of growth factors critically involved in developmental, physiological, and pathological processes, including embryogenesis, angiogenesis, wound healing, and endocrine functions. In the liver, several FGFs are produced basally by hepatocytes and hepatic stellate cells (HSCs. Upon insult to the liver, expression of FGFs in HSCs is greatly upregulated, stimulating hepatocyte regeneration and growth. Various FGF isoforms have also been shown to directly induce HSC proliferation and activation thereby enabling autocrine and paracrine regulation of HSC function. Regulation of HSCs by the endocrine FGFs, namely, FGF15/19 and FGF21, has also recently been identified. With the ability to modulate HSC proliferation and transdifferentiation, targeting FGF signaling pathways constitutes a promising new therapeutic strategy to treat hepatic fibrosis.

  11. Noncanonical Effects of IRF9 in Intestinal Inflammation: More than Type I and Type III Interferons.

    Science.gov (United States)

    Rauch, Isabella; Rosebrock, Felix; Hainzl, Eva; Heider, Susanne; Majoros, Andrea; Wienerroither, Sebastian; Strobl, Birgit; Stockinger, Silvia; Kenner, Lukas; Müller, Mathias; Decker, Thomas

    2015-07-01

    The interferon (IFN)-stimulated gene factor 3 (ISGF3) transcription factor with its Stat1, Stat2, and interferon regulatory factor 9 (IRF9) subunits is employed for transcriptional responses downstream of receptors for type I interferons (IFN-I) that include IFN-α and IFN-β and type III interferons (IFN-III), also called IFN-λ. Here, we show in a murine model of dextran sodium sulfate (DSS)-induced colitis that IRF9 deficiency protects animals, whereas the combined loss of IFN-I and IFN-III receptors worsens their condition. We explain the different phenotypes by demonstrating a function of IRF9 in a noncanonical transcriptional complex with Stat1, apart from IFN-I and IFN-III signaling. Together, Stat1 and IRF9 produce a proinflammatory activity that overrides the benefits of the IFN-III response on intestinal epithelial cells. Our results further suggest that the CXCL10 chemokine gene is an important mediator of this proinflammatory activity. We thus establish IFN-λ as a potentially anticolitogenic cytokine and propose an important role for IRF9 as a component of noncanonical Stat complexes in the development of colitis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Affective Biases and Heuristics in Decision Making : Emotion regulation as a factor for decision making competence

    OpenAIRE

    Hagman, William

    2013-01-01

    Stanovich and West (2008) explored if measures of cognitive ability ignored some important aspects of thinking itself, namely that cognitive ability alone is not enough to generally prevent biased thinking. In this thesis a series of decision making (DM) tasks is tested to see if emotion regulation (ER) is a factor for the decision process and therefore should be a measured in decision making competence. A set of DM tasks was compiled involving both affective and cognitive dimensions. 400 par...

  13. Key factors regulating the mass delivery of macromolecules to model cell membranes

    DEFF Research Database (Denmark)

    Campbell, Richard A.; Watkins, Erik B.; Jagalski, Vivien

    2014-01-01

    We show that both gravity and electrostatics are key factors regulating interactions between model cell membranes and self-assembled liquid crystalline aggregates of dendrimers and phospholipids. The system is a proxy for the trafficking of reservoirs of therapeutic drugs to cell membranes for slow...... of the aggregates to activate endocytosis pathways on specific cell types is discussed in the context of targeted drug delivery applications....

  14. Retinal expression, regulation, and functional bioactivity of prostacyclin-stimulating factor

    OpenAIRE

    Hata, Yasuaki; Clermont, Allen Charles; Yamauchi, Teruaki; Pierce, Eric Adam; Suzuma, Izumi; Kagokawa, Hiroyuki; Yoshikawa, Hiroshi; Robinson, Gregory S.; Ishibashi, Tatsuro; Hashimoto, Toshihiko; Umeda, Fumio; Bursell, Sven E.; Aiello, Lloyd Paul

    2000-01-01

    Prostacyclin-stimulating factor (PSF) acts on vascular endothelial cells to stimulate the synthesis of the vasodilatory molecule prostacyclin (PGI2). We have examined the expression, regulation, and hemodynamic bioactivity of PSF both in whole retina and in cultured cells derived from this tissue. PSF was expressed in all retinal cell types examined in vitro, but immunohistochemical analysis revealed PSF mainly associated with retinal vessels. PSF expression was constitutive in retinal pericy...

  15. Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica

    OpenAIRE

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    2017-01-01

    ABSTRACT Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors...

  16. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms

    Directory of Open Access Journals (Sweden)

    Simona-Adriana Manea

    2015-08-01

    Full Text Available NADPH oxidases (Nox represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS. Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases.

  17. The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Matthijs, Michiel; Fabris, Michele; Obata, Toshihiro; Foubert, Imogen; Franco-Zorrilla, José Manuel; Solano, Roberto; Fernie, Alisdair R; Vyverman, Wim; Goossens, Alain

    2017-06-01

    Diatoms are amongst the most important marine microalgae in terms of biomass, but little is known concerning the molecular mechanisms that regulate their versatile metabolism. Here, the pennate diatom Phaeodactylum tricornutum was studied at the metabolite and transcriptome level during nitrogen starvation and following imposition of three other stresses that impede growth. The coordinated upregulation of the tricarboxylic acid (TCA) cycle during the nitrogen stress response was the most striking observation. Through co-expression analysis and DNA binding assays, the transcription factor bZIP14 was identified as a regulator of the TCA cycle, also beyond the nitrogen starvation response, namely in diurnal regulation. Accordingly, metabolic and transcriptional shifts were observed upon overexpression of bZIP14 in transformed P. tricornutum cells. Our data indicate that the TCA cycle is a tightly regulated and important hub for carbon reallocation in the diatom cell during nutrient starvation and that bZIP14 is a conserved regulator of this cycle. © 2017 The Authors.

  18. Daughter-specific transcription factors regulate cell size control in budding yeast.

    Science.gov (United States)

    Di Talia, Stefano; Wang, Hongyin; Skotheim, Jan M; Rosebrock, Adam P; Futcher, Bruce; Cross, Frederick R

    2009-10-01

    In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle.

  19. Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast

    Science.gov (United States)

    Di Talia, Stefano; Wang, Hongyin; Skotheim, Jan M.; Rosebrock, Adam P.; Futcher, Bruce; Cross, Frederick R.

    2009-01-01

    In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle. PMID:19841732

  20. Daughter-specific transcription factors regulate cell size control in budding yeast.

    Directory of Open Access Journals (Sweden)

    Stefano Di Talia

    2009-10-01

    Full Text Available In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle.

  1. Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors.

    Science.gov (United States)

    Comba, Andrea; Lin, Yi-Hui; Eynard, Aldo Renato; Valentich, Mirta Ana; Fernandez-Zapico, Martín Ernesto; Pasqualini, Marìa Eugenia

    2011-12-01

    This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases, cyclooxygenases, and cytochrome P-450, seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator-activated receptors or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C) and other transcription factors (nuclear factor kappa B and sterol regulatory element binding protein). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer and provide insight into the development of new therapeutic strategies for a better management of whole body lipid metabolism.

  2. Regulation of angiogenesis in human skeletal muscle with specific focus on pro- angiogenic and angiostatic factors

    DEFF Research Database (Denmark)

    Høier, Birgitte

    It is well established that acute exercise promotes an angiogenic response and that a period of exercise training results in capillary growth. Skeletal muscle angiogenesis is a complex process that requires a coordinated interplay of multiple factors and compounds to ensure proper vascular function....... The angiogenic process is initiated through changes in mechanical and/or metabolic factors during exercise and when exercise is repeated these stimuli may result in capillary growth if needed. The present PhD thesis is based on six studies in which the regulation of angiogenesis in skeletal muscle...... was studied in peripheral arterial disease. Vascular endothelial growth factor (VEGF) is the most important factor in exercise-induced angiogenesis and is located primarily in muscle cells but also in endothelial cells, pericytes, and in the extracellular matrix. VEGF protein secretion to the interstitium...

  3. The Hv NAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Rung, Jesper Henrik; Gregersen, Per Langkjaer

    2007-01-01

    Pathogens induce the expression of many genes encoding plant transcription factors, though specific knowledge of the biological function of individual transcription factors remains scarce. NAC transcription factors are encoded in plants by a gene family with proposed functions in both abiotic...... and biotic stress adaptation, as well as in developmental processes. In this paper, we provide convincing evidence that a barley NAC transcription factor has a direct role in regulating basal defence. The gene transcript was isolated by differential display from barley leaves infected with the biotrophic...... powdery mildew fungus, Blumeria graminis f.sp. hordei (Bgh). The full-length cDNA clone was obtained using 5'-RACE and termed HvNAC6, due to its high similarity to the rice homologue, OsNAC6. Gene silencing of HvNAC6 during Bgh inoculation compromises penetration resistance in barley epidermal cells...

  4. Protamine sulfate down-regulates thrombin generation by inhibiting factor V activation.

    LENUS (Irish Health Repository)

    Ni Ainle, Fionnuala

    2009-08-20

    Protamine sulfate is a positively charged polypeptide widely used to reverse heparin-induced anticoagulation. Paradoxically, prospective randomized trials have shown that protamine administration for heparin neutralization is associated with increased bleeding, particularly after cardiothoracic surgery with cardiopulmonary bypass. The molecular mechanism(s) through which protamine mediates this anticoagulant effect has not been defined. In vivo administration of pharmacologic doses of protamine to BALB\\/c mice significantly reduced plasma thrombin generation and prolonged tail-bleeding time (from 120 to 199 seconds). Similarly, in pooled normal human plasma, protamine caused significant dose-dependent prolongations of both prothrombin time and activated partial thromboplastin time. Protamine also markedly attenuated tissue factor-initiated thrombin generation in human plasma, causing a significant decrease in endogenous thrombin potential (41% +\\/- 7%). As expected, low-dose protamine effectively reversed the anticoagulant activity of unfractionated heparin in plasma. However, elevated protamine concentrations were associated with progressive dose-dependent reduction in thrombin generation. To assess the mechanism by which protamine mediates down-regulation of thrombin generation, the effect of protamine on factor V activation was assessed. Protamine was found to significantly reduce the rate of factor V activation by both thrombin and factor Xa. Protamine mediates its anticoagulant activity in plasma by down-regulation of thrombin generation via a novel mechanism, specifically inhibition of factor V activation.

  5. Type I Interferon in the Pathogenesis of Lupus

    Science.gov (United States)

    Crow, Mary K.

    2014-01-01

    Investigations of patients with systemic lupus erythematosus (SLE) have applied insights from studies of the innate immune response to define type I interferon (IFN-I), with IFN-α the dominant mediator, as central to the pathogenesis of this prototype systemic autoimmune disease. Genetic association data identify regulators of nucleic acid degradation and components of TLR-independent, endosomal TLR-dependent, and IFN-I signaling pathways as contributors to lupus disease susceptibility. Together with a gene expression signature characterized by IFNI-induced gene transcripts in lupus blood and tissue, those data support the conclusion that many of the immunologic and pathologic features of this disease are a consequence of a persistent self-directed immune reaction driven by IFN-I and mimicking a sustained anti-virus response. This expanding knowledge of the role of IFN-I and the innate immune response suggests candidate therapeutic targets that are being tested in lupus patients. PMID:24907379

  6. IRF3 and type I interferons fuel a fatal response to myocardial infarction.

    Science.gov (United States)

    King, Kevin R; Aguirre, Aaron D; Ye, Yu-Xiang; Sun, Yuan; Roh, Jason D; Ng, Richard P; Kohler, Rainer H; Arlauckas, Sean P; Iwamoto, Yoshiko; Savol, Andrej; Sadreyev, Ruslan I; Kelly, Mark; Fitzgibbons, Timothy P; Fitzgerald, Katherine A; Mitchison, Timothy; Libby, Peter; Nahrendorf, Matthias; Weissleder, Ralph

    2017-12-01

    Interferon regulatory factor 3 (IRF3) and type I interferons (IFNs) protect against infections and cancer, but excessive IRF3 activation and type I IFN production cause autoinflammatory conditions such as Aicardi-Goutières syndrome and STING-associated vasculopathy of infancy (SAVI). Myocardial infarction (MI) elicits inflammation, but the dominant molecular drivers of MI-associated inflammation remain unclear. Here we show that ischemic cell death and uptake of cell debris by macrophages in the heart fuel a fatal response to MI by activating IRF3 and type I IFN production. In mice, single-cell RNA-seq analysis of 4,215 leukocytes isolated from infarcted and non-infarcted hearts showed that MI provokes activation of an IRF3-interferon axis in a distinct population of interferon-inducible cells (IFNICs) that were classified as cardiac macrophages. Mice genetically deficient in cyclic GMP-AMP synthase (cGAS), its adaptor STING, IRF3, or the type I IFN receptor IFNAR exhibited impaired interferon-stimulated gene (ISG) expression and, in the case of mice deficient in IRF3 or IFNAR, improved survival after MI as compared to controls. Interruption of IRF3-dependent signaling resulted in decreased cardiac expression of inflammatory cytokines and chemokines and decreased inflammatory cell infiltration of the heart, as well as in attenuated ventricular dilation and improved cardiac function. Similarly, treatment of mice with an IFNAR-neutralizing antibody after MI ablated the interferon response and improved left ventricular dysfunction and survival. These results identify IRF3 and the type I IFN response as a potential therapeutic target for post-MI cardioprotection.

  7. EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors.

    Science.gov (United States)

    Hui, Tianqian; A, Peng; Zhao, Yuan; Yang, Jing; Ye, Ling; Wang, Chenglin

    2018-01-01

    Pulpitis is a multi-factorial disease that could be caused by complex interactions between genetics, epigenetics and environmental factors. We aimed to evaluate the role of Enhancer of Zeste Homolog 2 (EZH2) in the inflammatory response of human dental pulp cells (HDPCs) and dental pulp tissues. The expressions of inflammatory cytokines in HDPCs treated by EZH2 complex or EZH2 siRNA with or without rhTNF-α were examined by quantitative real-time polymerase chain reaction (q-PCR). The levels of secreted inflammatory cytokines including IL-6, IL-8, IL-15, CCL2 and CXCL12 in culture supernatants were measured by Luminex assay. In rat pulpitis model, the effects of EZH2 on dental pulp tissues were verified by histology. We invested the mechanisms of the effect of EZH2 on the inflammatory factors by ChIP assay. EZH2 down-regulation inhibited the expression of inflammatory factors, including IL-6, IL-8, IL-15, CCL2 and CXCL12 in HDPCs. EZH2 complex promoted the expression and secretion of these inflammatory factors in HDPCs, while EZH2 silencing could attenuate the promotion of inflammatory factors that were induced by rhTNF-α. In pulpitis models of rats, EZH2 down-regulation inhibited the inflammatory process of dental pulp while EZH2 complex showed no significant facilitation of pulpal inflammation. In addition, EZH2 could bind on the promoters of IL-6, IL-8 and CCL2, but not IL-15 and CXCL12, to affect the transcription of these proinflammatory cytokines. In HDPCs, EZH2 could induce inflammation, while EZH2 down-regulation could attenuate the inflammatory responses. EZH2 plays an important role in this inflammatory process of dental pulp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A type I interferon signature characterizes chronic antibody-mediated rejection in kidney transplantation.

    Science.gov (United States)

    Rascio, Federica; Pontrelli, Paola; Accetturo, Matteo; Oranger, Annarita; Gigante, Margherita; Castellano, Giuseppe; Gigante, Maddalena; Zito, Anna; Zaza, Gianluigi; Lupo, Antonio; Ranieri, Elena; Stallone, Giovanni; Gesualdo, Loreto; Grandaliano, Giuseppe

    2015-09-01

    Chronic antibody-mediated rejection (CAMR) represents the main cause of kidney graft loss. To uncover the molecular mechanisms underlying this condition, we characterized the molecular signature of peripheral blood mononuclear cells (PBMCs) and, separately, of CD4(+) T lymphocytes isolated from CAMR patients, compared to kidney transplant recipients with normal graft function and histology. We enrolled 29 patients with biopsy-proven CAMR, 29 stable transplant recipients (controls), and 8 transplant recipients with clinical and histological evidence of interstitial fibrosis/tubular atrophy. Messenger RNA and microRNA profiling of PBMCs and CD4(+) T lymphocytes was performed using Agilent microarrays in eight randomly selected patients per group from CAMR and control subjects. Results were evaluated statistically and by functional pathway analysis (Ingenuity Pathway Analysis) and validated in the remaining subjects. In PBMCs, 45 genes were differentially expressed between the two groups, most of which were up-regulated in CAMR and were involved in type I interferon signalling. In the same patients, 16 microRNAs were down-regulated in CAMR subjects compared to controls: four were predicted modulators of six mRNAs identified in the transcriptional analysis. In silico functional analysis supported the involvement of type I interferon signalling. To further confirm this result, we investigated the transcriptomic profiles of CD4(+) T lymphocytes in an independent group of patients, observing that the activation of type I interferon signalling was a specific hallmark of CAMR. In addition, in CAMR patients, we detected a reduction of circulating BDCA2(+) dendritic cells, the natural type I interferon-producing cells, and their recruitment into the graft along with increased expression of MXA, a type I interferon-induced protein, at the tubulointerstitial and vascular level. Finally, interferon alpha mRNA expression was significantly increased in CAMR compared to control

  9. Interferon-γ gene polymorphisms at +874T/A loci associated with response to treatment with hepatitis C virus

    Directory of Open Access Journals (Sweden)

    Hosein Norozian

    2016-02-01

    Full Text Available Background: Hepatitis C virus (HCV is a worldwide health problem, which associated with cirrhosis and hepatocellular carcinoma. Interferon-α and Ribavirin are only acceptable treatment regimen for these patients. These regimen are effective only on 50% of the patients. The aim of this study was to evaluate the response to treatment with interferon gamma gene polymorphism in patients with hepatitis C. Materials and Methods: In this study, a cross - sectional study, response or lack of response to treatment in 78 patients treated with interferon gamma gene polymorphism were studied at Shiraz Namazi Hospital from 2011-2012 . DNA samples extract by salt (salting out and interferon gamma gene polymorphism (+874T/A IFN–gamma was evaluate with ARMS-PCR technique. Data were analyzed using EPI Info2000 and SPSS 16 software (chi-square test. Results: Results showed that 39 patients (50% out of 78 studied patients had TT alleles, 11 patients (1.14% had AA alleles and 28 patients (9.39% had TA alleles. 49 patients (62.82% responded to treatment. TT genotype and allele frequencies between the studied groups showed significant differencey (P=0.002. Conclusion: Interferon gamma is a key cytokine in the immune response against hepatitis C. Polymorphism in the interferon-gamma gene is (+874T/AIFN–gamma One of the most important factors interferes with treatment response in hepatitis C patients.

  10. Cyt toxin expression reveals an inverse regulation of insect and plant virulence factors of Dickeya dadantii.

    Science.gov (United States)

    Costechareyre, Denis; Dridi, Bedis; Rahbé, Yvan; Condemine, Guy

    2010-12-01

    The plant pathogenic bacteria Dickeya dadantii is also a pathogen of the pea aphid Acyrthosiphon pisum. The genome of the bacteria contains four cyt genes, encoding homologues of Bacillus thuringiensis Cyt toxins, which are involved in its pathogenicity to insects. We show here that these genes are transcribed as an operon, and we determined the conditions necessary for their expression. Their expression is induced at high temperature and at an osmolarity equivalent to that found in the plant phloem sap. The regulators of cyt genes have also been identified: their expression is repressed by H-NS and VfmE and activated by PecS. These genes are already known to regulate plant virulence factors, but in an opposite way. When tested in a virulence assay by ingestion, the pecS mutant was almost non-pathogenic while hns and vfmE mutants behaved in the same way as the wild-type strain. Mutants of other regulators of plant virulence, GacA, OmpR and PhoP, that do not control Cyt toxin production, also showed reduced pathogenicity. In an assay by injection of bacteria, the gacA strain was less pathogenic but, surprisingly, the pecS mutant was slightly more virulent. These results show that Cyt toxins are not the only virulence factors required to kill aphids, and that these factors act at different stages of the infection. Moreover, their production is controlled by general virulence regulators known for their role in plant virulence. This integration could indicate that virulence towards insects is a normal mode of life for D. dadantii. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. The epigenetic regulation of stem cell factors in hepatic stellate cells.

    Science.gov (United States)

    Reister, Sven; Kordes, Claus; Sawitza, Iris; Häussinger, Dieter

    2011-10-01

    The epigenetic regulation by DNA methylation is an important mechanism to control the expression of stem cell factors as demonstrated in tumor cells. It was recently shown that hepatic stellate cells (HSC) express stem/progenitor cell factors and have a differentiation potential. The aim of this work was to investigate if the expression of stem cell markers is regulated by DNA methylation during activation of rat HSC. It was found that CD133, Notch1, and Notch3 are regulated via DNA methylation in HSC, whereas Nestin shows no DNA methylation in HSC and other undifferentiated cells such as embryonic stem cells and umbilical cord blood stem cells from rats. In contrast to this, DNA methylation controls Nestin expression in differentiated cells like hepatocytes and the hepatoma cell line H4IIE. Demethylation by 5-Aza-2-deoxycytidine was sufficient to induce Nestin in H4IIE cells. In quiescent stellate cells and embryonic stem cells, the Nestin expression was suppressed by histone H3 methylation at lysine 9, which is another epigenetic mechanism. Apart from the known induction of Nestin in cultured HSC, this intermediate filament protein was also induced after partial hepatectomy, indicating activation of HSC during liver regeneration. Taken together, this study demonstrates for the first time that the expression of stem cell-associated factors such as CD133, Notch1, and Notch3 is controlled by DNA methylation in HSC. The regulation of Nestin by DNA methylation seems to be restricted to differentiated cells, whereas undifferentiated cells use different epigenetic mechanisms such as histone H3 methylation to control Nestin expression.

  12. Oromucosal Administration of Interferon to Humans

    Directory of Open Access Journals (Sweden)

    Manfred W. Beilharz

    2010-01-01

    Full Text Available The prevailing dogma is that, to be systemically effective, interferon-alpha (IFNα must be administered in sufficiently high doses to yield functional blood concentrations. Such an approach to IFNa therapy has proven effective in some instances, but high-dose parenteral IFNα therapy has the disadvantage of causing significant adverse events. Mounting evidence suggests that IFNα delivered into the oral cavity in low doses interacts with the oral mucosa in a unique manner to induce systemic host defense mechanisms without IFNα actually entering the circulation, thus reducing the potential for toxic side effects. A better understanding of the applications and potential benefits of this treatment modality are under active investigation. This paper provides a review of the relevant literature on the clinical use of the oromucosal route of administration of interferon, with an emphasis on the treatment of influenza.

  13. Protein-protein interactions in the regulation of WRKY transcription factors.

    Science.gov (United States)

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  14. Zyxin regulates migration of renal epithelial cells through activation of hepatocyte nuclear factor-1β.

    Science.gov (United States)

    Choi, Yun-Hee; McNally, Brian T; Igarashi, Peter

    2013-07-01

    Hepatocyte nuclear factor-1β (HNF-1β) is an epithelial tissue-specific transcription factor that regulates gene expression in the kidney, liver, pancreas, intestine, and other organs. Mutations of HNF-1β in humans produce renal cysts and congenital kidney anomalies. Here, we identify the LIM-domain protein zyxin as a novel binding partner of HNF-1β in renal epithelial cells. Zyxin shuttles to the nucleus where it colocalizes with HNF-1β. Immunoprecipitation of zyxin in leptomycin B-treated cells results in coprecipitation of HNF-1β. The protein interaction requires the second LIM domain of zyxin and two distinct domains of HNF-1β. Overexpression of zyxin stimulates the transcriptional activity of HNF-1β, whereas small interfering RNA silencing of zyxin inhibits HNF-1β-dependent transcription. Epidermal growth factor (EGF) induces translocation of zyxin into the nucleus and stimulates HNF-1β-dependent promoter activity. The EGF-mediated nuclear translocation of zyxin requires activation of Akt. Expression of dominant-negative mutant HNF-1β, knockdown of zyxin, or inhibition of Akt inhibits EGF-stimulated cell migration. These findings reveal a novel pathway by which extracellular signals are transmitted to the nucleus to regulate the activity of a transcription factor that is essential for renal epithelial differentiation.

  15. [Regulations of sickness certification as a factor for increased health care utilization in Germany].

    Science.gov (United States)

    Herrmann, Wolfram J; Haarmann, Alexander; Bærheim, Anders

    2015-01-01

    In Germany, utilization of ambulatory health care is high compared to other countries. Classical models of health care utilization cannot sufficiently explain these differences. The aim of this study was to explore relevant factors which can explain the higher health care utilization in Germany. In this article, we focus on regulations regarding sickness certification as a potential factor. An explorative qualitative study design. We conducted episodic interviews with 20 patients in Germany and 20 patients in Norway and participant observation in four primary care practices each. Additionally, we conducted a context analysis of relevant health care system related factors which emerged during the study. Qualitative data analysis was done by thematic coding in the framework of grounded theory. The need for a sickness certificate was an important reason for encounter in Germany, especially regarding minor illnesses. Sickness certification is a societal topic. GPs play a double role regarding sickness certification, both as the patients' advocate and as an expert witness for social security services. In Norway, longer periods of self-administered sickness certification and more differentiated possibilities of sickness certification have been introduced successfully. Our results point to regulations regarding sickness certification as a relevant factor for higher health care utilization in Germany. In pilot studies, the effect of extended self-certification of sickness and part-time sickness certification should be further assessed. Copyright © 2015. Published by Elsevier GmbH.

  16. Human factor H-related protein 2 (CFHR2 regulates complement activation.

    Directory of Open Access Journals (Sweden)

    Hannes U Eberhardt

    Full Text Available Mutations and deletions within the human CFHR gene cluster on chromosome 1 are associated with diseases, such as dense deposit disease, CFHR nephropathy or age-related macular degeneration. Resulting mutant CFHR proteins can affect complement regulation. Here we identify human CFHR2 as a novel alternative pathway complement regulator that inhibits the C3 alternative pathway convertase and terminal pathway assembly. CFHR2 is composed of four short consensus repeat domains (SCRs. Two CFHR2 molecules form a dimer through their N-terminal SCRs, and each of the two C-terminal ends can bind C3b. C3b bound CFHR2 still allows C3 convertase formation but the CFHR2 bound convertases do not cleave the substrate C3. Interestingly CFHR2 hardly competes off factor H from C3b. Thus CFHR2 likely acts in concert with factor H, as CFHR2 inhibits convertases while simultaneously allowing factor H assisted degradation by factor I.

  17. Transcriptional regulators of legume-rhizobia symbiosis: nuclear factors Ys and GRAS are two for tango.

    Science.gov (United States)

    Rípodas, Carolina; Clúa, Joaquín; Battaglia, Marina; Baudin, Maël; Niebel, Andreas; Zanetti, María Eugenia; Blanco, Flavio

    2014-01-01

    Transcription factors are DNA binding proteins that regulate gene expression. The nitrogen fixing symbiosis established between legume plants and soil bacteria is a complex interaction, in which plants need to integrate signals derived from the symbiont and the surrounding environment to initiate the developmental program of nodule organogenesis and the infection process. Several transcription factors that play critical roles in these processes have been reported in the past decade, including proteins of the GRAS and NF-Y families. Recently, we reported the characterization of a new GRAS domain containing-protein that interacts with a member of the C subunit of the NF-Y family, which plays an important role in nodule development and the progression of bacterial infection during the symbiotic interaction. The connection between transcription factors of these families highlights the significance of multimeric complexes in the fabulous capacity of plants to integrate and respond to multiple environmental stimuli.

  18. Age-dependent regulation of ERF-VII transcription factor activity in Arabidopsis thaliana.

    Science.gov (United States)

    Giuntoli, Beatrice; Shukla, Vinay; Maggiorelli, Federica; Giorgi, Federico M; Lombardi, Lara; Perata, Pierdomenico; Licausi, Francesco

    2017-10-01

    The Group VII Ethylene Responsive Factors (ERFs-VII) RAP2.2 and RAP2.12 have been mainly characterized with regard to their contribution as activators of fermentation in plants. However, transcriptional changes measured in conditions that stabilize these transcription factors exceed the mere activation of this biochemical pathway, implying additional roles performed by the ERF-VIIs in other processes. We evaluated gene expression in transgenic Arabidopsis lines expressing a stabilized form of RAP2.12, or hampered in ERF-VII activity, and identified genes affected by this transcriptional regulator and its homologs, including some involved in oxidative stress response, which are not universally induced under anaerobic conditions. The contribution of the ERF-VIIs in regulating this set of genes in response to chemically induced or submergence-stimulated mitochondria malfunctioning was found to depend on the plant developmental stage. A similar age-dependent mechanism also restrained ERF-VII activity upon the core-hypoxic genes, independently of the N-end rule pathway, which is accounted for the control of the anaerobic response. To conclude, this study shed new light on a dual role of ERF-VII proteins under submergence: as positive regulators of the hypoxic response and as repressors of oxidative-stress related genes, depending on the developmental stage at which plants are challenged by stress conditions. © 2017 John Wiley & Sons Ltd.

  19. Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation.

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2011-07-01

    Full Text Available Hypoxia-inducible factor (HIF is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance.

  20. Hypoxia-Inducible Factor Directs POMC Gene to Mediate Hypothalamic Glucose Sensing and Energy Balance Regulation

    Science.gov (United States)

    Zhang, Hai; Zhang, Guo; Gonzalez, Frank J.; Park, Sung-min; Cai, Dongsheng

    2011-01-01

    Hypoxia-inducible factor (HIF) is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance. PMID:21814490

  1. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    International Nuclear Information System (INIS)

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim

    2014-01-01

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations

  2. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    Science.gov (United States)

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  3. Nerve growth factor regulates neurolymphatic remodeling during corneal inflammation and resolution.

    Directory of Open Access Journals (Sweden)

    Darci M Fink

    Full Text Available The cellular and physiologic mechanisms that regulate the resolution of inflammation remain poorly defined despite their widespread importance in improving inflammatory disease outcomes. We studied the resolution of two cardinal signs of inflammation-pain and swelling-by investigating molecular mechanisms that regulate neural and lymphatic vessel remodeling during the resolution of corneal inflammation. A mouse model of corneal inflammation and wound recovery was developed to study this process in vivo. Administration of nerve growth factor (NGF increased pain sensation and inhibited neural remodeling and lymphatic vessel regression processes during wound recovery. A complementary in vivo approach, the corneal micropocket assay, revealed that NGF-laden pellets stimulated lymphangiogenesis and increased protein levels of VEGF-C. Adult human dermal lymphatic endothelial cells did not express canonical NGF receptors TrkA and p75NTR or activate downstream MAPK- or Akt-pathway effectors in the presence of NGF, although NGF treatment increased their migratory and tubulogenesis capacities in vitro. Blockade of the VEGF-R2/R3 signaling pathway ablated NGF-mediated lymphangiogenesis in vivo. These findings suggest a hierarchical relationship with NGF functioning upstream of the VEGF family members, particularly VEGF-C, to stimulate lymphangiogenesis. Taken together, these studies show that NGF stimulates lymphangiogenesis and that NGF may act as a pathogenic factor that negatively regulates the normal neural and lymphatic vascular remodeling events that accompany wound recovery.

  4. The E2F-DP1 Transcription Factor Complex Regulates Centriole Duplication in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jacqueline G. Miller

    2016-03-01

    Full Text Available Centrioles play critical roles in the organization of microtubule-based structures, from the mitotic spindle to cilia and flagella. In order to properly execute their various functions, centrioles are subjected to stringent copy number control. Central to this control mechanism is a precise duplication event that takes place during S phase of the cell cycle and involves the assembly of a single daughter centriole in association with each mother centriole . Recent studies have revealed that posttranslational control of the master regulator Plk4/ZYG-1 kinase and its downstream effector SAS-6 is key to ensuring production of a single daughter centriole. In contrast, relatively little is known about how centriole duplication is regulated at a transcriptional level. Here we show that the transcription factor complex EFL-1-DPL-1 both positively and negatively controls centriole duplication in the Caenorhabditis elegans embryo. Specifically, we find that down regulation of EFL-1-DPL-1 can restore centriole duplication in a zyg-1 hypomorphic mutant and that suppression of the zyg-1 mutant phenotype is accompanied by an increase in SAS-6 protein levels. Further, we find evidence that EFL-1-DPL-1 promotes the transcription of zyg-1 and other centriole duplication genes. Our results provide evidence that in a single tissue type, EFL-1-DPL-1 sets the balance between positive and negative regulators of centriole assembly and thus may be part of a homeostatic mechanism that governs centriole assembly.

  5. Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation.

    Science.gov (United States)

    Chao, Zhe; Zheng, Xin-Li; Sun, Rui-Ping; Liu, Hai-Long; Huang, Li-Li; Cao, Zong-Xi; Deng, Chang-Yan; Wang, Feng

    2016-07-01

    Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation.

  6. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm.

    Science.gov (United States)

    Wang, Jie-Chen; Xu, Heng; Zhu, Ying; Liu, Qiao-Quan; Cai, Xiu-Ling

    2013-08-01

    Starch composition and the amount in endosperm, both of which contribute dramatically to seed yield, cooking quality, and taste in cereals, are determined by a series of complex biochemical reactions. However, the mechanism regulating starch biosynthesis in cereal seeds is not well understood. This study showed that OsbZIP58, a bZIP transcription factor, is a key transcriptional regulator controlling starch synthesis in rice endosperm. OsbZIP58 was expressed mainly in endosperm during active starch synthesis. osbzip58 null mutants displayed abnormal seed morphology with altered starch accumulation in the white belly region and decreased amounts of total starch and amylose. Moreover, osbzip58 had a higher proportion of short chains and a lower proportion of intermediate chains of amylopectin. Furthermore, OsbZIP58 was shown to bind directly to the promoters of six starch-synthesizing genes, OsAGPL3, Wx, OsSSIIa, SBE1, OsBEIIb, and ISA2, and to regulate their expression. These findings indicate that OsbZIP58 functions as a key regulator of starch synthesis in rice seeds and provide new insights into seed quality control.

  7. CAMKII and calcineurin regulate the lifespan of Caenorhabditis elegans through the FOXO transcription factor DAF-16.

    Science.gov (United States)

    Tao, Li; Xie, Qi; Ding, Yue-He; Li, Shang-Tong; Peng, Shengyi; Zhang, Yan-Ping; Tan, Dan; Yuan, Zengqiang; Dong, Meng-Qiu

    2013-06-25

    The insulin-like signaling pathway maintains a relatively short wild-type lifespan in Caenorhabditis elegans by phosphorylating and inactivating DAF-16, the ortholog of the FOXO transcription factors of mammalian cells. DAF-16 is phosphorylated by the AKT kinases, preventing its nuclear translocation. Calcineurin (PP2B phosphatase) also limits the lifespan of C. elegans, but the mechanism through which it does so is unknown. Herein, we show that TAX-6•CNB-1 and UNC-43, the C. elegans Calcineurin and Ca(2+)/calmodulin-dependent kinase type II (CAMKII) orthologs, respectively, also regulate lifespan through DAF-16. Moreover, UNC-43 regulates DAF-16 in response to various stress conditions, including starvation, heat or oxidative stress, and cooperatively contributes to lifespan regulation by insulin signaling. However, unlike insulin signaling, UNC-43 phosphorylates and activates DAF-16, thus promoting its nuclear localization. The phosphorylation of DAF-16 at S286 by UNC-43 is removed by TAX-6•CNB-1, leading to DAF-16 inactivation. Mammalian FOXO3 is also regulated by CAMKIIA and Calcineurin. DOI:http://dx.doi.org/10.7554/eLife.00518.001.

  8. Evasion of interferon responses by Ebola and Marburg viruses.

    Science.gov (United States)

    Basler, Christopher F; Amarasinghe, Gaya K

    2009-09-01

    The filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), cause frequently lethal viral hemorrhagic fever. These infections induce potent cytokine production, yet these host responses fail to prevent systemic virus replication. Consistent with this, filoviruses have been found to encode proteins VP35 and VP24 that block host interferon (IFN)-alpha/beta production and inhibit signaling downstream of the IFN-alpha/beta and the IFN-gamma receptors, respectively. VP35, which is a component of the viral nucleocapsid complex and plays an essential role in viral RNA synthesis, acts as a pseudosubstrate for the cellular kinases IKK-epsilon and TBK-1, which phosphorylate and activate interferon regulatory factor 3 (IRF-3) and interferon regulatory factor 7 (IRF-7). VP35 also promotes SUMOylation of IRF-7, repressing IFN gene transcription. In addition, VP35 is a dsRNA-binding protein, and mutations that disrupt dsRNA binding impair VP35 IFN-antagonist activity while leaving its RNA replication functions intact. The phenotypes of recombinant EBOV bearing mutant VP35s unable to inhibit IFN-alpha/beta demonstrate that VP35 IFN-antagonist activity is critical for full virulence of these lethal pathogens. The structure of the VP35 dsRNA-binding domain, which has recently become available, is expected to provide insight into how VP35 IFN-antagonist and dsRNA-binding functions are related. The EBOV VP24 protein inhibits IFN signaling through an interaction with select host cell karyopherin-alpha proteins, preventing the nuclear import of otherwise activated STAT1. It remains to be determined to what extent VP24 may also modulate the nuclear import of other host cell factors and to what extent this may influence the outcome of infection. Notably, the Marburg virus VP24 protein does not detectably block STAT1 nuclear import, and, unlike EBOV, MARV infection inhibits STAT1 and STAT2 phosphorylation. Thus, despite their similarities, there are fundamental differences by which

  9. Regulation of the yeast metabolic cycle by transcription factors with periodic activities

    Directory of Open Access Journals (Sweden)

    Pellegrini Matteo

    2011-10-01

    Full Text Available Abstract Background When growing budding yeast under continuous, nutrient-limited conditions, over half of yeast genes exhibit periodic expression patterns. Periodicity can also be observed in respiration, in the timing of cell division, as well as in various metabolite levels. Knowing the transcription factors involved in the yeast metabolic cycle is helpful for determining the cascade of regulatory events that cause these patterns. Results Transcription factor activities were estimated by linear regression using time series and genome-wide transcription factor binding data. Time-translation matrices were estimated using least squares and were used to model the interactions between the most significant transcription factors. The top transcription factors have functions involving respiration, cell cycle events, amino acid metabolism and glycolysis. Key regulators of transitions between phases of the yeast metabolic cycle appear to be Hap1, Hap4, Gcn4, Msn4, Swi6 and Adr1. Conclusions Analysis of the phases at which transcription factor activities peak supports previous findings suggesting that the various cellular functions occur during specific phases of the yeast metabolic cycle.

  10. SIRT1 is a positive regulator of the master osteoblast transcription factor, RUNX2.

    Directory of Open Access Journals (Sweden)

    Kayvan Zainabadi

    Full Text Available Activation of SIRT1 has previously been shown to protect mice against osteoporosis through yet ill-defined mechanisms. In this study, we outline a role for SIRT1 as a positive regulator of the master osteoblast transcription factor, RUNX2. We find that ex vivo deletion of sirt1 leads to decreased expression of runx2 downstream targets, but not runx2 itself, along with reduced osteoblast differentiation. Reciprocally, treatment with a SIRT1 agonist promotes osteoblast differentiation, as well as the expression of runx2 downstream targets, in a SIRT1-dependent manner. Biochemical and luciferase reporter assays demonstrate that SIRT1 interacts with and promotes the transactivation potential of RUNX2. Intriguingly, mice treated with the SIRT1 agonist, resveratrol, show similar increases in the expression of RUNX2 targets in their calvaria (bone tissue, validating SIRT1 as a physiologically relevant regulator of RUNX2.

  11. Regulation of hepatitis B virus ENI enhancer activity by hepatocyte-enriched transcription factor HNF3.

    Science.gov (United States)

    Chen, M; Hieng, S; Qian, X; Costa, R; Ou, J H

    1994-11-15

    Hepatitis B virus (HBV) ENI enhancer can activate the expression of HBV and non-HBV genes in a liver-specific manner. By performing the electrophoretic mobility-shift assays, we demonstrated that the three related, liver-enriched, transcription factors, HNF3 alpha, HNF3 beta, and HNF3 gamma could all bind to the 2c site of HBV ENI enhancer. Mutations introduced in the 2c site to abolish the binding by HNF3 reduced the enhancer activity approximately 15-fold. Moreover, expression of HNF3 antisense sequences to suppress the expression of HNF3 in Huh-7 hepatoma cells led to reduction of the ENI enhancer activity. These results indicate that HNF3 positively regulates the ENI enhancer activity and this regulation is most likely mediated through the 2c site. The requirement of HNF3 for the ENI enhancer activity could explain the liver specificity of this enhancer element.

  12. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis.

    Directory of Open Access Journals (Sweden)

    Amber J Marty

    2015-06-01

    Full Text Available In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0-48 hours, gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C and during the phase transition to mold (22°C. This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition.

  13. Regulation of coagulation factor XI expression by microRNAs in the human liver.

    Directory of Open Access Journals (Sweden)

    Salam Salloum-Asfar

    Full Text Available High levels of factor XI (FXI increase the risk of thromboembolic disease. However, the genetic and environmental factors regulating FXI expression are still largely unknown. The aim of our study was to evaluate the regulation of FXI by microRNAs (miRNAs in the human liver. In silico prediction yielded four miRNA candidates that might regulate FXI expression. HepG2 cells were transfected with miR-181a-5p, miR-23a-3p, miR-16-5p and miR-195-5p. We used mir-494, which was not predicted to bind to F11, as a negative control. Only miR-181a-5p caused a significant decrease both in FXI protein and F11 mRNA levels. In addition, transfection with a miR-181a-5p inhibitor in PLC/PRF/5 hepatic cells increased both the levels of F11 mRNA and extracellular FXI. Luciferase assays in human colon cancer cells deficient for Dicer (HCT-DK demonstrated a direct interaction between miR-181a-5p and 3'untranslated region of F11. Additionally, F11 mRNA levels were inversely and significantly correlated with miR-181a-5p levels in 114 healthy livers, but not with miR-494. This study demonstrates that FXI expression is directly regulated by a specific miRNA, miR-181a-5p, in the human liver. Future studies are necessary to further investigate the potential consequences of miRNA dysregulation in pathologies involving FXI.

  14. Interferon-Stimulated Genes Are Transcriptionally Repressed by PR in Breast Cancer.

    Science.gov (United States)

    Walter, Katherine R; Goodman, Merit L; Singhal, Hari; Hall, Jade A; Li, Tianbao; Holloran, Sean M; Trinca, Gloria M; Gibson, Katelin A; Jin, Victor X; Greene, Geoffrey L; Hagan, Christy R

    2017-10-01

    The progesterone receptor (PR) regulates transcriptional programs that drive proliferation, survival, and stem cell phenotypes. Although the role of native progesterone in the development of breast cancer remains controversial, PR clearly alters the transcriptome in breast tumors. This study identifies a class of genes, Interferon (IFN)-stimulated genes (ISGs), potently downregulated by ligand-activated PR which have not been previously shown to be regulated by PR. Progestin-dependent transcriptional repression of ISGs was observed in breast cancer cell line models and human breast tumors. Ligand-independent regulation of ISGs was also observed, as basal transcript levels were markedly higher in cells with PR knockdown. PR repressed ISG transcription in response to IFN treatment, the canonical mechanism through which these genes are activated. Liganded PR is robustly recruited to enhancer regions of ISGs, and ISG transcriptional repression is dependent upon PR's ability to bind DNA. In response to PR activation, key regulatory transcription factors that are required for IFN-activated ISG transcription, STAT2 and IRF9, exhibit impaired recruitment to ISG promoter regions, correlating with PR/ligand-dependent ISG transcriptional repression. IFN activation is a critical early step in nascent tumor recognition and destruction through immunosurveillance. As the large majority of breast tumors are PR positive at the time of diagnosis, PR-dependent downregulation of IFN signaling may be a mechanism through which early PR-positive breast tumors evade the immune system and develop into clinically relevant tumors. Implications: This study highlights a novel transcriptional mechanism through which PR drives breast cancer development and potentially evades the immune system. Mol Cancer Res; 15(10); 1331-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Overlapping, Additive and Counterregulatory Effects of Type II and I Interferons on Myeloid Dendritic Cell Functions

    Directory of Open Access Journals (Sweden)

    Loredana Frasca

    2011-01-01

    Full Text Available Dendritic cells (DCs are central player in immunity by bridging the innate and adaptive arms of the immune system (IS. Interferons (IFNs are one of the most important factors that regulate both innate and adaptive immunity too. Thus, the understanding of how type II and I IFNs modulate the immune-regulatory properties of DCs is a central issue in immunology. In this paper, we will address this point in the light of the most recent literature, also highlighting the controversial data reported in the field. According to the wide literature available, type II as well as type I IFNs appear, at the same time, to collaborate, to induce additive effects or overlapping functions, as well as to counterregulate each one's effects on DC biology and, in general, the immune response. The knowledge of these effects has important therapeutic implications in the treatment of infectious/autoimmune diseases and cancer and indicates strategies for using IFNs as vaccine adjuvants and in DC-based immune therapeutic approaches.

  16. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  17. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    International Nuclear Information System (INIS)

    Caiazzo, Massimiliano; Colucci-D'Amato, Luca; Esposito, Maria T.; Parisi, Silvia; Stifani, Stefano; Ramirez, Francesco; Porzio, Umberto di

    2010-01-01

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  18. Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands

    International Nuclear Information System (INIS)

    Vonderhaar, B.K.; Tang, E.; Lyster, R.R.; Nascimento, M.C.

    1986-01-01

    The specific binding of iodinated epidermal growth factor ([ 125 I]iodo-EGF) to membranes prepared from the mammary glands and spontaneous breast tumors of euthyroid and hypothyroid mice was measured in order to determine whether thyroid hormones regulate the EGF receptor levels in vivo. Membranes from hypothyroid mammary glands of mice at various developmental ages bound 50-65% less EGF than those of age-matched euthyroid controls. Treatment of hypothyroid mice with L-T4 before killing restored binding to the euthyroid control level. Spontaneous breast tumors arising in hypothyroid mice also bound 30-40% less EGF than tumors from euthyroid animals even after in vitro desaturation of the membranes of endogenous growth factors with 3 M MgCl2 treatment. The decrease in binding in hypothyroid membranes was due to a decrease in the number of binding sites, not to a change in affinity of the growth factor for its receptor, as determined by Scatchard analysis of the binding data. Both euthyroid and hypothyroid membranes bound EGF primarily to a single class of high affinity sites [dissociation constant (Kd) = 0.7-1.8 nM]. Euthyroid membranes bound 28.4 +/- (SE) 0.6 fmol/mg protein, whereas hypothyroid membranes bound 15.5 +/- 1.0 fmol/mg protein. These data indicate that EGF receptor levels in normal mammary glands and spontaneous breast tumors in mice are subject to regulation by thyroid status

  19. hCG-dependent regulation of angiogenic factors in human granulosa lutein cells.

    Science.gov (United States)

    Phan, B; Rakenius, A; Pietrowski, D; Bettendorf, H; Keck, C; Herr, D

    2006-07-01

    As prerequisite for development and maintenance of many diseases angiogenesis is of particular interest in medicine. Pathologic angiogenesis takes place in chronic arthritis, collagen diseases, arteriosclerosis, retinopathy associated with diabetes, and particularly in cancers. However, angiogenesis as a physiological process regularly occurs in the ovary. After ovulation the corpus luteum is formed by rapid vascularization of initially avascular granulosa lutein cell tissue. This process is regulated by gonadotropic hormones. In order to gain further insights in the regulatory mechanisms of angiogenesis in the ovary, we investigated these mechanisms in cell culture of human granulosa lutein cells. In particular, we determined the expression and production of several angiogenic factors including tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), Leptin, connective tissue growth factor (CTGF), meningioma-associated complimentary DNA (Mac25), basic fibroblast growth factor (bFGF), and Midkine. In addition, we showed that human chorionic gonadotropin (hCG) has distinct effects on their expression and production. hCG enhances the expression and production of TIMP-1, whereas it downregulates the expression of CTGF and Mac25. Furthermore it decreases the expression of Leptin. Our results provide evidence that hCG determines growth and development of the corpus luteum by mediating angiogenic pathways in human granulosa lutein cells. Hence we describe a further approach to understand the regulation of angiogenesis in the ovary.

  20. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Massimiliano, E-mail: caiazzo@igb.cnr.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy); Istituto di diagnosi e cura ' Hermitage Capodimonte,' 80131 Naples (Italy); Colucci-D' Amato, Luca, E-mail: luca.colucci@unina2.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy); Dipartimento di Scienze della Vita, Seconda Universita di Napoli, 81100 Caserta (Italy); Esposito, Maria T., E-mail: maria_teresa.esposito@kcl.ac.uk [CEINGE Biotecnologie Avanzate, 80145 Naples (Italy); Parisi, Silvia, E-mail: parisi@ceinge.unina.it [CEINGE Biotecnologie Avanzate, 80145 Naples (Italy); Stifani, Stefano, E-mail: stefano.stifani@mcgill.ca [Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4 (Canada); Ramirez, Francesco, E-mail: francesco.ramirez@mssm.edu [Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029 (United States); Porzio, Umberto di, E-mail: diporzio@igb.cnr.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy)

    2010-08-15

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  1. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling

    Directory of Open Access Journals (Sweden)

    Inês Gomes Ferreira

    2018-02-01

    Full Text Available Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1 by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2 through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3 by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.

  2. Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain

    Directory of Open Access Journals (Sweden)

    Michalina Respondek

    2015-12-01

    Full Text Available Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC, which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  3. Factor H C-Terminal Domains Are Critical for Regulation of Platelet/Granulocyte Aggregate Formation

    Directory of Open Access Journals (Sweden)

    Adam Z. Blatt

    2017-11-01

    Full Text Available Platelet/granulocyte aggregates (PGAs increase thromboinflammation in the vasculature, and PGA formation is tightly controlled by the complement alternative pathway (AP negative regulator, Factor H (FH. Mutations in FH are associated with the prothrombotic disease atypical hemolytic uremic syndrome (aHUS, yet it is unknown whether increased PGA formation contributes to the thrombosis seen in patients with aHUS. Here, flow cytometry assays were used to evaluate the effects of aHUS-related mutations on FH regulation of PGA formation and characterize the mechanism. Utilizing recombinant fragments of FH spanning the entire length of the protein, we mapped the regions of FH most critical for limiting AP activity on the surface of isolated human platelets and neutrophils, as well as the regions most critical for regulating PGA formation in human whole blood stimulated with thrombin receptor-activating peptide (TRAP. FH domains 19–20 were the most critical for limiting AP activity on platelets, neutrophils, and at the platelet/granulocyte interface. The role of FH in PGA formation was attributed to its ability to regulate AP-mediated C5a generation. AHUS-related mutations in domains 19–20 caused differential effects on control of PGA formation and AP activity on platelets and neutrophils. Our data indicate FH C-terminal domains are key for regulating PGA formation, thus increased FH protection may have a beneficial impact on diseases characterized by increased PGA formation, such as cardiovascular disease. Additionally, aHUS-related mutations in domains 19–20 have varying effects on control of TRAP-mediated PGA formation, suggesting that some, but not all, aHUS-related mutations may cause increased PGA formation that contributes to excessive thrombosis in patients with aHUS.

  4. Tumor necrosis factor-alpha regulates the Hypocretin system via mRNA degradation and ubiquitination.

    Science.gov (United States)

    Zhan, Shuqin; Cai, Guo-Qiang; Zheng, Anni; Wang, Yuping; Jia, Jianping; Fang, Haotian; Yang, Youfeng; Hu, Meng; Ding, Qiang

    2011-04-01

    Recent studies recognize that Hypocretin system (also known as Orexin) plays a critical role in sleep/wake disorders and feeding behaviors. However, little is known about the regulation of the Hypocretin system. It is also known that tumor necrosis factor alpha (TNF-α) is involved in the regulation of sleep/wake cycle. Here, we test our hypothesis that the Hypocretin system is regulated by TNF-α. Prepro-Hypocretin and Hypocretin receptor 2 (HcrtR2) can be detected at a very low level in rat B35 neuroblastoma cells. In response to TNF-α, Prepro-Hypocretin mRNA and protein levels are down-regulated, and also HcrtR2 protein level is down-regulated in B35 cells. To investigate the mechanism, exogenous rat Prepro-Hypocretin and rat HcrtR2 were overexpressed in B35 cells. In response to TNF-α, protein and mRNA of Prepro-Hypocretin are significantly decreased (by 93% and 94%, respectively), and the half-life of Prepro-Hypocretin mRNA is decreased in a time- and dose-dependent manner. The level of HcrtR2 mRNA level is not affected by TNF-α treatment; however, HcrtR2 protein level is significantly decreased (by 86%) through ubiquitination in B35 cells treated with TNF-α. Downregulation of cellular inhibitor of apoptosis protein-1 and -2 (cIAP-1 and -2) abrogates the HcrtR2 ubiquitination induced by TNF-α. The control green fluorescent protein (GFP) expression is not affected by TNF-α treatment. These studies demonstrate that TNF-α can impair the function of the Hypocretin system by reducing the levels of both Prepro-Hypocretin and HcrtR2. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  6. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Directory of Open Access Journals (Sweden)

    Jenkins Dafyd J

    2008-01-01

    Full Text Available Abstract Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic

  7. B-GATA transcription factors - insights into their structure, regulation and role in plant development

    Directory of Open Access Journals (Sweden)

    Claus eSchwechheimer

    2015-02-01

    Full Text Available GATA transcription factors are evolutionarily conserved transcriptional regulators that recognize promoter elements with a G-A-T-A core sequence. In comparison to animal genomes, the GATA transcription factor family in plants is comparatively large with approximately 30 members. In spite of a long-standing interest of plant molecular biologists in GATA factors, only research conducted in the last years has led to reliable insights into their functions during plant development. Here, we review the current knowledge on B-GATAs, one of four GATA factor subfamilies from Arabidopsis thaliana. We show that B-GATAs can be subdivided based on structural features and their biological function into family members with a C-terminal LLM- (leucine-leucine-methionine domain or an N-terminal HAN- (HANABA TARANU domain. The paralogous GNC (GATA, NITRATE-INDUCIBLE, CARBON-METABOLISM INVOLVED and CGA1/GNL (CYTOKININ-INDUCED GATA1/GNC-LIKE are introduced as LLM-domain containing B-GATAs from Arabidopsis that control germination, greening, senescence and flowering time downstream from several growth regulatory signals including light and the hormones gibberellin, auxin, and cytokinin. Arabidopsis HAN and its monocot-specific paralogs from rice (NECK LEAF1, maize (TASSEL SHEATH1, and barley (THIRD OUTER GLUME are HAN-domain-containing B-GATAs with a predominant role in embryo development and floral development. We also review GATA23, a regulator of lateral root initiation from Arabidopsis, that is closely related to GNC and GNL but has a degenerate LLM-domain that is seemingly specific for the Brassicaceae family. The Brassicaceae-specific GATA23 together with the above-mentioned monocot-specific HAN-domain GATAs provide evidence that neofunctionalization of the B-GATAs was used during plant evolution to expand the functional repertoire of these transcription factors.

  8. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic β-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  9. Identification of trans-acting factors regulating SamDC expression in Oryza sativa

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Supratim, E-mail: supratim_genetics@yahoo.co.in [Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 (United States); Division of Plant Biology, Bose Institute, Kolkata (India); Roychoudhury, Aryadeep [Post Graduate Department of Biotechnology, St. Xavier' s College (Autonomous), 30, Mother Teresa Sarani, Kolkata - 700016, West Bengal (India); Sengupta, Dibyendu N. [Division of Plant Biology, Bose Institute, Kolkata (India)

    2014-03-07

    Highlights: • Identification of cis elements responsible for SamDC expression by in silico analysis. • qPCR analysis of SamDC expression to abiotic and biotic stress treatments. • Detection of SamDC regulators using identified cis-elements as probe by EMSA. • Southwestern Blot analysis to predict the size of the trans-acting factors. - Abstract: Abiotic stress affects the growth and productivity of crop plants; to cope with the adverse environmental conditions, plants have developed efficient defense machinery comprising of antioxidants like phenolics and flavonoids, and osmolytes like polyamines. SamDC is a key enzyme in the polyamine biosynthesis pathway in plants. In our present communication we have done in silico analysis of the promoter region of SamDC to look for the presence of different cis-regulatory elements contributing to its expression. Based on the presence of different cis-regulatory elements we completed comparative analysis of SamDC gene expression in rice lamina of IR-29 and Nonabokra by qPCR in response to the abiotic stress treatments of salinity, drought, cold and the biotic stress treatments of ABA and light. Additionally, to explore the role of the cis-regulatory elements in regulating the expression of SamDC gene in plants we comparatively analyzed the binding of rice nuclear proteins prepared from IR-29 and Nonabokra undergoing various stress treatments. The intensity of the complex formed was low and inducible in IR-29 in contrast to Nonabokra. Southwestern blot analysis helped in predicting the size of the trans-acting factors binding to these cis-elements. To our knowledge this is the first report on the comprehensive analysis of SamDC gene expression in rice and identification of the trans-acting factors regulating its expression.

  10. Identification of distal silencing elements in the murine interferon-A11 gene promoter.

    Science.gov (United States)

    Roffet, P; Lopez, S; Navarro, S; Bandu, M T; Coulombel, C; Vignal, M; Doly, J; Vodjdani, G

    1996-08-01

    The murine interferon-A11 (Mu IFN-A11) gene is a member of the IFN-A multigenic family. In mouse L929 cells, the weak response of the gene's promoter to viral induction is due to a combination of both a point mutation in the virus responsive element (VRE) and the presence of negatively regulating sequences surrounding the VRE. In the distal part of the promoter, the negatively acting E1E2 sequence was delimited. This sequence displays an inhibitory effect in either orientation or position on the inducibility of a virus-responsive heterologous promoter. It selectively represses VRE-dependent transcription but is not able to reduce the transcriptional activity of a VRE-lacking promoter. In a transient transfection assay, an E1E2-containing DNA competitor was able to derepress the native Mu IFN-A11 promoter. Specific nuclear factors bind to this sequence; thus the binding of trans-regulators participates in the repression of the Mu IFN-A11 gene. The E1E2 sequence contains an IFN regulatory factor (IRF)-binding site. Recombinant IRF2 binds this sequence and anti-IRF2 antibodies supershift a major complex formed with nuclear extracts. The protein composing the complex is 50 kDa in size, indicating the presence of IRF2 or antigenically related proteins in the complex. The Mu IFN-A11 gene is the first example within the murine IFN-A family, in which a distal promoter element has been identified that can negatively modulate the transcriptional response to viral induction.

  11. Interferon-Inducible CD169/Siglec1 Attenuates Anti-HIV-1 Effects of Alpha Interferon

    Science.gov (United States)

    Akiyama, Hisashi; Ramirez, Nora-Guadalupe Pina; Gibson, Gregory; Kline, Christopher; Watkins, Simon; Ambrose, Zandrea

    2017-01-01

    ABSTRACT A hallmark of human immunodeficiency virus type 1 (HIV-1) infection in vivo is chronic immune activation concomitant with type I interferon (IFN) production. Although type I IFN induces an antiviral state in many cell types, HIV-1 can replicate in vivo via mechanisms that have remained unclear. We have recently identified a type I IFN-inducible protein, CD169, as the HIV-1 attachment factor on dendritic cells (DCs) that can mediate robust infection of CD4+ T cells in trans. Since CD169 expression on macrophages is also induced by type I IFN, we hypothesized that type I IFN-inducible CD169 could facilitate productive HIV-1 infection in myeloid cells in cis and CD4+ T cells in trans and thus offset antiviral effects of type I IFN. In support of this hypothesis, infection of HIV-1 or murine leukemia virus Env (MLV-Env)-pseudotyped HIV-1 particles was enhanced in IFN-α-treated THP-1 monocytoid cells, and this enhancement was primarily dependent on CD169-mediated enhancement at the virus entry step, a phenomenon phenocopied in HIV-1 infections of IFN-α-treated primary monocyte-derived macrophages (MDMs). Furthermore, expression of CD169, a marker of type I IFN-induced immune activation in vivo, was enhanced in lymph nodes from pigtailed macaques infected with simian immunodeficiency virus (SIV) carrying HIV-1 reverse transcriptase (RT-SHIV), compared to uninfected macaques, and interestingly, there was extensive colocalization of p27gag and CD169, suggesting productive infection of CD169+ myeloid cells in vivo. While cell-free HIV-1 infection of IFN-α-treated CD4+ T cells was robustly decreased, initiation of infection in trans via coculture with CD169+ IFN-α-treated DCs restored infection, suggesting that HIV-1 exploits CD169 in cis and in trans to attenuate a type I IFN-induced antiviral state. IMPORTANCE HIV-1 infection in humans causes immune activation characterized by elevated levels of proinflammatory cytokines, including type I interferons (IFN

  12. McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple

    OpenAIRE

    Tian, Ji; Zhang, Jie; Han, Zhen-yun; Song, Ting-ting; Li, Jin-yan; Wang, Ya-ru; Yao, Yun-cong

    2017-01-01

    The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to th...

  13. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins....... In the present study the role of Ca2+/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca2+ chelator inhibited...

  14. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT[A,C,G...... abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  15. RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation.

    Science.gov (United States)

    Azmi, Peter; Seth, Arun

    2005-11-01

    Our laboratory has found that the 154aa RING finger protein 11 (RNF11), has modular domains and motifs including a RING-H2 finger domain, a PY motif, an ubiquitin interacting motif (UIM), a 14-3-3 binding sequence and an AKT phosphorylation site. RNF11 represents a unique protein with no other known immediate family members yet described. Comparative genetic analysis has shown that RNF11 is highly conserved throughout evolution. This may indicate a conserved and non-redundant role for the RNF11 protein. Molecular binding assays using RNF11 have shown that RNF11 has important roles in growth factor signalling, ubiquitination and transcriptional regulation. RNF11 has been shown to interact with HECT-type E3 ubiquitin ligases Nedd4, AIP4, Smurf1 and Smurf2, as well as with Cullin1, the core protein in the multi-subunit SCF E3 ubiquitin ligase complex. Work done in our laboratory has shown that RNF11 is capable of antagonizing Smurf2-mediated inhibition of TGFbeta signalling. Furthermore, RNF11 is capable of degrading AMSH, a positive regulator of both TGFbeta and EGFR signalling pathways. Recently, we have found that RNF11 can directly enhance TGFbeta signalling through a direct association with Smad4, the common signal transducer and transcription factor in the TGFbeta, BMP, and Activin pathways. Through its association with Smad4 and other transcription factors, RNF11 may have a role in direct transcriptional regulation. Our laboratory and others have found nearly 80 protein interactions for RNF11, placing RNF11 at the cross-roads of cell signalling and transcriptional regulation. RNF11 is highly expressed in breast tumours. Deregulation of RNF11 function may prove to be harmful to patient therapeutic outcomes. RNF11 may therefore provide a novel target for cancer therapeutics. The purpose of this review is to discuss the role of RNF11 in cell signalling and transcription factor modulation with special attention given to the ubiquitin-proteasomal pathway, TGFbeta

  16. Factors controlling streambed coverage of Didymosphenia geminata in two regulated streams in the Colorado Front Range

    OpenAIRE

    Miller, Matthew P.; McKnight, Diane M.; Cullis, James D.; Greene, Alicia; Vietti, Kristin; Liptzin, Daniel

    2009-01-01

    Didymosphenia geminata is a stalk-forming freshwater diatom which was historically found primarily in oligotrophic lakes and streams, but has recently become a nuisance species in many lotic systems worldwide. In the last 5–8 years, D. geminata has become established in Boulder Creek and South Boulder Creek, two regulated montane streams in the Front Range of the Colorado Rocky Mountains. Factors that may influence the growth of D. geminata were monitored during the summer of 2006. D. geminat...

  17. The E2F transcription factors: key regulators of cell proliferation

    DEFF Research Database (Denmark)

    Müller, H; Helin, K

    2000-01-01

    Ever since its discovery, the RB-1 gene and the corresponding protein, pRB, have been a focal point of cancer research. The isolation of E2F transcription factors provided the key to our current understanding of RB-1 function in the regulation of the cell cycle and in tumor suppression....... It is becoming more and more evident that the regulatory circuits governing the cell cycle are very complex and highly interlinked. Certain aspects of RB-1 function, for instance its role in differentiation, cannot be easily explained by the current models of pRB-E2F interaction. One reason is that pRB has...

  18. Regulation of eukaryotic elongation factor 1 alpha (eEF1A) by dynamic lysine methylation

    DEFF Research Database (Denmark)

    Jakobsson, Magnus E; Małecki, Jędrzej; Falnes, Pål Ø

    2018-01-01

    Lysine methylation is a frequent post-translational protein modification, which has been intensively studied in the case of histone proteins. Lysine methylations are also found on many non-histone proteins, and one prominent example is eukaryotic elongation factor 1 alpha (eEF1A). Besides its...... essential role in the protein synthesis machinery, a number of non-canonical functions have also been described for eEF1A, such as regulation of the actin cytoskeleton and the promotion of viral replication. The functional significance of the extensive lysine methylations on eEF1A, as well as the identity...

  19. Transcription factors involved in the regulation of natural killer cell development and function: an update

    Directory of Open Access Journals (Sweden)

    Martha Elia Luevano

    2012-10-01

    Full Text Available Natural Killer (NK cells belong to the innate immune system and are key effectors in the immune response against cancer and infection. Recent studies have contributed to the knowledge of events controlling NK cell fate. The use of knockout mice has enabled the discovery of key transcription factors (TFs essential for NK cell development and function. Yet, unwrapping the downstream targets of these TFs and their influence on NK cells remains a challenge. In this review we discuss the latest TFs described to be involved in the regulation of NK cell development and maturation.

  20. Key role of the kidney in the regulation of fibroblast growth factor 23

    DEFF Research Database (Denmark)

    Mace, Maria L; Gravesen, Eva; Hofman-Bang, Jacob

    2015-01-01

    was significantly increased in BNX rats. The rapid rise in FGF23 after BNX was independent of parathyroid hormone or FGF receptor signaling. No evidence of early stimulation of FGF23 gene expression in the bone was found. Furthermore, acute severe hyperphosphatemia or hypercalcemia had no impact on intact FGF23......High circulating levels of fibroblast growth factor 23 (FGF23) have been demonstrated in kidney failure, but mechanisms of this are not well understood. Here we examined the impact of the kidney on the early regulation of intact FGF23 in acute uremia as induced by bilateral or unilateral...

  1. Interferon Gamma in African Trypanosome Infections: Friends or Foes?

    Science.gov (United States)

    Wu, Hui; Liu, Gongguan; Shi, Meiqing

    2017-01-01

    African trypanosomes cause fatal infections in both humans and livestock. Interferon gamma (IFN-γ) plays an essential role in resistance to African trypanosomes. However, increasing evidence suggests that IFN-γ, when excessively synthesized, also induces immunopathology, enhancing susceptibility to the infection. Thus, production of IFN-γ must be tightly regulated during infections with African trypanosomes to ensure that a robust immune response is elicited without tissue destruction. Early studies have shown that secretion of IFN-γ is downregulated by interleukin 10 (IL-10). More recently, IL-27 has been identified as a negative regulator of IFN-γ production during African trypanosome infections. In this review, we discuss the current state of our understanding of the role of IFN-γ in African trypanosome infections. We have focused on the cellular source of IFN-γ, its beneficial and detrimental effects, and mechanisms involved in regulation of its production, highlighting some recent advances and offering some perspectives on future directions.

  2. Contact inhibition and interferon (IFN)-modulated gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kulesh, D.A.

    1986-01-01

    The relationship between cell morphology, proliferation and contact inhibition was studied in normal and malignant human cells which varied in their sensitivity to contact inhibition. Their ability to proliferate was examined under conditions where the cells were constrained into different shapes. Cell proliferation was quantitated by labeling indices, which were inferred by autoradiography, and by total cell counts. The normal cells (JHU-1, IMR-90) were dependent on cell shape for proliferation capability while the transformed cells (RT4, HT1080) were shape-dependent for proliferation. Interferon (IFN) induced shape-dependent proliferation and contact inhibition in the transformed cells when used at subantiproliferative concentrations. This ability of B-IFN to confer a level of proliferation control which is characteristic of normal fibroblasts suggests a possible relationship between gene expression mediated by IFN and those genes involved in the maintenance of regulated cell proliferation. To evaluate this possibility, cDNA libraries were constructed from IFN-treated and untreated HT1080 cells. The resulting 10 IFN-induced and 11 IFN-repressed sequences were then differentially rescreened using /sup 32/P-cDNA probes. This screening resulted in the identification of at least four cDNA sequences which appeared to be proliferation regulated as well as IFN-modulated. These cloned, regulated cDNA sequences were then used as /sup 32/P-labeled probes to study both the gene expression at the mRNA level employing Northern blotting and slot blotting techniques.

  3. Critical human-factors issues in nuclear-power regulation and a recommended comprehensive human-factors long-range plan. Executive summary

    International Nuclear Information System (INIS)

    Hopkins, C.O.; Snyder, H.L.; Price, H.E.; Hornick, R.J.; Mackie, R.R.; Smillie, R.J.; Sugarman, R.C.

    1982-08-01

    This comprehensive long-range human factors plan for nuclear reactor regulation was developed by a Study Group of the Human Factors Society, Inc. This Study Group was selected by the Executive Council of the Society to provide a balanced, experienced human factors perspective to the applications of human factors scientific and engineering knowledge to nuclear power generation. The report is presented in three volumes. Volume 1 contains an Executive Summary of the 18-month effort and its conclusions. Volume 2 summarizes all known nuclear-related human factors activities, evaluates these activities wherever adequate information is available, and describes the recommended long-range (10-year) plan for human factors in regulation. Volume 3 elaborates upon each of the human factors issues and areas of recommended human factors involvement contained in the plan, and discusses the logic that led to the recommendations

  4. Interferon synthesis in mouse peritoneal cells damaged by x irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Szolgay, E; T' alas, M

    1976-01-01

    NDV-induced interferon of peritoneal cells of irradiated (x-rays, 400 R) and control mice was investigated in vitro. Irradiation or treatment with hydroxyurea (10(-5) M) and mitomycin C (25 microng/ml) did not change interferon synthesis in spite of an 80 to 90% inhibition of 3H-thymidine incorporation. Increased doses of mitomycin C and treatment with actinomycin D and puromycin blocked interferon production. De novo interferon synthesis occurred in cells with damaged replicative activity of DNA caused by irradiation or by treatment with antimetabolites.

  5. Interferon lambda inhibits dengue virus replication in epithelial cells.

    Science.gov (United States)

    Palma-Ocampo, Helen K; Flores-Alonso, Juan C; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Flores-Mendoza, Lilian; Herrera-Camacho, Irma; Rosas-Murrieta, Nora H; Santos-López, Gerardo

    2015-09-28

    In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection. Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR. We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression. Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.

  6. Exposure to Pre- and Perinatal Risk Factors Partially Explains Mean Differences in Self-Regulation between Races.

    Science.gov (United States)

    Barnes, J C; Boutwell, Brian B; Miller, J Mitchell; DeShay, Rashaan A; Beaver, Kevin M; White, Norman

    2016-01-01

    To examine whether differential exposure to pre- and perinatal risk factors explained differences in levels of self-regulation between children of different races (White, Black, Hispanic, Asian, and Other). Multiple regression models based on data from the Early Childhood Longitudinal Study, Birth Cohort (n ≈ 9,850) were used to analyze the impact of pre- and perinatal risk factors on the development of self-regulation at age 2 years. Racial differences in levels of self-regulation were observed. Racial differences were also observed for 9 of the 12 pre-/perinatal risk factors. Multiple regression analyses revealed that a portion of the racial differences in self-regulation was explained by differential exposure to several of the pre-/perinatal risk factors. Specifically, maternal age at childbirth, gestational timing, and the family's socioeconomic status were significantly related to the child's level of self-regulation. These factors accounted for a statistically significant portion of the racial differences observed in self-regulation. The findings indicate racial differences in self-regulation may be, at least partially, explained by racial differences in exposure to pre- and perinatal risk factors.

  7. Exposure to Pre- and Perinatal Risk Factors Partially Explains Mean Differences in Self-Regulation between Races.

    Directory of Open Access Journals (Sweden)

    J C Barnes

    Full Text Available To examine whether differential exposure to pre- and perinatal risk factors explained differences in levels of self-regulation between children of different races (White, Black, Hispanic, Asian, and Other.Multiple regression models based on data from the Early Childhood Longitudinal Study, Birth Cohort (n ≈ 9,850 were used to analyze the impact of pre- and perinatal risk factors on the development of self-regulation at age 2 years.Racial differences in levels of self-regulation were observed. Racial differences were also observed for 9 of the 12 pre-/perinatal risk factors. Multiple regression analyses revealed that a portion of the racial differences in self-regulation was explained by differential exposure to several of the pre-/perinatal risk factors. Specifically, maternal age at childbirth, gestational timing, and the family's socioeconomic status were significantly related to the child's level of self-regulation. These factors accounted for a statistically significant portion of the racial differences observed in self-regulation.The findings indicate racial differences in self-regulation may be, at least partially, explained by racial differences in exposure to pre- and perinatal risk factors.

  8. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    DEFF Research Database (Denmark)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus

    2008-01-01

    kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from...... MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  9. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  10. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  11. McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple.

    Science.gov (United States)

    Tian, Ji; Zhang, Jie; Han, Zhen-Yun; Song, Ting-Ting; Li, Jin-Yan; Wang, Ya-Ru; Yao, Yun-Cong

    2017-03-03

    The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to their promoters, but to be only partially responsible for regulating PAs biosynthetic genes. In contrast, McMYB12b showed preferential binding to the promoters of PAs biosynthetic genes. Overexpression of McMYB12a and McMYB12b in tobacco (Nicotiana tabacum) altered the expression of flavonoid biosynthetic genes and promoted the accumulation of PAs and anthocyanins in tobacco petals. Conversely, transient silencing their expression in crabapple plants, using a conserved gene region, resulted in reduced PAs and anthocyanin production a green leaf phenotype. Meanwhile, transient overexpression of the two genes and silenced McMYB12s in apple (Malus domestica) fruit had a similar effect as overexpression in tobacco and silenced in crabapple. This study reveals a new mechanism for the coordinated regulation of PAs and anthocyanin accumulation in crabapple leaves, which depends on an auto-regulatory balance involving McMYB12a and McMYB12b expression.

  12. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency.

    Science.gov (United States)

    Liu, Wei; Li, Qiwei; Wang, Yi; Wu, Ting; Yang, Yafei; Zhang, Xinzhong; Han, Zhenhai; Xu, Xuefeng

    2017-09-23

    Ethylene regulates the plant's response to stress caused by iron (Fe) deficiency. However, specific roles of ERF proteins in response to Fe deficiency remain poorly understood. Here, we investigated the role of ERF72 in response to iron deficiency in Arabidopsis thaliana. In this study, the levels of the ethylene response factor AtERF72 increased in leaves and roots induced under the iron deficient conditions. erf72 mutant plants showed increased growth compared to wild type (WT) when grown in iron deficient medium for 5 d. erf72 mutants had increased root H + velocity and the ferric reductase activity, and increase in the expression of the iron deficiency response genes iron-regulated transporter 1 (IRT1) and H + -ATPase (HA2) levels in iron deficient conditions. Compared to WT plants, erf72 mutants retained healthy chloroplast structure with significantly higher Fe and Mg content, and decreased chlorophyll degradation gene pheophorbide a oxygenase (PAO) and chlorophyllase (CLH1) expression when grown in iron deficient media. Yeast one-hybrid analysis showed that ERF72 could directly bind to the promoter regions of iron deficiency responses genes IRT1, HA2 and CLH1. Based on our results, we suggest that ethylene released from plants under iron deficiency stress can activate the expression of ERF72, which responds to iron deficiency in the negative regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Strategies to regulate transcription factor-mediated gene positioning and interchromosomal clustering at the nuclear periphery.

    Science.gov (United States)

    Randise-Hinchliff, Carlo; Coukos, Robert; Sood, Varun; Sumner, Michael Chas; Zdraljevic, Stefan; Meldi Sholl, Lauren; Garvey Brickner, Donna; Ahmed, Sara; Watchmaker, Lauren; Brickner, Jason H

    2016-03-14

    In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales. © 2016 Randise-Hinchliff et al.

  14. TRX is up-regulated by fibroblast growth factor-2 in lung carcinoma.

    Science.gov (United States)

    Deng, Zheng-Hao; Cao, Hui-Qiu; Hu, Yong-Bin; Wen, Ji-Fang; Zhou, Jian-Hua

    2011-01-01

    We have previously shown that exogenous fibroblast growth factor-2 (FGF-2) inhibits apoptosis of the small-cell lung cancer (SCLC) cell line NCI-H446, but the underlying mechanism remains unknown. In this study, the protein profiles of FGF-2-treated and untreated NCI-H446 cells were determined by 2-D gel electrophoresis combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and bioinformatics. Differential expression analysis of the protein profiles after FGF-2 treatment identified a total of 24 protein spots, of which nine were up-regulated and 15 were down-regulated. Four proteins were identified by MALDI-TOF-MS: thioredoxin (TRX), visfatin, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) and Cu/Zn superoxide dismutase (CuZn-SOD). Western blotting revealed that TRX was up-regulated in NCI-H446 and A549 cells treated with FGF-2. Furthermore, immunohistochemical staining confirmed that both FGF-2 and TRX were overexpressed in lung cancer tissues and could be correlated with both lymph node metastasis and clinical stage. These data indicate that TRX may be involved in the FGF-2 signaling pathway. © 2010 The Authors. APMIS © 2010 APMIS.

  15. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation.

    Directory of Open Access Journals (Sweden)

    Gabriela Galicia-Vázquez

    Full Text Available Gene expression during muscle cell differentiation is tightly regulated at multiple levels, including translation initiation. The PI3K/mTOR signalling pathway exerts control over protein synthesis by regulating assembly of eukaryotic initiation factor (eIF 4F, a heterotrimeric complex that stimulates recruitment of ribosomes to mRNA templates. One of the subunits of eIF4F, eIF4A, supplies essential helicase function during this phase of translation. The presence of two cellular eIF4A isoforms, eIF4AI and eIF4AII, has long thought to impart equivalent functions to eIF4F. However, recent experiments have alluded to distinct activities between them. Herein, we characterize distinct regulatory mechanisms between the eIF4A isoforms during muscle cell differentiation. We find that eIF4AI levels decrease during differentiation whereas eIF4AII levels increase during myofiber formation in a MyoD-dependent manner. This study characterizes a previously undefined mechanism for eIF4AII regulation in differentiation and highlights functional differences between eIF4AI and eIF4AII. Finally, RNAi-mediated alterations in eIF4AI and eIF4AII levels indicate that the myogenic process can tolerate short term reductions in eIF4AI or eIF4AII levels, but not both.

  16. Akirin1 (Mighty), a novel promyogenic factor regulates muscle regeneration and cell chemotaxis

    Energy Technology Data Exchange (ETDEWEB)

    Salerno, Monica Senna; Dyer, Kelly; Bracegirdle, Jeremy; Platt, Leanne; Thomas, Mark; Siriett, Victoria [Functional Muscle Genomics, AgResearch, Hamilton (New Zealand); Kambadur, Ravi [Functional Muscle Genomics, AgResearch, Hamilton (New Zealand); School of Biological Sciences, Nanyang Technological University, Singapore (Singapore); Sharma, Mridula, E-mail: bchmridu@nus.edu.sg [Functional Muscle Genomics, AgResearch, Hamilton (New Zealand)

    2009-07-15

    Akirin1 (Mighty) is a downstream target gene of myostatin and has been shown to be a promyogenic factor. Although expressed in many tissues, akirin1 is negatively regulated by myostatin specifically in skeletal muscle tissue. In this manuscript we have characterized the possible function of akirin1 in postnatal muscle growth. Molecular and immunohistological analyses indicated that while low levels of akirin1 are associated with quiescent satellite cells (SC), higher levels of akirin1 are detected in activated proliferating SC indicating that akirin1 could be associated with satellite cell activation. In addition to SC, macrophages also express akirin1, and increased expression of akirin1 resulted in more efficient chemotaxis of both macrophages and myoblasts. Akirin1 appears to regulate chemotaxis of both macrophages and myoblasts by reorganising actin cytoskeleton, leading to more efficient lamellipodia formation via a PI3 kinase dependent pathway. Expression analysis during muscle regeneration also indicated that akirin1 expression is detected very early (day 2) in regenerating muscle, and expression gradually peaks to coincide the nascent myotube formation stage of muscle regeneration. Based on these results we propose that akirin1 could be acting as a transducer of early signals of muscle regeneration. Thus, we speculate that myostatin regulates key steps of muscle regeneration including chemotaxis of inflammatory cells, SC activation and migration through akirin1.

  17. Akirin1 (Mighty), a novel promyogenic factor regulates muscle regeneration and cell chemotaxis

    International Nuclear Information System (INIS)

    Salerno, Monica Senna; Dyer, Kelly; Bracegirdle, Jeremy; Platt, Leanne; Thomas, Mark; Siriett, Victoria; Kambadur, Ravi; Sharma, Mridula

    2009-01-01

    Akirin1 (Mighty) is a downstream target gene of myostatin and has been shown to be a promyogenic factor. Although expressed in many tissues, akirin1 is negatively regulated by myostatin specifically in skeletal muscle tissue. In this manuscript we have characterized the possible function of akirin1 in postnatal muscle growth. Molecular and immunohistological analyses indicated that while low levels of akirin1 are associated with quiescent satellite cells (SC), higher levels of akirin1 are detected in activated proliferating SC indicating that akirin1 could be associated with satellite cell activation. In addition to SC, macrophages also express akirin1, and increased expression of akirin1 resulted in more efficient chemotaxis of both macrophages and myoblasts. Akirin1 appears to regulate chemotaxis of both macrophages and myoblasts by reorganising actin cytoskeleton, leading to more efficient lamellipodia formation via a PI3 kinase dependent pathway. Expression analysis during muscle regeneration also indicated that akirin1 expression is detected very early (day 2) in regenerating muscle, and expression gradually peaks to coincide the nascent myotube formation stage of muscle regeneration. Based on these results we propose that akirin1 could be acting as a transducer of early signals of muscle regeneration. Thus, we speculate that myostatin regulates key steps of muscle regeneration including chemotaxis of inflammatory cells, SC activation and migration through akirin1.

  18. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression.

    Science.gov (United States)

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-05-02

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.

  19. Regulation of the Incorporation of Tissue Factor into Microparticles by Serine Phosphorylation of the Cytoplasmic Domain of Tissue Factor*

    Science.gov (United States)

    Collier, Mary E. W.; Ettelaie, Camille

    2011-01-01

    The mechanisms that regulate the incorporation and release of tissue factors (TFs) into cell-derived microparticles are as yet unidentified. In this study, we have explored the regulation of TF release into microparticles by the phosphorylation of serine residues within the cytoplasmic domain of TF. Wild-type and mutant forms of TF, containing alanine and aspartate substitutions at Ser253 and Ser258, were overexpressed in coronary artery and dermal microvascular endothelial cells and microparticle release stimulated with PAR2 agonist peptide (PAR2-AP). The release of TF antigen and activity was then monitored. In addition, the phosphorylation state of the two serine residues within the released microparticles and the cells was monitored for 150 min. The release of wild-type TF as procoagulant microparticles peaked at 90 min and declined thereafter in both cell types. The TF within these microparticles was phosphorylated at Ser253 but not at Ser258. Aspartate substitution of Ser253 resulted in rapid release of TF antigen but not activity, whereas TF release was reduced and delayed by alanine substitution of Ser253 or aspartate substitution of Ser258. Alanine substitution of Ser258 prolonged the release of TF following PAR2-AP activation. The release of TF was concurrent with phosphorylation of Ser253 and was followed by dephosphorylation at 120 min and phosphorylation of Ser258. We propose a sequential mechanism in which the phosphorylation of Ser253 through PAR2 activation results in the incorporation of TF into microparticles, simultaneously inducing Ser258 phosphorylation. Phosphorylation of Ser258 in turn promotes the dephosphorylation of Ser253 and suppresses the release of TF. PMID:21310953

  20. Interferon-¿ regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C.; Penkowa, Milena; Saez-Torres, I.

    2002-01-01

    Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress......Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress...

  1. Rice homeobox transcription factor HOX1a positively regulates gibberellin responses by directly suppressing EL1.

    Science.gov (United States)

    Wen, Bi-Qing; Xing, Mei-Qing; Zhang, Hua; Dai, Cheng; Xue, Hong-Wei

    2011-11-01

    Homeobox transcription factors are involved in various aspects of plant development, including maintenance of the biosynthesis and signaling pathways of different hormones. However, few direct targets of homeobox proteins have been identified. We here show that overexpression of rice homeobox gene HOX1a resulted in enhanced gibberellin (GA) response, indicating a positive effect of HOX1a in GA signaling. HOX1a is induced by GA and encodes a homeobox transcription factor with transcription repression activity. In addition, HOX1a suppresses the transcription of early flowering1 (EL1), a negative regulator of GA signaling, and further electrophoretic mobility shift assay and chromatin immunoprecipitation analysis revealed that HOX1a directly bound to the promoter region of EL1 to suppress its expression and stimulate GA signaling. These results demonstrate that HOX1a functions as a positive regulator of GA signaling by suppressing EL1, providing informative hints on the study of GA signaling. © 2011 Institute of Botany, Chinese Academy of Sciences.

  2. Energy Balance, Myostatin, and GILZ: Factors Regulating Adipocyte Differentiation in Belly and Bone

    Directory of Open Access Journals (Sweden)

    Xingming Shi

    2007-01-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPAR-γ belongs to the nuclear hormone receptor subfamily of transcription factors. PPARs are expressed in key target tissues such as liver, fat, and muscle and thus they play a major role in the regulation of energy balance. Because of PPAR-γ's role in energy balance, signals originating from the gut (e.g., GIP, fat (e.g., leptin, muscle (e.g., myostatin, or bone (e.g., GILZ can in turn modulate PPAR expression and/or function. Of the two PPAR-γ isoforms, PPAR-γ2 is the key regulator of adipogenesis and also plays a role in bone development. Activation of this receptor favors adipocyte differentiation of mesenchymal stem cells, while inhibition of PPAR-γ2 expression shifts the commitment towards the osteoblastogenic pathway. Clinically, activation of this receptor by antidiabetic agents of the thiazolidinedione class results in lower bone mass and increased fracture rates. We propose that inhibition of PPAR-γ2 expression in mesenchymal stem cells by use of some of the hormones/factors mentioned above may be a useful therapeutic strategy to favor bone formation.

  3. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts isolated from strictures in Crohn\\'s disease (CD) exhibit reduced responsiveness to stimulation with transforming growth factor (TGF) beta1. TGF-beta1, acting through the smad pathway, is critical to fibroblast-mediated intestinal fibrosis. The membrane glycoprotein, endoglin, is a negative regulator of TGF-beta1. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies of patients undergoing intestinal resection for CD strictures or from control patients. Endoglin expression was assessed using confocal microscopy, flow cytometry and western blot. The effect of small interfering (si) RNA-mediated knockdown and plasmid-mediated overexpression of endoglin on fibroblast responsiveness to TGF-beta1 was assessed by examining smad phosphorylation, smad binding element (SBE) promoter activity, connective tissue growth factor (CTGF) expression and ability to contract collagen. RESULTS: Crohn\\'s stricture fibroblasts expressed increased constitutive cell-surface and whole-cell endoglin relative to control cells. Endoglin co-localized with filamentous actin. Fibroblasts treated with siRNA directed against endoglin exhibited enhanced TGF-beta1-mediated smad-3 phosphorylation, and collagen contraction. Cells transfected with an endoglin plasmid did not respond to TGF-beta1 by exhibiting SBE promoter activity or producing CTGF. CONCLUSION: Fibroblasts from strictures in CD express increased constitutive endoglin. Endoglin is a negative regulator of TGF-beta1 signalling in the intestinal fibroblast, modulating smad-3 phosphorylation, SBE promoter activity, CTGF production and collagen contraction.

  4. Reaction of simple sterile sugar beet hybrids to regulated environmental factors for sugar yield

    Directory of Open Access Journals (Sweden)

    М. О. Корнєєва

    2014-03-01

    Full Text Available Sugar yield, an important indicator, is resulting from interaction of two components: the yield and sugar content, both they are controlled by polygenes, and influenced significantly by environment. A.V. Kilchevskyi and L.V. Hotyliova pointed to the fact that in breeding, contrary to evolution, stabilizing forms are dominated by driving ones, which determine the growth response to regulated factors and decreased resistance to non-regulated environmental factors [1]. A relevant breeding trend is to create the genotypes adequate with certain technologies, so to say «low input variety high input variety» i.e. varieties with low and high energy contribution to technology. From this perspective, selection of stable in their manifestation lines against the analyzing backgrounds has become an important element of the breeding process [2]. Home scientists, such as A.L. Mazmulov and M.S. Hrytsyk have contributed greatly to the development and application of the agro-backgrounds [3, 4].

  5. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function

    Science.gov (United States)

    McNamee, Eóin N.; Johnson, Darlynn Korns; Homann, Dirk

    2014-01-01

    Oxygen is a molecule that is central to cellular respiration and viability, yet there are multiple physiologic and pathological contexts in which cells experience conditions of insufficient oxygen availability, a state known as hypoxia. Given the metabolic challenges of a low oxygen environment, hypoxia elicits a range of adaptive responses at the cellular, tissue, and systemic level to promote continued survival and function. Within this context, T lymphocytes are a highly migratory cell type of the adaptive immune system that frequently encounters a wide range of oxygen tensions in both health and disease. It is now clear that oxygen availability regulates T cell differentiation and function, a response orchestrated in large part by the hypoxia-inducible factor transcription factors. Here, we discuss the physiologic scope of hypoxia and hypoxic signaling, the contribution of these pathways in regulating T cell biology, and current gaps in our understanding. Finally, we discuss how emerging therapies that modulate the hypoxic response may offer new modalities to alter T cell function and the outcome of acute and chronic pathologies. PMID:22961658

  6. The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors

    International Nuclear Information System (INIS)

    Kwon, Oh Hyung; Lee, Chong-Kil; Lee, Young Ik; Paik, Sang-Gi; Lee, Hyun-Jun

    2005-01-01

    Osteoclasts are bone resorbing cells of hematopoietic origin. The hematopoietic transcription factor PU.1 is critical for osteoclastogenesis; however, the molecular mechanisms of PU.1-regulated osteoclastogenesis have not been explored. Here, we present evidence that the receptor activator of nuclear factor κB (RANK) gene that has been shown to be crucial for osteoclastogenesis is a transcriptional target of PU.1. The PU.1 -/- progenitor cells failed to express the RANK gene and reconstitution of PU.1 in these cells induced RANK expression. Treatment of the PU.1 reconstituted cells with M-CSF and RANKL further augmented the RANK gene expression. To explore the regulatory mechanism of the RANK gene expression by PU.1, we have cloned the human RANK promoter. Transient transfection assays have revealed that the 2.2-kb RANK promoter was functional in a monocyte line RAW264.7, whereas co-transfection of PU.1 transactivated the RANK promoter in HeLa cells. Taken together, these results suggest that PU.1 regulates the RANK gene transcription and this may represent one of the key roles of PU.1 in osteoclast differentiation

  7. The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia.

    Science.gov (United States)

    Sim, Jingwei; Cowburn, Andrew S; Palazon, Asis; Madhu, Basetti; Tyrakis, Petros A; Macías, David; Bargiela, David M; Pietsch, Sandra; Gralla, Michael; Evans, Colin E; Kittipassorn, Thaksaon; Chey, Yu C J; Branco, Cristina M; Rundqvist, Helene; Peet, Daniel J; Johnson, Randall S

    2018-04-03

    Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Sulfate as a pivotal factor in regulation of Serratia sp. strain S2B pigment biosynthesis.

    Science.gov (United States)

    Rastegari, Banafsheh; Karbalaei-Heidari, Hamid Reza

    2016-10-01

    In the present work, we investigated the prodiginine family as secondary metabolite members. Bacterial strain S2B, with the ability to produce red pigment, was isolated from the Sarcheshmeh copper mine in Iran. 16S rDNA gene sequencing revealed that the strain was placed in the Serratia genus. Pigment production was optimized using low-cost culture medium and the effects of various physicochemical factors were studied via statistical approaches. Purification of the produced pigment by silica gel column chromatography showed a strong red pigment fraction and a weaker orange band. Mass spectrometry, FT-IR spectroscopy and (1)H NMR analysis revealed that the red pigment was prodigiosin and the orange band was a prodigiosin-like analog, with molecular weights of 323 and 317 Da, respectively. Genotoxicity and cytotoxicity studies confirmed their membership in the prodiginine family. Analysis of the production pattern of the pigments in the presence of different concentrations of ammonium salts revealed the role of sulfate as an important factor in regulation of the pigment biosynthesis pathway. Overall, the data showed that regulation of the pigment biosynthesis pathway in Serratia sp. strain S2B was affected by inorganic micronutrients, particularly the sulfate ions. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Elisabetta Mattei

    2007-08-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  10. Staphylococcus aureus hyaluronidase is a CodY-regulated virulence factor.

    Science.gov (United States)

    Ibberson, Carolyn B; Jones, Crystal L; Singh, Shweta; Wise, Matthew C; Hart, Mark E; Zurawski, Daniel V; Horswill, Alexander R

    2014-10-01

    Staphylococcus aureus is a Gram-positive pathogen that causes a diverse range of bacterial infections. Invasive S. aureus strains secrete an extensive arsenal of hemolysins, immunomodulators, and exoenzymes to cause disease. Our studies have focused on the secreted enzyme hyaluronidase (HysA), which cleaves the hyaluronic acid polymer at the β-1,4 glycosidic bond. In the study described in this report, we have investigated the regulation and contribution of this enzyme to S. aureus pathogenesis. Using the Nebraska Transposon Mutant Library (NTML), we identified eight insertions that modulate extracellular levels of HysA activity. Insertions in the sigB operon, as well as in genes encoding the global regulators SarA and CodY, significantly increased HysA protein levels and activity. By altering the availability of branched-chain amino acids, we further demonstrated CodY-dependent repression of HysA activity. Additionally, through mutation of the CodY binding box upstream of hysA, the repression of HysA production was lost, suggesting that CodY is a direct repressor of hysA expression. To determine whether HysA is a virulence factor, a ΔhysA mutant of a community-associated methicillin-resistant S. aureus (CA-MRSA) USA300 strain was constructed and found to be attenuated in a neutropenic, murine model of pulmonary infection. Mice infected with this mutant strain exhibited a 4-log-unit reduction in bacterial burden in their lungs, as well as reduced lung pathology and increased levels of pulmonary hyaluronic acid, compared to mice infected with the wild-type, parent strain. Taken together, these results indicate that S. aureus hyaluronidase is a CodY-regulated virulence factor. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. The transcription factor Lc-Maf participates in Col27a1 regulation during chondrocyte maturation

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, Jaime L.; Holden, Devin N. [Department of Microbiology and Molecular Biology, Brigham Young University, 591 WIDB, Provo, UT 84602 (United States); Barrow, Jeffery R. [Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602 (United States); Bridgewater, Laura C., E-mail: laura_bridgewater@byu.edu [Department of Microbiology and Molecular Biology, Brigham Young University, 591 WIDB, Provo, UT 84602 (United States)

    2009-08-01

    The transcription factor Lc-Maf, which is a splice variant of c-Maf, is expressed in cartilage undergoing endochondral ossification and participates in the regulation of type II collagen through a cartilage-specific Col2a1 enhancer element. Type XXVII and type XI collagens are also expressed in cartilage during endochondral ossification, and so enhancer/reporter assays were used to determine whether Lc-Maf could regulate cartilage-specific enhancers from the Col27a1 and Col11a2 genes. The Col27a1 enhancer was upregulated over 4-fol