WorldWideScience

Sample records for interferometric fluorescent super-resolution

  1. Example-Based Super-Resolution Fluorescence Microscopy.

    Science.gov (United States)

    Jia, Shu; Han, Boran; Kutz, J Nathan

    2018-04-23

    Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.

  2. Super-resolution fluorescence microscopy by stepwise optical saturation

    Science.gov (United States)

    Zhang, Yide; Nallathamby, Prakash D.; Vigil, Genevieve D.; Khan, Aamir A.; Mason, Devon E.; Boerckel, Joel D.; Roeder, Ryan K.; Howard, Scott S.

    2018-01-01

    Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the super-resolution microscopy is not feasible in many applications. In this paper, we propose and demonstrate a saturation-based super-resolution fluorescence microscopy technique that can be easily implemented and requires neither additional hardware nor complex post-processing. The method is based on the principle of stepwise optical saturation (SOS), where M steps of raw fluorescence images are linearly combined to generate an image with a M-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends the resolution by a factor of 1.4 beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples. PMID:29675306

  3. Solid-immersion fluorescence microscopy with increased emission and super resolution

    Energy Technology Data Exchange (ETDEWEB)

    Liau, Z. L.; Porter, J. M. [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States); Liau, A. A.; Chen, J. J. [Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Salmon, W. C. [Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sheu, S. S. [Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107 (United States)

    2015-01-07

    We investigate solid-immersion fluorescence microscopy suitable for super-resolution nanotechnology and biological imaging, and have observed limit of resolution as small as 15 nm with microspheres, mitochondria, and chromatin fibers. We have further observed that fluorescence efficiency increases with excitation power density, implicating appreciable stimulated emission and increased resolution. We discuss potential advantages of the solid-immersion microscopy, including combined use with previously established super-resolution techniques for reaching deeper beyond the conventional diffraction limit.

  4. Three-dimensional super-resolution imaging for fluorescence emission difference microscopy

    Energy Technology Data Exchange (ETDEWEB)

    You, Shangting; Kuang, Cuifang, E-mail: cfkuang@zju.edu.cn; Li, Shuai; Liu, Xu; Ding, Zhihua [State key laboratory of modern optical instrumentations, Zhejiang University, Hangzhou 310027 (China)

    2015-08-15

    We propose a method theoretically to break the diffraction limit and to improve the resolution in all three dimensions for fluorescence emission difference microscopy. We produce two kinds of hollow focal spot by phase modulation. By incoherent superposition, these two kinds of focal spot yield a 3D hollow focal spot. The optimal proportion of these two kinds of spot is given in the paper. By employing 3D hollow focal spot, super-resolution image can be yielded by means of fluorescence emission difference microscopy, with resolution enhanced both laterally and axially. According to computation result, size of point spread function of three-dimensional super-resolution imaging is reduced by about 40% in all three spatial directions with respect to confocal imaging.

  5. Localization-based super-resolution imaging of cellular structures.

    Science.gov (United States)

    Kanchanawong, Pakorn; Waterman, Clare M

    2013-01-01

    Fluorescence microscopy allows direct visualization of fluorescently tagged proteins within cells. However, the spatial resolution of conventional fluorescence microscopes is limited by diffraction to ~250 nm, prompting the development of super-resolution microscopy which offers resolution approaching the scale of single proteins, i.e., ~20 nm. Here, we describe protocols for single molecule localization-based super-resolution imaging, using focal adhesion proteins as an example and employing either photoswitchable fluorophores or photoactivatable fluorescent proteins. These protocols should also be easily adaptable to imaging a broad array of macromolecular assemblies in cells whose components can be fluorescently tagged and assemble into high density structures.

  6. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    KAUST Repository

    Yabiku, Y.; Kubo, S.; Nakagawa, M.; Vacha, M.; Habuchi, Satoshi

    2013-01-01

    We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can

  7. Compact three-dimensional super-resolution system based on fluorescence emission difference microscopy

    Science.gov (United States)

    Zhu, Dazhao; Chen, Youhua; Fang, Yue; Hussain, Anwar; Kuang, Cuifang; Zhou, Xiaoxu; Xu, Yingke; Liu, Xu

    2017-12-01

    A compact microscope system for three-dimensional (3-D) super-resolution imaging is presented. The super-resolution capability of the system is based on a size-reduced effective 3-D point spread function generated through the fluorescence emission difference (FED) method. The appropriate polarization direction distribution and manipulation allows the panel active area of the spatial light modulator to be fully utilized. This allows simultaneous modulation of the incident light by two kinds of phase masks to be performed with a single spatial light modulator in order to generate a 3-D negative spot. The system is more compact than standard 3-D FED systems while maintaining all the advantages of 3-D FED microscopy. The experimental results demonstrated the improvement in 3-D resolution by nearly 1.7 times and 1.6 times compared to the classic confocal resolution in the lateral and axial directions, respectively.

  8. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-Soo; Torelli, Marco; Hamers, Robert J.; Murphy, Catherine; Orr, Galya; Haynes, Christy L.

    2014-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.

  9. HIV taken by STORM: Super-resolution fluorescence microscopy of a viral infection

    Directory of Open Access Journals (Sweden)

    Pereira Cândida F

    2012-05-01

    Full Text Available Abstract Background The visualization of viral proteins has been hindered by the resolution limit of conventional fluorescent microscopes, as the dimension of any single fluorescent signal is often greater than most virion particles. Super-resolution microscopy has the potential to unveil the distribution of proteins at the resolution approaching electron microscopy without relying on morphological features of existing characteristics of the biological specimen that are needed in EM. Results Using direct stochastic optical reconstruction microscopy (dSTORM to achieve a lateral resolution of 15–20 nm, we quantified the 2-D molecular distribution of the major structural proteins of the infectious human immunodeficiency virus type 1 (HIV-1 before and after infection of lymphoid cells. We determined that the HIV-1 matrix and capsid proteins undergo restructuring soon after HIV-1 infection. Conclusions This study provides the proof-of-concept for the use of dSTORM to visualize the changes in the molecular distribution of viral proteins during an infection.

  10. Super-resolution fluorescence imaging of membrane nanoscale architectures of hematopoietic stem cell homing and migration molecules

    KAUST Repository

    AbuZineh, Karmen

    2017-01-01

    Recent development of super-resolution (SR) fluorescence microscopy techniques has provided a new tool for direct visualization of subcellular structures and their dynamics in cells. The homing of Hematopoietic stem/progenitor cells (HSPCs) to bone

  11. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    KAUST Repository

    Yabiku, Y.

    2013-10-22

    We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can be visualized with the image resolution better than 80 nm. The method was applied to image 100 nm-wide polymer nanopatterns fabricated by thermal nanoimprinting. The results point to the applicability of the method for evaluating residual polymer thin films and dewetting defect of the polymer resist patterns which are important for the quality control of the fine nanoimprinted patterns. 2013 Author(s).

  12. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    Directory of Open Access Journals (Sweden)

    Yu Yabiku

    2013-10-01

    Full Text Available We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can be visualized with the image resolution better than 80 nm. The method was applied to image 100 nm-wide polymer nanopatterns fabricated by thermal nanoimprinting. The results point to the applicability of the method for evaluating residual polymer thin films and dewetting defect of the polymer resist patterns which are important for the quality control of the fine nanoimprinted patterns.

  13. Reconstitution radicicol containing apolipoprotein B lipoparticle and tracing its cell uptake process by super resolution fluorescent microscopy.

    Science.gov (United States)

    Lin, Chung Ching; Lin, Po-Yen; Chang, Chia-Ching

    Apolipoprotein B (apoB) is the only protein of LDL. LDL delivers cholesterol, triacylglycerides and lipids to the target cells. Reconstitute apoB lipoparticle (rABL) will be an idea drug delivery vehicle for hydrophobic and amphiphilic materials delivery. It is challenged to renature ApoB into its functional state from denatured state. By using modified bile salt and radicicol (Rad) added over-critical refolding process, apoB can be restored into its native like state. The intrinsic fluorescence of apoB increased during the refolding process. Moreover, radicicol (Rad) molecules have been encapsulated into reconstitute rABL (Rad@rABL). To investigate the cell uptake mechanism of Rad@rABL, a super resolution ground state depletion (GSD) microscopy is used in this research. Fluorescence labeled Rad@rABL can be traced within the tumor cell. Key words: LDL, radicicol, protein refolding, super resolution microscopy.

  14. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy

    Science.gov (United States)

    Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.

    2018-03-01

    Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.

  15. Application of super-resolution optical microscopy in biology

    International Nuclear Information System (INIS)

    Mao Xiuhai; Du Jiancong; Huang Qing; Fan Chunhai; Deng Suhui

    2013-01-01

    Background: A noninvasive, real-time far-field optical microscopy is needed to study the dynamic function inside cells and proteins. However, the resolution limit of traditional optical microscope is about 200 nm due to the diffraction limit of light. So, it's hard to directly observe the subcellular structures. Over the past several years of microscopy development, the diffraction limit of fluorescence microscopy has been overcome and its resolution limit is about tens of nanometers. Methods: To overcome the diffraction limit of light, many super-resolution fluoresce microscopes, including stimulated emission of depletion microscopy (STED), photoactivation localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), have been developed. Conclusions: These methods have been applied in cell biology, microbiology and neurobiology, and the technology of super-resolution provides a new insight into the life science. (authors)

  16. Aberrations and adaptive optics in super-resolution microscopy

    Science.gov (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-01-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy – or rather nanoscopy – to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. PMID:26124194

  17. Developing a New Biophysical Tool to Combine Magneto-Optical Tweezers with Super-Resolution Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Zhaokun Zhou

    2015-06-01

    Full Text Available We present a novel experimental setup in which magnetic and optical tweezers are combined for torque and force transduction onto single filamentous molecules in a transverse configuration to allow simultaneous mechanical measurement and manipulation. Previously we have developed a super-resolution imaging module which, in conjunction with advanced imaging techniques such as Blinking assisted Localisation Microscopy (BaLM, achieves localisation precision of single fluorescent dye molecules bound to DNA of ~30 nm along the contour of the molecule; our work here describes developments in producing a system which combines tweezing and super-resolution fluorescence imaging. The instrument also features an acousto-optic deflector that temporally divides the laser beam to form multiple traps for high throughput statistics collection. Our motivation for developing the new tool is to enable direct observation of detailed molecular topological transformation and protein binding event localisation in a stretching/twisting mechanical assay that previously could hitherto only be deduced indirectly from the end-to-end length variation of DNA. Our approach is simple and robust enough for reproduction in the lab without the requirement of precise hardware engineering, yet is capable of unveiling the elastic and dynamic properties of filamentous molecules that have been hidden using traditional tools.

  18. Current limitations in super-resolution fluorescence microscopy for biological specimens: How deep can we go from the cover glass?

    Science.gov (United States)

    Okada, Yasushi

    2017-04-01

    Diffraction limit of resolution has been one of the biggest limitations in the optical microscopy. Super-resolution fluorescence microscopy has enabled us to break this limit. However, for the observations of real biological specimens, especially for the imaging of tissues or whole body, the target structures of interest are often embedded deep inside the specimen. Here, we would present our results to extend the target of the super-resolution microscopy deeper into the cells. Confocal microscope optics work effectively to minimize the effect by the aberrations by the cellular components, but at the expense of the signal intensities. Spherical aberrations by the refractive index mismatch between the cellular environment and the immersion liquid can be much larger, but can be reduced by adjusting the correction collar at the objective lens.

  19. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography).

    Science.gov (United States)

    Siegel, Nisan; Storrie, Brian; Bruce, Marc; Brooker, Gary

    2015-02-07

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called "CINCH". An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution.

  20. Super-resolution and super-localization microscopy: A novel tool for imaging chemical and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bin [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    Optical microscopy imaging of single molecules and single particles is an essential method for studying fundamental biological and chemical processes at the molecular and nanometer scale. The best spatial resolution (~ λ/2) achievable in traditional optical microscopy is governed by the diffraction of light. However, single molecule-based super-localization and super-resolution microscopy imaging techniques have emerged in the past decade. Individual molecules can be localized with nanometer scale accuracy and precision for studying of biological and chemical processes.This work uncovered the heterogeneous properties of the pore structures. In this dissertation, the coupling of molecular transport and catalytic reaction at the single molecule and single particle level in multilayer mesoporous nanocatalysts was elucidated. Most previous studies dealt with these two important phenomena separately. A fluorogenic oxidation reaction of non-fluorescent amplex red to highly fluorescent resorufin was tested. The diffusion behavior of single resorufin molecules in aligned nanopores was studied using total internal reflection fluorescence microscopy (TIRFM).

  1. Microsphere-aided optical microscopy and its applications for super-resolution imaging

    Science.gov (United States)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2017-12-01

    The spatial resolution of a standard optical microscope (SOM) is limited by diffraction. In visible spectrum, SOM can provide ∼ 200 nm resolution. To break the diffraction limit several approaches were developed including scanning near field microscopy, metamaterial super-lenses, nanoscale solid immersion lenses, super-oscillatory lenses, confocal fluorescence microscopy, techniques that exploit non-linear response of fluorophores like stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, etc. Recently, photonic nanojet generated by a dielectric microsphere was used to break the diffraction limit. The microsphere-approach is simple, cost-effective and can be implemented under a standard microscope, hence it has gained enormous attention for super-resolution imaging. In this article, we briefly review the microsphere approach and its applications for super-resolution imaging in various optical imaging modalities.

  2. The 2015 super-resolution microscopy roadmap

    International Nuclear Information System (INIS)

    Hell, Stefan W; Sahl, Steffen J; Bates, Mark; Jakobs, Stefan; Zhuang, Xiaowei; Heintzmann, Rainer; Booth, Martin J; Bewersdorf, Joerg; Shtengel, Gleb; Hess, Harald; Tinnefeld, Philip; Honigmann, Alf; Testa, Ilaria; Cognet, Laurent; Lounis, Brahim; Ewers, Helge; Davis, Simon J; Eggeling, Christian; Klenerman, David; Willig, Katrin I

    2015-01-01

    Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is limited, since the diffraction of light imposes limitations on the spatial resolution of the image. Consequently the details of, for example, cellular protein distributions, can be visualized only to a certain extent. Fortunately, recent years have witnessed the development of ‘super-resolution’ far-field optical microscopy (nanoscopy) techniques such as stimulated emission depletion (STED), ground state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) or saturated structured illumination microscopy (SSIM), all in one way or another addressing the problem of the limited spatial resolution of far-field optical microscopy. While SIM achieves a two-fold improvement in spatial resolution compared to conventional optical microscopy, STED, RESOLFT, PALM/STORM, or SSIM have all gone beyond, pushing the limits of optical image resolution to the nanometer scale. Consequently, all super-resolution techniques open new avenues of biomedical research. Because the field is so young, the potential capabilities of different super-resolution microscopy approaches have yet to be fully explored, and uncertainties remain when considering the best choice of methodology. Thus, even for experts, the road to the future is sometimes shrouded in mist. The super-resolution optical microscopy roadmap of Journal of Physics D: Applied Physics addresses this need for clarity. It provides guidance to the outstanding questions through a collection of short review articles from experts in the field, giving a thorough

  3. Light-Induced Fluorescence Modulation of Quantum Dot-Crystal Violet Conjugates: Stochastic Off-On-Off Cycles for Multicolor Patterning and Super-Resolution.

    Science.gov (United States)

    Jung, Sungwook; Park, Joonhyuck; Bang, Jiwon; Kim, Jae-Yeol; Kim, Cheolhee; Jeon, Yongmoon; Lee, Seung Hwan; Jin, Ho; Choi, Sukyung; Kim, Bomi; Lee, Woo Jin; Pack, Chan-Gi; Lee, Jong-Bong; Lee, Nam Ki; Kim, Sungjee

    2017-06-07

    Photoswitching or modulation of quantum dots (QDs) can be promising for many fields that include display, memory, and super-resolution imaging. However, such modulations have mostly relied on photomodulations of conjugated molecules in QD vicinity, which typically require high power of high energy photons at UV. We report a visible light-induced facile modulation route for QD-dye conjugates. QD crystal violets conjugates (QD-CVs) were prepared and the crystal violet (CV) molecules on QD quenched the fluorescence efficiently. The fluorescence of QD-CVs showed a single cycle of emission burst as they go through three stages of (i) initially quenched "off" to (ii) photoactivated "on" as the result of chemical change of CVs induced by photoelectrons from QD and (iii) back to photodarkened "off" by radical-associated reactions. Multicolor on-demand photopatterning was demonstrated using QD-CV solid films. QD-CVs were introduced into cells, and excitation with visible light yielded photomodulation from "off" to "on" and "off" by nearly ten fold. Individual photoluminescence dynamics of QD-CVs was investigated using fluorescence correlation spectroscopy and single QD emission analysis, which revealed temporally stochastic photoactivations and photodarkenings. Exploiting the stochastic fluorescence burst of QD-CVs, simultaneous multicolor super-resolution localizations were demonstrated.

  4. DMD-based LED-illumination super-resolution and optical sectioning microscopy.

    Science.gov (United States)

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  5. Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: a review

    International Nuclear Information System (INIS)

    Sednev, Maksim V; Belov, Vladimir N; Hell, Stefan W

    2015-01-01

    The review deals with commercially available organic dyes possessing large Stokes shifts and their applications as fluorescent labels in optical microscopy based on stimulated emission depletion (STED). STED microscopy breaks Abbe’s diffraction barrier and provides optical resolution beyond the diffraction limit. STED microscopy is non-invasive and requires photostable fluorescent markers attached to biomolecules or other objects of interest. Up to now, in most biology-related STED experiments, bright and photoresistant dyes with small Stokes shifts of 20–40 nm were used. The rapid progress in STED microscopy showed that organic fluorophores possessing large Stokes shifts are indispensable in multi-color super-resolution techniques. The ultimate result of the imaging relies on the optimal combination of a dye, the bio-conjugation procedure and the performance of the optical microscope. Modern bioconjugation methods, basics of STED microscopy, as well as structures and spectral properties of the presently available fluorescent markers are reviewed and discussed. In particular, the spectral properties of the commercial dyes are tabulated and correlated with the available depletion wavelengths found in STED microscopes produced by LEICA Microsytems, Abberior Instruments and Picoquant GmbH. (topical review)

  6. Super-resolution imaging of subcortical white matter using stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI)

    Science.gov (United States)

    Hainsworth, A. H.; Lee, S.; Patel, A.; Poon, W. W.; Knight, A. E.

    2018-01-01

    Aims The spatial resolution of light microscopy is limited by the wavelength of visible light (the ‘diffraction limit’, approximately 250 nm). Resolution of sub-cellular structures, smaller than this limit, is possible with super resolution methods such as stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). We aimed to resolve subcellular structures (axons, myelin sheaths and astrocytic processes) within intact white matter, using STORM and SOFI. Methods Standard cryostat-cut sections of subcortical white matter from donated human brain tissue and from adult rat and mouse brain were labelled, using standard immunohistochemical markers (neurofilament-H, myelin-associated glycoprotein, glial fibrillary acidic protein, GFAP). Image sequences were processed for STORM (effective pixel size 8–32 nm) and for SOFI (effective pixel size 80 nm). Results In human, rat and mouse, subcortical white matter high-quality images for axonal neurofilaments, myelin sheaths and filamentous astrocytic processes were obtained. In quantitative measurements, STORM consistently underestimated width of axons and astrocyte processes (compared with electron microscopy measurements). SOFI provided more accurate width measurements, though with somewhat lower spatial resolution than STORM. Conclusions Super resolution imaging of intact cryo-cut human brain tissue is feasible. For quantitation, STORM can under-estimate diameters of thin fluorescent objects. SOFI is more robust. The greatest limitation for super-resolution imaging in brain sections is imposed by sample preparation. We anticipate that improved strategies to reduce autofluorescence and to enhance fluorophore performance will enable rapid expansion of this approach. PMID:28696566

  7. Super-resolution imaging of subcortical white matter using stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI).

    Science.gov (United States)

    Hainsworth, A H; Lee, S; Foot, P; Patel, A; Poon, W W; Knight, A E

    2017-07-11

    The spatial resolution of light microscopy is limited by the wavelength of visible light (the 'diffraction limit', approximately 250 nm). Resolution of sub-cellular structures, smaller than this limit, is possible with super resolution methods such as stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). We aimed to resolve subcellular structures (axons, myelin sheaths and astrocytic processes) within intact white matter, using STORM and SOFI. Standard cryostat-cut sections of subcortical white matter from donated human brain tissue and from adult rat and mouse brain were labelled, using standard immunohistochemical markers (neurofilament-H, myelin-associated glycoprotein, glial fibrillary acidic protein, GFAP). Image sequences were processed for STORM (effective pixel size 8-32 nm) and for SOFI (effective pixel size 80 nm). In human, rat and mouse, subcortical white matter high-quality images for axonal neurofilaments, myelin sheaths and filamentous astrocytic processes were obtained. In quantitative measurements, STORM consistently underestimated width of axons and astrocyte processes (compared with electron microscopy measurements). SOFI provided more accurate width measurements, though with somewhat lower spatial resolution than STORM. Super resolution imaging of intact cryo-cut human brain tissue is feasible. For quantitation, STORM can under-estimate diameters of thin fluorescent objects. SOFI is more robust. The greatest limitation for super-resolution imaging in brain sections is imposed by sample preparation. We anticipate that improved strategies to reduce autofluorescence and to enhance fluorophore performance will enable rapid expansion of this approach. © 2017 British Neuropathological Society.

  8. Super-resolution from single photon emission: toward biological application

    Science.gov (United States)

    Moreva, E.; Traina, P.; Forneris, J.; Ditalia Tchernij, S.; Guarina, L.; Franchino, C.; Picollo, F.; Ruo Berchera, I.; Brida, G.; Degiovanni, I. P.; Carabelli, V.; Olivero, P.; Genovese, M.

    2017-08-01

    Properties of quantum light represent a tool for overcoming limits of classical optics. Several experiments have demonstrated this advantage ranging from quantum enhanced imaging to quantum illumination. In this work, experimental demonstration of quantum-enhanced resolution in confocal fluorescence microscopy will be presented. This is achieved by exploiting the non-classical photon statistics of fluorescence emission of single nitrogen-vacancy (NV) color centers in diamond. By developing a general model of super-resolution based on the direct sampling of the kth-order autocorrelation function of the photoluminescence signal, we show the possibility to resolve, in principle, arbitrarily close emitting centers. Finally, possible applications of NV-based fluorescent nanodiamonds in biosensing and future developments will be presented.

  9. The super-resolution debate

    Science.gov (United States)

    Won, Rachel

    2018-05-01

    In the quest for nanoscopy with super-resolution, consensus from the imaging community is that super-resolution is not always needed and that scientists should choose an imaging technique based on their specific application.

  10. Perspectives in Super-resolved Fluorescence Microscopy: What comes next?

    Science.gov (United States)

    Cremer, Christoph; Birk, Udo

    2016-04-01

    The Nobel Prize in Chemistry 2014 has been awarded to three scientists involved in the development of STED and PALM super-resolution fluorescence microscopy (SRM) methods. They have proven that it is possible to overcome the hundred year old theoretical limit for the resolution potential of light microscopy (of about 200 nm for visible light), which for decades has precluded a direct glimpse of the molecular machinery of life. None of the present-day super-resolution techniques have invalidated the Abbe limit for light optical detection; however, they have found clever ways around it. In this report, we discuss some of the challenges still to be resolved before arising SRM approaches will be fit to bring about the revolution in Biology and Medicine envisaged. Some of the challenges discussed are the applicability to image live and/or large samples, the further enhancement of resolution, future developments of labels, and multi-spectral approaches.

  11. Perspectives in Super-resolved Fluorescence Microscopy: What comes next?

    Directory of Open Access Journals (Sweden)

    Christoph eCremer

    2016-04-01

    Full Text Available The Nobel Prize in Chemistry 2014 has been awarded to three scientists involved in the development of STED and PALM super-resolution fluorescence microscopy (SRM methods. They have proven that it is possible to overcome the hundred year old theoretical limit for the resolution potential of light microscopy (of about 200 nm for visible light, which for decades has precluded a direct glimpse of the molecular machinery of life. None of the present-day super-resolution techniques have invalidated the Abbe limit for light optical detection; however, they have found clever ways around it. In this report, we discuss some of the challenges still to be resolved before arising SRM approaches will be fit to bring about the revolution in Biology and Medicine envisaged. Some of the challenges discussed are the applicability to image live and/or large samples, the further enhancement of resolution, future developments of labels, and multi-spectral approaches.

  12. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...

  13. High resolution FISH on super-stretched flow-sorted plant chromosomes.

    NARCIS (Netherlands)

    Valárik, M.; Bartos, J.; Kovarova, P.; Kubalakova, M.; Jong, de J.H.S.G.M.; Dolezel, J.

    2004-01-01

    A novel high-resolution fluorescence in situ hybridisation (FISH) strategy, using super-stretched flow-sorted plant chromosomes as targets, is described. The technique that allows longitudinal extension of chromosomes of more than 100 times their original metaphase size is especially attractive for

  14. Complementary studies of lipid membrane dynamics using iSCAT and super-resolved fluorescence correlation spectroscopy

    Science.gov (United States)

    Reina, Francesco; Galiani, Silvia; Shrestha, Dilip; Sezgin, Erdinc; de Wit, Gabrielle; Cole, Daniel; Lagerholm, B. Christoffer; Kukura, Philipp; Eggeling, Christian

    2018-06-01

    Observation techniques with high spatial and temporal resolution, such as single-particle tracking based on interferometric scattering (iSCAT) microscopy, and fluorescence correlation spectroscopy applied on a super-resolution STED microscope (STED-FCS), have revealed new insights of the molecular organization of membranes. While delivering complementary information, there are still distinct differences between these techniques, most prominently the use of fluorescent dye tagged probes for STED-FCS and a need for larger scattering gold nanoparticle tags for iSCAT. In this work, we have used lipid analogues tagged with a hybrid fluorescent tag–gold nanoparticle construct, to directly compare the results from STED-FCS and iSCAT measurements of phospholipid diffusion on a homogeneous supported lipid bilayer (SLB). These comparative measurements showed that while the mode of diffusion remained free, at least at the spatial (>40 nm) and temporal (50  ⩽  t  ⩽  100 ms) scales probed, the diffussion coefficient was reduced by 20- to 60-fold when tagging with 20 and 40 nm large gold particles as compared to when using dye tagged lipid analogues. These FCS measurements of hybrid fluorescent tag–gold nanoparticle labeled lipids also revealed that commercially supplied streptavidin-coated gold nanoparticles contain large quantities of free streptavidin. Finally, the values of apparent diffusion coefficients obtained by STED-FCS and iSCAT differed by a factor of 2–3 across the techniques, while relative differences in mobility between different species of lipid analogues considered were identical in both approaches. In conclusion, our experiments reveal that large and potentially cross-linking scattering tags introduce a significant slow-down in diffusion on SLBs but no additional bias, and our labeling approach creates a new way of exploiting complementary information from STED-FCS and iSCAT measurements.

  15. Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing.

    Science.gov (United States)

    Hsiao, Wesley Wei-Wen; Hui, Yuen Yung; Tsai, Pei-Chang; Chang, Huan-Cheng

    2016-03-15

    Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics, and materials sciences. The nanoparticle is unique in that it contains a high density ensemble of negatively charged nitrogen-vacancy (NV(-)) centers as built-in fluorophores. The center possesses a number of outstanding optical and magnetic properties. First, NV(-) has an absorption maximum at ∼550 nm, and when exposed to green-orange light, it emits bright fluorescence at ∼700 nm with a lifetime of longer than 10 ns. These spectroscopic properties are little affected by surface modification but are distinctly different from those of cell autofluorescence and thus enable background-free imaging of FNDs in tissue sections. Such characteristics together with its excellent biocompatibility render FND ideal for long-term cell tracking applications, particularly in stem cell research. Next, as an artificial atom in the solid state, the NV(-) center is perfectly photostable, without photobleaching and blinking. Therefore, the NV-containing FND is suitable as a contrast agent for super-resolution imaging by stimulated emission depletion (STED). An improvement of the spatial resolution by 20-fold is readily achievable by using a high-power STED laser to deplete the NV(-) fluorescence. Such improvement is crucial in revealing the detailed structures of biological complexes and assemblies, including cellular organelles and subcellular compartments. Further enhancement of the resolution for live cell imaging is possible by manipulating the charge states of the NV centers. As the "brightest" member of the nanocarbon family, FND holds great promise and potential for bioimaging with unprecedented resolution and precision. Lastly, the NV(-) center in diamond is an atom-like quantum system with a total electron spin of 1. The ground states of the spins show a crystal field splitting of 2.87 GHz, separating the ms = 0 and

  16. A novel super-resolution camera model

    Science.gov (United States)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  17. Adaptive optics improves multiphoton super-resolution imaging

    Science.gov (United States)

    Zheng, Wei; Wu, Yicong; Winter, Peter; Shroff, Hari

    2018-02-01

    Three dimensional (3D) fluorescence microscopy has been essential for biological studies. It allows interrogation of structure and function at spatial scales spanning the macromolecular, cellular, and tissue levels. Critical factors to consider in 3D microscopy include spatial resolution, signal-to-noise (SNR), signal-to-background (SBR), and temporal resolution. Maintaining high quality imaging becomes progressively more difficult at increasing depth (where optical aberrations, induced by inhomogeneities of refractive index in the sample, degrade resolution and SNR), and in thick or densely labeled samples (where out-of-focus background can swamp the valuable, in-focus-signal from each plane). In this report, we introduce our new instrumentation to address these problems. A multiphoton structured illumination microscope was simply modified to integrate an adpative optics system for optical aberrations correction. Firstly, the optical aberrations are determined using direct wavefront sensing with a nonlinear guide star and subsequently corrected using a deformable mirror, restoring super-resolution information. We demonstrate the flexibility of our adaptive optics approach on a variety of semi-transparent samples, including bead phantoms, cultured cells in collagen gels and biological tissues. The performance of our super-resolution microscope is improved in all of these samples, as peak intensity is increased (up to 40-fold) and resolution recovered (up to 176+/-10 nm laterally and 729+/-39 nm axially) at depths up to 250 μm from the coverslip surface.

  18. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    Science.gov (United States)

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  19. Live-cell super-resolution imaging of intrinsically fast moving flagellates

    International Nuclear Information System (INIS)

    Glogger, M; Subota, I; Spindler, M-C; Engstler, M; Fenz, S F; Stichler, S; Bertlein, S; Teßmar, J; Groll, J

    2017-01-01

    Recent developments in super-resolution microscopy make it possible to resolve structures in biological cells at a spatial resolution of a few nm and observe dynamical processes with a temporal resolution of ms to μ s. However, the optimal structural resolution requires repeated illumination cycles and is thus limited to chemically fixed cells. For live cell applications substantial improvement over classical Abbe-limited imaging can already be obtained in adherent or slow moving cells. Nonetheless, a large group of cells are fast moving and thus could not yet be addressed with live cell super-resolution microscopy. These include flagellate pathogens like African trypanosomes, the causative agents of sleeping sickness in humans and nagana in livestock. Here, we present an embedding method based on a in situ forming cytocompatible UV-crosslinked hydrogel. The fast cross-linking hydrogel immobilizes trypanosomes efficiently to allow microscopy on the nanoscale. We characterized both the trypanosomes and the hydrogel with respect to their autofluorescence properties and found them suitable for single-molecule fluorescence microscopy (SMFM). As a proof of principle, SMFM was applied to super-resolve a structure inside the living trypanosome. We present an image of a flagellar axoneme component recorded by using the intrinsic blinking behavior of eYFP. (paper)

  20. Super-Resolution Enhancement From Multiple Overlapping Images: A Fractional Area Technique

    Science.gov (United States)

    Michaels, Joshua A.

    With the availability of large quantities of relatively low-resolution data from several decades of space borne imaging, methods of creating an accurate, higher-resolution image from the multiple lower-resolution images (i.e. super-resolution), have been developed almost since such imagery has been around. The fractional-area super-resolution technique developed in this thesis has never before been documented. Satellite orbits, like Landsat, have a quantifiable variation, which means each image is not centered on the exact same spot more than once and the overlapping information from these multiple images may be used for super-resolution enhancement. By splitting a single initial pixel into many smaller, desired pixels, a relationship can be created between them using the ratio of the area within the initial pixel. The ideal goal for this technique is to obtain smaller pixels with exact values and no error, yielding a better potential result than those methods that yield interpolated pixel values with consequential loss of spatial resolution. A Fortran 95 program was developed to perform all calculations associated with the fractional-area super-resolution technique. The fractional areas are calculated using traditional trigonometry and coordinate geometry and Linear Algebra Package (LAPACK; Anderson et al., 1999) is used to solve for the higher-resolution pixel values. In order to demonstrate proof-of-concept, a synthetic dataset was created using the intrinsic Fortran random number generator and Adobe Illustrator CS4 (for geometry). To test the real-life application, digital pictures from a Sony DSC-S600 digital point-and-shoot camera with a tripod were taken of a large US geological map under fluorescent lighting. While the fractional-area super-resolution technique works in perfect synthetic conditions, it did not successfully produce a reasonable or consistent solution in the digital photograph enhancement test. The prohibitive amount of processing time (up to

  1. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    Science.gov (United States)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  2. Super-resolution imaging based on the temperature-dependent electron-phonon collision frequency effect of metal thin films

    Science.gov (United States)

    Ding, Chenliang; Wei, Jingsong; Xiao, Mufei

    2018-05-01

    We herein propose a far-field super-resolution imaging with metal thin films based on the temperature-dependent electron-phonon collision frequency effect. In the proposed method, neither fluorescence labeling nor any special properties are required for the samples. The 100 nm lands and 200 nm grooves on the Blu-ray disk substrates were clearly resolved and imaged through a laser scanning microscope of wavelength 405 nm. The spot size was approximately 0.80 μm , and the imaging resolution of 1/8 of the laser spot size was experimentally obtained. This work can be applied to the far-field super-resolution imaging of samples with neither fluorescence labeling nor any special properties.

  3. Learning from errors in super-resolution.

    Science.gov (United States)

    Tang, Yi; Yuan, Yuan

    2014-11-01

    A novel framework of learning-based super-resolution is proposed by employing the process of learning from the estimation errors. The estimation errors generated by different learning-based super-resolution algorithms are statistically shown to be sparse and uncertain. The sparsity of the estimation errors means most of estimation errors are small enough. The uncertainty of the estimation errors means the location of the pixel with larger estimation error is random. Noticing the prior information about the estimation errors, a nonlinear boosting process of learning from these estimation errors is introduced into the general framework of the learning-based super-resolution. Within the novel framework of super-resolution, a low-rank decomposition technique is used to share the information of different super-resolution estimations and to remove the sparse estimation errors from different learning algorithms or training samples. The experimental results show the effectiveness and the efficiency of the proposed framework in enhancing the performance of different learning-based algorithms.

  4. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio

    Science.gov (United States)

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-01

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  5. Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue.

    Science.gov (United States)

    Spühler, Isabelle A; Conley, Gaurasundar M; Scheffold, Frank; Sprecher, Simon G

    2016-01-01

    Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation.

  6. Enhanced simulator software for image validation and interpretation for multimodal localization super-resolution fluorescence microscopy

    Science.gov (United States)

    Erdélyi, Miklós; Sinkó, József; Gajdos, Tamás.; Novák, Tibor

    2017-02-01

    Optical super-resolution techniques such as single molecule localization have become one of the most dynamically developed areas in optical microscopy. These techniques routinely provide images of fixed cells or tissues with sub-diffraction spatial resolution, and can even be applied for live cell imaging under appropriate circumstances. Localization techniques are based on the precise fitting of the point spread functions (PSF) to the measured images of stochastically excited, identical fluorescent molecules. These techniques require controlling the rate between the on, off and the bleached states, keeping the number of active fluorescent molecules at an optimum value, so their diffraction limited images can be detected separately both spatially and temporally. Because of the numerous (and sometimes unknown) parameters, the imaging system can only be handled stochastically. For example, the rotation of the dye molecules obscures the polarization dependent PSF shape, and only an averaged distribution - typically estimated by a Gaussian function - is observed. TestSTORM software was developed to generate image stacks for traditional localization microscopes, where localization meant the precise determination of the spatial position of the molecules. However, additional optical properties (polarization, spectra, etc.) of the emitted photons can be used for further monitoring the chemical and physical properties (viscosity, pH, etc.) of the local environment. The image stack generating program was upgraded by several new features, such as: multicolour, polarization dependent PSF, built-in 3D visualization, structured background. These features make the program an ideal tool for optimizing the imaging and sample preparation conditions.

  7. Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space

    Science.gov (United States)

    Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie

    2014-07-01

    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein-protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB-EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB-EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB-EF-Tu interactions.

  8. Super-resolution imaging and tracking of protein–protein interactions in sub-diffraction cellular space

    Science.gov (United States)

    Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie

    2014-01-01

    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein–protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB–EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB–EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB–EF-Tu interactions. PMID:25030837

  9. Super-resolution imaging applied to moving object tracking

    Science.gov (United States)

    Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi

    2017-10-01

    Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.

  10. Super resolution imaging of genetically labelled synapses in Drosophila brain tissue

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    2016-05-01

    Full Text Available Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labelled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation

  11. Microsphere-based super-resolution scanning optical microscope.

    Science.gov (United States)

    Huszka, Gergely; Yang, Hui; Gijs, Martin A M

    2017-06-26

    High-refractive index dielectric microspheres positioned within the field of view of a microscope objective in a dielectric medium can focus the light into a so-called photonic nanojet. A sample placed in such nanojet can be imaged by the objective with super-resolution, i.e. with a resolution beyond the classical diffraction limit. However, when imaging nanostructures on a substrate, the propagation distance of a light wave in the dielectric medium in between the substrate and the microsphere must be small enough to reveal the sample's nanometric features. Therefore, only the central part of an image obtained through a microsphere shows super-resolution details, which are typically ∼100 nm using white light (peak at λ = 600 nm). We have performed finite element simulations of the role of this critical distance in the super-resolution effect. Super-resolution imaging of a sample placed beneath the microsphere is only possible within a very restricted central area of ∼10 μm 2 , where the separation distance between the substrate and the microsphere surface is very small (∼1 μm). To generate super-resolution images over larger areas of the sample, we have fixed a microsphere on a frame attached to the microscope objective, which is automatically scanned over the sample in a step-by-step fashion. This generates a set of image tiles, which are subsequently stitched into a single super-resolution image (with resolution of λ/4-λ/5) of a sample area of up to ∼10 4 μm 2 . Scanning a standard optical microscope objective with microsphere therefore enables super-resolution microscopy over the complete field-of-view of the objective.

  12. Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research

    Science.gov (United States)

    Ilić, Nataša; Pilarczyk, Götz; Lee, Jin-Ho; Logeswaran, Abiramy; Borroni, Aurora Paola; Krufczik, Matthias; Theda, Franziska; Waltrich, Nadine; Bestvater, Felix; Hildenbrand, Georg; Cremer, Christoph; Blank, Michael

    2017-01-01

    Understanding molecular interactions and regulatory mechanisms in tumor initiation, progression, and treatment response are key requirements towards advanced cancer diagnosis and novel treatment procedures in personalized medicine. Beyond decoding the gene expression, malfunctioning and cancer-related epigenetic pathways, investigations of the spatial receptor arrangements in membranes and genome organization in cell nuclei, on the nano-scale, contribute to elucidating complex molecular mechanisms in cells and tissues. By these means, the correlation between cell function and spatial organization of molecules or molecular complexes can be studied, with respect to carcinogenesis, tumor sensitivity or tumor resistance to anticancer therapies, like radiation or antibody treatment. Here, we present several new applications for bio-molecular nano-probes and super-resolution, laser fluorescence localization microscopy and their potential in life sciences, especially in biomedical and cancer research. By means of a tool-box of fluorescent antibodies, green fluorescent protein (GFP) tagging, or specific oligonucleotides, we present tumor relevant re-arrangements of Erb-receptors in membranes, spatial organization of Smad specific ubiquitin protein ligase 2 (Smurf2) in the cytosol, tumor cell characteristic heterochromatin organization, and molecular re-arrangements induced by radiation or antibody treatment. The main purpose of this article is to demonstrate how nano-scaled distance measurements between bio-molecules, tagged by appropriate nano-probes, can be applied to elucidate structures and conformations of molecular complexes which are characteristic of tumorigenesis and treatment responses. These applications open new avenues towards a better interpretation of the spatial organization and treatment responses of functionally relevant molecules, at the single cell level, in normal and cancer cells, offering new potentials for individualized medicine. PMID:28956810

  13. Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research

    Directory of Open Access Journals (Sweden)

    Michael Hausmann

    2017-09-01

    Full Text Available Understanding molecular interactions and regulatory mechanisms in tumor initiation, progression, and treatment response are key requirements towards advanced cancer diagnosis and novel treatment procedures in personalized medicine. Beyond decoding the gene expression, malfunctioning and cancer-related epigenetic pathways, investigations of the spatial receptor arrangements in membranes and genome organization in cell nuclei, on the nano-scale, contribute to elucidating complex molecular mechanisms in cells and tissues. By these means, the correlation between cell function and spatial organization of molecules or molecular complexes can be studied, with respect to carcinogenesis, tumor sensitivity or tumor resistance to anticancer therapies, like radiation or antibody treatment. Here, we present several new applications for bio-molecular nano-probes and super-resolution, laser fluorescence localization microscopy and their potential in life sciences, especially in biomedical and cancer research. By means of a tool-box of fluorescent antibodies, green fluorescent protein (GFP tagging, or specific oligonucleotides, we present tumor relevant re-arrangements of Erb-receptors in membranes, spatial organization of Smad specific ubiquitin protein ligase 2 (Smurf2 in the cytosol, tumor cell characteristic heterochromatin organization, and molecular re-arrangements induced by radiation or antibody treatment. The main purpose of this article is to demonstrate how nano-scaled distance measurements between bio-molecules, tagged by appropriate nano-probes, can be applied to elucidate structures and conformations of molecular complexes which are characteristic of tumorigenesis and treatment responses. These applications open new avenues towards a better interpretation of the spatial organization and treatment responses of functionally relevant molecules, at the single cell level, in normal and cancer cells, offering new potentials for individualized medicine.

  14. Super-resolution fluorescence imaging of membrane nanoscale architectures of hematopoietic stem cell homing and migration molecules

    KAUST Repository

    AbuZineh, Karmen

    2017-12-01

    Recent development of super-resolution (SR) fluorescence microscopy techniques has provided a new tool for direct visualization of subcellular structures and their dynamics in cells. The homing of Hematopoietic stem/progenitor cells (HSPCs) to bone marrow is a multistep process that is initiated by tethering of HSPCs to endothelium and mediated by spatiotemporally organised ligand-receptor interactions of selectins expressed on endothelial cells to their ligands expressed on HSPCs which occurs against the shear stress exerted by blood flow. Although molecules and biological processes involved in this multi-step cellular interaction have been studied extensively, molecular mechanisms of the homing, in particular the nanoscale spatiotemporal behaviour of ligand-receptor interactions and their role in the cellular interaction, remain elusive. Using our new method of microfluidics-based super-resolution fluorescence imaging platform we can now characterize the correlation between both nanoscale ligand-receptor interactions and tethering/rolling of cells under external shear stress. We found that cell rolling on E-selectin caused significant reorganization of the nanoscale clustering behavior of CD44 and CD43, from a patchy clusters of ~ 200 nm in size to an elongated network-like structures where for PSGL-1 the clustering size did not change significantly as it was 85 nm and after cell rolling the PSGL-1 aggregated to one side or even exhibited an increase in the footprint. Furthermore, I have established the use of 3D SR images that indicated that the patchy clusters of CD44 localize to protruding structures of the cell surface. On the other hand, a significant amount of the network-like elongated CD44 clusters observed after the rolling were located in the close proximity to the E-selectin surface. The effect of the nanoscale reorganization of the clusters on the HSPC rolling over selectins is still an open question at this stage. Nevertheless, my results further

  15. Super-resolution Phase Tomography

    KAUST Repository

    Depeursinge, Christian; Cotte, Yann; Toy, Fatih; Jourdain, Pascal; Boss, Daiel; Marquet, Pierre; Magistretti, Pierre J.

    2013-01-01

    Digital Holographic Microscopy (DHM) yields reconstructed complex wavefields. It allows synthesizing the aperture of a virtual microscope up to 2π, offering super-resolution phase images. Live images of micro-organisms and neurons with resolution less than 100 nm are presented.

  16. Super-resolution Phase Tomography

    KAUST Repository

    Depeursinge, Christian

    2013-04-21

    Digital Holographic Microscopy (DHM) yields reconstructed complex wavefields. It allows synthesizing the aperture of a virtual microscope up to 2π, offering super-resolution phase images. Live images of micro-organisms and neurons with resolution less than 100 nm are presented.

  17. Deterministic phase measurements exhibiting super-sensitivity and super-resolution

    DEFF Research Database (Denmark)

    Schäfermeier, Clemens; Ježek, Miroslav; Madsen, Lars S.

    2018-01-01

    Phase super-sensitivity is obtained when the sensitivity in a phase measurement goes beyond the quantum shot noise limit, whereas super-resolution is obtained when the interference fringes in an interferometer are narrower than half the input wavelength. Here we show experimentally that these two...

  18. Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy

    Directory of Open Access Journals (Sweden)

    Bjoern Traenkle

    2017-08-01

    Full Text Available Single-domain antibodies (sdAbs have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies have become versatile tools to study dynamics of endogenous proteins in living cells. Additionally, sdAbs conjugated to organic dyes were shown to label cellular structures with high density and minimal fluorophore displacement making them highly attractive probes for super-resolution microscopy. Here, we review recent advances of the chromobody technology to visualize localization and dynamics of cellular targets and the application of chromobody-based cell models for compound screening. Acknowledging the emerging importance of super-resolution microscopy in cell biology, we further discuss advantages and challenges of sdAbs for this technology.

  19. Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy.

    Science.gov (United States)

    Traenkle, Bjoern; Rothbauer, Ulrich

    2017-01-01

    Single-domain antibodies (sdAbs) have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies) have become versatile tools to study dynamics of endogenous proteins in living cells. Additionally, sdAbs conjugated to organic dyes were shown to label cellular structures with high density and minimal fluorophore displacement making them highly attractive probes for super-resolution microscopy. Here, we review recent advances of the chromobody technology to visualize localization and dynamics of cellular targets and the application of chromobody-based cell models for compound screening. Acknowledging the emerging importance of super-resolution microscopy in cell biology, we further discuss advantages and challenges of sdAbs for this technology.

  20. Oblique reconstructions in tomosynthesis. II. Super-resolution

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes.Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system.Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  1. Oblique reconstructions in tomosynthesis. II. Super-resolution

    Science.gov (United States)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  2. Live-cell super-resolution imaging of intrinsically fast moving flagellates

    Science.gov (United States)

    Glogger, M.; Stichler, S.; Subota, I.; Bertlein, S.; Spindler, M.-C.; Teßmar, J.; Groll, J.; Engstler, M.; Fenz, S. F.

    2017-02-01

    Recent developments in super-resolution microscopy make it possible to resolve structures in biological cells at a spatial resolution of a few nm and observe dynamical processes with a temporal resolution of ms to μs. However, the optimal structural resolution requires repeated illumination cycles and is thus limited to chemically fixed cells. For live cell applications substantial improvement over classical Abbe-limited imaging can already be obtained in adherent or slow moving cells. Nonetheless, a large group of cells are fast moving and thus could not yet be addressed with live cell super-resolution microscopy. These include flagellate pathogens like African trypanosomes, the causative agents of sleeping sickness in humans and nagana in livestock. Here, we present an embedding method based on a in situ forming cytocompatible UV-crosslinked hydrogel. The fast cross-linking hydrogel immobilizes trypanosomes efficiently to allow microscopy on the nanoscale. We characterized both the trypanosomes and the hydrogel with respect to their autofluorescence properties and found them suitable for single-molecule fluorescence microscopy (SMFM). As a proof of principle, SMFM was applied to super-resolve a structure inside the living trypanosome. We present an image of a flagellar axoneme component recorded by using the intrinsic blinking behavior of eYFP. , which features invited work from the best early-career researchers working within the scope of J Phys D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Susanne Fenz was selected by the Editorial Board of J Phys D as an Emerging Talent/Leader.

  3. Identification and super-resolution imaging of ligand-activated receptor dimers in live cells

    Science.gov (United States)

    Winckler, Pascale; Lartigue, Lydia; Giannone, Gregory; de Giorgi, Francesca; Ichas, François; Sibarita, Jean-Baptiste; Lounis, Brahim; Cognet, Laurent

    2013-08-01

    Molecular interactions are key to many chemical and biological processes like protein function. In many signaling processes they occur in sub-cellular areas displaying nanoscale organizations and involving molecular assemblies. The nanometric dimensions and the dynamic nature of the interactions make their investigations complex in live cells. While super-resolution fluorescence microscopies offer live-cell molecular imaging with sub-wavelength resolutions, they lack specificity for distinguishing interacting molecule populations. Here we combine super-resolution microscopy and single-molecule Förster Resonance Energy Transfer (FRET) to identify dimers of receptors induced by ligand binding and provide super-resolved images of their membrane distribution in live cells. By developing a two-color universal-Point-Accumulation-In-the-Nanoscale-Topography (uPAINT) method, dimers of epidermal growth factor receptors (EGFR) activated by EGF are studied at ultra-high densities, revealing preferential cell-edge sub-localization. This methodology which is specifically devoted to the study of molecules in interaction, may find other applications in biological systems where understanding of molecular organization is crucial.

  4. Super-Virtual Refraction Interferometric Redatuming: Enhancing the Refracted Energy

    KAUST Repository

    Aldawood, Ali

    2012-02-26

    onshore seismic data processing. Refraction tomography is becoming a common way to estimate an accurate near surface velocity model. One of the problems with refraction tomography is the low signal to noise ration in far offset data. To improve, we propose using super-virtual refraction interferometry to enhance the weak energy at far offsets. We use Interferometric Green\\'s functions to redatum sources by cross-correlating two traces recorded at receiver stations, A and B, from a source at location W. The result is a redatumed trace with a virtual source at A and a receiver at B, which can also be obtained by correlating two traces recorded at A and B from different shots. Stacking them would enhance the signal-to-noise ratio of this "virtual" trace. We next augment redatuming with convolution and stacking. The trace recorded at B from a virtual source at A is convolved with the original trace recorded at A from a source at W. The result is a "super-virtual" trace at B in the far-offset from a source at W. Stacking N traces gives a vN-improvement. We applied our method to noisy synthetic and field data recorded over a complex near-surface and we could pick more traces at far offsets. It was possible to accommodate more picks resulting in a better subsurface coverage

  5. Super-Virtual Refraction Interferometric Redatuming: Enhancing the Refracted Energy

    KAUST Repository

    Aldawood, Ali; Alshuhail, Abdulrahman Abdullatif Abdulrahman; Hanafy, Sherif

    2012-01-01

    onshore seismic data processing. Refraction tomography is becoming a common way to estimate an accurate near surface velocity model. One of the problems with refraction tomography is the low signal to noise ration in far offset data. To improve, we propose using super-virtual refraction interferometry to enhance the weak energy at far offsets. We use Interferometric Green's functions to redatum sources by cross-correlating two traces recorded at receiver stations, A and B, from a source at location W. The result is a redatumed trace with a virtual source at A and a receiver at B, which can also be obtained by correlating two traces recorded at A and B from different shots. Stacking them would enhance the signal-to-noise ratio of this "virtual" trace. We next augment redatuming with convolution and stacking. The trace recorded at B from a virtual source at A is convolved with the original trace recorded at A from a source at W. The result is a "super-virtual" trace at B in the far-offset from a source at W. Stacking N traces gives a vN-improvement. We applied our method to noisy synthetic and field data recorded over a complex near-surface and we could pick more traces at far offsets. It was possible to accommodate more picks resulting in a better subsurface coverage

  6. Controlled power delivery for super-resolution imaging of biological samples using digital micromirror device

    Science.gov (United States)

    Valiya Peedikakkal, Liyana; Cadby, Ashley

    2017-02-01

    Localization based super resolution images of a biological sample is generally achieved by using high power laser illumination with long exposure time which unfortunately increases photo-toxicity of a sample, making super resolution microscopy, in general, incompatible with live cell imaging. Furthermore, the limitation of photobleaching reduces the ability to acquire time lapse images of live biological cells using fluorescence microscopy. Digital Light Processing (DLP) technology can deliver light at grey scale levels by flickering digital micromirrors at around 290 Hz enabling highly controlled power delivery to samples. In this work, Digital Micromirror Device (DMD) is implemented in an inverse Schiefspiegler telescope setup to control the power and pattern of illumination for super resolution microscopy. We can achieve spatial and temporal patterning of illumination by controlling the DMD pixel by pixel. The DMD allows us to control the power and spatial extent of the laser illumination. We have used this to show that we can reduce the power delivered to the sample to allow for longer time imaging in one area while achieving sub-diffraction STORM imaging in another using higher power densities.

  7. An introduction to optical super-resolution microscopy for the adventurous biologist

    Science.gov (United States)

    Vangindertael, J.; Camacho, R.; Sempels, W.; Mizuno, H.; Dedecker, P.; Janssen, K. P. F.

    2018-04-01

    Ever since the inception of light microscopy, the laws of physics have seemingly thwarted every attempt to visualize the processes of life at its most fundamental, sub-cellular, level. The diffraction limit has restricted our view to length scales well above 250 nm and in doing so, severely compromised our ability to gain true insights into many biological systems. Fortunately, continuous advancements in optics, electronics and mathematics have since provided the means to once again make physics work to our advantage. Even though some of the fundamental concepts enabling super-resolution light microscopy have been known for quite some time, practically feasible implementations have long remained elusive. It should therefore not come as a surprise that the 2014 Nobel Prize in Chemistry was awarded to the scientists who, each in their own way, contributed to transforming super-resolution microscopy from a technological tour de force to a staple of the biologist’s toolkit. By overcoming the diffraction barrier, light microscopy could once again be established as an indispensable tool in an age where the importance of understanding life at the molecular level cannot be overstated. This review strives to provide the aspiring life science researcher with an introduction to optical microscopy, starting from the fundamental concepts governing compound and fluorescent confocal microscopy to the current state-of-the-art of super-resolution microscopy techniques and their applications.

  8. Application of spectroscopy and super-resolution microscopy: Excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  9. Nonlinear super-resolution nano-optics and applications

    CERN Document Server

    Wei, Jingsong

    2015-01-01

    This book covers many advances in the subjects of nano-optics and nano photonics. The author describes the principle and technical schematics of common methods for breaking through the optical diffraction limit and focuses on realizing optical super-resolution with nonlinear effects of thin film materials. The applications of nonlinear optical super-resolution effects in nano-data storage, nanolithography, and nano-imaging are also presented. This book is useful to graduate students majoring in optics and nano science and also serves as a reference book for academic researchers, engineers, technical professionals in the fields of super-resolution optics and laser techniques, nano-optics and nano photonics, nano-data storage, nano imaging, micro/nanofabrication and nanolithography and nonlinear optics.

  10. Managing the Introduction of Super-Resolution Microscopy into a Core Facility.

    Science.gov (United States)

    Kamykowski, Jeffrey A; Storrie, Brian

    2017-01-01

    Super resolution techniques place the resolution of fluorescence microscopy closer to the size of the underlying cell structure or molecular machine being studied. Structured illumination techniques will give users a set of tools that are close to their past experience and relatively simple and quick to learn. The present dyes can be used. Resolution approaching 100 nm XY can be achieved. In contrast, stochastic methods such as PALM/STORM typically require the choice of new dyes and a much greater learning curve to master the technology and calculations. However, a further fivefold resolution improvement is possible. Stimulated depletion techniques such as STED offer a third set of approaches that will again require the use of new dyes. All these approaches require substantial investment in new equipment and in user training. There is no free lunch in the search for better resolution.

  11. Focusing super resolution on the cytoskeleton [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Eric A. Shelden

    2016-05-01

    Full Text Available Super resolution imaging is becoming an increasingly important tool in the arsenal of methods available to cell biologists. In recognition of its potential, the Nobel Prize for chemistry was awarded to three investigators involved in the development of super resolution imaging methods in 2014. The availability of commercial instruments for super resolution imaging has further spurred the development of new methods and reagents designed to take advantage of super resolution techniques. Super resolution offers the advantages traditionally associated with light microscopy, including the use of gentle fixation and specimen preparation methods, the ability to visualize multiple elements within a single specimen, and the potential to visualize dynamic changes in living specimens over time. However, imaging of living cells over time is difficult and super resolution imaging is computationally demanding. In this review, we discuss the advantages/disadvantages of different super resolution systems for imaging fixed live specimens, with particular regard to cytoskeleton structures.

  12. Super-resolution Microscopy in Plant Cell Imaging.

    Science.gov (United States)

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Extreme super-resolution using the spherical geodesic waveguide

    Science.gov (United States)

    Miñano, Juan Carlos; González, Juan Carlos; Benítez, Pablo; Grabovičkić, Dejan

    2012-06-01

    Leonhardt demonstrated (2009) that the 2D Maxwell Fish Eye lens (MFE) can focus perfectly 2D Helmholtz waves of arbitrary frequency, i.e., it can transport perfectly an outward (monopole) 2D Helmholtz wave field, generated by a point source, towards a "perfect point drain" located at the corresponding image point. Moreover, a prototype with λ/5 super-resolution (SR) property for one microwave frequency has been manufactured and tested (Ma et al, 2010). Although this prototype has been loaded with an impedance different from the "perfect point drain", it has shown super-resolution property. However, neither software simulations nor experimental measurements for a broad band of frequencies have yet been reported. Here we present steady state simulations for two cases, using perfect drain as suggested by Leonhardt and without perfect drain as in the prototype. All the simulations have been done using a device equivalent to the MFE, called the Spherical Geodesic Waveguide (SGW). The results show the super-resolution up to λ/3000, for the system loaded with the perfect drain, and up to λ /500 for a not perfect load. In both cases super-resolution only happens for discrete number of frequencies. Out of these frequencies, the SGW does not show super-resolution in the analysis carried out.

  14. SINGLE FRAME SUPER RESOLUTION OF NONCOOPERATIVE IRIS IMAGES

    Directory of Open Access Journals (Sweden)

    Anand Deshpande

    2016-11-01

    Full Text Available Image super-resolution, a process to enhance image resolution, has important applications in biometrics, satellite imaging, high definition television, medical imaging, etc. The long range captured iris identification systems often suffer from low resolution and meager focus of the captured iris images. These degrade the iris recognition performance. This paper proposes enhanced iterated back projection (EIBP method to super resolute the long range captured iris polar images. The performance of proposed method is tested and analyzed on CASIA long range iris database by comparing peak signal to noise ratio (PSNR and structural similarity index (SSIM with state-of-the-art super resolution (SR algorithms. It is further analyzed by increasing the up-sampling factor. Performance analysis shows that the proposed method is superior to state-of-the-art algorithms, the peak signal-to-noise ratio improved about 0.1-1.5 dB. The results demonstrate that the proposed method is well suited to super resolve the iris polar images captured at a long distance

  15. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy.

    Science.gov (United States)

    Siegel, Nisan; Brooker, Gary

    2014-09-22

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".

  16. Performance Evaluations for Super-Resolution Mosaicing on UAS Surveillance Videos

    Directory of Open Access Journals (Sweden)

    Aldo Camargo

    2013-05-01

    Full Text Available Abstract Unmanned Aircraft Systems (UAS have been widely applied for reconnaissance and surveillance by exploiting information collected from the digital imaging payload. The super-resolution (SR mosaicing of low-resolution (LR UAS surveillance video frames has become a critical requirement for UAS video processing and is important for further effective image understanding. In this paper we develop a novel super-resolution framework, which does not require the construction of sparse matrices. The proposed method implements image operations in the spatial domain and applies an iterated back-projection to construct super-resolution mosaics from the overlapping UAS surveillance video frames. The Steepest Descent method, the Conjugate Gradient method and the Levenberg-Marquardt algorithm are used to numerically solve the nonlinear optimization problem for estimating a super-resolution mosaic. A quantitative performance comparison in terms of computation time and visual quality of the super-resolution mosaics through the three numerical techniques is presented.

  17. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope.

    Science.gov (United States)

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  18. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope

    International Nuclear Information System (INIS)

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-01-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope

  19. Single Image Super Resolution via Sparse Reconstruction

    NARCIS (Netherlands)

    Kruithof, M.C.; Eekeren, A.W.M. van; Dijk, J.; Schutte, K.

    2012-01-01

    High resolution sensors are required for recognition purposes. Low resolution sensors, however, are still widely used. Software can be used to increase the resolution of such sensors. One way of increasing the resolution of the images produced is using multi-frame super resolution algorithms.

  20. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.

  1. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    Science.gov (United States)

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  2. Overcoming Registration Uncertainty in Image Super-Resolution: Maximize or Marginalize?

    Directory of Open Access Journals (Sweden)

    Andrew Zisserman

    2007-01-01

    Full Text Available In multiple-image super-resolution, a high-resolution image is estimated from a number of lower-resolution images. This usually involves computing the parameters of a generative imaging model (such as geometric and photometric registration, and blur and obtaining a MAP estimate by minimizing a cost function including an appropriate prior. Two alternative approaches are examined. First, both registrations and the super-resolution image are found simultaneously using a joint MAP optimization. Second, we perform Bayesian integration over the unknown image registration parameters, deriving a cost function whose only variables of interest are the pixel values of the super-resolution image. We also introduce a scheme to learn the parameters of the image prior as part of the super-resolution algorithm. We show examples on a number of real sequences including multiple stills, digital video, and DVDs of movies.

  3. Adaptive Markov Random Fields for Example-Based Super-resolution of Faces

    Directory of Open Access Journals (Sweden)

    Stephenson Todd A

    2006-01-01

    Full Text Available Image enhancement of low-resolution images can be done through methods such as interpolation, super-resolution using multiple video frames, and example-based super-resolution. Example-based super-resolution, in particular, is suited to images that have a strong prior (for those frameworks that work on only a single image, it is more like image restoration than traditional, multiframe super-resolution. For example, hallucination and Markov random field (MRF methods use examples drawn from the same domain as the image being enhanced to determine what the missing high-frequency information is likely to be. We propose to use even stronger prior information by extending MRF-based super-resolution to use adaptive observation and transition functions, that is, to make these functions region-dependent. We show with face images how we can adapt the modeling for each image patch so as to improve the resolution.

  4. Adaptive Markov Random Fields for Example-Based Super-resolution of Faces

    Science.gov (United States)

    Stephenson, Todd A.; Chen, Tsuhan

    2006-12-01

    Image enhancement of low-resolution images can be done through methods such as interpolation, super-resolution using multiple video frames, and example-based super-resolution. Example-based super-resolution, in particular, is suited to images that have a strong prior (for those frameworks that work on only a single image, it is more like image restoration than traditional, multiframe super-resolution). For example, hallucination and Markov random field (MRF) methods use examples drawn from the same domain as the image being enhanced to determine what the missing high-frequency information is likely to be. We propose to use even stronger prior information by extending MRF-based super-resolution to use adaptive observation and transition functions, that is, to make these functions region-dependent. We show with face images how we can adapt the modeling for each image patch so as to improve the resolution.

  5. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    Science.gov (United States)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  6. Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria.

    Science.gov (United States)

    Wheeler, Richard; Mesnage, Stéphane; Boneca, Ivo G; Hobbs, Jamie K; Foster, Simon J

    2011-12-01

    Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms. © 2011 Blackwell Publishing Ltd.

  7. Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy

    OpenAIRE

    Traenkle, Bjoern; Rothbauer, Ulrich

    2017-01-01

    Single-domain antibodies (sdAbs) have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies)...

  8. Super-resolution imaging of a 2.5 kb non-repetitive DNA in situ in the nuclear genome using molecular beacon probes

    Science.gov (United States)

    Ni, Yanxiang; Cao, Bo; Ma, Tszshan; Niu, Gang; Huo, Yingdong; Huang, Jiandong; Chen, Danni; Liu, Yi; Yu, Bin; Zhang, Michael Q; Niu, Hanben

    2017-01-01

    High-resolution visualization of short non-repetitive DNA in situ in the nuclear genome is essential for studying looping interactions and chromatin organization in single cells. Recent advances in fluorescence in situ hybridization (FISH) using Oligopaint probes have enabled super-resolution imaging of genomic domains with a resolution limit of 4.9 kb. To target shorter elements, we developed a simple FISH method that uses molecular beacon (MB) probes to facilitate the probe-target binding, while minimizing non-specific fluorescence. We used three-dimensional stochastic optical reconstruction microscopy (3D-STORM) with optimized imaging conditions to efficiently distinguish sparsely distributed Alexa-647 from background cellular autofluorescence. Utilizing 3D-STORM and only 29–34 individual MB probes, we observed 3D fine-scale nanostructures of 2.5 kb integrated or endogenous unique DNA in situ in human or mouse genome, respectively. We demonstrated our MB-based FISH method was capable of visualizing the so far shortest non-repetitive genomic sequence in 3D at super-resolution. DOI: http://dx.doi.org/10.7554/eLife.21660.001 PMID:28485713

  9. Shedding light on endocytosis with optimized super-resolution microscopy

    NARCIS (Netherlands)

    Leyton Puig, D.M.

    2017-01-01

    Super-resolution microscopy is a relatively new microscopy technique that is still under optimization. In this thesis we focus on the improvement of the quality of super-resolution images, to apply them to the study of the processes of cell signaling and endocytosis. First, we show that the use of a

  10. 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues.

    Directory of Open Access Journals (Sweden)

    David Baddeley

    Full Text Available BACKGROUND: Optical super-resolution imaging of fluorescently stained biological samples is rapidly becoming an important tool to investigate protein distribution at the molecular scale. It is therefore important to develop practical super-resolution methods that allow capturing the full three-dimensional nature of biological systems and also can visualize multiple protein species in the same sample. METHODOLOGY/PRINCIPAL FINDINGS: We show that the use of a combination of conventional near-infrared dyes, such as Alexa 647, Alexa 680 and Alexa 750, all excited with a 671 nm diode laser, enables 3D multi-colour super-resolution imaging of complex biological samples. Optically thick samples, including human tissue sections, cardiac rat myocytes and densely grown neuronal cultures were imaged with lateral resolutions of ∼15 nm (std. dev. while reducing marker cross-talk to <1%. Using astigmatism an axial resolution of ∼65 nm (std. dev. was routinely achieved. The number of marker species that can be distinguished depends on the mean photon number of single molecule events. With the typical photon yields from Alexa 680 of ∼2000 up to 5 markers may in principle be resolved with <2% crosstalk. CONCLUSIONS/SIGNIFICANCE: Our approach is based entirely on the use of conventional, commercially available markers and requires only a single laser. It provides a very straightforward way to investigate biological samples at the nanometre scale and should help establish practical 4D super-resolution microscopy as a routine research tool in many laboratories.

  11. Super-resolution for scanning light stimulation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bitzer, L. A.; Neumann, K.; Benson, N., E-mail: niels.benson@uni-due.de; Schmechel, R. [Faculty of Engineering, NST and CENIDE, University of Duisburg-Essen, Bismarckstr. 81, 47057 Duisburg (Germany)

    2016-09-15

    Super-resolution (SR) is a technique used in digital image processing to overcome the resolution limitation of imaging systems. In this process, a single high resolution image is reconstructed from multiple low resolution images. SR is commonly used for CCD and CMOS (Complementary Metal-Oxide-Semiconductor) sensor images, as well as for medical applications, e.g., magnetic resonance imaging. Here, we demonstrate that super-resolution can be applied with scanning light stimulation (LS) systems, which are common to obtain space-resolved electro-optical parameters of a sample. For our purposes, the Projection Onto Convex Sets (POCS) was chosen and modified to suit the needs of LS systems. To demonstrate the SR adaption, an Optical Beam Induced Current (OBIC) LS system was used. The POCS algorithm was optimized by means of OBIC short circuit current measurements on a multicrystalline solar cell, resulting in a mean square error reduction of up to 61% and improved image quality.

  12. Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.

    Science.gov (United States)

    Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L

    2017-06-14

    Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.

  13. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-06-12

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.

  14. Improved Interpolation Kernels for Super-resolution Algorithms

    DEFF Research Database (Denmark)

    Rasti, Pejman; Orlova, Olga; Tamberg, Gert

    2016-01-01

    Super resolution (SR) algorithms are widely used in forensics investigations to enhance the resolution of images captured by surveillance cameras. Such algorithms usually use a common interpolation algorithm to generate an initial guess for the desired high resolution (HR) image. This initial guess...... when their original interpolation kernel is replaced by the ones introduced in this work....

  15. Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities.

    Science.gov (United States)

    Hauser, Meghan; Wojcik, Michal; Kim, Doory; Mahmoudi, Morteza; Li, Wan; Xu, Ke

    2017-06-14

    Correlative microscopy, the integration of two or more microscopy techniques performed on the same sample, produces results that emphasize the strengths of each technique while offsetting their individual weaknesses. Light microscopy has historically been a central method in correlative microscopy due to its widespread availability, compatibility with hydrated and live biological samples, and excellent molecular specificity through fluorescence labeling. However, conventional light microscopy can only achieve a resolution of ∼300 nm, undercutting its advantages in correlations with higher-resolution methods. The rise of super-resolution microscopy (SRM) over the past decade has drastically improved the resolution of light microscopy to ∼10 nm, thus creating exciting new opportunities and challenges for correlative microscopy. Here we review how these challenges are addressed to effectively correlate SRM with other microscopy techniques, including light microscopy, electron microscopy, cryomicroscopy, atomic force microscopy, and various forms of spectroscopy. Though we emphasize biological studies, we also discuss the application of correlative SRM to materials characterization and single-molecule reactions. Finally, we point out current limitations and discuss possible future improvements and advances. We thus demonstrate how a correlative approach adds new dimensions of information and provides new opportunities in the fast-growing field of SRM.

  16. Comparison of super-resolution benefits for downsampled iages and real low-resolution data

    NARCIS (Netherlands)

    Peng, Y.; Spreeuwers, Lieuwe Jan; Gökberk, B.; Veldhuis, Raymond N.J.

    2013-01-01

    Recently, more and more researchers are exploring the benefits of super-resolution methods on low-resolution face recognition. However, often results presented are obtained on downsampled high-resolution face images. Because downsampled images are different from real images taken at low resolution,

  17. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo; Coluccio, Maria Laura; Alabastri, Alessandro; Barberio, Marianna; Causa, Filippo; Netti, Paolo Antonio; Di Fabrizio, Enzo M.; Gentile, Francesco

    2016-01-01

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  18. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo

    2016-12-15

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  19. Underwater video enhancement using multi-camera super-resolution

    Science.gov (United States)

    Quevedo, E.; Delory, E.; Callicó, G. M.; Tobajas, F.; Sarmiento, R.

    2017-12-01

    Image spatial resolution is critical in several fields such as medicine, communications or satellite, and underwater applications. While a large variety of techniques for image restoration and enhancement has been proposed in the literature, this paper focuses on a novel Super-Resolution fusion algorithm based on a Multi-Camera environment that permits to enhance the quality of underwater video sequences without significantly increasing computation. In order to compare the quality enhancement, two objective quality metrics have been used: PSNR (Peak Signal-to-Noise Ratio) and the SSIM (Structural SIMilarity) index. Results have shown that the proposed method enhances the objective quality of several underwater sequences, avoiding the appearance of undesirable artifacts, with respect to basic fusion Super-Resolution algorithms.

  20. Introduction to the virtual special issue on super-resolution imaging techniques

    Science.gov (United States)

    Cao, Liangcai; Liu, Zhengjun

    2017-12-01

    Until quite recently, the resolution of optical imaging instruments, including telescopes, cameras and microscopes, was considered to be limited by the diffraction of light and by image sensors. In the past few years, many exciting super-resolution approaches have emerged that demonstrate intriguing ways to bypass the classical limit in optics and detectors. More and more research groups are engaged in the study of advanced super-resolution schemes, devices, algorithms, systems, and applications [1-6]. Super-resolution techniques involve new methods in science and engineering of optics [7,8], measurements [9,10], chemistry [11,12] and information [13,14]. Promising applications, particularly in biomedical research and semiconductor industry, have been successfully demonstrated.

  1. A Microfluidic Platform for Correlative Live-Cell and Super-Resolution Microscopy

    Science.gov (United States)

    Tam, Johnny; Cordier, Guillaume Alan; Bálint, Štefan; Sandoval Álvarez, Ángel; Borbely, Joseph Steven; Lakadamyali, Melike

    2014-01-01

    Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM) have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images. PMID:25545548

  2. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: A practical comparison.

    Science.gov (United States)

    Wegel, Eva; Göhler, Antonia; Lagerholm, B Christoffer; Wainman, Alan; Uphoff, Stephan; Kaufmann, Rainer; Dobbie, Ian M

    2016-06-06

    Many biological questions require fluorescence microscopy with a resolution beyond the diffraction limit of light. Super-resolution methods such as Structured Illumination Microscopy (SIM), STimulated Emission Depletion (STED) microscopy and Single Molecule Localisation Microscopy (SMLM) enable an increase in image resolution beyond the classical diffraction-limit. Here, we compare the individual strengths and weaknesses of each technique by imaging a variety of different subcellular structures in fixed cells. We chose examples ranging from well separated vesicles to densely packed three dimensional filaments. We used quantitative and correlative analyses to assess the performance of SIM, STED and SMLM with the aim of establishing a rough guideline regarding the suitability for typical applications and to highlight pitfalls associated with the different techniques.

  3. SuperSegger

    DEFF Research Database (Denmark)

    Stylianidou, Stella; Brennan, Connor; Nissen, Silas B

    2016-01-01

    -colonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter, and neighboring cells......Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well......-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment micro...

  4. Super resolution PLIF demonstrated in turbulent jet flows seeded with I2

    Science.gov (United States)

    Xu, Wenjiang; Liu, Ning; Ma, Lin

    2018-05-01

    Planar laser induced fluorescence (PLIF) represents an indispensable tool for flow and flame imaging. However, the PLIF technique suffers from limited spatial resolution or blurring in many situations, which restricts its applicability and capability. This work describes a new method, named SR-PLIF (super-resolution PLIF), to overcome these limitations and enhance the capability of PLIF. The method uses PLIF images captured simultaneously from two (or more) orientations to reconstruct a final PLIF image with resolution enhanced or blurring removed. This paper reports the development of the reconstruction algorithm, and the experimental demonstration of the SR-PLIF method both with controlled samples and with turbulent flows seeded with iodine vapor. Using controlled samples with two cameras, the spatial resolution in the best case was improved from 0.06 mm in the projections to 0.03 mm in the SR image, in terms of the spreading width of a sharp edge. With turbulent flows, an image sharpness measure was developed to quantify the spatial resolution, and SR reconstruction with two cameras can effectively improve the spatial resolution compared to the projections in terms of the sharpness measure.

  5. Magnetic Resonance Super-resolution Imaging Measurement with Dictionary-optimized Sparse Learning

    Directory of Open Access Journals (Sweden)

    Li Jun-Bao

    2017-06-01

    Full Text Available Magnetic Resonance Super-resolution Imaging Measurement (MRIM is an effective way of measuring materials. MRIM has wide applications in physics, chemistry, biology, geology, medical and material science, especially in medical diagnosis. It is feasible to improve the resolution of MR imaging through increasing radiation intensity, but the high radiation intensity and the longtime of magnetic field harm the human body. Thus, in the practical applications the resolution of hardware imaging reaches the limitation of resolution. Software-based super-resolution technology is effective to improve the resolution of image. This work proposes a framework of dictionary-optimized sparse learning based MR super-resolution method. The framework is to solve the problem of sample selection for dictionary learning of sparse reconstruction. The textural complexity-based image quality representation is proposed to choose the optimal samples for dictionary learning. Comprehensive experiments show that the dictionary-optimized sparse learning improves the performance of sparse representation.

  6. Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy

    Science.gov (United States)

    2018-01-01

    Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers’ structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution. PMID:29697958

  7. Temporal super resolution using variational methods

    DEFF Research Database (Denmark)

    Keller, Sune Høgild; Lauze, Francois Bernard; Nielsen, Mads

    2010-01-01

    Temporal super resolution (TSR) is the ability to convert video from one frame rate to another and is as such a key functionality in modern video processing systems. A higher frame rate than what is recorded is desired for high frame rate displays, for super slow-motion, and for video/film format...... observed when watching video on large and bright displays where the motion of high contrast edges often seem jerky and unnatural. A novel motion compensated (MC) TSR algorithm using variational methods for both optical flow calculation and the actual new frame interpolation is presented. The flow...

  8. Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis.

    Science.gov (United States)

    Lee, Antony; Tsekouras, Konstantinos; Calderon, Christopher; Bustamante, Carlos; Pressé, Steve

    2017-06-14

    Super-resolution microscopy provides direct insight into fundamental biological processes occurring at length scales smaller than light's diffraction limit. The analysis of data at such scales has brought statistical and machine learning methods into the mainstream. Here we provide a survey of data analysis methods starting from an overview of basic statistical techniques underlying the analysis of super-resolution and, more broadly, imaging data. We subsequently break down the analysis of super-resolution data into four problems: the localization problem, the counting problem, the linking problem, and what we've termed the interpretation problem.

  9. Simultaneous super-resolution and blind deconvolution

    International Nuclear Information System (INIS)

    Sroubek, F; Flusser, J; Cristobal, G

    2008-01-01

    In many real applications, blur in input low-resolution images is a nuisance, which prevents traditional super-resolution methods from working correctly. This paper presents a unifying approach to the blind deconvolution and superresolution problem of multiple degraded low-resolution frames of the original scene. We introduce a method which assumes no prior information about the shape of degradation blurs and which is properly defined for any rational (fractional) resolution factor. The method minimizes a regularized energy function with respect to the high-resolution image and blurs, where regularization is carried out in both the image and blur domains. The blur regularization is based on a generalized multichannel blind deconvolution constraint. Experiments on real data illustrate robustness and utilization of the method

  10. Low-Cost Super-Resolution Algorithms Implementation Over a HW/SW Video Compression Platform

    Directory of Open Access Journals (Sweden)

    Llopis Rafael Peset

    2006-01-01

    Full Text Available Two approaches are presented in this paper to improve the quality of digital images over the sensor resolution using super-resolution techniques: iterative super-resolution (ISR and noniterative super-resolution (NISR algorithms. The results show important improvements in the image quality, assuming that sufficient sample data and a reasonable amount of aliasing are available at the input images. These super-resolution algorithms have been implemented over a codesign video compression platform developed by Philips Research, performing minimal changes on the overall hardware architecture. In this way, a novel and feasible low-cost implementation has been obtained by using the resources encountered in a generic hybrid video encoder. Although a specific video codec platform has been used, the methodology presented in this paper is easily extendable to any other video encoder architectures. Finally a comparison in terms of memory, computational load, and image quality for both algorithms, as well as some general statements about the final impact of the sampling process on the quality of the super-resolved (SR image, are also presented.

  11. Application of Super-Resolution Image Reconstruction to Digital Holography

    Directory of Open Access Journals (Sweden)

    Zhang Shuqun

    2006-01-01

    Full Text Available We describe a new application of super-resolution image reconstruction to digital holography which is a technique for three-dimensional information recording and reconstruction. Digital holography has suffered from the low resolution of CCD sensors, which significantly limits the size of objects that can be recorded. The existing solution to this problem is to use optics to bandlimit the object to be recorded, which can cause the loss of details. Here super-resolution image reconstruction is proposed to be applied in enhancing the spatial resolution of digital holograms. By introducing a global camera translation before sampling, a high-resolution hologram can be reconstructed from a set of undersampled hologram images. This permits the recording of larger objects and reduces the distance between the object and the hologram. Practical results from real and simulated holograms are presented to demonstrate the feasibility of the proposed technique.

  12. Super-resolution optical microscopy resolves network morphology of smart colloidal microgels.

    Science.gov (United States)

    Bergmann, Stephan; Wrede, Oliver; Huser, Thomas; Hellweg, Thomas

    2018-02-14

    We present a new method to resolve the network morphology of colloidal particles in an aqueous environment via super-resolution microscopy. By localization of freely diffusing fluorophores inside the particle network we can resolve the three dimensional structure of one species of colloidal particles (thermoresponsive microgels) without altering their chemical composition through copolymerization with fluorescent monomers. Our approach utilizes the interaction of the fluorescent dye rhodamine 6G with the polymer network to achieve an indirect labeling. We calculate the 3D structure from the 2D images and compare the structure to previously published models for the microgel morphology, e.g. the fuzzy sphere model. To describe the differences in the data an extension of this model is suggested. Our method enables the tailor-made fabrication of colloidal particles which are used in various applications, such as paints or cosmetics, and are promising candidates for drug delivery, smart surface coatings, and nanocatalysis. With the precise knowledge of the particle morphology an understanding of the underlying structure-property relationships for various colloidal systems is possible.

  13. Super-resolution in plenoptic cameras using FPGAs.

    Science.gov (United States)

    Pérez, Joel; Magdaleno, Eduardo; Pérez, Fernando; Rodríguez, Manuel; Hernández, David; Corrales, Jaime

    2014-05-16

    Plenoptic cameras are a new type of sensor that extend the possibilities of current commercial cameras allowing 3D refocusing or the capture of 3D depths. One of the limitations of plenoptic cameras is their limited spatial resolution. In this paper we describe a fast, specialized hardware implementation of a super-resolution algorithm for plenoptic cameras. The algorithm has been designed for field programmable graphic array (FPGA) devices using VHDL (very high speed integrated circuit (VHSIC) hardware description language). With this technology, we obtain an acceleration of several orders of magnitude using its extremely high-performance signal processing capability through parallelism and pipeline architecture. The system has been developed using generics of the VHDL language. This allows a very versatile and parameterizable system. The system user can easily modify parameters such as data width, number of microlenses of the plenoptic camera, their size and shape, and the super-resolution factor. The speed of the algorithm in FPGA has been successfully compared with the execution using a conventional computer for several image sizes and different 3D refocusing planes.

  14. Super-Resolution in Plenoptic Cameras Using FPGAs

    Directory of Open Access Journals (Sweden)

    Joel Pérez

    2014-05-01

    Full Text Available Plenoptic cameras are a new type of sensor that extend the possibilities of current commercial cameras allowing 3D refocusing or the capture of 3D depths. One of the limitations of plenoptic cameras is their limited spatial resolution. In this paper we describe a fast, specialized hardware implementation of a super-resolution algorithm for plenoptic cameras. The algorithm has been designed for field programmable graphic array (FPGA devices using VHDL (very high speed integrated circuit (VHSIC hardware description language. With this technology, we obtain an acceleration of several orders of magnitude using its extremely high-performance signal processing capability through parallelism and pipeline architecture. The system has been developed using generics of the VHDL language. This allows a very versatile and parameterizable system. The system user can easily modify parameters such as data width, number of microlenses of the plenoptic camera, their size and shape, and the super-resolution factor. The speed of the algorithm in FPGA has been successfully compared with the execution using a conventional computer for several image sizes and different 3D refocusing planes.

  15. An Example-Based Super-Resolution Algorithm for Selfie Images

    Directory of Open Access Journals (Sweden)

    Jino Hans William

    2016-01-01

    Full Text Available A selfie is typically a self-portrait captured using the front camera of a smartphone. Most state-of-the-art smartphones are equipped with a high-resolution (HR rear camera and a low-resolution (LR front camera. As selfies are captured by front camera with limited pixel resolution, the fine details in it are explicitly missed. This paper aims to improve the resolution of selfies by exploiting the fine details in HR images captured by rear camera using an example-based super-resolution (SR algorithm. HR images captured by rear camera carry significant fine details and are used as an exemplar to train an optimal matrix-value regression (MVR operator. The MVR operator serves as an image-pair priori which learns the correspondence between the LR-HR patch-pairs and is effectively used to super-resolve LR selfie images. The proposed MVR algorithm avoids vectorization of image patch-pairs and preserves image-level information during both learning and recovering process. The proposed algorithm is evaluated for its efficiency and effectiveness both qualitatively and quantitatively with other state-of-the-art SR algorithms. The results validate that the proposed algorithm is efficient as it requires less than 3 seconds to super-resolve LR selfie and is effective as it preserves sharp details without introducing any counterfeit fine details.

  16. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Ziomkiewicz, Iwona; Schulz, Alexander

    2013-01-01

    of cellulose fibril orientation and growth. The fluorescent dye Pontamine Fast Scarlet 4BS (PFS) was shown to stain cellulose with high specificity and could be used to visualize cellulose bundles in cell walls of Arabidopsis root epidermal cells with confocal microscopy. The resolution limit of confocal...... present the first super-resolution images of cellulose bundles in the plant cell wall produced by direct stochastic optical reconstruction microscopy (dSTORM) in combination with total internal reflection fluorescence (TIRF) microscopy. Since TIRF limits observation to the cell surface, we tested...... as alternatives 3D-structured illumination microscopy (3D-SIM) and confocal microscopy, combined with image deconvolution. Both methods offer lower resolution than STORM, but enable 3D imaging. While 3D-SIM produced strong artifacts, deconvolution gave good results. The resolution was improved over conventional...

  17. Finite detector based projection model for super resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hengyong; Wang, Ge [Wake Forest Univ. Health Sciences, Winston-Salem, NC (United States). Dept. of Radiology; Virgina Tech, Blacksburg, VA (United States). Biomedical Imaging Div.

    2011-07-01

    For finite detector and focal spot sizes, here we propose a projection model for super resolution CT. First, for a given X-ray source point, a projection datum is modeled as an area integral over a narrow fan-beam connecting the detector elemental borders and the X-ray source point. Then, the final projection value is expressed as the integral obtained in the first step over the whole focal spot support. An ordered-subset simultaneous algebraic reconstruction technique (OS-SART) is developed using the proposed projection model. In the numerical simulation, our method produces super spatial resolution and suppresses high-frequency artifacts. (orig.)

  18. Signal Characteristics of Super-Resolution Near-Field Structure Disks with 100 GB Capacity

    Science.gov (United States)

    Kim, Jooho; Hwang, Inoh; Kim, Hyunki; Park, Insik; Tominaga, Junji

    2005-05-01

    We report the basic characteristics of super resolution near-field structure (Super-RENS) media at a blue laser optical system (laser wavelength 405 nm, numerical aperture 0.85). Using a novel write once read many (WORM) structure for a blue laser system, we obtained a carrier-to-noise ratio (CNR) above 33 dB from the signal of the 37.5 nm mark length, which is equivalent to a 100 GB capacity with a 0.32 micrometer track pitch, and an eye pattern for 50 GB (2T: 75 nm) capacity using a patterned signal. Using a novel super-resolution material (tellurium, Te) with low super-resolution readout power, we also improved the read stability.

  19. Flexible non-diffractive vortex microscope for three-dimensional depth-enhanced super-localization of dielectric, metal and fluorescent nanoparticles

    Science.gov (United States)

    Bouchal, Petr; Bouchal, Zdeněk

    2017-10-01

    In the past decade, probe-based super-resolution using temporally resolved localization of emitters became a groundbreaking imaging strategy in fluorescence microscopy. Here we demonstrate a non-diffractive vortex microscope (NVM), enabling three-dimensional super-resolution fluorescence imaging and localization and tracking of metal and dielectric nanoparticles. The NVM benefits from vortex non-diffractive beams (NBs) creating a double-helix point spread function that rotates under defocusing while maintaining its size and shape unchanged. Using intrinsic properties of the NBs, the dark-field localization of weakly scattering objects is achieved in a large axial range exceeding the depth of field of the microscope objective up to 23 times. The NVM was developed using an upright microscope Nikon Eclipse E600 operating with a spiral lithographic mask optimized using Fisher information and built into an add-on imaging module or microscope objective. In evaluation of the axial localization accuracy the root mean square error below 18 nm and 280 nm was verified over depth ranges of 3.5 μm and 13.6 μm, respectively. Subwavelength gold and polystyrene beads were localized with isotropic precision below 10 nm in the axial range of 3.5 μm and the axial precision reduced to 30 nm in the extended range of 13.6 μm. In the fluorescence imaging, the localization with isotropic precision below 15 nm was demonstrated in the range of 2.5 μm, whereas in the range of 8.3 μm, the precision of 15 nm laterally and 30-50 nm axially was achieved. The tracking of nanoparticles undergoing Brownian motion was demonstrated in the volume of 14 × 10 × 16 μm3. Applicability of the NVM was tested by fluorescence imaging of LW13K2 cells and localization of cellular proteins.

  20. Field-portable pixel super-resolution colour microscope.

    Directory of Open Access Journals (Sweden)

    Alon Greenbaum

    Full Text Available Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2. This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.

  1. Generation of super-resolution stills from video

    CSIR Research Space (South Africa)

    Duvenhage, B

    2014-11-01

    Full Text Available plane. If one accurately registers the image of the target on the focal plane to some reference then one can increase the effective sensor pixel density by stacking or appropriately combining the registered images. The super-resolution technique operates...

  2. Far-field super-resolution imaging of resonant multiples

    KAUST Repository

    Guo, Bowen

    2016-05-20

    We demonstrate for the first time that seismic resonant multiples, usually considered as noise, can be used for super-resolution imaging in the far-field region of sources and receivers. Tests with both synthetic data and field data show that resonant multiples can image reflector boundaries with resolutions more than twice the classical resolution limit. Resolution increases with the order of the resonant multiples. This procedure has important applications in earthquake and exploration seismology, radar, sonar, LIDAR (light detection and ranging), and ultrasound imaging, where the multiples can be used to make high-resolution images.

  3. Multi-frame super-resolution with quality self-assessment for retinal fundus videos.

    Science.gov (United States)

    Köhler, Thomas; Brost, Alexander; Mogalle, Katja; Zhang, Qianyi; Köhler, Christiane; Michelson, Georg; Hornegger, Joachim; Tornow, Ralf P

    2014-01-01

    This paper proposes a novel super-resolution framework to reconstruct high-resolution fundus images from multiple low-resolution video frames in retinal fundus imaging. Natural eye movements during an examination are used as a cue for super-resolution in a robust maximum a-posteriori scheme. In order to compensate heterogeneous illumination on the fundus, we integrate retrospective illumination correction for photometric registration to the underlying imaging model. Our method utilizes quality self-assessment to provide objective quality scores for reconstructed images as well as to select regularization parameters automatically. In our evaluation on real data acquired from six human subjects with a low-cost video camera, the proposed method achieved considerable enhancements of low-resolution frames and improved noise and sharpness characteristics by 74%. In terms of image analysis, we demonstrate the importance of our method for the improvement of automatic blood vessel segmentation as an example application, where the sensitivity was increased by 13% using super-resolution reconstruction.

  4. New learning based super-resolution: use of DWT and IGMRF prior.

    Science.gov (United States)

    Gajjar, Prakash P; Joshi, Manjunath V

    2010-05-01

    In this paper, we propose a new learning-based approach for super-resolving an image captured at low spatial resolution. Given the low spatial resolution test image and a database consisting of low and high spatial resolution images, we obtain super-resolution for the test image. We first obtain an initial high-resolution (HR) estimate by learning the high-frequency details from the available database. A new discrete wavelet transform (DWT) based approach is proposed for learning that uses a set of low-resolution (LR) images and their corresponding HR versions. Since the super-resolution is an ill-posed problem, we obtain the final solution using a regularization framework. The LR image is modeled as the aliased and noisy version of the corresponding HR image, and the aliasing matrix entries are estimated using the test image and the initial HR estimate. The prior model for the super-resolved image is chosen as an Inhomogeneous Gaussian Markov random field (IGMRF) and the model parameters are estimated using the same initial HR estimate. A maximum a posteriori (MAP) estimation is used to arrive at the cost function which is minimized using a simple gradient descent approach. We demonstrate the effectiveness of the proposed approach by conducting the experiments on gray scale as well as on color images. The method is compared with the standard interpolation technique and also with existing learning-based approaches. The proposed approach can be used in applications such as wildlife sensor networks, remote surveillance where the memory, the transmission bandwidth, and the camera cost are the main constraints.

  5. Robust microbubble tracking for super resolution imaging in ultrasound

    DEFF Research Database (Denmark)

    Hansen, Kristoffer B.; Villagómez Hoyos, Carlos Armando; Brasen, Jens Christian

    2016-01-01

    Currently ultrasound resolution is limited by diffraction to approximately half the wavelength of the sound wave employed. In recent years, super resolution imaging techniques have overcome the diffraction limit through the localization and tracking of a sparse set of microbubbles through...... the vasculature. However, this has only been performed on fixated tissue, limiting its clinical application. This paper proposes a technique for making super resolution images on non-fixated tissue by first compensating for tissue movement and then tracking the individual microbubbles. The experiment is performed...... on the kidney of a anesthetized Sprage-Dawley rat by infusing SonoVue at 0.1× original concentration. The algorithm demonstrated in vivo that the motion compensation was capable of removing the movement caused by the mechanical ventilator. The results shows that microbubbles were localized with a higher...

  6. New device based on the super spatial resolution (SSR) method

    International Nuclear Information System (INIS)

    Soluri, A.; Atzeni, G.; Ucci, A.; Bellone, T.; Cusanno, F.; Rodilossi, G.; Massari, R.

    2013-01-01

    Recently it have been described that innovative methods, namely Super Spatial Resolution (SSR), can be used to improve the scintigraphic imaging. The aim of SSR techniques is the enhancement of the resolution of an imaging system, using information from several images. In this paper we describe a new experimental apparatus that could be used for molecular imaging and small animal imaging. In fact we present a new device, completely automated, that uses the SSR method and provides images with better spatial resolution in comparison to the original resolution. Preliminary small animal imaging studies confirm the feasibility of a very high resolution system in scintigraphic imaging and the possibility to have gamma cameras using the SSR method, to perform the applications on functional imaging. -- Highlights: • Super spatial resolution brings a high resolution image from scintigraphic images. • Resolution improvement depends on the signal to noise ratio of the original images. • The SSR shows significant improvement on spatial resolution in scintigraphic images. • The SSR method is potentially utilizable for all scintigraphic devices

  7. Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-Resolution Microscopy.

    Science.gov (United States)

    Grimm, Jonathan B; Klein, Teresa; Kopek, Benjamin G; Shtengel, Gleb; Hess, Harald F; Sauer, Markus; Lavis, Luke D

    2016-01-26

    The rhodamine system is a flexible framework for building small-molecule fluorescent probes. Changing N-substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si-containing analogue of Q-rhodamine. This probe is the first example of a "caged" Si-rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red-shifted to allow multicolor imaging. The dye is a useful label for super-resolution imaging and constitutes a new scaffold for far-red fluorogenic molecules. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Super-virtual interferometric diffractions as guide stars

    KAUST Repository

    Dai, Wei

    2011-01-01

    A significant problem in seismic imaging is seismically seeing below salt structures: large velocity contrasts and the irregular geometry of the salt-sediment interface strongly defocus both the downgoing and upgoing seismic wavefields. This can result in severely defocused migration images so as to seismically render some subsalt reserves invisible. The potential cure is a good estimate of the subsalt and salt velocity distributions, but that is also the problem: severe velocity contrasts prevent the appearance of coherent subsalt reflections in the surface records so that MVA or tomographic methods can become ineffective. We now present an interferometric method for extracting the diffraction signals that emanate from diffractors, also denoted as seismic guide stars. The signal-to-noise ratio of these interferometric diffractions is enhanced by N, where N is the number of source points coincident with the receiver points. Thus, diffractions from subsalt guide stars can then be rendered visible and so can be used for velocity analysis, migration, and focusing of subsalt reflections. Both synthetic and field data records are used to demonstrate the benefits and limitations of this method. © 2011 Society of Exploration Geophysicists.

  9. Low-Power Super-resolution Readout with Antimony Bismuth Alloy Film as Mask layer

    International Nuclear Information System (INIS)

    Lai-Xin, Jiang; Yi-Qun, Wu; Yang, Wang; Jing-Song, Wei; Fu-Xi, Gan

    2009-01-01

    Sb–Bi alloy films are proposed as a new kind of super-resolution mask layer with low readout threshold power. Using the Sb–Bi alloy film as a mask layer and SiN as a protective layer in a read-only memory disc, the super-resolution pits with diameters of 380 nm are read out by a dynamic setup, the laser wavelength is 780 nm and the numerical aperture of pickup lens is 0.45. The effects of the Sb–Bi thin film thickness, laser readout power and disc rotating velocity on the readout signal are investigated. The results show that the threshold laser power of super-resolution readout of the Sb–Bi mask layer is about 0.5 mW, and the corresponding carrier-to-noise ratio is about 20 dB at the film thickness of 50 nm. The super-resolution mechanism of the Sb–Bi alloy mask layer is discussed based on its temperature dependence of reflection

  10. Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT.

    Science.gov (United States)

    Umehara, Kensuke; Ota, Junko; Ishida, Takayuki

    2017-10-18

    In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.

  11. Multiband super-resolution imaging of graded-index photonic crystal flat lens

    Science.gov (United States)

    Xie, Jianlan; Wang, Junzhong; Ge, Rui; Yan, Bei; Liu, Exian; Tan, Wei; Liu, Jianjun

    2018-05-01

    Multiband super-resolution imaging of point source is achieved by a graded-index photonic crystal flat lens. With the calculations of six bands in common photonic crystal (CPC) constructed with scatterers of different refractive indices, it can be found that the super-resolution imaging of point source can be realized by different physical mechanisms in three different bands. In the first band, the imaging of point source is based on far-field condition of spherical wave while in the second band, it is based on the negative effective refractive index and exhibiting higher imaging quality than that of the CPC. However, in the fifth band, the imaging of point source is mainly based on negative refraction of anisotropic equi-frequency surfaces. The novel method of employing different physical mechanisms to achieve multiband super-resolution imaging of point source is highly meaningful for the field of imaging.

  12. Brain Slice Staining and Preparation for Three-Dimensional Super-Resolution Microscopy

    Science.gov (United States)

    German, Christopher L.; Gudheti, Manasa V.; Fleckenstein, Annette E.; Jorgensen, Erik M.

    2018-01-01

    Localization microscopy techniques – such as photoactivation localization microscopy (PALM), fluorescent PALM (FPALM), ground state depletion (GSD), and stochastic optical reconstruction microscopy (STORM) – provide the highest precision for single molecule localization currently available. However, localization microscopy has been largely limited to cell cultures due to the difficulties that arise in imaging thicker tissue sections. Sample fixation and antibody staining, background fluorescence, fluorophore photoinstability, light scattering in thick sections, and sample movement create significant challenges for imaging intact tissue. We have developed a sample preparation and image acquisition protocol to address these challenges in rat brain slices. The sample preparation combined multiple fixation steps, saponin permeabilization, and tissue clarification. Together, these preserve intracellular structures, promote antibody penetration, reduce background fluorescence and light scattering, and allow acquisition of images deep in a 30 μm thick slice. Image acquisition challenges were resolved by overlaying samples with a permeable agarose pad and custom-built stainless steel imaging adapter, and sealing the imaging chamber. This approach kept slices flat, immobile, bathed in imaging buffer, and prevented buffer oxidation during imaging. Using this protocol, we consistently obtained single molecule localizations of synaptic vesicle and active zone proteins in three-dimensions within individual synaptic terminals of the striatum in rat brain slices. These techniques may be easily adapted to the preparation and imaging of other tissues, substantially broadening the application of super-resolution imaging. PMID:28924666

  13. Multi-example feature-constrained back-projection method for image super-resolution

    Institute of Scientific and Technical Information of China (English)

    Junlei Zhang; Dianguang Gai; Xin Zhang; Xuemei Li

    2017-01-01

    Example-based super-resolution algorithms,which predict unknown high-resolution image information using a relationship model learnt from known high- and low-resolution image pairs, have attracted considerable interest in the field of image processing. In this paper, we propose a multi-example feature-constrained back-projection method for image super-resolution. Firstly, we take advantage of a feature-constrained polynomial interpolation method to enlarge the low-resolution image. Next, we consider low-frequency images of different resolutions to provide an example pair. Then, we use adaptive k NN search to find similar patches in the low-resolution image for every image patch in the high-resolution low-frequency image, leading to a regression model between similar patches to be learnt. The learnt model is applied to the low-resolution high-frequency image to produce high-resolution high-frequency information. An iterative back-projection algorithm is used as the final step to determine the final high-resolution image.Experimental results demonstrate that our method improves the visual quality of the high-resolution image.

  14. Localization-based super-resolution imaging meets high-content screening.

    Science.gov (United States)

    Beghin, Anne; Kechkar, Adel; Butler, Corey; Levet, Florian; Cabillic, Marine; Rossier, Olivier; Giannone, Gregory; Galland, Rémi; Choquet, Daniel; Sibarita, Jean-Baptiste

    2017-12-01

    Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.

  15. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.

    Science.gov (United States)

    Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di

    2018-03-06

    Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.

  16. Measuring true localization accuracy in super resolution microscopy with DNA-origami nanostructures

    International Nuclear Information System (INIS)

    Reuss, Matthias; Blom, Hans; Brismar, Hjalmar; Fördős, Ferenc; Högberg, Björn; Öktem, Ozan

    2017-01-01

    A common method to assess the performance of (super resolution) microscopes is to use the localization precision of emitters as an estimate for the achieved resolution. Naturally, this is widely used in super resolution methods based on single molecule stochastic switching. This concept suffers from the fact that it is hard to calibrate measures against a real sample (a phantom), because true absolute positions of emitters are almost always unknown. For this reason, resolution estimates are potentially biased in an image since one is blind to true position accuracy, i.e. deviation in position measurement from true positions. We have solved this issue by imaging nanorods fabricated with DNA-origami. The nanorods used are designed to have emitters attached at each end in a well-defined and highly conserved distance. These structures are widely used to gauge localization precision. Here, we additionally determined the true achievable localization accuracy and compared this figure of merit to localization precision values for two common super resolution microscope methods STED and STORM. (paper)

  17. Super-resolution thermographic imaging using blind structured illumination

    Science.gov (United States)

    Burgholzer, Peter; Berer, Thomas; Gruber, Jürgen; Mayr, Günther

    2017-07-01

    Using an infrared camera for thermographic imaging allows the contactless temperature measurement of many surface pixels simultaneously. From the measured surface data, the structure below the surface, embedded inside a sample or tissue, can be reconstructed and imaged, if heated by an excitation light pulse. The main drawback in active thermographic imaging is the degradation of the spatial resolution with the imaging depth, which results in blurred images for deeper lying structures. We circumvent this degradation by using blind structured illumination combined with a non-linear joint sparsity reconstruction algorithm. We demonstrate imaging of a line pattern and a star-shaped structure through a 3 mm thick steel sheet with a resolution four times better than the width of the thermal point-spread-function. The structured illumination is realized by parallel slits cut in an aluminum foil, where the excitation coming from a flashlight can penetrate. This realization of super-resolution thermographic imaging demonstrates that blind structured illumination allows thermographic imaging without high degradation of the spatial resolution for deeper lying structures. The groundbreaking concept of super-resolution can be transferred from optics to diffusive imaging by defining a thermal point-spread-function, which gives the principle resolution limit for a certain signal-to-noise ratio, similar to the Abbe limit for a certain optical wavelength. In future work, the unknown illumination pattern could be the speckle pattern generated by a short laser pulse inside a light scattering sample or tissue.

  18. 3D single-molecule super-resolution microscopy with a tilted light sheet.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-01-09

    Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.

  19. Super-resolution structure of DNA significantly differs in buccal cells of controls and Alzheimer's patients.

    Science.gov (United States)

    Garcia, Angeles; Huang, David; Righolt, Amanda; Righolt, Christiaan; Kalaw, Maria Carmela; Mathur, Shubha; McAvoy, Elizabeth; Anderson, James; Luedke, Angela; Itorralba, Justine; Mai, Sabine

    2017-09-01

    The advent of super-resolution microscopy allowed for new insights into cellular and physiological processes of normal and diseased cells. In this study, we report for the first time on the super-resolved DNA structure of buccal cells from patients with Alzheimer's disease (AD) versus age- and gender-matched healthy, non-caregiver controls. In this super-resolution study cohort of 74 participants, buccal cells were collected and their spatial DNA organization in the nucleus examined by 3D Structured Illumination Microscopy (3D-SIM). Quantitation of the super-resolution DNA structure revealed that the nuclear super-resolution DNA structure of individuals with AD significantly differs from that of their controls (p structure of AD significantly differs in mild, moderate, and severe disease with respect to the DNA-containing and DNA-free/poor spaces. We conclude that whole genome remodeling is a feature of buccal cells in AD. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  20. Fluorescence microscopy.

    Science.gov (United States)

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  1. SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.

    Science.gov (United States)

    Stylianidou, Stella; Brennan, Connor; Nissen, Silas B; Kuwada, Nathan J; Wiggins, Paul A

    2016-11-01

    Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution. © 2016 John Wiley & Sons Ltd.

  2. Resolution enhancement of tri-stereo remote sensing images by super resolution methods

    Science.gov (United States)

    Tuna, Caglayan; Akoguz, Alper; Unal, Gozde; Sertel, Elif

    2016-10-01

    Super resolution (SR) refers to generation of a High Resolution (HR) image from a decimated, blurred, low-resolution (LR) image set, which can be either a single frame or multi-frame that contains a collection of several images acquired from slightly different views of the same observation area. In this study, we propose a novel application of tri-stereo Remote Sensing (RS) satellite images to the super resolution problem. Since the tri-stereo RS images of the same observation area are acquired from three different viewing angles along the flight path of the satellite, these RS images are properly suited to a SR application. We first estimate registration between the chosen reference LR image and other LR images to calculate the sub pixel shifts among the LR images. Then, the warping, blurring and down sampling matrix operators are created as sparse matrices to avoid high memory and computational requirements, which would otherwise make the RS-SR solution impractical. Finally, the overall system matrix, which is constructed based on the obtained operator matrices is used to obtain the estimate HR image in one step in each iteration of the SR algorithm. Both the Laplacian and total variation regularizers are incorporated separately into our algorithm and the results are presented to demonstrate an improved quantitative performance against the standard interpolation method as well as improved qualitative results due expert evaluations.

  3. Detecting breast microcalcifications using super-resolution and wave-equation ultrasound imaging: a numerical phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Simonetti, Francesco [IMPERIAL COLLEGE LONDON; Huthwaite, Peter [IMPERIAL COLLEGE LONDON; Rosenberg, Robert [UNM; Williamson, Michael [UNM

    2010-01-01

    Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and form images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.

  4. Super-Resolution Reconstruction of Remote Sensing Images Using Multifractal Analysis

    Directory of Open Access Journals (Sweden)

    Mao-Gui Hu

    2009-10-01

    Full Text Available Satellite remote sensing (RS is an important contributor to Earth observation, providing various kinds of imagery every day, but low spatial resolution remains a critical bottleneck in a lot of applications, restricting higher spatial resolution analysis (e.g., intraurban. In this study, a multifractal-based super-resolution reconstruction method is proposed to alleviate this problem. The multifractal characteristic is common in Nature. The self-similarity or self-affinity presented in the image is useful to estimate details at larger and smaller scales than the original. We first look for the presence of multifractal characteristics in the images. Then we estimate parameters of the information transfer function and noise of the low resolution image. Finally, a noise-free, spatial resolutionenhanced image is generated by a fractal coding-based denoising and downscaling method. The empirical case shows that the reconstructed super-resolution image performs well indetail enhancement. This method is not only useful for remote sensing in investigating Earth, but also for other images with multifractal characteristics.

  5. Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning.

    Science.gov (United States)

    Hagita, Katsumi; Higuchi, Takeshi; Jinnai, Hiroshi

    2018-04-12

    Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose a new approach based on an image-processing or deep-learning-based method for super-resolution of 3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric resolution. The deep-learning-based method learns from high-resolution sub-images obtained via SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies of polymeric nano-composites are used as test images, which are subjected to the deep-learning-based method as well as conventional methods. We find that the former yields superior restoration, particularly as the asymmetric resolution is increased. Our super-resolution approach for images having asymmetric resolution enables observation time reduction.

  6. Confocal pore size measurement based on super-resolution image restoration.

    Science.gov (United States)

    Liu, Dali; Wang, Yun; Qiu, Lirong; Mao, Xinyue; Zhao, Weiqian

    2014-09-01

    A confocal pore size measurement based on super-resolution image restoration is proposed to obtain a fast and accurate measurement for submicrometer pore size of nuclear track-etched membranes (NTEMs). This method facilitates the online inspection of the pore size evolution during etching. Combining confocal microscopy with super-resolution image restoration significantly improves the lateral resolution of the NTEM image, yields a reasonable circle edge-setting criterion of 0.2408, and achieves precise pore edge detection. Theoretical analysis shows that the minimum measuring diameter can reach 0.19 μm, and the root mean square of the residuals is only 1.4 nm. Edge response simulation and experiment reveal that the edge response of the proposed method is better than 80 nm. The NTEM pore size measurement results obtained by the proposed method agree well with that obtained by scanning electron microscopy.

  7. Super-resolution processing for pulsed neutron imaging system using a high-speed camera

    International Nuclear Information System (INIS)

    Ishizuka, Ken; Kai, Tetsuya; Shinohara, Takenao; Segawa, Mariko; Mochiki, Koichi

    2015-01-01

    Super-resolution and center-of-gravity processing improve the resolution of neutron-transmitted images. These processing methods calculate the center-of-gravity pixel or sub-pixel of the neutron point converted into light by a scintillator. The conventional neutron-transmitted image is acquired using a high-speed camera by integrating many frames when a transmitted image with one frame is not provided. It succeeds in acquiring the transmitted image and calculating a spectrum by integrating frames of the same energy. However, because a high frame rate is required for neutron resonance absorption imaging, the number of pixels of the transmitted image decreases, and the resolution decreases to the limit of the camera performance. Therefore, we attempt to improve the resolution by integrating the frames after applying super-resolution or center-of-gravity processing. The processed results indicate that center-of-gravity processing can be effective in pulsed-neutron imaging with a high-speed camera. In addition, the results show that super-resolution processing is effective indirectly. A project to develop a real-time image data processing system has begun, and this system will be used at J-PARC in JAEA. (author)

  8. Theory, analysis and design of RF interferometric sensors

    CERN Document Server

    Nguyen, Cam

    2012-01-01

    Theory, Analysis and Design of RF Interferometric Sensors presents the theory, analysis and design of RF interferometric sensors. RF interferometric sensors are attractive for various sensing applications that require every fine resolution and accuracy as well as fast speed. The book also presents two millimeter-wave interferometric sensors realized using RF integrated circuits. The developed millimeter-wave homodyne sensor shows sub-millimeter resolution in the order of 0.05 mm without correction for the non-linear phase response of the sensor's quadrature mixer. The designed millimeter-wave double-channel homodyne sensor provides a resolution of only 0.01 mm, or 1/840th of the operating wavelength, and can inherently suppress the non-linearity of the sensor's quadrature mixer. The experimental results of displacement and velocity measurement are presented as a way to demonstrate the sensing ability of the RF interferometry and to illustrate its many possible applications in sensing. The book is succinct, ye...

  9. Super-resolution optical microscopy for studying membrane structure and dynamics.

    Science.gov (United States)

    Sezgin, Erdinc

    2017-07-12

    Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.

  10. Super-Resolution for Synthetic Zooming

    Directory of Open Access Journals (Sweden)

    Li Xin

    2006-01-01

    Full Text Available Optical zooming is an important feature of imaging systems. In this paper, we investigate a low-cost signal processing alternative to optical zooming—synthetic zooming by super-resolution (SR techniques. Synthetic zooming is achieved by registering a sequence of low-resolution (LR images acquired at varying focal lengths and reconstructing the SR image at a larger focal length or increased spatial resolution. Under the assumptions of constant scene depth and zooming speed, we argue that the motion trajectories of all physical points are related to each other by a unique vanishing point and present a robust technique for estimating its D coordinate. Such a line-geometry-based registration is the foundation of SR for synthetic zooming. We address the issue of data inconsistency arising from the varying focal length of optical lens during the zooming process. To overcome the difficulty of data inconsistency, we propose a two-stage Delaunay-triangulation-based interpolation for fusing the LR image data. We also present a PDE-based nonlinear deblurring to accommodate the blindness and variation of sensor point spread functions. Simulation results with real-world images have verified the effectiveness of the proposed SR techniques for synthetic zooming.

  11. Super-resolution using a light inception layer in convolutional neural network

    Science.gov (United States)

    Mou, Qinyang; Guo, Jun

    2018-04-01

    Recently, several models based on CNN architecture have achieved great result on Single Image Super-Resolution (SISR) problem. In this paper, we propose an image super-resolution method (SR) using a light inception layer in convolutional network (LICN). Due to the strong representation ability of our well-designed inception layer that can learn richer representation with less parameters, we can build our model with shallow architecture that can reduce the effect of vanishing gradients problem and save computational costs. Our model strike a balance between computational speed and the quality of the result. Compared with state-of-the-art result, we produce comparable or better results with faster computational speed.

  12. Video Super-Resolution via Bidirectional Recurrent Convolutional Networks.

    Science.gov (United States)

    Huang, Yan; Wang, Wei; Wang, Liang

    2018-04-01

    Super resolving a low-resolution video, namely video super-resolution (SR), is usually handled by either single-image SR or multi-frame SR. Single-Image SR deals with each video frame independently, and ignores intrinsic temporal dependency of video frames which actually plays a very important role in video SR. Multi-Frame SR generally extracts motion information, e.g., optical flow, to model the temporal dependency, but often shows high computational cost. Considering that recurrent neural networks (RNNs) can model long-term temporal dependency of video sequences well, we propose a fully convolutional RNN named bidirectional recurrent convolutional network for efficient multi-frame SR. Different from vanilla RNNs, 1) the commonly-used full feedforward and recurrent connections are replaced with weight-sharing convolutional connections. So they can greatly reduce the large number of network parameters and well model the temporal dependency in a finer level, i.e., patch-based rather than frame-based, and 2) connections from input layers at previous timesteps to the current hidden layer are added by 3D feedforward convolutions, which aim to capture discriminate spatio-temporal patterns for short-term fast-varying motions in local adjacent frames. Due to the cheap convolutional operations, our model has a low computational complexity and runs orders of magnitude faster than other multi-frame SR methods. With the powerful temporal dependency modeling, our model can super resolve videos with complex motions and achieve well performance.

  13. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films

    Science.gov (United States)

    Zhao, Yong-chuang; Nie, Zhong-quan; Zhai, Ai-ping; Tian, Yan-ting; Liu, Chao; Shi, Chang-kun; Jia, Bao-hua

    2018-01-01

    In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption (NSA) of graphene oxide (GO) membranes. The third-order optical nonlinearities are characterized by the canonical Z-scan technique under femtosecond laser (wavelength: 800 nm, pulse width: 100 fs) excitation. Through controlling the applied femtosecond laser energy, NSA of the GO films can be tuned continuously. The GO film is placed at the focal plane as a unique amplitude filter to improve the resolution of the focused field. A multi-layer system model is proposed to present the generation of a deep sub-wavelength spot associated with the nonlinearity of GO films. Moreover, the parameter conditions to achieve the best resolution (˜λ/6) are determined entirely. The demonstrated results here are useful for high density optical recoding and storage, nanolithography, and super-resolution optical imaging.

  14. Broadband interferometric characterisation of nano-positioning stages with sub-10 pm resolution

    Science.gov (United States)

    Li, Zhi; Brand, Uwe; Wolff, Helmut; Koenders, Ludger; Yacoot, Andrew; Puranto, Prabowo

    2017-06-01

    A traceable calibration setup for investigation of the quasi-static and the dynamic performance of nano-positioning stages is detailed, which utilizes a differential plane-mirror interferometer with double-pass configuration from the National Physical Laboratory (NPL). An NPL-developed FPGA-based interferometric data acquisition and decoding system has been used to enable traceable quasi-static calibration of nano-positioning stages with high resolution. A lockin based modulation technique is further introduced to quantitatively calibrate the dynamic response of moving stages with a bandwidth up to 100 kHz and picometer resolution. First experimental results have proven that the calibration setup can achieve under nearly open-air conditions a noise floor lower than 10 pm/sqrt(Hz). A pico-positioning stage, that is used for nanoindentation with indentation depths down to a few picometers, has been characterized with this calibration setup.

  15. Super-resolution for a point source better than λ/500 using positive refraction

    Science.gov (United States)

    Miñano, Juan C.; Marqués, Ricardo; González, Juan C.; Benítez, Pablo; Delgado, Vicente; Grabovickic, Dejan; Freire, Manuel

    2011-12-01

    Leonhardt (2009 New J. Phys. 11 093040) demonstrated that the two-dimensional (2D) Maxwell fish eye (MFE) lens can focus perfectly 2D Helmholtz waves of arbitrary frequency; that is, it can transport perfectly an outward (monopole) 2D Helmholtz wave field, generated by a point source, towards a ‘perfect point drain’ located at the corresponding image point. Moreover, a prototype with λ/5 super-resolution property for one microwave frequency has been manufactured and tested (Ma et al 2010 arXiv:1007.2530v1; Ma et al 2010 New J. Phys. 13 033016). However, neither software simulations nor experimental measurements for a broad band of frequencies have yet been reported. Here, we present steady-state simulations with a non-perfect drain for a device equivalent to the MFE, called the spherical geodesic waveguide (SGW), which predicts up to λ/500 super-resolution close to discrete frequencies. Out of these frequencies, the SGW does not show super-resolution in the analysis carried out.

  16. Super-resolution for a point source better than λ/500 using positive refraction

    International Nuclear Information System (INIS)

    Miñano, Juan C; González, Juan C; Benítez, Pablo; Grabovickic, Dejan; Marqués, Ricardo; Delgado, Vicente; Freire, Manuel

    2011-01-01

    Leonhardt (2009 New J. Phys. 11 093040) demonstrated that the two-dimensional (2D) Maxwell fish eye (MFE) lens can focus perfectly 2D Helmholtz waves of arbitrary frequency; that is, it can transport perfectly an outward (monopole) 2D Helmholtz wave field, generated by a point source, towards a ‘perfect point drain’ located at the corresponding image point. Moreover, a prototype with λ/5 super-resolution property for one microwave frequency has been manufactured and tested (Ma et al 2010 arXiv:1007.2530v1; Ma et al 2010 New J. Phys. 13 033016). However, neither software simulations nor experimental measurements for a broad band of frequencies have yet been reported. Here, we present steady-state simulations with a non-perfect drain for a device equivalent to the MFE, called the spherical geodesic waveguide (SGW), which predicts up to λ/500 super-resolution close to discrete frequencies. Out of these frequencies, the SGW does not show super-resolution in the analysis carried out. (paper)

  17. Large-area super-resolution optical imaging by using core-shell microfibers

    Science.gov (United States)

    Liu, Cheng-Yang; Lo, Wei-Chieh

    2017-09-01

    We first numerically and experimentally report large-area super-resolution optical imaging achieved by using core-shell microfibers. The particular spatial electromagnetic waves for different core-shell microfibers are studied by using finite-difference time-domain and ray tracing calculations. The focusing properties of photonic nanojets are evaluated in terms of intensity profile and full width at half-maximum along propagation and transversal directions. In experiment, the general optical fiber is chemically etched down to 6 μm diameter and coated with different metallic thin films by using glancing angle deposition. The direct imaging of photonic nanojets for different core-shell microfibers is performed with a scanning optical microscope system. We show that the intensity distribution of a photonic nanojet is highly related to the metallic shell due to the surface plasmon polaritons. Furthermore, large-area super-resolution optical imaging is performed by using different core-shell microfibers placed over the nano-scale grating with 150 nm line width. The core-shell microfiber-assisted imaging is achieved with super-resolution and hundreds of times the field-of-view in contrast to microspheres. The possible applications of these core-shell optical microfibers include real-time large-area micro-fluidics and nano-structure inspections.

  18. Super-Resolution of Plant Disease Images for the Acceleration of Image-based Phenotyping and Vigor Diagnosis in Agriculture.

    Science.gov (United States)

    Yamamoto, Kyosuke; Togami, Takashi; Yamaguchi, Norio

    2017-11-06

    Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture-in cooperation with image processing technologies-for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis.

  19. Image inpainting and super-resolution using non-local recursive deep convolutional network with skip connections

    Science.gov (United States)

    Liu, Miaofeng

    2017-07-01

    In recent years, deep convolutional neural networks come into use in image inpainting and super-resolution in many fields. Distinct to most of the former methods requiring to know beforehand the local information for corrupted pixels, we propose a 20-depth fully convolutional network to learn an end-to-end mapping a dataset of damaged/ground truth subimage pairs realizing non-local blind inpainting and super-resolution. As there often exist image with huge corruptions or inpainting on a low-resolution image that the existing approaches unable to perform well, we also share parameters in local area of layers to achieve spatial recursion and enlarge the receptive field. To avoid the difficulty of training this deep neural network, skip-connections between symmetric convolutional layers are designed. Experimental results shows that the proposed method outperforms state-of-the-art methods for diverse corrupting and low-resolution conditions, it works excellently when realizing super-resolution and image inpainting simultaneously

  20. Deep Learning based Super-Resolution for Improved Action Recognition

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Guerrero, Sergio Escalera; Rasti, Pejman

    2015-01-01

    with results of a state-of- the-art deep learning-based super-resolution algorithm, through an alpha-blending approach. The experimental results obtained on down-sampled version of a large subset of Hoolywood2 benchmark database show the importance of the proposed system in increasing the recognition rate...

  1. Antimicrobial agent triclosan disrupts mitochondrial structure, revealed by super-resolution microscopy, and inhibits mast cell signaling via calcium modulation.

    Science.gov (United States)

    Weatherly, Lisa M; Nelson, Andrew J; Shim, Juyoung; Riitano, Abigail M; Gerson, Erik D; Hart, Andrew J; de Juan-Sanz, Jaime; Ryan, Timothy A; Sher, Roger; Hess, Samuel T; Gosse, Julie A

    2018-06-15

    The antimicrobial agent triclosan (TCS) is used in products such as toothpaste and surgical soaps and is readily absorbed into oral mucosa and human skin. These and many other tissues contain mast cells, which are involved in numerous physiologies and diseases. Mast cells release chemical mediators through a process termed degranulation, which is inhibited by TCS. Investigation into the underlying mechanisms led to the finding that TCS is a mitochondrial uncoupler at non-cytotoxic, low-micromolar doses in several cell types and live zebrafish. Our aim was to determine the mechanisms underlying TCS disruption of mitochondrial function and of mast cell signaling. We combined super-resolution (fluorescence photoactivation localization) microscopy and multiple fluorescence-based assays to detail triclosan's effects in living mast cells, fibroblasts, and primary human keratinocytes. TCS disrupts mitochondrial nanostructure, causing mitochondria to undergo fission and to form a toroidal, "donut" shape. TCS increases reactive oxygen species production, decreases mitochondrial membrane potential, and disrupts ER and mitochondrial Ca 2+ levels, processes that cause mitochondrial fission. TCS is 60 × more potent than the banned uncoupler 2,4-dinitrophenol. TCS inhibits mast cell degranulation by decreasing mitochondrial membrane potential, disrupting microtubule polymerization, and inhibiting mitochondrial translocation, which reduces Ca 2+ influx into the cell. Our findings provide mechanisms for both triclosan's inhibition of mast cell signaling and its universal disruption of mitochondria. These mechanisms provide partial explanations for triclosan's adverse effects on human reproduction, immunology, and development. This study is the first to utilize super-resolution microscopy in the field of toxicology. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.

    Science.gov (United States)

    Yan, Rui; Moon, Seonah; Kenny, Samuel J; Xu, Ke

    2018-03-20

    As an elegant integration of the spatial and temporal dimensions of single-molecule fluorescence, single-molecule localization microscopy (SMLM) overcomes the diffraction-limited resolution barrier of optical microscopy by localizing single molecules that stochastically switch between fluorescent and dark states over time. While this type of super-resolution microscopy (SRM) technique readily achieves remarkable spatial resolutions of ∼10 nm, it typically provides no spectral information. Meanwhile, current scanning-based single-location approaches for mapping the positions and spectra of single molecules are limited by low throughput and are difficult to apply to densely labeled (bio)samples. In this Account, we summarize the rationale, design, and results of our recent efforts toward the integration of the spectral dimension of single-molecule fluorescence with SMLM to achieve spectrally resolved SMLM (SR-SMLM) and functional SRM ( f-SRM). By developing a wide-field scheme for spectral measurement and implementing single-molecule fluorescence on-off switching typical of SMLM, we first showed that in densely labeled (bio)samples it is possible to record the fluorescence spectra and positions of millions of single molecules synchronously within minutes, giving rise to ultrahigh-throughput single-molecule spectroscopy and SR-SMLM. This allowed us to first show statistically that for many dyes, single molecules of the same species exhibit near identical emission in fixed cells. This narrow distribution of emission wavelengths, which contrasts markedly with previous results at solid surfaces, allowed us to unambiguously identify single molecules of spectrally similar dyes. Crosstalk-free, multiplexed SRM was thus achieved for four dyes that were merely 10 nm apart in emission spectrum, with the three-dimensional SRM images of all four dyes being automatically aligned within one image channel. The ability to incorporate single-molecule fluorescence measurement with

  3. Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe

    Directory of Open Access Journals (Sweden)

    Dominika Żurek-Biesiada

    2016-06-01

    Full Text Available Single Molecule Localization Microscopy (SMLM is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al., 2015 [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei.

  4. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping

    2011-07-08

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors have been previously verified with computer simulations and laboratory experiments but not with exploration-scale seismic data. We now demonstrate the high-resolution and the super-stacking properties in locating seismic sources with field seismic data that include multiple scattering. Tests on both synthetic data and field data show that a time reversal mirror has the potential to exceed the Rayleigh resolution limit by factors of 4 or more. Results also show that a time reversal mirror has a significant resilience to strong Gaussian noise and that accurate imaging of source locations from passive seismic data can be accomplished with traces having signal-to-noise ratios as low as 0.001. Synthetic tests also demonstrate that time reversal mirrors can sometimes enhance the signal by a factor proportional to the square root of the product of the number of traces, denoted as N and the number of events in the traces. This enhancement property is denoted as super-stacking and greatly exceeds the classical signal-to-noise enhancement factor of. High-resolution and super-stacking are properties also enjoyed by seismic interferometry and reverse-time migration with the exact velocity model. © 2011 European Association of Geoscientists & Engineers.

  5. Revealing t-tubules in striated muscle with new optical super-resolution microscopy techniques

    Directory of Open Access Journals (Sweden)

    Isuru D. Jayasinghe

    2014-12-01

    Full Text Available The t-tubular system plays a central role in the synchronisation of calcium signalling and excitation-contraction coupling in most striated muscle cells. Light microscopy has been used for imaging t-tubules for well over 100 years and together with electron microscopy (EM, has revealed the three-dimensional complexities of the t-system topology within cardiomyocytes and skeletal muscle fibres from a range of species. The emerging super-resolution single molecule localisation microscopy (SMLM techniques are offering a near 10-fold improvement over the resolution of conventional fluorescence light microscopy methods, with the ability to spectrally resolve nanometre scale distributions of multiple molecular targets. In conjunction with the next generation of electron microscopy, SMLM has allowed the visualisation and quantification of intricate t-tubule morphologies within large areas of muscle cells at an unprecedented level of detail. In this paper, we review recent advancements in the t-tubule structural biology with the utility of various microscopy techniques. We outline the technical considerations in adapting SMLM to study t-tubules and its potential to further our understanding of the molecular processes that underlie the sub-micron scale structural alterations observed in a range of muscle pathologies.

  6. Contrast enhancement of microsphere-assisted super-resolution imaging in dark-field microscopy

    Science.gov (United States)

    Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song

    2017-08-01

    We report a method of boosting the imaging contrast of microsphere-assisted super-resolution visualization by utilizing dark-field illumination (DFI). We conducted experiments on both 10-µm-diameter silica (SiO2) microspheres with refractive index n ∼ 1.46 under no and partial immersion in ethyl alcohol (n ∼ 1.36) and 20-µm-diameter barium titanate glass (BTG, n ∼ 1.9) microspheres with full immersion to show the super-resolution capability. We experimentally demonstrated that the imaging contrast and uniformity were extraordinarily improved in the DFI mode. The intensity profiles in the visualization also numerically confirm the enhanced sharpness for a better imaging quality when applying DFI.

  7. Super-Resolution of Plant Disease Images for the Acceleration of Image-based Phenotyping and Vigor Diagnosis in Agriculture

    Directory of Open Access Journals (Sweden)

    Kyosuke Yamamoto

    2017-11-01

    Full Text Available Unmanned aerial vehicles (UAVs or drones are a very promising branch of technology, and they have been utilized in agriculture—in cooperation with image processing technologies—for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis.

  8. Video super-resolution using simultaneous motion and intensity calculations

    DEFF Research Database (Denmark)

    Keller, Sune Høgild; Lauze, Francois Bernard; Nielsen, Mads

    2011-01-01

    for the joint estimation of a super-resolution sequence and its flow field. Via the calculus of variations, this leads to a coupled system of partial differential equations for image sequence and motion estimation. We solve a simplified form of this system and as a by-product we indeed provide a motion field...

  9. A super-resolution approach for uncertainty estimation of PIV measurements

    NARCIS (Netherlands)

    Sciacchitano, A.; Wieneke, B.; Scarano, F.

    2012-01-01

    A super-resolution approach is proposed for the a posteriori uncertainty estimation of PIV measurements. The measured velocity field is employed to determine the displacement of individual particle images. A disparity set is built from the residual distance between paired particle images of

  10. Multiple-image hiding using super resolution reconstruction in high-frequency domains

    Science.gov (United States)

    Li, Xiao-Wei; Zhao, Wu-Xiang; Wang, Jun; Wang, Qiong-Hua

    2017-12-01

    In this paper, a robust multiple-image hiding method using the computer-generated integral imaging and the modified super-resolution reconstruction algorithm is proposed. In our work, the host image is first transformed into frequency domains by cellular automata (CA), to assure the quality of the stego-image, the secret images are embedded into the CA high-frequency domains. The proposed method has the following advantages: (1) robustness to geometric attacks because of the memory-distributed property of elemental images, (2) increasing quality of the reconstructed secret images as the scheme utilizes the modified super-resolution reconstruction algorithm. The simulation results show that the proposed multiple-image hiding method outperforms other similar hiding methods and is robust to some geometric attacks, e.g., Gaussian noise and JPEG compression attacks.

  11. Evaluation of deep neural networks for single image super-resolution in a maritime context

    NARCIS (Netherlands)

    Nieuwenhuizen, R.P.J.; Kruithof, M.; Schutte, K.

    2017-01-01

    High resolution imagery is of crucial importance for the performance on visual recognition tasks. Super-resolution (SR) reconstruction algorithms aim to enhance the image resolution beyond the capability of the image sensor being used. Traditional SR algorithms approach this inverse problem using

  12. Single image super-resolution based on convolutional neural networks

    Science.gov (United States)

    Zou, Lamei; Luo, Ming; Yang, Weidong; Li, Peng; Jin, Liujia

    2018-03-01

    We present a deep learning method for single image super-resolution (SISR). The proposed approach learns end-to-end mapping between low-resolution (LR) images and high-resolution (HR) images. The mapping is represented as a deep convolutional neural network which inputs the LR image and outputs the HR image. Our network uses 5 convolution layers, which kernels size include 5×5, 3×3 and 1×1. In our proposed network, we use residual-learning and combine different sizes of convolution kernels at the same layer. The experiment results show that our proposed method performs better than the existing methods in reconstructing quality index and human visual effects on benchmarked images.

  13. Super-resolution with a positive epsilon multi-quantum-well super-lens

    International Nuclear Information System (INIS)

    Bak, A. O.; Giannini, V.; Maier, S. A.; Phillips, C. C.

    2013-01-01

    We design an anisotropic and dichroic quantum metamaterial that is able to achieve super-resolution without the need for a negative permittivity. When exploring the parameters of the structure, we take into account the limits of semiconductor fabrication technology based on quantum well stacks. By heavily doping the structure with free electrons, we infer an anisotropic effective medium with a prolate ellipsoid dispersion curve which allows for near-diffractionless propagation of light (similar to an epsilon-near-zero hyperbolic lens). This, coupled with low absorption, allows us to resolve images at the sub-wavelength scale at distances 6 times greater than equivalent natural materials

  14. Wavelet Filter Banks for Super-Resolution SAR Imaging

    Science.gov (United States)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  15. Super-resolution links vinculin localization to function in focal adhesions.

    Science.gov (United States)

    Giannone, Grégory

    2015-07-01

    Integrin-based focal adhesions integrate biochemical and biomechanical signals from the extracellular matrix and the actin cytoskeleton. The combination of three-dimensional super-resolution imaging and loss- or gain-of-function protein mutants now links the nanoscale dynamic localization of proteins to their activation and function within focal adhesions.

  16. Towards breaking the spatial resolution barriers: An optical flow and super-resolution approach for sea ice motion estimation

    Science.gov (United States)

    Petrou, Zisis I.; Xian, Yang; Tian, YingLi

    2018-04-01

    Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.

  17. Single image super-resolution via regularized extreme learning regression for imagery from microgrid polarimeters

    Science.gov (United States)

    Sargent, Garrett C.; Ratliff, Bradley M.; Asari, Vijayan K.

    2017-08-01

    The advantage of division of focal plane imaging polarimeters is their ability to obtain temporally synchronized intensity measurements across a scene; however, they sacrifice spatial resolution in doing so due to their spatially modulated arrangement of the pixel-to-pixel polarizers and often result in aliased imagery. Here, we propose a super-resolution method based upon two previously trained extreme learning machines (ELM) that attempt to recover missing high frequency and low frequency content beyond the spatial resolution of the sensor. This method yields a computationally fast and simple way of recovering lost high and low frequency content from demosaicing raw microgrid polarimetric imagery. The proposed method outperforms other state-of-the-art single-image super-resolution algorithms in terms of structural similarity and peak signal-to-noise ratio.

  18. An angle encoder for super-high resolution and super-high accuracy using SelfA

    Science.gov (United States)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  19. Application of regularization technique in image super-resolution algorithm via sparse representation

    Science.gov (United States)

    Huang, De-tian; Huang, Wei-qin; Huang, Hui; Zheng, Li-xin

    2017-11-01

    To make use of the prior knowledge of the image more effectively and restore more details of the edges and structures, a novel sparse coding objective function is proposed by applying the principle of the non-local similarity and manifold learning on the basis of super-resolution algorithm via sparse representation. Firstly, the non-local similarity regularization term is constructed by using the similar image patches to preserve the edge information. Then, the manifold learning regularization term is constructed by utilizing the locally linear embedding approach to enhance the structural information. The experimental results validate that the proposed algorithm has a significant improvement compared with several super-resolution algorithms in terms of the subjective visual effect and objective evaluation indices.

  20. Super-Resolution Algorithm in Cumulative Virtual Blanking

    Science.gov (United States)

    Montillet, J. P.; Meng, X.; Roberts, G. W.; Woolfson, M. S.

    2008-11-01

    The proliferation of mobile devices and the emergence of wireless location-based services have generated consumer demand for precise location. In this paper, the MUSIC super-resolution algorithm is applied to time delay estimation for positioning purposes in cellular networks. The goal is to position a Mobile Station with UMTS technology. The problem of Base-Stations herability is solved using Cumulative Virtual Blanking. A simple simulator is presented using DS-SS signal. The results show that MUSIC algorithm improves the time delay estimation in both the cases whether or not Cumulative Virtual Blanking was carried out.

  1. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.

    Science.gov (United States)

    Ertsgaard, Christopher T; McKoskey, Rachel M; Rich, Isabel S; Lindquist, Nathan C

    2014-10-28

    In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (hotspots. Using this technique, we also show that such subwavelength shifting and localization of plasmonic hotspots has potential for imaging applications. Interestingly, illuminating the surface with randomly shifting SERS hotspots was sufficient to completely fill in a wide field of view for super-resolution chemical imaging.

  2. Restoration and Super-Resolution of Diffraction-Limited Imagery Data by Bayesian and Set-Theoretic Approaches

    National Research Council Canada - National Science Library

    Sundareshan, Malur

    2001-01-01

    This project was primarily aimed at the design of novel algorithms for the restoration and super-resolution processing of imagery data to improve the resolution in images acquired from practical sensing operations...

  3. Video-to-Video Dynamic Super-Resolution for Grayscale and Color Sequences

    Directory of Open Access Journals (Sweden)

    Elad Michael

    2006-01-01

    Full Text Available We address the dynamic super-resolution (SR problem of reconstructing a high-quality set of monochromatic or color super-resolved images from low-quality monochromatic, color, or mosaiced frames. Our approach includes a joint method for simultaneous SR, deblurring, and demosaicing, this way taking into account practical color measurements encountered in video sequences. For the case of translational motion and common space-invariant blur, the proposed method is based on a very fast and memory efficient approximation of the Kalman filter (KF. Experimental results on both simulated and real data are supplied, demonstrating the presented algorithms, and their strength.

  4. Subnuclear localization, rates and effectiveness of UVC-induced unscheduled DNA synthesis visualized by fluorescence widefield, confocal and super-resolution microscopy.

    Science.gov (United States)

    Pierzyńska-Mach, Agnieszka; Szczurek, Aleksander; Cella Zanacchi, Francesca; Pennacchietti, Francesca; Drukała, Justyna; Diaspro, Alberto; Cremer, Christoph; Darzynkiewicz, Zbigniew; Dobrucki, Jurek W

    2016-01-01

    Unscheduled DNA synthesis (UDS) is the final stage of the process of repair of DNA lesions induced by UVC. We detected UDS using a DNA precursor, 5-ethynyl-2'-deoxyuridine (EdU). Using wide-field, confocal and super-resolution fluorescence microscopy and normal human fibroblasts, derived from healthy subjects, we demonstrate that the sub-nuclear pattern of UDS detected via incorporation of EdU is different from that when BrdU is used as DNA precursor. EdU incorporation occurs evenly throughout chromatin, as opposed to just a few small and large repair foci detected by BrdU. We attribute this difference to the fact that BrdU antibody is of much larger size than EdU, and its accessibility to the incorporated precursor requires the presence of denatured sections of DNA. It appears that under the standard conditions of immunocytochemical detection of BrdU only fragments of DNA of various length are being denatured. We argue that, compared with BrdU, the UDS pattern visualized by EdU constitutes a more faithful representation of sub-nuclear distribution of the final stage of nucleotide excision repair induced by UVC. Using the optimized integrated EdU detection procedure we also measured the relative amount of the DNA precursor incorporated by cells during UDS following exposure to various doses of UVC. Also described is the high degree of heterogeneity in terms of the UVC-induced EdU incorporation per cell, presumably reflecting various DNA repair efficiencies or differences in the level of endogenous dT competing with EdU within a population of normal human fibroblasts.

  5. Robust isotropic super-resolution by maximizing a Laplace posterior for MRI volumes

    Science.gov (United States)

    Han, Xian-Hua; Iwamoto, Yutaro; Shiino, Akihiko; Chen, Yen-Wei

    2014-03-01

    Magnetic resonance imaging can only acquire volume data with finite resolution due to various factors. In particular, the resolution in one direction (such as the slice direction) is much lower than others (such as the in-plane direction), yielding un-realistic visualizations. This study explores to reconstruct MRI isotropic resolution volumes from three orthogonal scans. This proposed super- resolution reconstruction is formulated as a maximum a posterior (MAP) problem, which relies on the generation model of the acquired scans from the unknown high-resolution volumes. Generally, the deviation ensemble of the reconstructed high-resolution (HR) volume from the available LR ones in the MAP is represented as a Gaussian distribution, which usually results in some noise and artifacts in the reconstructed HR volume. Therefore, this paper investigates a robust super-resolution by formulating the deviation set as a Laplace distribution, which assumes sparsity in the deviation ensemble based on the possible insight of the appeared large values only around some unexpected regions. In addition, in order to achieve reliable HR MRI volume, we integrates the priors such as bilateral total variation (BTV) and non-local mean (NLM) into the proposed MAP framework for suppressing artifacts and enriching visual detail. We validate the proposed robust SR strategy using MRI mouse data with high-definition resolution in two direction and low-resolution in one direction, which are imaged in three orthogonal scans: axial, coronal and sagittal planes. Experiments verifies that the proposed strategy can achieve much better HR MRI volumes than the conventional MAP method even with very high-magnification factor: 10.

  6. Super resolution for astronomical observations

    Science.gov (United States)

    Li, Zhan; Peng, Qingyu; Bhanu, Bir; Zhang, Qingfeng; He, Haifeng

    2018-05-01

    In order to obtain detailed information from multiple telescope observations a general blind super-resolution (SR) reconstruction approach for astronomical images is proposed in this paper. A pixel-reliability-based SR reconstruction algorithm is described and implemented, where the developed process incorporates flat field correction, automatic star searching and centering, iterative star matching, and sub-pixel image registration. Images captured by the 1-m telescope at Yunnan Observatory are used to test the proposed technique. The results of these experiments indicate that, following SR reconstruction, faint stars are more distinct, bright stars have sharper profiles, and the backgrounds have higher details; thus these results benefit from the high-precision star centering and image registration provided by the developed method. Application of the proposed approach not only provides more opportunities for new discoveries from astronomical image sequences, but will also contribute to enhancing the capabilities of most spatial or ground-based telescopes.

  7. A novel algorithm of super-resolution image reconstruction based on multi-class dictionaries for natural scene

    Science.gov (United States)

    Wu, Wei; Zhao, Dewei; Zhang, Huan

    2015-12-01

    Super-resolution image reconstruction is an effective method to improve the image quality. It has important research significance in the field of image processing. However, the choice of the dictionary directly affects the efficiency of image reconstruction. A sparse representation theory is introduced into the problem of the nearest neighbor selection. Based on the sparse representation of super-resolution image reconstruction method, a super-resolution image reconstruction algorithm based on multi-class dictionary is analyzed. This method avoids the redundancy problem of only training a hyper complete dictionary, and makes the sub-dictionary more representatives, and then replaces the traditional Euclidean distance computing method to improve the quality of the whole image reconstruction. In addition, the ill-posed problem is introduced into non-local self-similarity regularization. Experimental results show that the algorithm is much better results than state-of-the-art algorithm in terms of both PSNR and visual perception.

  8. Effects of whispering gallery mode in microsphere super-resolution imaging

    Science.gov (United States)

    Zhou, Song; Deng, Yongbo; Zhou, Wenchao; Yu, Muxin; Urbach, H. P.; Wu, Yihui

    2017-09-01

    Whispering Gallery modes have been presented in microscopic glass spheres or toruses with many applications. In this paper, the possible approaches to enhance the imaging resolution by Whispering Gallery modes are discussed, including evanescent waves coupling, transformed and illustration by Whispering Gallery modes. It shows that the high-order scattering modes play the dominant role in the reconstructed virtual image when the Whispering Gallery modes exist. Furthermore, we find that the high image resolution of electric dipoles can be achieved, when the out-of-phase components exist from the illustration of Whispering Gallery modes. Those results of our simulation could contribute to the knowledge of microsphere-assisted super-resolution imaging and its potential applications.

  9. A Novel Method to Implement the Matrix Pencil Super Resolution Algorithm for Indoor Positioning

    Directory of Open Access Journals (Sweden)

    Tariq Jamil Saifullah Khanzada

    2011-10-01

    Full Text Available This article highlights the estimation of the results for the algorithms implemented in order to estimate the delays and distances for the indoor positioning system. The data sets for the transmitted and received signals are captured at a typical outdoor and indoor area. The estimation super resolution algorithms are applied. Different state of art and super resolution techniques based algorithms are applied to avail the optimal estimates of the delays and distances between the transmitted and received signals and a novel method for matrix pencil algorithm is devised. The algorithms perform variably at different scenarios of transmitted and received positions. Two scenarios are experienced, for the single antenna scenario the super resolution techniques like ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique and theMatrix Pencil algorithms give optimal performance compared to the conventional techniques. In two antenna scenario RootMUSIC and Matrix Pencil algorithm performed better than other algorithms for the distance estimation, however, the accuracy of all the algorithms is worst than the single antenna scenario. In all cases our devised Matrix Pencil algorithm achieved the best estimation results.

  10. An angle encoder for super-high resolution and super-high accuracy using SelfA

    International Nuclear Information System (INIS)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-01-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 2 21 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science and Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 2 33 , that is, corresponding to a 0.0015″ signal period

  11. Tilted Light Sheet Microscopy with 3D Point Spread Functions for Single-Molecule Super-Resolution Imaging in Mammalian Cells.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  12. Sparsity-Based Super Resolution for SEM Images.

    Science.gov (United States)

    Tsiper, Shahar; Dicker, Or; Kaizerman, Idan; Zohar, Zeev; Segev, Mordechai; Eldar, Yonina C

    2017-09-13

    The scanning electron microscope (SEM) is an electron microscope that produces an image of a sample by scanning it with a focused beam of electrons. The electrons interact with the atoms in the sample, which emit secondary electrons that contain information about the surface topography and composition. The sample is scanned by the electron beam point by point, until an image of the surface is formed. Since its invention in 1942, the capabilities of SEMs have become paramount in the discovery and understanding of the nanometer world, and today it is extensively used for both research and in industry. In principle, SEMs can achieve resolution better than one nanometer. However, for many applications, working at subnanometer resolution implies an exceedingly large number of scanning points. For exactly this reason, the SEM diagnostics of microelectronic chips is performed either at high resolution (HR) over a small area or at low resolution (LR) while capturing a larger portion of the chip. Here, we employ sparse coding and dictionary learning to algorithmically enhance low-resolution SEM images of microelectronic chips-up to the level of the HR images acquired by slow SEM scans, while considerably reducing the noise. Our methodology consists of two steps: an offline stage of learning a joint dictionary from a sequence of LR and HR images of the same region in the chip, followed by a fast-online super-resolution step where the resolution of a new LR image is enhanced. We provide several examples with typical chips used in the microelectronics industry, as well as a statistical study on arbitrary images with characteristic structural features. Conceptually, our method works well when the images have similar characteristics, as microelectronics chips do. This work demonstrates that employing sparsity concepts can greatly improve the performance of SEM, thereby considerably increasing the scanning throughput without compromising on analysis quality and resolution.

  13. Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Yilmaz, Hasan

    2016-03-01

    Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

  14. Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data

    Science.gov (United States)

    Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.

    2017-12-01

    We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).

  15. Energy Resolution of the CMS ECAL Barrel Super-Module Using MGPA Electronics

    CERN Document Server

    Dewhirst, G

    2004-01-01

    A method for extracting the amplitude of a pulse has been developed in order to optimise the energy resolution of a CMS ECAL super-module in the 2003 test beam. The method consists of using a set of weights to extract the amplitude as well as subtract the baseline level event by event. For an incident beam impact restricted to an area of 4times 4~mm^2 the resolution of the ECAL, which uses the final prototype version of the MGPA electronics, is shown to match the target resolution.

  16. A simple model explaining super-resolution in absolute optical instruments

    Science.gov (United States)

    Leonhardt, Ulf; Sahebdivan, Sahar; Kogan, Alex; Tyc, Tomáš

    2015-05-01

    We develop a simple, one-dimensional model for super-resolution in absolute optical instruments that is able to describe the interplay between sources and detectors. Our model explains the subwavelength sensitivity of a point detector to a point source reported in previous computer simulations and experiments (Miñano 2011 New J. Phys.13 125009; Miñano 2014 New J. Phys.16 033015).

  17. Windowed time-reversal music technique for super-resolution ultrasound imaging

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin

    2018-05-01

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements.

  18. Focused-laser interferometric position sensor

    International Nuclear Information System (INIS)

    Friedman, Stephen J.; Barwick, Brett; Batelaan, Herman

    2005-01-01

    We describe a simple method to measure the position shifts of an object with a range of tens of micrometers using a focused-laser (FL) interferometric position sensor. In this article we examine the effects of mechanical vibration on FL and Michelson interferometers. We tested both interferometers using vibration amplitudes ranging from 0 to 20 μm. Our FL interferometer has a resolution much better than the diffraction grating periodicities of 10 and 14 μm used in our experiments. A FL interferometer provides improved mechanical stability at the expense of spatial resolution. Our experimental results show that Michelson interferometers cannot be used when the vibration amplitude is more than an optical wavelength. The main purpose of this article is to demonstrate that a focused-laser interferometric position sensor can be used to measure the position shifts of an object on a less sensitive, micrometer scale when the vibration amplitude is too large to use a Michelson interferometer

  19. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment

    International Nuclear Information System (INIS)

    Li, Guang; Wei, Jie; Kadbi, Mo; Moody, Jason; Sun, August; Zhang, Shirong; Markova, Svetlana; Zakian, Kristen; Hunt, Margie; Deasy, Joseph O.

    2017-01-01

    Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions; the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm"3) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm"3). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4DMRI has been

  20. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guang, E-mail: lig2@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York (United States); Kadbi, Mo [Philips Healthcare, MR Therapy Cleveland, Ohio (United States); Moody, Jason; Sun, August; Zhang, Shirong; Markova, Svetlana; Zakian, Kristen; Hunt, Margie; Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2017-06-01

    Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions; the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm{sup 3}) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm{sup 3}). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4

  1. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping; Hanafy, Sherif M.; Schuster, Gerard T.; Zhan, Ge; Boonyasiriwat, Chaiwoot

    2011-01-01

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors

  2. Click chemistry for the conservation of cellular structures and fluorescent proteins: ClickOx.

    Science.gov (United States)

    Löschberger, Anna; Niehörster, Thomas; Sauer, Markus

    2014-05-01

    Reactive oxygen species (ROS), including hydrogen peroxide, are known to cause structural damage not only in living, but also in fixed, cells. Copper-catalyzed azide-alkyne cycloaddition (click chemistry) is known to produce ROS. Therefore, fluorescence imaging of cellular structures, such as the actin cytoskeleton, remains challenging when combined with click chemistry protocols. In addition, the production of ROS substantially weakens the fluorescence signal of fluorescent proteins. This led us to develop ClickOx, which is a new click chemistry protocol for improved conservation of the actin structure and better conservation of the fluorescence signal of green fluorescent protein (GFP)-fusion proteins. Herein we demonstrate that efficient oxygen removal by addition of an enzymatic oxygen scavenger system (ClickOx) considerably reduces ROS-associated damage during labeling of nascent DNA with ATTO 488 azide by Cu(I)-catalyzed click chemistry. Standard confocal and super-resolution fluorescence images of phalloidin-labeled actin filaments and GFP/yellow fluorescent protein-labeled cells verify the conservation of the cytoskeleton microstructure and fluorescence intensity, respectively. Thus, ClickOx can be used advantageously for structure preservation in conventional and most notably in super-resolution microscopy methods. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Brain Atlas Fusion from High-Thickness Diagnostic Magnetic Resonance Images by Learning-Based Super-Resolution.

    Science.gov (United States)

    Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian

    2017-03-01

    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.

  4. Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression

    Science.gov (United States)

    Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang

    2018-05-01

    Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.

  5. Quantum Dot Immunocytochemical Localization of Somatostatin in Somatostatinoma by Widefield Epifluorescence, Super-resolution Light, and Immunoelectron Microscopy

    Science.gov (United States)

    Lai, Ken; Wu, Xiaojuan; Yong, Jim L. C.; Lee, C. Soon

    2012-01-01

    Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy. PMID:22899862

  6. Quantum dot immunocytochemical localization of somatostatin in somatostatinoma by Widefield Epifluorescence, super-resolution light, and immunoelectron microscopy.

    Science.gov (United States)

    Killingsworth, Murray C; Lai, Ken; Wu, Xiaojuan; Yong, Jim L C; Lee, C Soon

    2012-11-01

    Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy.

  7. Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes.

    Science.gov (United States)

    Hennig, Simon; van de Linde, Sebastian; Lummer, Martina; Simonis, Matthias; Huser, Thomas; Sauer, Markus

    2015-02-11

    Labeling internal structures within living cells with standard fluorescent probes is a challenging problem. Here, we introduce a novel intracellular staining method that enables us to carefully control the labeling process and provides instant access to the inner structures of living cells. Using a hollow glass capillary with a diameter of <100 nm, we deliver functionalized fluorescent probes directly into the cells by (di)electrophoretic forces. The label density can be adjusted and traced directly during the staining process by fluorescence microscopy. We demonstrate the potential of this technique by delivering and imaging a range of commercially available cell-permeable and nonpermeable fluorescent probes to cells.

  8. Saturated virtual fluorescence emission difference microscopy based on detector array

    Science.gov (United States)

    Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu

    2017-07-01

    Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.

  9. Fluorescent Probes and Fluorescence (Microscopy Techniques — Illuminating Biological and Biomedical Research

    Directory of Open Access Journals (Sweden)

    Gregor P. C. Drummen

    2012-11-01

    Full Text Available Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  10. Conical diffraction as a versatile building block to implement new imaging modalities for superresolution in fluorescence microscopy

    Science.gov (United States)

    Fallet, Clément; Caron, Julien; Oddos, Stephane; Tinevez, Jean-Yves; Moisan, Lionel; Sirat, Gabriel Y.; Braitbart, Philippe O.; Shorte, Spencer L.

    2014-08-01

    We present a new technology for super-resolution fluorescence imaging, based on conical diffraction. Conical diffraction is a linear, singular phenomenon taking place when a polarized beam is diffracted through a biaxial crystal. The illumination patterns generated by conical diffraction are more compact than the classical Gaussian beam; we use them to generate a super-resolution imaging modality. Conical Diffraction Microscopy (CODIM) resolution enhancement can be achieved with any type of objective on any kind of sample preparation and standard fluorophores. Conical diffraction can be used in multiple fashion to create new and disruptive technologies for super-resolution microscopy. This paper will focus on the first one that has been implemented and give a glimpse at what the future of microscopy using conical diffraction could be.

  11. Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin.

    Science.gov (United States)

    Chamma, Ingrid; Rossier, Olivier; Giannone, Grégory; Thoumine, Olivier; Sainlos, Matthieu

    2017-04-01

    Recent progress in super-resolution imaging (SRI) has created a strong need to improve protein labeling with probes of small size that minimize the target-to-label distance, increase labeling density, and efficiently penetrate thick biological tissues. This protocol describes a method for labeling genetically modified proteins incorporating a small biotin acceptor peptide with a 3-nm fluorescent probe, monomeric streptavidin. We show how to express, purify, and conjugate the probe to organic dyes with different fluorescent properties, and how to label selectively biotinylated membrane proteins for SRI techniques (point accumulation in nanoscale topography (PAINT), stimulated emission depletion (STED), stochastic optical reconstruction microscopy (STORM)). This method is complementary to the previously described anti-GFP-nanobody/SNAP-tag strategies, with the main advantage being that it requires only a short 15-amino-acid tag, and can thus be used with proteins resistant to fusion with large tags and for multicolor imaging. The protocol requires standard molecular biology/biochemistry equipment, making it easily accessible for laboratories with only basic skills in cell biology and biochemistry. The production/purification/conjugation steps take ∼5 d, and labeling takes a few minutes to an hour.

  12. Modified interferometric imaging condition for reverse-time migration

    Science.gov (United States)

    Guo, Xue-Bao; Liu, Hong; Shi, Ying

    2018-01-01

    For reverse-time migration, high-resolution imaging mainly depends on the accuracy of the velocity model and the imaging condition. In practice, however, the small-scale components of the velocity model cannot be estimated by tomographical methods; therefore, the wavefields are not accurately reconstructed from the background velocity, and the imaging process will generate artefacts. Some of the noise is due to cross-correlation of unrelated seismic events. Interferometric imaging condition suppresses imaging noise very effectively, especially the unknown random disturbance of the small-scale part. The conventional interferometric imaging condition is extended in this study to obtain a new imaging condition based on the pseudo-Wigner distribution function (WDF). Numerical examples show that the modified interferometric imaging condition improves imaging precision.

  13. Cortical actin nodes: Their dynamics and recruitment of podosomal proteins as revealed by super-resolution and single-molecule microscopy

    Science.gov (United States)

    Shirai, Yuki M.; Tsunoyama, Taka A.; Hiramoto-Yamaki, Nao; Hirosawa, Koichiro M.; Shibata, Akihiro C. E.; Kondo, Kenichi; Tsurumune, Atsushi; Ishidate, Fumiyoshi; Kusumi, Akihiro

    2017-01-01

    Electron tomography of the plasma membrane (PM) identified several layers of cortical actin meshwork running parallel to the PM cytoplasmic surface throughout the PM. Here, cortical actin structures and dynamics were examined in living cells, using super-resolution microscopy, with (x,y)- and z-resolutions of ~140 and ~400 nm, respectively, and single-molecule imaging. The super-resolution microscopy identified sub-micron-sized actin clusters that appeared identical by both phalloidin post-fixation staining and Lifeact-mGFP expression followed by fixation, and therefore, these actin clusters were named “actin-pl-clusters”. In live cells, the actin-pl-clusters visualized by Lifeact-mGFP linked two or more actin filaments in the fine actin meshwork, acting as a node of the meshwork, and dynamically moved on/along the meshwork in a myosin II-dependent manner. Their formation depended on the Arp2/3 activities, suggesting that the movements could involve both the myosin motor activity and actin polymerization-depolymerization. The actin-pl-clusters differ from the actin nodes/asters found previously after latrunculin treatments, since myosin II and filamin A were not colocalized with the actin-pl-clusters, and the actin-pl-clusters were much smaller than the previously reported nodes/asters. The Lifeact linked to a fluorescently-labeled transmembrane peptide from syntaxin4 (Lifeact-TM) expressed in the PM exhibited temporary immobilization in the PM regions on which actin-pl-clusters and stress fibers were projected, showing that ≥66% of actin-pl-clusters and 89% of stress fibers were located in close proximity (within 3.5 nm) to the PM cytoplasmic surface. Podosome-associated cytoplasmic proteins, Tks4, Tks5, cortactin, and N-WASP, were transiently recruited to actin-pl-clusters, and thus, we propose that actin-pl-clusters also represent “actin podosome-like clusters”. PMID:29190677

  14. Rare Earth Elements as Potential Biosignatures on Mars in SuperCam Time Resolved Laser Fluorescence Spectroscopy Data

    Science.gov (United States)

    Ollila, A.; Beyssac, O.; Sharma, S. K.; Misra, A. K.; Clegg, S. M.; Gauthier, M.; Wiens, R. C.; Maurice, S.; Gasnault, O.; Lanza, N.

    2017-12-01

    The rare earth elements (REE, La to Lu) are a group of elements with similar chemical properties that are generally present in geologic materials at trace concentrations. REEs may be concentrated via processes such as igneous fractional crystallization in accessory minerals, e.g. apatite, zircon, and titanite. Additionally, however, concentrations of REE may serve to identify regions of high astrobiological interest. For example, Fe-oxyhydroxide deposits in hydrothermal vent systems and biologically related manganese nodules may be enriched in REEs. REEs have not been measured in situ on Mars, therefore their prevalence and distribution on Mars is as yet unknown, except as observed in martian meteorites. SuperCam is a survey instrument that will analyze materials around the Mars 2020 rover using a variety of spectral techniques including laser-induced breakdown spectroscopy (LIBS), Raman, VIS-IR, and time-resolved laser fluorescence (TRLF) spectroscopy. Recently, the SuperCam Engineering Development Unit was tested at the Los Alamos National Laboratory for its capabilities to detect REEs in minerals using TRLF spectroscopy. While this instrument was not designed to precisely replicate the flight model, the spectral resolution and light transmission was sufficient to obtain TRLF spectra on a number of minerals demonstrating a variety of REE luminescent centers. These include apatite (Sm3+, Nd3+, Eu3+, Dy3+), fluorite (Ho3+, Sm3+, Dy3+, Nd3+), and zircon (Er3+, Pr3+, Nd3+). Future work includes expanding this suite to include minerals associated with biological activities, for example Mn-oxides (desert varnish and manganese nodules), hydrothermal Fe-oxides, and stromatolite-associated carbonates. In this way and in combination with its other techniques, SuperCam may direct the rover team to perform further analyses of similar samples by the in situ chemical and mineralogical suite of instruments, or aid in prioritization for sample return.

  15. A high resolution solar atlas for fluorescence calculations

    Science.gov (United States)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  16. Development of the super high angular resolution principle for X-ray imaging

    International Nuclear Information System (INIS)

    Zhang Chen; Zhang Shuangnan

    2011-01-01

    Development of the Super High Angular Resolution Principle (SHARP) for coded-mask X-ray imaging is presented. We prove that SHARP can be considered as a generalized coded mask imaging method with a coding pattern comprised of diffraction-interference fringes in the mask pattern. The angular resolution of SHARP can be improved by detecting the fringes more precisely than the mask's element size, i.e. by using a detector with a pixel size smaller than the mask's element size. The proposed mission SHARP-X for solar X-ray observations is also briefly discussed. (research papers)

  17. Learning-based compressed sensing for infrared image super resolution

    Science.gov (United States)

    Zhao, Yao; Sui, Xiubao; Chen, Qian; Wu, Shaochi

    2016-05-01

    This paper presents an infrared image super-resolution method based on compressed sensing (CS). First, the reconstruction model under the CS framework is established and a Toeplitz matrix is selected as the sensing matrix. Compared with traditional learning-based methods, the proposed method uses a set of sub-dictionaries instead of two coupled dictionaries to recover high resolution (HR) images. And Toeplitz sensing matrix allows the proposed method time-efficient. Second, all training samples are divided into several feature spaces by using the proposed adaptive k-means classification method, which is more accurate than the standard k-means method. On the basis of this approach, a complex nonlinear mapping from the HR space to low resolution (LR) space can be converted into several compact linear mappings. Finally, the relationships between HR and LR image patches can be obtained by multi-sub-dictionaries and HR infrared images are reconstructed by the input LR images and multi-sub-dictionaries. The experimental results show that the proposed method is quantitatively and qualitatively more effective than other state-of-the-art methods.

  18. Color image guided depth image super resolution using fusion filter

    Science.gov (United States)

    He, Jin; Liang, Bin; He, Ying; Yang, Jun

    2018-04-01

    Depth cameras are currently playing an important role in many areas. However, most of them can only obtain lowresolution (LR) depth images. Color cameras can easily provide high-resolution (HR) color images. Using color image as a guide image is an efficient way to get a HR depth image. In this paper, we propose a depth image super resolution (SR) algorithm, which uses a HR color image as a guide image and a LR depth image as input. We use the fusion filter of guided filter and edge based joint bilateral filter to get HR depth image. Our experimental results on Middlebury 2005 datasets show that our method can provide better quality in HR depth images both numerically and visually.

  19. Label-free and live cell imaging by interferometric scattering microscopy.

    Science.gov (United States)

    Park, Jin-Sung; Lee, Il-Buem; Moon, Hyeon-Min; Joo, Jong-Hyeon; Kim, Kyoung-Hoon; Hong, Seok-Cheol; Cho, Minhaeng

    2018-03-14

    Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label. Here we report label-free and live-cell imaging of mammalian cell, Escherischia coli , and yeast, using interferometric scattering microscopy, which reveals the underlying structures of a variety of cytoplasmic organelles as well as the underside structure of the cells. The contact areas of the cells attached onto a glass substrate, e.g. , focal adhesions and filopodia, are clearly discernible. We also found a variety of fringe-like features in the cytoplasmic area, which may reflect the folded structures of cytoplasmic organelles. We thus anticipate that the label-free interferometric scattering microscopy can be used as a powerful tool to shed interferometric light on in vivo structures and dynamics of various intracellular phenomena.

  20. Tilted light sheet microscopy with 3D point spread functions for single-molecule super-resolution imaging in mammalian cells

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N.; Lee, Maurice Y.; Shechtman, Yoav; Moerner, W. E.

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D superresolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  1. Multisensor Super Resolution Using Directionally-Adaptive Regularization for UAV Images.

    Science.gov (United States)

    Kang, Wonseok; Yu, Soohwan; Ko, Seungyong; Paik, Joonki

    2015-05-22

    In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures.

  2. Super-resolution with an optically-addressable liquid crystal spatial light modulator

    International Nuclear Information System (INIS)

    McOrist, J.; Sharma, M.D.; Sheppard, C.J.R.

    2002-01-01

    Full text: An optically-addressable liquid crystal spatial light modulator has been used to generate super-resolving masks. This approach avoids problems of low efficiency and coupling between amplitude and phase modulation, that occur when using conventional liquid crystal modulators. When addressed by a programmed light intensity distribution, it allows filters to be changed rapidly to modify the response of a system or permit the investigation of different filter designs. The device used is not pixellated, with a spatial resolution of 30 line pairs/mm over an area 18mm X 18mm, and can achieve continuously-variable phase modulation up to 1.5 wavelengths. The system consists of a write-beam that is collimated from a white-light source. An input mask was used in our experiments determines the modulation pattern of the read-beam. The read-beam from a HeNe laser reflects from the modulator and is focused by a microscope objective. The value of the phase change induced by the transparent regions of the mask can be altered continuously by adjusting the brightness of the write-beam. We have used this system to attain super-resolution by simple Toraldo filters, consisting of arrays of rings. Copyright (2002) Australian Society for Electron Microscopy Inc

  3. Super-resolution mapping using multi-viewing CHRIS/PROBA data

    Science.gov (United States)

    Dwivedi, Manish; Kumar, Vinay

    2016-04-01

    High-spatial resolution Remote Sensing (RS) data provides detailed information which ensures high-definition visual image analysis of earth surface features. These data sets also support improved information extraction capabilities at a fine scale. In order to improve the spatial resolution of coarser resolution RS data, the Super Resolution Reconstruction (SRR) technique has become widely acknowledged which focused on multi-angular image sequences. In this study multi-angle CHRIS/PROBA data of Kutch area is used for SR image reconstruction to enhance the spatial resolution from 18 m to 6m in the hope to obtain a better land cover classification. Various SR approaches like Projection onto Convex Sets (POCS), Robust, Iterative Back Projection (IBP), Non-Uniform Interpolation and Structure-Adaptive Normalized Convolution (SANC) chosen for this study. Subjective assessment through visual interpretation shows substantial improvement in land cover details. Quantitative measures including peak signal to noise ratio and structural similarity are used for the evaluation of the image quality. It was observed that SANC SR technique using Vandewalle algorithm for the low resolution image registration outperformed the other techniques. After that SVM based classifier is used for the classification of SRR and data resampled to 6m spatial resolution using bi-cubic interpolation. A comparative analysis is carried out between classified data of bicubic interpolated and SR derived images of CHRIS/PROBA and SR derived classified data have shown a significant improvement of 10-12% in the overall accuracy. The results demonstrated that SR methods is able to improve spatial detail of multi-angle images as well as the classification accuracy.

  4. Simulation of Far-Field Superresolution Fluorescence Imaging with Two-Color One-Photon Excitation of Reversible Photoactivatable Protein

    International Nuclear Information System (INIS)

    Wang Chen; Qiao Ling-Ling; Mao Zheng-Le

    2011-01-01

    We propose to achieve far-field super-resolution imaging by using offset two-color one-photon (2C1P) excitation of reversible photoactivatable fluorescence proteins. Due to the distinctive photoswitching performance of the proteins, such as dronpa, the fluorescence emission will only come from the overlapped region of activation beam and excitation beam. The analysis solution of rate equation shows that the resolution of offset 2C1P microscope is 'engineered' by laser power of excitation and activation beams and the power ratio between them. Superior lateral and transverse resolution is theoretically demonstrated compared with conventional fluorescence scanning microscopy. (fundamental areas of phenomenology(including applications))

  5. Interferometric control of the photon-number distribution

    Directory of Open Access Journals (Sweden)

    H. Esat Kondakci

    2017-07-01

    Full Text Available We demonstrate deterministic control over the photon-number distribution by interfering two coherent beams within a disordered photonic lattice. By sweeping a relative phase between two equal-amplitude coherent fields with Poissonian statistics that excite adjacent sites in a lattice endowed with disorder-immune chiral symmetry, we measure an output photon-number distribution that changes periodically between super-thermal and sub-thermal photon statistics upon ensemble averaging. Thus, the photon-bunching level is controlled interferometrically at a fixed mean photon-number by gradually activating the excitation symmetry of the chiral-mode pairs with structured coherent illumination and without modifying the disorder level of the random system itself.

  6. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.

    Science.gov (United States)

    Choi, Jae-Seok; Kim, Munchurl

    2017-03-01

    Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower

  7. Correction of a Depth-Dependent Lateral Distortion in 3D Super-Resolution Imaging.

    Directory of Open Access Journals (Sweden)

    Lina Carlini

    Full Text Available Three-dimensional (3D localization-based super-resolution microscopy (SR requires correction of aberrations to accurately represent 3D structure. Here we show how a depth-dependent lateral shift in the apparent position of a fluorescent point source, which we term `wobble`, results in warped 3D SR images and provide a software tool to correct this distortion. This system-specific, lateral shift is typically > 80 nm across an axial range of ~ 1 μm. A theoretical analysis based on phase retrieval data from our microscope suggests that the wobble is caused by non-rotationally symmetric phase and amplitude aberrations in the microscope's pupil function. We then apply our correction to the bacterial cytoskeletal protein FtsZ in live bacteria and demonstrate that the corrected data more accurately represent the true shape of this vertically-oriented ring-like structure. We also include this correction method in a registration procedure for dual-color, 3D SR data and show that it improves target registration error (TRE at the axial limits over an imaging depth of 1 μm, yielding TRE values of < 20 nm. This work highlights the importance of correcting aberrations in 3D SR to achieve high fidelity between the measurements and the sample.

  8. mKikGR, a monomeric photoswitchable fluorescent protein.

    Directory of Open Access Journals (Sweden)

    Satoshi Habuchi

    Full Text Available The recent demonstration and utilization of fluorescent proteins whose fluorescence can be switched on and off has greatly expanded the toolkit of molecular and cell biology. These photoswitchable proteins have facilitated the characterization of specifically tagged molecular species in the cell and have enabled fluorescence imaging of intracellular structures with a resolution far below the classical diffraction limit of light. Applications are limited, however, by the fast photobleaching, slow photoswitching, and oligomerization typical for photoswitchable proteins currently available. Here, we report the molecular cloning and spectroscopic characterization of mKikGR, a monomeric version of the previously reported KikGR that displays high photostability and switching rates. Furthermore, we present single-molecule imaging experiments that demonstrate that individual mKikGR proteins can be localized with a precision of better than 10 nanometers, suggesting their suitability for super-resolution imaging.

  9. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Chengguang [College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, PR China and Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom); Drinkwater, Bruce W. [Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom)

    2014-02-18

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.

  10. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    International Nuclear Information System (INIS)

    Fan, Chengguang; Drinkwater, Bruce W.

    2014-01-01

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded

  11. A Search for Water in a Super-Earth Atmosphere: High-resolution Optical Spectroscopy of 55Cancri e

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, Lisa J. [Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); De Mooij, Ernst J. W.; Watson, Chris [Astrophysics Research Centre, School of Mathematics and Physics, Queens University, Belfast (United Kingdom); Jayawardhana, Ray [Physics and Astronomy, York University, Toronto, Ontario L3T 3R1 (Canada); De Kok, Remco, E-mail: esteves@astro.utoronto.ca, E-mail: ernst.demooij@dcu.ie, E-mail: c.a.watson@qub.ac.uk, E-mail: rayjay@yorku.ca, E-mail: r.j.de.kok@sron.nl [Leiden Observatory, Leiden University, Postbus 9513, 2300 RA, Leiden (Netherlands)

    2017-06-01

    We present the analysis of high-resolution optical spectra of four transits of 55Cnc e, a low-density super-Earth that orbits a nearby Sun-like star in under 18 hr. The inferred bulk density of the planet implies a substantial envelope, which, according to mass–radius relationships, could be either a low-mass extended or a high-mass compact atmosphere. Our observations investigate the latter scenario, with water as the dominant species. We take advantage of the Doppler cross-correlation technique, high-spectral resolution, and the large wavelength coverage of our observations to search for the signature of thousands of optical water absorption lines. Using our observations with HDS on the Subaru telescope and ESPaDOnS on the Canada–France–Hawaii Telescope, we are able to place a 3 σ lower limit of 10 g mol{sup −1} on the mean-molecular weight of 55Cnc e’s water-rich (volume mixing ratio >10%), optically thin atmosphere, which corresponds to an atmospheric scale-height of ∼80 km. Our study marks the first high-spectral resolution search for water in a super-Earth atmosphere, and demonstrates that it is possible to recover known water-vapor absorption signals in a nearby super-Earth atmosphere, using high-resolution transit spectroscopy with current ground-based instruments.

  12. Super-resolution for everybody: An image processing workflow to obtain high-resolution images with a standard confocal microscope.

    Science.gov (United States)

    Lam, France; Cladière, Damien; Guillaume, Cyndélia; Wassmann, Katja; Bolte, Susanne

    2017-02-15

    In the presented work we aimed at improving confocal imaging to obtain highest possible resolution in thick biological samples, such as the mouse oocyte. We therefore developed an image processing workflow that allows improving the lateral and axial resolution of a standard confocal microscope. Our workflow comprises refractive index matching, the optimization of microscope hardware parameters and image restoration by deconvolution. We compare two different deconvolution algorithms, evaluate the necessity of denoising and establish the optimal image restoration procedure. We validate our workflow by imaging sub resolution fluorescent beads and measuring the maximum lateral and axial resolution of the confocal system. Subsequently, we apply the parameters to the imaging and data restoration of fluorescently labelled meiotic spindles of mouse oocytes. We measure a resolution increase of approximately 2-fold in the lateral and 3-fold in the axial direction throughout a depth of 60μm. This demonstrates that with our optimized workflow we reach a resolution that is comparable to 3D-SIM-imaging, but with better depth penetration for confocal images of beads and the biological sample. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform.

    Science.gov (United States)

    Tang, Heng-He; Liu, Pu-Kun

    2015-09-07

    A new gradient-index (GRIN) lens that can realize enhanced spatial Fourier transform (FT) over optically long distances is demonstrated. By using an anisotropic GRIN metamaterial with hyperbolic dispersion, evanescent wave in free space can be transformed into propagating wave in the metamaterial and then focused outside due to negative-refraction. Both the results based on the ray tracing and the finite element simulation show that the spatial frequency bandwidth of the spatial FT can be extended to 2.7k(0) (k(0) is the wave vector in free space). Furthermore, assisted by the enhanced spatial FT, a new long-distance (in the optical far-field region) super-resolution imaging scheme is also proposed and the super resolved capability of λ/5 (λ is the wavelength in free space) is verified. The work may provide technical support for designing new-type high-speed microscopes with long working distances.

  14. Single-Image Super-Resolution Based on Rational Fractal Interpolation.

    Science.gov (United States)

    Zhang, Yunfeng; Fan, Qinglan; Bao, Fangxun; Liu, Yifang; Zhang, Caiming

    2018-08-01

    This paper presents a novel single-image super-resolution (SR) procedure, which upscales a given low-resolution (LR) input image to a high-resolution image while preserving the textural and structural information. First, we construct a new type of bivariate rational fractal interpolation model and investigate its analytical properties. This model has different forms of expression with various values of the scaling factors and shape parameters; thus, it can be employed to better describe image features than current interpolation schemes. Furthermore, this model combines the advantages of rational interpolation and fractal interpolation, and its effectiveness is validated through theoretical analysis. Second, we develop a single-image SR algorithm based on the proposed model. The LR input image is divided into texture and non-texture regions, and then, the image is interpolated according to the characteristics of the local structure. Specifically, in the texture region, the scaling factor calculation is the critical step. We present a method to accurately calculate scaling factors based on local fractal analysis. Extensive experiments and comparisons with the other state-of-the-art methods show that our algorithm achieves competitive performance, with finer details and sharper edges.

  15. LFNet: A Novel Bidirectional Recurrent Convolutional Neural Network for Light-Field Image Super-Resolution.

    Science.gov (United States)

    Wang, Yunlong; Liu, Fei; Zhang, Kunbo; Hou, Guangqi; Sun, Zhenan; Tan, Tieniu

    2018-09-01

    The low spatial resolution of light-field image poses significant difficulties in exploiting its advantage. To mitigate the dependency of accurate depth or disparity information as priors for light-field image super-resolution, we propose an implicitly multi-scale fusion scheme to accumulate contextual information from multiple scales for super-resolution reconstruction. The implicitly multi-scale fusion scheme is then incorporated into bidirectional recurrent convolutional neural network, which aims to iteratively model spatial relations between horizontally or vertically adjacent sub-aperture images of light-field data. Within the network, the recurrent convolutions are modified to be more effective and flexible in modeling the spatial correlations between neighboring views. A horizontal sub-network and a vertical sub-network of the same network structure are ensembled for final outputs via stacked generalization. Experimental results on synthetic and real-world data sets demonstrate that the proposed method outperforms other state-of-the-art methods by a large margin in peak signal-to-noise ratio and gray-scale structural similarity indexes, which also achieves superior quality for human visual systems. Furthermore, the proposed method can enhance the performance of light field applications such as depth estimation.

  16. Optimized multiple linear mappings for single image super-resolution

    Science.gov (United States)

    Zhang, Kaibing; Li, Jie; Xiong, Zenggang; Liu, Xiuping; Gao, Xinbo

    2017-12-01

    Learning piecewise linear regression has been recognized as an effective way for example learning-based single image super-resolution (SR) in literature. In this paper, we employ an expectation-maximization (EM) algorithm to further improve the SR performance of our previous multiple linear mappings (MLM) based SR method. In the training stage, the proposed method starts with a set of linear regressors obtained by the MLM-based method, and then jointly optimizes the clustering results and the low- and high-resolution subdictionary pairs for regression functions by using the metric of the reconstruction errors. In the test stage, we select the optimal regressor for SR reconstruction by accumulating the reconstruction errors of m-nearest neighbors in the training set. Thorough experimental results carried on six publicly available datasets demonstrate that the proposed SR method can yield high-quality images with finer details and sharper edges in terms of both quantitative and perceptual image quality assessments.

  17. Image Super-Resolution Algorithm Based on an Improved Sparse Autoencoder

    Directory of Open Access Journals (Sweden)

    Detian Huang

    2018-01-01

    Full Text Available Due to the limitations of the resolution of the imaging system and the influence of scene changes and other factors, sometimes only low-resolution images can be acquired, which cannot satisfy the practical application’s requirements. To improve the quality of low-resolution images, a novel super-resolution algorithm based on an improved sparse autoencoder is proposed. Firstly, in the training set preprocessing stage, the high- and low-resolution image training sets are constructed, respectively, by using high-frequency information of the training samples as the characterization, and then the zero-phase component analysis whitening technique is utilized to decorrelate the formed joint training set to reduce its redundancy. Secondly, a constructed sparse regularization term is added to the cost function of the traditional sparse autoencoder to further strengthen the sparseness constraint on the hidden layer. Finally, in the dictionary learning stage, the improved sparse autoencoder is adopted to achieve unsupervised dictionary learning to improve the accuracy and stability of the dictionary. Experimental results validate that the proposed algorithm outperforms the existing algorithms both in terms of the subjective visual perception and the objective evaluation indices, including the peak signal-to-noise ratio and the structural similarity measure.

  18. Studying atomic-resolution by X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Gao Hongyi; Chen Jianwen; Xie Honglan; Zhu Huafeng; Li Ruxin; Xu Zhizhan

    2005-01-01

    In this work, the results of numerical simulations of X-ray fluorescence holograms and the reconstructed atomic images for Fe single crystal are given. The influences of the recording angles ranges and the polarization effect on the reconstruction of the atomic images are discussed. The process for removing twin images by multiple energy fluorescence holography and expanding the energy range of the incident X-rays to improve the resolution of the reconstructed images is presented

  19. Parallel detecting super-resolution microscopy using correlation based image restoration

    Science.gov (United States)

    Yu, Zhongzhi; Liu, Shaocong; Zhu, Dazhao; Kuang, Cuifang; Liu, Xu

    2017-12-01

    A novel approach to achieve the image restoration is proposed in which each detector's relative position in the detector array is no longer a necessity. We can identify each detector's relative location by extracting a certain area from one of the detector's image and scanning it on other detectors' images. According to this location, we can generate the point spread functions (PSF) for each detector and perform deconvolution for image restoration. Equipped with this method, the microscope with discretionally designed detector array can be easily constructed without the concern of exact relative locations of detectors. The simulated results and experimental results show the total improvement in resolution with a factor of 1.7 compared to conventional confocal fluorescence microscopy. With the significant enhancement in resolution and easiness for application of this method, this novel method should have potential for a wide range of application in fluorescence microscopy based on parallel detecting.

  20. Super-TIGER-2: A Very-Large-Area, High-Resolution Trans-Iron Cosmic Ray Investigation

    Science.gov (United States)

    Binns, Walter

    This is the lead proposal of a multi-institution proposal. We propose to continue the highly successful Super-TIGER (Super Trans-Iron Galactic Element Recorder) program and to extend its scientific reach. Super-TIGER is a large-area instrument designed to make precision measurements of the elemental composition of ultra-heavy cosmic rays (UHCR) with atomic number Z greater than or equal to 30. The principal objective of the first phase of the Super- TIGER program was to measure the abundances of nuclei with 30 less than or equal to Z less than or equal to 42 with clear individual element resolution and high statistical precision. A secondary objective was to accurately measure the energy spectra of the more abundant light elements with 12 less than or equal to Z less than or equal to 28. Super-TIGER-1 was flown during the 2012-2013 Austral Summer, returning data on over 50 million cosmic ray (CR) nuclei in 55 days at float. The excellent data from this flight should enable us to achieve the initial goals of the program, and the high performance of the instrument makes it possible to expand our primary objective for further flights to include heavier UHCR. This is a 1-year proposal with two objectives: First to complete analysis of the data from the Super-TIGER-1 flight, and second to begin preparations to extend UHCR measurements with individual element resolution through barium (Z=56) and to greatly increase the number of Z greater than or equal to 30 nuclei measured. The abundance measurements provide sensitive tests and clarification of the OB-association model of galactic cosmic-ray origins, and will test models for atomic processes by which nuclei are selected for acceleration to cosmic ray energies. Additionally, measurements of individual element abundances from Z=40 to 56 will enable us to determine the extent of r-process enhancement since Zr (Z=40), Sn (Z=50) and Ba (Z=56) are predominately s-process and Ru (Z=44), Pd (Z=46), Te (Z=52) and Xe (Z=54)are

  1. Hyperspectral Super-Resolution of Locally Low Rank Images From Complementary Multisource Data.

    Science.gov (United States)

    Veganzones, Miguel A; Simoes, Miguel; Licciardi, Giorgio; Yokoya, Naoto; Bioucas-Dias, Jose M; Chanussot, Jocelyn

    2016-01-01

    Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low-dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods mainly decreases because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSIs are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low-dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough, such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution through local dictionary learning using endmember induction algorithms. We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data.

  2. DESIGN OF DYADIC-INTEGER-COEFFICIENTS BASED BI-ORTHOGONAL WAVELET FILTERS FOR IMAGE SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION

    Directory of Open Access Journals (Sweden)

    P.B. Chopade

    2014-05-01

    Full Text Available This paper presents image super-resolution scheme based on sub-pixel image registration by the design of a specific class of dyadic-integer-coefficient based wavelet filters derived from the construction of a half-band polynomial. First, the integer-coefficient based half-band polynomial is designed by the splitting approach. Next, this designed half-band polynomial is factorized and assigned specific number of vanishing moments and roots to obtain the dyadic-integer coefficients low-pass analysis and synthesis filters. The possibility of these dyadic-integer coefficients based wavelet filters is explored in the field of image super-resolution using sub-pixel image registration. The two-resolution frames are registered at a specific shift from one another to restore the resolution lost by CCD array of camera. The discrete wavelet transform (DWT obtained from the designed coefficients is applied on these two low-resolution images to obtain the high resolution image. The developed approach is validated by comparing the quality metrics with existing filter banks.

  3. Super-resolution binding activated localization microscopy through reversible change of DNA conformation.

    Science.gov (United States)

    Szczurek, Aleksander; Birk, Udo; Knecht, Hans; Dobrucki, Jurek; Mai, Sabine; Cremer, Christoph

    2018-01-01

    Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of applications in cell biology, including nuclear structure analyses. Recent developments have proven that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with very specific fluorescent labeling. In this commentary we offer a brief review of the latest methodological development in the field of SMLM of chromatin designated DNA Structure Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its potential future applications in biology and medicine.

  4. Remote classification from an airborne camera using image super-resolution.

    Science.gov (United States)

    Woods, Matthew; Katsaggelos, Aggelos

    2017-02-01

    The image processing technique known as super-resolution (SR), which attempts to increase the effective pixel sampling density of a digital imager, has gained rapid popularity over the last decade. The majority of literature focuses on its ability to provide results that are visually pleasing to a human observer. In this paper, we instead examine the ability of SR to improve the resolution-critical capability of an imaging system to perform a classification task from a remote location, specifically from an airborne camera. In order to focus the scope of the study, we address and quantify results for the narrow case of text classification. However, we expect the results generalize to a large set of related, remote classification tasks. We generate theoretical results through simulation, which are corroborated by experiments with a camera mounted on a DJI Phantom 3 quadcopter.

  5. All-passive pixel super-resolution of time-stretch imaging

    Science.gov (United States)

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.

    2017-03-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2-5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing.

  6. Development of a super-resolution optical microscope for directional dark matter search experiment

    International Nuclear Information System (INIS)

    Alexandrov, A.; Asada, T.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Furuya, S.; Hakamata, K.; Ishikawa, M.; Katsuragawa, T.; Kuwabara, K.; Machii, S.; Naka, T.; Pupilli, F.; Sirignano, C.; Tawara, Y.; Tioukov, V.; Umemoto, A.; Yoshimoto, M.

    2016-01-01

    Nuclear emulsion is a perfect choice for a detector for directional DM search because of its high density and excellent position accuracy. The minimal detectable track length of a recoil nucleus in emulsion is required to be at least 100 nm, making the resolution of conventional optical microscopes insufficient to resolve them. Here we report about the R&D on a super-resolution optical microscope to be used in future directional DM search experiments with nuclear emulsion as a detector media. The microscope will be fully automatic, will use novel image acquisition and analysis techniques, will achieve the spatial resolution of the order of few tens of nm and will be capable of reconstructing recoil tracks with the length of at least 100 nm with high angular resolution.

  7. Super-Resolution Imaging of Protein Secretion Systems and the Cell Surface of Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Sachith D. Gunasinghe

    2017-05-01

    Full Text Available Gram-negative bacteria have a highly evolved cell wall with two membranes composed of complex arrays of integral and peripheral proteins, as well as phospholipids and glycolipids. In order to sense changes in, respond to, and exploit their environmental niches, bacteria rely on structures assembled into or onto the outer membrane. Protein secretion across the cell wall is a key process in virulence and other fundamental aspects of bacterial cell biology. The final stage of protein secretion in Gram-negative bacteria, translocation across the outer membrane, is energetically challenging so sophisticated nanomachines have evolved to meet this challenge. Advances in fluorescence microscopy now allow for the direct visualization of the protein secretion process, detailing the dynamics of (i outer membrane biogenesis and the assembly of protein secretion systems into the outer membrane, (ii the spatial distribution of these and other membrane proteins on the bacterial cell surface, and (iii translocation of effector proteins, toxins and enzymes by these protein secretion systems. Here we review the frontier research imaging the process of secretion, particularly new studies that are applying various modes of super-resolution microscopy.

  8. A Super-resolution Reconstruction Algorithm for Surveillance Video

    Directory of Open Access Journals (Sweden)

    Jian Shao

    2017-01-01

    Full Text Available Recent technological developments have resulted in surveillance video becoming a primary method of preserving public security. Many city crimes are observed in surveillance video. The most abundant evidence collected by the police is also acquired through surveillance video sources. Surveillance video footage offers very strong support for solving criminal cases, therefore, creating an effective policy, and applying useful methods to the retrieval of additional evidence is becoming increasingly important. However, surveillance video has had its failings, namely, video footage being captured in low resolution (LR and bad visual quality. In this paper, we discuss the characteristics of surveillance video and describe the manual feature registration – maximum a posteriori – projection onto convex sets to develop a super-resolution reconstruction method, which improves the quality of surveillance video. From this method, we can make optimal use of information contained in the LR video image, but we can also control the image edge clearly as well as the convergence of the algorithm. Finally, we make a suggestion on how to adjust the algorithm adaptability by analyzing the prior information of target image.

  9. Super-resolution for imagery from integrated microgrid polarimeters.

    Science.gov (United States)

    Hardie, Russell C; LeMaster, Daniel A; Ratliff, Bradley M

    2011-07-04

    Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without sacrificing field of view or compromising optical resolution with an anti-aliasing filter. The new SR methods are designed to exploit correlation between the polarimetric channels. One of the new SR algorithms uses a form of regularized least squares and has an iterative solution. The other is based on the faster adaptive Wiener filter SR method. We demonstrate that the new multi-channel SR algorithms are capable of providing significant enhancement of polarimetric imagery and that they outperform their independent channel counterparts.

  10. Very High Spectral Resolution Imaging Spectroscopy: the Fluorescence Explorer (FLEX) Mission

    Science.gov (United States)

    Moreno, Jose F.; Goulas, Yves; Huth, Andreas; Middleton, Elizabeth; Miglietta, Franco; Mohammed, Gina; Nedbal, Ladislav; Rascher, Uwe; Verhoef, Wouter; Drusch, Matthias

    2016-01-01

    The Fluorescence Explorer (FLEX) mission has been recently selected as the 8th Earth Explorer by the European Space Agency (ESA). It will be the first mission specifically designed to measure from space vegetation fluorescence emission, by making use of very high spectral resolution imaging spectroscopy techniques. Vegetation fluorescence is the best proxy to actual vegetation photosynthesis which can be measurable from space, allowing an improved quantification of vegetation carbon assimilation and vegetation stress conditions, thus having key relevance for global mapping of ecosystems dynamics and aspects related with agricultural production and food security. The FLEX mission carries the FLORIS spectrometer, with a spectral resolution in the range of 0.3 nm, and is designed to fly in tandem with Copernicus Sentinel-3, in order to provide all the necessary spectral / angular information to disentangle emitted fluorescence from reflected radiance, and to allow proper interpretation of the observed fluorescence spatial and temporal dynamics.

  11. Observation of Eye Pattern on Super-Resolution Near-Field Structure Disk with Write-Strategy Technique

    Science.gov (United States)

    Fuji, Hiroshi; Kikukawa, Takashi; Tominaga, Junji

    2004-07-01

    Pit-edge recording at a density of 150 nm pits and spaces is carried out on a super-resolution near-field structure (super-RENS) disk with a platinum oxide layer. Pits are recorded and read using a 635-nm-wavelength laser and an objective lens with a 0.6 numerical aperture. We arrange laser pulses to correctly record the pits on the disk by a write-strategy technique. The laser-pulse figure includes a unit time of 0.25 T and intensities of Pw1, Pw2 and Pw3. After recording pits of various lengths, the observation of an eye pattern is achieved despite a pit smaller than the resolution limit. Furthermore, the eye pattern maintains its shape even though other pits fill the adjacent tracks at a track density of 600 nm. The disk can be used as a pit-edge recording system through a write-strategy technique.

  12. Ordinal Regression Based Subpixel Shift Estimation for Video Super-Resolution

    Directory of Open Access Journals (Sweden)

    Petrovic Nemanja

    2007-01-01

    Full Text Available We present a supervised learning-based approach for subpixel motion estimation which is then used to perform video super-resolution. The novelty of this work is the formulation of the problem of subpixel motion estimation in a ranking framework. The ranking formulation is a variant of classification and regression formulation, in which the ordering present in class labels namely, the shift between patches is explicitly taken into account. Finally, we demonstrate the applicability of our approach on superresolving synthetically generated images with global subpixel shifts and enhancing real video frames by accounting for both local integer and subpixel shifts.

  13. 3D high- and super-resolution imaging using single-objective SPIM.

    Science.gov (United States)

    Galland, Remi; Grenci, Gianluca; Aravind, Ajay; Viasnoff, Virgile; Studer, Vincent; Sibarita, Jean-Baptiste

    2015-07-01

    Single-objective selective-plane illumination microscopy (soSPIM) is achieved with micromirrored cavities combined with a laser beam-steering unit installed on a standard inverted microscope. The illumination and detection are done through the same objective. soSPIM can be used with standard sample preparations and features high background rejection and efficient photon collection, allowing for 3D single-molecule-based super-resolution imaging of whole cells or cell aggregates. Using larger mirrors enabled us to broaden the capabilities of our system to image Drosophila embryos.

  14. A Total Variation Regularization Based Super-Resolution Reconstruction Algorithm for Digital Video

    Directory of Open Access Journals (Sweden)

    Zhang Liangpei

    2007-01-01

    Full Text Available Super-resolution (SR reconstruction technique is capable of producing a high-resolution image from a sequence of low-resolution images. In this paper, we study an efficient SR algorithm for digital video. To effectively deal with the intractable problems in SR video reconstruction, such as inevitable motion estimation errors, noise, blurring, missing regions, and compression artifacts, the total variation (TV regularization is employed in the reconstruction model. We use the fixed-point iteration method and preconditioning techniques to efficiently solve the associated nonlinear Euler-Lagrange equations of the corresponding variational problem in SR. The proposed algorithm has been tested in several cases of motion and degradation. It is also compared with the Laplacian regularization-based SR algorithm and other TV-based SR algorithms. Experimental results are presented to illustrate the effectiveness of the proposed algorithm.

  15. MAP-MRF-Based Super-Resolution Reconstruction Approach for Coded Aperture Compressive Temporal Imaging

    Directory of Open Access Journals (Sweden)

    Tinghua Zhang

    2018-02-01

    Full Text Available Coded Aperture Compressive Temporal Imaging (CACTI can afford low-cost temporal super-resolution (SR, but limits are imposed by noise and compression ratio on reconstruction quality. To utilize inter-frame redundant information from multiple observations and sparsity in multi-transform domains, a robust reconstruction approach based on maximum a posteriori probability and Markov random field (MAP-MRF model for CACTI is proposed. The proposed approach adopts a weighted 3D neighbor system (WNS and the coordinate descent method to perform joint estimation of model parameters, to achieve the robust super-resolution reconstruction. The proposed multi-reconstruction algorithm considers both total variation (TV and ℓ 2 , 1 norm in wavelet domain to address the minimization problem for compressive sensing, and solves it using an accelerated generalized alternating projection algorithm. The weighting coefficient for different regularizations and frames is resolved by the motion characteristics of pixels. The proposed approach can provide high visual quality in the foreground and background of a scene simultaneously and enhance the fidelity of the reconstruction results. Simulation results have verified the efficacy of our new optimization framework and the proposed reconstruction approach.

  16. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement.

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-02-07

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.

  17. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-01-01

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements. PMID:29414893

  18. Numerical simulation study for atomic-resolution x-ray fluorescence holography

    International Nuclear Information System (INIS)

    Xie Honglan; Gao Hongyi; Chen Jianwen; Xiong Shisheng; Xu Zhizhan; Wang Junyue; Zhu Peiping; Xian Dingchang

    2003-01-01

    Based on the principle of x-ray fluorescence holography, an iron single crystal model of a body-centred cubic lattice is numerically simulated. From the fluorescence hologram produced numerically, the Fe atomic images were reconstructed. The atomic images of the (001), (100), (010) crystallographic planes were consistent with the corresponding atomic positions of the model. The result indicates that one can obtain internal structure images of single crystals at atomic-resolution by using x-ray fluorescence holography

  19. Spatio-temporal image correlation spectroscopy and super-resolution microscopy to quantify molecular dynamics in T cells.

    Science.gov (United States)

    Ashdown, George W; Owen, Dylan M

    2018-02-02

    Many cellular processes are regulated by the spatio-temporal organisation of signalling complexes, cytoskeletal components and membranes. One such example is at the T cell immunological synapse where the retrograde flow of cortical filamentous (F)-actin from the synapse periphery drives signalling protein microclusters towards the synapse centre. The density of this mesh however, makes visualisation and analysis of individual actin fibres difficult due to the resolution limit of conventional microscopy. Recently, super-resolution methods such as structured illumination microscopy (SIM) have surpassed this resolution limit. Here, we apply SIM to better visualise the dense cortical actin meshwork in T cell synapses formed against activating, antibody-coated surfaces and image under total-internal reflection fluorescence (TIRF) illumination. To analyse the observed molecular flows, and the relationship between them, we apply spatio-temporal image correlation spectroscopy (STICS) and its cross-correlation variant (STICCS). We show that the dynamic cortical actin mesh can be visualised with unprecedented detail and that STICS/STICCS can output accurate, quantitative maps of molecular flow velocity and directionality from such data. We find that the actin flow can be disrupted using small molecule inhibitors of actin polymerisation. This combination of imaging and quantitative analysis may provide an important new tool for researchers to investigate the molecular dynamics at cellular length scales. Here we demonstrate the retrograde flow of F-actin which may be important for the clustering and dynamics of key signalling proteins within the plasma membrane, a phenomenon which is vital to correct T cell activation and therefore the mounting of an effective immune response. Copyright © 2018. Published by Elsevier Inc.

  20. Sparse coded image super-resolution using K-SVD trained dictionary based on regularized orthogonal matching pursuit.

    Science.gov (United States)

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2015-01-01

    Image super-resolution (SR) plays a vital role in medical imaging that allows a more efficient and effective diagnosis process. Usually, diagnosing is difficult and inaccurate from low-resolution (LR) and noisy images. Resolution enhancement through conventional interpolation methods strongly affects the precision of consequent processing steps, such as segmentation and registration. Therefore, we propose an efficient sparse coded image SR reconstruction technique using a trained dictionary. We apply a simple and efficient regularized version of orthogonal matching pursuit (ROMP) to seek the coefficients of sparse representation. ROMP has the transparency and greediness of OMP and the robustness of the L1-minization that enhance the dictionary learning process to capture feature descriptors such as oriented edges and contours from complex images like brain MRIs. The sparse coding part of the K-SVD dictionary training procedure is modified by substituting OMP with ROMP. The dictionary update stage allows simultaneously updating an arbitrary number of atoms and vectors of sparse coefficients. In SR reconstruction, ROMP is used to determine the vector of sparse coefficients for the underlying patch. The recovered representations are then applied to the trained dictionary, and finally, an optimization leads to high-resolution output of high-quality. Experimental results demonstrate that the super-resolution reconstruction quality of the proposed scheme is comparatively better than other state-of-the-art schemes.

  1. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    International Nuclear Information System (INIS)

    Gholipour, Ali; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K.; Aganj, Iman; Sahin, Mustafa

    2015-01-01

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  2. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K. [Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aganj, Iman [Radiology Department, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sahin, Mustafa [Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-12-15

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  3. A Brief Introduction to Single-Molecule Fluorescence Methods.

    Science.gov (United States)

    van den Wildenberg, Siet M J L; Prevo, Bram; Peterman, Erwin J G

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches will be addressed, we will first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we will review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We will end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, single-molecule localization super-resolution microscopy, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

  4. Resolution doubling in 3D-STORM imaging through improved buffers.

    Science.gov (United States)

    Olivier, Nicolas; Keller, Debora; Gönczy, Pierre; Manley, Suliana

    2013-01-01

    Super-resolution imaging methods have revolutionized fluorescence microscopy by revealing the nanoscale organization of labeled proteins. In particular, single-molecule methods such as Stochastic Optical Reconstruction Microscopy (STORM) provide resolutions down to a few tens of nanometers by exploiting the cycling of dyes between fluorescent and non-fluorescent states to obtain a sparse population of emitters and precisely localizing them individually. This cycling of dyes is commonly induced by adding different chemicals, which are combined to create a STORM buffer. Despite their importance, the composition of these buffers has scarcely evolved since they were first introduced, fundamentally limiting what can be resolved with STORM. By identifying a new chemical suitable for STORM and optimizing the buffer composition for Alexa-647, we significantly increased the number of photons emitted per cycle by each dye, providing a simple means to enhance the resolution of STORM independently of the optical setup used. Using this buffer to perform 3D-STORM on biological samples, we obtained images with better than 10 nanometer lateral and 30 nanometer axial resolution.

  5. Resolution doubling in 3D-STORM imaging through improved buffers.

    Directory of Open Access Journals (Sweden)

    Nicolas Olivier

    Full Text Available Super-resolution imaging methods have revolutionized fluorescence microscopy by revealing the nanoscale organization of labeled proteins. In particular, single-molecule methods such as Stochastic Optical Reconstruction Microscopy (STORM provide resolutions down to a few tens of nanometers by exploiting the cycling of dyes between fluorescent and non-fluorescent states to obtain a sparse population of emitters and precisely localizing them individually. This cycling of dyes is commonly induced by adding different chemicals, which are combined to create a STORM buffer. Despite their importance, the composition of these buffers has scarcely evolved since they were first introduced, fundamentally limiting what can be resolved with STORM. By identifying a new chemical suitable for STORM and optimizing the buffer composition for Alexa-647, we significantly increased the number of photons emitted per cycle by each dye, providing a simple means to enhance the resolution of STORM independently of the optical setup used. Using this buffer to perform 3D-STORM on biological samples, we obtained images with better than 10 nanometer lateral and 30 nanometer axial resolution.

  6. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    Science.gov (United States)

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  7. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA

    Science.gov (United States)

    Lin, Chenxiang; Jungmann, Ralf; Leifer, Andrew M.; Li, Chao; Levner, Daniel; Church, George M.; Shih, William M.; Yin, Peng

    2012-10-01

    The identification and differentiation of a large number of distinct molecular species with high temporal and spatial resolution is a major challenge in biomedical science. Fluorescence microscopy is a powerful tool, but its multiplexing ability is limited by the number of spectrally distinguishable fluorophores. Here, we used (deoxy)ribonucleic acid (DNA)-origami technology to construct submicrometre nanorods that act as fluorescent barcodes. We demonstrate that spatial control over the positioning of fluorophores on the surface of a stiff DNA nanorod can produce 216 distinct barcodes that can be decoded unambiguously using epifluorescence or total internal reflection fluorescence microscopy. Barcodes with higher spatial information density were demonstrated via the construction of super-resolution barcodes with features spaced by ˜40 nm. One species of the barcodes was used to tag yeast surface receptors, which suggests their potential applications as in situ imaging probes for diverse biomolecular and cellular entities in their native environments.

  8. Triple-color super-resolution imaging of live cells: resolving submicroscopic receptor organization in the plasma membrane.

    Science.gov (United States)

    Wilmes, Stephan; Staufenbiel, Markus; Lisse, Domenik; Richter, Christian P; Beutel, Oliver; Busch, Karin B; Hess, Samuel T; Piehler, Jacob

    2012-05-14

    In living color: efficient intracellular covalent labeling of proteins with a photoswitchable dye using the HaloTag for dSTORM super-resolution imaging in live cells is described. The dynamics of cellular nanostructures at the plasma membrane were monitored with a time resolution of a few seconds. In combination with dual-color FPALM imaging, submicroscopic receptor organization within the context of the membrane skeleton was resolved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Smartphone microendoscopy for high resolution fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Xiangqian Hong

    2016-09-01

    Full Text Available High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the cervix and gastrointestinal (GI tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this paper, we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 μm. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle-income countries (LMICs.

  10. Super-resolution pupil filtering for visual performance enhancement using adaptive optics

    Science.gov (United States)

    Zhao, Lina; Dai, Yun; Zhao, Junlei; Zhou, Xiaojun

    2018-05-01

    Ocular aberration correction can significantly improve visual function of the human eye. However, even under ideal aberration correction conditions, pupil diffraction restricts the resolution of retinal images. Pupil filtering is a simple super-resolution (SR) method that can overcome this diffraction barrier. In this study, a 145-element piezoelectric deformable mirror was used as a pupil phase filter because of its programmability and high fitting accuracy. Continuous phase-only filters were designed based on Zernike polynomial series and fitted through closed-loop adaptive optics. SR results were validated using double-pass point spread function images. Contrast sensitivity was further assessed to verify the SR effect on visual function. An F-test was conducted for nested models to statistically compare different CSFs. These results indicated CSFs for the proposed SR filter were significantly higher than the diffraction correction (p vision optical correction of the human eye.

  11. TH-EF-BRA-11: Feasibility of Super-Resolution Time-Resolved 4DMRI for Multi-Breath Volumetric Motion Simulation in Radiotherapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Li, G; Zakian, K; Deasy, J [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Wei, J [City College of New York, New York, NY (United States); Hunt, M [Mem Sloan-Kettering Cancer Ctr, New York, NY (United States)

    2016-06-15

    Purpose: To develop a novel super-resolution time-resolved 4DMRI technique to evaluate multi-breath, irregular and complex organ motion without respiratory surrogate for radiotherapy planning. Methods: The super-resolution time-resolved (TR) 4DMRI approach combines a series of low-resolution 3D cine MRI images acquired during free breathing (FB) with a high-resolution breath-hold (BH) 3DMRI via deformable image registration (DIR). Five volunteers participated in the study under an IRB-approved protocol. The 3D cine images with voxel size of 5×5×5 mm{sup 3} at two volumes per second (2Hz) were acquired coronally using a T1 fast field echo sequence, half-scan (0.8) acceleration, and SENSE (3) parallel imaging. Phase-encoding was set in the lateral direction to minimize motion artifacts. The BH image with voxel size of 2×2×2 mm{sup 3} was acquired using the same sequence within 10 seconds. A demons-based DIR program was employed to produce super-resolution 2Hz 4DMRI. Registration quality was visually assessed using difference images between TR 4DMRI and 3D cine and quantitatively assessed using average voxel correlation. The fidelity of the 3D cine images was assessed using a gel phantom and a 1D motion platform by comparing mobile and static images. Results: Owing to voxel intensity similarity using the same MRI scanning sequence, accurate DIR between FB and BH images is achieved. The voxel correlations between 3D cine and TR 4DMRI are greater than 0.92 in all cases and the difference images illustrate minimal residual error with little systematic patterns. The 3D cine images of the mobile gel phantom preserve object geometry with minimal scanning artifacts. Conclusion: The super-resolution time-resolved 4DMRI technique has been achieved via DIR, providing a potential solution for multi-breath motion assessment. Accurate DIR mapping has been achieved to map high-resolution BH images to low-resolution FB images, producing 2Hz volumetric high-resolution 4DMRI

  12. Fundamentals of fluorescence microscopy exploring life with light

    CERN Document Server

    Mondal, Partha Pratim

    2014-01-01

    This book starts at an introductory level and leads reader to the most advanced developments in fluorescence imaging and super-resolution techniques that have enabled the emergence of new disciplines such as nanobioimaging, multiphoton microscopy, photodynamic therapy, nanometrology and nanosensors. The interdisciplinary subject of fluorescence microscopy and imaging requires complete knowledge of imaging optics and molecular physics. So, this book approaches the subject by introducing optical imaging concepts before going deep into the advanced imaging systems and their applications. Molecular orbital theory forms the basis for understanding fluorescent molecules and thereby facilitates complete explanation of light-matter interaction at the geometrical focus. The two disciplines have some overlap since light controls the states of molecules and conversely, molecular states control the emitted light. These two mechanisms together determine essential fluorescence  factors and phenomena such as, molecular cro...

  13. B-Spline potential function for maximum a-posteriori image reconstruction in fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Shilpa Dilipkumar

    2015-03-01

    Full Text Available An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy. A comparative study of the proposed technique with the state-of-art maximum likelihood (ML and maximum-a-posteriori (MAP with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED.

  14. Super-Resolution for Color Imagery

    Science.gov (United States)

    2017-09-01

    September 2017 2. REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2016‒30 September 2017 4. TITLE AND SUBTITLE Super...slightly lighter shade of purple. There is slightly less purple coloring on the white paper than with the other 2 color spaces, and the black font is

  15. Inflammation Modulates Murine Venous Thrombosis Resolution In Vivo: Assessment by Multimodal Fluorescence Molecular Imaging

    Science.gov (United States)

    Ripplinger, Crystal M.; Kessinger, Chase W.; Li, Chunqiang; Kim, Jin Won; McCarthy, Jason R.; Weissleder, Ralph; Henke, Peter K.; Lin, Charles P.; Jaffer, Farouc A.

    2012-01-01

    Objective Assessment of thrombus inflammation in vivo could provide new insights into deep vein thrombosis (DVT) resolution. Here we develop and evaluate two integrated fluorescence molecular-structural imaging strategies to quantify DVT-related inflammation and architecture, and to assess the effect of thrombus inflammation on subsequent DVT resolution in vivo. Methods and Results Murine DVT were created with topical 5% FeCl3 application to thigh or jugular veins (n=35). On day 3, mice received macrophage and matrix metalloproteinase (MMP) activity fluorescence imaging agents. On day 4, integrated assessment of DVT inflammation and architecture was performed using confocal fluorescence intravital microscopy (IVM). Day 4 analyses showed robust relationships among in vivo thrombus macrophages, MMP activity, and FITC-dextran deposition (r>0.70, pthrombus inflammation at day 4 predicted the magnitude of DVT resolution at day 6 (pthrombus resolution. PMID:22995524

  16. Super-resolution for a point source using positive refraction

    Science.gov (United States)

    Miñano, Juan C.; Benítez, Pablo; González, Juan C.; Grabovičkić, Dejan; Ahmadpanahi, Hamed

    Leonhardt demonstrated (2009) that the 2D Maxwell Fish Eye lens (MFE) can focus perfectly 2D Helmholtz waves of arbitrary frequency, i.e., it can transport perfectly an outward (monopole) 2D Helmholtz wave field, generated by a point source, towards a receptor called "perfect drain" (PD) located at the corresponding MFE image point. The PD has the property of absorbing the complete radiation without radiation or scattering and it has been claimed as necessary to obtain super-resolution (SR) in the MFE. However, a prototype using a "drain" different from the PD has shown λ/5 resolution for microwave frequencies (Ma et al, 2010). Recently, the SR properties of a device equivalent to the MFE, called the Spherical Geodesic Waveguide (SGW) (Miñano et al, 2012) have been analyzed. The reported results show resolution up to λ /3000, for the SGW loaded with the perfect drain, and up to λ /500 for the SGW without perfect drain. The perfect drain was realized as a coaxial probe loaded with properly calculated impedance. The SGW provides SR only in a narrow band of frequencies close to the resonance Schumann frequencies. Here we analyze the SGW loaded with a small "perfect drain region" (González et al, 2011). This drain is designed as a region made of a material with complex permittivity. The comparative results show that there is no significant difference in the SR properties for both perfect drain designs.

  17. Synthetic biology's tall order: Reconstruction of 3D, super resolution images of single molecules in real-time

    CSIR Research Space (South Africa)

    Henriques, R

    2010-08-31

    Full Text Available -to-use reconstruction software coupled with image acquisition. Here, we present QuickPALM, an Image plugin, enabling real-time reconstruction of 3D super-resolution images during acquisition and drift correction. We illustrate its application by reconstructing Cy5...

  18. Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting

    Directory of Open Access Journals (Sweden)

    Xiwei Huang

    2016-11-01

    Full Text Available A lensless blood cell counting system integrating microfluidic channel and a complementary metal oxide semiconductor (CMOS image sensor is a promising technique to miniaturize the conventional optical lens based imaging system for point-of-care testing (POCT. However, such a system has limited resolution, making it imperative to improve resolution from the system-level using super-resolution (SR processing. Yet, how to improve resolution towards better cell detection and recognition with low cost of processing resources and without degrading system throughput is still a challenge. In this article, two machine learning based single-frame SR processing types are proposed and compared for lensless blood cell counting, namely the Extreme Learning Machine based SR (ELMSR and Convolutional Neural Network based SR (CNNSR. Moreover, lensless blood cell counting prototypes using commercial CMOS image sensors and custom designed backside-illuminated CMOS image sensors are demonstrated with ELMSR and CNNSR. When one captured low-resolution lensless cell image is input, an improved high-resolution cell image will be output. The experimental results show that the cell resolution is improved by 4×, and CNNSR has 9.5% improvement over the ELMSR on resolution enhancing performance. The cell counting results also match well with a commercial flow cytometer. Such ELMSR and CNNSR therefore have the potential for efficient resolution improvement in lensless blood cell counting systems towards POCT applications.

  19. Super-Resolution for "Jilin-1" Satellite Video Imagery via a Convolutional Network.

    Science.gov (United States)

    Xiao, Aoran; Wang, Zhongyuan; Wang, Lei; Ren, Yexian

    2018-04-13

    Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method's practicality. Experimental results on "Jilin-1" satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods.

  20. High resolution optical DNA mapping

    Science.gov (United States)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  1. A novel lightweight Fizeau infrared interferometric imaging system

    Science.gov (United States)

    Hope, Douglas A.; Hart, Michael; Warner, Steve; Durney, Oli; Romeo, Robert

    2016-05-01

    Aperture synthesis imaging techniques using an interferometer provide a means to achieve imagery with spatial resolution equivalent to a conventional filled aperture telescope at a significantly reduced size, weight and cost, an important implication for air- and space-borne persistent observing platforms. These concepts have been realized in SIRII (Space-based IR-imaging interferometer), a new light-weight, compact SWIR and MWIR imaging interferometer designed for space-based surveillance. The sensor design is configured as a six-element Fizeau interferometer; it is scalable, light-weight, and uses structural components and main optics made of carbon fiber replicated polymer (CFRP) that are easy to fabricate and inexpensive. A three-element prototype of the SIRII imager has been constructed. The optics, detectors, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. SIRII is being designed for technical intelligence from geo-stationary orbit. It has an instantaneous 6 x 6 mrad FOV and the ability to rapidly scan a 6x6 deg FOV, with a minimal SNR. The interferometric design can be scaled to larger equivalent filled aperture, while minimizing weight and costs when compared to a filled aperture telescope with equivalent resolution. This scalability in SIRII allows it address a range of IR-imaging scenarios.

  2. Interferometric and optical tests of water window imaging x ray microscopes

    Science.gov (United States)

    Johnson, R. Barry

    1993-01-01

    Interferometric tests of Schwarzchild X-ray Microscope are performed to evaluate the optical properties and alignment of the components. Photographic measurements of the spatial resolution, focal properties, and vignetting characteristics of the prototype Water Window Imaging X-ray Microscope are made and analyzed.

  3. Time reversal and phase coherent music techniques for super-resolution ultrasound imaging

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin

    2018-05-01

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements. A modified TR-MUSIC imaging algorithm is used to account for ultrasound scattering from both density and compressibility contrasts. The phase response of ultrasound transducer elements is accounted for in a PC-MUSIC system.

  4. Structured Illumination-Based Super-Resolution Optical Microscopy for Hemato- and Cyto-Pathology Applications

    Directory of Open Access Journals (Sweden)

    Tieqiao Zhang

    2013-01-01

    Full Text Available Structured illumination fluorescence microscopy utilizes interfering light and the moiré effect to enhance spatial resolution to about a half of that of conventional light microscopy, i.e. approximately 90 nm. In addition to the enhancement in the x and y directions, it also allows enhancement of resolution in the z- direction by the same factor of two (to approximately 220 nm, making it a powerful tool for 3-D morphology studies of fluorescently labeled cells or thin tissue sections. In this report, we applied this technique to several types of blood cells that are commonly seen in hematopathology. Compared with standard brightfield and ordinary fluorescence microscopy images, the 3-D morphology results clearly reveal the morphological features of different types of normal blood cells. We have also used this technique to evaluate morphologies of abnormal erythrocytes and compare them with those recorded on normal cells. The results give a very intuitive presentation of morphological structures of erythrocytes with great details. This research illustrates the potential of this technique to be used in hematology and cyto-pathology studies aimed at identifying nanometer-sized features that cannot be distinguished otherwise with conventional optical microscopy.

  5. Single image super-resolution based on approximated Heaviside functions and iterative refinement

    Science.gov (United States)

    Wang, Xin-Yu; Huang, Ting-Zhu; Deng, Liang-Jian

    2018-01-01

    One method of solving the single-image super-resolution problem is to use Heaviside functions. This has been done previously by making a binary classification of image components as “smooth” and “non-smooth”, describing these with approximated Heaviside functions (AHFs), and iteration including l1 regularization. We now introduce a new method in which the binary classification of image components is extended to different degrees of smoothness and non-smoothness, these components being represented by various classes of AHFs. Taking into account the sparsity of the non-smooth components, their coefficients are l1 regularized. In addition, to pick up more image details, the new method uses an iterative refinement for the residuals between the original low-resolution input and the downsampled resulting image. Experimental results showed that the new method is superior to the original AHF method and to four other published methods. PMID:29329298

  6. Super-resolution microscopy as a potential approach to diagnosis of platelet granule disorders.

    Science.gov (United States)

    Westmoreland, D; Shaw, M; Grimes, W; Metcalf, D J; Burden, J J; Gomez, K; Knight, A E; Cutler, D F

    2016-04-01

    Many platelet functions are dependent on bioactive molecules released from their granules. Deficiencies of these granules in number, shape or content are associated with bleeding. The small size of these granules is such that imaging them for diagnosis has traditionally required electron microscopy. However, recently developed super-resolution microscopes provide sufficient spatial resolution to effectively image platelet granules. When combined with automated image analysis, these methods provide a quantitative, unbiased, rapidly acquired dataset that can readily and reliably reveal differences in platelet granules between individuals. To demonstrate the ability of structured illumination microscopy (SIM) to efficiently differentiate between healthy volunteers and three patients with Hermansky-Pudlak syndrome. Blood samples were taken from three patients with Hermansky-Pudlak syndrome and seven controls. Patients 1-3 have gene defects in HPS1, HPS6 and HPS5, respectively; all controls were healthy volunteers. Platelet-rich plasma was isolated from blood and the platelets fixed, stained for CD63 and processed for analysis by immunofluorescence microscopy, using a custom-built SIM microscope. SIM can successfully resolve CD63-positive structures in fixed platelets. A determination of the number of CD63-positive structures per platelet allowed us to conclude that each patient was significantly different from all of the controls with 99% confidence. A super-resolution imaging approach is effective and rapid in objectively differentiating between patients with a platelet bleeding disorder and healthy volunteers. CD63 is a useful marker for predicting Hermansky-Pudlak syndrome and could be used in the diagnosis of patients suspected of other platelet granule disorders. © 2016 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.

  7. Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF.

    Science.gov (United States)

    Zheng, Cheng; Zhao, Guangyuan; Liu, Wenjie; Chen, Youhua; Zhang, Zhimin; Jin, Luhong; Xu, Yingke; Kuang, Cuifang; Liu, Xu

    2018-04-01

    Measuring three-dimensional nanoscale cellular structures is challenging, especially when the structure is dynamic. Owing to the informative total internal reflection fluorescence (TIRF) imaging under varied illumination angles, multi-angle (MA) TIRF has been examined to offer a nanoscale axial and a subsecond temporal resolution. However, conventional MA-TIRF still performs badly in lateral resolution and fails to characterize the depth image in densely distributed regions. Here, we emphasize the lateral super-resolution in the MA-TIRF, exampled by simply introducing polarization modulation into the illumination procedure. Equipped with a sparsity and accelerated proximal algorithm, we examine a more precise 3D sample structure compared with previous methods, enabling live cell imaging with a temporal resolution of 2 s and recovering high-resolution mitochondria fission and fusion processes. We also shared the recovery program, which is the first open-source recovery code for MA-TIRF, to the best of our knowledge.

  8. Robust Single Image Super-Resolution via Deep Networks With Sparse Prior.

    Science.gov (United States)

    Liu, Ding; Wang, Zhaowen; Wen, Bihan; Yang, Jianchao; Han, Wei; Huang, Thomas S

    2016-07-01

    Single image super-resolution (SR) is an ill-posed problem, which tries to recover a high-resolution image from its low-resolution observation. To regularize the solution of the problem, previous methods have focused on designing good priors for natural images, such as sparse representation, or directly learning the priors from a large data set with models, such as deep neural networks. In this paper, we argue that domain expertise from the conventional sparse coding model can be combined with the key ingredients of deep learning to achieve further improved results. We demonstrate that a sparse coding model particularly designed for SR can be incarnated as a neural network with the merit of end-to-end optimization over training data. The network has a cascaded structure, which boosts the SR performance for both fixed and incremental scaling factors. The proposed training and testing schemes can be extended for robust handling of images with additional degradation, such as noise and blurring. A subjective assessment is conducted and analyzed in order to thoroughly evaluate various SR techniques. Our proposed model is tested on a wide range of images, and it significantly outperforms the existing state-of-the-art methods for various scaling factors both quantitatively and perceptually.

  9. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    International Nuclear Information System (INIS)

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs

  10. Super-resolution convolutional neural network for the improvement of the image quality of magnified images in chest radiographs

    Science.gov (United States)

    Umehara, Kensuke; Ota, Junko; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki

    2017-02-01

    Single image super-resolution (SR) method can generate a high-resolution (HR) image from a low-resolution (LR) image by enhancing image resolution. In medical imaging, HR images are expected to have a potential to provide a more accurate diagnosis with the practical application of HR displays. In recent years, the super-resolution convolutional neural network (SRCNN), which is one of the state-of-the-art deep learning based SR methods, has proposed in computer vision. In this study, we applied and evaluated the SRCNN scheme to improve the image quality of magnified images in chest radiographs. For evaluation, a total of 247 chest X-rays were sampled from the JSRT database. The 247 chest X-rays were divided into 93 training cases with non-nodules and 152 test cases with lung nodules. The SRCNN was trained using the training dataset. With the trained SRCNN, the HR image was reconstructed from the LR one. We compared the image quality of the SRCNN and conventional image interpolation methods, nearest neighbor, bilinear and bicubic interpolations. For quantitative evaluation, we measured two image quality metrics, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the SRCNN scheme, PSNR and SSIM were significantly higher than those of three interpolation methods (pmethods without any obvious artifacts. These preliminary results indicate that the SRCNN scheme significantly outperforms conventional interpolation algorithms for enhancing image resolution and that the use of the SRCNN can yield substantial improvement of the image quality of magnified images in chest radiographs.

  11. Ensemble variational Bayes tensor factorization for super resolution of CFRP debond detection

    Science.gov (United States)

    Lu, Peng; Gao, Bin; Feng, Qizhi; Yang, Yang; Woo, W. L.; Tian, Gui Yun

    2017-09-01

    The carbon fiber reinforced polymer (CFRP) is widely used in aircraft and wind turbine blades. The common type of CFRP defect is debond. Optical pulse thermographic nondestructive evaluation (OPTNDE) and relevant thermal feature extraction algorithms are generally used to detect the debond. However, the resolution of detection performance remain as challenges. In this paper, the ensemble variational Bayes tensor factorization has been proposed to conduct super resolution of the debond detection. The algorithm is based on the framework of variational Bayes tensor factorization and it constructs spatial-transient multi-layer mining structure which can significantly enhance the contrast ratio between the defective regions and sound regions. In order to quantitatively evaluate the results, the event based F-score is computed. The different information regions of the extracted thermal patterns are considered as different events and the purpose is to objectively evaluate the detectability for different algorithms. Experimental tests and comparative studies have been conducted to prove the efficacy of the proposed method.

  12. Arbitrarily high super-resolving phase measurements at telecommunication wavelengths

    International Nuclear Information System (INIS)

    Kothe, Christian; Bjoerk, Gunnar; Bourennane, Mohamed

    2010-01-01

    We present two experiments that achieve phase super-resolution at telecommunication wavelengths. One of the experiments is realized in the space domain and the other is realized in the time domain. Both experiments show high visibility and are performed with standard lasers and single-photon detectors. The first experiment uses six-photon coincidences, whereas the latter experiment needs no coincidence measurements, is easy to perform, and achieves, in principle, arbitrarily high phase super-resolution. Here, we demonstrate a 30-fold increase of the resolution. We stress that neither entanglement nor joint detection is needed in these experiments, which demonstrates that neither is necessary to achieve phase super-resolution.

  13. In Vivo Optical Imaging for Targeted Drug Kinetics and Localization for Oral Surgery and Super-Resolution, Facilitated by Printed Phantoms

    Science.gov (United States)

    Bentz, Brian Z.

    Many human cancer cell types over-express folate receptors, and this provides an opportunity to develop targeted anti-cancer drugs. For these drugs to be effective, their kinetics must be well understood in vivo and in deep tissue where tumors occur. We demonstrate a method for imaging these parameters by incorporating a kinetic compartment model and fluorescence into optical diffusion tomography (ODT). The kinetics were imaged in a live mouse, and found to be in agreement with previous in vitro studies, demonstrating the validity of the method and its feasibility as an effective tool in preclinical drug development studies. Progress in developing optical imaging for biomedical applications requires customizable and often complex objects known as "phantoms" for testing and evaluation. We present new optical phantoms fabricated using inexpensive 3D printing methods with multiple materials, allowing for the placement of complex inhomogeneities in heterogeneous or anatomically realistic geometries, as opposed to previous phantoms which were limited to simple shapes formed by molds or machining. Furthermore, we show that Mie theory can be used to design the optical properties to match a target tissue. The phantom fabrication methods are versatile, can be applied to optical imaging methods besides diffusive imaging, and can be used in the calibration of live animal imaging data. Applications of diffuse optical imaging in the operating theater have been limited in part due to computational burden. We present an approach for the fast localization of arteries in the roof of the mouth that has the potential to reduce complications. Furthermore, we use the extracted position information to fabricate a custom surgical guide using 3D printing that could protect the arteries during surgery. The resolution of ODT is severely limited by the attenuation of high spatial frequencies. We present a super-resolution method achieved through the point localization of fluorescent

  14. Super-resolved terahertz microscopy by knife-edge scan

    Science.gov (United States)

    Giliberti, V.; Flammini, M.; Ciano, C.; Pontecorvo, E.; Del Re, E.; Ortolani, M.

    2017-08-01

    We present a compact, all solid-state THz confocal microscope operating at 0.30 THz that achieves super-resolution by using the knife-edge scan approach. In the final reconstructed image, a lateral resolution of 60 μm ≍ λ/17 is demonstrated when the knife-edge is deep in the near-field of the sample surface. When the knife-edge is lifted up to λ/4 from the sample surface, a certain degree of super-resolution is maintained with a resolution of 0.4 mm, i.e. more than a factor 2 if compared to the diffraction-limited scheme. The present results open an interesting path towards super-resolved imaging with in-depth information that would be peculiar to THz microscopy systems.

  15. Super-resolution reconstruction of MR image with a novel residual learning network algorithm

    Science.gov (United States)

    Shi, Jun; Liu, Qingping; Wang, Chaofeng; Zhang, Qi; Ying, Shihui; Xu, Haoyu

    2018-04-01

    Spatial resolution is one of the key parameters of magnetic resonance imaging (MRI). The image super-resolution (SR) technique offers an alternative approach to improve the spatial resolution of MRI due to its simplicity. Convolutional neural networks (CNN)-based SR algorithms have achieved state-of-the-art performance, in which the global residual learning (GRL) strategy is now commonly used due to its effectiveness for learning image details for SR. However, the partial loss of image details usually happens in a very deep network due to the degradation problem. In this work, we propose a novel residual learning-based SR algorithm for MRI, which combines both multi-scale GRL and shallow network block-based local residual learning (LRL). The proposed LRL module works effectively in capturing high-frequency details by learning local residuals. One simulated MRI dataset and two real MRI datasets have been used to evaluate our algorithm. The experimental results show that the proposed SR algorithm achieves superior performance to all of the other compared CNN-based SR algorithms in this work.

  16. X-ray interferometric Fourier holography

    International Nuclear Information System (INIS)

    Balyan, M.K.

    2016-01-01

    The X-ray interferometric Fourier holography is proposed and theoretically investigated. Fourier The X-ray interferometric Young fringes and object image reconstruction are investigated. It is shown that the interference pattern of two slits formed on the exit surface of the crystal-analyzer (the third plate of the interferometer) is the X-ray interferometric Young fringes. An expression for X-ray interferometric Young fringes period is obtained. The subsequent reconstruction of the slit image as an object is performed by means of Fourier transform of the intensity distribution on the hologram. Three methods of reconstruction of the amplitude transmission complex function of the object are presented: analytical - approximate method, method of iteration and step by step method. As an example the X-ray Fourier interferometric hologram recording and the complex amplitude transmission function reconstruction for a beryllium circular wire are considered

  17. Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Dylan Myers Owen

    2013-12-01

    Full Text Available The lipid bilayer of model membranes, liposomes reconstituted from cell lipids, and plasma membrane vesicles and spheres can separate into two distinct liquid phases to yield lipid domains with liquid-ordered and liquid-disordered properties. These observations are the basis of the lipid raft hypothesis that postulates the existence of cholesterol-enriched ordered-phase lipid domains in cell membranes that could regulate protein mobility, localization and interaction. Here we review the evidence that nano-scaled lipid complexes and meso-scaled lipid domains exist in cell membranes and how new fluorescence microscopy techniques that overcome the diffraction limit provide new insights into lipid organization in cell membranes.

  18. SAR Interferogram Filtering of Shearlet Domain Based on Interferometric Phase Statistics

    Directory of Open Access Journals (Sweden)

    Yonghong He

    2017-02-01

    Full Text Available This paper presents a new filtering approach for Synthetic Aperture Radar (SAR interferometric phase noise reduction in the shearlet domain, depending on the coherent statistical characteristics. Shearlets provide a multidirectional and multiscale decomposition that have advantages over wavelet filtering methods when dealing with noisy phase fringes. Phase noise in SAR interferograms is directly related to the interferometric coherence and the look number of the interferogram. Therefore, an optimal interferogram filter should incorporate information from both of them. The proposed method combines the phase noise standard deviation with the shearlet transform. Experimental results show that the proposed method can reduce the interferogram noise while maintaining the spatial resolution, especially in areas with low coherence.

  19. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  20. Toward robust high resolution fluorescence tomography: a hybrid row-action edge preserving regularization

    Science.gov (United States)

    Behrooz, Ali; Zhou, Hao-Min; Eftekhar, Ali A.; Adibi, Ali

    2011-02-01

    Depth-resolved localization and quantification of fluorescence distribution in tissue, called Fluorescence Molecular Tomography (FMT), is highly ill-conditioned as depth information should be extracted from limited number of surface measurements. Inverse solvers resort to regularization algorithms that penalize Euclidean norm of the solution to overcome ill-posedness. While these regularization algorithms offer good accuracy, their smoothing effects result in continuous distributions which lack high-frequency edge-type features of the actual fluorescence distribution and hence limit the resolution offered by FMT. We propose an algorithm that penalizes the total variation (TV) norm of the solution to preserve sharp transitions and high-frequency components in the reconstructed fluorescence map while overcoming ill-posedness. The hybrid algorithm is composed of two levels: 1) An Algebraic Reconstruction Technique (ART), performed on FMT data for fast recovery of a smooth solution that serves as an initial guess for the iterative TV regularization, 2) A time marching TV regularization algorithm, inspired by the Rudin-Osher-Fatemi TV image restoration, performed on the initial guess to further enhance the resolution and accuracy of the reconstruction. The performance of the proposed method in resolving fluorescent tubes inserted in a liquid tissue phantom imaged by a non-contact CW trans-illumination FMT system is studied and compared to conventional regularization schemes. It is observed that the proposed method performs better in resolving fluorescence inclusions at higher depths.

  1. Spatiotemporal Super-Resolution Reconstruction Based on Robust Optical Flow and Zernike Moment for Video Sequences

    Directory of Open Access Journals (Sweden)

    Meiyu Liang

    2013-01-01

    Full Text Available In order to improve the spatiotemporal resolution of the video sequences, a novel spatiotemporal super-resolution reconstruction model (STSR based on robust optical flow and Zernike moment is proposed in this paper, which integrates the spatial resolution reconstruction and temporal resolution reconstruction into a unified framework. The model does not rely on accurate estimation of subpixel motion and is robust to noise and rotation. Moreover, it can effectively overcome the problems of hole and block artifacts. First we propose an efficient robust optical flow motion estimation model based on motion details preserving, then we introduce the biweighted fusion strategy to implement the spatiotemporal motion compensation. Next, combining the self-adaptive region correlation judgment strategy, we construct a fast fuzzy registration scheme based on Zernike moment for better STSR with higher efficiency, and then the final video sequences with high spatiotemporal resolution can be obtained by fusion of the complementary and redundant information with nonlocal self-similarity between the adjacent video frames. Experimental results demonstrate that the proposed method outperforms the existing methods in terms of both subjective visual and objective quantitative evaluations.

  2. Interferometric interrogation of π-phase shifted fiber Bragg grating sensors

    Science.gov (United States)

    Srivastava, Deepa; Tiwari, Umesh; Das, Bhargab

    2018-03-01

    Interferometric interrogation technique realized for conventional fiber Bragg grating (FBG) sensors is historically known to offer the highest sensitivity measurements, however, it has not been yet explored for π-phase-shifted FBG (πFBG) sensors. This, we believe, is due to the complex nature of the reflection/transmission spectrum of a πFBG, which cannot be directly used for interferometric interrogation purpose. Therefore, we propose here an innovative as well as simple concept towards this direction, wherein, the transmission spectrum of a πFBG sensor is optically filtered using a specially designed fiber grating. The resulting filtered spectrum retains the entire characteristics of a πFBG sensor and hence the filtered spectrum can be interrogated with interferometric principles. Furthermore, due to the extremely narrow transmission notch of a πFBG sensor, a fiber interferometer can be realized with significantly longer path difference. This leads to substantially enhanced detection limit as compared to sensors based on a regular FBG of similar length. Theoretical analysis demonstrates that high resolution weak dynamic strain measurement down to 4 pε /√{ Hz } is easily achievable. Preliminary experimental results are also presented as proof-of-concept of the proposed interrogation principle.

  3. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    Science.gov (United States)

    Yin, Yanchun

    QPA in the spatial domain has also been studied as a method to enhance the spatial resolution of imaging systems. A detailed model has been developed for achieving both super-resolution and detection of phase-amplified light. The imaging resolution problem considered here is treated as a binary hypotheses testing problem. Resolution enhancement is achieved by magnification of the angular separation of two targets in the sub-Rayleigh regime. The detection model includes optimization of detector segmentation, detector noise, and detection in both the spatial and the spatial frequency domain, which provide strategies for the optimization of the signal-to-noise ratio that take advantage of both the change of the field distribution and the change of energy of the signal in the QPA process. Proof-of-principle experiments have been conducted in the spatial domain. For the first time, beam angular amplification has been demonstrated, and the experimental result is in good agreement with simulations. The experimental demonstration has been achieved by observing the correlation of amplitude and angular phase in the phase-sensitive three-wave mixing process using ultrashort laser pulses and utilizing a type I three-wave mixing process. Several diagnostics have been developed and employed in the experimental measurements, including the near-field diagnostic, the far-field diagnostic, and the interferometry diagnostic. They have all been used to confirm the existence and study the properties of the QPA process on a shot-to-shot basis. Specifically, amplitude was measured in the near-field diagnostic, while the angular phase was indirectly measured in the far-field diagnostic by determining the position of the beam centroid. Interferometric measurements have been found to be of insufficient accuracy for this measurement in the way they were implemented. The demonstration of beam angular amplification by use of QPA lays the foundation for future integrated demonstration of imaging

  4. Measurement of replication structures at the nanometer scale using super-resolution light microscopy.

    Science.gov (United States)

    Baddeley, D; Chagin, V O; Schermelleh, L; Martin, S; Pombo, A; Carlton, P M; Gahl, A; Domaing, P; Birk, U; Leonhardt, H; Cremer, C; Cardoso, M C

    2010-01-01

    DNA replication, similar to other cellular processes, occurs within dynamic macromolecular structures. Any comprehensive understanding ultimately requires quantitative data to establish and test models of genome duplication. We used two different super-resolution light microscopy techniques to directly measure and compare the size and numbers of replication foci in mammalian cells. This analysis showed that replication foci vary in size from 210 nm down to 40 nm. Remarkably, spatially modulated illumination (SMI) and 3D-structured illumination microscopy (3D-SIM) both showed an average size of 125 nm that was conserved throughout S-phase and independent of the labeling method, suggesting a basic unit of genome duplication. Interestingly, the improved optical 3D resolution identified 3- to 5-fold more distinct replication foci than previously reported. These results show that optical nanoscopy techniques enable accurate measurements of cellular structures at a level previously achieved only by electron microscopy and highlight the possibility of high-throughput, multispectral 3D analyses.

  5. Accelerating cross-validation with total variation and its application to super-resolution imaging.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Obuchi

    Full Text Available We develop an approximation formula for the cross-validation error (CVE of a sparse linear regression penalized by ℓ1-norm and total variation terms, which is based on a perturbative expansion utilizing the largeness of both the data dimensionality and the model. The developed formula allows us to reduce the necessary computational cost of the CVE evaluation significantly. The practicality of the formula is tested through application to simulated black-hole image reconstruction on the event-horizon scale with super resolution. The results demonstrate that our approximation reproduces the CVE values obtained via literally conducted cross-validation with reasonably good precision.

  6. Image quality assessment for selfies with and without super resolution

    Science.gov (United States)

    Kubota, Aya; Gohshi, Seiichi

    2018-04-01

    With the advent of cellphone cameras, in particular, on smartphones, many people now take photos of themselves alone and with others in the frame; such photos are popularly known as "selfies". Most smartphones are equipped with two cameras: the front-facing and rear cameras. The camera located on the back of the smartphone is referred to as the "out-camera," whereas the one located on the front of the smartphone is called the "in-camera." In-cameras are mainly used for selfies. Some smartphones feature high-resolution cameras. However, the original image quality cannot be obtained because smartphone cameras often have low-performance lenses. Super resolution (SR) is one of the recent technological advancements that has increased image resolution. We developed a new SR technology that can be processed on smartphones. Smartphones with new SR technology are currently available in the market have already registered sales. However, the effective use of new SR technology has not yet been verified. Comparing the image quality with and without SR on smartphone display is necessary to confirm the usefulness of this new technology. Methods that are based on objective and subjective assessments are required to quantitatively measure image quality. It is known that the typical object assessment value, such as Peak Signal to Noise Ratio (PSNR), does not go together with how we feel when we assess image/video. When digital broadcast started, the standard was determined using subjective assessment. Although subjective assessment usually comes at high cost because of personnel expenses for observers, the results are highly reproducible when they are conducted under right conditions and statistical analysis. In this study, the subjective assessment results for selfie images are reported.

  7. Mapping the nanoscale energetic landscape in conductive polymer films with spatially super-resolved exciton dynamics

    Science.gov (United States)

    Ginsberg, Naomi

    2015-03-01

    The migration of Frenkel excitons, tightly-bound electron-hole pairs, in polymeric organic semiconducting films is critical to the efficiency of bulk heterojunction solar cells. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton diffusion lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore.

  8. The nature of extragalactic radio-jets from high-resolution radio-interferometric observations

    OpenAIRE

    Perucho, Manel

    2014-01-01

    Extragalactic jets are a common feature of radio-loud active galaxies. The nature of the observed jets in relation to the bulk flow is still unclear. In particular it is not clear whether the observations of parsec-scale jets using the very long baseline interferometric technique (VLBI) reveal wave-like structures that develop and propagate along the jet, or trace the jet flow itself. In this contribution I review the evidence collected during the last years showing that the ridge-lines of he...

  9. Low-redundancy linear arrays in mirrored interferometric aperture synthesis.

    Science.gov (United States)

    Zhu, Dong; Hu, Fei; Wu, Liang; Li, Jun; Lang, Liang

    2016-01-15

    Mirrored interferometric aperture synthesis (MIAS) is a novel interferometry that can improve spatial resolution compared with that of conventional IAS. In one-dimensional (1-D) MIAS, antenna array with low redundancy has the potential to achieve a high spatial resolution. This Letter presents a technique for the direct construction of low-redundancy linear arrays (LRLAs) in MIAS and derives two regular analytical patterns that can yield various LRLAs in short computation time. Moreover, for a better estimation of the observed scene, a bi-measurement method is proposed to handle the rank defect associated with the transmatrix of those LRLAs. The results of imaging simulation demonstrate the effectiveness of the proposed method.

  10. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    Science.gov (United States)

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  11. Status report of BL08 superHRPD

    International Nuclear Information System (INIS)

    Torii, Shuki

    2010-01-01

    At the end of May in 2008, the first neutron was produced successfully from a spallation neutron source in Japan Proton Accelerator Research Complex (J-PARC). High resolution Bragg reflections were obtained using the Sirius diffractometer chamber at Super High Resolution Powder Diffractometer (SuperHARD) beam line at Materials and Life Science Experimental Facility (MLF). We started up quickly by using the existing Sirius chamber, and had succeeded in achieving resolution as Δd/d=0.035 %, the best among all the entire neutron powder diffractometers in the world. About 300 detectors had been installed in the backward detector bank, and several standard samples had been measured. Simultaneously, we were carrying out basic study to design and construct a new SuperHRPD chamber, and the Sirius chamber had been exchanged for new one in summer of 2009. In the design of a new chamber, a detector solid angle is increased, d-range/Q-range is expanded, and also has options of high-intensity mode and high-resolution mode with incident collimations. (author)

  12. Applications of interferometrically derived terrain slopes: Normalization of SAR backscatter and the interferometric correlation coefficient

    Science.gov (United States)

    Werner, Charles L.; Wegmueller, Urs; Small, David L.; Rosen, Paul A.

    1994-01-01

    Terrain slopes, which can be measured with Synthetic Aperture Radar (SAR) interferometry either from a height map or from the interferometric phase gradient, were used to calculate the local incidence angle and the correct pixel area. Both are required for correct thematic interpretation of SAR data. The interferometric correlation depends on the pixel area projected on a plane perpendicular to the look vector and requires correction for slope effects. Methods for normalization of the backscatter and interferometric correlation for ERS-1 SAR are presented.

  13. Super-resolution biomolecular crystallography with low-resolution data.

    Science.gov (United States)

    Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T

    2010-04-22

    X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X

  14. Super-Resolution for “Jilin-1” Satellite Video Imagery via a Convolutional Network

    Directory of Open Access Journals (Sweden)

    Aoran Xiao

    2018-04-01

    Full Text Available Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method’s practicality. Experimental results on “Jilin-1” satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods.

  15. NicoLase-An open-source diode laser combiner, fiber launch, and sequencing controller for fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Philip R Nicovich

    Full Text Available Modern fluorescence microscopy requires software-controlled illumination sources with high power across a wide range of wavelengths. Diode lasers meet the power requirements and combining multiple units into a single fiber launch expands their capability across the required spectral range. We present the NicoLase, an open-source diode laser combiner, fiber launch, and software sequence controller for fluorescence microscopy and super-resolution microscopy applications. Two configurations are described, giving four or six output wavelengths and one or two single-mode fiber outputs, with all CAD files, machinist drawings, and controller source code openly available.

  16. Robust snapshot interferometric spectropolarimetry.

    Science.gov (United States)

    Kim, Daesuk; Seo, Yoonho; Yoon, Yonghee; Dembele, Vamara; Yoon, Jae Woong; Lee, Kyu Jin; Magnusson, Robert

    2016-05-15

    This Letter describes a Stokes vector measurement method based on a snapshot interferometric common-path spectropolarimeter. The proposed scheme, which employs an interferometric polarization-modulation module, can extract the spectral polarimetric parameters Ψ(k) and Δ(k) of a transmissive anisotropic object by which an accurate Stokes vector can be calculated in the spectral domain. It is inherently strongly robust to the object 3D pose variation, since it is designed distinctly so that the measured object can be placed outside of the interferometric module. Experiments are conducted to verify the feasibility of the proposed system. The proposed snapshot scheme enables us to extract the spectral Stokes vector of a transmissive anisotropic object within tens of msec with high accuracy.

  17. Evaluation of Chlorophyll Fluorescence and Biochemical Traits of Lettuce under Drought Stress and Super Absorbent or Bentonite Application

    Directory of Open Access Journals (Sweden)

    Akram Valizadeh Ghale Beig

    2014-03-01

    Full Text Available The effects of two superabsorbents (natural-bentonite and (synthetic-A 200 on the chlorophyll fluorescence index, proline accumulation, phenolic compounds, antioxidant activity and total carbohydrate in lettuce (Lactuca sativa L. was evaluated. For this purpose, a factorial experiment using completely randomized design with superabsorbents at 3 levels (0, 0.15, 0.30 w/w%, drought stress at 2 levels (60 and 100% of field capacity and 4 replicates was conducted. Results showed that photosystem photochemical efficiency (Fv/Fm II under drought stress (60% FC as well as lower levels of bentonite superabsorbent polymer reduced. The minimum and maximum proline content were obtained in 0.3% bentonite, 100% FC and 0 benetonite, 60% FC, respectively. The lowest and highest phenolic compounds was corresponded to the highest levels in both super absorbents and control respectively, so that the super absorbent and bentonite, reduced phenolic compounds by 62.65 and 66.21% compared to control. 0 and 0.15 wt % bentonite in high drought stress (60% FC showed the highest and 0.3 wt % bentonite and 100% FC attained the lowest level of antioxidant activity. Control bentonite treatment beds at 60% FC and beds containing 0.3 wt. % bentonite in 100% FC, showed the lowest and the highest total carbohydrate content respectively. Results of this study indicate that bentonite can reduce the negative effects of drought stress similar to artificial super absorbent.

  18. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes

    Science.gov (United States)

    Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh

    2018-04-01

    Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.

  19. X-ray fluorescence in Member States (Italy): Full field X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F. P.; Masini, N.; Pappalardo, L., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Cosentino, L.; Gammino, S.; Mascali, D.; Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy)

    2014-02-15

    A full field X-ray camera for the X-Ray Fluorescence imaging of materials with high-energy and high-spatial resolution was designed and developed. The system was realized by coupling a pinhole collimator with a positionsensitive CCD detector. X-Ray fluorescence is induced on the samples by irradiation with an external X-ray tube. The characteristic X-ray spectra of the investigated materials are obtained by using a multi-frames acquisition in single-photon counting. The energy resolution measured at the Fe-Kα line was 157 eV. The spatial resolution of the system was determined by the analysis of a sharp-edge at different magnification values; it was estimated to be 90 μm at a magnification value of 3.2x and 190 μm at 0.8x. The present set-up of the system is suited to analyze samples with dimensions up to 5x4 cm{sup 2}. Typical measurement time is in the range between 1h to 4 h. (author)

  20. Adaptive patch-based POCS approach for super resolution reconstruction of 4D-CT lung data

    International Nuclear Information System (INIS)

    Wang, Tingting; Cao, Lei; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu

    2015-01-01

    Image enhancement of lung four-dimensional computed tomography (4D-CT) data is highly important because image resolution remains a crucial point in lung cancer radiotherapy. In this paper, we proposed a method for lung 4D-CT super resolution (SR) by using an adaptive-patch-based projection onto convex sets (POCS) approach, which is in contrast with the global POCS SR algorithm, to recover fine details with lesser artifacts in images. The main contribution of this patch-based approach is that the interfering local structure from other phases can be rejected by employing a similar patch adaptive selection strategy. The effectiveness of our approach is demonstrated through experiments on simulated images and real lung 4D-CT datasets. A comparison with previously published SR reconstruction methods highlights the favorable characteristics of the proposed method. (paper)

  1. Single image super-resolution based on compressive sensing and improved TV minimization sparse recovery

    Science.gov (United States)

    Vishnukumar, S.; Wilscy, M.

    2017-12-01

    In this paper, we propose a single image Super-Resolution (SR) method based on Compressive Sensing (CS) and Improved Total Variation (TV) Minimization Sparse Recovery. In the CS framework, low-resolution (LR) image is treated as the compressed version of high-resolution (HR) image. Dictionary Training and Sparse Recovery are the two phases of the method. K-Singular Value Decomposition (K-SVD) method is used for dictionary training and the dictionary represents HR image patches in a sparse manner. Here, only the interpolated version of the LR image is used for training purpose and thereby the structural self similarity inherent in the LR image is exploited. In the sparse recovery phase the sparse representation coefficients with respect to the trained dictionary for LR image patches are derived using Improved TV Minimization method. HR image can be reconstructed by the linear combination of the dictionary and the sparse coefficients. The experimental results show that the proposed method gives better results quantitatively as well as qualitatively on both natural and remote sensing images. The reconstructed images have better visual quality since edges and other sharp details are preserved.

  2. MIiSR: Molecular Interactions in Super-Resolution Imaging Enables the Analysis of Protein Interactions, Dynamics and Formation of Multi-protein Structures.

    Directory of Open Access Journals (Sweden)

    Fabiana A Caetano

    2015-12-01

    Full Text Available Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.

  3. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    Science.gov (United States)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  4. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.

    Science.gov (United States)

    Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A

    2012-05-08

    Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.

  5. Correlated Fluorescence-Atomic Force Microscopy Studies of the Clathrin Mediated Endocytosis in SKMEL Cells

    Science.gov (United States)

    Smith, Steve; Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam

    Clathrin-mediated endocytosis is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorescent fusion proteins (actin filaments labeled with green phalloidin-antibody and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. Results from our work are compared against dynamical polarized total internal fluorescence (TIRF), super-resolution photo-activated localization microscopy (PALM) and transmission electron microscopy (TEM) to draw conclusions regarding the prominent model of vesicle formation in clathrin-mediated endocytosis. Funding provided by NSF MPS/DMR/BMAT award # 1206908.

  6. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Chong Fan

    2017-02-01

    Full Text Available To solve the problem on inaccuracy when estimating the point spread function (PSF of the ideal original image in traditional projection onto convex set (POCS super-resolution (SR reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the highresolution (HR image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40 three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method.

  7. DNA origami-based standards for quantitative fluorescence microscopy.

    Science.gov (United States)

    Schmied, Jürgen J; Raab, Mario; Forthmann, Carsten; Pibiri, Enrico; Wünsch, Bettina; Dammeyer, Thorben; Tinnefeld, Philip

    2014-01-01

    Validating and testing a fluorescence microscope or a microscopy method requires defined samples that can be used as standards. DNA origami is a new tool that provides a framework to place defined numbers of small molecules such as fluorescent dyes or proteins in a programmed geometry with nanometer precision. The flexibility and versatility in the design of DNA origami microscopy standards makes them ideally suited for the broad variety of emerging super-resolution microscopy methods. As DNA origami structures are durable and portable, they can become a universally available specimen to check the everyday functionality of a microscope. The standards are immobilized on a glass slide, and they can be imaged without further preparation and can be stored for up to 6 months. We describe a detailed protocol for the design, production and use of DNA origami microscopy standards, and we introduce a DNA origami rectangle, bundles and a nanopillar as fluorescent nanoscopic rulers. The protocol provides procedures for the design and realization of fluorescent marks on DNA origami structures, their production and purification, quality control, handling, immobilization, measurement and data analysis. The procedure can be completed in 1-2 d.

  8. Tryptophan and ATTO 590: mutual fluorescence quenching and exciplex formation.

    Science.gov (United States)

    Bhattacharjee, Ujjal; Beck, Christie; Winter, Arthur; Wells, Carson; Petrich, Jacob W

    2014-07-24

    Investigation of fluorescence quenching of probes, such as ATTO dyes, is becoming an increasingly important topic owing to the use of these dyes in super-resolution microscopies and in single-molecule studies. Photoinduced electron transfer is their most important nonradiative pathway. Because of the increasing frequency of the use of ATTO and related dyes to investigate biological systems, studies are presented for inter- and intramolecular quenching of ATTO 590 with tryptophan. In order to examine intramolecular quenching, an ATTO 590-tryptophan conjugate was synthesized. It was determined that tryptophan is efficiently quenching ATTO 590 fluorescence by excited-state charge transfer and two charge transfer complexes are forming. In addition, it was discovered that an exciplex (whose lifetime is 5.6 ns) can be formed between tryptophan and ATTO 590, and it is suggested that the possibility of such exciplex formation should be taken into account when protein fluorescence is monitored in a system tagged with ATTO dyes.

  9. Super-Resolution Microscopy Reveals the Native Ultrastructure of the Erythrocyte Cytoskeleton

    Directory of Open Access Journals (Sweden)

    Leiting Pan

    2018-01-01

    Full Text Available The erythrocyte cytoskeleton is a textbook prototype for the submembrane cytoskeleton of metazoan cells. While early experiments suggest a triangular network of actin-based junctional complexes connected by ∼200-nm-long spectrin tetramers, later studies indicate much smaller junction-to-junction distances in the range of 25-60 nm. Through super-resolution microscopy, we resolve the native ultrastructure of the cytoskeleton of membrane-preserved erythrocytes for the N and C termini of β-spectrin, F-actin, protein 4.1, tropomodulin, and adducin. This allows us to determine an ∼80-nm junction-to-junction distance, a length consistent with relaxed spectrin tetramers and theories based on spectrin abundance. Through two-color data, we further show that the cytoskeleton meshwork often contains nanoscale voids where the cell membrane remains intact and that actin filaments and capping proteins localize to a subset of, but not all, junctional complexes. Together, our results call for a reassessment of the structure and function of the submembrane cytoskeleton.

  10. Structural analysis of herpes simplex virus by optical super-resolution imaging

    Science.gov (United States)

    Laine, Romain F.; Albecka, Anna; van de Linde, Sebastian; Rees, Eric J.; Crump, Colin M.; Kaminski, Clemens F.

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.

  11. Interferometric snapshot spectro-ellipsometry.

    Science.gov (United States)

    Dembele, Vamara; Jin, Moonseob; Choi, Inho; Chegal, Won; Kim, Daesuk

    2018-01-22

    We propose a snapshot spectroscopic ellipsometry and its applications for real-time thin-film thickness measurement. The proposed system employs an interferometric polarization-modulation module that can measure the spectroscopic ellipsometric phase for thin-film deposited on a substrate with a measurement speed of around 20 msec. It requires neither moving parts nor time dependent modulation devices. The accuracy of the proposed interferometric snapshot spectro-ellipsometer is analyzed through comparison with commercial equipment results.

  12. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2018-03-01

    A new method to tag the barium daughter in the double beta decay of $^{136}$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$^{++}$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($\\sim$2~nm), and detected with a statistical significance of 12.9~$\\sigma$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  13. An Improved Interferometric Calibration Method Based on Independent Parameter Decomposition

    Science.gov (United States)

    Fan, J.; Zuo, X.; Li, T.; Chen, Q.; Geng, X.

    2018-04-01

    Interferometric SAR is sensitive to earth surface undulation. The accuracy of interferometric parameters plays a significant role in precise digital elevation model (DEM). The interferometric calibration is to obtain high-precision global DEM by calculating the interferometric parameters using ground control points (GCPs). However, interferometric parameters are always calculated jointly, making them difficult to decompose precisely. In this paper, we propose an interferometric calibration method based on independent parameter decomposition (IPD). Firstly, the parameters related to the interferometric SAR measurement are determined based on the three-dimensional reconstruction model. Secondly, the sensitivity of interferometric parameters is quantitatively analyzed after the geometric parameters are completely decomposed. Finally, each interferometric parameter is calculated based on IPD and interferometric calibration model is established. We take Weinan of Shanxi province as an example and choose 4 TerraDEM-X image pairs to carry out interferometric calibration experiment. The results show that the elevation accuracy of all SAR images is better than 2.54 m after interferometric calibration. Furthermore, the proposed method can obtain the accuracy of DEM products better than 2.43 m in the flat area and 6.97 m in the mountainous area, which can prove the correctness and effectiveness of the proposed IPD based interferometric calibration method. The results provide a technical basis for topographic mapping of 1 : 50000 and even larger scale in the flat area and mountainous area.

  14. AN IMPROVED INTERFEROMETRIC CALIBRATION METHOD BASED ON INDEPENDENT PARAMETER DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    J. Fan

    2018-04-01

    Full Text Available Interferometric SAR is sensitive to earth surface undulation. The accuracy of interferometric parameters plays a significant role in precise digital elevation model (DEM. The interferometric calibration is to obtain high-precision global DEM by calculating the interferometric parameters using ground control points (GCPs. However, interferometric parameters are always calculated jointly, making them difficult to decompose precisely. In this paper, we propose an interferometric calibration method based on independent parameter decomposition (IPD. Firstly, the parameters related to the interferometric SAR measurement are determined based on the three-dimensional reconstruction model. Secondly, the sensitivity of interferometric parameters is quantitatively analyzed after the geometric parameters are completely decomposed. Finally, each interferometric parameter is calculated based on IPD and interferometric calibration model is established. We take Weinan of Shanxi province as an example and choose 4 TerraDEM-X image pairs to carry out interferometric calibration experiment. The results show that the elevation accuracy of all SAR images is better than 2.54 m after interferometric calibration. Furthermore, the proposed method can obtain the accuracy of DEM products better than 2.43 m in the flat area and 6.97 m in the mountainous area, which can prove the correctness and effectiveness of the proposed IPD based interferometric calibration method. The results provide a technical basis for topographic mapping of 1 : 50000 and even larger scale in the flat area and mountainous area.

  15. Interferometric crosstalk reduction by phase scrambling

    NARCIS (Netherlands)

    Tafur Monroy, I.; Tangdiongga, E.; Jonker, R.J.W.; Waardt, de H.

    2000-01-01

    Interferometric crosstalk, arising from the detection of undesired signals at the same nominal wavelength, may introduce large power penalties and bit-error rate (BER) floor significantly restricting the scalability of optical networks. In this paper, interferometric crosstalk reduction in optical

  16. Super-resolution reconstruction of 4D-CT lung data via patch-based low-rank matrix reconstruction

    Science.gov (United States)

    Fang, Shiting; Wang, Huafeng; Liu, Yueliang; Zhang, Minghui; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu

    2017-10-01

    Lung 4D computed tomography (4D-CT), which is a time-resolved CT data acquisition, performs an important role in explicitly including respiratory motion in treatment planning and delivery. However, the radiation dose is usually reduced at the expense of inter-slice spatial resolution to minimize radiation-related health risk. Therefore, resolution enhancement along the superior-inferior direction is necessary. In this paper, a super-resolution (SR) reconstruction method based on a patch low-rank matrix reconstruction is proposed to improve the resolution of lung 4D-CT images. Specifically, a low-rank matrix related to every patch is constructed by using a patch searching strategy. Thereafter, the singular value shrinkage is employed to recover the high-resolution patch under the constraints of the image degradation model. The output high-resolution patches are finally assembled to output the entire image. This method is extensively evaluated using two public data sets. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 9.7%-33.4% and the edge width by 11.4%-24.3%, relative to linear interpolation, back projection (BP) and Zhang et al’s algorithm. A new algorithm has been developed to improve the resolution of 4D-CT. In all experiments, the proposed method outperforms various interpolation methods, as well as BP and Zhang et al’s method, thus indicating the effectivity and competitiveness of the proposed algorithm.

  17. Optimization of super-resolution processing using incomplete image sets in PET imaging.

    Science.gov (United States)

    Chang, Guoping; Pan, Tinsu; Clark, John W; Mawlawi, Osama R

    2008-12-01

    Super-resolution (SR) techniques are used in PET imaging to generate a high-resolution image by combining multiple low-resolution images that have been acquired from different points of view (POVs). The number of low-resolution images used defines the processing time and memory storage necessary to generate the SR image. In this paper, the authors propose two optimized SR implementations (ISR-1 and ISR-2) that require only a subset of the low-resolution images (two sides and diagonal of the image matrix, respectively), thereby reducing the overall processing time and memory storage. In an N x N matrix of low-resolution images, ISR-1 would be generated using images from the two sides of the N x N matrix, while ISR-2 would be generated from images across the diagonal of the image matrix. The objective of this paper is to investigate whether the two proposed SR methods can achieve similar performance in contrast and signal-to-noise ratio (SNR) as the SR image generated from a complete set of low-resolution images (CSR) using simulation and experimental studies. A simulation, a point source, and a NEMA/IEC phantom study were conducted for this investigation. In each study, 4 (2 x 2) or 16 (4 x 4) low-resolution images were reconstructed from the same acquired data set while shifting the reconstruction grid to generate images from different POVs. SR processing was then applied in each study to combine all as well as two different subsets of the low-resolution images to generate the CSR, ISR-1, and ISR-2 images, respectively. For reference purpose, a native reconstruction (NR) image using the same matrix size as the three SR images was also generated. The resultant images (CSR, ISR-1, ISR-2, and NR) were then analyzed using visual inspection, line profiles, SNR plots, and background noise spectra. The simulation study showed that the contrast and the SNR difference between the two ISR images and the CSR image were on average 0.4% and 0.3%, respectively. Line profiles of

  18. The fresnel interferometric imager

    Science.gov (United States)

    Koechlin, Laurent; Serre, Denis; Deba, Paul; Pelló, Roser; Peillon, Christelle; Duchon, Paul; Gomez de Castro, Ana Ines; Karovska, Margarita; Désert, Jean-Michel; Ehrenreich, David; Hebrard, Guillaume; Lecavelier Des Etangs, Alain; Ferlet, Roger; Sing, David; Vidal-Madjar, Alfred

    2009-03-01

    interferometric arrays. These simulations yield a dynamic range (rejection factor) close to 10 - 8 for arrays such as the 3.6 m one we propose. A dynamic range of 10 - 8 allows detection of objects at contrasts as high as than 10 - 9 in most of the field. The astrophysical applications cover many objects in the IR, visible an UV domains. Examples are presented, taking advantage of the high angular resolution and dynamic range capabilities of this concept.

  19. Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach

    International Nuclear Information System (INIS)

    Cao, Yaoyu; Li, Xiangping; Gu, Min

    2014-01-01

    We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100 nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way for realizing functional nanostructures

  20. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications.

    Science.gov (United States)

    Cui, Chenghua; Shu, Wei; Li, Peining

    2016-01-01

    Fluorescence in situ hybridization (FISH) is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes, and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains, and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbias and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH) allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH) using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells DNA and RNA FISH

  1. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications

    Directory of Open Access Journals (Sweden)

    Chenghua Cui

    2016-09-01

    Full Text Available Fluorescence in situ hybridization (FISH is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbials and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells

  2. Interferometric redatuming by sparse inversion

    Science.gov (United States)

    van der Neut, Joost; Herrmann, Felix J.

    2013-02-01

    Assuming that transmission responses are known between the surface and a particular depth level in the subsurface, seismic sources can be effectively mapped to this level by a process called interferometric redatuming. After redatuming, the obtained wavefields can be used for imaging below this particular depth level. Interferometric redatuming consists of two steps, namely (i) the decomposition of the observed wavefields into downgoing and upgoing constituents and (ii) a multidimensional deconvolution of the upgoing constituents with the downgoing constituents. While this method works in theory, sensitivity to noise and artefacts due to incomplete acquisition require a different formulation. In this letter, we demonstrate the benefits of formulating the two steps that undergird interferometric redatuming in terms of a transform-domain sparsity-promoting program. By exploiting compressibility of seismic wavefields in the curvelet domain, the method not only becomes robust with respect to noise but we are also able to remove certain artefacts while preserving the frequency content. Although we observe improvements when we promote sparsity in the redatumed data space, we expect better results when interferometric redatuming would be combined or integrated with least-squares migration with sparsity promotion in the image space.

  3. Live-cell and super-resolution imaging reveal that the distribution of wall-associated protein A is correlated with the cell chain integrity of Streptococcus mutans.

    Science.gov (United States)

    Li, Y; Liu, Z; Zhang, Y; Su, Q P; Xue, B; Shao, S; Zhu, Y; Xu, X; Wei, S; Sun, Y

    2015-10-01

    Streptococcus mutans is a primary pathogen responsible for dental caries. It has an outstanding ability to form biofilm, which is vital for virulence. Previous studies have shown that knockout of Wall-associated protein A (WapA) affects cell chain and biofilm formation of S. mutans. As a surface protein, the distribution of WapA remains unknown, but it is important to understand the mechanism underlying the function of WapA. This study applied the fluorescence protein mCherry as a reporter gene to characterize the dynamic distribution of WapA in S. mutans via time-lapse and super-resolution fluorescence imaging. The results revealed interesting subcellular distribution patterns of WapA in single, dividing and long chains of S. mutans cells. It appears at the middle of the cell and moves to the poles as the cell grows and divides. In a cell chain, after each round of cell division, such dynamic relocation results in WapA distribution at the previous cell division sites, resulting in a pattern where WapA is located at the boundary of two adjacent cell pairs. This WapA distribution pattern corresponds to the breaking segmentation of wapA deletion cell chains. The dynamic relocation of WapA through the cell cycle increases our understanding of the mechanism of WapA in maintaining cell chain integrity and biofilm formation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. MEMS Gyroscope with Interferometric Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a novel MEMS gyroscope that uses micro-interferometric detection to measure the motion of the proof mass. Using an interferometric...

  5. Super-resolution mapping of scaffold nucleoporins in the nuclear pore complex.

    Science.gov (United States)

    Ma, Jiong; Kelich, Joseph M; Junod, Samuel L; Yang, Weidong

    2017-04-01

    The nuclear pore complex (NPC), composed of ∼30 different nucleoporins (Nups), is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. However, the precise copy number and the spatial location of each Nup in the native NPC remain obscure due to the inherent difficulty of counting and localizing proteins inside of the sub-micrometer supramolecular complex. Here, we combined super-resolution single-point edge-excitation subdiffraction (SPEED) microscopy and nanobody-specific labeling to reveal the spatial distribution of scaffold Nups within three separate layers in the native NPC with a precision of ∼3 nm. Our data reveal both the radial and axial spatial distributions for Pom121, Nup37 and Nup35 and provide evidence for their copy numbers of 8, 32 and 16, respectively, per NPC. This approach can help pave the path for mapping the entirety of Nups in native NPCs and also other structural components of macromolecular complexes. © 2017. Published by The Company of Biologists Ltd.

  6. Interferometric redatuming by sparse inversion

    OpenAIRE

    Van der Neut, J.; Herrmann, F.J.

    2012-01-01

    Assuming that transmission responses are known between the surface and a particular depth level in the subsurface, seismic sources can be effectively mapped to this level by a process called interferometric redatuming. After redatuming, the obtained wavefields can be used for imaging below this particular depth level. Interferometric redatuming consists of two steps, namely (i) the decomposition of the observed wavefields into downgoing and upgoing constituents and (ii) a multidimensional dec...

  7. SuperMAG: Present and Future Capabilities

    Science.gov (United States)

    Hsieh, S. W.; Gjerloev, J. W.; Barnes, R. J.

    2009-12-01

    SuperMAG is a global collaboration that provides ground magnetic field perturbations from a long list of stations in the same coordinate system, identical time resolution and with a common baseline removal approach. This unique high quality dataset provides a continuous and nearly global monitoring of the ground magnetic field perturbation. Currently, only archived data are available on the website and hence it targets basic research without any operational capabilities. The existing SuperMAG software can be easily adapted to ingest real-time or near real-time data and provide a now-casting capability. The SuperDARN program has a long history of providing near real-time maps of the northern hemisphere electrostatic potential and as both SuperMAG and SuperDARN share common software it is relatively easy to adapt these maps for global magnetic perturbations. Magnetometer measurements would be assimilated by the SuperMAG server using a variety of techniques, either by downloading data at regular intervals from remote servers or by real-time streaming connections. The existing SuperMAG analysis software would then process these measurements to provide the final calibrated data set using the SuperMAG coordinate system. The existing plotting software would then be used to produce regularly updated global plots. The talk will focus on current SuperMAG capabilities illustrating the potential for now-casting and eventually forecasting.

  8. A high-throughput surface plasmon resonance biosensor based on differential interferometric imaging

    International Nuclear Information System (INIS)

    Wang, Daqian; Ding, Lili; Zhang, Wei; Zhang, Enyao; Yu, Xinglong; Luo, Zhaofeng; Ou, Huichao

    2012-01-01

    A new high-throughput surface plasmon resonance (SPR) biosensor based on differential interferometric imaging is reported. The two SPR interferograms of the sensing surface are imaged on two CCD cameras. The phase difference between the two interferograms is 180°. The refractive index related factor (RIRF) of the sensing surface is calculated from the two simultaneously acquired interferograms. The simulation results indicate that the RIRF exhibits a linear relationship with the refractive index of the sensing surface and is unaffected by the noise, drift and intensity distribution of the light source. The affinity and kinetic information can be extracted in real time from continuously acquired RIRF distributions. The results of refractometry experiments show that the dynamic detection range of SPR differential interferometric imaging system can be over 0.015 refractive index unit (RIU). High refractive index resolution is down to 0.45 RU (1 RU = 1 × 10 −6 RIU). Imaging and protein microarray experiments demonstrate the ability of high-throughput detection. The aptamer experiments demonstrate that the SPR sensor based on differential interferometric imaging has a great capability to be implemented for high-throughput aptamer kinetic evaluation. These results suggest that this biosensor has the potential to be utilized in proteomics and drug discovery after further improvement. (paper)

  9. Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves

    Science.gov (United States)

    Shi, Sheng-Bing; Shao, Wei; Ma, Jing; Jin, Congjun; Wang, Xiao-Hua

    2017-09-01

    In this work, a new unconditionally stable finite-difference time-domain (FDTD) method with the split-field perfectly matched layer (PML) is proposed for the analysis of time reversal (TR) waves. The proposed method is very suitable for multiscale problems involving microstructures. The spatial and temporal derivatives in this method are discretized by the central difference technique and Newmark-Beta algorithm, respectively, and the derivation results in the calculation of a banded-sparse matrix equation. Since the coefficient matrix keeps unchanged during the whole simulation process, the lower-upper (LU) decomposition of the matrix needs to be performed only once at the beginning of the calculation. Moreover, the reverse Cuthill-Mckee (RCM) technique, an effective preprocessing technique in bandwidth compression of sparse matrices, is used to improve computational efficiency. The super-resolution focusing of TR wave propagation in two- and three-dimensional spaces is included to validate the accuracy and efficiency of the proposed method.

  10. Thermal lens and interferometric method for glass transition and thermo physical properties measurements in Nd2O3 doped sodium zincborate glass.

    Science.gov (United States)

    Astrath, N G C; Steimacher, A; Rohling, J H; Medina, A N; Bento, A C; Baesso, M L; Jacinto, C; Catunda, T; Lima, S M; Karthikeyan, B

    2008-12-22

    In this work the time resolved thermal lens method is combined with interferometric technique, the thermal relaxation calorimetry, photoluminescence and lifetime measurements to determine the thermo physical properties of Nd(2)O(3) doped sodium zincborate glass as a function of temperature up to the glass transition region. Thermal diffusivity, thermal conductivity, fluorescence quantum efficiency, linear thermal expansion coefficient and thermal coefficient of electronic polarizability were determined. In conclusion, the results showed the ability of thermal lens and interferometric methods to perform measurements very close to the phase transition region. These techniques provide absolute values for the measured physical quantities and are advantageous when low scan rates are required.

  11. Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites.

    Directory of Open Access Journals (Sweden)

    Jens Prescher

    2015-02-01

    Full Text Available The cellular endosomal sorting complex required for transport (ESCRT machinery is involved in membrane budding processes, such as multivesicular biogenesis and cytokinesis. In HIV-infected cells, HIV-1 hijacks the ESCRT machinery to drive HIV release. Early in the HIV-1 assembly process, the ESCRT-I protein Tsg101 and the ESCRT-related protein ALIX are recruited to the assembly site. Further downstream, components such as the ESCRT-III proteins CHMP4 and CHMP2 form transient membrane associated lattices, which are involved in virus-host membrane fission. Although various geometries of ESCRT-III assemblies could be observed, the actual membrane constriction and fission mechanism is not fully understood. Fission might be driven from inside the HIV-1 budding neck by narrowing the membranes from the outside by larger lattices surrounding the neck, or from within the bud. Here, we use super-resolution fluorescence microscopy to elucidate the size and structure of the ESCRT components Tsg101, ALIX, CHMP4B and CHMP2A during HIV-1 budding below the diffraction limit. To avoid the deleterious effects of using fusion proteins attached to ESCRT components, we performed measurements on the endogenous protein or, in the case of CHMP4B, constructs modified with the small HA tag. Due to the transient nature of the ESCRT interactions, the fraction of HIV-1 assembly sites with colocalizing ESCRT complexes was low (1.5%-3.4%. All colocalizing ESCRT clusters exhibited closed, circular structures with an average size (full-width at half-maximum between 45 and 60 nm or a diameter (determined using a Ripley's L-function analysis of roughly 60 to 100 nm. The size distributions for colocalizing clusters were narrower than for non-colocalizing clusters, and significantly smaller than the HIV-1 bud. Hence, our results support a membrane scission process driven by ESCRT protein assemblies inside a confined structure, such as the bud neck, rather than by large lattices

  12. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    Directory of Open Access Journals (Sweden)

    Martin K Schwarz

    Full Text Available In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.

  13. Super-resolution microscopy reveals presynaptic localization of the ALS / FTD related protein FUS in hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Michael eSchoen

    2016-01-01

    Full Text Available Fused in Sarcoma (FUS is a multifunctional RNA- / DNA-binding protein, which is involved in the pathogenesis of the neurodegenerative disorders amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. A common hallmark of these disorders is the abnormal accumulation of mutated FUS protein in the cytoplasm. Under normal conditions FUS is confined to the nuclear compartment, in neurons however, additional somatodendritic localization can be observed. In this study, we carefully analyzed the subcellular localization of endogenous FUS at synaptic sites of hippocampal neurons which are among the most affected cell types in frontotemporal dementia with FUS pathology. We could confirm a strong nuclear localization of FUS as well as its prominent and widespread neuronal expression throughout the adult and developing rat brain, particularly in the hippocampus, the cerebellum and the outer layers of the cortex. Intriguingly, FUS was also consistently observed at synaptic sites as detected by neuronal subcellular fractionation as well as by immunolabeling. To define a pre- and / or postsynaptic localization of FUS, we employed super-resolution fluorescence localization microscopy. FUS was found to be localized within the axon terminal in close proximity to the presynaptic vesicle protein Synaptophysin1 and adjacent to the active zone protein Bassoon, but well separated from the postsynaptic protein PSD-95. Having shown the presynaptic localization of FUS in the nervous system, a novel extranuclear role of FUS at neuronal contact sites has to be considered. Since there is growing evidence that local presynaptic translation might also be an important mechanism for plasticity, FUS - like the fragile X mental retardation protein FMRP - might act as one of the presynaptic RNA-binding proteins regulating this machinery. Our observation of presynaptic FUS should foster further investigations to determine its role in neurodegenerative diseases such as

  14. Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series.

    Science.gov (United States)

    Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W

    2018-02-16

    Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Design and development of high-resolution atomic beam fluorescence spectroscopy facility for isotope shift and hyperfine structure measurements

    International Nuclear Information System (INIS)

    Acharyulu, G.V.S.G.; Sankari, M.; Kiran Kumar, P.V.; Suryanarayana, M.V.

    2012-01-01

    A high-resolution atomic beam fluorescence spectroscopy facility for the determination of isotope shifts and hyperfine structure in atomic species has been designed and developed. A resistively heated graphite tube atomic beam source was designed, tested and integrated into a compact interaction chamber for atomic beam fluorescence experiments. The design of the laser-atom interaction chamber and the source has been modified in a phased manner so as to achieve sub-Doppler resolution. The system has been used to record the hyperfine spectrum of the D2 transitions of Rb and K isotopes. The spectral resolution achieved is ∼ 26 MHz and is adequate to carry out high resolution measurement of isotope shifts and hyperfine structure of various atomic species. The other major advantage of the source is that it requires very small amounts of sample for achieving very good signal to noise ratio. (author)

  16. Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Yang, Yongying; Yang, Liming; Huang, Hanlu

    2013-11-10

    Thanks to wavelength flexibility, interferometric filters such as Fabry-Perot interferometers (FPIs) and field-widened Michelson interferometers (FWMIs) have shown great convenience for spectrally separating the molecule and aerosol scattering components in the high-spectral-resolution lidar (HSRL) return signal. In this paper, performance comparisons between the FPI and FWMI as a spectroscopic discrimination filter in HSRL are performed. We first present a theoretical method for spectral transmission analysis and quantitative evaluation on the spectral discrimination. Then the process in determining the parameters of the FPI and FWMI for the performance comparisons is described. The influences from the incident field of view (FOV), the cumulative wavefront error induced by practical imperfections, and the frequency locking error on the spectral discrimination performance of the two filters are discussed in detail. Quantitative analyses demonstrate that FPI can produce higher transmittance while the remarkable spectral discrimination is one of the most appealing advantages of FWMI. As a result of the field-widened design, the FWMI still performs well even under the illumination with large FOV while the FPI is only qualified for a small incident angle. The cumulative wavefront error attaches a great effect on the spectral discrimination performance of the interferometric filters. We suggest if a cumulative wavefront error is less than 0.05 waves RMS, it is beneficial to employ the FWMI; otherwise, FPI may be more proper. Although the FWMI shows much more sensitivity to the frequency locking error, it can outperform the FPI given a locking error less than 0.1 GHz is achieved. In summary, the FWMI is very competent in HSRL applications if these practical engineering and control problems can be solved, theoretically. Some other estimations neglected in this paper can also be carried out through the analytical method illustrated herein.

  17. Visualizing the interior architecture of focal adhesions with high-resolution traction maps.

    Science.gov (United States)

    Morimatsu, Masatoshi; Mekhdjian, Armen H; Chang, Alice C; Tan, Steven J; Dunn, Alexander R

    2015-04-08

    Focal adhesions (FAs) are micron-sized protein assemblies that coordinate cell adhesion, migration, and mechanotransduction. How the many proteins within FAs are organized into force sensing and transmitting structures is poorly understood. We combined fluorescent molecular tension sensors with super-resolution light microscopy to visualize traction forces within FAs with <100 nm spatial resolution. We find that αvβ3 integrin selectively localizes to high force regions. Paxillin, which is not generally considered to play a direct role in force transmission, shows a higher degree of spatial correlation with force than vinculin, talin, or α-actinin, proteins with hypothesized roles as force transducers. These observations suggest that αvβ3 integrin and paxillin may play important roles in mechanotransduction.

  18. From local pixel structure to global image super-resolution: a new face hallucination framework.

    Science.gov (United States)

    Hu, Yu; Lam, Kin-Man; Qiu, Guoping; Shen, Tingzhi

    2011-02-01

    We have developed a new face hallucination framework termed from local pixel structure to global image super-resolution (LPS-GIS). Based on the assumption that two similar face images should have similar local pixel structures, the new framework first uses the input low-resolution (LR) face image to search a face database for similar example high-resolution (HR) faces in order to learn the local pixel structures for the target HR face. It then uses the input LR face and the learned pixel structures as priors to estimate the target HR face. We present a three-step implementation procedure for the framework. Step 1 searches the database for K example faces that are the most similar to the input, and then warps the K example images to the input using optical flow. Step 2 uses the warped HR version of the K example faces to learn the local pixel structures for the target HR face. An effective method for learning local pixel structures from an individual face, and an adaptive procedure for fusing the local pixel structures of different example faces to reduce the influence of warping errors, have been developed. Step 3 estimates the target HR face by solving a constrained optimization problem by means of an iterative procedure. Experimental results show that our new method can provide good performances for face hallucination, both in terms of reconstruction error and visual quality; and that it is competitive with existing state-of-the-art methods.

  19. Robust sparse image reconstruction of radio interferometric observations with PURIFY

    Science.gov (United States)

    Pratley, Luke; McEwen, Jason D.; d'Avezac, Mayeul; Carrillo, Rafael E.; Onose, Alexandru; Wiaux, Yves

    2018-01-01

    Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize our understanding of the Universe through their unprecedented sensitivity and resolution. However, to realize these goals significant challenges in image and data processing need to be overcome. The standard methods in radio interferometry for reconstructing images, such as CLEAN, have served the community well over the last few decades and have survived largely because they are pragmatic. However, they produce reconstructed interferometric images that are limited in quality and scalability for big data. In this work, we apply and evaluate alternative interferometric reconstruction methods that make use of state-of-the-art sparse image reconstruction algorithms motivated by compressive sensing, which have been implemented in the PURIFY software package. In particular, we implement and apply the proximal alternating direction method of multipliers algorithm presented in a recent article. First, we assess the impact of the interpolation kernel used to perform gridding and degridding on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs as well as prolate spheroidal wave functions while providing a computational saving and an analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very Large Array and the Australia Telescope Compact Array and find that images recovered by PURIFY are of higher quality than those recovered by CLEAN. Thirdly, we discuss how PURIFY reconstructions exhibit additional advantages over those recovered by CLEAN. The latest version of PURIFY, with developments presented in this work, is made publicly available.

  20. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  1. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy.

    Science.gov (United States)

    Schmid, Volker J; Cremer, Marion; Cremer, Thomas

    2017-07-01

    Recent advancements of super-resolved fluorescence microscopy have revolutionized microscopic studies of cells, including the exceedingly complex structural organization of cell nuclei in space and time. In this paper we describe and discuss tools for (semi-) automated, quantitative 3D analyses of the spatial nuclear organization. These tools allow the quantitative assessment of highly resolved different chromatin compaction levels in individual cell nuclei, which reflect functionally different regions or sub-compartments of the 3D nuclear landscape, and measurements of absolute distances between sites of different chromatin compaction. In addition, these tools allow 3D mapping of specific DNA/RNA sequences and nuclear proteins relative to the 3D chromatin compaction maps and comparisons of multiple cell nuclei. The tools are available in the free and open source R packages nucim and bioimagetools. We discuss the use of masks for the segmentation of nuclei and the use of DNA stains, such as DAPI, as a proxy for local differences in chromatin compaction. We further discuss the limitations of 3D maps of the nuclear landscape as well as problems of the biological interpretation of such data. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Single-molecule fluorescence microscopy review: shedding new light on old problems.

    Science.gov (United States)

    Shashkova, Sviatlana; Leake, Mark C

    2017-08-31

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. © 2017 The Author(s).

  3. High-Resolution Spectroscopy of Laser Ablation Plumes Using Laser-Induced Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2017-02-06

    We used a CW laser as a narrow-band (~50kHz) tunable LIF excitation source to probe absorption from selected atomic transitions (Al, U etc. ) in a ns laser ablation plume. A comparison of fluorescence signal with respect to emission spectroscopy show significant increase in the magnitude and persistence from selected Al and U transitions in a LIBS plume. The high spectral resolution provided by the LIF measurement allows peaks to be easily separated even if they overlap in the emission spectra.

  4. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jennifer L.; Kim, Hanseong [Arizona State University, Tempe, AZ 85287-1604 (United States); Markwardt, Michele L. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Chen, Liqing; Fromme, Raimund [Arizona State University, Tempe, AZ 85287-1604 (United States); Rizzo, Mark A. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Wachter, Rebekka M., E-mail: rwachter@asu.edu [Arizona State University, Tempe, AZ 85287-1604 (United States)

    2013-05-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed.

  5. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    International Nuclear Information System (INIS)

    Watkins, Jennifer L.; Kim, Hanseong; Markwardt, Michele L.; Chen, Liqing; Fromme, Raimund; Rizzo, Mark A.; Wachter, Rebekka M.

    2013-01-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed

  6. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling.

    Science.gov (United States)

    Dudok, Barna; Barna, László; Ledri, Marco; Szabó, Szilárd I; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G; Henstridge, Christopher M; Balla, Gyula Y; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István

    2015-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell type- and subcellular compartment-specific manner. We developed a new approach to this problem by combining cell-specific physiological and anatomical characterization with super-resolution imaging and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically projecting GABAergic interneurons possessed increased CB1 receptor number, active-zone complexity and receptor/effector ratio compared with dendritically projecting interneurons, consistent with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ(9)-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked marked CB1 downregulation in a dose-dependent manner. Full receptor recovery required several weeks after the cessation of Δ(9)-tetrahydrocannabinol treatment. These findings indicate that cell type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits and identify previously unknown molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction.

  7. Deep Learning- and Transfer Learning-Based Super Resolution Reconstruction from Single Medical Image

    Directory of Open Access Journals (Sweden)

    YiNan Zhang

    2017-01-01

    Full Text Available Medical images play an important role in medical diagnosis and research. In this paper, a transfer learning- and deep learning-based super resolution reconstruction method is introduced. The proposed method contains one bicubic interpolation template layer and two convolutional layers. The bicubic interpolation template layer is prefixed by mathematics deduction, and two convolutional layers learn from training samples. For saving training medical images, a SIFT feature-based transfer learning method is proposed. Not only can medical images be used to train the proposed method, but also other types of images can be added into training dataset selectively. In empirical experiments, results of eight distinctive medical images show improvement of image quality and time reduction. Further, the proposed method also produces slightly sharper edges than other deep learning approaches in less time and it is projected that the hybrid architecture of prefixed template layer and unfixed hidden layers has potentials in other applications.

  8. Robust super-resolution by fusion of interpolated frames for color and grayscale images

    Directory of Open Access Journals (Sweden)

    Barry eKarch

    2015-04-01

    Full Text Available Multi-frame super-resolution (SR processing seeks to overcome undersampling issues that can lead to undesirable aliasing artifacts. The key to effective multi-frame SR is accurate subpixel inter-frame registration. This accurate registration is challenging when the motion does not obey a simple global translational model and may include local motion. SR processing is further complicated when the camera uses a division-of-focal-plane (DoFP sensor, such as the Bayer color filter array. Various aspects of these SR challenges have been previously investigated. Fast SR algorithms tend to have difficulty accommodating complex motion and DoFP sensors. Furthermore, methods that can tolerate these complexities tend to be iterative in nature and may not be amenable to real-time processing. In this paper, we present a new fast approach for performing SR in the presence of these challenging imaging conditions. We refer to the new approach as Fusion of Interpolated Frames (FIF SR. The FIF SR method decouples the demosaicing, interpolation, and restoration steps to simplify the algorithm. Frames are first individually demosaiced and interpolated to the desired resolution. Next, FIF uses a novel weighted sum of the interpolated frames to fuse them into an improved resolution estimate. Finally, restoration is applied to deconvolve the modeled system PSF. The proposed FIF approach has a lower computational complexity than most iterative methods, making it a candidate for real-time implementation. We provide a detailed description of the FIF SR method and show experimental results using synthetic and real datasets in both constrained and complex imaging scenarios. The experiments include airborne grayscale imagery and Bayer color array images with affine background motion plus local motion.

  9. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    Science.gov (United States)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  10. Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight.

    Directory of Open Access Journals (Sweden)

    Zhou Han

    Full Text Available ArcLight, a genetically encoded fluorescent protein voltage probe with a large ΔF/ΔV, is a fusion between the voltage sensing domain of the Ciona instestinalis voltage sensitive phosphatase and super ecliptic pHluorin carrying a single mutation (A227D in the fluorescent protein. Without this mutation the probe produces only a very small change in fluorescence in response to voltage deflections (∼ 1%. The large signal afforded by this mutation allows optical detection of action potentials and sub-threshold electrical events in single-trials in vitro and in vivo. However, it is unclear how this single mutation produces a probe with such a large modulation of its fluorescence output with changes in membrane potential. In this study, we identified which residues in super ecliptic pHluorin (vs eGFP are critical for the ArcLight response, as a similarly constructed probe based on eGFP also exhibits large response amplitude if it carries these critical residues. We found that D147 is responsible for determining the pH sensitivity of the fluorescent protein used in these probes but by itself does not result in a voltage probe with a large signal. We also provide evidence that the voltage dependent signal of ArcLight is not simply sensing environmental pH changes. A two-photon polarization microscopy study showed that ArcLight's response to changes in membrane potential includes a reorientation of the super ecliptic pHluorin. We also explored different changes including modification of linker length, deletion of non-essential amino acids in the super ecliptic pHluorin, adding a farnesylation site, using tandem fluorescent proteins and other pH sensitive fluorescent proteins.

  11. Super differential forms on super Riemann surfaces

    International Nuclear Information System (INIS)

    Konisi, Gaku; Takahasi, Wataru; Saito, Takesi.

    1994-01-01

    Line integral on the super Riemann surface is discussed. A 'super differential operator' which possesses both properties of differential and of differential operator is proposed. With this 'super differential operator' a new theory of differential form on the super Riemann surface is constructed. We call 'the new differentials on the super Riemann surface' 'the super differentials'. As the applications of our theory, the existency theorems of singular 'super differentials' such as 'super abelian differentials of the 3rd kind' and of a super projective connection are examined. (author)

  12. Interferometric scattering (iSCAT) microscopy: studies of biological membrane dynamics

    Science.gov (United States)

    Reina, Francesco; Galiani, Silvia; Shrestha, Dilip; Sezgin, Erdinc; Lagerholm, B. Christoffer; Cole, Daniel; Kukura, Philipp; Eggeling, Christian

    2018-02-01

    The study of the organization and dynamics of molecules in model and cellular membranes is an important topic in contemporary biophysics. Imaging and single particle tracking in this particular field, however, proves particularly demanding, as it requires simultaneously high spatio-temporal resolution and high signal-to-noise ratios. A remedy to this challenge might be Interferometric Scattering (iSCAT) microscopy, due to its fast sampling rates, label-free imaging capabilities and, most importantly, tuneable signal level output. Here we report our recent advances in the imaging and molecular tracking on phase-separated model membrane systems and live-cell membranes using this technique.

  13. Ketogenic diet treatment for pediatric super-refractory status epilepticus.

    Science.gov (United States)

    Appavu, Brian; Vanatta, Lisa; Condie, John; Kerrigan, John F; Jarrar, Randa

    2016-10-01

    We aimed to study whether ketogenic diet (KD) therapy leads to resolution of super-refractory status epilepticus in pediatric patients without significant harm. A retrospective review was performed at Phoenix Children's Hospital on patients with super-refractory status epilepticus undergoing ketogenic diet therapy from 2011 to 2015. Ten children with super-refractory status epilepticus, ages 2-16 years, were identified. 4/10 patients had immune mediated encephalitis, including Rasmussen encephalitis, anti-N-methyl-d-aspartate receptor encephalitis, and post-infectious mycoplasma encephalitis. Other etiologies included Lennox Gastaut Syndrome, non-ketotic hyperglycinemia, PCDH19 and GABRG2 genetic epilepsy, New Onset Refractory Status Epilepticus, and Febrile Infection-Related Epilepsy Syndrome. 4/10 patients' EEG features suggested focal with status epilepticus, and 6/10 suggested generalized with status epilepticus. Median hospital length was 61days and median ICU length was 27days. The median number of antiepileptic medications prior to diet initiation was 3.0 drugs, and the median after ketogenic diet treatment was 3.5 drugs. Median duration of status epilepticus prior to KD was 18days. 9/10 patients had resolution of super-refractory status epilepticus in a median of 7days after diet initiation. 8/9 patients were weaned off anesthesia within 15days of diet initiation, and within 1day of achieving ketonuria. 1/10 patients experienced side effects on the diet requiring supplementation. Most patients achieved resolution of status epilepticus on KD therapy, suggesting it could be an effective therapy that can be utilized early in the treatment of children with super refractory status epilepticus. Copyright © 2016. Published by Elsevier Ltd.

  14. Transceiver Design for CMUT-Based Super-Resolution Ultrasound Imaging.

    Science.gov (United States)

    Behnamfar, Parisa; Molavi, Reza; Mirabbasi, Shahriar

    2016-04-01

    A recently introduced structure for the capacitive micromachined ultrasonic transducers (CMUTs) has focused on the applications of the asymmetric mode of vibration and has shown promising results in construction of super-resolution ultrasound images. This paper presents the first implementation and experimental results of a transceiver circuit to interface such CMUT structures. The multiple input/multiple output receiver in this work supports both fundamental and asymmetric modes of operation and includes transimpedance amplifiers and low-power variable-gain stages. These circuit blocks are designed considering the trade-offs between gain, input impedance, noise, linearity and power consumption. The high-voltage transmitter can generate pulse voltages up to 60 V while occupying a considerably small area. The overall circuit is designed and laid out in a 0.35 μm CMOS process and a four-channel transceiver occupies 0.86 × 0.38 mm(2). The prototype chip is characterized in both electrical and mechanical domains. Measurement results show that each receiver channel has a nominal gain of 110 dBΩ with a 3 dB bandwidth of 9 MHz while consuming 1.02 mW from a 3.3 V supply. The receiver is also highly linear, with 1 dB compression point of minimum 1.05 V which is considerably higher than the previously reported designs. The transmitter consumes 98.1 mW from a 30 V supply while generating 1.38 MHz, 30 V pulses. The CMOS-CMUT system is tested in the transmit mode and shows full functionality in air medium.

  15. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy

    Science.gov (United States)

    1994-01-01

    A simple method is described for high-resolution light and electron microscopic immunolocalization of proteins in cells and tissues by immunofluorescence and subsequent photooxidation of diaminobenzidine tetrahydrochloride into an insoluble osmiophilic polymer. By using eosin as the fluorescent marker, a substantial improvement in sensitivity is achieved in the photooxidation process over other conventional fluorescent compounds. The technique allows for precise correlative immunolocalization studies on the same sample using fluorescence, transmitted light and electron microscopy. Furthermore, because eosin is smaller in size than other conventional markers, this method results in improved penetration of labeling reagents compared to gold or enzyme based procedures. The improved penetration allows for three-dimensional immunolocalization using high voltage electron microscopy. Fluorescence photooxidation can also be used for high resolution light and electron microscopic localization of specific nucleic acid sequences by in situ hybridization utilizing biotinylated probes followed by an eosin-streptavidin conjugate. PMID:7519623

  16. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family

    International Nuclear Information System (INIS)

    Nienhaus, Karin; Nienhaus, G Ulrich

    2016-01-01

    Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments. (topical review)

  17. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family

    Science.gov (United States)

    Nienhaus, Karin; Nienhaus, G. Ulrich

    2016-11-01

    Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments.

  18. Sparse Representations-Based Super-Resolution of Key-Frames Extracted from Frames-Sequences Generated by a Visual Sensor Network

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad

    2014-02-01

    Full Text Available Visual sensor networks (VSNs usually generate a low-resolution (LR frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP. This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  19. Sparse representations-based super-resolution of key-frames extracted from frames-sequences generated by a visual sensor network.

    Science.gov (United States)

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2014-02-21

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  20. Single Fluorescent Molecules as Nano-Illuminators for Biological Structure and Function

    Science.gov (United States)

    Moerner, W. E.

    2011-03-01

    Since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. {62}, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. For example, the shape of single filaments in a living cell can be extracted simply by allowing a single molecule to move through the filament (PNAS {103}, 10929 (2006)). The addition of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (super-resolution) and a new array of acronyms (PALM, STORM, F-PALM etc.) and advances have appeared. We have used the native blinking and switching of a common yellow-emitting variant of green fluorescent protein (EYFP) reported more than a decade ago (Nature {388}, 355 (1997)) to achieve sub-40 nm super-resolution imaging of several protein structures in the bacterium Caulobacter crescentus: the quasi-helix of the actin-like protein MreB (Nat. Meth. {5}, 947 (2008)), the cellular distribution of the DNA binding protein HU (submitted), and the recently discovered division spindle composed of ParA filaments (Nat. Cell Biol. {12}, 791 (2010)). Even with these advances, better emitters would provide more photons and improved resolution, and a new photoactivatable small-molecule emitter has recently been synthesized and targeted to specific structures in living cells to provide super-resolution images (JACS {132}, 15099 (2010)). Finally, a new optical method for extracting three-dimensional position information based on

  1. Enhancement of fluorescence confocal scanning microscopy lateral resolution by use of structured illumination

    International Nuclear Information System (INIS)

    Kim, Taejoong; Gweon, DaeGab; Lee, Jun-Hee

    2009-01-01

    Confocal microscopy is an optical imaging technique used to reconstruct three-dimensional images without physical sectioning. As with other optical microscopes, the lateral resolution of the confocal microscope cannot surpass the diffraction limit. This paper presents a novel imaging system, structured illumination confocal scanning microscopy (SICSM), that uses structured illumination to improve the lateral resolution of the confocal microscope. The SICSM can easily be implemented by introducing a structured illumination generating optics to conventional line-scanning fluorescence confocal microscopy. In this paper, we report our analysis of the lateral and axial resolutions of the SICSM by use of mathematical imaging theory. Numerical simulation results show that the lateral resolution of the SICSM is 1.43-fold better than that of the confocal microscope. In the axial direction, however, the resolution of the SICSM is ∼15% poorer than that of the confocal microscope. This deterioration arises because of a decrease in the axial cut-off frequency caused by the process of generating structured illumination. We propose the use of imaging conditions under which a compromise between the axial and lateral resolutions is chosen. Finally, we show simulated images of diversely shaped test objects to demonstrate the lateral and axial resolution performance of the SICSM

  2. The Space Infrared Interferometric Telescope (SPIRIT)

    Science.gov (United States)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  3. Iodine imaging in thyroid by fluorescent X-ray CT with 0.05 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T. E-mail: ttakeda@md.tsukuba.ac.jp; Yu, Q.; Yashiro, T.; Zeniya, T.; Wu, J.; Hasegawa, Y.; Thet Thet Lwin; Hyodo, K.; Yuasa, T.; Dilmanian, F.A.; Akatsuka, T.; Itai, Y

    2001-07-21

    Fluorescent X-ray computed tomography (FXCT) at a 0.05 mm in-plane spatial resolution and 0.05 mm slice thickness depicted the cross sectional distribution of endogenous iodine within thyroid. The distribution obtained from the FXCT image correlated closely to that obtained from the pathological pictures.

  4. Image super-resolution reconstruction based on regularization technique and guided filter

    Science.gov (United States)

    Huang, De-tian; Huang, Wei-qin; Gu, Pei-ting; Liu, Pei-zhong; Luo, Yan-min

    2017-06-01

    In order to improve the accuracy of sparse representation coefficients and the quality of reconstructed images, an improved image super-resolution algorithm based on sparse representation is presented. In the sparse coding stage, the autoregressive (AR) regularization and the non-local (NL) similarity regularization are introduced to improve the sparse coding objective function. A group of AR models which describe the image local structures are pre-learned from the training samples, and one or several suitable AR models can be adaptively selected for each image patch to regularize the solution space. Then, the image non-local redundancy is obtained by the NL similarity regularization to preserve edges. In the process of computing the sparse representation coefficients, the feature-sign search algorithm is utilized instead of the conventional orthogonal matching pursuit algorithm to improve the accuracy of the sparse coefficients. To restore image details further, a global error compensation model based on weighted guided filter is proposed to realize error compensation for the reconstructed images. Experimental results demonstrate that compared with Bicubic, L1SR, SISR, GR, ANR, NE + LS, NE + NNLS, NE + LLE and A + (16 atoms) methods, the proposed approach has remarkable improvement in peak signal-to-noise ratio, structural similarity and subjective visual perception.

  5. Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative light-electron microscopy with nanometre precision.

    Science.gov (United States)

    Tuijtel, Maarten W; Mulder, Aat A; Posthuma, Clara C; van der Hoeven, Barbara; Koster, Abraham J; Bárcena, Montserrat; Faas, Frank G A; Sharp, Thomas H

    2017-09-05

    Correlative light-electron microscopy (CLEM) combines the high spatial resolution of transmission electron microscopy (TEM) with the capability of fluorescence light microscopy (FLM) to locate rare or transient cellular events within a large field of view. CLEM is therefore a powerful technique to study cellular processes. Aligning images derived from both imaging modalities is a prerequisite to correlate the two microscopy data sets, and poor alignment can limit interpretability of the data. Here, we describe how uranyl acetate, a commonly-used contrast agent for TEM, can be induced to fluoresce brightly at cryogenic temperatures (-195 °C) and imaged by cryoFLM using standard filter sets. This dual-purpose contrast agent can be used as a general tool for CLEM, whereby the equivalent staining allows direct correlation between fluorescence and TEM images. We demonstrate the potential of this approach by performing multi-colour CLEM of cells containing equine arteritis virus proteins tagged with either green- or red-fluorescent protein, and achieve high-precision localization of virus-induced intracellular membrane modifications. Using uranyl acetate as a dual-purpose contrast agent, we achieve an image alignment precision of ~30 nm, twice as accurate as when using fiducial beads, which will be essential for combining TEM with the evolving field of super-resolution light microscopy.

  6. SPECTROSCOPIC AND INTERFEROMETRIC MEASUREMENTS OF NINE K GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Baines, Ellyn K. [Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Döllinger, Michaela P. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Guenther, Eike W.; Hatzes, Artie P. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Hrudkovu, Marie [Isaac Newton Group of Telescopes, Apartado de Correos 321, E-387 00 Santa Cruz de la Palma, Canary Islands (Spain); Belle, Gerard T. van, E-mail: ellyn.baines@nrl.navy.mil [Lowell Observatory, Flagstaff, AZ 86001 (United States)

    2016-09-01

    We present spectroscopic and interferometric measurements for a sample of nine K giant stars. These targets are of particular interest because they are slated for stellar oscillation observations. Our improved parameters will directly translate into reduced errors in the final masses for these stars when interferometric radii and asteroseismic densities are combined. Here, we determine each star’s limb-darkened angular diameter, physical radius, luminosity, bolometric flux, effective temperature, surface gravity, metallicity, and mass. When we compare our interferometric and spectroscopic results, we find no systematic offsets in the diameters and the values generally agree within the errors. Our interferometric temperatures for seven of the nine stars are hotter than those determined from spectroscopy with an average difference of about 380 K.

  7. Resolution enhancement of pump-probe microscope with an inverse-annular filter

    Science.gov (United States)

    Kobayashi, Takayoshi; Kawasumi, Koshi; Miyazaki, Jun; Nakata, Kazuaki

    2018-04-01

    Optical pump-probe microscopy can provide images by detecting changes in probe light intensity induced by stimulated emission, photoinduced absorbance change, or photothermal-induced refractive index change in either transmission or reflection mode. Photothermal microscopy, which is one type of optical pump-probe microscopy, has intrinsically super resolution capability due to the bilinear dependence of signal intensity of pump and probe. We introduce new techniques for further resolution enhancement and fast imaging in photothermal microscope. First, we introduce a new pupil filter, an inverse-annular pupil filter in a pump-probe photothermal microscope, which provides resolution enhancement in three dimensions. The resolutions are proved to be improved in lateral and axial directions by imaging experiment using 20-nm gold nanoparticles. The improvement in X (perpendicular to the common pump and probe polarization direction), Y (parallel to the polarization direction), and Z (axial direction) are by 15 ± 6, 8 ± 8, and 21 ± 2% from the resolution without a pupil filter. The resolution enhancement is even better than the calculation using vector field, which predicts the corresponding enhancement of 11, 8, and 6%. The discussion is made to explain the unexpected results. We also demonstrate the photothermal imaging of thick biological samples (cells from rabbit intestine and kidney) stained with hematoxylin and eosin dye with the inverse-annular filter. Second, a fast, high-sensitivity photothermal microscope is developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope using a Galvano mirror. We confirm a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrates simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 µs. The

  8. Super-Resolution Localization Microscopy of γ-H2AX and Heterochromatin after Folate Deficiency.

    Science.gov (United States)

    Bach, Margund; Savini, Claudia; Krufczik, Matthias; Cremer, Christoph; Rösl, Frank; Hausmann, Michael

    2017-08-08

    Folate is an essential water-soluble vitamin in food and nutrition supplements. As a one-carbon source, it is involved in many central regulatory processes, such as DNA, RNA, and protein methylation as well as DNA synthesis and repair. Deficiency in folate is considered to be associated with an increased incidence of several malignancies, including cervical cancer that is etiologically linked to an infection with "high-risk" human papilloma viruses (HPV). However, it is still not known how a recommended increase in dietary folate after its deprivation affects the physiological status of cells. To study the impact of folate depletion and its subsequent reconstitution in single cells, we used quantitative chromatin conformation measurements obtained by super-resolution fluorescence microscopy, i.e., single molecule localization microscopy (SMLM). As a read-out, we examined the levels and the (re)positioning of γ-H2AX tags and histone H3K9me3 heterochromatin tags after immunostaining in three-dimensional (3D)-conserved cell nuclei. As model, we used HPV16 positive immortalized human keratinocytes that were cultivated under normal, folate deficient, and reconstituted conditions for different periods of time. The results were compared to cells continuously cultivated in standard folate medium. After 13 weeks in low folate, an increase in the phosphorylation of the histone H2AX was noted, indicative of an accumulation of DNA double strand breaks. DNA repair activity represented by the formation of those γ-H2AX clusters was maintained during the following 15 weeks of examination. However, the clustered arrangements of tags appeared to relax in a time-dependent manner. Parallel to the repair activity, the chromatin methylation activity increased as detected by H3K9me3 tags. The progress of DNA double strand repair was accompanied by a reduction of the detected nucleosome density around the γ-H2AX clusters, suggesting a shift from hetero- to euchromatin to allow access

  9. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging

    Science.gov (United States)

    Errico, Claudia; Pierre, Juliette; Pezet, Sophie; Desailly, Yann; Lenkei, Zsolt; Couture, Olivier; Tanter, Mickael

    2015-11-01

    Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade. In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents—inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non

  10. High resolution measurements of solar induced chlorophyll fluorescence in the Fraunhofer oxigen bands

    Science.gov (United States)

    Mazzoni, M.; Agati, G.; Cecchi, G.; Toci, G.; Mazzinghi, P.

    2017-11-01

    Spectra of solar radiance reflected by leaves close to the Fraunhofer bands show the net contribution of chlorophyll fluorescence emission which adds to the reflected solar spectra. In a laboratory experiment, a low stray light, high resolution, 0.85 m double monochromator was used to filter radiation living leaves still attached to the plant in correspondence of the 687 nm and 760 nm O2 absorption bands. Reference spectra from a non fluorescent white reference were also acquired. Acquisition was performed by a Microchannel plate (MCP) intensified diode array with 512 elements. A fit of the spectral data outside the absorption lines allowed to retrieve the spectral base-line as a function of wavelength for the reference panel and the leaf. Reflectance functions were determined extending the Plascyck equation system to all the resolved lines of the oxygen absorption bands and using the base-lines for the continuum values. Fluorescence was deduced from the same equation system, using both the measured leaf and reference radiance spectra and the leaf reflectance fitting function.

  11. 3D Super-Resolution Motion-Corrected MRI: Validation of Fetal Posterior Fossa Measurements.

    Science.gov (United States)

    Pier, Danielle B; Gholipour, Ali; Afacan, Onur; Velasco-Annis, Clemente; Clancy, Sean; Kapur, Kush; Estroff, Judy A; Warfield, Simon K

    2016-09-01

    Current diagnosis of fetal posterior fossa anomalies by sonography and conventional MRI is limited by fetal position, motion, and by two-dimensional (2D), rather than three-dimensional (3D), representation. In this study, we aimed to validate the use of a novel magnetic resonance imaging (MRI) technique, 3D super-resolution motion-corrected MRI, to image the fetal posterior fossa. From a database of pregnant women who received fetal MRIs at our institution, images of 49 normal fetal brains were reconstructed. Six measurements of the cerebellum, vermis, and pons were obtained for all cases on 2D conventional and 3D reconstructed MRI, and the agreement between the two methods was determined using concordance correlation coefficients. Concordance of axial and coronal measurements of the transcerebellar diameter was also assessed within each method. Between the two methods, the concordance of measurements was high for all six structures (P fetal motion and orthogonal slice acquisition. This technique will facilitate further study of fetal abnormalities of the posterior fossa. Copyright © 2016 by the American Society of Neuroimaging.

  12. All-optical control and super-resolution imaging of quantum emitters in layered materials.

    Science.gov (United States)

    Kianinia, Mehran; Bradac, Carlo; Sontheimer, Bernd; Wang, Fan; Tran, Toan Trong; Nguyen, Minh; Kim, Sejeong; Xu, Zai-Quan; Jin, Dayong; Schell, Andreas W; Lobo, Charlene J; Aharonovich, Igor; Toth, Milos

    2018-02-28

    Layered van der Waals materials are emerging as compelling two-dimensional platforms for nanophotonics, polaritonics, valleytronics and spintronics, and have the potential to transform applications in sensing, imaging and quantum information processing. Among these, hexagonal boron nitride (hBN) is known to host ultra-bright, room-temperature quantum emitters, whose nature is yet to be fully understood. Here we present a set of measurements that give unique insight into the photophysical properties and level structure of hBN quantum emitters. Specifically, we report the existence of a class of hBN quantum emitters with a fast-decaying intermediate and a long-lived metastable state accessible from the first excited electronic state. Furthermore, by means of a two-laser repumping scheme, we show an enhanced photoluminescence and emission intensity, which can be utilized to realize a new modality of far-field super-resolution imaging. Our findings expand current understanding of quantum emitters in hBN and show new potential ways of harnessing their nonlinear optical properties in sub-diffraction nanoscopy.

  13. Improved Wallis Dodging Algorithm for Large-Scale Super-Resolution Reconstruction Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Chong Fan

    2017-03-01

    Full Text Available A sub-block algorithm is usually applied in the super-resolution (SR reconstruction of images because of limitations in computer memory. However, the sub-block SR images can hardly achieve a seamless image mosaicking because of the uneven distribution of brightness and contrast among these sub-blocks. An effectively improved weighted Wallis dodging algorithm is proposed, aiming at the characteristic that SR reconstructed images are gray images with the same size and overlapping region. This algorithm can achieve consistency of image brightness and contrast. Meanwhile, a weighted adjustment sequence is presented to avoid the spatial propagation and accumulation of errors and the loss of image information caused by excessive computation. A seam line elimination method can share the partial dislocation in the seam line to the entire overlapping region with a smooth transition effect. Subsequently, the improved method is employed to remove the uneven illumination for 900 SR reconstructed images of ZY-3. Then, the overlapping image mosaic method is adopted to accomplish a seamless image mosaic based on the optimal seam line.

  14. High-resolution imaging of redox signaling in live cells through an oxidation-sensitive yellow fluorescent protein

    DEFF Research Database (Denmark)

    Maulucci, Giuseppe; Labate, Valentina; Mele, Marina

    2008-01-01

    We present the application of a redox-sensitive mutant of the yellow fluorescent protein (rxYFP) to image, with elevated sensitivity and high temporal and spatial resolution, oxidative responses of eukaryotic cells to pathophysiological stimuli. The method presented, based on the ratiometric...... quantitation of the distribution of fluorescence by confocal microscopy, allows us to draw real-time "redox maps" of adherent cells and to score subtle changes in the intracellular redox state, such as those induced by overexpression of redox-active proteins. This strategy for in vivo imaging of redox...

  15. Revealing dynamically-organized receptor ion channel clusters in live cells by a correlated electric recording and super-resolution single-molecule imaging approach.

    Science.gov (United States)

    Yadav, Rajeev; Lu, H Peter

    2018-03-28

    The N-methyl-d-aspartate (NMDA) receptor ion-channel is activated by the binding of ligands, along with the application of action potential, important for synaptic transmission and memory functions. Despite substantial knowledge of the structure and function, the gating mechanism of the NMDA receptor ion channel for electric on-off signals is still a topic of debate. We investigate the NMDA receptor partition distribution and the associated channel's open-close electric signal trajectories using a combined approach of correlating single-molecule fluorescence photo-bleaching, single-molecule super-resolution imaging, and single-channel electric patch-clamp recording. Identifying the compositions of NMDA receptors, their spatial organization and distributions over live cell membranes, we observe that NMDA receptors are organized inhomogeneously: nearly half of the receptor proteins are individually dispersed; whereas others exist in heterogeneous clusters of around 50 nm in size as well as co-localized within the diffraction limited imaging area. We demonstrate that inhomogeneous interactions and partitions of the NMDA receptors can be a cause of the heterogeneous gating mechanism of NMDA receptors in living cells. Furthermore, comparing the imaging results with the ion-channel electric current recording, we propose that the clustered NMDA receptors may be responsible for the variation in the current amplitude observed in the on-off two-state ion-channel electric signal trajectories. Our findings shed new light on the fundamental structure-function mechanism of NMDA receptors and present a conceptual advancement of the ion-channel mechanism in living cells.

  16. A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- μm-Pitch Super-Resolution Image Sensor in 65-nm BSI CMOS.

    Science.gov (United States)

    Liu, Xu; Huang, Xiwei; Jiang, Yu; Xu, Hang; Guo, Jing; Hou, Han Wei; Yan, Mei; Yu, Hao

    2017-08-01

    Based on a 3.2-Megapixel 1.1- μm-pitch super-resolution (SR) CMOS image sensor in a 65-nm backside-illumination process, a lens-free microfluidic cytometer for complete blood count (CBC) is demonstrated in this paper. Backside-illumination improves resolution and contrast at the device level with elimination of surface treatment when integrated with microfluidic channels. A single-frame machine-learning-based SR processing is further realized at system level for resolution correction with minimum hardware resources. The demonstrated microfluidic cytometer can detect the platelet cells (< 2 μm) required in CBC, hence is promising for point-of-care diagnostics.

  17. Novel Insight for Organic Matter Sourcing: Interest of Time Resolved Fluorescence to Qualify and Quantify PAH Content of Solid Matrix at High Resolution

    Science.gov (United States)

    Quiers, M.; Perrette, Y.; Jacq, K.; Pousset, E.; Plassart, G.

    2017-12-01

    OM fluorescence is today a well-developed tool used to characterize and quantify organic matter (OM), but also to evaluate and discriminate OM fate and changes related to climate and environmental modifications. While fluorescence measurements on water and soils extracts provide information about organic fluxes today, solid phase fluorescence using natural archives allows to obtain high resolution records of OM evolution during time. These evolutions can be discussed in regards of climate and environmental perturbations detected in archives using different proxies, and thus provide keys for understanding factors driving carbon fluxes mechanisms. Among fluorescent organic species, Polycyclic Aromatic Hydrocarbons (PAH) have been used as probe molecules for organic contamination tracking. Moreover, monitoring studies have shown that PAH could also be used as markers to discriminates atmospheric and erosion factors leading to PAH and organic matter fluxes to the aquifer. PAH records in soils and natural archives appear as a promising proxy to follow both past atmospheric contamination and soil erosion. But, PAH fluorescence is difficult to discriminate from bulk OM fluorescence using steady-state fluorescence (SSF) technics as their fluorescence domains recover. Time resolved emission spectroscopy (TRES) increases the information provided by SSF technic, adding a time dimension to measurements and allowing to discriminate PAH fluorescence. We report here a first application of this technic on natural archives. The challenge is to obtain TRES signature along the sample, including for low PAH concentrations. This study aims to evaluate the reliability of high resolution TRES measurement as PAH carbon fluxes sources. Method is based on LIF instrument for solid phase fluorescence measurement. An instrument coupling an excitation system constituting by 2 pulsed lasers (266 and 355 nm) and a detection system was developed. This measurement provides high resolution record of

  18. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells.

    Science.gov (United States)

    Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning

    2017-07-01

    Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.

  19. KML Super Overlay to WMS Translator

    Science.gov (United States)

    Plesea, Lucian

    2007-01-01

    This translator is a server-based application that automatically generates KML super overlay configuration files required by Google Earth for map data access via the Open Geospatial Consortium WMS (Web Map Service) standard. The translator uses a set of URL parameters that mirror the WMS parameters as much as possible, and it also can generate a super overlay subdivision of any given area that is only loaded when needed, enabling very large areas of coverage at very high resolutions. It can make almost any dataset available as a WMS service visible and usable in any KML application, without the need to reformat the data.

  20. Recovery of the SuperTIGER Instrument and Preparations for the Flight of SuperTIGER-2

    Science.gov (United States)

    Walsh, N. E.; Supertiger Collaboration

    2016-03-01

    On December 8, 2012, the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument began its long-duration balloon flight from Williams Field, Antarctica. Flying for a record-breaking 55 days at a mean altitude of 125,000 feet, the instrument successfully measured the relative elemental abundances of Galactic cosmic ray nuclei having charge (Z) greater than Z=10, showing very well resolved individual element peaks up to Z=40. The instrument measures particle charge and energy through the combined use of two Cherenkov detectors and three scintillation detectors, and determines particle trajectory with a scintillating fiber hodoscope. After cutdown and two years on the ice, SuperTIGER was successfully recovered in January, 2015. Its detectors and hodoscopes are being tested and refurbished, and are expected to be used again for a second flight, SuperTIGER-2. The second flight is aimed at improving SuperTIGER's already excellent charge resolution as well as at accumulating more data to be combined with that of SuperTIGER for improved statistics. In November 2015, a test of the scintillator saturation effect was performed at CERN using a beam of interacted Pb nuclei to help create more accurate charge reconstruction models that will help resolve elements in the range Z=41 to Z=60. This research was supported by NASA under Grants NNX09AC17G, NNX14AB25G, the Peggy and Steve Fossett Foundation and the McDonnell Center for the Space Sciences at Washington University.

  1. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of Kα and Kβ emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS

  2. High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors

    Science.gov (United States)

    Mojica, Edson; Pertuz, Said; Arguello, Henry

    2017-12-01

    One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.

  3. Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction.

    Science.gov (United States)

    Ravì, Daniele; Szczotka, Agnieszka Barbara; Shakir, Dzhoshkun Ismail; Pereira, Stephen P; Vercauteren, Tom

    2018-06-01

    Probe-based confocal laser endomicroscopy (pCLE) is a recent imaging modality that allows performing in vivo optical biopsies. The design of pCLE hardware, and its reliance on an optical fibre bundle, fundamentally limits the image quality with a few tens of thousands fibres, each acting as the equivalent of a single-pixel detector, assembled into a single fibre bundle. Video registration techniques can be used to estimate high-resolution (HR) images by exploiting the temporal information contained in a sequence of low-resolution (LR) images. However, the alignment of LR frames, required for the fusion, is computationally demanding and prone to artefacts. In this work, we propose a novel synthetic data generation approach to train exemplar-based Deep Neural Networks (DNNs). HR pCLE images with enhanced quality are recovered by the models trained on pairs of estimated HR images (generated by the video registration algorithm) and realistic synthetic LR images. Performance of three different state-of-the-art DNNs techniques were analysed on a Smart Atlas database of 8806 images from 238 pCLE video sequences. The results were validated through an extensive image quality assessment that takes into account different quality scores, including a Mean Opinion Score (MOS). Results indicate that the proposed solution produces an effective improvement in the quality of the obtained reconstructed image. The proposed training strategy and associated DNNs allows us to perform convincing super-resolution of pCLE images.

  4. Super-Resolution Community Detection for Layer-Aggregated Multilayer Networks

    Directory of Open Access Journals (Sweden)

    Dane Taylor

    2017-09-01

    Full Text Available Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the trade-offs of this preprocessing are not well understood. Focusing on the problem of detecting small communities in multilayer networks, we study the effects of layer aggregation by developing random-matrix theory for modularity matrices associated with layer-aggregated networks with N nodes and L layers, which are drawn from an ensemble of Erdős–Rényi networks with communities planted in subsets of layers. We study phase transitions in which eigenvectors localize onto communities (allowing their detection and which occur for a given community provided its size surpasses a detectability limit K^{*}. When layers are aggregated via a summation, we obtain K^{*}∝O(sqrt[NL]/T, where T is the number of layers across which the community persists. Interestingly, if T is allowed to vary with L, then summation-based layer aggregation enhances small-community detection even if the community persists across a vanishing fraction of layers, provided that T/L decays more slowly than O(L^{-1/2}. Moreover, we find that thresholding the summation can, in some cases, cause K^{*} to decay exponentially, decreasing by orders of magnitude in a phenomenon we call super-resolution community detection. In other words, layer aggregation with thresholding is a nonlinear data filter enabling detection of communities that are otherwise too small to detect. Importantly, different thresholds generally enhance the detectability of communities having different properties, illustrating that community detection can be obscured if one analyzes network data using a single threshold.

  5. Super-Resolution Community Detection for Layer-Aggregated Multilayer Networks.

    Science.gov (United States)

    Taylor, Dane; Caceres, Rajmonda S; Mucha, Peter J

    2017-01-01

    Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the trade-offs of this preprocessing are not well understood. Focusing on the problem of detecting small communities in multilayer networks, we study the effects of layer aggregation by developing random-matrix theory for modularity matrices associated with layer-aggregated networks with N nodes and L layers, which are drawn from an ensemble of Erdős-Rényi networks with communities planted in subsets of layers. We study phase transitions in which eigenvectors localize onto communities (allowing their detection) and which occur for a given community provided its size surpasses a detectability limit K * . When layers are aggregated via a summation, we obtain [Formula: see text], where T is the number of layers across which the community persists. Interestingly, if T is allowed to vary with L , then summation-based layer aggregation enhances small-community detection even if the community persists across a vanishing fraction of layers, provided that T/L decays more slowly than ( L -1/2 ). Moreover, we find that thresholding the summation can, in some cases, cause K * to decay exponentially, decreasing by orders of magnitude in a phenomenon we call super-resolution community detection. In other words, layer aggregation with thresholding is a nonlinear data filter enabling detection of communities that are otherwise too small to detect. Importantly, different thresholds generally enhance the detectability of communities having different properties, illustrating that community detection can be obscured if one analyzes network data using a single threshold.

  6. Super Resolution Algorithm for CCTVs

    Science.gov (United States)

    Gohshi, Seiichi

    2015-03-01

    Recently, security cameras and CCTV systems have become an important part of our daily lives. The rising demand for such systems has created business opportunities in this field, especially in big cities. Analogue CCTV systems are being replaced by digital systems, and HDTV CCTV has become quite common. HDTV CCTV can achieve images with high contrast and decent quality if they are clicked in daylight. However, the quality of an image clicked at night does not always have sufficient contrast and resolution because of poor lighting conditions. CCTV systems depend on infrared light at night to compensate for insufficient lighting conditions, thereby producing monochrome images and videos. However, these images and videos do not have high contrast and are blurred. We propose a nonlinear signal processing technique that significantly improves visual and image qualities (contrast and resolution) of low-contrast infrared images. The proposed method enables the use of infrared cameras for various purposes such as night shot and poor lighting environments under poor lighting conditions.

  7. A frequency domain radar interferometric imaging (FII) technique based on high-resolution methods

    Science.gov (United States)

    Luce, H.; Yamamoto, M.; Fukao, S.; Helal, D.; Crochet, M.

    2001-01-01

    In the present work, we propose a frequency-domain interferometric imaging (FII) technique for a better knowledge of the vertical distribution of the atmospheric scatterers detected by MST radars. This is an extension of the dual frequency-domain interferometry (FDI) technique to multiple frequencies. Its objective is to reduce the ambiguity (resulting from the use of only two adjacent frequencies), inherent with the FDI technique. Different methods, commonly used in antenna array processing, are first described within the context of application to the FII technique. These methods are the Fourier-based imaging, the Capon's and the singular value decomposition method used with the MUSIC algorithm. Some preliminary simulations and tests performed on data collected with the middle and upper atmosphere (MU) radar (Shigaraki, Japan) are also presented. This work is a first step in the developments of the FII technique which seems to be very promising.

  8. Performance characterization of a pressure-tuned wide-angle Michelson interferometric spectral filter for high spectral resolution lidar

    Science.gov (United States)

    Seaman, Shane T.; Cook, Anthony L.; Scola, Salvatore J.; Hostetler, Chris A.; Miller, Ian; Welch, Wayne

    2015-09-01

    High Spectral Resolution Lidar (HSRL) is typically realized using an absorption filter to separate molecular returns from particulate returns. NASA Langley Research Center (LaRC) has designed and built a Pressure-Tuned Wide-Angle Michelson Interferometer (PTWAMI) as an alternate means to separate the two types of atmospheric returns. While absorption filters only work at certain wavelengths and suffer from low photon efficiency due to light absorption, an interferometric spectral filter can be designed for any wavelength and transmits nearly all incident photons. The interferometers developed at LaRC employ an air spacer in one arm, and a solid glass spacer in the other. Field widening is achieved by specific design and selection of the lengths and refractive indices of these two arms. The principal challenge in using such an interferometer as a spectral filter for HSRL aboard aircraft is that variations in glass temperature and air pressure cause changes in the interferometer's optical path difference. Therefore, a tuning mechanism is needed to actively accommodate for these changes. The pressure-tuning mechanism employed here relies on changing the pressure in an enclosed, air-filled arm of the interferometer to change the arm's optical path length. However, tuning using pressure will not adjust for tilt, mirror warpage, or thermally induced wavefront error, so the structural, thermal, and optical behavior of the device must be well understood and optimized in the design and manufacturing process. The PTWAMI has been characterized for particulate transmission ratio, wavefront error, and tilt, and shows acceptable performance for use in an HSRL instrument.

  9. Combined Confocal and Wide-Field High-Resolution Cytometry of Fluorescent In Situ Hybridization-Stained Cells

    Czech Academy of Sciences Publication Activity Database

    Kozubek, Michal; Kozubek, Stanislav; Lukášová, Emilie; Bártová, Eva; Skalníková, M.; Matula, Pa.; Matula, Pe.; Jirsová, Pavla; Cafourková, Alena; Koutná, Irena

    2001-01-01

    Roč. 45, č. 1 (2001), s. 1-12 ISSN 0196-4763 R&D Projects: GA MŠk VS97031; GA ČR GA202/99/P008; GA AV ČR IBS5004010 Institutional research plan: CEZ:AV0Z5004920 Keywords : high-resolution cytometry * fluorescence in situ hybridization * interphase nuclei Subject RIV: BO - Biophysics Impact factor: 2.220, year: 2001

  10. FIRST SCIENCE RESULTS FROM SOFIA/FORCAST: SUPER-RESOLUTION IMAGING OF THE S140 CLUSTER AT 37 {mu}m

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Paul M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Adams, Joseph D.; Herter, Terry L.; Gull, George; Schoenwald, Justin, E-mail: pmh@astro.as.utexas.edu, E-mail: jdadams@astro.cornell.edu, E-mail: tlh10@cornell.edu, E-mail: geg3@cornell.edu, E-mail: jps10@cornell.edu [Center for Radiophysics and Space Research, Space Science Building, Cornell University, Ithaca, NY 14853 (United States); and others

    2012-04-20

    We present 37 {mu}m imaging of the S140 complex of infrared sources centered on IRS1 made with the FORCAST camera on SOFIA. These observations are the longest wavelength imaging to resolve clearly the three main sources seen at shorter wavelengths, IRS 1, 2, and 3, and are nearly at the diffraction limit of the 2.5 m telescope. We also obtained a small number of images at 11 and 31 {mu}m that are useful for flux measurement. Our images cover the area of several strong submillimeter sources seen in the area-SMM 1, 2, and 3-that are not coincident with any mid-infrared sources and are not visible in our longer wavelength imaging either. Our new observations confirm previous estimates of the relative dust optical depth and source luminosity for the components in this likely cluster of early B stars. We also investigate the use of super-resolution to go beyond the basic diffraction limit in imaging on SOFIA and find that the van Cittert algorithm, together with the 'multi-resolution' technique, provides excellent results.

  11. The Super-TIGER Instrument to Probe Galactic Cosmic Ray Origins

    Science.gov (United States)

    Mitchell, John W.; Binns, W. R.; Bose, R, G.; Braun, D. L.; Christian, E. R.; Daniels, W. M; DeNolfo, G. A.; Dowkontt, P. F.; Hahne, D. J.; Hams, T.; hide

    2011-01-01

    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is under construction for the first of two planned Antarctic long-duration balloon flights in December 2012. This new instrument will measure the abundances of ultra-heavy elements (30Zn and heavier), with individual element resolution, to provide sensitive tests of the emerging model of cosmic-ray origins in OB associations and models of the mechanism for selection of nuclei for acceleration. Super-TIGER builds on the techniques of TIGER, which produced the first well-resolved measurements of elemental abundances of the elements 31Ga, 32Ge, and 34Se. Plastic scintillators together with acrylic and silica-aerogel Cherenkov detectors measure particle charge. Scintillating-fiber hodoscopes track particle trajectories. Super-TIGER has an active area of 5.4 sq m, divided into two independent modules. With reduced material thickness to decrease interactions, its effective geometry factor is approx.6.4 times larger than TIGER, allowing it to measure elements up to 42Mo with high statistical precision, and make exploratory measurements up to 56Ba. Super-TIGER will also accurately determine the energy spectra of the more abundant elements from l0Ne to 28Ni between 0.8 and 10 GeV/nucleon to test the hypothesis that microquasars or other sources could superpose spectral features. We will discuss the implications of Super-TIGER measurements for the study of cosmic-ray origins and will present the measurement technique, design, status, and expected performance, including numbers of events and resolution. Details of the hodoscopes, scintillators, and Cherenkov detectors will be given in other presentations at this conference.

  12. Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers

    International Nuclear Information System (INIS)

    Kim, Jooho; Hwang, Inoh; Yoon, Duseop; Park, Insik; Shin, Dongho; Kikukawa, Takashi; Shima, Takayuki; Tominaga, Junji

    2003-01-01

    The recording and retrieval of signals below 100 nm mark length were attempted with elliptical bubble-type super-resolution technology with platinum oxide (PtO x ) and ductile AgInSbTe layers, using the same optical system as that of a digital versatile disk (a 635 nm wavelength red laser system). The carrier-to-noise ratio (CNR) of over 47 dB for 100 nm mark length signals (over 43 dB for 80 nm mark length signals) was obtained, which can be considered as a commercially acceptable level of CNR. The recording mechanism of the sample disk was shown through the transmission electron microscopy cross-section image observation to be by rigid elliptical bubble formation at the PtO x layer located between the AgInSbTe layers. The results of this report represent the potential for a much higher-density storage using the red laser system and a subterabyte optical storage using the blue laser system

  13. Extending the Capture Volume of an Iris Recognition System Using Wavefront Coding and Super-Resolution.

    Science.gov (United States)

    Hsieh, Sheng-Hsun; Li, Yung-Hui; Tien, Chung-Hao; Chang, Chin-Chen

    2016-12-01

    Iris recognition has gained increasing popularity over the last few decades; however, the stand-off distance in a conventional iris recognition system is too short, which limits its application. In this paper, we propose a novel hardware-software hybrid method to increase the stand-off distance in an iris recognition system. When designing the system hardware, we use an optimized wavefront coding technique to extend the depth of field. To compensate for the blurring of the image caused by wavefront coding, on the software side, the proposed system uses a local patch-based super-resolution method to restore the blurred image to its clear version. The collaborative effect of the new hardware design and software post-processing showed great potential in our experiment. The experimental results showed that such improvement cannot be achieved by using a hardware-or software-only design. The proposed system can increase the capture volume of a conventional iris recognition system by three times and maintain the system's high recognition rate.

  14. Super-resolution optics for virtual reality

    Science.gov (United States)

    Grabovičkić, Dejan; Benitez, Pablo; Miñano, Juan C.; Zamora, Pablo; Buljan, Marina; Narasimhan, Bharathwaj; Nikolic, Milena I.; Lopez, Jesus; Gorospe, Jorge; Sanchez, Eduardo; Lastres, Carmen; Mohedano, Ruben

    2017-06-01

    In present commercial Virtual Reality (VR) headsets the resolution perceived is still limited, since the VR pixel density (typically 10-15 pixels/deg) is well below what the human eye can resolve (60 pixels/deg). We present here novel advanced optical design approaches that dramatically increase the perceived resolution of the VR keeping the large FoV required in VR applications. This approach can be applied to a vast number of optical architectures, including some advanced configurations, as multichannel designs. All this is done at the optical design stage, and no eye tracker is needed in the headset.

  15. A super-oscillatory lens optical microscope for subwavelength imaging.

    Science.gov (United States)

    Rogers, Edward T F; Lindberg, Jari; Roy, Tapashree; Savo, Salvatore; Chad, John E; Dennis, Mark R; Zheludev, Nikolay I

    2012-03-25

    The past decade has seen an intensive effort to achieve optical imaging resolution beyond the diffraction limit. Apart from the Pendry-Veselago negative index superlens, implementation of which in optics faces challenges of losses and as yet unattainable fabrication finesse, other super-resolution approaches necessitate the lens either to be in the near proximity of the object or manufactured on it, or work only for a narrow class of samples, such as intensely luminescent or sparse objects. Here we report a new super-resolution microscope for optical imaging that beats the diffraction limit of conventional instruments and the recently demonstrated near-field optical superlens and hyperlens. This non-invasive subwavelength imaging paradigm uses a binary amplitude mask for direct focusing of laser light into a subwavelength spot in the post-evanescent field by precisely tailoring the interference of a large number of beams diffracted from a nanostructured mask. The new technology, which--in principle--has no physical limits on resolution, could be universally used for imaging at any wavelength and does not depend on the luminescence of the object, which can be tens of micrometres away from the mask. It has been implemented as a straightforward modification of a conventional microscope showing resolution better than λ/6.

  16. Super-quantum curves from super-eigenvalue models

    Energy Technology Data Exchange (ETDEWEB)

    Ciosmak, Paweł [Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,ul. Banacha 2, 02-097 Warsaw (Poland); Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland); Manabe, Masahide [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Sułkowski, Piotr [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E. California Blvd, Pasadena, CA 91125 (United States)

    2016-10-10

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  17. Super-quantum curves from super-eigenvalue models

    International Nuclear Information System (INIS)

    Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr

    2016-01-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  18. Super-quantum curves from super-eigenvalue models

    Science.gov (United States)

    Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr

    2016-10-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/ β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  19. Exploring sex differences in the adult zebra finch brain: In vivo diffusion tensor imaging and ex vivo super-resolution track density imaging.

    Science.gov (United States)

    Hamaide, Julie; De Groof, Geert; Van Steenkiste, Gwendolyn; Jeurissen, Ben; Van Audekerke, Johan; Naeyaert, Maarten; Van Ruijssevelt, Lisbeth; Cornil, Charlotte; Sijbers, Jan; Verhoye, Marleen; Van der Linden, Annemie

    2017-02-01

    Zebra finches are an excellent model to study the process of vocal learning, a complex socially-learned tool of communication that forms the basis of spoken human language. So far, structural investigation of the zebra finch brain has been performed ex vivo using invasive methods such as histology. These methods are highly specific, however, they strongly interfere with performing whole-brain analyses and exclude longitudinal studies aimed at establishing causal correlations between neuroplastic events and specific behavioral performances. Therefore, the aim of the current study was to implement an in vivo Diffusion Tensor Imaging (DTI) protocol sensitive enough to detect structural sex differences in the adult zebra finch brain. Voxel-wise comparison of male and female DTI parameter maps shows clear differences in several components of the song control system (i.e. Area X surroundings, the high vocal center (HVC) and the lateral magnocellular nucleus of the anterior nidopallium (LMAN)), which corroborate previous findings and are in line with the clear behavioral difference as only males sing. Furthermore, to obtain additional insights into the 3-dimensional organization of the zebra finch brain and clarify findings obtained by the in vivo study, ex vivo DTI data of the male and female brain were acquired as well, using a recently established super-resolution reconstruction (SRR) imaging strategy. Interestingly, the SRR-DTI approach led to a marked reduction in acquisition time without interfering with the (spatial and angular) resolution and SNR which enabled to acquire a data set characterized by a 78μm isotropic resolution including 90 diffusion gradient directions within 44h of scanning time. Based on the reconstructed SRR-DTI maps, whole brain probabilistic Track Density Imaging (TDI) was performed for the purpose of super resolved track density imaging, further pushing the resolution up to 40μm isotropic. The DTI and TDI maps realized atlas

  20. Thin pixel development for the SuperB silicon vertex tracker

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.it [INFN-Pisa and Universita di Pisa (Italy); Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Ceccanti, M.; Cenci, R.; Cervelli, A.; Crescioli, F.; Dell' Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.A. [INFN-Pisa and Universita di Pisa (Italy); Lusiani, A. [Scuola Normale Superiore and INFN-Pisa (Italy); Gregucci, S.; Mammini, P.; Marchiori, G.; Massa, M.; Morsani, F.; Neri, N. [INFN-Pisa and Universita di Pisa (Italy); and others

    2011-09-11

    The high luminosity SuperB asymmetric e{sup +}e{sup -} collider, to be built near the INFN National Frascati Laboratory in Italy, has been designed to deliver a luminosity greater than 10{sup 36} cm{sup -2} s{sup -1} with moderate beam currents and a reduced center of mass boost with respect to earlier B-Factories. An improved vertex resolution is required for precise time-dependent measurements and the SuperB Silicon Vertex Tracker will be equipped with an innermost layer of small radius (about 1.5 cm), resolution of 10-15{mu}m in both coordinates, low material budget (<1% X0), and able to withstand a background rate of several tens of MHz/cm{sup 2}. The ambitious goal of designing a thin pixel device with these stringent requirements is being pursued with specific R and D programs on different technologies: hybrid pixels, CMOS MAPS and pixel sensors developed with vertical integration technology. The latest results on the various pixel options for the SuperB SVT will be presented.

  1. Advanced Wide-Field Interferometric Microscopy for Nanoparticle Sensing and Characterization

    Science.gov (United States)

    Avci, Oguzhan

    Nanoparticles have a key role in today's biotechnological research owing to the rapid advancement of nanotechnology. While metallic, polymer, and semiconductor based artificial nanoparticles are widely used as labels or targeted drug delivery agents, labeled and label-free detection of natural nanoparticles promise new ways for viral diagnostics and therapeutic applications. The increasing impact of nanoparticles in bio- and nano-technology necessitates the development of advanced tools for their accurate detection and characterization. Optical microscopy techniques have been an essential part of research for visualizing micron-scale particles. However, when it comes to the visualization of individual nano-scale particles, they have shown inadequate success due to the resolution and visibility limitations. Interferometric microscopy techniques have gained significant attention for providing means to overcome the nanoparticle visibility issue that is often the limiting factor in the imaging techniques based solely on the scattered light. In this dissertation, we develop a rigorous physical model to simulate the single nanoparticle optical response in a common-path wide-field interferometric microscopy (WIM) system. While the fundamental elements of the model can be used to analyze nanoparticle response in any generic wide-field imaging systems, we focus on imaging with a layered substrate (common-path interferometer) where specular reflection of illumination provides the reference light for interferometry. A robust physical model is quintessential in realizing the full potential of an optical system, and throughout this dissertation, we make use of it to benchmark our experimental findings, investigate the utility of various optical configurations, reconstruct weakly scattering nanoparticle images, as well as to characterize and discriminate interferometric nanoparticle responses. This study investigates the integration of advanced optical schemes in WIM with two

  2. Accurate formulas for the penalty caused by interferometric crosstalk

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen; Liu, Fenghai; Jeppesen, Palle

    2000-01-01

    New simple formulas for the penalty caused by interferometric crosstalk in PIN receiver systems and optically preamplified receiver systems are presented. They are more accurate than existing formulas.......New simple formulas for the penalty caused by interferometric crosstalk in PIN receiver systems and optically preamplified receiver systems are presented. They are more accurate than existing formulas....

  3. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    Science.gov (United States)

    Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg

  4. A single-layer flat-coil-oscillator (SFCO)-based super-broadband position sensor for nano-scale-resolution seismometry

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgyan, Samvel [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia)], E-mail: gevs_sam@web.am; Gevorgyan, Vardan [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia); International Scientific-Educational Center, National Academy of Sciences, 24-D Marshal Baghramyan av., Yerevan 0019 (Armenia); Karapetyan, Gagik [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia)

    2008-05-15

    A new class super-broadband, nano-scale-resolution position sensor is tested. It is used as an additional sensor in seismograph. It enables to extend the band and enhance the sensitivity of the available technique by at least an order of magnitude. It allows transferring of mechanical vibrations of constructions and buildings, with amplitudes over 1 nm, into detectable signal in a frequency range starting practically from quasi-static movements. It is based on detection of position changes of a vibrating normal-metallic plate placed near the flat coil-being used as a pick-up in a stable tunnel diode oscillator. Frequency of the oscillator is used as a detecting parameter, and the measuring effect is determined by a distortion of the MHz-range testing field configuration near a coil by a vibrating plate, leading to magnetic inductance changes of the coil, with a resolution {approx}10 pH. This results in changes of oscillator frequency. We discuss test data of such a position sensor, installed in a Russian SM-3 seismometer, as an additional pick-up component, showing its advantages compared to traditional techniques. We also discuss the future of such a novel sensor involving substitution of a metallic coil by a superconductive one and replacement of a tunnel diode by an S/I/S hetero-structure-as much less-powered active element in the oscillator, compared to tunnel diode. These may strongly improve the stability of oscillators, and therefore enhance the resolution of seismic techniques.

  5. (abstract) Studies of Interferometric Penetration into Vegetation Canopies using Multifrequency Interferometry Data at JPL

    Science.gov (United States)

    Hensley, Scott; Rodriguez, Ernesto; Truhafft, Bob; van Zyl, Jakob; Rosen, Paul; Werner, Charles; Madsen, Sren; Chapin, Elaine

    1997-01-01

    Radar interferometric observations both from spaceborne and airborne platforms have been used to generate accurate topographic maps, measure milimeter level displacements from earthquakes and volcanoes, and for making land cover classification and land cover change maps. Interferometric observations have two basic measurements, interferometric phase, which depends upon the path difference between the two antennas and the correlation. One of the key questions concerning interferometric observations of vegetated regions is where in the canopy does the interferometric phase measure the height. Results for two methods of extracting tree heights and other vegetation parameters based upon the amount of volumetric decorrelation will be presented.

  6. Performance Analysis for Airborne Interferometric SAR Affected by Flexible Baseline Oscillation

    Directory of Open Access Journals (Sweden)

    Liu Zhong-sheng

    2014-04-01

    Full Text Available The airborne interferometric SAR platform suffers from instability factors, such as air turbulence and mechanical vibrations during flight. Such factors cause the oscillation of the flexible baseline, which leads to significant degradation of the performance of the interferometric SAR system. This study is concerned with the baseline oscillation. First, the error of the slant range model under baseline oscillation conditions is formulated. Then, the SAR complex image signal and dual-channel correlation coefficient are modeled based on the first-order, second-order, and generic slant range error. Subsequently, the impact of the baseline oscillation on the imaging and interferometric performance of the SAR system is analyzed. Finally, simulations of the echo data are used to validate the theoretical analysis of the baseline oscillation in the airborne interferometric SAR.

  7. Analytical SuperSTEM for extraterrestrial materials research

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J P; Dai, Z R

    2009-09-08

    Electron-beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single-atomic-column resolution, liquids and implanted gases can be detected, and UV-VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub-500 ppm level. Electron energy-loss spectroscopy (EELS) can be carried out with 0.10-0.20 eV energy resolution and atomic-scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy-dispersive x-ray spectroscopy (EDS) and energy-filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K-edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), x-ray elemental maps showing the nanometer-scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H{sub 2}O in vesicles and implanted H{sub 2} and He in irradiated mineral and glass grains.

  8. Interactive local super-resolution reconstruction of whole-body MRI mouse data: a pilot study with applications to bone and kidney metastases.

    Directory of Open Access Journals (Sweden)

    Oleh Dzyubachyk

    Full Text Available In small animal imaging studies, when the locations of the micro-structures of interest are unknown a priori, there is a simultaneous need for full-body coverage and high resolution. In MRI, additional requirements to image contrast and acquisition time will often make it impossible to acquire such images directly. Recently, a resolution enhancing post-processing technique called super-resolution reconstruction (SRR has been demonstrated to improve visualization and localization of micro-structures in small animal MRI by combining multiple low-resolution acquisitions. However, when the field-of-view is large relative to the desired voxel size, solving the SRR problem becomes very expensive, in terms of both memory requirements and computation time. In this paper we introduce a novel local approach to SRR that aims to overcome the computational problems and allow researchers to efficiently explore both global and local characteristics in whole-body small animal MRI. The method integrates state-of-the-art image processing techniques from the areas of articulated atlas-based segmentation, planar reformation, and SRR. A proof-of-concept is provided with two case studies involving CT, BLI, and MRI data of bone and kidney tumors in a mouse model. We show that local SRR-MRI is a computationally efficient complementary imaging modality for the precise characterization of tumor metastases, and that the method provides a feasible high-resolution alternative to conventional MRI.

  9. Interactive local super-resolution reconstruction of whole-body MRI mouse data: a pilot study with applications to bone and kidney metastases.

    Science.gov (United States)

    Dzyubachyk, Oleh; Khmelinskii, Artem; Plenge, Esben; Kok, Peter; Snoeks, Thomas J A; Poot, Dirk H J; Löwik, Clemens W G M; Botha, Charl P; Niessen, Wiro J; van der Weerd, Louise; Meijering, Erik; Lelieveldt, Boudewijn P F

    2014-01-01

    In small animal imaging studies, when the locations of the micro-structures of interest are unknown a priori, there is a simultaneous need for full-body coverage and high resolution. In MRI, additional requirements to image contrast and acquisition time will often make it impossible to acquire such images directly. Recently, a resolution enhancing post-processing technique called super-resolution reconstruction (SRR) has been demonstrated to improve visualization and localization of micro-structures in small animal MRI by combining multiple low-resolution acquisitions. However, when the field-of-view is large relative to the desired voxel size, solving the SRR problem becomes very expensive, in terms of both memory requirements and computation time. In this paper we introduce a novel local approach to SRR that aims to overcome the computational problems and allow researchers to efficiently explore both global and local characteristics in whole-body small animal MRI. The method integrates state-of-the-art image processing techniques from the areas of articulated atlas-based segmentation, planar reformation, and SRR. A proof-of-concept is provided with two case studies involving CT, BLI, and MRI data of bone and kidney tumors in a mouse model. We show that local SRR-MRI is a computationally efficient complementary imaging modality for the precise characterization of tumor metastases, and that the method provides a feasible high-resolution alternative to conventional MRI.

  10. Super-resolved linear fluorescence localization microscopy using photostable fluorophores: A virtual microscopy study

    Science.gov (United States)

    Birk, Udo; Szczurek, Aleksander; Cremer, Christoph

    2017-12-01

    Current approaches to overcome the conventional limit of the resolution potential of light microscopy (of about 200 nm for visible light), often suffer from non-linear effects, which render the quantification of the image intensities in the reconstructions difficult, and also affect the quantification of the biological structure under investigation. As an attempt to face these difficulties, we discuss a particular method of localization microscopy which is based on photostable fluorescent dyes. The proposed method can potentially be implemented as a fast alternative for quantitative localization microscopy, circumventing the need for the acquisition of thousands of image frames and complex, highly dye-specific imaging buffers. Although the need for calibration remains in order to extract quantitative data (such as the number of emitters), multispectral approaches are largely facilitated due to the much less stringent requirements on imaging buffers. Furthermore, multispectral acquisitions can be readily obtained using commercial instrumentation such as e.g. the conventional confocal laser scanning microscope.

  11. Interferometric detection of single gold nanoparticles calibrated against TEM size distributions

    DEFF Research Database (Denmark)

    Zhang, Lixue; Christensen, Sune; Bendix, Pól Martin

    2015-01-01

    Single nanoparticle analysis: An interferometric optical approach calibrates sizes of gold nanoparticles (AuNPs) from the interference intensities by calibrating their interferometric signals against the corresponding transmission electron microscopy measurements. This method is used to investigate...

  12. Gold and silver nanoparticles based superquenching of fluorescence: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Debanjana; Chattopadhyay, Nitin, E-mail: nitin.chattopadhyay@yahoo.com

    2015-04-15

    The short review highlights the recent advances on the gold and silver nanoparticles induced efficient quenching of fluorescence from various fluorophores looking at their promising use as optical rulers and chemo-/bio- sensors. The fluorescence quenching often leads to the increase in the Stern–Volmer constant (K{sub SV}~10{sup 7}–10{sup 10} mol{sup −1} dm{sup 3}) several orders of magnitude higher than the values observed for the normal photochemical quenching processes (~10{sup 2} mol{sup −1} dm{sup 3}). This amplified quenching has been termed as “super-quenching” or “hyper-quenching”. Energy transfer (ET) is established from the donor to the metal nanoparticles rationalizing these fast quenching processes. Considering the distance dependence of the ET process, Förster resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) are ascribed to take place. These sensitive distance dependent phenomena serve as the spectroscopic ruler to measure the intra- or intermolecular distances between the interacting partners. In this account focus has been laid on the size dependent energy transfer and super- and hyper- quenching of the fluorescence of the donor moieties by the nanometals and their probable applications in sensing. Rationalization has been made for the nanoparticle induced huge enhancement in the quenching efficiency. The impact of this review lies in the possible application of these amplified quenching processes in designing high sensitive chemical and biological sensors. - Highlights: • Super efficient quenching of fluorescence of probes by gold and silver nanoparticles is highlighted. • The amplified fluorescence quenching of dyes and polymers is rationalized. • Energy transfer is assigned to be responsible for the efficient quenching process. • Amplified quenching has its potential use in designing sensitive chemical/biological sensors.

  13. Gold and silver nanoparticles based superquenching of fluorescence: A review

    International Nuclear Information System (INIS)

    Ghosh, Debanjana; Chattopadhyay, Nitin

    2015-01-01

    The short review highlights the recent advances on the gold and silver nanoparticles induced efficient quenching of fluorescence from various fluorophores looking at their promising use as optical rulers and chemo-/bio- sensors. The fluorescence quenching often leads to the increase in the Stern–Volmer constant (K SV ~10 7 –10 10 mol −1 dm 3 ) several orders of magnitude higher than the values observed for the normal photochemical quenching processes (~10 2 mol −1 dm 3 ). This amplified quenching has been termed as “super-quenching” or “hyper-quenching”. Energy transfer (ET) is established from the donor to the metal nanoparticles rationalizing these fast quenching processes. Considering the distance dependence of the ET process, Förster resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) are ascribed to take place. These sensitive distance dependent phenomena serve as the spectroscopic ruler to measure the intra- or intermolecular distances between the interacting partners. In this account focus has been laid on the size dependent energy transfer and super- and hyper- quenching of the fluorescence of the donor moieties by the nanometals and their probable applications in sensing. Rationalization has been made for the nanoparticle induced huge enhancement in the quenching efficiency. The impact of this review lies in the possible application of these amplified quenching processes in designing high sensitive chemical and biological sensors. - Highlights: • Super efficient quenching of fluorescence of probes by gold and silver nanoparticles is highlighted. • The amplified fluorescence quenching of dyes and polymers is rationalized. • Energy transfer is assigned to be responsible for the efficient quenching process. • Amplified quenching has its potential use in designing sensitive chemical/biological sensors

  14. The SuperB Silicon Vertex Tracker and 3D vertical integration

    CERN Document Server

    Re, Valerio

    2011-01-01

    The construction of the SuperB high luminosity collider was approved and funded by the Italian government in 2011. The performance specifications set by the target luminosity of this machine (> 10^36 cm^-2 s^-1) ask for the development of a Silicon Vertex Tracker with high resolution, high tolerance to radiation and excellent capability of handling high data rates. This paper reviews the R&D activity that is being carried out for the SuperB SVT. Special emphasis is given to the option of exploiting 3D vertical integration to build advanced pixel sensors and readout electronics that are able to comply with SuperB vertexing requirements.

  15. Super jackstraws and super waterwheels

    International Nuclear Information System (INIS)

    Cho, Jin-Ho

    2007-01-01

    We construct various new BPS states of D-branes preserving 8 supersymmetries. These include super Jackstraws (a bunch of scattered D- or (p, q)-strings preserving supersymmetries), and super waterwheels (a number of D2-branes intersecting at generic angles on parallel lines while preserving supersymmetries). Super D-Jackstraws are scattered in various dimensions but are dynamical with all their intersections following a common null direction. Meanwhile, super (p, q)-Jackstraws form a planar static configuration. We show that the SO(2) subgroup of SL(2, R), the group of classical S-duality transformations in IIB theory, can be used to generate this latter configuration of variously charged (p, q)-strings intersecting at various angles. The waterwheel configuration of D2-branes preserves 8 supersymmetries as long as the 'critical' Born-Infeld electric fields are along the common direction

  16. Advanced interferometric gravitational-wave detectors

    CERN Document Server

    Saulson, Peter R

    2019-01-01

    Gravitational waves are one of the most exciting and promising emerging areas of physics and astrophysics today. The detection of gravitational waves will rank among the most significant physics discoveries of the 21st century.Advanced Interferometric Gravitational-Wave Detectors brings together many of the world's top experts to deliver an authoritative and in-depth treatment on current and future detectors. Volume I is devoted to the essentials of gravitational-wave detectors, presenting the physical principles behind large-scale precision interferometry, the physics of the underlying noise sources that limit interferometer sensitivity, and an explanation of the key enabling technologies that are used in the detectors. Volume II provides an in-depth look at the Advanced LIGO and Advanced Virgo interferometers that have just finished construction, as well as examining future interferometric detector concepts. This two-volume set will provide students and researchers the comprehensive background needed to und...

  17. The EDGE-CALIFA Survey: Interferometric Observations of 126 Galaxies with CARMA

    Science.gov (United States)

    Bolatto, Alberto D.; Wong, Tony; Utomo, Dyas; Blitz, Leo; Vogel, Stuart N.; Sánchez, Sebastián F.; Barrera-Ballesteros, Jorge; Cao, Yixian; Colombo, Dario; Dannerbauer, Helmut; García-Benito, Rubén; Herrera-Camus, Rodrigo; Husemann, Bernd; Kalinova, Veselina; Leroy, Adam K.; Leung, Gigi; Levy, Rebecca C.; Mast, Damián; Ostriker, Eve; Rosolowsky, Erik; Sandstrom, Karin M.; Teuben, Peter; van de Ven, Glenn; Walter, Fabian

    2017-09-01

    We present interferometric CO observations, made with the Combined Array for Millimeter-wave Astronomy (CARMA) interferometer, of galaxies from the Extragalactic Database for Galaxy Evolution survey (EDGE). These galaxies are selected from the Calar Alto Legacy Integral Field Area (CALIFA) sample, mapped with optical integral field spectroscopy. EDGE provides good-quality CO data (3σ sensitivity {{{Σ }}}{mol}˜ 11 {M}⊙ {{pc}}-2 before inclination correction, resolution ˜1.4 kpc) for 126 galaxies, constituting the largest interferometric CO survey of galaxies in the nearby universe. We describe the survey and data characteristics and products, then present initial science results. We find that the exponential scale lengths of the molecular, stellar, and star-forming disks are approximately equal, and galaxies that are more compact in molecular gas than in stars tend to show signs of interaction. We characterize the molecular-to-stellar ratio as a function of Hubble type and stellar mass and present preliminary results on the resolved relations between the molecular gas, stars, and star-formation rate. We then discuss the dependence of the resolved molecular depletion time on stellar surface density, nebular extinction, and gas metallicity. EDGE provides a key data set to address outstanding topics regarding gas and its role in star formation and galaxy evolution, which will be publicly available on completion of the quality assessment.

  18. A numerical study of super-resolution through fast 3D wideband algorithm for scattering in highly-heterogeneous media

    KAUST Repository

    Létourneau, Pierre-David

    2016-09-19

    We present a wideband fast algorithm capable of accurately computing the full numerical solution of the problem of acoustic scattering of waves by multiple finite-sized bodies such as spherical scatterers in three dimensions. By full solution, we mean that no assumption (e.g. Rayleigh scattering, geometrical optics, weak scattering, Born single scattering, etc.) is necessary regarding the properties of the scatterers, their distribution or the background medium. The algorithm is also fast in the sense that it scales linearly with the number of unknowns. We use this algorithm to study the phenomenon of super-resolution in time-reversal refocusing in highly-scattering media recently observed experimentally (Lemoult et al., 2011), and provide numerical arguments towards the fact that such a phenomenon can be explained through a homogenization theory.

  19. Refractive Index Compensation in Over-Determined Interferometric Systems

    Directory of Open Access Journals (Sweden)

    Zdeněk Buchta

    2012-10-01

    Full Text Available We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup.

  20. Nonlinear Super Integrable Couplings of Super Classical-Boussinesq Hierarchy

    Directory of Open Access Journals (Sweden)

    Xiuzhi Xing

    2014-01-01

    Full Text Available Nonlinear integrable couplings of super classical-Boussinesq hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then, its super Hamiltonian structures were established by using super trace identity. As its reduction, nonlinear integrable couplings of the classical integrable hierarchy were obtained.

  1. Localization microscopy of DNA in situ using Vybrant{sup ®} DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution

    Energy Technology Data Exchange (ETDEWEB)

    Żurek-Biesiada, Dominika [Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków (Poland); Szczurek, Aleksander T. [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Prakash, Kirti [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany); Mohana, Giriram K. [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Lee, Hyun-Keun [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz (Germany); Roignant, Jean-Yves [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Birk, Udo J. [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz (Germany); Dobrucki, Jurek W., E-mail: jerzy.dobrucki@uj.edu.pl [Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków (Poland); Cremer, Christoph, E-mail: c.cremer@imb-mainz.de [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany); Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz (Germany)

    2016-05-01

    Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant{sup ®} DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei of fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10{sup 6} signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100 nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. - Highlights: • Super-resolution imaging of nuclear DNA with Vybrant Violet and blue excitation. • 90nm resolution images of DNA structures in optically thick eukaryotic nuclei. • Enhanced resolution confirms the existence of DNA-free regions inside the nucleus. • Optimized imaging conditions enable multicolor super-resolution imaging.

  2. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm.

    Science.gov (United States)

    Shi, Junwei; Liu, Fei; Zhang, Guanglei; Luo, Jianwen; Bai, Jing

    2014-04-01

    Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.

  3. Integrated Photoacoustic and Fluorescence Confocal Microscopy

    OpenAIRE

    Wang, Yu; Maslov, Konstantin; Kim, Chulhong; Hu, Song; Wang, Lihong V.

    2010-01-01

    We have developed a dual-modality imaging system by integrating optical-resolution photoacoustic microscopy and fluorescence confocal microscopy to provide optical absorption and fluorescence contrasts simultaneously. By sharing the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence images are acquired in a single scan. The micrometer resolution allows imaging of both blood and lymphatic vessels down to the capillary level. Simultaneous photoacoustic...

  4. Reducible Dictionaries for Single Image Super-Resolution based on Patch Matching and Mean Shifting

    DEFF Research Database (Denmark)

    Rasti, Pejman; Nasrollahi, Kamal; Orlova, Olga

    2017-01-01

    is taken, and its counterpart from the HR dictionary is passed through an illumination enhancement process. By this technique, the noticeable change of illumination between neighbor patches in the super-resolved image is significantly reduced. The enhanced HR patch represents the HR patch of the super......-resolved image. Finally, to remove the blocking effect caused by merging the patches, an average of the obtained HR image and the interpolated image obtained using bicubic interpolation is calculated. The quantitative and qualitative analyses show the superiority of the proposed technique over the conventional...

  5. The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Dowkontt, P. F.; Israel, M. H.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F. [Washington University, St. Louis, MO 63130 (United States); Brandt, T. J.; Daniels, W. M.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Link, J. T.; Mitchell, J. W.; Sakai, K. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Klemic, J.; Labrador, A. W.; Mewaldt, R. A., E-mail: wrb@wustl.edu [California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2014-06-10

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  6. Towards single molecule biosensors using super-resolution fluorescence microscopy.

    Science.gov (United States)

    Lu, Xun; Nicovich, Philip R; Gaus, Katharina; Gooding, J Justin

    2017-07-15

    Conventional immunosensors require many binding events to give a single transducer output which represents the concentration of the analyte in the sample. Because of the requirements to selectively detect species in complex samples, immunosensing interfaces must allow immobilisation of antibodies while repelling nonspecific adsorption of other species. These requirements lead to quite sophisticated interfacial design, often with molecular level control, but we have no tools to characterise how well these interfaces work at the molecular level. The work reported herein is an initial feasibility study to show that antibody-antigen binding events can be monitored at the single molecule level using single molecule localisation microscopy (SMLM). The steps to achieve this first requires showing that indium tin oxide surfaces can be used for SMLM, then that these surfaces can be modified with self-assembled monolayers using organophosphonic acid derivatives, that the amount of antigens and antibodies on the surface can be controlled and monitored at the single molecule level and finally antibody binding to antigen modified surfaces can be monitored. The results show the amount of antibody that binds to an antigen modified surface is dependent on both the concentration of antigen on the surface and the concentration of antibody in solution. This study demonstrates the potential of SMLM for characterising biosensing interfaces and as the transducer in a massively parallel, wide field, single molecule detection scheme for quantitative analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Ground based interferometric radar initial look at Longview, Blue Springs, Tuttle Creek, and Milford Dams

    Science.gov (United States)

    Deng, Huazeng

    Measuring millimeter and smaller deformation has been demonstrated in the literature using RADAR. To address in part the limitations in current commercial satellite-based SAR datasets, a University of Missouri (MU) team worked with GAMMA Remote Sensing to develop a specialized (dual-frequency, polarimetric, and interferometric) ground-based real-aperture RADAR (GBIR) instrument. The GBIR device is portable with its tripod system and control electronics. It can be deployed to obtain data with high spatial resolution (i.e. on the order of 1 meter) and high temporal resolution (i.e. on the order 1 minute). The high temporal resolution is well suited for measurements of rapid deformation. From the same geodetic position, the GBIR may collect dual frequency data set using C-band and Ku-band. The overall goal of this project is to measure the deformation from various scenarios by applying the GBIR system. Initial efforts have been focusing on testing the system performance on different types of targets. This thesis details a number of my efforts on experimental and processing activities at the start of the MU GBIR imaging project. For improved close range capability, a wideband dual polarized antenna option was produced and tested. For GBIR calibration, several trihedral corner reflectors were designed and fabricated. In addition to experimental activities and site selection, I participated in advanced data processing activities. I processed GBIR data in several ways including single-look-complex (SLC) image generation, imagery registration, and interferometric processing. A number of initial-processed GBIR image products are presented from four dams: Longview, Blue Springs, Tuttle Creek, and Milford. Excellent imaging performance of the MU GBIR has been observed for various target types such as riprap, concrete, soil, rock, metal, and vegetation. Strong coherence of the test scene has been observed in the initial interferograms.

  8. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2

    Directory of Open Access Journals (Sweden)

    J. Joiner

    2013-10-01

    Full Text Available Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2. The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT. GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0

  9. A super-high angular resolution principle for coded-mask X-ray imaging beyond the diffraction limit of a single pinhole

    International Nuclear Information System (INIS)

    Zhang Chen; Zhang Shuangnan

    2009-01-01

    High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 x 50 μm 2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32 arcsec above about 10 keV and 0.36 arcsec at 1.24 keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed. (invited reviews)

  10. Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection -A First Study

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar

    2014-01-01

    Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410

  11. The super-classical-Boussinesq hierarchy and its super-Hamiltonian structure

    International Nuclear Information System (INIS)

    Si-Xing, Tao; Tie-Cheng, Xia

    2010-01-01

    Based on the constructed Lie superalgebra, the super-classical-Boussinesq hierarchy is obtained. Then, its super-Hamiltonian structure is obtained by making use of super-trace identity. Furthermore, the super-classical-Boussinesq hierarchy is also integrable in the sense of Liouville. (general)

  12. Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Leonardo Nogara

    Full Text Available In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity.

  13. The design and evaluation of a selectively modulated interferometric dispersive spectrometer

    International Nuclear Information System (INIS)

    Fitzgerald, J.J.

    1986-01-01

    In approaching the problem of rapid simultaneous multielement analysis, the large light gathering power, wide spectral range and high resolution of a Fourier Transform Spectrometer (FTS) should be of benefit. The severe mechanical tolerances required in the construction and operation of a classical Michelson interferometer for use in the UV-Visible spectral region have limited investigations in the application of simultaneous trace quantitative analysis. Theory is presented demonstrating that replacement of the fixed mirror in one arm of the Michelson interferometer with a rotating grating preserves most of the FTS advantages and results in a greatly simplified detector system. No mathematical Fourier transform is required. The need for a computer is eliminated. An instrument, SEMIDS (Selectively Modulated Interferometric Dispersive Spectrometer), was constructed to investigate the mathematical model. Design criteria and basic operational performance as a flame emission spectrometer are presented. SEMIDS achieved high resolution, high throughput and greatly simplified operation compared to a Michelson interferometer. Performance as a trace quantitative tool was disappoint because of unanticipated noise contributions from flame background. A summary of the noise component contributions is discussed

  14. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors

    Science.gov (United States)

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu

    2016-02-01

    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  15. High-resolution methods for fluorescence retrieval from space

    NARCIS (Netherlands)

    Mazzoni, M.; Falorni, P.; Verhoef, W.

    2010-01-01

    The retrieval from space of a very weak fluorescence signal was studied in the O2A and O2B oxygen atmospheric absorption bands. The accuracy of the method was tested for the retrieval of the chlorophyll fluorescence and reflectance terms contributing to the sensor signal. The radiance at the top of

  16. Development of dynamic 3-D surface profilometry using stroboscopic interferometric measurement and vertical scanning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K-C [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd, Taipei, 106, Taiwan (China); Lin, C-D [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chang, Calvin C [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Kuo, C-F [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Chou, J-T [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China)

    2005-01-01

    The main objective of this technical advance is to provide a single optical interferometric framework and methodology to be capable of delivering both nano-scale static and dynamic surface profilometry. Microscopic interferometry is a powerful technique for static and dynamic characterization of micro (opto) electromechanical systems (M (O) EMS). In view of this need, a microscopic prototype based on white-light stroboscopic interferometry and the white light vertical scanning principle, was developed to achieve dynamic full-field profilometry and characterization of MEMS devices. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterization of dynamic behaviours of the device. The full-field second-mode vibration at a vibratory frequency of 68.60 kHz can be fully characterized and 3-5 nm of vertical measurement resolution as well as tens of micrometers of vertical measurement range can be easily achieved.

  17. River Delta Subsidence Measured with Interferometric Synthetic Aperture Radar (InSAR)

    Science.gov (United States)

    Higgins, Stephanie

    This thesis addresses the need for high-resolution subsidence maps of major world river deltas. Driven by a combination of rising water, sediment compaction, and reduced sediment supply due to damming and flood control, many deltas are sinking relative to sea level. A lack of data constraining rates and patterns of subsidence has made it difficult to determine the relative contributions of each factor in any given delta, however, or to assess whether the primary drivers of land subsidence are natural or anthropogenic. In recent years, Interferometric Synthetic Aperture Radar (InSAR) has emerged as a satellite-based technique that can map ground deformation with mm-scale accuracy over thousands of square kilometers. These maps could provide critical insight into the drivers of subsidence in deltas, but InSAR is not typically applied to non-urban delta areas due to the difficulties of performing the technique in wet, vegetated settings. This thesis addresses those difficulties and achieves high-resolution measurements of ground deformation in rural deltaic areas. Chapter 1 introduces the processes that drive relative sea level rise in river deltas and investigates open questions in delta subsidence research. Chapter 2 assesses the performance of InSAR in delta settings and reviews interferogram generation in the context of delta analysis, presenting delta-specific processing details and guiding interpretation in these challenging areas. Chapter 3 applies Differential (D-) InSAR to the coast of the Yellow River Delta in China. Results show that subsidence rates are as high as 250 mm/y due to groundwater extraction at aquaculture facilities, a rate that exceeds local and global average sea level rise by nearly two orders of magnitude and suggests a significant hazard for Asian megadeltas. Chapter 4 applies interferometric stacking and Small Baseline Subset (SBAS)-InSAR to the Ganges-Brahmaputra Delta, Bangladesh. Results show that stratigraphy controls subsidence in

  18. Interferometric study of the small magellanic cloud

    International Nuclear Information System (INIS)

    Torres, G.; Carranza, G.J.

    1986-01-01

    interferometric observations of the general radial velocity field in the small magellanic cloud are being carried out. We present preliminary results in reasonable agreement with H I measurements. (author)

  19. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.

    Science.gov (United States)

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.

  20. A possible mechanism to detect super-earth formation in protoplanetary disks

    Science.gov (United States)

    Dong, Ruobing; Chiang, Eugene; Li, Hui; Li, Shengtai

    2017-06-01

    Using combined gas+dust global hydrodynamics and radiative transfer simulations, we calculate the distribution of gas and sub-mm-sized dust in protoplanetary disks with a super-Earth at tens of AU, and examine observational signatures of such systems in resolved observations. We confirm previous results that in a typical disk with a low viscosity ($\\alpha\\lesssim10^{-4}$), a super-Earth is able to open two gaps at $\\sim$scale-height away around its orbit in $\\sim$mm-sized dust (St$\\sim$0.01), due to differential dust drift in a perturbed gas background. Additional rings and gaps may also be produced under certain conditions. These features, particularly a signature ``double-gap'' feature, can be detected in a Taurus target by ALMA in dust continuum under an angular resolution of $\\sim0\\arcsec.025$ with two hours of integration. The features are robust --- it can survive in a variety of background disk profiles, withstand modest planetary radial migration ($|r/\\dot{r}|\\sim$ a few Myr), and last for thousands of orbits. Multiple ring/gap systems observed by ALMA were typically modeled using multiple (Saturn-to-Jupiter sized) planets. Here, we argue that a single super-Earth in a low viscosity disk could produce multiple rings and gaps as well. By examining the prevalence of such features in nearby disks, upcoming high angular resolution ALMA surveys may infer how common super-Earth formation events are at tens of au.

  1. Polarization-Dependent Measurements of Molecular Super Rotors with Oriented Angular Momenta

    Science.gov (United States)

    Murray, Matthew J.; Toro, Carlos; Liu, Qingnan; Mullin, Amy S.

    2014-05-01

    Controlling molecular motion would enable manipulation of energy flow between molecules. Here we have used an optical centrifuge to investigate energy transfer between molecular super rotors with oriented angular momenta. The polarizable electron cloud of the molecules interacts with the electric field of linearly polarized light that angularly accelerates over the time of the optical pulse. This process drives molecules into high angular momentum states that are oriented with the optical field and have energies far from equilibrium. High resolution transient IR spectroscopy reveals the dynamics of collisional energy transfer for these super excited rotors. The results of this study leads to a more fundamental understanding of energy balance in non-equilibrium environments and the physical and chemical properties of gases in a new regime of energy states. Results will be presented for several super rotor species including carbon monoxide, carbon dioxide, and acetylene. Polarization-dependent measurements reveal the extent to which the super rotors maintain spatial orientation of high angular momentum states.

  2. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    Science.gov (United States)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  3. Three-dimensional inversion recovery manganese-enhanced MRI of mouse brain using super-resolution reconstruction to visualize nuclei involved in higher brain function.

    Science.gov (United States)

    Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise

    2014-07-01

    The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.

  4. A super soliton connection

    International Nuclear Information System (INIS)

    Gurses, M.; Oguz, O.

    1985-07-01

    Integrable super non-linear classical partial differential equations are considered. A super s1(2,R) algebra valued connection 1-form is constructed. It is shown that curvature 2-form of this super connection vanishes by virtue of the integrable super equations of motion. A super extension of the AKNS scheme is presented and a class of super extension of the Lax hierarchy and super non-linear Schroedinger equation are found. O(N) extension and the Baecklund transformations of the above super equations are also considered. (author)

  5. State-of-the-Art Fluorescence Fluctuation-Based Spectroscopic Techniques for the Study of Protein Aggregation.

    Science.gov (United States)

    Kitamura, Akira; Kinjo, Masataka

    2018-03-23

    Neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and Huntington's disease, are devastating proteinopathies with misfolded protein aggregates accumulating in neuronal cells. Inclusion bodies of protein aggregates are frequently observed in the neuronal cells of patients. Investigation of the underlying causes of neurodegeneration requires the establishment and selection of appropriate methodologies for detailed investigation of the state and conformation of protein aggregates. In the current review, we present an overview of the principles and application of several methodologies used for the elucidation of protein aggregation, specifically ones based on determination of fluctuations of fluorescence. The discussed methods include fluorescence correlation spectroscopy (FCS), imaging FCS, image correlation spectroscopy (ICS), photobleaching ICS (pbICS), number and brightness (N&B) analysis, super-resolution optical fluctuation imaging (SOFI), and transient state (TRAST) monitoring spectroscopy. Some of these methodologies are classical protein aggregation analyses, while others are not yet widely used. Collectively, the methods presented here should help the future development of research not only into protein aggregation but also neurodegenerative diseases.

  6. Direct observation, study and control of molecular super rotors

    Science.gov (United States)

    Korobenko, Aleksey; Milner, Alexander; Hepburn, John; Milner, Valery

    2014-05-01

    Extremely fast rotating molecules whose rotational energy is comparable with or exceeds the molecular bond strength are known as ``super rotors''. It has been speculated that super rotors may exhibit a number of unique properties, yet only indirect evidence of these molecular objects has been reported to date. We demonstrate the first direct observation of molecular super rotors by detecting coherent unidirectional molecular rotation with extreme frequencies exceeding 10 THz. The technique of an ``optical centrifuge'' is used to control the degree of rotational excitation in an ultra-broad range of rotational quantum numbers, reaching as high as N = 95 in oxygen and N = 60 in nitrogen. State-resolved detection enables us to determine the shape of the excited rotational wave packet and quantify the effect of centrifugal distortion on the rotational spectrum. Femtosecond time resolution reveals coherent rotational dynamics with increasing coherence times at higher angular momentum. We demonstrate that molecular super rotors can be created and observed in dense samples under normal conditions where the effects of ultrafast rotation on many-body interactions, inter-molecular collisions and chemical reactions can be readily explored.

  7. Interferometric crosstalk suppression using polarization multiplexing technique and an SOA

    DEFF Research Database (Denmark)

    Liu, Fenghai; Xueyan, Zheng; Pedersen, Rune Johan Skullerud

    2000-01-01

    Interferometric crosstalk can be greatly suppressed at 10Gb/s and 20Gb/s by using a gain saturated SOA and a polarization multiplexing technique that eliminates impairments like waveform and extinction ratio degradation from the SOA.......Interferometric crosstalk can be greatly suppressed at 10Gb/s and 20Gb/s by using a gain saturated SOA and a polarization multiplexing technique that eliminates impairments like waveform and extinction ratio degradation from the SOA....

  8. Effects of Target Positioning Error on Motion Compensation for Airborne Interferometric SAR

    Directory of Open Access Journals (Sweden)

    Li Yin-wei

    2013-12-01

    Full Text Available The measurement inaccuracies of Inertial Measurement Unit/Global Positioning System (IMU/GPS as well as the positioning error of the target may contribute to the residual uncompensated motion errors in the MOtion COmpensation (MOCO approach based on the measurement of IMU/GPS. Aiming at the effects of target positioning error on MOCO for airborne interferometric SAR, the paper firstly deduces a mathematical model of residual motion error bring out by target positioning error under the condition of squint. And the paper analyzes the effects on the residual motion error caused by system sampling delay error, the Doppler center frequency error and reference DEM error which result in target positioning error based on the model. Then, the paper discusses the effects of the reference DEM error on the interferometric SAR image quality, the interferometric phase and the coherent coefficient. The research provides theoretical bases for the MOCO precision in signal processing of airborne high precision SAR and airborne repeat-pass interferometric SAR.

  9. The linearized inversion of the generalized interferometric multiple imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-06

    The generalized interferometric multiple imaging (GIMI) procedure can be used to image duplex waves and other higher order internal multiples. Imaging duplex waves could help illuminate subsurface zones that are not easily illuminated by primaries such as vertical and nearly vertical fault planes, and salt flanks. To image first-order internal multiple, the GIMI framework consists of three datuming steps, followed by applying the zero-lag cross-correlation imaging condition. However, the standard GIMI procedure yields migrated images that suffer from low spatial resolution, migration artifacts, and cross-talk noise. To alleviate these problems, we propose a least-squares GIMI framework in which we formulate the first two steps as a linearized inversion problem when imaging first-order internal multiples. Tests on synthetic datasets demonstrate the ability to localize subsurface scatterers in their true positions, and delineate a vertical fault plane using the proposed method. We, also, demonstrate the robustness of the proposed framework when imaging the scatterers or the vertical fault plane with erroneous migration velocities.

  10. Super-resolution microscopy in studying neuroendocrine cell function

    Directory of Open Access Journals (Sweden)

    Anneka eBost

    2013-11-01

    Full Text Available The last two decades have seen a tremendous development in high resolution microscopy techniques giving rise to acronyms such as TIRFM, SIM, PALM, STORM, and STED. The goal of all these techniques is to overcome the physical resolution barrier of light microscopy in order to resolve precise protein localization and possibly their interaction in cells. Neuroendocrine cell function is to secrete hormones and peptides on demand. This fine-tuned multi-step process is mediated by a large array of proteins. Here, we review the new microscopy techniques used to obtain high resolution and how they have been applied to increase our knowledge of the molecular mechanisms involved in neuroendocrine cell secretion. Further the limitations of these methods are discussed and insights in possible new applications are provided.

  11. Development of an Interferometric Phased Array Trigger for Balloon-Borne Detection of the Highest Energy Cosmic Particles

    Science.gov (United States)

    Vieregg, Abigail

    interferometric phased array trigger for these impulsive radio detectors, a new type of trigger that will improve sensitivity substantially and expedite the discovery of the highest energy particles in our universe. We have developed an 8- channel interferometric trigger board for ground-based applications that will be deployed in December 2017 with the ground-based Askaryan Radio Array (ARA) experiment at the South Pole. Preliminary Monte Carlo simulations indicate that the cosmogenic neutrino event rate will go up by a factor of 3 with the new trigger. The true power of the interferometric trigger is in scaling to large numbers of channels, and the discovery space that is only available from a balloon platform at the highest energies is extremely appealing. We will build on and extend the NASA investment in the ANITA Long Duration Balloon (LDB) mission and the many other complementary particle astrophysics LDB missions by developing the electronics required to bring a large-scale radio interferometric trigger to a balloon platform, extending the scientific reach of any future LDB or Super Pressure Balloon (SPB) mission for radio detection of the highest energy cosmic particles. We will develop an interferometric trigger system that is scalable to O(100) channels and suitable for use on a balloon platform. Under this proposal, we will: 1) Design and fabricate interferometric trigger hardware for balloon-borne cosmic particle detectors that is scalable to large numbers of channels O(100) by reducing the power consumption per channel, increasing the number of channels per board, and developing high-speed communication capability between boards. 2) Perform a trade study and inform design decisions for future balloon missions by further developing our Monte Carlo simulation and adapting it to balloon geometries.

  12. Secure space-to-space interferometric communications and its nexus to the physics of quantum entanglement

    Science.gov (United States)

    Duarte, F. J.

    2016-12-01

    The history of the probability amplitude equation | ψ > = ( | x , y > - | y , x > ) applicable to quanta pairs, propagating in different directions with entangled polarizations, is reviewed and traced back to the 1947-1949 period. The interferometric Dirac foundations common to | ψ > = ( | x , y > - | y , x > ) and the generalized N-slit interferometric equation, for indistinguishable quanta, are also described. The results from a series of experiments on N-slit laser interferometers, with intra interferometric propagation paths up to 527 m, are reviewed. Particular attention is given to explain the generation of interferometric characters, for secure space-to-space communications, which immediately collapse on attempts of interception. The design of a low divergence N-slit laser interferometer for low Earth orbit-low Earth orbit (LEO-LEO), and LEO-geostationary Earth orbit (LEO-GEO), secure interferometric communications is described and a weight assessment is provided.

  13. Impact of detector-element active-area shape and fill factor on super-resolution

    Directory of Open Access Journals (Sweden)

    Russell Craig Hardie

    2015-05-01

    Full Text Available In many undersampled imaging systems, spatial integration from the individual detector elements is the dominant component of the system point spread function (PSF. Conventional focal plane arrays (FPAs utilize square detector elements with a nearly 100% fill factor, where fill factor is defined as the fraction of the detector element area that is active in light detection. A large fill factor is generally considered to be desirable because more photons are collected for a given pitch, and this leads to a higher signal-to-noise-ratio (SNR. However, the large active area works against super-resolution (SR image restoration by acting as an additional low pass filter in the overall PSF when modeled on the SR sampling grid. A high fill factor also tends to increase blurring from pixel cross-talk. In this paper, we study the impact of FPA detector-element shape and fill factor on SR. A detailed modulation transfer function analysis is provided along with a number of experimental results with both simulated data and real data acquired with a midwave infrared (MWIR imaging system. We demonstrate the potential advantage of low fill factor detector elements when combined with SR image restoration. Our results suggest that low fill factor circular detector elements may be the best choice. New video results are presented using robust adaptive Wiener filter SR processing applied to data from a commercial MWIR imaging system with both high and low detector element fill factors.

  14. THE SEARCH FOR SUPER-SATURATION IN CHROMOSPHERIC EMISSION

    International Nuclear Information System (INIS)

    Christian, Damian J.; Arias, Tersi; Mathioudakis, Mihalis; Jess, David B.; Jardine, Moira

    2011-01-01

    We investigate if the super-saturation phenomenon observed at X-ray wavelengths for the corona exists in the chromosphere for rapidly rotating late-type stars. Moderate resolution optical spectra of fast-rotating EUV- and X-ray-selected late-type stars were obtained. Stars in α Per were observed in the northern hemisphere with the Isaac Newton 2.5 m telescope and Intermediate Dispersion Spectrograph. Selected objects from IC 2391 and IC 2602 were observed in the southern hemisphere with the Blanco 4 m telescope and R-C spectrograph at CTIO. Ca II H and K fluxes were measured for all stars in our sample. We find the saturation level for Ca II K at log (L CaK /L bol ) = -4.08. The Ca II K flux does not show a decrease as a function of increased rotational velocity or smaller Rossby number as observed in the X-ray. This lack of 'super-saturation' supports the idea of coronal stripping as the cause of saturation and super-saturation in stellar chromospheres and coronae, but the detailed underlying mechanism is still under investigation.

  15. Super-Calogero-Moser-Sutherland systems and free super-oscillators: a mapping

    International Nuclear Information System (INIS)

    Ghosh, Pijush K.

    2001-01-01

    We show that the supersymmetric rational Calogero-Moser-Sutherland (CMS) model of A N+1 -type is equivalent to a set of free super-oscillators, through a similarity transformation. We prescribe methods to construct the complete eigenspectrum and the associated eigenfunctions, both in supersymmetry-preserving as well as supersymmetry-breaking phases, from the free super-oscillator basis. Further we show that a wide class of super-Hamiltonians realizing dynamical OSp(2 vertical bar 2) supersymmetry, which also includes all types of rational super-CMS as a small subset, are equivalent to free super-oscillators. We study BC N+1 -type super-CMS model in some detail to understand the subtleties involved in this method

  16. Super Riemann surfaces

    International Nuclear Information System (INIS)

    Rogers, Alice

    1990-01-01

    A super Riemann surface is a particular kind of (1,1)-dimensional complex analytic supermanifold. From the point of view of super-manifold theory, super Riemann surfaces are interesting because they furnish the simplest examples of what have become known as non-split supermanifolds, that is, supermanifolds where the odd and even parts are genuinely intertwined, as opposed to split supermanifolds which are essentially the exterior bundles of a vector bundle over a conventional manifold. However undoubtedly the main motivation for the study of super Riemann surfaces has been their relevance to the Polyakov quantisation of the spinning string. Some of the papers on super Riemann surfaces are reviewed. Although recent work has shown all super Riemann surfaces are algebraic, some areas of difficulty remain. (author)

  17. A Fast Algorithm for Image Super-Resolution from Blurred Observations

    Directory of Open Access Journals (Sweden)

    Ng Michael K

    2006-01-01

    Full Text Available We study the problem of reconstruction of a high-resolution image from several blurred low-resolution image frames. The image frames consist of blurred, decimated, and noisy versions of a high-resolution image. The high-resolution image is modeled as a Markov random field (MRF, and a maximum a posteriori (MAP estimation technique is used for the restoration. We show that with the periodic boundary condition, a high-resolution image can be restored efficiently by using fast Fourier transforms. We also apply the preconditioned conjugate gradient method to restore high-resolution images in the aperiodic boundary condition. Computer simulations are given to illustrate the effectiveness of the proposed approach.

  18. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2016-02-01

    The riddle posed by super-Earths (1–4R{sub ⊕}, 2–20M{sub ⊕}) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R{sub ⊕}, 2–6M{sub ⊕}). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.

  19. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Lee, Eve J.; Chiang, Eugene

    2016-01-01

    The riddle posed by super-Earths (1–4R ⊕ , 2–20M ⊕ ) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R ⊕ , 2–6M ⊕ ). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions

  20. Fluorescent microthermographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barton, D.L.

    1993-09-01

    In the early days of microelectronics, design rules and feature sizes were large enough that sub-micron spatial resolution was not needed. Infrared or IR thermal techniques were available that calculated the object`s temperature from infrared emission. There is a fundamental spatial resolution limitation dependent on the wavelengths of light being used in the image formation process. As the integrated circuit feature sizes began to shrink toward the one micron level, the limitations imposed on IR thermal systems became more pronounced. Something else was needed to overcome this limitation. Liquid crystals have been used with great success, but they lack the temperature measurement capabilities of other techniques. The fluorescent microthermographic imaging technique (FMI) was developed to meet this need. This technique offers better than 0.01{degrees}C temperature resolution and is diffraction limited to 0.3 {mu}m spatial resolution. While the temperature resolution is comparable to that available on IR systems, the spatial resolution is much better. The FMI technique provides better spatial resolution by using a temperature dependent fluorescent film that emits light at 612 nm instead of the 1.5 {mu}m to 12 {mu}m range used by IR techniques. This tutorial starts with a review of blackbody radiation physics, the process by which all heated objects emit radiation to their surroundings, in order to understand the sources of information that are available to characterize an object`s surface temperature. The processes used in infrared thermal imaging are then detailed to point out the limitations of the technique but also to contrast it with the FMI process. The FMI technique is then described in detail, starting with the fluorescent film physics and ending with a series of examples of past applications of FMI.

  1. 高效超分辨波达方向估计算法综述%Overview of efficient algorithms for super-resolution DOA estimates

    Institute of Scientific and Technical Information of China (English)

    闫锋刚; 沈毅; 刘帅; 金铭; 乔晓林

    2015-01-01

    Computationally efficient methods for super-resolution direction of arrival (DOA)estimation aim to reduce the complexity of conventional techniques,to economize on the costs of systems and to enhance the ro-bustness of DOA estimators against array geometries and other environmental restrictions,which has been an important topic in the field.According to the theory and elements of the multiple signal classification (MUSIC) algorithm and the primary derivations from MUSIC,state-of-the-art efficient super-resolution DOA estimators are classified into five different types.These five types of approaches reduce the complexity by real-valued com-putation,beam-space transformation,fast subspace estimation,rapid spectral search,and no spectral search, respectively.With such a classification,comprehensive overviews of each kind of efficient methods are given and numerical comparisons among these estimators are also conducted to illustrate their advantages.Future develop-ment trends of efficient algorithms for super-resolution DOA estimates are finally predicted with basic require-ments of real-world applications.%高效超分辨波达方向估计算法致力于降低超分辨算法的计算量、节约系统的实现成本、弱化算法对于阵列结构的依赖性,是推进超分辨理论工程化的一个重要研究课题。从多重信号分类(multiple signal classifi-cation,MUSIC)算法的原理和构成要素入手,以基于 MUSIC 派生高效超分辨算法的目的和方法为标准,将现存高效超分辨算法划分为实值运算、波束域变换、快速子空间估计、快速峰值搜索和免峰值搜索5大类。在此基础上,全面回顾总结了各类高效算法的发展历程和最新进展,对比分析了它们的主要优缺点。最后,结合空间谱估计实际工程化的应用需求,指出了高效超分辨算法的未来发展趋势。

  2. Physics of interferometric gravitational wave detectors

    Indian Academy of Sciences (India)

    The Caltech-MIT joint LIGO project is operating three long-baseline interferometers (one of 2 km and two of 4 km) in order to unambiguously measure the infinitesimal displacements of isolated test masses which convey the signature of gravitational waves from astrophysical sources. An interferometric gravitational wave ...

  3. Development and Evaluation of the Interferometric Monitor for Greenhouse Gases: a High-throughput Fourier-transform Infrared Radiometer for Nadir Earth Observation

    Science.gov (United States)

    Kobayashi, Hirokazu; Shimota, Akiro; Kondo, Kayoko; Okumura, Eisuke; Kameda, Yoshihiko; Shimoda, Haruhisa; Ogawa, Toshihiro

    1999-11-01

    The interferometric monitor for greenhouse gases (IMG) was the precursor of the high-resolution Fourier-transform infrared radiometer (FTIR) onboard a satellite for observation of the Earth. The IMG endured the stress of a rocket launch, demonstrating that the high-resolution, high-throughput spectrometer is indeed feasible for use onboard a satellite. The IMG adopted a newly developed lubricant-free magnetic suspension mechanism and a dynamic alignment system for the moving mirror with a maximum traveling distance of 10 cm. We present the instrumentation of the IMG, characteristics of the movable mirror drive system, and the evaluation results of sensor specifications during space operation.

  4. The Super Patalan Numbers

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    We introduce the super Patalan numbers, a generalization of the super Catalan numbers in the sense of Gessel, and prove a number of properties analagous to those of the super Catalan numbers. The super Patalan numbers generalize the super Catalan numbers similarly to how the Patalan numbers generalize the Catalan numbers.

  5. Grassmann, super-Kac-Moody and super-derivation algebras

    International Nuclear Information System (INIS)

    Frappat, L.; Ragoucy, E.; Sorba, P.

    1989-05-01

    We study the cyclic cocycles of degree one on the Grassmann algebra and on the super-circle with N supersymmetries (i.e. the tensor product of the algebra of functions on the circle times a Grassmann algebra with N generators). They are related to central extensions of graded loop algebras (i.e. super-Kac-Moody algebras). The corresponding algebras of super-derivations have to be compatible with the cocycle characterizing the extension; we give a general method for determining these algebras and examine in particular the cases N = 1,2,3. We also discuss their relations with the Ademollo et al. algebras, and examine the possibility of defining new kinds of super-conformal algebras, which, for N > 1, generalize the N = 1 Ramond-Neveu-Schwarz algebra

  6. Radon-domain interferometric interpolation for reconstruction of the near-offset gap in marine seismic data

    Science.gov (United States)

    Xu, Zhuo; Sopher, Daniel; Juhlin, Christopher; Han, Liguo; Gong, Xiangbo

    2018-04-01

    In towed marine seismic data acquisition, a gap between the source and the nearest recording channel is typical. Therefore, extrapolation of the missing near-offset traces is often required to avoid unwanted effects in subsequent data processing steps. However, most existing interpolation methods perform poorly when extrapolating traces. Interferometric interpolation methods are one particular method that have been developed for filling in trace gaps in shot gathers. Interferometry-type interpolation methods differ from conventional interpolation methods as they utilize information from several adjacent shot records to fill in the missing traces. In this study, we aim to improve upon the results generated by conventional time-space domain interferometric interpolation by performing interferometric interpolation in the Radon domain, in order to overcome the effects of irregular data sampling and limited source-receiver aperture. We apply both time-space and Radon-domain interferometric interpolation methods to the Sigsbee2B synthetic dataset and a real towed marine dataset from the Baltic Sea with the primary aim to improve the image of the seabed through extrapolation into the near-offset gap. Radon-domain interferometric interpolation performs better at interpolating the missing near-offset traces than conventional interferometric interpolation when applied to data with irregular geometry and limited source-receiver aperture. We also compare the interferometric interpolated results with those obtained using solely Radon transform (RT) based interpolation and show that interferometry-type interpolation performs better than solely RT-based interpolation when extrapolating the missing near-offset traces. After data processing, we show that the image of the seabed is improved by performing interferometry-type interpolation, especially when Radon-domain interferometric interpolation is applied.

  7. Labeling proteins inside living cells using external fluorophores for microscopy.

    Science.gov (United States)

    Teng, Kai Wen; Ishitsuka, Yuji; Ren, Pin; Youn, Yeoan; Deng, Xiang; Ge, Pinghua; Lee, Sang Hak; Belmont, Andrew S; Selvin, Paul R

    2016-12-09

    Site-specific fluorescent labeling of proteins inside live mammalian cells has been achieved by employing Streptolysin O, a bacterial enzyme which forms temporary pores in the membrane and allows delivery of virtually any fluorescent probes, ranging from labeled IgG's to small ligands, with high efficiency (>85% of cells). The whole process, including recovery, takes 30 min, and the cell is ready to be imaged immediately. A variety of cell viability tests were performed after treatment with SLO to ensure that the cells have intact membranes, are able to divide, respond normally to signaling molecules, and maintains healthy organelle morphology. When combined with Oxyrase, a cell-friendly photostabilizer, a ~20x improvement in fluorescence photostability is achieved. By adding in glutathione, fluorophores are made to blink, enabling super-resolution fluorescence with 20-30 nm resolution over a long time (~30 min) under continuous illumination. Example applications in conventional and super-resolution imaging of native and transfected cells include p65 signal transduction activation, single molecule tracking of kinesin, and specific labeling of a series of nuclear and cytoplasmic protein complexes.

  8. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X

  9. DNA conformation on surfaces measured by fluorescence self-interference.

    Science.gov (United States)

    Moiseev, Lev; Unlü, M Selim; Swan, Anna K; Goldberg, Bennett B; Cantor, Charles R

    2006-02-21

    The conformation of DNA molecules tethered to the surface of a microarray may significantly affect the efficiency of hybridization. Although a number of methods have been applied to determine the structure of the DNA layer, they are not very sensitive to variations in the shape of DNA molecules. Here we describe the application of an interferometric technique called spectral self-interference fluorescence microscopy to the precise measurement of the average location of a fluorescent label in a DNA layer relative to the surface and thus determine specific information on the conformation of the surface-bound DNA molecules. Using spectral self-interference fluorescence microscopy, we have estimated the shape of coiled single-stranded DNA, the average tilt of double-stranded DNA of different lengths, and the amount of hybridization. The data provide important proofs of concept for the capabilities of novel optical surface analytical methods of the molecular disposition of DNA on surfaces. The determination of DNA conformations on surfaces and hybridization behavior provide information required to move DNA interfacial applications forward and thus impact emerging clinical and biotechnological fields.

  10. Frequency-resolved interferometric measurement of local density fluctuations for turbulent combustion analysis

    International Nuclear Information System (INIS)

    Köberl, S; Giuliani, F; Woisetschläger, J; Fontaneto, F

    2010-01-01

    A validation of a novel interferometric measurement technique for the frequency-resolved detection of local density fluctuation in turbulent combustion analysis was performed in this work. Two laser vibrometer systems together with a signal analyser were used to obtain frequency spectra of density fluctuations across a methane-jet flame. Since laser vibrometry is based on interferometric techniques, the derived signals are path-integrals along the measurement beam. To obtain local frequency spectra of density fluctuations, long-time-averaged measurements from each of the two systems were performed using correlation functions and cross spectra. Results were compared to data recorded by standard interferometric techniques for validation purposes. Additionally, Raman scattering and laser Doppler velocimetry were used for flame characterization

  11. PALM and STORM: what hides beyond the Rayleigh limit?

    CSIR Research Space (South Africa)

    Henriques, R

    2009-06-01

    Full Text Available Super-resolution imaging allows the imaging of fluorescently labeled probes at a resolution of just tens of nanometers, surpassing classic light microscopy by at least one order of magnitude. Recent advances such as the development of photo...

  12. Interferometric Imaging and its Application to 4D Imaging

    KAUST Repository

    Sinha, Mrinal

    2018-03-01

    This thesis describes new interferometric imaging methods for migration and waveform inversion. The key idea is to use reflection events from a known reference reflector to ”naturally redatum” the receivers and sources to the reference reflector. Here, ”natural redatuming” is a data-driven process where the redatuming Green’s functions are obtained from the data. Interferometric imaging eliminates the statics associated with the noisy overburden above the reference reflector. To mitigate the defocussing caused by overburden errors I first propose the use of interferometric least-squares migration (ILSM) to estimate the migration image. Here, a known reflector is used as the reference interface for ILSM, and the data are naturally redatumed to this reference interface before imaging. Numerical results on synthetic and field data show that ILSM can significantly reduce the defocussing artifacts in the migration image. Next, I develop a waveform tomography approach for inverting the velocity model by mitigating the velocity errors in the overburden. Unresolved velocity errors in the overburden velocity model can cause conventional full-waveform inversion to get stuck in a local minimum. To resolve this problem, I present interferometric full-waveform inversion (IFWI), where conventional waveform tomography is reformulated so a velocity model is found that minimizes the objective function with an interferometric crosscorrelogram misfit. Numerical examples show that IFWI, compared to FWI, computes a significantly more accurate velocity model in the presence of a nearsurface with unknown velocity anomalies. I use IFWI and ILSM for 4D imaging where seismic data are recorded at different times over the same reservoir. To eliminate the time-varying effects of the near surface both data sets are virtually redatumed to a common reference interface before migration. This largely eliminates the overburden-induced statics errors in both data sets. Results with

  13. FIRST L-BAND INTERFEROMETRIC OBSERVATIONS OF A YOUNG STELLAR OBJECT: PROBING THE CIRCUMSTELLAR ENVIRONMENT OF MWC 419

    International Nuclear Information System (INIS)

    Ragland, S.; Armandroff, T.; Wizinowich, P. L.; Akeson, R. L.; Millan-Gabet, R.; Colavita, M. M.; Traub, W. A.; Vasisht, G.; Danchi, W. C.; Hillenbrand, L. A.; Ridgway, S. T.

    2009-01-01

    We present spatially resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85 m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 μm wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br γ emission line. The measured disk size at and around Br γ suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.

  14. First L-Band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419

    Science.gov (United States)

    Ragland, S.; Akeson, R. L.; Armandroff, T.; Colavita, M. M.; Danchi, W. C.; Hillenbrand, L. A.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W. A.; Vasisht, G.; Wizinowich, P. L.

    2009-09-01

    We present spatially resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85 m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 μm wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br γ emission line. The measured disk size at and around Br γ suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.

  15. Design and analysis of a cross-type structured-illumination confocal microscope for high speed and high resolution

    International Nuclear Information System (INIS)

    Kim, Young-Duk; Ahn, MyoungKi; Kim, Taejoong; Gweon, DaeGab; Yoo, Hongki

    2012-01-01

    There have been many studies about a super resolution microscope for many years. A super resolution microscope can detect the physical phenomena or morphology of a biological sample more precisely than conventional microscopes. The structured-illumination microscope (SIM) is one of the technologies that demonstrate super resolution. However, the conventional SIM requires more time to obtain one resolution-enhanced image than other super resolution microscopes. More specifically, the conventional SIM uses three images with a 120° phase difference for each direction and three different directions are image-processed to make one resolution enhancement by increasing the optical transfer function in three directions. In this paper, we present a novel cross structured-illumination confocal microscope (CSICM) that takes the advantage of the technology of both SIM and the confocal microscope. The CSICM uses only two directions with three phase difference images, for a total of six images. By reducing the number of images that must be obtained, the total image acquisition time and image reconstruction time in obtaining the final output images can be decreased, and the confocal microscope provides axial information of the sample automatically. We demonstrate our method of cross illumination and evaluate the performance of the CSICM and compare it to the conventional SIM and the confocal microscope. (paper)

  16. Probing interferometric parallax with interplanetary spacecraft

    Science.gov (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  17. Segmentation of high-resolution InSar data of tropical forest using Fourier parameterised deformable models

    NARCIS (Netherlands)

    Varekamp, C.; Hoekman, D.H.

    2001-01-01

    Currently, tree maps are produced from field measurements that are time consuming and expensive. Application of existing techniques based on aerial photography is often hindered by cloud cover. This has initiated research into the segmentation of high resolution airborne interferometric Synthetic

  18. Research and development of super light water reactors and super fast reactors in Japan

    International Nuclear Information System (INIS)

    Oka, Y.; Morooka, S.; Yamakawa, M.; Ishiwatari, Y.; Ikejiri, S.; Katsumura, Y.; Muroya, Y.; Terai, T.; Sasaki, K.; Mori, H.; Hamamoto, Y.; Okumura, K.; Kugo, T.; Nakatsuka, T.; Ezato, K.; Akasaka, N.; Hotta, A.

    2011-01-01

    Super Light Water Reactors (Super LWR) and Super Fast Reactors (Super FR) are the supercritical- pressure light water cooled reactors (SCWR) that are developed by the research group of University of Tokyo since 1989 and now jointly under development with the researchers of Waseda University, University of Tokyo and other organizations in Japan. The principle of the reactor concept development, the results of the past Super LWR and Super FR R&D as well as the R&D program of the Super FR second phase project are described. (author)

  19. The super W∞ symmetry of the Manin-Radul super KP hierarchy

    International Nuclear Information System (INIS)

    Das, A.; Sin, S.J.

    1991-11-01

    We show that the Manin-Radul super KP hierarchy is invariant under super W ∞ transformations. These transformations are characterized by time dependent flows which commute with the usual flows generated by the conserved quantities of the super KP hierarchy. (author). 16 refs

  20. Magnonic interferometric switch for multi-valued logic circuits

    Science.gov (United States)

    Balynsky, Michael; Kozhevnikov, Alexander; Khivintsev, Yuri; Bhowmick, Tonmoy; Gutierrez, David; Chiang, Howard; Dudko, Galina; Filimonov, Yuri; Liu, Guanxiong; Jiang, Chenglong; Balandin, Alexander A.; Lake, Roger; Khitun, Alexander

    2017-01-01

    We investigated a possible use of the magnonic interferometric switches in multi-valued logic circuits. The switch is a three-terminal device consisting of two spin channels where input, control, and output signals are spin waves. Signal modulation is achieved via the interference between the source and gate spin waves. We report experimental data on a micrometer scale prototype based on the Y3Fe2(FeO4)3 structure. The output characteristics are measured at different angles of the bias magnetic field. The On/Off ratio of the prototype exceeds 13 dB at room temperature. Experimental data are complemented by the theoretical analysis and the results of micro magnetic simulations showing spin wave propagation in a micrometer size magnetic junction. We also present the results of numerical modeling illustrating the operation of a nanometer-size switch consisting of just 20 spins in the source-drain channel. The utilization of spin wave interference as a switching mechanism makes it possible to build nanometer-scale logic gates, and minimize energy per operation, which is limited only by the noise margin. The utilization of phase in addition to amplitude for information encoding offers an innovative route towards multi-state logic circuits. We describe possible implementation of the three-value logic circuits based on the magnonic interferometric switches. The advantages and shortcomings inherent in interferometric switches are also discussed.