WorldWideScience

Sample records for interface solids and liquids

  1. Systems and methods for monitoring a solid-liquid interface

    Science.gov (United States)

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  2. Enzyme Activity and Biomolecule Templating at Liquid and Solid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harvey W. Blanch

    2004-12-01

    There are two main components of this research program. The first involves studies of the adsorption and catalytic activity of proteins at fluid-fluid and fluid-solid interfaces; the second employs biological macromolecules as templates at the solid-liquid interface for controlled crystallization of inorganic materials, to provide materials with specific functionality.

  3. Dynamics of solid nanoparticles near a liquid-liquid interface

    Science.gov (United States)

    Daher, Ali; Ammar, Amine; Hijazi, Abbas

    2018-05-01

    The liquid - liquid interface can be used as a suitable medium for generating some nanostructured films of metals, or inorganic materials such as semi conducting metals. This process can be controlled well if we study the dynamics of nanoparticles (NPs) at the liquid-liquid interface which is a new field of study, and is not understood well yet. The dynamics of NPs at liquid-liquid interfaces is investigated by solving the fluid-particle and particle-particle interactions. Our work is based on the Molecular Dynamics (MD) simulation in addition to Phase Field (PF) method. We modeled the liquid-liquid interface using the diffuse interface model, where the interface is considered to have a characteristic thickness. We have shown that the concentration gradient of one fluid in the other gives rise to a hydrodynamic force that drives the NPs to agglomerate at the interface. These obtained results may introduce new applications where certain interfaces can be considered to be suitable mediums for the synthesis of nanostructured materials. In addition, some liquid interfaces can play the role of effective filters for different species of biological NPs and solid state waste NPs, which will be very important in many industrial and biomedical domains.

  4. Chemistry and physics at liquid alkali metal/solid metal interfaces

    International Nuclear Information System (INIS)

    Barker, M.G.

    1977-01-01

    This paper describes the chemistry of processes which take place at the interface between liquid alkali metals and solid metal surfaces. A brief review of wetting data for liquid sodium is given and the significance of critical wetting temperatures discussed on the basis of an oxide-film reduction mechanism. The reactions of metal oxides with liquid metals are outlined and a correlation with wetting data established. The transfer of dissolved species from the liquid metal across the interface to form solid phases on the solid metal surface is well recognised. The principal features of such processes are described and a simple thermodynamic explanation is outlined. The reverse process, the removal of solid material into solution, is also considered. (author)

  5. Influence of process parameters to composite interface organization and performance of liquid/solid bimetal

    International Nuclear Information System (INIS)

    Rong, S F; Zhu, Y C; Wu, Y H; Yang, P H; Duan, X L; Zhou, H T

    2015-01-01

    The liquid-solid composite technique was used to prepare the high carbon high chromium steel (HCHCS) and low alloy steel (LCS) bimetal composite materials by means of insert casting method. The influence of some process parameters such as liquid-solid ratio, preheat temperature, pouring temperature on the interface microstructure and mechanical properties were studied. Interface microstructure and element distribution were analyzed. The results show that the interface microstructure becomes better, and bonding area becomes thicker with the increase of the volume of liquid to solid ratio, preheating temperature and pouring temperature. When the liquid-solid ratio is 8:1, the preheating temperature is 300 °C and the pouring temperature is 1565 °C, a good metallurgical bonding area without any hole can be obtained with the interface combination of diffusion and fusion. The composite interface structure was composed of a core material diffusion layer, a cooling solidification layer, a direction growth layer and some cell particles. The elements of C, Cr and Mn diffuse from the HCHCS side to the alloy steel side. The microhardness increased in the gradient from the LCS side to the HCHCS. The microhardness of the interface is significantly higher than that of LCS. (paper)

  6. Charge Control And Wettability Alteration At Solid-liquid Interfaces

    NARCIS (Netherlands)

    Mugele, Friedrich Gunther; Sîretanu, Igor; Kumar, Naveen; Bera, B.; Wang, Lei; Maestro, Armando; Duits, Michael H.G.; van den Ende, Henricus T.M.; Collins, I

    2014-01-01

    Most solid surfaces acquire a finite surface charge upon exposure to aqueous environments due to desorption and/or adsorption of ionic species. The resulting electrostatic forces play a crucial role in many fields of science, including colloidal stability, self-assembly, wetting, and biophysics as

  7. PREFACE: Liquid-solid interfaces: structure and dynamics from spectroscopy and simulations Liquid-solid interfaces: structure and dynamics from spectroscopy and simulations

    Science.gov (United States)

    Gaigeot, Marie-Pierre; Sulpizi, Marialore

    2012-03-01

    Liquid-solid interfaces play an important role in a number of phenomena encountered in biological, chemical and physical processes. Surface-induced changes of the material properties are not only important for the solid support but also for the liquid itself. In particular, it is now well established that water at the interface is substantially different from bulk water, even in the proximity of apparently inert surfaces such as a simple metal. The complex chemistry at liquid-solid interfaces is typically fundamental to heterogeneous catalysis and electrochemistry, and has become especially topical in connection with the search for new materials for energy production. A quite remarkable example is the development of cheap yet efficient solar cells, whose basic components are dye molecules grafted to the surface of an oxide material and in contact with an electrolytic solution. In life science, the most important liquid-solid interfaces are the water-cell-membrane interfaces. Phenomena occurring at the surface of phospholipid bilayers control the docking of proteins, the transmission of signals as well as transport of molecules in and out of the cell. Recently the development of bio-compatible materials has lead to research on the interface between bio-compatible material and lipid/proteins in aqueous solution. Gaining a microscopic insight into the processes occurring at liquid-solid interfaces is therefore fundamental to a wide range of disciplines. This special section collects some contributions to the CECAM Workshop 'Liquid/Solid interfaces: Structure and Dynamics from Spectroscopy and Simulations' which took place in Lausanne, Switzerland in June 2011. Our main aim was to bring together knowledge and expertise from different communities in order to advance our microscopic understanding of the structure and dynamics of liquids at interfaces. In particular, one of our ambitions was to foster discussion between the experimental and theoretical

  8. Optical fingerprints of solid-liquid interfaces: a joint ATR-IR and first principles investigation

    Science.gov (United States)

    Yang, L.; Niu, F.; Tecklenburg, S.; Pander, M.; Nayak, S.; Erbe, A.; Wippermann, S.; Gygi, F.; Galli, G.

    Despite the importance of understanding the structural and bonding properties of solid-liquid interfaces for a wide range of (photo-)electrochemical applications, there are presently no experimental techniques available to directly probe the microscopic structure of solid-liquid interfaces. To develop robust strategies to interpret experiments and validate theory, we carried out attenuated total internal reflection (ATR-IR) spectroscopy measurements and ab initio molecular dynamics (AIMD) simulations of the vibrational properties of interfaces between liquid water and well-controlled prototypical semiconductor substrates. We show the Ge(100)/H2O interface to feature a reversible potential-dependent surface phase transition between Ge-H and Ge-OH termination. The Si(100)/H2O interface is proposed as a model system for corrosion and oxidation processes. We performed AIMD calculations under finite electric fields, revealing different pathways for initial oxidation. These pathways are predicted to exhibit unique spectral signatures. A significant increase in surface specificity can be achieved utilizing an angle-dependent ATR-IR experiment, which allows to detect such signatures at the interfacial layer and consequently changes in the hydrogen bond network. Funding from DOE-BES Grant No. DE-SS0008939 and the Deutsche Forschungsgemeinschaft (RESOLV, EXC 1069) are gratefully acknowledged.

  9. Acoustic sensors for the control of liquid-solid interface evolution and chemical reactivity

    International Nuclear Information System (INIS)

    Ferrandis, J.Y.; Tingry, S.; Attal, J.; Seta, P.

    2006-01-01

    Less classical than far-field acoustic investigations of solid materials and/or solid-liquid interfaces, near-field acoustic properties of an acoustic solid wave guide (tip), thin enough at its termination to present an external diameter smaller than the excitation acoustic wave wavelength, is shown to be able to probe interface properties. As a result of that, these near-field acoustic probes can play the role of chemical sensors, if chemical modifications or chemical reactions are concerned at their surface. In that context, a chemical sensor was realized by electrochemical deposition of an electron-conducting polymer (polypyrrole-biotin) on a metal tip, followed by enzyme attachment by molecular recognition process involving the biotin-avidin-specific interaction. Results from near-field acoustic showed that the enzyme modification of the polymer layer can be detected by this new acoustic sensor

  10. Pressure and surface tension of solid-liquid interface using Tara zona density functional theory

    International Nuclear Information System (INIS)

    Moradi, M.; Kavosh Tehrani, M.

    2001-01-01

    The weighted density functional theory proposed by Tara zona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this research we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is pitted in three dimensions. We also calculate the pressure and compare it with the Carnahan-Starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation

  11. Modeling the electrified solid-liquid interface

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Skulason, Egill; Björketun, Mårten

    2008-01-01

    function can be related directly to the potential scale of the normal hydrogen electrode. We also show how finite-size effects in common periodic slab-type calculations can be avoided in calculations of activation energies and reaction energies for charge transfer reactions, where we use the Heyrovsky......A detailed atomistic model based on density functional theory calculations is presented of the charged solid-electrolyte interface. Having protons solvated in a water bilayer outside a Pt(111) slab with excess electrons, we show how the interface capacitance is well described and how the work...

  12. Finite size melting of spherical solid-liquid aluminium interfaces

    DEFF Research Database (Denmark)

    Chang, J.; Johnson, Erik; Sakai, T.

    2009-01-01

    We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting tempera...... to the conclusion that the depressed melting temperature is not controlled solely by the inverse radius 1/R. Instead, we found a direct relation between the depressed melting temperature and the ratio between the solid-liquid interface area and the molten volume.......We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting...

  13. STM in liquids. A scanning tunneling microscopy exploration of the liquid-solid interface.

    NARCIS (Netherlands)

    Hulsken, B.

    2008-01-01

    This thesis reports of a series of atomic scale studies of the liquid-solid interface, carried out with a home-built liquid-cell Scanning Tunnelling Microscope (STM). The home-built liquid-cell STM is described in detail, and numerical simulations are performed to show that surfaces immersed in the

  14. Solid-liquid interface free energies of pure bcc metals and B2 phases

    Science.gov (United States)

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-01

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: P m 3 ¯ m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  15. ATR-IR spectroscopic cell for in situ studies at solid-liquid interface at elevated temperatures and pressures

    NARCIS (Netherlands)

    Koichumanova, Kamila; Visan, Aura; Geerdink, Bert; Lammertink, Rob G.H.; Mojet, Barbara; Seshan, Kulathuiyer; Lefferts, Leonardus

    2017-01-01

    An in situ ATR-IR spectroscopic cell suitable for studies at solid-liquid interface is described including the design and experimental details in continuous flow mode at elevated temperatures (230 °C) and pressures (30 bar). The design parameters considered include the cell geometry, the procedure

  16. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffer, Saskia [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

  17. Monolayer self-assembly at liquid-solid interfaces: chirality and electronic properties of molecules at surfaces

    International Nuclear Information System (INIS)

    Amabilino, David B; Gomar-Nadal, Elba; Veciana, Jaume; Rovira, Concepcio; Iavicoli, Patrizia; PuigmartI-Luis, Josep; Feyter, Steven De; Abdel-Mottaleb, Mohamed M; Mamdouh, Wael; Psychogyiopoulou, Krystallia; Xu Hong; Lazzaroni, Roberto; Linares, Mathieu; Minoia, Andrea

    2008-01-01

    The spontaneous formation of supramolecular assemblies at the boundary between solids and liquids is a process which encompasses a variety of systems with diverse characteristics: chemisorbed systems in which very strong and weakly reversible bonds govern the assembly and physisorbed aggregates which are dynamic thanks to the weaker interactions between adsorbate and surface. Here we review the interest and advances in the study of chiral systems at the liquid-solid interface, and also the application of this configuration for the study of systems of interest in molecular electronics, self-assembled from the bottom up

  18. Chiral Induction and amplification in supramolecular systems at the liquid-solid interface

    NARCIS (Netherlands)

    Xu, Hong; Ghijsens, E.; George, S.J.; Wolffs, M.; Tomovic, Z.; Schenning, A.P.H.J.; Feyter, de S.

    2013-01-01

    Chiral induction and amplification in surface-confined supramolecular monolayers are investigated at the liquid–solid interface. Scanning tunneling microscopy (STM) proves that achiral molecules can self-assemble into globally chiral patterns through a variety of approaches, including induction by

  19. Probing alpha-helical and beta-sheet structures of peptides at solid/liquid interfaces with SFG.

    Science.gov (United States)

    Chen, Xiaoyun; Wang, Jie; Sniadecki, Jason J; Even, Mark A; Chen, Zhan

    2005-03-29

    We demonstrated that sum frequency generation (SFG) vibrational spectroscopy can distinguish different secondary structures of proteins or peptides adsorbed at solid/liquid interfaces. The SFG spectrum for tachyplesin I at the polystyrene (PS)/solution interface has a fingerprint peak corresponding to the B1/B3 mode of the antiparallel beta-sheet. This peak disappeared upon the addition of dithiothreitol, which can disrupt the beta-sheet structure. The SFG spectrum indicative of the MSI594 alpha-helical structure was observed at the PS/MSI594 solution interface. This research validates SFG as a powerful technique for revealing detailed secondary structures of interfacial proteins and peptides.

  20. Computational and experimental analyses of the wave propagation through a bar structure including liquid-solid interface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jin [UST Graduate School, Daejeon (Korea, Republic of); Rhee, Hui Nam [Division of Mechanical and Aerospace Engineering, Sunchon National University, Sunchon (Korea, Republic of); Yoon, Doo Byung; Park, Jin Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    In this research, we study the propagation of longitudinal and transverse waves through a metal rod including a liquid layer using computational and experimental analyses. The propagation characteristics of longitudinal and transverse waves obtained by the computational and experimental analyses were consistent with the wave propagation theory for both cases, that is, the homogeneous metal rod and the metal rod including a liquid layer. The fluid-structure interaction modeling technique developed for the computational wave propagation analysis in this research can be applied to the more complex structures including solid-liquid interfaces.

  1. Resolving amorphous solid-liquid interfaces by atomic force microscopy

    International Nuclear Information System (INIS)

    Burson, Kristen M.; Gura, Leonard; Kell, Burkhard; Büchner, Christin; Lewandowski, Adrian L.; Heyde, Markus; Freund, Hans-Joachim

    2016-01-01

    Recent advancements in liquid atomic force microscopy make it an ideal technique for probing the structure of solid-liquid interfaces. Here, we present a structural study of a two-dimensional amorphous silica bilayer immersed in an aqueous solution utilizing liquid atomic force microscopy with sub-nanometer resolution. Structures show good agreement with atomically resolved ultra-high vacuum scanning tunneling microscopy images obtained on the same sample system, owing to the structural stability of the silica bilayer and the imaging clarity from the two-dimensional sample system. Pair distance histograms of ring center positions are utilized to develop quantitative metrics for structural comparison, and the physical origin of pair distance histogram peaks is addressed by direct assessment of real space structures.

  2. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays--simulations and experiments.

    Science.gov (United States)

    Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M

    2009-01-01

    Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement

  3. Atomic simulations for configurations and solid-liquid interface of Li-Fe and Li-Cu icosahedra

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianyu, E-mail: hnieyjy@aliyun.com [Hunan Institute of Engineering (China); Hu, Wangyu [Hunan University, College of Materials Science and Engineering (China); Dai, Xiongying [Hunan Institute of Engineering, College of Science (China)

    2017-04-15

    The melting point of Li is lower than that of Fe (or Cu); thus, solid-liquid interfaces can be easily formed on Li-Fe and Li-Cu nanoalloys. In this work, the configurations and solid-liquid interfaces of Li-Fe and Li-Cu icosahedra are studied using Monte Carlo and molecular dynamics methods. The atomic interactions are described by the analytic embedded-atom method. The dependence of composition, temperature, and nanoparticle size on the configurations and thermal stabilities of nanoalloys is discussed. The behavior of the Li-Fe and Li-Cu nanoalloys in segregation, configuration, and thermal stability is investigated. A different behavior of surface segregation of Li atoms is observed for the two types of nanoalloys. The interface between the Li and Fe atoms is clear. Mixing of Li with Cu at larger nanoparticle sizes is found because of low heat of formation in the system. The configurations of the Li-Fe and Li-Cu nanoalloys are related to the competition between surface segregation and alloying. The thermal stability of Li in the two types of nanoalloys is enhanced by the support of the Fe (or Cu) solid substrate.

  4. Subsonic leaky Rayleigh waves at liquid-solid interfaces.

    Science.gov (United States)

    Mozhaev, V G; Weihnacht, M

    2002-05-01

    The paper is devoted to the study of leaky Rayleigh waves at liquid-solid interfaces close to the border of the existence domain of these modes. The real and complex roots of the secular equation are computed for interface waves at the boundary between water and a binary isotropic alloy of gold and silver with continuously variable composition. The change of composition of the alloy allows one to cross a critical velocity for the existence of leaky waves. It is shown that, contrary to popular opinion, the critical velocity does not coincide with the phase velocity of bulk waves in liquid. The true threshold velocity is found to be smaller, the correction being of about 1.45%. Attention is also drawn to the fact that using the real part of the complex phase velocity as a velocity of leaky waves gives only approximate value. The most interesting feature of the waves under consideration is the presence of energy leakage in the subsonic range of the phase velocities where, at first glance, any radiation by harmonic waves is not permitted. A simple physical explanation of this radiation with due regard for inhomogeneity of radiated and radiating waves is given. The controversial question of the existence of leaky Rayleigh waves at a water/ice interface is reexamined. It is shown that the solution considered previously as a leaky wave is in fact the solution of the bulk-wave-reflection problem for inhomogeneous waves.

  5. Copolymers at the solid - liquid interface

    NARCIS (Netherlands)

    Wijmans, C.M.

    1994-01-01

    Copolymers consisting of both adsorbing and nonadsorbing segments can show an adsorption behaviour which is very different from that of homopolymers. We have mainly investigated the adsorption of AB diblock copolymers, which have one adsorbing block (anchor) and one nonadsorbing block

  6. Enzyme adsorption at solid-liquid interfaces

    NARCIS (Netherlands)

    Duinhoven, S.

    1992-01-01

    Enzymes are proteins with the capacity of catalysing various reactions. Nowadays two types of enzymes, proteases and lipases, are available for use in detergent formulations for household and industrial laundry washing. Proteases are capable of catalysing the hydrolysis of proteins while

  7. Surface Science at the Solid Liquid Interface

    Science.gov (United States)

    1993-10-06

    prominent experimental avenue, developed originally by Hubbard et al,_ involves emersing monocrystalline elec- As for metal surfaces in ultrahigh vacuum...reliable means of both preparing and dosateizn ordered monocrystalline metal surfaces in UHV has led to ing appropriate molecular components of...surface atoms in place of bottom panel of Fig. 2, equal intensity contours are shown 23 underlying surface atoms, the compression is 24/23 - I in the

  8. Study of Hydrophobic and Ionizable Hydrophilic Copolymers at Polymer/Solid and Polymer/Liquid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Perahia, Dvora

    2011-11-01

    Joint experimental-computational efforts were set to characterize the interfacial effects on the structure and dynamics of polymers consisting of highly rigid hydrophilic-ionizable and hydrophobic sub-units within one polymeric chain casted into thin films of several molecular dimensions. Focusing on the ultra thin film region we separate out the interfacial effects from bulk characteristics. Specifically, the study sought to: identify the parameters that control the formation of a stable polymer-solid interface. The study consists of two components, experimental investigations and computational efforts. The experimental component was designed to derive empirical trends that can be used to correlate the set of coupled polymer molecular parameters with the interfacial characteristics of these polymers, and their response to presence of solvents. The computational study was designed to provide molecular insight into the ensemble averages provided by the experimental efforts on multiple length scales from molecular dimensions, to the nanometer lengths to a macroscopic understanding of solvent interactions with structured polymers. With the ultimate goal of correlating molecular parameters to structure, dynamics and properties of ionic polymers, the first stage of the research began with the study of two systems, one which allowed tailoring the flexibility of the backbone without the presence of ionic groups, but with a potential to sulfonate groups at a later stage, and a polymer whose backbone is rigid and the density of the ionic group can be varied. The combined experimental and computational studies significantly extended the understanding of polymers at interfaces from model systems to polydispersed copolymers with blocks of varying nature and complexity. This new insight directly affects the design of polymers for sustainable energy applications from batteries and fuel cells to solar energy.

  9. Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry

    International Nuclear Information System (INIS)

    Freeman, Neville J; Peel, Louise L; Swann, Marcus J; Cross, Graham H; Reeves, Andrew; Brand, Stuart; Lu, Jian R

    2004-01-01

    A novel method for the analysis of thin biological films, called dual polarization interferometry (DPI), is described. This high resolution (<1 A), laboratory-based technique allows the thickness and refractive index (density) of biological molecules adsorbing or reacting at the solid-liquid interface to be measured in real time (up to 10 measurements per second). Results from the adsorption of bovine serum albumin (BSA) on to a silicon oxynitride chip surface are presented to demonstrate how time dependent molecular behaviour can be examined using DPI. Mechanistic and structural information relating to the adsorption process is obtained as a function of the solution pH

  10. Probing solids and liquids

    International Nuclear Information System (INIS)

    Martin, D.H.

    1977-01-01

    The wide application of scattering experiments in the study of the structures of solids and liquids is surveyed. Part 1 of the review (Martin. Contemp. Phys.;vol. 18, No. 1: Jan. 1977:pp. 81-98) showed how the angular distribution of a scattered beam of photons or neutrons is related by Fourier transform to the space and time-dependent distributions of electrons and nuclei in the scattering target. The use of x-rays and of neutrons in determining time-averaged density distributions was examined. In this part the time-dependent aspects of the distributions for solids and liquids, including helium, are discussed. The dynamical distributions of magnetism (or angular momentum) density are considered, and the present limitations and future possibilities of scattering experiments are examined. (U.K.)

  11. Contacting solids and liquids

    International Nuclear Information System (INIS)

    Robinson, L.F.

    1980-01-01

    A solids/liquid (or slurry/liquid) contactor is described comprising a container through which the phases flow, rotatable discs with a rotor dividing the container into a series of interconnected compartments and, in at least some of the compartments, receptacles extending between the discs to effect phase transfer. At least one of the compartments is free of receptacles or has receptacles arranged on a smaller diameter than in other compartments to form a settling chamber. The contactor may be used in the extraction of oil-sands or uranium or purification of china clay. (author)

  12. Microstructure and fractal characteristics of the solid-liquid interface forming during directional solidification of Inconel 718

    Directory of Open Access Journals (Sweden)

    WANG Ling

    2007-08-01

    Full Text Available The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel 718, under different cooling rates during directional solidification, were investigated by using SEM. Results showed that 5 μm/s was the cellular-dendrite transient rate. The prime dendrite arm spacing (PDAS was measured by Image Tool and it decreased with the cooling rate increased. The fractal dimension of the interfaces was calculated and it changes from 1.204310 to 1.517265 with the withdrawal rate ranging from 10 to 100 μm/s. The physical significance of the fractal dimension was analyzed by using fractal theory. It was found that the fractal dimension of the dendrites can be used to describe the solidification microstructure and parameters at low cooling rate, but both the fractal dimension and the dendrite arm spacing are needed in order to integrally describe the evaluation of the solidification microstructure completely.

  13. Deducing 2D Crystal Structure at the Solid/Liquid Interface with Atomic Resolution by Combined STM and SFG Study

    Science.gov (United States)

    McClelland, Arthur; Ahn, Seokhoon; Matzger, Adam J.; Chen, Zhan

    2009-03-01

    Supplemented by computed models, Scanning Tunneling Microscopy (STM) can provide detailed structure of 2D crystals formed at the liquid/solid interface with atomic resolution. However, some structural information such as functional group orientations in such 2D crystals needs to be tested experimentally to ensure the accuracy of the deduced structures. Due to the limited sensitivity, many other experimental techniques such as Raman and infrared spectroscopy have not been allowed to provide such structural information of 2D crystals. Here we showed that Sum Frequency Generation Vibrational Spectroscopy (SFG) can measure average orientation of functional groups in such 2D crystals, or physisorbed monolayers, providing key experimental data to aid in the modeling and interpretation of the STM images. The usefulness of combining these two techniques is demonstrated with a phthalate diesters monolayer formed at the 1-phenyloctane/ highly oriented pyrolytic graphite (HOPG) interface. The spatial orientation of the ester C=O of the monolayer was successfully determined using SFG.

  14. Ab Initio Molecular Dynamics Simulations of Furfural at the Liquid-Solid Interface

    OpenAIRE

    Sanwu Wang; Hongli Dang; Wenhua Xue; Darwin Shields; Xin Liu; Friederike C. Jentoft; Daniel E. Resasco

    2013-01-01

    The bonding configuration and the heat of adsorption of a furfural molecule on the Pd(111) surface were determined by ab initio density-functional-theory calculations. The dynamics of pure liquid water, the liquid-solid interface formed by liquid water and the Pd(111) surface, as well as furfural at the water-Pd interface, were investigated by ab initio molecular dynamics simulations at finite temperatures. Calculations and simulations suggest that the bonding configurati...

  15. The structure of the solid-liquid interface: atomic size effect; La structure de l'interface solide-liquide: effet de taille atomique

    Energy Technology Data Exchange (ETDEWEB)

    Geysermans, P.; Pontikis, V. [Centre National de la Recherche Scientifique (CNRS), 94 - Vitry-sur-Seine (France). Centre d' Etudes de Chimie Metallurgique

    2002-09-01

    The atomic structure of the solid-liquid heterophase interface was investigated by using molecular dynamics. Two kinds of systems were studied; the first one was crystalline copper with (100) and (111) surface terminations in contact with liquid aluminium, while in the second one the interface was modelled by two systems in contact made of Lennard-Jones particles with different size ({sigma}) and energy ({epsilon}) parameters. We found that at the interface the liquid was layered whatever the crystallographic orientation of the surface. The layering of the liquid is still preserved when the ratio of particles sites ({chi}={sigma}{sub 1}/{sigma}{sub 2}) changes while an epitaxial relationship is always found between the crystal and the first liquid layer. The average density of the latter is closely related to the {chi} value. (authors)

  16. Direct observation of ionic structure at solid-liquid interfaces

    DEFF Research Database (Denmark)

    Siretanu, Igor; Ebeling, Daniel; Andersson, Martin Peter

    2014-01-01

    The distribution of ions and charge at solid-water interfaces plays an essential role in a wide range of processes in biology, geology and technology. While theoretical models of the solid-electrolyte interface date back to the early 20th century, a detailed picture of the structure of the electric...... double layer has remained elusive, largely because of experimental techniques have not allowed direct observation of the behaviour of ions, i.e. with subnanometer resolution. We have made use of recent advances in high-resolution Atomic Force Microscopy to reveal, with atomic level precision, the ordered...

  17. Effect of surfactant Te on the behavior of alumina inclusions at advancing solid-liquid interfaces of liquid steel

    International Nuclear Information System (INIS)

    Zheng, Lichun; Malfliet, Annelies; Wollants, Patrick; Blanpain, Bart; Guo, Muxing

    2016-01-01

    The effect of surfactant Te on the behavior of alumina inclusions at advancing solid-liquid interfaces of liquid steel was studied by adding Te to liquid steel before Al deoxidation at 1873 K. After water-quenching, the spatial distribution homogeneity of alumina inclusions in the steel matrix was characterized using the Dirichlet tessellation method. The deterioration of this homogeneity with increasing the addition of Te indicates that Te facilitates pushing of alumina inclusions. This phenomenon was discussed based on the thermodynamics of an asymmetric thin liquid film confined by an advancing solid-liquid interface and a particle. The surface excesses of Te at the solid-liquid and particle-liquid interfaces were theoretically demonstrated to decrease when an alumina inclusion moves towards the solid-liquid interface, thereby weakening the effect of Te on the solid-liquid and particle-liquid interfacial energies. Based on this, effect of surfactants was incorporated in the models predicting the critical velocity V_C.

  18. Two-dimensional nature of the active Brownian motion of catalytic microswimmers at solid and liquid interfaces

    International Nuclear Information System (INIS)

    Dietrich, Kilian; Renggli, Damian; Zanini, Michele; Buttinoni, Ivo; Isa, Lucio; Volpe, Giovanni

    2017-01-01

    Colloidal particles equipped with platinum patches can establish chemical gradients in H 2 O 2 -enriched solutions and undergo self-propulsion due to local diffusiophoretic migration. In bulk (3D), this class of active particles swim in the direction of the surface heterogeneities introduced by the patches and consequently reorient with the characteristic rotational diffusion time of the colloids. In this article, we present experimental and numerical evidence that planar 2D confinements defy this simple picture. Instead, the motion of active particles both on solid substrates and at flat liquid–liquid interfaces is captured by a 2D active Brownian motion model, in which rotational and translational motion are constrained in the xy -plane. This leads to an active motion that does not follow the direction of the surface heterogeneities and to timescales of reorientation that do not match the free rotational diffusion times. Furthermore, 2D-confinement at fluid–fluid interfaces gives rise to a unique distribution of swimming velocities: the patchy colloids uptake two main orientations leading to two particle populations with velocities that differ up to one order of magnitude. Our results shed new light on the behavior of active colloids in 2D, which is of interest for modeling and applications where confinements are present. (paper)

  19. Homogeneous nucleation ahead of the solid-liquid interface during rapid solidification of binary alloys

    International Nuclear Information System (INIS)

    Smith, P.M.; Elmer, J.W.

    1996-01-01

    In recent rapid solidification experiments on Al-5%Be alloys, a Liquid Phase Nucleation (LPN) model was developed to explain the formation of periodic arrays of randomly-oriented Be-rich particles in an Al-rich matrix. In the LPN model, Be droplets were assumed to nucleate in the liquid ahead of the solid-liquid interface, but no justification for this was given. Here the authors present a model which considers the geometric constraints (imposed by proximity to the interface) on the number of solute atoms available to form a nucleus. Calculations based on this model predict that nucleation of second-phase particles can be most likely a short distance ahead of the interface in immiscible binary systems such as Al-Be. As part of the nucleation calculations, a semi-empirical method of calculating solid-liquid surface tensions in binary systems was developed, and is presented in the Appendix

  20. Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid-liquid interfaces

    Science.gov (United States)

    de Souza, Victor Hugo Rodrigues; Oliveira, Marcela Mohallem; Zarbin, Aldo José Gorgatti

    2014-08-01

    The present work describes for the first time the synthesis and characterization of single wall carbon nanotubes/polyaniline (SWNTs/PAni) nanocomposite thin films in a liquid-liquid interface, as well as the subsequent construction of a flexible all-solid supercapacitor. Different SWNTs/PAni nanocomposites were prepared by varying the ratio of SWNT to aniline, and the samples were characterized by scanning and transmission electron microscopy, Raman and UV-Vis spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The pseudo-capacitive behavior of the nanocomposites was evaluated by charge/discharge galvanostatic measurements. The presence of the SWNTs affected the electronic and vibrational properties of the polyaniline and also improved the pseudo-capacitive behavior of the conducting polymer. A very thin and flexible all-solid device was manufactured using two electrodes (polyethylene terephthalate-PET covered with the SWNT/PAni nanocomposite separated by a H2SO4-PVA gel electrolyte). The pseudo-capacitive behavior was characterized by a volumetric specific capacitance of approximately 76.7 F cm-3, even under mechanical deformation, indicating that this nanocomposite has considerable potential for application in new-generation energy storage devices.

  1. The structure of the solid-liquid interface: atomic size effect

    International Nuclear Information System (INIS)

    Geysermans, P.; Pontikis, V.

    2002-01-01

    The atomic structure of the solid-liquid heterophase interface was investigated by using molecular dynamics. Two kinds of systems were studied; the first one was crystalline copper with (100) and (111) surface terminations in contact with liquid aluminium, while in the second one the interface was modelled by two systems in contact made of Lennard-Jones particles with different size (σ) and energy (ε) parameters. We found that at the interface the liquid was layered whatever the crystallographic orientation of the surface. The layering of the liquid is still preserved when the ratio of particles sites (χ=σ 1 /σ 2 ) changes while an epitaxial relationship is always found between the crystal and the first liquid layer. The average density of the latter is closely related to the χ value. (authors)

  2. Supramolecular chemistry at the liquid/solid interface probed by scanning tunnelling microscopy

    NARCIS (Netherlands)

    Feyter, S. De; Uji-i, H.; Mamdouh, W.; Miura, A.; Zhang, J.; Jonkheijm, P.; Schenning, A.P.H.J.; Meijer, E.W.; Chen, Z.; Wurthner, F.; Schuurmans, N.; Esch, J. van; Feringa, B.L.; Dulcey, A.E.; Percec, V.; Schryver, F.C. De

    2006-01-01

    The liquid/solid interface provides an ideal environment to investigate self-assembly phenomena, and scanning tunnelling microscopy (STM) is one of the preferred methodologies to probe the structure and the properties of physisorbed monolayers on the nanoscale. Physisorbed monolayers are of

  3. Microscopic theory of the liquid-solid interface of 4He

    International Nuclear Information System (INIS)

    Pederiva, F.; Fantoni, S.; Reatto, L.

    1995-01-01

    Based on the shadow wave function we have developed the first microscopic theory of the interface between a quantum liquid and solid. We overcome the difficulties present in other variational theories because no a priori equilibrium positions for the atoms have to be assumed and localization of particles is exclusively due to interparticle correlations. We find that the crystalline order parameters vary smoothly over the interface and the interface itself is mobile. We have extended the previous work to the interface of a fcc crystal of 4 He. The interfacial energy is 0.16 K/angstrom 2 , the width of the interface is about 15 angstrom and the local density has a dip on the liquid side

  4. Studies on the interactions between bovine {beta}-lactoglobulin and chitosan at the solid-liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Campina, Jose M., E-mail: jpina@fc.up.p [Centro de Investigacao em Quimica (CIQ), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Souza, Hileia K.S., E-mail: hsouza@fe.up.p [REQUIMTE, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Borges, Joao, E-mail: jborges@fc.up.p [Centro de Investigacao em Quimica (CIQ), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Martins, Ana, E-mail: amartins@fc.up.p [Centro de Investigacao em Quimica (CIQ), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Goncalves, Maria Pilar, E-mail: pilarg@fe.up.p [REQUIMTE, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Silva, Fernando, E-mail: afssilva@fc.up.p [Centro de Investigacao em Quimica (CIQ), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2010-12-01

    Chitosan ultrathin films have been formed on polycrystalline Au substrates using the LbL technique with the purpose of studying its interaction with bovine {beta}-lactoglobulin ({beta}-LG) at the solid-liquid interface. The immobilization of chitosan was followed by Quartz Crystal Microbalance with energy dissipation (QCM-D), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The behavior of the chitosan films in the presence of {beta}-LG solutions with different bulk concentrations ([{beta}-LG]), ionic strength (I), and pH has been investigated using the same techniques plus Atomic Force Microscopy (AFM). The results showed that for pHs lower than protein's pI, weak intermolecular forces (H bonding, Van der Waals, hydrophobic, etc.) are established between {beta}-LG and chitosan (especially close to the pI) leading to low coverage nonspecific adsorption. On the contrary when pH > pI, strong ionic bonding through attractive electrostatic interactions lead to high coverage adsorbed phases composed of large {beta}-LG aggregates. The adsorption process was shown to consist of a relatively fast step (in which these interactions are predominant) which is followed, once the {beta}-LG monolayer is exceeded, by the slow formation of thicker and increasingly viscoelastic films through {beta}-LG self-aggregation. QCM-D and AFM experiments unveiled the role of [{beta}-LG] and I on the formation of these aggregates. The adsorption isotherm built from impedance data in the medium-low [{beta}-LG] range (0.001-0.3 mg mL{sup -1}), showed good fitting to the Langmuir model confirming that the formation of one {beta}-LG monolayer is achieved in this concentration range.

  5. Studies on the interactions between bovine β-lactoglobulin and chitosan at the solid-liquid interface

    International Nuclear Information System (INIS)

    Campina, Jose M.; Souza, Hileia K.S.; Borges, Joao; Martins, Ana; Goncalves, Maria Pilar; Silva, Fernando

    2010-01-01

    Chitosan ultrathin films have been formed on polycrystalline Au substrates using the LbL technique with the purpose of studying its interaction with bovine β-lactoglobulin (β-LG) at the solid-liquid interface. The immobilization of chitosan was followed by Quartz Crystal Microbalance with energy dissipation (QCM-D), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The behavior of the chitosan films in the presence of β-LG solutions with different bulk concentrations ([β-LG]), ionic strength (I), and pH has been investigated using the same techniques plus Atomic Force Microscopy (AFM). The results showed that for pHs lower than protein's pI, weak intermolecular forces (H bonding, Van der Waals, hydrophobic, etc.) are established between β-LG and chitosan (especially close to the pI) leading to low coverage nonspecific adsorption. On the contrary when pH > pI, strong ionic bonding through attractive electrostatic interactions lead to high coverage adsorbed phases composed of large β-LG aggregates. The adsorption process was shown to consist of a relatively fast step (in which these interactions are predominant) which is followed, once the β-LG monolayer is exceeded, by the slow formation of thicker and increasingly viscoelastic films through β-LG self-aggregation. QCM-D and AFM experiments unveiled the role of [β-LG] and I on the formation of these aggregates. The adsorption isotherm built from impedance data in the medium-low [β-LG] range (0.001-0.3 mg mL -1 ), showed good fitting to the Langmuir model confirming that the formation of one β-LG monolayer is achieved in this concentration range.

  6. Recent Advances in Study of Solid-Liquid Interfaces and Solidification of Metals

    Directory of Open Access Journals (Sweden)

    Mohsen Asle Zaeem

    2018-02-01

    Full Text Available Solidification occurs in several material processing methods, such as in casting, welding, and laser additive manufacturing of metals, and it controls the nano- and microstructures, as well as the overall properties of the products[...

  7. Transport mechanisms and wetting dynamics in molecularly thin films of long-chain alkanes at solid/vapour interface : relation to the solid-liquid phase transition

    OpenAIRE

    Lazar, Paul

    2005-01-01

    Wetting and phase transitions play a very important role our daily life. Molecularly thin films of long-chain alkanes at solid/vapour interfaces (e.g. C30H62 on silicon wafers) are very good model systems for studying the relation between wetting behaviour and (bulk) phase transitions. Immediately above the bulk melting temperature the alkanes wet partially the surface (drops). In this temperature range the substrate surface is covered with a molecularly thin ordered, solid-like alkane film (...

  8. Ab initio study on the dynamics of furfural at the liquid-solid interfaces

    Science.gov (United States)

    Dang, Hongli; Xue, Wenhua; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2013-03-01

    Catalytic biomass conversion sometimes occurs at the liquid-solid interfaces. We report ab initio molecular dynamics simulations at finite temperatures for the catalytic reactions involving furfural at the water-Pd and water-Cu interfaces. We found that, during the dynamic process, the furan ring of furfural prefers to be parallel to the Pd surface and the aldehyde group tends to be away from the Pd surface. On the other hand, at the water-Cu(111) interface, furfural prefers to be tilted to the Cu surface while the aldehyde group is bonded to the surface. In both cases, interaction of liquid water and furfural is identified. The difference of dynamic process of furfural at the two interfaces suggests different catalytic reaction mechanisms for the conversion of furfural, consistent with the experimental investigations. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSED's and NERSC's supercomputers

  9. Study of solid/liquid and solid/gas interfaces in Cu–isoleucine complex by surface X-ray diffraction

    International Nuclear Information System (INIS)

    Ferrer, Pilar; Rubio-Zuazo, Juan; Castro, German R.

    2013-01-01

    The enzymes could be understood like structures formed by amino acids bonded with metals, which act as active sites. The research on the coordination of metal–amino acid complexes will bring light on the behavior of metal enzymes, due to the close relation existing between the atomic structure and the functionality. The Cu–isoleucine bond is considered as a good model system to attain a better insight into the characteristics of naturally occurring copper metalloproteins. The surface structure of metal–amino acid complex could be considered as a more realistic model for real systems under biologic working conditions, since the molecular packing is decreased. In the surface, the structural constrains are reduced, keeping the structural capability of surface complex to change as a function of the surrounding environment. In this work, we present a surface X-ray diffraction study on Cu–isoleucine complex under different ambient conditions. Cu(Ile) 2 crystals of about 5 mm × 5 mm × 1 mm have been growth, by seeding method in a supersaturated solution, presenting a surface of high quality. The sample for the surface diffraction study was mounted on a cell specially designed for solid/liquid or solid/gas interface analysis. The Cu–isoleucine crystal was measured under a protective dry N 2 gas flow and in contact with a saturated metal amino acid solution. The bulk and the surface signals were compared, showing different atomic structures. In both cases, from surface diffraction data, it is observed that the atomic structure of the top layer undergoes a clear structural deformation. A non-uniform surface relaxation is observed producing an inhomogeneous displacement of the surface atoms towards the surface normal.

  10. Effect of phospholipid composition and phase on nanodisc films at the solid-liquid interface as studied by neutron reflectivity

    DEFF Research Database (Denmark)

    Wadsäter, Maria Helena; Barker, Robert; Mortensen, Kell

    2013-01-01

    of the cell membrane and can act as a nanometer-sized container for functional single membrane proteins. In this study, we present a general nanodisc-based system, intended for structural and functional studies of membrane proteins. In this method, the nanodiscs are aligned at a solid surface, providing...... the ability to determine the average structure of the film along an axis perpendicular to the interface as measured by neutron reflectivity. The nanodisc film was optimized in terms of nanodisc coverage, reduced film roughness, and stability for time-consuming studies. This was achieved by a systematic...

  11. Solid-Liquid Interface Thermal Resistance Affects the Evaporation Rate of Droplets from a Surface: A Study of Perfluorohexane on Chromium Using Molecular Dynamics and Continuum Theory.

    Science.gov (United States)

    Han, Haoxue; Schlawitschek, Christiane; Katyal, Naman; Stephan, Peter; Gambaryan-Roisman, Tatiana; Leroy, Frédéric; Müller-Plathe, Florian

    2017-05-30

    We study the role of solid-liquid interface thermal resistance (Kapitza resistance) on the evaporation rate of droplets on a heated surface by using a multiscale combination of molecular dynamics (MD) simulations and analytical continuum theory. We parametrize the nonbonded interaction potential between perfluorohexane (C 6 F 14 ) and a face-centered-cubic solid surface to reproduce the experimental wetting behavior of C 6 F 14 on black chromium through the solid-liquid work of adhesion (quantity directly related to the wetting angle). The thermal conductances between C 6 F 14 and (100) and (111) solid substrates are evaluated by a nonequilibrium molecular dynamics approach for a liquid pressure lower than 2 MPa. Finally, we examine the influence of the Kapitza resistance on evaporation of droplets in the vicinity of a three-phase contact line with continuum theory, where the thermal resistance of liquid layer is comparable with the Kapitza resistance. We determine the thermodynamic conditions under which the Kapitza resistance plays an important role in correctly predicting the evaporation heat flux.

  12. BEHAVIOR OF SURFACTANT MIXTURE AT SOLID/LIQUID AND OIL/LIQUID INTERFACE IN CHEMICAL FLOODING SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Prof. P. Somasundaran

    2002-03-01

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Preliminary ultra-filtration tests suggest that two kinds of micelles may exist in binary surfactant mixtures at different concentrations. Due to the important role played in interfacial processes by micelles as determined by their structures, focus of the current work is on the delineation of the relationship between such aggregate structures and chemical compositions of the surfactants. A novel analytical centrifuge application is explored to generate information on structures of different surfactants aggregates. In this report, optical systems, typical output of the analytical ultracentrifuge results and four basic experiments are discussed. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. The partial specific volume was calculated to be 0.920. Four softwares: Optima{trademark} XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The sedimentation coefficient and aggregation number of NP-10 micelles obtained using the first three softwares at 25 C are 209, 127, and 111, respectively. The last one is closest to the result from Light Scattering. The reason for the differences in numbers obtained using the three softwares is discussed. Based on these tests, Svedberg and SEDFIT analysis are chosen for further studies. This approach using the analytical ultracentrifugation offers an unprecedented opportunity now to obtain important information on mixed micelles and their role in interfacial processes.

  13. Liquid-gas and solid-liquid interface: thermodynamics of capillary condensation application to a prosimetry by calorimetric measurements

    International Nuclear Information System (INIS)

    Derrien, Francois; Hartmanshenn, Olivier.

    1978-01-01

    A direct determination of the pore radii distribution is proposed using calorimetric measurements during condensation and evacuation of pores by capillary condensate. This method is independant of any gravimetric or volumetric measurement of adsorption

  14. In situ scanning probe spectroscopy at nanoscale solid/liquid interfaces

    International Nuclear Information System (INIS)

    Schindler, W.; Hugelmann, M.; Hugelmann, Ph.

    2005-01-01

    Electrochemistry provides unique features for the preparation of low-dimensional structures, but in situ spectroscopy with atomic/molecular resolution at such structures is at present not well established yet. This paper shows that in situ scanning probe spectroscopy at solid/liquid interfaces can be utilized to study electronic properties at nanoscale, if appropriate conditions are applied. Tunneling spectroscopy provides information about tunneling barrier heights and electronic states in the tunneling gap, as shown on Au(1 1 1) substrates, contact spectroscopy allows for transport measurements at single nanostructures, as shown at Au/n-Si(1 1 1) nanodiodes. The influence of the electrolytic environment on spectroscopic investigations is not a principal limitation, but offers additional degrees of freedom, which allow, for example, spectroscopic studies of potential dependent surface phenomena at solid/liquid interfaces

  15. Different Mechanism Effect between Gas-Solid and Liquid-Solid Interface on the Three-Phase Coexistence Hydrate System Dissociation in Seawater: A Molecular Dynamics Simulation Study

    Directory of Open Access Journals (Sweden)

    Zhixue Sun

    2017-12-01

    Full Text Available Almost 98% of methane hydrate is stored in the seawater environment, the study of microscopic mechanism for methane hydrate dissociation on the sea floor is of great significance to the development of hydrate production, involving a three-phase coexistence system of seawater (3.5% NaCl + hydrate + methane gas. The molecular dynamics method is used to simulate the hydrate dissociation process. The dissociation of hydrate system depends on diffusion of methane molecules from partially open cages and a layer by layer breakdown of the closed cages. The presence of liquid or gas phases adjacent to the hydrate has an effect on the rate of hydrate dissociation. At the beginning of dissociation process, hydrate layers that are in contact with liquid phase dissociated faster than layers adjacent to the gas phase. As the dissociation continues, the thickness of water film near the hydrate-liquid interface became larger than the hydrate-gas interface giving more resistance to the hydrate dissociation. Dissociation rate of hydrate layers adjacent to gas phase gradually exceeds the dissociation rate of layers adjacent to the liquid phase. The difficulty of methane diffusion in the hydrate-liquid side also brings about change in dissociation rate.

  16. In situ reflectivity investigations of solid/liquid interface during laser backside etching

    International Nuclear Information System (INIS)

    Boehme, R.; Otto, T.; Zimmer, K.

    2006-01-01

    In situ reflectivity measurements of the solid/liquid interface with a pump-probe setup were performed during laser-induced backside wet etching (LIBWE) of fused silica with KrF excimer laser using toluene as absorbing liquid. The intensity, the temporal shape, and the duration of the reflected light measured in dependence on the laser fluence are discussed referring to the surface modification and the bubble formation. The vaporisation of the superheated liquid at the solid interface causes a considerable increase of the reflectivity and gives information about the bubble lifetime. The alterations of the reflectivity after bubbles collapse can be explained with the changed optical properties due to surface modifications of the solid surface. Comparative studies of the reflectivity at different times and the etch rate behaviour in dependence on the laser fluence show that the in situ measured surface modification begins just at the etch threshold fluence and correlates further with etch rate behaviour and the etched surface appearance. The already observed surface modification at LIBWE due to a carbon deposition and structural changes of the near surface region are approved by the changes of the interface reflectivity and emphasizes the importance of the modified surface region in the laser-induced backside wet etching process

  17. Analytical model for the effects of wetting on thermal boundary conductance across solid/classical liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, Matthew E.; Giri, Ashutosh; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2014-04-21

    We develop an analytical model for the thermal boundary conductance between a solid and a liquid. By infusing recent developments in the phonon theory of liquid thermodynamics with diffuse mismatch theory, we derive a closed form model that can predict the effects of wetting on the thermal boundary conductance across an interface between a solid and a classical liquid. We account for the complete wetting (hydrophilicity), or lack thereof (hydrophobicity), of the liquid to the solid by considering varying contributions of transverse mode interactions between the solid and liquid interfacial layers; this transverse coupling relationship is determined with local density of states calculations from molecular dynamics simulations between Lennard-Jones solids and a liquids with different interfacial interaction energies. We present example calculations for the thermal boundary conductance between both hydrophobic and hydrophilic interfaces of Al/water and Au/water, which show excellent agreement with measured values reported by Ge et al. [Z. Ge, D. G. Cahill, and P. V. Braun, Phys. Rev. Lett. 96, 186101 (2006)]. Our model does not require any fitting parameters and is appropriate to model heat flow across any planar interface between a solid and a classical liquid.

  18. PREFACE: Functionalized Liquid Liquid Interfaces

    Science.gov (United States)

    Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael

    2007-09-01

    Most natural processes take place at interfaces. For this reason, surface science has been a focal point of modern research. At solid-liquid interfaces one can induce various species to adsorb or react, and thus may study interactions between the substrate and adsorbates, kinetic processes, optical properties, etc. Liquid-liquid interfaces, formed by immiscible liquids such as water and oil, have a number of distinctive features. Both sides of the interface are amenable to detailed physical and chemical analysis. By chemical or electrochemical means, metal or semiconductor nanoparticles can be formed or localised at the interface. Surfactants can be used to tailor surface properties, and also to place organic molecular or supermolecular constructions at the boundary between the liquids. Electric fields can be used to drive ions from one fluid to another, or even change the shape of the interface itself. In many cases, both liquids are optically transparent, making functionalized liquid-liquid interfaces promising for various optical applications based on the transmission or reflection of light. An advantage common to most of these systems is self-assembly; because a liquid-liquid interface is not mechanically constrained like a solid-liquid interface, it can easily access its most stable state, even after it has been driven far from equilibrium. This special issue focuses on four modes of liquid-liquid interfacial functionalization: the controlled adsorption of molecules or nanoparticles, the formation of adlayers or films, electrowetting, and ion transfer or interface-localized reactions. Interfacial adsorption can be driven electrically, chemically, or mechanically. The liquid-liquid interface can be used to study how anisotropic particles orient at a surface under the influence of a field, how surfactants interact with other adsorbates, and how nanoparticles aggregate; the transparency of the interface also makes the chirality of organic adsorbates amenable to

  19. Microanalytical techniques applied to phase identification and measurement of solute redistribution at the solid/liquid interface of frozen Fe-4.3Ni doublets

    CERN Document Server

    Faryna, M; Okane, T

    2002-01-01

    A Fe-4.3M alloy has been solidified directionally by using the Bridgman system. The solidification conditions were chosen to obtain an oriented cellular structure of delta-ferrite. These are: a positive temperature gradient of about 60 K/cm and a growth rate of 6.6 mu m/s. A change in these conditions can lead either to the formation of austenite or to the competitive growth of delta-ferrite/gamma-austenite. The solid/liquid interface of delta-ferrite cells has been frozen and double instability has been revealed at the tip of the cells. The instability is described as the first harmonic wave of fundamental undulation, which appeared at the formerly planar solid/liquid interface. This means that a doublet structure is formed only with the imposed specific conditions of solidification. The Ni-solute redistribution after back-diffusion has been measured across the delta-ferrite doublet. Results of energy dispersive x-ray (EDX) measurements on the distribution of Ni and Fe correspond well to the theoretical pred...

  20. Solid and liquid radioactive wastes

    International Nuclear Information System (INIS)

    Cluchet, J.; Desroches, J.

    1977-01-01

    The problems raised by the solid and liquid radioactive wastes from the CEA nuclear centres are briefly exposed. The processing methods developed at the Saclay centre are described together with the methods for the wastes from nuclear power plants and reprocessing plants. The different storage techniques used at the La Hague centre are presented. The production of radioactive wastes by laboratories, hospitals and private industry is studied for the sealed sources and the various radioactive substances used in these plants. The cost of the radioactive wastes is analysed: processing, transport, long term storage [fr

  1. X-ray reflectivity measurements of liquid/solid interfaces under high hydrostatic pressure conditions.

    Science.gov (United States)

    Wirkert, Florian J; Paulus, Michael; Nase, Julia; Möller, Johannes; Kujawski, Simon; Sternemann, Christian; Tolan, Metin

    2014-01-01

    A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.

  2. Neutron reflectivity as method to study in-situ adsorption of phospholipid layers to solid-liquid interfaces

    DEFF Research Database (Denmark)

    Gutberlet, Thomas; Klösgen, Beate Maria; Krastev, Rumen

    2004-01-01

    variation. It was observed that the method was capable of visualizing the adsorption of phospholipid layers to different solid-liquid interfaces and to resolve structural details at Angstroem resolution. The results depended strongly on a sufficiently good signal-to-noise ratio of the specific measurements......The use of neutron reflectivity as a method to study in-situ adsorption of phospholipid layers to solid-liquid interfaces was analyzed. The most important advantage of neutron reflectometry is the possibility to very the refractive index of the specific sample by isotope exchange, called contrast...

  3. The effect of heat currents on the stability of the liquid solid interface

    International Nuclear Information System (INIS)

    Bowley, R.M.; Nozieres, P.

    1992-01-01

    Rapid changing of the temperature of a liquid in equilibrium with its solid can lead to instabilities of the interface in two ways : the change in pressure, induced by a temperature change at the interface, leads to a uniaxial stress which can cause a Grinfeld instability at the capillary wavelength; a temperature gradient is set up which modifies the effective gravity at the interface. When the effective gravity becomes negative, the interface is unstable at very long wavelengths. For a superfluid, such as 4 He, the situation is more complex. If we ignore surface dissipation, there is still a small critical temperature gradient across the solid above which the interface is unstable. However surface dissipation -in particular the growth resistance- pushes the instability to huge temperature gradients, ones which cannot be realised experimentally. The only instability that can be seen is caused by uniaxial stress

  4. Weighted-density functional approach for the solid-liquid interfaces in electrolytes

    International Nuclear Information System (INIS)

    Cherepanova, T.A.; Stekolnikov, A.V.

    1991-09-01

    A weighted-density functional method is proposed to describe the atomic structure of the crystal-melt interface in electrolytes based on a charged-hard-sphere model of salt. The contribution of long-range Coulomb interaction is taken into account in the field formulation: the electrostatic field potential is determined from the Poisson equation. The ion density profiles and crystalline order parameter at the crystal-melt interface in the 1:1 symmetric electrolytes are calculated. The structurization of liquid near the solid surface is described. The results are compared to those for the neutral hard sphere system. The impurity distributions of extremely small concentrations are calculated both for the neutral and charged hard sphere systems. (author). 24 refs, 6 figs, 1 tab

  5. In Situ Adsorption Studies at the Solid/Liquid Interface: Characterization of Biological Surfaces and Interfaces Using Sum Frequency Generation Vibrational Spectroscopy, Atomic Force Microscopy, and Quartz Crystal Microbalance

    International Nuclear Information System (INIS)

    Phillips, D.C.

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste

  6. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Diana Christine [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste.

  7. Liquid crystal interfaces: Experiments, simulations and biosensors

    Science.gov (United States)

    Popov, Piotr

    Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by

  8. Conformationally pre-organized and pH-responsive flat dendrons: synthesis and self-assembly at the liquid-solid interface.

    Science.gov (United States)

    El Malah, Tamer; Ciesielski, Artur; Piot, Luc; Troyanov, Sergey I; Mueller, Uwe; Weidner, Steffen; Samorì, Paolo; Hecht, Stefan

    2012-01-21

    Efficient Cu-catalyzed 1,3-dipolar cycloaddition reactions have been used to prepare two series of three regioisomers of G-1 and G-2 poly(triazole-pyridine) dendrons. The G-1 and G-2 dendrons consist of branched yet conformationally pre-organized 2,6-bis(phenyl/pyridyl-1,2,3-triazol-4-yl)pyridine (BPTP) monomeric and trimeric cores, respectively, carrying one focal and either two or four peripheral alkyl side chains. In the solid state, the conformation and supramolecular organization were studied by means of a single crystal X-ray structure analysis of one derivative. At the liquid-solid interface, the self-assembly behavior was investigated by scanning tunneling microscopy (STM) on graphite surfaces. Based on the observed supramolecular organization, it appears that the subtle balance between conformational preferences inherent in the dendritic backbone on the one side and the adsorption and packing of the alkyl side chains on the graphite substrate on the other side dictate the overall structure formation in 2D.

  9. Heat transfer on liquid-liquid interface of molten-metal and water

    International Nuclear Information System (INIS)

    Tanaka, T.; Saito, Yasushi; Mishima, Kaichiro

    2001-01-01

    Molten-core pool had been formed in the lower-head of TMI-2 pressure vessel at the severe accident. The lower head, however, didn't receive any damage by reactor core cooling. Heat transfer at outside of the lower head and boiling heat transfer at liquid-liquid interface of molten-metal and water, however, are important for initial cooling process of the molten-core pool. The heat transfer experiments for the liquid-liquid interface of molten-metal and water are carried out over the range of natural convection to film boiling region. Phenomenon on the heat transfer experiments are visualized by using of high speed video camera. Wood's metal and U-alloy 78 are used as molten-metal. The test section of the experiments consists of a copper block with heater, wood's metal, and water. Three thermocouple probes are used for temperature measurement of water side and the molten-metal side. Stability of the liquid-liquid interface is depended on the wetness of container wall for molten metal and the temperature distribution of the interface. Entrainment phenomena of molten-metal occurs by a fluctuation of the interface after boiling on the container wall surface. The boiling curves obtained from the liquid-liquid interface experiments are agree with the nucleate boiling and the film boiling correlations of solid-liquid system. (Suetake, M.)

  10. Bubble Induced Disruption of a Planar Solid-Liquid Interface During Controlled Directional Solidification in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2013-01-01

    Pore Formation and Mobility Investigation (PFMI) experiments were conducted in the microgravity environment aboard the International Space Station with the intent of better understanding the role entrained porosity/bubbles play during controlled directional solidification. The planar interface in a slowing growing succinonitrile - 0.24 wt% water alloy was being observed when a nitrogen bubble traversed the mushy zone and remained at the solid-liquid interface. Breakdown of the interface to shallow cells subsequently occurred, and was later evaluated using down-linked data from a nearby thermocouple. These results and other detrimental effects due to the presence of bubbles during solidification processing in a microgravity environment are presented and discussed.

  11. Scanning tunnelling microscopy of a foldamer prototype at the liquid/solid interface : water/Au(111) versus 1-octanol/graphite

    NARCIS (Netherlands)

    Klymchenko, Andrey S.; Schuurmans, Norbert; van der Auweraer, Mark; Feringa, Ben L.; van Esch, Jan; De Feyter, Steven

    2006-01-01

    We report the design and synthesis of a catechol based foldamer containing amide functionalized alkyl chains, and its monolayer formation at the liquid/solid interface. By scanning tunnelling microscopy, both at the 1-octanol/graphite interface as well as at the water/Au( 111) interface, the

  12. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface

    Science.gov (United States)

    Surblys, Donatas; Leroy, Frédéric; Yamaguchi, Yasutaka; Müller-Plathe, Florian

    2018-04-01

    We investigated the solid-liquid work of adhesion of water on a model silica surface by molecular dynamics simulations, where a methodology previously developed to determine the work of adhesion through thermodynamic integration was extended to a system with long-range electrostatic interactions between solid and liquid. In agreement with previous studies, the work of adhesion increased when the magnitude of the surface polarity was increased. On the other hand, we found that when comparing two systems with and without solid-liquid electrostatic interactions, which were set to have approximately the same total solid-liquid interfacial energy, former had a significantly smaller work of adhesion and a broader distribution in the interfacial energies, which has not been previously reported in detail. This was explained by the entropy contribution to the adhesion free energy; i.e., the former with a broader energy distribution had a larger interfacial entropy than the latter. While the entropy contribution to the work of adhesion has already been known, as a work of adhesion itself is free energy, these results indicate that, contrary to common belief, wetting behavior such as the contact angle is not only governed by the interfacial energy but also significantly affected by the interfacial entropy. Finally, a new interpretation of interfacial entropy in the context of solid-liquid energy variance was offered, from which a fast way to qualitatively estimate the work of adhesion was also presented.

  13. Solid and liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1989-01-01

    The technology for the treatment of low - and intermediate-level radioactive solid and liquid wastes is somewhat extensive. Some main guidance on the treatment methods are shown, based on informations contained in technical reports and complementary documents. (author) [pt

  14. Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy.

    Science.gov (United States)

    Ciesielski, Artur; El Garah, Mohamed; Haar, Sébastien; Kovaříček, Petr; Lehn, Jean-Marie; Samorì, Paolo

    2014-11-01

    Dynamic covalent chemistry relies on the formation of reversible covalent bonds under thermodynamic control to generate dynamic combinatorial libraries. It provides access to numerous types of complex functional architectures, and thereby targets several technologically relevant applications, such as in drug discovery, (bio)sensing and dynamic materials. In liquid media it was proved that by taking advantage of the reversible nature of the bond formation it is possible to combine the error-correction capacity of supramolecular chemistry with the robustness of covalent bonding to generate adaptive systems. Here we show that double imine formation between 4-(hexadecyloxy)benzaldehyde and different α,ω-diamines as well as reversible bistransimination reactions can be achieved at the solid/liquid interface, as monitored on the submolecular scale by in situ scanning tunnelling microscopy imaging. Our modular approach enables the structurally controlled reversible incorporation of various molecular components to form sophisticated covalent architectures, which opens up perspectives towards responsive multicomponent two-dimensional materials and devices.

  15. Thermophysical measurements on solid and liquid rhenium

    International Nuclear Information System (INIS)

    Pottlacher, G.; Jager, H.; Neger, T.

    1986-01-01

    A fast resistive heating technique was used to measure such thermophysical data of solid and liquid rhenium as enthalpy, specific heat, thermal volume expansion, and electrical resistivity. The measurements are performed with heating rates of slightly more than 10 9 K s -1 up to states of superheated liquid rhenium (7500 K)

  16. Structural characterization of the phospholipid stabilizer layer at the solid-liquid interface of dispersed triglyceride nanocrystals with small-angle x-ray and neutron scattering

    Science.gov (United States)

    Schmiele, Martin; Schindler, Torben; Unruh, Tobias; Busch, Sebastian; Morhenn, Humphrey; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Lindner, Peter; Schweins, Ralf; Boesecke, Peter

    2013-06-01

    Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889807044378 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.

  17. Deducing 2D crystal structure at the liquid/solid interface with atomic resolution: a combined STM and SFG study.

    Science.gov (United States)

    McClelland, Arthur A; Ahn, Seokhoon; Matzger, Adam J; Chen, Zhan

    2009-11-17

    Sum frequency generation vibrational spectroscopy (SFG) has been applied to study two-dimensional (2D) crystals formed by an isophthalic acid diester on the surface of highly oriented pyrolytic graphite, providing complementary measurements to scanning tunneling microscopy (STM) and computational modeling. SFG results indicate that both aromatic and C=O groups in the 2D crystal tilt from the surface. This study demonstrates that a combination of SFG and STM techniques can be used to gain a more complete picture of 2D crystal structure, and it is necessary to consider solvent-2D crystal interactions and dynamics in the computer models to achieve an accurate representation of interfacial structure.

  18. Liquid and Solid Metal Embrittlement.

    Science.gov (United States)

    1981-09-05

    example, embrittlement of AISI 4140 steel begins at T/T, - 0.75 for cadmium, and 0.85 for lead and tin environments (2). In a few cases, e.g. zinc...has recently proposed, however, that liquid zinc can penetrate to very near the tip of a sharp crack in 4140 steel, based upon both direct observation...long could be detected, was observed in delayed failure experi- ments on unnotched 4140 steel, in the quenched and tempered condi- tion, embrittled by

  19. Infrared absorption spectroscopy characterization of liquid-solid interfaces: The case of chiral modification of catalysts

    Science.gov (United States)

    Zaera, Francisco

    2018-03-01

    An overview is provided here of our work on the characterization of chiral modifiers for the bestowing of enantioselectivity to metal-based hydrogenation catalysts, with specific reference to the so-called Orito reaction. We start with a brief discussion of the use of infrared absorption spectroscopy (IR) for the characterization of chemical species at liquid-solid interfaces, describing the options available as well as the information that can be extracted from such experiments and the advantages and disadvantages associated with the technique. We then summarize the main results that we have reported to date from our IR study of the adsorption of cinchona alkaloids and related compounds from solutions onto platinum surfaces. Several observations are highlighted and placed in context in terms of the existing knowledge and their relevance to catalysis. Key conclusions include the uniqueness of the nature of the adsorbed species when in the presence of the solvent (versus when the uptake is done under vacuum, or versus the pure or dissolved molecules), the fact that each modifier adopts unique and distinct adsorption geometries on the surface and that those change with the concentration of the solution in ways that correlate well with the performance of the catalyst, the potential tendency of at least some of these chiral modifiers to bind to the surface primarily via the nitrogen atom of the amine group, not the aromatic ring as it is often assumed, and the observation that the ability of one modifier to dominate the catalytic chemistry in solutions containing mixtures of two or more of those is linked to their capacity for displacing each other from the surface, which in turn is determined by a balance between the strength of their binding to the surface and their solubility in the liquid solvent.

  20. Solid and Liquid Waste Drying Bag

    Science.gov (United States)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  1. Muonium atoms in liquid and solid neopentane

    International Nuclear Information System (INIS)

    Ng, B.W.; Stadlbauer, J.M.; Jean, Y.C.; Walker, D.C.

    1982-10-01

    Relatively long-lived muonium atoms have been observed in neopentane (2,2-dimethylpropane). The yields of all muon states are found to be essentially the same in liquid and solid neopentane and the same as those in water. These results have bearings on three matters of current interest in muonium chemistry: the origin of the 'background' spin relaxation; the formation mechanisms; and the change in yields at the liquid-solid phase transition. These data were obtained by the μSR technique (muon spin rotation) at the TRIUMF accelerator

  2. Exceptionally Slow Movement of Gold Nanoparticles at a Solid/Liquid Interface Investigated by Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Verch, Andreas; Pfaff, Marina; de Jonge, Niels

    2015-06-30

    Gold nanoparticles were observed to move at a liquid/solid interface 3 orders of magnitude slower than expected for the movement in a bulk liquid by Brownian motion. The nanoscale movement was studied with scanning transmission electron microscopy (STEM) using a liquid enclosure consisting of microchips with silicon nitride windows. The experiments involved a variation of the electron dose, the coating of the nanoparticles, the surface charge of the enclosing membrane, the viscosity, and the liquid thickness. The observed slow movement was not a result of hydrodynamic hindrance near a wall but instead explained by the presence of a layer of ordered liquid exhibiting a viscosity 5 orders of magnitude larger than a bulk liquid. The increased viscosity presumably led to a dramatic slowdown of the movement. The layer was formed as a result of the surface charge of the silicon nitride windows. The exceptionally slow motion is a crucial aspect of electron microscopy of specimens in liquid, enabling a direct observation of the movement and agglomeration of nanoscale objects in liquid.

  3. Integrated Solid-Phase Extraction-Capillary Liquid Chromatography (speLC) Interfaced to ESI-MS/MS for Fast Characterization and Quantification of Protein and Proteomes

    DEFF Research Database (Denmark)

    Falkenby, Lasse Gaarde; Such-Sanmartín, Gerard; Larsen, Martin Røssel

    2014-01-01

    min speLC-MS/MS experiment. Analysis by selected reaction monitoring by speLC-SRM-MS/MS of distinct peptides derived from the blood proteins IGF1, IGF2, IBP2, and IBP3 demonstrated protein quantification with CV values below 10% across 96 replicates. The speLC-MS/MS system is ideally suited for fast......The high peptide sequencing speed provided by modern hybrid tandem mass spectrometers enables the utilization of fast liquid chromatographic (LC) separation techniques. We present a robust solid-phase extraction/capillary LC system (speLC) for 5-10 min separation of semicomplex peptide mixtures...

  4. Thermophysical properties of solid and liquid beryllium

    International Nuclear Information System (INIS)

    Boivineau, M.; Arles, L.; Vermeulen, J.M.; Thevenin, Th.

    1993-01-01

    A submillisecond resistive heating technique under high pressure (0.12 GPa) has been used to measure selected thermophysical properties of both solid and liquid beryllium. Data have been obtained between room temperature and 2900 K. Results on enthalpy, volume expansion, electrical resistivity, and sound velocity measurements are presented

  5. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  6. Relationships between Liquid Atomization and Solid Fragmentation

    Science.gov (United States)

    2016-03-01

    1 2. Basic Definitions ...expressions for average fragment sizes. These observations are surprising, given the fundamental phenomenological differences between liquid and solid...smaller children droplets in the secondary stage. The basic phenomenology of the second stage is much the same as that of the first stage. For

  7. Positronium quenching in liquid and solid octanol and benzene

    DEFF Research Database (Denmark)

    Shantarovich, V.P.; Mogensen, O.E.; Goldanskii, V.I.

    1970-01-01

    The lifetimes of orthopositronium in several solutions in liquid and solid octanol and benzene have been measured. The Ps-quenching constant was found to be two to thirty times higher in the solid than in the liquid phase.......The lifetimes of orthopositronium in several solutions in liquid and solid octanol and benzene have been measured. The Ps-quenching constant was found to be two to thirty times higher in the solid than in the liquid phase....

  8. Electrochemical determination of the glass transition temperature of thin polyelectrolyte brushes at solid-liquid interfaces by impedance spectroscopy.

    Science.gov (United States)

    Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar

    2013-07-16

    Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.

  9. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  10. Simulation of liquids and solids

    International Nuclear Information System (INIS)

    Ciccotti, G.; Frenkel, D.; McDonald, I.R.

    1987-01-01

    This book is a collection of key reprints of papers on the computer simulation of statistical-mechanical systems, introduced and commented upon by the editors. The papers provide the reader with a complete and comprehensive source book. It enables the new and experienced practitioner of computer simulation to learn and use the various methods and interpret the restrictions and various possibilities. A balanced view of the history and methodology of the subject and the presence of notes and comments greatly enhances the value of the book as reference material

  11. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  12. An in-situ RBS system for measuring nuclides adsorbed at the liquid-solid interface

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K; Yuhara, J; Ishigami, R [Nagoya Univ. (Japan). School of Engineering; and others

    1997-03-01

    An in-situ RBS system has been developed in which heavier nuclides adsorbed at the inner surface of a thin lighter window specimen of liquid container in order to determine the rate constants for their sorption and release at the interface. The testing of a thin silicon window of the sample assembly, in which Xe gas of one atmosphere was enclosed, against the bombardment of the probing ion beam has been performed. A desorption behavior of a lead layer adsorbed at the SiO{sub 2} layer of silicon window surface into deionized water has been measured as a preliminary experiment. (author)

  13. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.

    2014-01-01

    of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid

  14. Dynamics of amorphous solids and viscous liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    -square displacement as function of time. The 15 publications are related to each other in the following way. P1-P7 is a continuously progressing attempt to explain the AC properties of extremely disordered solids (with P2 as a digression). P8 discusses a simple model for viscous liquids and the glass transition. In P...... with the title "Viscous Liquids and the Glass Transition" reviews and comments P8-P10. In P8 from 1987 a simple model for the glass transition is proposed in which there is only one relevant degree of freedom, the potential energy of a region in the liquid. The model was originally constructed to explain the non......This thesis consists of fifteen publications (P1-P15) published between 1987 and 1996 and a summary. In this abstract an overview of the main results is given by following the summary's three Chapters. The first Chapter with the title "AC Conduction in Disordered Solids" reviews and comments P1-P7...

  15. Combustion chamber for solid and liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Vcelak, L.; Kocica, J.; Trnobransky, K.; Hrubes, J. (VSCHT, Prague (Czechoslovakia))

    1989-04-01

    Describes combustion chamber incorporated in a new boiler manufactured by Elitex of Kdyne to burn waste products and occasionally liquid and solid waste from neighboring industries. It can handle all kinds of solids (paper, plastics, textiles, rubber, household waste) and liquids (volatile and non-volatile, zinc, chromium, etc.) and uses coal as a fuel additive. Its heat output is 3 MW, it can burn 1220 kg/h of coal (without waste, calorific value 11.76 MJ/kg) or 500 kg/h of coal (as fuel additive, calorific value 11.76 MJ/kg) or 285 kg/h of solid waste (calorific value 20.8 MJ/kg). Efficiency is 75%, capacity is 103 m{sup 3} and flame temperature is 1,310 C. Individual components are designed for manufacture in small engineering workshops with basic equipment. A disk absorber with alkaline filling is fitted for removal of harmful substances arising when PVC or tires are combusted.

  16. Storage of solid and liquid radioactive material

    International Nuclear Information System (INIS)

    Matijasic, A.; Gacinovic, O.

    1961-01-01

    Solid radioactive waste collected during 1961 from the laboratories of the Institute amounted to 22.5 m 3 . This report contains data about activity of the waste collected from january to November 1961. About 70% of the waste are short lived radioactive material. Material was packed in metal barrels and stored in the radioactive storage in the Institute. There was no contamination of the personnel involved in these actions. Liquid radioactive wastes come from the Isotope production laboratory, laboratories using tracer techniques, reactor cooling; decontamination of the equipment. Liquid wastes from isotope production were collected in plastic bottles and stored. Waste water from the RA reactor were collected in special containers. After activity measurements this water was released into the sewage system since no activity was found. Table containing data on quantities and activity of radioactive effluents is included in this report

  17. Novel routes to metal nanoparticles : electrodeposition and reactions at liquid-liquid interfaces

    OpenAIRE

    Johans, Christoffer

    2003-01-01

    This thesis considers the nucleation and growth, synthesis, and catalytic application of metallic nanoparticles at liquid|liquid interfaces. It comprises five publications, a previously unpublished synthesis of polymer coated palladium nanoparticles, and an introduction to the relevant literature. Three publications are concerned with electrodeposition of metal nanoparticles at liquid|liquid interfaces. One publication and the results presented here consider the synthesis of silver and pallad...

  18. X-ray scattering at liquid surfaces and interfaces

    International Nuclear Information System (INIS)

    Daillant, Jean

    2000-01-01

    X-ray and neutron reflectivity techniques have become quite popular for the analysis of surfaces and interfaces over the last ten years. In this review, we discuss the specific aspects of both specular and diffuse x-ray reflectivity at liquid interfaces. We start from a model liquid surface for which the scattering cross-section can be calculated in terms of thermally excited capillary and acoustic waves, and we examine in detail the experimental consequences of the large bulk scattering and of the low q divergence of the surface scattering. Deviations from the simple calculated behaviour point to interesting phenomena which can be studied in detail, like the appearance of a bending stiffness. The method is illustrated through the discussion of representative studies of liquid surfaces, of surfactant monolayers, of liquid-liquid interfaces and of microemulsions. (author)

  19. A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system

    Energy Technology Data Exchange (ETDEWEB)

    Maibach, Julia; Xu, Chao; Gustafsson, Torbjörn; Edström, Kristina [Department of Chemistry–Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Eriksson, Susanna K. [Department of Chemistry–Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala (Sweden); Åhlund, John [VG Scienta AB, Box 15120, SE-750 15 Uppsala (Sweden); Siegbahn, Hans; Rensmo, Håkan; Hahlin, Maria, E-mail: maria.hahlin@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2015-04-15

    We report a methodology for a direct investigation of the solid/liquid interface using high pressure x-ray photoelectron spectroscopy (HPXPS). The technique was demonstrated with an electrochemical system represented by a Li-ion battery using a silicon electrode and a liquid electrolyte of LiClO{sub 4} in propylene carbonate (PC) cycled versus metallic lithium. For the first time the presence of a liquid electrolyte was realized using a transfer procedure where the sample was introduced into a 2 mbar N{sub 2} environment in the analysis chamber without an intermediate ultrahigh vacuum (UHV) step in the load lock. The procedure was characterized in detail concerning lateral drop gradients as well as stability of measurement conditions over time. The X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the solid substrate and the liquid electrolyte can be observed simultaneously. The results show that the solid electrolyte interphase (SEI) composition for the wet electrode is stable within the probing time and generally agrees well with traditional UHV studies. Since the methodology can easily be adjusted to various high pressure photoelectron spectroscopy systems, extending the approach towards operando solid/liquid interface studies using liquid electrolytes seems now feasible.

  20. The interfacial free energy of solid Sn on the boundary interface with liquid Cd-Sn eutectic solution

    International Nuclear Information System (INIS)

    Saatci, B; Cimen, S; Pamuk, H; Guenduez, M

    2007-01-01

    Equilibrated grain boundary groove shapes for solid Sn in equilibrium with Cd-Sn liquid were directly observed after annealing a sample at the eutectic temperature for about 8 days. The thermal conductivities of the solid phase, K S , and the liquid phase, K L , for the groove shapes were measured. From the observed groove shapes, the Gibbs-Thomson coefficients were obtained with a numerical method, using the measured G, K S and K L values. The solid-liquid interfacial energy of solid Sn in equilibrium with Cd-Sn liquid was determined from the Gibbs-Thomson equation. The grain boundary energy for solid Sn was also calculated from the observed groove shapes

  1. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface.

    Science.gov (United States)

    den Boer, Duncan; Li, Min; Habets, Thomas; Iavicoli, Patrizia; Rowan, Alan E; Nolte, Roeland J M; Speller, Sylvia; Amabilino, David B; De Feyter, Steven; Elemans, Johannes A A W

    2013-07-01

    Manganese porphyrins have been extensively investigated as model systems for the natural enzyme cytochrome P450 and as synthetic oxidation catalysts. Here, we report single-molecule studies of the multistep reaction of manganese porphyrins with molecular oxygen at a solid/liquid interface, using a scanning tunnelling microscope (STM) under environmental control. The high lateral resolution of the STM, in combination with its sensitivity to subtle differences in the electronic properties of molecules, allowed the detection of at least four distinct reaction species. Real-space and real-time imaging of reaction dynamics enabled the observation of active sites, immobile on the experimental timescale. Conversions between the different species could be tuned by the composition of the atmosphere (argon, air or oxygen) and the surface bias voltage. By means of extensive comparison of the results to those obtained by analogous solution-based chemistry, we assigned the observed species to the starting compound, reaction intermediates and products.

  2. A KINETIC MODEL FOR MONO-LAYER GLOBULAR PROTEIN ADSORPTION ON SOLID/LIQUID INTERFACES

    Directory of Open Access Journals (Sweden)

    Kamal I. M. Al-Malah

    2012-12-01

    Full Text Available A kinetic model was derived for globular protein adsorption. The model takes into account the three possible scenarios of a protein molecule in solution, being exposed to an interface: adsorption step from the solution to the interface; the possible desorption back into the solution; and the surface-induced unfolding or spreading of the protein unto the substrate surface. A globular protein molecule is visualized as a sphere with radius D. In addition to the general case of protein adsorption, which portrays either the surface coverage (Theta or surface concentration (� as a function of the adsorption time, special cases, like equilibrium condition, lowsurface coverage, irreversible, and Langmuirian were also presented and treated in light of the derived model. The general model was simplified for each of the subset cases. The irreversibility versus reversibility of protein adsorption was discussed. The substrate surface energetics or effects are accounted for via the proposition of the percent relative change in D/V ratio for the adsorbing protein, called (D/VPRC parameter. (D/VPRC is calculated with respect to the monolayer surface concentration of protein, where the latter is given by D/Vratio. This can be used as a landmark to protein adsorption isotherms or even kinetics. This is visualized as an indicator for solid substrate effects on the adsorbing proteins. (D/VPRC can be zero (fresh monolayer, negative (aged monolayer, or positive (multi-layer. The reference surface concentration is reported for some selected proteins.

  3. Heat transfer across the interface between nanoscale solids and gas.

    Science.gov (United States)

    Cheng, Chun; Fan, Wen; Cao, Jinbo; Ryu, Sang-Gil; Ji, Jie; Grigoropoulos, Costas P; Wu, Junqiao

    2011-12-27

    When solid materials and devices scale down in size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid is reduced to the nanoscale, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above ∼10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO(2) nanowire and surrounding air using laser thermography, where the temperature distribution along the VO(2) nanowire was determined by imaging its domain structure of metal-insulator phase transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a nanoscale power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to nanoscale electronic and thermal devices exposed to gaseous environments.

  4. Mass Transfer Process by Magneto-convection at a Solid-liquid Interface in a Heterogeneous Vertical Magnetic Field

    Science.gov (United States)

    Sugiyama, Atsushi; Morisaki, Shigeyoshi; Aogaki, Ryoichi

    2003-08-01

    When an external magnetic field is vertically imposed on a solid-liquid interface, the mass transfer process of a solute dissolving from or depositing on the interface was theoretically examined. In a heterogeneous vertical magnetic field, a material receives a magnetic force in proportion to the product of the magnetic susceptibility, the magnetic flux density B and its gradient (dB/dz). As the reaction proceeds, a diffusion layer of the solute with changing susceptibility is formed at the interface because of the difference of the the magnetic susceptibility on the concentration of the solute. In the case of an unstable condition where the dimensionless number of magneto-convection S takes a positive value, the magnetic force is applied to the layer and induces numerous minute convection cells. The mass transfer of the solute is thus accelerated, so that it is predicted that the mass flux increases with the 1/3rd order of B(dB/dz) and the 4/3rd order of the concentration. The experiment was then performed by measuring the rate of the dissolution of copper sulfate pentahydrate crystal in water.

  5. Mathematical model to analyze the dissolution behavior of metastable crystals or amorphous drug accompanied with a solid-liquid interface reaction.

    Science.gov (United States)

    Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru

    2017-04-30

    Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation

  6. Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes

    Science.gov (United States)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2017-08-01

    We generalize the conditions for stable electrodeposition at isotropic solid-solid interfaces using a kinetic model which incorporates the effects of stresses and surface tension at the interface. We develop a stability diagram that shows two regimes of stability: a previously known pressure-driven mechanism and a new density-driven stability mechanism that is governed by the relative density of metal in the two phases. We show that inorganic solids and solid polymers generally do not lead to stable electrodeposition, and provide design guidelines for achieving stable electrodeposition.

  7. The competition between the liquid-liquid dewetting and the liquid-solid dewetting.

    Science.gov (United States)

    Xu, Lin; Shi, Tongfei; An, Lijia

    2009-05-14

    We investigate the dewetting behavior of the bilayer of air/PS/PMMA/silanized Si wafer and find the two competing dewetting pathways in the dewetting process. The upper layer dewets on the lower layer (dewetting pathway 1, the liquid-liquid dewetting) and the two layers rupture on the solid substrate (dewetting pathway 2, the liquid-solid dewetting). To the two competing dewetting pathways, the process of forming holes and the process of hole growth, influence their competing relation. In the process of forming holes, the time of forming holes is a main factor that influences their competing relation. During the process of hole growth, the dewetting velocity is a main factor that influences their competing relation. The liquid-liquid interfacial tension, the film thickness of the polymer, and the viscosity of the polymer are important factors that influence the time of forming holes and the dewetting velocity. When the liquid-liquid dewetting pathway and the liquid-solid dewetting pathway compete in the dewetting process, the competing relation can be controlled by changing the molecular weight of the polymer, the film thickness, and the annealing temperature. In addition, it is also found that the rim growth on the solid substrate is by a rolling mechanism in the process of hole growth.

  8. CHARACTERISATION OF SOLID AND LIQUID PINEAPPLE WASTE

    Directory of Open Access Journals (Sweden)

    Abdullah Abdullah

    2011-07-01

    Full Text Available The pineapple waste is contain high concentration of biodegradable organic material and suspended solid. As a result it has a high BOD and extremes of pH conditions. The pineapple wastes juice contains mainly sucrose, glucose, fructose and other nutrients. The characterisation this waste is needed to reduce it by  recycling to get raw material or  for  conversion into useful product of higher value added products such as organic acid, methane , ethanol, SCP and enzyme. Analysis of sugar indicates that liquid waste contains mainly sucrose, glucose and fructose.  The dominant sugar was fructose, glucose and sucrose.  The fructose and glucose levels were similar to each other, with fructose usually slightly higher than glucose. The total sugar and citric acid content were 73.76 and 2.18 g/l. The sugar content in solid waste is glucose and fructose was 8.24 and 12.17 %, no sucrose on this waste

  9. Digital microfluidics platform for interfacing solid-liquid extraction column with portable capillary electropherograph for analysis of soil amino acids.

    Science.gov (United States)

    Gorbatsova, Jelena; Jaanus, Martin; Vaher, Merike; Kaljurand, Mihkel

    2016-02-01

    In this work, the concept of a field-portable analyzer is proposed that operates with milliliter amounts of solvents and samples. The need to develop such an analyzer is not only driven by specific extraterrestrial analysis but also, for example, by forensics applications where the amount of liquid that can be taken to the field is severely limited. The prototype of the proposed analyzer consists of a solid-liquid extractor, the output of which is connected to the micropump, which delivers droplets of extracts to digital microfluidic platform (DMFP). In this way, world-to-chip interfacing is established. Further, the sample droplets are transported to CE capillary inlet port, separated and detected via a contactless conductivity detector. Working buffers and other solvents needed to perform CE analysis are also delivered as droplets to the DMFP and transported through the CE capillary. The performance of the analyzer is demonstrated by analysis of amino acids in sand matrices. The recovery of the spiked amino acids from the inert sand sample was from 34 to 51% with analysis LOD from 0.2 to 0.6 ppm and migration time RSD from 0.2 to 6.0%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Organic transistors fabricated by contact coating at liquid-solid interface for nano-structures

    Directory of Open Access Journals (Sweden)

    Yu-Wen Cheng

    2015-10-01

    Full Text Available A contact coating method is developed to cover the nano-channels with 100 nm or 200 nm diameter and 400 nm depth with a poly(4-vinylphenol (PVP. In such coating the nano-channels faces downwards and its vertical position is controlled by a motor. The surface is first lowered to be in immediate contact with the polyvinylpyrrolidone (PVPY water solution with concentration from 1 to 5 wt%, then pulled at the speed of 0.004 to 0.4 mm/s. By tuning the pulling speed and concentration we can realize conformal, filled, top-only, as well as floating film morphology. For a reproducible liquid detachment from the solid, the sample has a small tilt angle of 3 degree. Contact coating is used to cover the Al grid base of the vertical space-charge-limited transistor with PVPY. Poly(3-hexylthiophene-2,5-diyl (P3HT as the semiconductor. The transistor breakdown voltage is raised due to base coverage achieved by contact coating.

  11. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying

    2014-08-10

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  12. Contribution to the study of sorption mechanisms at solid-liquid interfaces: application to the cases of apatites and oxy-hydroxides

    International Nuclear Information System (INIS)

    Duc, M.

    2002-11-01

    Sorption-desorption phenomena play an important role in the transport of toxic and radioactive elements in surface and underground water in contact with solid matter. Selenium, which is one of the long-lived radionuclides present in radioactive waste, is characterized by several oxidation states and by anionic species in aqueous solutions. In order to predict its transport, we need a good knowledge of its sorption processes. We have studied the sorption of Se(IV) and Se(VI) on two types of solids present in natural media or which have been proposed as additives to active barriers: hydroxy-apatites, fluoro-apatite and iron oxi-hydroxides (goethite and hematite). Sorption mechanisms have been studied through an approach including several different and complementary methods: titrimetry, zeta-metry, scanning and transmission electron microscopy, infrared spectroscopy, X-ray diffraction, X-ray photo electron spectroscopy, etc... Results showed that Se(VI) is much less sorbed than Se(VI) on both types of solids. For Se(IV) the sorption mechanisms are different for iron oxides and apatites. On oxides, sorption increases when pH decreases. It can be interpreted by a surface complexation model, essentially through an inner sphere complex (monodentate or bidentate). Modelling of Se sorption curves was performed after the determination of acido-basic properties of oxides. However, the determination of the intrinsic properties of oxides is disturbed by several parameters identified as impurities, evolution of the solid in solution, kinetic and solubility of the solid. For apatites, selenium sorption proceeds by exchange with superficial groups, with a maximum of fixation at approximately pH 8. Thanks to XPS measurements and the elaboration of a mathematical model, we could determine the depth of penetration of both selenium and cadmium on apatites. (author)

  13. Interaction between Nd-rich phase particles and liquid-solid interface in as-cast Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd titanium alloy

    International Nuclear Information System (INIS)

    Li, G.P.; Li, D.; Liu, Y.Y.; Hu, Z.Q.

    1995-01-01

    The composition (wt%) of ingot fir this investigation is 86.75%Ti, 5%Al, 4%Sn, 2%Zr, 1%Mo, 0.25%Si, 1%Nd. The alloy was prepared by vacuum arc melting in the form of buttons of mass 500 kg, which was remelted three times repeatedly to obtain homogeneous composition. The Nd-rich phase particles in the as-cast Ti-55 alloy are about 1.2∼11.07 microm and uniformly distribute in the matrix. The shapes of the particles are mainly ellipsoids together with short needle-like and blocky morphologies. The calculated diameter of the Nd-rich phase particles is ∼ 10 microm, which is within the 1.2∼11.07 microm range of the particle diameter experimentally measured in the as-cast Ti-55 alloy. The practical interface velocity is three orders of magnitude greater than V c, and the Nd-rich phase particles in the as-cast Ti-55 alloy are trapped by the liquid-solid interface

  14. Stiffening solids with liquid inclusions

    Science.gov (United States)

    Style, Robert W.; Boltyanskiy, Rostislav; Allen, Benjamin; Jensen, Katharine E.; Foote, Henry P.; Wettlaufer, John S.; Dufresne, Eric R.

    2015-01-01

    From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and synthetic materials. Eshelby’s inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite’s bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby’s theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet’s deformation is strongly size-dependent, with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straightforward extension of Eshelby’s theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive stiffening of solids by fluid inclusions is expected whenever inclusion radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young’s modulus of the solid matrix. These results suggest that surface tension can be a simple and effective mechanism to cloak the far-field elastic signature of inclusions.

  15. The separation of solid and liquid components of mixtures

    International Nuclear Information System (INIS)

    Hunter, W.M.

    1980-01-01

    An improved method of separating solid and liquid components of mixtures is described which is particularly suited for use in automated radioimmunoassay systems in the analysis of bound and free fractions. A second liquid, having a density intermediate between those of the solid and liquid components, is delivered to the solid/ liquid mixture to form a discrete layer below the mixture and the solid separates into this lower liquid layer assisted by centrifugal force. The second liquid of intermediate density is an aqueous solution of a highly hydrophilic and electrically non-polar solute, such as an aqueous sucrose solution. Further liquids of intermediate density and progressively higher density may be delivered to form further discrete layers below the initial layer of the second dense liquid. After separation of the solid and liquid components of the mixture, the supernatant liquid component of the original mixture is removed in a controlled and non-turbulent manner. The method is illustrated in radioimmunoassays for platelet β-thromboglobulin and human follicle stimulating hormone. (U.K.)

  16. Active liquid/liquid interfaces: contributions of non linear optics and tensiometry

    International Nuclear Information System (INIS)

    Gassin, P.M.

    2013-01-01

    Liquid-liquid extraction processes are widely used in the industrial fields of selective separation. Despite its numerous applications, the microscopic mechanisms which occur during a liquid-liquid extraction processes are really unknown specially at the liquid/liquid interface. Thus, this work deals on the understanding of the phenomena which drive the mass transfer across a liquid/liquid interface. Two experimental techniques were used in this work: dynamic interfacial tension measurement and non-linear optical experiments. Along with the use of this experimental approach, a numerical model describing the mass transfer dynamic has been developed. This model works under the assumption that both diffusion and a chemical step describing adsorption and desorption processes contribute to the global transfer kinetics. Model systems of surfactant molecules, chromophore molecules and complexing molecule were investigated at liquid/liquid and air/liquid interface. Interfacial phenomena like adsorption, surface aggregation and ion complexing were studied. Finally, the methodology developed in this work was applied to studied an extractant molecule with potential industrial application. (author) [fr

  17. In situ observation of Ag-Cu-Ti liquid alloy/solid oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Durov, O.V. [Frantsevich Institute for Problems of Materials Science of NASU, 3 Krzhyzhanovsky Street, Kiev 142, 03680 (Ukraine)], E-mail: avdu@ukr.net; Krasovskyy, V.P. [Frantsevich Institute for Problems of Materials Science of NASU, 3 Krzhyzhanovsky Street, Kiev 142, 03680 (Ukraine)

    2008-11-15

    In situ investigation methods are a very interesting means for understanding high-temperature interface processes. A method of direct observation of the interactions between transparent materials (Al{sub 2}O{sub 3}, SiO{sub 2}, CaF{sub 2}) and metal melts was elaborated. For the Ag-36.65 at.%Cu-8.15 at.%Ti/sapphire system, the formation of a dark compound at the interface was observed to occur at high temperature. This result does not confirm the conclusion of a neutron spectroscopy study which indicated that titanium oxides form at the interface only during solidification of the alloy. Interactions of the same alloy with SiO{sub 2} and CaF{sub 2} were also considered.

  18. Immersion-scanning-tunneling-microscope for long-term variable-temperature experiments at liquid-solid interfaces

    Science.gov (United States)

    Ochs, Oliver; Heckl, Wolfgang M.; Lackinger, Markus

    2018-05-01

    Fundamental insights into the kinetics and thermodynamics of supramolecular self-assembly on surfaces are uniquely gained by variable-temperature high-resolution Scanning-Tunneling-Microscopy (STM). Conventionally, these experiments are performed with standard ambient microscopes extended with heatable sample stages for local heating. However, unavoidable solvent evaporation sets a technical limit on the duration of these experiments, hence prohibiting long-term experiments. These, however, would be highly desirable to provide enough time for temperature stabilization and settling of drift but also to study processes with inherently slow kinetics. To overcome this dilemma, we propose a STM that can operate fully immersed in solution. The instrument is mounted onto the lid of a hermetically sealed heatable container that is filled with the respective solution. By closing the container, both the sample and microscope are immersed in solution. Thereby solvent evaporation is eliminated and an environment for long-term experiments with utmost stable and controllable temperatures between room-temperature and 100 °C is provided. Important experimental requirements for the immersion-STM and resulting design criteria are discussed, the strategy for protection against corrosive media is described, the temperature stability and drift behavior are thoroughly characterized, and first long-term high resolution experiments at liquid-solid interfaces are presented.

  19. (Liquid + liquid), (solid + liquid), and (solid + liquid + liquid) equilibria of systems containing cyclic ether (tetrahydrofuran or 1,3-dioxolane), water, and a biological buffer MOPS

    International Nuclear Information System (INIS)

    Altway, Saidah; Taha, Mohamed; Lee, Ming-Jer

    2015-01-01

    Graphical abstract: - Highlights: • MOPS buffer induced liquid phase splitting for mixtures of water with THF or 1,3-dioxolane. • Phase boundaries of LLE, SLE, and SLLE were determined experimentally. • Tie-lines at LLE and at SLLE were also measured. • Phase diagrams of MOPS + water + THF or 1,3-dioxolane are prepared. • LLE tie-line data are correlated satisfactorily with the NRTL model. - Abstract: Two liquid phases were formed as the addition of a certain amount of biological buffer 3-(N-morpholino)propane sulfonic acid (MOPS) in the aqueous solutions of tetrahydrofuran (THF) or 1,3-dioxolane. To evaluate the feasibility of recovering the cyclic ethers from their aqueous solutions with the aid of MOPS, we determined experimentally the phase diagrams of the ternary systems of {cyclic ether (THF or 1,3-dioxolane) + water + MOPS} at T = 298.15 K under atmospheric pressure. In this study, the solubility data of MOPS in water and in the mixed solvents of water/cyclic ethers were obtained from the results of a series of density measurements, while the (liquid + liquid) and the (solid + liquid + liquid) phase boundaries were determined by visually inspection. Additionally, the tie-line results for (liquid + liquid) equilibrium (LLE) and for (solid + liquid + liquid) equilibrium (SLLE) were measured using an analytical method. The reliability of the experimental LLE tie-line results data was validated by using the Othmer–Tobias correlation. These LLE tie-line values were correlated well with the NRTL model. The phase diagrams obtained from this study reveal that MOPS is a feasible green auxiliary agent to recover the cyclic ethers from their aqueous solutions, especially for 1,3-dioxolane

  20. Triboelectric Charging at the Nanostructured Solid/Liquid Interface for Area-Scalable Wave Energy Conversion and Its Use in Corrosion Protection.

    Science.gov (United States)

    Zhao, Xue Jiao; Zhu, Guang; Fan, You Jun; Li, Hua Yang; Wang, Zhong Lin

    2015-07-28

    We report a flexible and area-scalable energy-harvesting technique for converting kinetic wave energy. Triboelectrification as a result of direct interaction between a dynamic wave and a large-area nanostructured solid surface produces an induced current among an array of electrodes. An integration method ensures that the induced current between any pair of electrodes can be constructively added up, which enables significant enhancement in output power and realizes area-scalable integration of electrode arrays. Internal and external factors that affect the electric output are comprehensively discussed. The produced electricity not only drives small electronics but also achieves effective impressed current cathodic protection. This type of thin-film-based device is a potentially practical solution of on-site sustained power supply at either coastal or off-shore sites wherever a dynamic wave is available. Potential applications include corrosion protection, pollution degradation, water desalination, and wireless sensing for marine surveillance.

  1. Liquid-liquid and liquid-solid phase separation and flocculation for a charged colloidal dispersion

    International Nuclear Information System (INIS)

    Lai, S.K.; Wu, K.L.

    2002-01-01

    We model the intercolloidal interaction by a hard-sphere Yukawa repulsion to which is added the long-range van der Waals attraction. In comparison with the Derjaguin-Landau-Verwey-Overbeek repulsion, the Yukawa repulsion explicitly incorporates the spatial correlations between colloids and small ions. As a result, the repulsive part can be expressed analytically and has a coupling strength depending on the colloidal volume fraction. By use of this two-body potential of mean force and in conjunction with a second-order thermodynamic perturbation theory, we construct the colloidal Helmholtz free energy and use it to calculate the thermodynamic quantities, pressure and chemical potential, needed in the determination of the liquid-liquid and liquid-solid phase diagrams. We examine, in an aqueous charged colloidal dispersion, the effects of the Hamaker constant and particle size on the conformation of a stable liquid-liquid phase transition calculated with respect to the liquid-solid coexistence phases. We find that there exists a threshold Hamaker constant or particle size whose value demarcates the stable liquid-liquid coexistence phases from their metastable counterparts. Applying the same technique and using the energetic criterion, we extend our calculations to study the flocculation phenomenon in aqueous charged colloids. Here, we pay due attention to determining the loci of a stability curve stipulated for a given temperature T 0 , and obtain the parametric phase diagram of the Hamaker constant vs the coupling strength or, at given surface potential, the particle size. By imposing T 0 to be the critical temperature T c , i.e., setting k B T 0 (=k B T c ) equal to a reasonable potential barrier, we arrive at the stability curve that marks the irreversible reversible phase transition. The interesting result is that there occurs a minimum size for the colloidal particles below (above) which the colloidal dispersion is driven to an irreversible (reversible) phase

  2. CATION-EXCHANGE SOLID-PHASE AND LIQUID-LIQUID ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    An existing liquid-liquid extraction (LLE) method was improved in terms of ... clean-up of the alkaloids from khat leaves, prior to HPLC-DAD detection. Despite .... The limits of detection (LOD) and quantification (LOQ) were calculated using the.

  3. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holinga IV, George Joseph [Univ. of California, Berkeley, CA (United States)

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  4. The crystallization of a solid solution in a solvent and the stability of a growth interface

    International Nuclear Information System (INIS)

    Malmejac, Yves

    1971-03-01

    The potential uses of germanium-silicon alloys as thermoelectric generators in hitherto unexploited temperature ranges initiated the present study. Many delicate problems are encountered in the classical methods of preparation. An original technique was sought for crystallization in a metallic solvent. The thermodynamic equilibria between the various phases of the ternary System used were studied in order to justify the method used. The conditions (temperature and composition) were determined in which the cooling of a ternary liquid mixture induces the precipitation of a binary solid solution with the desired composition. If large crystals are to be obtained from the solid solution, metallic solvent precipitation must be replaced by a mono-directional solvent crystallization. The combined effect of a certain number of simple physical phenomena on the stability of a crystal liquid interface was studied: the morphological stability of the crystal growth interface is the first step towards obtaining perfect crystals. (author) [fr

  5. A continuum treatment of sliding in Eulerian simulations of solid-solid and solid-fluid interfaces

    Science.gov (United States)

    Subramaniam, Akshay; Ghaisas, Niranjan; Lele, Sanjiva

    2017-11-01

    A novel treatment of sliding is developed for use in an Eulerian framework for simulating elastic-plastic deformations of solids coupled with fluids. In this method, embedded interfacial boundary conditions for perfect sliding are imposed by enforcing the interface normal to be a principal direction of the Cauchy stress and appropriate consistency conditions ensure correct transmission and reflection of waves at the interface. This sliding treatment may be used either to simulate a solid-solid sliding interface or to incorporate an internal slip boundary condition at a solid-fluid interface. Sliding laws like the Coulomb friction law can also be incorporated with relative ease into this framework. Simulations of sliding interfaces are conducted using a 10th order compact finite difference scheme and a Localized Artificial Diffusivity (LAD) scheme for shock and interface capturing. 1D and 2D simulations are used to assess the accuracy of the sliding treatment. The Richmyer-Meshkov instability between copper and aluminum is simulated with this sliding treatment as a demonstration test case. Support for this work was provided through Grant B612155 from the Lawrence Livermore National Laboratory, US Department of Energy.

  6. Management of radioactive wastes (solids and liquids) of CDTN

    International Nuclear Information System (INIS)

    Prado, M.A.S. do; Reis, L.C.A.

    1984-01-01

    Estimates of solid and liquid radioactive wastes produced in CDTN, the foreseen treatment and the responsibilities of various organs of CDTN involved in radioactive waste management are presented. (C.M.)

  7. Radial restricted solid-on-solid and etching interface-growth models

    Science.gov (United States)

    Alves, Sidiney G.

    2018-03-01

    An approach to generate radial interfaces is presented. A radial network recursively obtained is used to implement discrete model rules designed originally for the investigation in flat substrates. I used the restricted solid-on-solid and etching models as to test the proposed scheme. The results indicate the Kardar, Parisi, and Zhang conjecture is completely verified leading to a good agreement between the interface radius fluctuation distribution and the Gaussian unitary ensemble. The evolution of the radius agrees well with the generalized conjecture, and the two-point correlation function exhibits also a good agreement with the covariance of the Airy2 process. The approach can be used to investigate radial interfaces evolution for many other classes of universality.

  8. [Amylase production by Aureobasidium pullulans in liquid and solid media].

    Science.gov (United States)

    Lodato, P B; Forchiassin, F; Segovia de Huergo, M B

    1997-01-01

    Amylase production by a strain of Aureobasidium pullulans isolated in the laboratory was evaluated in liquid media (complex and synthetic) and in solid medium (wheat bran). There was an inhibitory effect in amylase production or amylase secretion by glucose. Asparagine was the best nitrogen source for amylase production (4-6 g/l). Only chlamidospores and melanin but not, amylase activity, were obtained with ammonium sulfate. Amylase production in solid culture was higher than the production obtained in the liquid media assayed. Optimum initial moisture content in solid culture ranged between 57 and 74%. No difference was observed in amylase production between solid media inoculated with cells grown in liquid or solid media.

  9. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  10. Friction mechanisms and interfacial slip at fluid-solid interfaces

    CERN Document Server

    Leger, L

    2003-01-01

    We present series of experiments based on near field laser velocimetry, developed to characterize the friction mechanisms at fluid-solid interfaces. For polymers, entangled polymer melts are sheared against smooth solid surfaces, covered by surface attached polymer chains of the same chemical species, having a controlled surface density. Direct measurements of the interfacial velocity and of the shear force allow identification of the molecular mechanisms of friction. Depending on the value of the inverse of the shear rate experienced by the polymer compared to the reptation time, the transition between a regime of high and a regime of low friction observed when increasing the shear rate can be related to disentanglement or to the extraction of the surface chains from the bulk polymer. Surfaces with adjusted friction properties can thus be designed by choosing chain anchored length and surface density. For simple fluids, the direct measurements of the interfacial velocity show that, contrary to the usual hypo...

  11. Solid-Liquid and Liquid-Liquid Equilibrium in the Formamide-Acetophenone System.

    Czech Academy of Sciences Publication Activity Database

    Malijevská, I.; Sedláková, Zuzana; Řehák, K.; Vrbka, P.

    2006-01-01

    Roč. 71, 9 (2006) , s. 1350-1358 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z40720504 Keywords : solid-liquid equilibria * liquid-liquid equilibria * metastable Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.881, year: 2006

  12. Dewetting of low-viscosity films at solid/liquid interfaces.

    Science.gov (United States)

    Péron, Nicolas; Brochard-Wyart, Françoise; Duval, Hervé

    2012-11-13

    We report new experimental results on the dewetting of a mercury film (A) intercalated between a glass slab and an external nonmiscible liquid phase (B) under conditions of a large equilibrium contact angle. The viscosity of the external phase, ηB, was varied over 7 orders of magnitude. We observe a transition between two regimes of dewetting at a threshold viscosity of η(B)* ≈ (ρ(A)e|S̃|)(1/2), where ρ(A) is the mercury density, e is the film thickness, and |S̃| is the effective spreading coefficient. For η(B) dewetting is constant and ruled by Culick’s law, V ≈ (|S̃|/(ρ(A)e))(1/2). Capillary waves were observed at high dewetting velocities: they are a signature of hydraulic shock. For η(B) > η(B)*, the regime is viscous. The dewetting velocity is constant and scales as V ≈ |S̃|/η(B) in the limit of large η(B). We interpret this regime by a balance between the surface energy released during dewetting and the viscous dissipation in the surrounding liquid.

  13. Interactions of PAMAM dendrimers with SDS at the solid-liquid interface.

    Science.gov (United States)

    Arteta, Marianna Yanez; Eltes, Felix; Campbell, Richard A; Nylander, Tommy

    2013-05-14

    This work addresses structural and nonequilibrium effects of the interactions between well-defined cationic poly(amidoamine) PAMAM dendrimers of generations 4 and 8 and the anionic surfactant sodium dodecyl sulfate (SDS) at the hydrophilic silica-water interface. Neutron reflectometry and quartz crystal microbalance with dissipation monitoring were used to reveal the adsorption from premixed dendrimer/surfactant solutions as well as sequential addition of the surfactant to preadsorbed layers of dendrimers. PAMAM dendrimers of both generations adsorb to hydrophilic silica as a compact monolayer, and the adsorption is irreversible upon rinsing with salt solution. SDS adsorbs on the dendrimer layer and at low bulk concentrations causes the expansion of the dendrimer layers on the surface. When the bulk concentration of SDS is increased, the surfactant layer consists of aggregates or bilayer-like structures. The adsorption of surfactant is reversible upon rinsing, but slight changes of the structure of the preadsorbed PAMAM monolayer were observed. The adsorption from premixed solutions close to charge neutrality results in thick multilayers, but the surface excess is lower when the bulk complexes have a net negative charge. A critical examination of the pathway of adsorption for the interactions of SDS with preadsorbed PAMAM monolayers and premixed PAMAM/SDS solutions with hydrophilic silica revealed that nonequilibrium effects are important only in the latter case, and the application of a thermodynamic model to such experimental data would be inappropriate.

  14. Highly Adaptive Solid-Liquid Interfacing Triboelectric Nanogenerator for Harvesting Diverse Water Wave Energy.

    Science.gov (United States)

    Zhao, Xue Jiao; Kuang, Shuang Yang; Wang, Zhong Lin; Zhu, Guang

    2018-05-22

    Harvesting water wave energy presents a significantly practical route to energy supply for self-powered wireless sensing networks. Here we report a networked integrated triboelectric nanogenerator (NI-TENG) as a highly adaptive means of harvesting energy from interfacing interactions with various types of water waves. Having an arrayed networking structure, the NI-TENG can accommodate diverse water wave motions and generate stable electric output regardless of how random the water wave is. Nanoscaled surface morphology consisting of dense nanowire arrays is the key for obtaining high electric output. A NI-TENG having an area of 100 × 70 mm 2 can produce a stable short-circuit current of 13.5 μA and corresponding electric power of 1.03 mW at a water wave height of 12 cm. This merit promises practical applications of the NI-TENG in real circumstances, where water waves are highly variable and unpredictable. After energy storage, the generated electric energy can drive wireless sensing by autonomously transmitting data at a period less than 1 min. This work proposes a viable solution for powering individual standalone nodes in a wireless sensor network. Potential applications include but are not limited to long-term environment monitoring, marine surveillance, and off-shore navigation.

  15. The impact of intramolecular π-coupling and steric flexibility on the ordering of organic films at solid/liquid-interfaces

    Science.gov (United States)

    Saracino, Martino; Breuer, Stephan; Barati, Gholamreza; Sak, Emilia; Hingerl, Kurt; Müller, Ute; Müller, Manfred; Höger, Sigurd; Wandelt, Klaus

    2013-01-01

    In the present work the effect of the intramolecular steric flexibility on the structural self-assembly of organic cations and their redox activity at a chloride precovered Cu(100) electrode is investigated. In particular the adsorption of 1,1‧-dibenzyl-4,4‧-(propane-1,3-diyl)dipyridinium (C3-DBDP) is studied by means of cyclic voltametry (CV), in situ scanning tunneling microscopy (EC-STM) and ex situ X-ray photoelectron spectroscopy (XPS) and the experimental results are compared to previously published findings on related bipyridinium (“viologen”) molecules. The CV measurements reveal a loss of the redox activity of the more flexible C3-DBDP2 + compared to dibenzylviologen (DBV2 +), as the first electron reduction step of C3-DBDP2 + does not appear within the potential window of the Cu(100), but is shifted below the hydrogen evolution regime. This reduced redox activity is the result of the lifting of the extended π-system of the bipyridinium core by introducing the propyl chain between the two pyridinium rings. In agreement with this result, XP spectra prove that the C3-DBDP2 + cations retain their initial dicationic charge within the entire potential window in solution but also upon adsorption on the Cl-c(2x2)/Cu(100) substrate, where they are found to form an inter-linked stripe phase. The building blocks of each stripe are attributed to one pyridinium-benzyl moiety, which represents half of one C3-DBDP2 + molecule. The resulting consecutive arrangement of half C3-DBDP2 + molecules along one stripe is stabilized by electrostatic attraction between the positively charged pyridinium rings and the negatively charged π-system of the benzyl rings.

  16. Detailed simulations of liquid and solid-liquid mixing : Turbulent agitated flow and mass transfer

    NARCIS (Netherlands)

    Hartmann, H.

    2005-01-01

    This thesis aims at a contribution to reliable and accurate predictions of complex, multi-phase processes. The reader is presented detailed simulations on liquid and solid-liquid mixing using large eddy simulations (LES) including scalar mixing and particle transport in a Rushton turbine stirred

  17. Effect of solid-meal caloric content on gastric emptying kinetics of solids and liquids.

    Science.gov (United States)

    Urbain, J L; Siegel, J A; Mortelmans, L; van Cutsem, E; van den Maegdenbergh, V; de Roo, M

    1989-08-01

    In this study, we have evaluated the effect of the caloric content of a physiological test meal on the gastric emptying kinetics of solids and liquids. 22 healthy male volunteers were studied in two groups matched for age. After an overnight fast, each volunteer underwent the same test procedure; in the first group (G I), 10 volunteers received a meal consisting of bread, 111In-DTPA water and 1 scrambled egg labeled with 99mTc-labelled sulphur colloid; in the second group (G II) 12 volunteers were given the same meal but with 2 labeled eggs in order to increase the caloric content of the solid phase meal. Simultaneous anterior and posterior images were recorded using a dual-headed gamma camera. Solid and liquid geometric mean data were analyzed to determine the lag phase, the emptying rate and the half-emptying time for both solids and liquids. Solid and liquid gastric half-emptying times were significantly prolonged in G II compared to G I volunteers. For the solid phased, the delay was accounted for by a longer lag phase and a decrease in the equilibrium emptying rate. The emptying rate of the liquid phase was significantly decreased in G II compared to G I. Within each group, no statistically significant difference was observed between solid and liquid emptying rates. We conclude that the caloric content of the solid portion of a meal not only alters the emptying of the solid phase but also affects the emptying of the liquid component of the meal.

  18. Effect of solid-meal caloric content on gastric emptying kinetics of solids and liquids

    International Nuclear Information System (INIS)

    Urbain, J.L.; Mortelmans, L.; Cutsem, E. van; Maegdenbergh, V. van den; Roo, M. de

    1989-01-01

    In this study, we have evaluated the effect of the caloric content of a physiological test meal on the gastric emptying kinetics of solids and liquids. 22 healthy male volunteers were studied in two groups matched for age. After an overnight fast, each volunteer underwent the same test procedure; in the first group (G I), 10 volunteers received a meal consisting of bread, 111 In-DTPA water and 1 scrambled egg labeled with 99m Tc-labelled sulphur colloid; in the second group (G II) 12 volunteers were given the same meal but with 2 labeled eggs in order to increase the caloric content of the solid phase meal. Simultaneous anterior and posterior images were recorded using a dual-headed gamma camera. Solid and liquid geometric mean data were analyzed to determine the lag phase, the emptying rate and the half-emptying time for both solids and liquids. Solid and liquid gastric half-emptying times were significantly prolonged in G II compared to G I volunteers. For the solid phased, the delay was accounted for by a longer lag phase and a decrease in the equilibrium emptying rate. The emptying rate of the liquid phase was significantly decreased in G II compared to G I. Within each group, no statistically significant difference was observed between solid and liquid emptying rates. We conclude that the caloric content of the solid portion of a meal not only alters the emptying of the solid phase but also affects the emptying of the liquid component of the meal. (orig.) [de

  19. Characterization of the liquid Li-solid Mo (1 1 0) interface from classical molecular dynamics for plasma-facing applications

    Science.gov (United States)

    Vella, Joseph R.; Chen, Mohan; Fürstenberg, Sven; Stillinger, Frank H.; Carter, Emily A.; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.

    2017-11-01

    An understanding of the wetting properties and a characterization of the interface between liquid lithium (Li) and solid molybdenum (Mo) are relevant to assessing the efficacy of Li as a plasma-facing component in fusion reactors. In this work, a new second-nearest neighbor modified embedded-atom method (2NN MEAM) force field is parameterized to describe the interactions between Li and Mo. The new force field reproduces several benchmark properties obtained from first-principles quantum mechanics simulations, including binding curves for Li at three different adsorption sites and the corresponding forces on Li atoms adsorbed on the Mo (1 1 0) surface. This force field is then used to study the wetting of liquid Li on the (1 1 0) surface of Mo and to examine the Li-Mo interface using molecular dynamics simulations. From droplet simulations, we find that liquid Li tends to completely wet the perfect Mo (1 1 0) surface, in contradiction with previous experimental measurements that found non-zero contact angles for liquid Li on a Mo substrate. However, these experiments were not carried out under ultra-high vacuum conditions or with a perfect (1 1 0) Mo surface, suggesting that the presence of impurities, such as oxygen, and surface structure play a crucial role in this wetting process. From thin-film simulations, it is observed that the first layer of Li on the Mo (1 1 0) surface has many solid-like properties such as a low mobility and a larger degree of ordering when compared to layers further away from the surface, even at temperatures well above the bulk melting temperature of Li. These findings are consistent with temperature-programmed desorption experiments.

  20. Anaerobic treatment of solid and liquid residues. Papers

    International Nuclear Information System (INIS)

    Maerkl, H.; Stegmann, R.

    1994-01-01

    Anaerobic processes are getting increasing attention in the disposal of liquid waste of the food industry and chemical industry and solid organic residues of the municipal sector. The main advantages of anaerobic processes are the favourable energy balance and the comparatively small volume of new biomass produced. There are new satisfactory technical solutions for nearly all problems encountered in practice. A conference on ''Anaerobic treatment of solid and liquid residues'' was held on 2-4 November 1994. The state of the art and new developments were presented in lectures by experts from research and practice. (orig.) [de

  1. Contribution to the study of sorption mechanisms at solid-liquid interfaces: application to the cases of apatites and oxy-hydroxides; Contribution a l'etude des mecanismes de sorption aux interfaces solide-liquide: application aux cas des apatites et des oxy-hydroxydes

    Energy Technology Data Exchange (ETDEWEB)

    Duc, M

    2002-11-15

    Sorption-desorption phenomena play an important role in the transport of toxic and radioactive elements in surface and underground water in contact with solid matter. Selenium, which is one of the long-lived radionuclides present in radioactive waste, is characterized by several oxidation states and by anionic species in aqueous solutions. In order to predict its transport, we need a good knowledge of its sorption processes. We have studied the sorption of Se(IV) and Se(VI) on two types of solids present in natural media or which have been proposed as additives to active barriers: hydroxy-apatites, fluoro-apatite and iron oxi-hydroxides (goethite and hematite). Sorption mechanisms have been studied through an approach including several different and complementary methods: titrimetry, zeta-metry, scanning and transmission electron microscopy, infrared spectroscopy, X-ray diffraction, X-ray photo electron spectroscopy, etc... Results showed that Se(VI) is much less sorbed than Se(VI) on both types of solids. For Se(IV) the sorption mechanisms are different for iron oxides and apatites. On oxides, sorption increases when pH decreases. It can be interpreted by a surface complexation model, essentially through an inner sphere complex (monodentate or bidentate). Modelling of Se sorption curves was performed after the determination of acido-basic properties of oxides. However, the determination of the intrinsic properties of oxides is disturbed by several parameters identified as impurities, evolution of the solid in solution, kinetic and solubility of the solid. For apatites, selenium sorption proceeds by exchange with superficial groups, with a maximum of fixation at approximately pH 8. Thanks to XPS measurements and the elaboration of a mathematical model, we could determine the depth of penetration of both selenium and cadmium on apatites. (author)

  2. Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami.

    Science.gov (United States)

    Ariga, Katsuhiko; Mori, Taizo; Nakanishi, Waka; Hill, Jonathan P

    2017-09-13

    The investigation of molecules and materials at interfaces is critical for the accumulation of new scientific insights and technological advances in the chemical and physical sciences. Immobilization on solid surfaces permits the investigation of different properties of functional molecules or materials with high sensitivity and high spatial resolution. Liquid surfaces also present important media for physicochemical innovation and insight based on their great flexibility and dynamicity, rapid diffusion of molecular components for mixing and rearrangements, as well as drastic spatial variation in the prevailing dielectric environment. Therefore, a comparative discussion of the relative merits of the properties of materials when positioned at solid or liquid surfaces would be informative regarding present-to-future developments of surface-based technologies. In this perspective article, recent research examples of nanoarchitectonics, molecular machines, DNA nanotechnology, and DNA origami are compared with respect to the type of surface used, i.e. solid surfaces vs. liquid surfaces, for future perspectives of interfacial physics and chemistry.

  3. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Heat transfer on the liquid-liquid interface between molten core pool and coolant. JAERI's nuclear research promotion program, H10-027-6. Contract research

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Saito, Yasushi

    2002-03-01

    Heat transfer experiments under steady and transient conditions were performed using molten Wood's metal and distilled water to study heat transfer on the liquid-liquid interface between molten fuel pool and coolant under severe accident conditions. In the steady state experiment, boiling curve was measured over the range from natural convection region to film boiling region. The boiling behavior was observed using a high-speed video camera. In the transient experiment, distilled water was poured onto the hot molten metal surface, and the boiling curve was obtained in the cooling process. Comparing the measured boiling curve with existing correlations and experimental data for solid-liquid and liquid-liquid systems, the following conclusions were drawn: (a) When the interface surge is negligible and oxide layer is formed on the interface, the boiling curve at the liquid-liquid surface could be approximately reproduced by the heat transfer correlations for nucleate boiling and film boiling regions and the critical heat flux correlation for a liquid-solid system. (b) When no oxide layer is formed on the interface, the boiling curve at the liquid-liquid surface moved towards higher wall superheat than that at the liquid-solid surface, as Novakovic et al. observed in their experiment using mercury. (c) Transient heat transfer coefficient for film boiling at the liquid-liquid surface was about 100% higher than that predicted by the heat transfer correlation for a solid-liquid system. (author)

  4. Pressure and surface tension of soild-liquid interface using Tarazona density functional theory

    Directory of Open Access Journals (Sweden)

    M. M.

    2000-12-01

    Full Text Available   The weighted density functional theory proposed by Tarazona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this resarch we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is plotted in three dimensions. We also calculate the pressure and compare it with the Carnahan-starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation.

  5. Solids, liquids, and gases under high pressure

    Science.gov (United States)

    Mao, Ho-Kwang; Chen, Xiao-Jia; Ding, Yang; Li, Bing; Wang, Lin

    2018-01-01

    Pressure has long been recognized as a fundamental thermodynamic variable but its application was previously limited by the available pressure vessels and probes. The development of megabar diamond anvil cells and a battery of associated in-laboratory and synchrotron techniques at the turn of the century have opened a vast new window of opportunities. With the addition of the pressure dimension, we are facing a new world with an order of magnitude more materials to be discovered than all that have been explored at ambient pressure. Pressure drastically and categorically alters all elastic, electronic, magnetic, structural, and chemical properties, and pushes materials across conventional barriers between insulators and superconductors, amorphous and crystalline solids, ionic and covalent compounds, vigorously reactive and inert chemicals, etc. In the process, it reveals surprising high-pressure physics and chemistry and creates novel materials. This review describes the principles and methodology used to reach ultrahigh static pressure: the in situ probes, the physical phenomena to be investigated, the long-pursued goals, the surprising discoveries, and the vast potential opportunities. Exciting examples include the quest for metallic hydrogen, the record-breaking superconducting temperature of 203 K in HnS , the complication of "free-electron gas" alkali metals, the magnetic collapse in 3 d transition elements, the pressure-induced superconductivity from topological insulators, the novel stoichiometry in simple compounds, the interaction of nanoscience, the accomplishment of 750 GPa pressure, etc. These highlights are the integral results of technological achievements, specific measurements, and theoretical advancement; therefore, the same highlights will appear in different sections corresponding to these different aspects. Overall, this review demonstrates that high-pressure research is a new dimension in condensed-matter physics.

  6. Redox process at solid-liquid interfaces: studies with thin layers of green rusts electrodeposited on inert substrates

    International Nuclear Information System (INIS)

    Peulon, S.; Taghdai, Y.; Mercier, F.; Barre, N.; Legrand, L.; Chauss, A.

    2005-01-01

    Full text of publication follows: The redox reactions which can occur between radioelements and natural phases in the environment are taken still little into account although their importance is established on natural sites; the consequences are significant since they can modify radically the behaviour of the species by increasing or decreasing their migration. The iron compounds are very implicated in these redox processes because iron is one of the most abundant element on earth; moreover, it is also present in the containers used for the storage of the nuclear waste. We exhibited in previous works that electrochemistry is a convenient way to generate the main iron oxidation compounds as thin layers on different inert substrates. The electrochemical behaviour of these deposits that are adherent, homogeneous and well crystallized [1-3], was investigated with the principle advantage that iron metal and its reactivity is eliminate. Moreover, they could be analysed directly by techniques like IRRAS, XRD, SEM, EDS and XPS without any preparation. In the present study, we develop an original way to investigate redox processes at solid-liquid interfaces based on the utilisation of these thin layers; the samples are more commonly powders and/or pieces of corroded steel in the literature. Results obtained with two different systems, chromate and uranyl ions, in interaction with thin layers of sulfated green rusts are presented. Green rusts is chosen because it is a mixed Fe(II-III) compound which could be formed in anoxic conditions like in the case of the storage of the nuclear waste. After various contact times with the solutions containing the reactive species, the thin layers are characterised by different ex-situ methods. The results show clearly the oxidation of the green rust into a Fe(III) compound and the formation of a new solid phase on the electrode due to the reduction and the precipitation of the reactive species present initially in solution. Because thin

  7. Liquid-solid interface project in nuclear engineering. Systematization of sorption theory in heterogeneous surface and it's application to radioactive waste disposal. JAERI's nuclear research promotion program, H10-032. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Satoru [Tokyo Univ., Graduate School of Engineering, Tokyo (Japan)

    2002-03-01

    Combining of the In-Situ and Ex-situ experiments with quantum chemical calculation, we can draw the following conclusions on the sorption at heterogeneous interfaces, based on the structure of solid surfaces and the profile of charge/electron at surface: (1) Redox sensitive species Np(V) is reduced to Np(IV) by Fe(II) contained in iron oxides. (2) Interactions of ions with C-S-H gels, which is a main component of cementitious materials, consist of replacement of Ca, association with Si and ion exchange. (3) Iodate ions adsorb on the two kinds of sorption sites located on the outer surface of hydrotalcite. (4) Interaction potential between particles and solid surfaces decrease due to the microscopic roughness of solid surface and localized distribution of charge on the surface, leading to the increase in the deposition of particles. (5) Some information on the association situation of water molecules on the metal oxides are obtained. These results suggests that the microscopic heterogeneity of solid surfaces facilities the interaction of ions and particles with solid surfaces. These phenomena can not be explained by the conventional sorption theory. We have to develop the sorption theory by considering the interactions from the microscopic point of view. (author)

  8. Liquid-solid interface project in nuclear engineering. Systematization of sorption theory in heterogeneous surface and it's application to radioactive waste disposal. JAERI's nuclear research promotion program, H10-032. Contract research

    International Nuclear Information System (INIS)

    Tanaka, Satoru

    2002-03-01

    Combining of the In-Situ and Ex-situ experiments with quantum chemical calculation, we can draw the following conclusions on the sorption at heterogeneous interfaces, based on the structure of solid surfaces and the profile of charge/electron at surface: (1) Redox sensitive species Np(V) is reduced to Np(IV) by Fe(II) contained in iron oxides. (2) Interactions of ions with C-S-H gels, which is a main component of cementitious materials, consist of replacement of Ca, association with Si and ion exchange. (3) Iodate ions adsorb on the two kinds of sorption sites located on the outer surface of hydrotalcite. (4) Interaction potential between particles and solid surfaces decrease due to the microscopic roughness of solid surface and localized distribution of charge on the surface, leading to the increase in the deposition of particles. (5) Some information on the association situation of water molecules on the metal oxides are obtained. These results suggests that the microscopic heterogeneity of solid surfaces facilities the interaction of ions and particles with solid surfaces. These phenomena can not be explained by the conventional sorption theory. We have to develop the sorption theory by considering the interactions from the microscopic point of view. (author)

  9. Modeling the liquid-liquid interface and the transfer of a solute by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Hayoun, Marc

    1990-11-01

    Molecular Dynamics method and Lennard-Jones potential functions have been employed to model Liquid-Liquid Interfaces. The variation of the miscibilities between the two liquids is obtained by changing the interaction between the two atomic species. The resulting interfaces have a thickness of about three atomic diameters and are stable on the time scale of the simulation. They have been characterized by the density and pressure profiles. The interfacial tension has also been computed and is of the order of magnitude of experimental values. The diffusion process is anisotropic in the interfacial region: the transverse diffusion coefficient (parallelly to the interface) is higher than the normal one. A qualitative explanation of this behaviour is suggested by considering the pressure tensor. The second part of this work, performed by Molecular Dynamics in the canonical ensemble, is devoted to the kinetic study of the transfer of a solute through the interface. A model of a symmetric interface with an atomic solute has been used. The interaction potential between the solute and the solvents has been built in order to obtain an activation barrier to the transfer. We have computed the mean force exerted by the solvent on the solute as a function of its distance to the interface. The resulting mean force potential corresponds to a free energy difference. The height of the energy barrier involved is about 4 kT. The potential energy and entropy profiles have also been calculated and discussed. The diffusion coefficient of the solute has been computed by equilibrium and non-equilibrium methods. We deduced the friction coefficient of the solvent, which is essential to determine the Kramers transmission coefficient. This coefficient is compared to the one obtained by simulation. Finally, the solute transfer rate constant has been calculated. (author) [fr

  10. Proteins at fluid interfaces: adsorption layers and thin liquid films.

    Science.gov (United States)

    Yampolskaya, Galina; Platikanov, Dimo

    2006-12-21

    A review in which many original published results of the authors as well as many other papers are discussed. The structure and some properties of the globular proteins are shortly presented, special accent being put on the alpha-chymotrypsin (alpha-ChT), lysozyme (LZ), human serum albumin (HSA), and bovine serum albumin (BSA) which have been used in the experiments with thin liquid films. The behaviour of protein adsorption layers (PAL) is extensively discussed. The dynamics of PAL formation, including the kinetics of adsorption as well as the time evolution of the surface tension of protein aqueous solutions, are considered. A considerable place is devoted to the surface tension and adsorption isotherms of the globular protein solutions, the simulation of PAL by interacting hard spheres, the experimental surface tension isotherms of the above mentioned proteins, and the interfacial tension isotherms for the protein aqueous solution/oil interface. The rheological properties of PAL at fluid interfaces are shortly reviewed. After a brief information about the experimental methods for investigation of protein thin liquid (foam or emulsion) films, the properties of the protein black foam films are extensively discussed: the conditions for their formation, the influence of the electrolytes and pH on the film type and stability, the thermodynamic properties of the black foam films, the contact angles film/bulk and their dynamic hysteresis. The next center of attention concerns some properties of the protein emulsion films: the conditions for formation of emulsion black films, the formation and development of a dimpling in microscopic, circular films. The protein-phospholipid mixed foam films are also briefly considered.

  11. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter; Maier, Florian, E-mail: florian.maier@fau.de [Lehrstuhl für Physikalische Chemie II, FAU Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen (Germany)

    2016-04-15

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

  12. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    International Nuclear Information System (INIS)

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter; Maier, Florian

    2016-01-01

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

  13. Temperature-induced changes in polyelectrolyte films at the solid-liquid interface

    International Nuclear Information System (INIS)

    Steitz, R.; Leiner, V.; Tauer, K.; Khrenov, V.; Klitzing, R. v.

    2002-01-01

    Polyelectrolyte multilayers (film thickness 30-60 nm) were built on top of silicon substrates by layer-by-layer deposition of oppositely charged polyelectrolytes from aqueous solutions. Three kinds of films were investigated: (A) films of a homo-polyelectrolyte and a diblock copolymer with a thermosensitive poly(N-isopropyl-acrylamide) block and (B) and (C) two reference systems built solely from homo-polyelectrolytes of opposite charges. Thermal behavior and subsequent structural changes of the functionalized films against D 2 O were investigated by neutron reflectometry. All films showed irreversible annealing effects upon heating. In addition, the thermosensitive films showed a decrease in thickness at elevated temperature (>30 C) while the reference samples, composed of thermo-insensitive polyelectrolytes only, did not. (orig.)

  14. Surface induced ordering of micelles at the solid-liquid interface

    International Nuclear Information System (INIS)

    Gerstenberg, M.C.; Pedersen, J.S.; Smith, G.S.

    1998-01-01

    The surface induced ordering of triblock copolymer micelles in aqueous solution was measured with neutron reflectivity far above the critical micelle concentration. The scattering length density profiles showed a clear indication of ordered layers of micelles perpendicular to a quartz surface. The structure and interactions of the micelles were modeled in detail. The convolution of the center distribution of the micelles, obtained from Monte Carlo simulations of hard spheres at a hard wall, and the projected density of the micelle showed excellent agreement with the experimental profiles. copyright 1998 The American Physical Society

  15. Surface induced ordering of micelles at the solid-liquid interface

    DEFF Research Database (Denmark)

    Gerstenberg, M.C.; Pedersen, J.S.; Smith, G.S.

    1998-01-01

    The surface induced ordering of triblock copolymer micelles in aqueous solution was measured with neutron reflectivity far above the critical micelle concentration. The scattering length density profiles showed a clear indication of ordered layers of micelles perpendicular to a quartz surface....... The structure and interactions of the micelles were modeled in detail. The convolution of the center distribution of the micelles, obtained from Monte Carlo simulations of hard spheres at a hard wall, and the projected density of the micelle showed excellent agreement with the experimental profiles. [S1063-651X...

  16. Elastic properties of liquid and solid argon in nanopores

    International Nuclear Information System (INIS)

    Schappert, Klaus; Pelster, Rolf

    2013-01-01

    We have measured sorption isotherms and determined the intrinsic longitudinal elastic modulus β Ar,ads of nanoconfined material via ultrasonic measurements combined with a special effective medium analysis. In the liquid regime the adsorbate only contributes to the measured effective properties when the pores are completely filled and the modulus is bulklike. At partial fillings its contribution is cancelled out by the high compressibility of the vapour phase. In contrast, at lower temperatures frozen argon as well as underlying liquid surface layers cause a linear increase of the effective longitudinal modulus upon filling. During sorption the contribution of the liquid surface layers near the pore wall β Ar,surf increases with the thickness of the solid layers reaching the bulk value β Ar,liquid only in the limit of complete pore filling. We interpret this effect as due to the gradual stiffening of the solid argon membrane. The measurements and their analysis show that longitudinal ultrasonic waves are well suited to the study of the elastic properties and liquid–solid phase transitions in porous systems. This method should also help to detect the influence of nanoconfinement on elastic properties in further research. (paper)

  17. Gastric emptying of solids and liquids in obesity.

    Science.gov (United States)

    Glasbrenner, B; Pieramico, O; Brecht-Krauss, D; Baur, M; Malfertheiner, P

    1993-07-01

    The purpose of this study was to determine whether obese patients have different rates of solid and liquid gastric emptying compared to healthy controls. Twenty-four obese patients (7 males, 17 females) were investigated prior to dietary restriction. The patients had a weight excess above ideal weight ranging from 25% to 216% (mean weight 118.1 +/- 6.5 kg). The control group consisted of 8 healthy subjects (4 males, 4 females), within 10% of the ideal weight. The solid phase of the test meal consisted of 40 g bread, 30 g ham, 10 g margarine, and two scrambled eggs labeled with 99mTc. For the liquid phase, 200 ml orange juice was labeled with 201Tl. Three-minute counts of both tracers were taken for 106 min using a large field-of-view gamma camera. In obese patients, a significantly shortened lag phase for the emptying of solids was observed (27.0 +/- 3.3 versus 38.4 +/- 4.1 min; P < 0.05). Half-emptying time (105.9 +/- 6.7 versus 100.7 +/- 5.7 min), emptying rate (0.60 +/- 0.04 versus 0.71 +/- 0.07%/min), and total emptying of solids (49.4 +/- 3.6 versus 50.5 +/- 5.0%) were not different from controls. Obese subjects had a trend to slowed liquid emptying (half-time 82.7 +/- 4.8 versus 69.9 +/- 6.9 min; emptying rate 0.59 +/- 0.03 versus 0.65 +/- 0.03%/min; total emptying 59.8 +/- 2.9 versus 66.0 +/- 3.3%), but this was not statistically significant. There was no correlation between weight or body surface area and rate of solid or liquid gastric emptying.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Industrial solid and liquid waste treatment processes; Les procedes de traitement des dechets industriels solides et liquides

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-11-01

    This catalogue gives information on 68 chemical, mechanical, magnetic, electrical, thermal, etc. techniques for the processing of solid, viscous and liquid, common or special, industrial wastes. The various processes are presented as files, which are easily retrievable through keywords, waste type or industry codes, processing types, distributors. Technologies, performances and applications of each techniques are presented, together with references and company contacts

  19. Macromolecular sensing at the liquid-liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Gregoire; Flynn, Shane [Tyndall National Institute, Lee Maltings, University College, Cork (Ireland); Arrigan, Damien W M, E-mail: gregoire.herzog@tyndall.ie [Nanochemistry Research Institute, Department of Chemistry, Curtin University, Perth (Australia)

    2011-08-17

    We report here the electrochemical sensing of macromolecules, such as polyLysine dendrimers, at the polarised liquid | liquid interface. Electrochemistry at the liquid | liquid interface is a powerful analytical technique which allows the detection of non-redox active molecules via ion transfer reactions at a polarised water - oil interface. We demonstrate here that different parameters of the polyLysine dendrimers (charge number, molecular weight) have a strong influence on the sensitivity and limit of detection of these macromolecules. This work will help to the development of sensors based on charge transfer at the liquid | liquid interface.

  20. Macromolecular sensing at the liquid-liquid interface

    International Nuclear Information System (INIS)

    Herzog, Gregoire; Flynn, Shane; Arrigan, Damien W M

    2011-01-01

    We report here the electrochemical sensing of macromolecules, such as polyLysine dendrimers, at the polarised liquid | liquid interface. Electrochemistry at the liquid | liquid interface is a powerful analytical technique which allows the detection of non-redox active molecules via ion transfer reactions at a polarised water - oil interface. We demonstrate here that different parameters of the polyLysine dendrimers (charge number, molecular weight) have a strong influence on the sensitivity and limit of detection of these macromolecules. This work will help to the development of sensors based on charge transfer at the liquid | liquid interface.

  1. Qualitative Reliability Issues for Solid and Liquid Wall Fusion Design

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles

    2001-01-01

    This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features.

  2. Qualitative Reliability Issues for Solid and Liquid Wall Fusion Designs

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    2001-01-31

    This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features.

  3. Qualitative Reliability Issues for Solid and Liquid Wall Fusion Designs

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    2001-01-01

    This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features

  4. Solid/liquid interfacial free energies in binary systems

    Science.gov (United States)

    Nason, D.; Tiller, W. A.

    1973-01-01

    Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.

  5. Hydrodynamic instability induced liquid--solid contacts in film boiling

    International Nuclear Information System (INIS)

    Yao, S.; Henry, R.E.

    1976-01-01

    The film boiling liquid-solid contacts of saturated ethanol and water to horizontal flat gold plated copper are examined by using electric conductance probe. It is observed that the liquid-solid contacts occur over a wide temperature range, and generally, induced by hydrodynamic instabilities. The area of contact decreases exponentially with interface temperature and is liquid depth dependent. The averaged duration of contacts is strongly influenced by the dominant nucleation process, and thus, depends on the interface temperature and the wettability of the solid during the contact. The frequency of major contacts is about 1.5 times the bubble detaching frequency. It is found that the liquid-solid contacts may account for a large percentage of the film boiling heat transfer near the low temperature end of film boiling and decreases as the interface temperature increases

  6. Experimental verification of agreement between thermal and real time visual melt-solid interface positions in vertical Bridgman grown germanium

    Science.gov (United States)

    Barber, P. G.; Fripp, A. L.; Debnam, W. J.; Woodell, G.; Berry, R. F.; Simchick, R. T.

    1996-03-01

    Measurements of the liquid-solid interface position during crystal growth were made by observing the discontinuity of the temperature gradient with movable thermocouples in a centerline, quartz capillary placed inside a sealed quartz ampoule of germanium in a vertical Bridgman furnace. Simultaneously, in situ, real time visual observations, using X-ray imaging technology, determined the position of the melt-solid interface. The radiographically detected interface position was several millimeters from the thermal interface position and the direction of displacement depended upon the direction of thermocouple insertion. Minimization of this spurious heat flow was achieved by using an unclad thermocouple that had each of its two wire leads entering the capillary from different ends of the furnace. Using this configuration the visual interface coincided with the thermal interface. Such observations show the utility of using in situ, real time visualization to record the melt-solid interface shape and position during crystal growth; and they suggest improvements in furnace and ampoule designs for use in high thermal gradients.

  7. Layered interfaces between immiscible liquids studied by density-functional theory and molecular-dynamics simulations.

    Science.gov (United States)

    Geysermans, P; Elyeznasni, N; Russier, V

    2005-11-22

    We present a study of the structure in the interface between two immiscible liquids by density-functional theory and molecular-dynamics calculations. The liquids are modeled by Lennard-Jones potentials, which achieve immiscibility by suppressing the attractive interaction between unlike particles. The density profiles of the liquids display oscillations only in a limited part of the simple liquid-phase diagram (rho,T). When approaching the liquid-vapor coexistence, a significant depletion appears while the layering behavior of the density profile vanishes. By analogy with the liquid-vapor interface and the analysis of the adsorption this behavior is suggested to be strongly related to the drying transition.

  8. Photodetachment in the gaseous, liquid, and solid states of matter

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Datskos, P.G.; Faidas, H.

    1994-01-01

    We have made absolute cross section measurements of laser photodetachment of C 6 F - 6 ions embedded in gaseous tetramethylsilane (TMS) and compared the results at low gas densities with measurements in nonpolar liquids and solids. The measurements indicate that the photodetachment cross section of C 6 F - 6 in gaseous TMS is about three times larger than in liquid TMS. This is rationalized by considering the effect of the medium on both the photoabsorption and the autodetachment processes. The photodetachment cross section in both the gas and the liquid exhibits (at least) two maxima due to autodetaching negative ion states. It is argued that these are due to σ*→σ* transitions in C 6 F - 6 . The relative positions of these ''superexcited'' anionic states did not change appreciably in going from the gas to the liquid and the solid, indicating similar influences of the medium on them. As expected, the photodetachment threshold in the condensed phase is shifted to higher energies compared to the gaseous phase. This shift is consistent with recent photoelectron studies of photodetachment of C 6 F - 6 clusters. The present study clearly shows that the photodetachment from negative ions embedded in all states of matter proceeds directly or indirectly via negative ion autodetaching states, and that for nonpolar media, the effect of the medium can be accounted for by considering the macroscopic properties of the medium described by its dielectric constant ε and refractive index n

  9. Noise and ac impedance analysis of ion transfer kinetics at the micro liquid/liquid interface

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Oksana; Holub, Karel; Mareček, Vladimír

    2015-01-01

    Roč. 56, JUL 2015 (2015), s. 43-45 ISSN 1388-2481 R&D Projects: GA ČR GA13-04630S Institutional support: RVO:61388955 Keywords : noise analysis * liquid/liquid interface * ion transfer kinetics Subject RIV: CG - Electrochemistry Impact factor: 4.569, year: 2015

  10. Comparison between liquid and solid tunable focus lenses

    International Nuclear Information System (INIS)

    Santiago-Alvarado, A; Cruz-Martinez, V M; Vazquez-Montiel, S; Munoz-Lopez, J; Diaz-Gonzalez, G; Campos-Garcia, M

    2011-01-01

    Nowadays more reports in the use of tunable lenses are reported, it is due to the benefits they offer in optical systems design. A tunable lens is an optical system that can focus on a range of positions by changing dynamically one of its geometric parameters. There are several types of tunable lenses, the most known types are the liquid, the solid elastic, with variable refractive index, and lenses that use a dielectric medium. This paper presents the analysis and opto-mechanical design of two tunable lenses, a liquid lens and another Solid Elastic Lens (SEL). Both lenses are made in mounting aluminium and polydimethylsiloxane (PDMS) as refractor medium, the liquid lens use two elastic membranes containing a liquid medium between them while the SEL only use PDMS material as body of the lens (medium refractor). We describe the opto-mechanical performance of both types of lens highlighting the main features of each. Finally, results of a opto-functional comparison between these prototypes are showed.

  11. Low-gravity sensing of liquid/vapor interface and transient liquid flow

    Science.gov (United States)

    Jacobson, Saul A.; Korba, James M.; Lynnworth, Lawrence C.; Nguyen, Toan H.; Orton, George F.

    1987-03-01

    The work reported here deals mainly with tests on internally vaned cylindrical shell acrylic containers capped by hemispherical acrylic or aluminum end domes. Three different ultrasonic sensor techniques and one nucleonic technique presently are evaluated as possible solutions to the low-gravity liquid gauging problem. The ultrasonic techniques are as follows: use of a torsional wave sensor in which transit time is proportional to the integral of wetted distance x liquid density; integration of the flow rate output signal of a fast-response ultrasonic flowmeter; and use of multiplexed externally mounted 'point-sensor' transducers that sense transit times to liquid-gas interfaces. Using two commercial flowmeters and a thickness gauge modified for this particular project, bench tests were conducted at 1 g on liquids such as water, freon, and solvent 140, including both steady flow and pulsating flow with 40, 80, and 120 ms flow pulses. Subsequently, flight tests were conducted in the NASA KC-135 aircraft in which nearly 0-g conditions are obtainable for up to about 5 s in each of a number of repetitive parabolic flight trajectories. In some of these brief low-gravity flight tests freon was replaced with a higher-viscosity fuel to reduce sloshing and thereby obtain settled surfaces more quickly.

  12. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land

    Science.gov (United States)

    Handle, Philip H.; Loerting, Thomas; Sciortino, Francesco

    2017-12-01

    We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water-water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid-liquid transition that could take place in the no-man's land, the temperature-pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form.

  13. Heat-transfer resistance at solid-liquid interfaces: a tool for the detection of single-nucleotide polymorphisms in DNA.

    Science.gov (United States)

    van Grinsven, Bart; Vanden Bon, Natalie; Strauven, Hannelore; Grieten, Lars; Murib, Mohammed; Monroy, Kathia L Jiménez; Janssens, Stoffel D; Haenen, Ken; Schöning, Michael J; Vermeeren, Veronique; Ameloot, Marcel; Michiels, Luc; Thoelen, Ronald; De Ceuninck, Ward; Wagner, Patrick

    2012-03-27

    In this article, we report on the heat-transfer resistance at interfaces as a novel, denaturation-based method to detect single-nucleotide polymorphisms in DNA. We observed that a molecular brush of double-stranded DNA grafted onto synthetic diamond surfaces does not notably affect the heat-transfer resistance at the solid-to-liquid interface. In contrast to this, molecular brushes of single-stranded DNA cause, surprisingly, a substantially higher heat-transfer resistance and behave like a thermally insulating layer. This effect can be utilized to identify ds-DNA melting temperatures via the switching from low- to high heat-transfer resistance. The melting temperatures identified with this method for different DNA duplexes (29 base pairs without and with built-in mutations) correlate nicely with data calculated by modeling. The method is fast, label-free (without the need for fluorescent or radioactive markers), allows for repetitive measurements, and can also be extended toward array formats. Reference measurements by confocal fluorescence microscopy and impedance spectroscopy confirm that the switching of heat-transfer resistance upon denaturation is indeed related to the thermal on-chip denaturation of DNA. © 2012 American Chemical Society

  14. Automated methods for thorium determination in liquids, solids and aerosols

    International Nuclear Information System (INIS)

    Robertson, R.; Stuart, J.E.

    1984-01-01

    Methodology for determining trace thorium levels in a variety of sample types for compliance purposes was developed. Thorium in filtered water samples is concentrated by ferric hydroxide co-precipitation. Aerosols on glass-fibre, cellulose ester or teflon filters are acid digested and thorium is concentrated by lanthanum fluoride co-precipitation. Chemical separation and measurement are then done on a Technicon AAII-C auto-analyzer via TTA-solvent extraction and colorimetry using the thorium-arsenazo III colour complex. Solid samples are acid digested and thorium is concentrated and separated using lanthanum fluoride co-precipitation followed by anion-exchange chromatography. Measurement is then carried out on the autoanalyzer by direct development of the thorium-arsenazo III colour complex. Chemical yields are determined through the addition of thorium-234 tracer with assay by gamma-ray spectrometry. The sensitivities of the methods for liquids, aerosols and solids are approximately 1μg/L,0.5μg and 0.5 μg/g respectively. At thorium levels about ten times the detection limits, accuracy and reproducibility are typically +-10 percent for liquids and aerosols and +- 15 percent for solid samples

  15. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation.

    Science.gov (United States)

    Bigelis, Ramunas; He, Haiyin; Yang, Hui Y; Chang, Li-Ping; Greenstein, Michael

    2006-10-01

    The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A-E when grown on agar bearing moist polyester-cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A-E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester-cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative

  16. Solid-Liquid and Liquid-Liquid Equilibrium in the Ternary System Acetic Acid-Propanoic Acid-Formamide.

    Czech Academy of Sciences Publication Activity Database

    Sedláková, Zuzana; Malijevská, I.

    2007-01-01

    Roč. 261, 1-2 (2007) , s. 129-132 ISSN 0378-3812. [International Conference on Properties and Phase Equilibria for Product and Process Design PPEPPD 2007 /11./. Hersonissos, Crete, 20.05.2007-25.05.2007] Institutional research plan: CEZ:AV0Z40720504 Keywords : solid-liquid equilibrium * ternary system * solid adduct Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.506, year: 2007

  17. Chemical analysis of solid residue from liquid and solid fuel combustion: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Trkmic, M. [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecturek Zagreb (Croatia); Curkovic, L. [University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb (Croatia); Asperger, D. [HEP-Proizvodnja, Thermal Power Plant Department, Zagreb (Croatia)

    2012-06-15

    This paper deals with the development and validation of methods for identifying the composition of solid residue after liquid and solid fuel combustion in thermal power plant furnaces. The methods were developed for energy dispersive X-ray fluorescence (EDXRF) spectrometer analysis. Due to the fuels used, the different composition and the location of creation of solid residue, it was necessary to develop two methods. The first method is used for identifying solid residue composition after fuel oil combustion (Method 1), while the second method is used for identifying solid residue composition after the combustion of solid fuels, i. e. coal (Method 2). Method calibration was performed on sets of 12 (Method 1) and 6 (Method 2) certified reference materials (CRM). CRMs and analysis test samples were prepared in pellet form using hydraulic press. For the purpose of method validation the linearity, accuracy, precision and specificity were determined, and the measurement uncertainty of methods for each analyte separately was assessed. The methods were applied in the analysis of real furnace residue samples. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  19. On the sliding friction at the interface between a fluid and a solid

    International Nuclear Information System (INIS)

    Minetti-Mezzetti, E.

    1976-01-01

    A method is reported to investigate the possible existence and the numerical value of the sliding friction coefficient β at the contact interface between a fluid and a solid. Some preliminary experimental results at the interface glycerol-aluminium give 1/β -4 . (author)

  20. Molecular dynamics simulations of liquid crystals at interfaces

    International Nuclear Information System (INIS)

    Shield, Mark

    2002-01-01

    Molecular dynamics simulations of an atomistic model of 4-n-octyl-4'-cyanobiphenyl (8CB) were performed for thin films of 8CB on solid substrates (a pseudopotential representation of the molecular topography of the (100) crystal surface of polyethylene (PE), a highly ordered atomistic model of a pseudo-crystalline PE surface and an atomistic model of a partially orientated film of PE), free standing thin films of 8CB and 8CB droplets in a hexagonal pit. The systems showed strong homeotropic anchoring at the free volume interface and planar anchoring at the solid interface whose strength was dependent upon the surface present. The free volume interface also demonstrated weak signs of smectic wetting of the bulk. Simulations of thin free standing films of liquid crystals showed the ordered nature of the liquid crystals at the two free volume interfaces can be adopted by the region of liquid crystal molecules between the homeotropic layer at each interface only if there is a certain number of liquid crystal molecules present. The perpendicular anchoring imposed by the free volume interface and the solid interface for the thin films on the solid substrates resulted in some evidence for the liquid crystal director undergoing a continual rotation at low temperatures and a definite discontinuous change at higher temperatures. The liquid crystal alignment imparted by these substrates was found to depend upon the topography of the surface and not the direction of the polymer chains in the substrate. The liquid crystal was found to order via an epitaxy-like mechanism. The perpendicular anchoring results in a drop in the order - disorder transition temperature for the molecules in the region between the homeotropic layer at the free volume interface and the planar layers at the solid interface. An increase in the size of this region does not alter the transition temperature. The shape of the liquid crystal molecules is dependent upon the degree of order and thus the nematic

  1. The influence of a solid and liquid bolus on food-stimulated gastroesophageal reflux

    International Nuclear Information System (INIS)

    Naeser, A.; Behrens, J.K.; Vejen-Christiansen, L.; Funch-Jensen, P.; Thommesen, P.; Aarhus Kommunehospital

    1992-01-01

    Using a radiological method to demonstrate food-stimulated gastroesophageal reflux (GER), a comparative study was carried out employing a solid, already validated bolus versus a liquid one. One hundred and four consecutive patients received both a solid and a liquid bolus in randomized order. GER was observed in 37 (35.6%) patients receiving the solid bolus versus 28 (26.9%) with the liquid one. This means that the solid bolus provokes significantly more reflux (P [de

  2. Effect of T-stress on crack growth along an interface between ductile and elastic solids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2003-01-01

    For crack growth along an interface joining an elastic-plastic solid to an elastic substrate the effect of a non-singular stress component in the crack growth direction in the elastic-plastic solid is investigated. Conditions of small scale yielding are assumed, and due to the mismatch of elastic...

  3. Ion Transfer Voltammetry Associated with Two Polarizable Interfaces Within Water and Moderately Hydrophobic Ionic Liquid Systems

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhou, Min; Zhang, Jingdong

    2013-01-01

    An electrochemical system composed of two polarizable interfaces (the metallic electrode|water and water|ionic liquid interfaces), namely two‐polarized‐interface (TPI) technique, has been proposed to explore the ion transfer processes between water and moderately hydrophobic ionic liquids (W...... to an extremely narrow polarized potential window (ppw) caused by these moderately hydrophobic ionic components. In this article, we show that TPI technique has virtually eliminated the ppw limitation based on a controlling step of concentration polarization at the electrode|water interface. With the aid...

  4. Treatment and conditioning of solid and liquid raw

    International Nuclear Information System (INIS)

    Jakubec, R.

    2015-01-01

    Jadrova a vyradovacia spolocnost, a.s. (JAVYS) implements activities within the processes of treatment and conditioning of radioactive waste (RAW) at two nuclear facilities, one of them located in Bohunice - Technologies for treatment and conditioning of RAW. This nuclear facility includes: Bohunice RAW treatment centre, bituminization lines, waste water purification station and technologies for sorting, fragmentation and decontamination of metallic RAW. The Bohunice RAW treatment centre (BRTC) in Bohunice processes and conditions liquid and solid radioactive waste produced during the A1 NPP and V1 NPP decommissioning, waste from the operation of V2 NPP in Bohunice as well as from the operation of NPP EMO 1,2 in Mochovce. The BRTC includes the following technological facilities: sorting, high-pressure compaction, incineration, concentration and cementation. Treatment of radioactive wastes in the BRTC is described. (authors)

  5. A molecular dynamics study of solid and liquid UO2

    International Nuclear Information System (INIS)

    Sindzingre, P.; Gillan, M.J.

    1988-01-01

    We present an extensive series of molecular dynamics simulations of UO 2 in the solid and liquid states, in which we calculate the ionic diffusion coefficients and some of the important thermodynamic quantities. The simulations are based on a rigid-ion model derived from the new shell model potentials of Jackson and co-workers and make use of recently developed constant-pressure and constant-temperature techniques. The simulations confirm that UO 2 is an oxygen superionic conductor, as suggested by recent neutron scattering experiments. The temperature of the diffuse transition to the superionic regime is in satisfactory agreement with experiment, as is the melting point of the model system. The thermal expansion coefficient, specific heat and bulk modulus for the solid agree well with experiment below about 2500 K but are less satisfactory near the melting point; we suggest that the differences may be due to the effect of electronic excitations. The volume increase on melting and thermodynamic quantities of the liquid are sensitive to details of the inter-ionic potentials and are in only fair agreement with experiment. (author)

  6. Polymer liquids fracture like solids

    DEFF Research Database (Denmark)

    Huang, Qian; Hassager, Ole

    2017-01-01

    While fracture in brittle solids has been studied for centuries until today, there are few studies on fracture in polymer liquids. Recent developments in experimental techniques, especially the combination of controlled filament stretching rheometry and high speed imaging, have opened new windows...... into the detailed study of fracture processes for polymer liquids. High speed imaging shows that polymer liquids fracture like solids with initiation and propagation of an edge fracture. However, remarkable features such as highly reproducible critical stress, independent appearance of multiple fractures...

  7. Local Structure and Ionic Conduction at Interfaces of Electrode and Solid Electrolytes

    OpenAIRE

    Yamada, Hirotsohi; Oga, Yusuke; Saruwatari, Isamu; Moriguchi, Isamu

    2012-01-01

    All solid state batteries are attracting interests as next generation energy storage devices. However, little is known on interfaces between active materials and solid electrolytes, which may affect performance of the devices. In this study, interfacial phenomena between electrodes and solid electrolytes of all solid state batteries were investigated by using nano-composites of Li 2SiO 3-TiO 2, Li 2SiO 3-LiTiO 2, and Li 2SiO 3-FePO 4. Studies on ionic conductivity of these composites revealed...

  8. Pulsed zero field NMR of solids and liquid crystals

    International Nuclear Information System (INIS)

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs

  9. Simulations of electrolytes at the liquid-liquid interface and of lanthanide cations complexes in gas phase

    International Nuclear Information System (INIS)

    Berny, F.

    2000-01-01

    Two processes related to liquid/liquid extraction of ions by extractant molecules were studied: the ion approach at the interface and the ion complexation by ligands. In the first part, the behaviour of salts at the chloroform/water interface was simulated by molecular dynamics. The aim was to understand the way these salts ions approach the interface in order to be extracted. Some ions are repelled by the interface (K + , Cl - , UO 2 2+ , Na + , NO 3 - ) whereas others adsorb (amphiphilic molecules and also ClO 4 - , SCN - , guanidinium Gu + and picrate Pic - ). The surface-active counter-ions make the ion approach at the interface easier. In a perfectly homogeneous mixture of the two solvents (water and chloroform) de-mixing, the ions seem to influence the phases separation rate. Nitric acid which is known to favour liquid/liquid extraction reveals strong adsorption at the interface in its neutral form and a smaller one in its ionic form (H 3 O + /NO 3 - ). HNO 3 and H 3 O + display particular orientations at the interface: hydrogen atoms are pointing in the direction of the water slab. The nature of the organic phase can also influence the ion approach at the interface. For example, Gu + and Pic - adsorb much less at the supercritical CO 2 /water interface than at the chloroform/water interface. In the second part, complexes of La 3+ , Eu 3+ and Yb 3+ with ligands such as amide, urea, thio-amide, thiourea were studied by quantum mechanics. Our calculations show that cation-ligand interactions depend on the nature of substituents on ligands, on the presence of counter-ions or on the number of ligands in the complex. Sulfur compounds seem to less interact with cations than oxygen compounds. Ureas interact as much as amides and are potentially good ligands. (author)

  10. Solid radiation curable polyene compositions containing liquid polythiols and solid styrene-allyl copolymer based polyenes

    International Nuclear Information System (INIS)

    Morgan, C.R.

    1977-01-01

    Novel styrene-allyl alcohol copolymer based solid polyene compositions which when mixed with liquid polythiols can form solid curable polyene-polythiol systems are claimed. These solid polyenes, containing at least two reactive carbon-to-carbon unsaturated bonds, are urethane or ester derivatives of styrene-allyl alcohol copolymers. The solid polyenes are prepared by treating the hydroxyl groups of a styrene-allyl alcohol copolymer with a reactive unsaturated isocyanate, e.g., allyl isocyanate or a reactive unsaturated carboxylic acid, e.g., acrylic acid. Upon exposure to a free radical generator, e.g., actinic radiation, the solid polyene-polythiol compositions cure to solid, insoluble, chemically resistant, cross-linked polythioether products. Since the solid polyene-liquid polythiol composition can be cured in a solid state, such a curable system finds particular use in preparation of coatings, imaged surfaces such as photoresists, particularly solder-resistant photoresists, printing plates, etc

  11. Suspended solids in liquid effluents

    International Nuclear Information System (INIS)

    McGrath, J.J.

    1988-06-01

    An international literature review and telephone mail survey was conducted with respect to technical and regulatory aspects of suspended solids in radioactive liquid wastes from nuclear power stations. Results of the survey are summarized and show that suspended solids are an important component of some waste streams. The data available, while limited, show these solids to be associated largely with corrosion products. The solids are highly variable in quantity, size and composition. Filtration is commonly applied for their removal from liquid effluents and is effective. Complex interactions with receiving waters can result in physical/chemical changes of released radionuclides and these phenomena have been seen as reason for not applying regulatory controls based on suspended solids content. 340 refs

  12. Development of simulation approach for two-dimensional chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface

    Science.gov (United States)

    Qin, Yuan; Yao, Man; Hao, Ce; Wan, Lijun; Wang, Yunhe; Chen, Ting; Wang, Dong; Wang, Xudong; Chen, Yonggang

    2017-09-01

    Two-dimensional (2D) chiral self-assembly system of 5-(benzyloxy)-isophthalic acid derivative/(S)-(+)-2-octanol/highly oriented pyrolytic graphite was studied. A combined density functional theory/molecular mechanics/molecular dynamics (DFT/MM/MD) approach for system of 2D chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface was thus proposed. Structural models of the chiral assembly were built on the basis of scanning tunneling microscopy (STM) images and simplified for DFT geometry optimization. Merck Molecular Force Field (MMFF) was singled out as the suitable force field by comparing the optimized configurations of MM and DFT. MM and MD simulations for hexagonal unit model which better represented the 2D assemble network were then preformed with MMFF. The adhesion energy, evolution of self-assembly process and characteristic parameters of hydrogen bond were obtained and analyzed. According to the above simulation, the stabilities of the clockwise and counterclockwise enantiomorphous networks were evaluated. The calculational results were supported by STM observations and the feasibility of the simulation method was confirmed by two other systems in the presence of chiral co-absorbers (R)-(-)-2-octanol and achiral co-absorbers 1-octanol. This theoretical simulation method assesses the stability trend of 2D enantiomorphous assemblies with atomic scale and can be applied to the similar hydrogen bond driven 2D chirality of molecular self-assembly system.

  13. Development of Sulfide Solid Electrolytes and Interface Formation Processes for Bulk-Type All-Solid-State Li and Na Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Akitoshi, E-mail: hayashi@chem.osakafu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka (Japan); Sakuda, Atsushi [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka (Japan); Department of Energy and Environment, Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka (Japan); Tatsumisago, Masahiro [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka (Japan)

    2016-07-15

    All-solid-state batteries with inorganic solid electrolytes (SEs) are recognized as an ultimate goal of rechargeable batteries because of their high safety, versatile geometry, and good cycle life. Compared with thin-film batteries, increasing the reversible capacity of bulk-type all-solid-state batteries using electrode active material particles is difficult because contact areas at solid–solid interfaces between the electrode and electrolyte particles are limited. Sulfide SEs have several advantages of high conductivity, wide electrochemical window, and appropriate mechanical properties, such as formability, processability, and elastic modulus. Sulfide electrolyte with Li{sub 7}P{sub 3}S{sub 11} crystal has a high Li{sup +} ion conductivity of 1.7 × 10{sup −2} S cm{sup −1} at 25°C. It is far beyond the Li{sup +} ion conductivity of conventional organic liquid electrolytes. The Na{sup +} ion conductivity of 7.4 × 10{sup −4} S cm{sup −1} is achieved for Na{sub 3.06}P{sub 0.94}Si{sub 0.06}S{sub 4} with cubic structure. Moreover, formation of favorable solid–solid interfaces between electrode and electrolyte is important for realizing solid-state batteries. Sulfide electrolytes have better formability than oxide electrolytes. Consequently, a dense electrolyte separator and closely attached interfaces with active material particles are achieved via “room-temperature sintering” of sulfides merely by cold pressing without heat treatment. Elastic moduli for sulfide electrolytes are smaller than that of oxide electrolytes, and Na{sub 2}S–P{sub 2}S{sub 5} glass electrolytes have smaller Young’s modulus than Li{sub 2}S–P{sub 2}S{sub 5} electrolytes. Cross-sectional SEM observations for a positive electrode layer reveal that sulfide electrolyte coating on active material particles increases interface areas even with a minimum volume of electrolyte, indicating that the energy density of bulk-type solid-state batteries is enhanced. Both surface coating

  14. A technical review of liquid/liquid and solid/liquid separation equipment in the field of nuclear-fuel reprocessing

    International Nuclear Information System (INIS)

    Vassallo, G.

    1981-01-01

    Liquid/liquid extraction is generally accepted as the preferred method in nuclear-fuel reprocessing. However, although many types of liquid/liquid contactors are available, only a few meet the stringent specifications set by the nuclear industry. This report discusses the criteria for contactor selection and then reviews the most important types, namely packed columns, pulsed columns, mixer-setters and centrifugal contactors. Finally, a short section concerned with solid/liquid separations is included because of the possible deleterious effects caused by solids in liquid/liquid contactors

  15. Muonium formation via charge transport in solids and liquids

    International Nuclear Information System (INIS)

    Storchak, Vyacheslav G.; Brewer, Jess H.; Cox, Stephen F.J.

    1997-01-01

    We review our recent experimental studies on delayed muonium formation in insulators and semiconductors. This involves the positive muon capturing one of the excess electrons liberated in its own ionization track and competes with recombination or escape of the electrons. The muon is generally found to thermalise well 'downstream' from the center of the electron distribution, so that the transport mechanism of the electrons is a crucial factor. This is discussed in terms of the different tendencies to localization (as polarons in solids or in bubbles in liquids) vs. band-like propagation. Studies of Van der Waals cryocrystals and cryoliquids are reviewed and some preliminary results reported for sapphire and silicon. Transport distances and times are determined from the variation of μSR signal amplitudes with applied electric and magnetic fields, respectively, enabling the development of a new technique for measuring electron mobilities on a microscopic scale

  16. Gas Enrichment at Liquid-Wall Interfaces

    NARCIS (Netherlands)

    Dammer, S.M.; Lohse, Detlef

    2006-01-01

    Molecular dynamics simulations of Lennard-Jones systems are performed to study the effects of dissolved gas on liquid-wall and liquid-gas interfaces. Gas enrichment at walls, which for hydrophobic walls can exceed more than 2 orders of magnitude when compared to the gas density in the bulk liquid,

  17. Cellular interface morphologies in directional solidification. III - The effects of heat transfer and solid diffusivity

    Science.gov (United States)

    Ungar, Lyle H.; Bennett, Mark J.; Brown, Robert A.

    1985-01-01

    The shape and stability of two-dimensional finite-amplitude cellular interfaces arising during directional solidification are compared for several solidification models that account differently for latent heat released at the interface, unequal thermal conductivities of melt and solid, and solute diffusivity in the solid. Finite-element analysis and computer-implemented perturbation methods are used to analyze the families of steadily growing cellular forms that evolve from the planar state. In all models a secondary bifurcation between different families of finite-amplitude cells exists that halves the spatial wavelength of the stable interface. The quantitative location of this transition is very dependent on the details of the model. Large amounts of solute diffusion in the solid retard the growth of large-amplitude cells.

  18. Calculations of the Thermal Scattering Law for Solids and Liquids

    International Nuclear Information System (INIS)

    Jarvis, R.G.

    1968-01-01

    a method has been developed, based on the incoherent approximation, to describe scattering in solids and liquids. It deals with molecules which are made up of one or more types of scatterer, such as UO 2 and D 2 O. For each scatterer there is a scattering law S(α, β) = 1/2π ∫ ∞ -∞ exp(-αw(t))exp(iβ)dt in Egelstaff's notation. The width function w(t) corresponds to a 'generalized frequency distribution' p(β) which, in its most complicated form, has five components. The first and second describe sharp peaks (such as the two main vibration levels in D 2 O ), the third and fourth represent broader peaks (such as the combined effects of minor vibration levels and the rotations and translations), the fifth is for diffusion and is omitted for solids. The integral for S is expanded over the vibration terms and then evaluated by a combination of numerical methods and saddle-point integrations. Finally, the S 1 s for the scatterers are combined to give an S for the molecule. (author)

  19. Liquid phase stabilization versus bubble formation at a nanoscale curved interface

    Science.gov (United States)

    Schiffbauer, Jarrod; Luo, Tengfei

    2018-03-01

    We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van der Waals-diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.

  20. Voltage-dependent cluster expansion for electrified solid-liquid interfaces: Application to the electrochemical deposition of transition metals

    Science.gov (United States)

    Weitzner, Stephen E.; Dabo, Ismaila

    2017-11-01

    The detailed atomistic modeling of electrochemically deposited metal monolayers is challenging due to the complex structure of the metal-solution interface and the critical effects of surface electrification during electrode polarization. Accurate models of interfacial electrochemical equilibria are further challenged by the need to include entropic effects to obtain accurate surface chemical potentials. We present an embedded quantum-continuum model of the interfacial environment that addresses each of these challenges and study the underpotential deposition of silver on the gold (100) surface. We leverage these results to parametrize a cluster expansion of the electrified interface and show through grand canonical Monte Carlo calculations the crucial need to account for variations in the interfacial dipole when modeling electrodeposited metals under finite-temperature electrochemical conditions.

  1. Nanoscale liquid interfaces wetting, patterning and force microscopy at the molecular scale

    CERN Document Server

    Ondarçuhu, Thierry

    2013-01-01

    This book addresses the recent developments in the investigation and manipulation of liquids at the nanoscale. This new field has shown important breakthroughs on the basic understanding of physical mechanisms involving liquid interfaces, which led to applications in nanopatterning. It has also consequences in force microscopy imaging in liquid environment. The book proposes is a timely review of these various aspects. It is co-authored by 25 among the most prominent scientists in the field.

  2. Effect of volume ratio of liquid to solid on the interfacial microstructure and mechanical properties of high chromium cast iron and medium carbon steel bimetal

    International Nuclear Information System (INIS)

    Xiong Bowen; Cai Changchun; Lu Baiping

    2011-01-01

    Highlights: → Volume ratio of liquid to solid affects significantly the interfacial microstructure. → Elemental diffusion activity is increased by increasing volume ratio. → Mechanical property is improved by increasing volume ratio. - Abstract: The high chromium cast iron and medium carbon steel bimetal was fabricated by liquid-solid casting technology. The effect of volume ratios of liquid to solid (6:1, 10:1 and 12:1) on the interfacial microstructure and mechanical properties of bimetal was investigated. The interfacial microstructure was analyzed using scanning electron microscope (SEM) and transmission electron microscope (TEM). The shear strength and microhardness in as-cast condition were studied at room temperature. The results show that the volume ratios of liquid to solid affect significantly the interfacial microstructure. When liquid-solid volume ratio was 6:1, the unbonded region was detected in interface region because the imported heat energy cannot support effectively the diffusion of element, whereas, when liquid-solid volume ratios reach 10:1 and 12:1, a sound interfacial microstructure was achieved by the diffusion of C, Cr, Mo, Cu and Mn, and metallurgical bonding without unbonded region, void and hole, etc. was detected. With the increase of liquid-solid volume ratio, the elemental diffusion activity improves, resulting in the increase of width of interface transition region. At the same distance from interface, with the increase of liquid-solid volume ratio, the microhardness is degraded in HCCI, but increased in MCS. The shear strength is also improved with the increase of liquid-solid volume ratio.

  3. Molecular dynamics study of solid-liquid heat transfer and passive liquid flow

    Science.gov (United States)

    Yesudasan Daisy, Sumith

    High heat flux removal is a challenging problem in boilers, electronics cooling, concentrated photovoltaic and other power conversion devices. Heat transfer by phase change is one of the most efficient mechanisms for removing heat from a solid surface. Futuristic electronic devices are expected to generate more than 1000 W/cm2 of heat. Despite the advancements in microscale and nanoscale manufacturing, the maximum passive heat flux removal has been 300 W/cm2 in pool boiling. Such limitations can be overcome by developing nanoscale thin-film evaporation based devices, which however require a better understanding of surface interactions and liquid vapor phase change process. Evaporation based passive flow is an inspiration from the transpiration process that happens in trees. If we can mimic this process and develop heat removal devices, then we can develop efficient cooling devices. The existing passive flow based cooling devices still needs improvement to meet the future demands. To improve the efficiency and capacity of these devices, we need to explore and quantify the passive flow happening at nanoscales. Experimental techniques have not advanced enough to study these fundamental phenomena at the nanoscale, an alternative method is to perform theoretical study at nanoscales. Molecular dynamics (MD) simulation is a widely accepted powerful tool for studying a range of fundamental and engineering problems. MD simulations can be utilized to study the passive flow mechanism and heat transfer due to it. To study passive flow using MD, apart from the conventional methods available in MD, we need to have methods to simulate the heat transfer between solid and liquid, local pressure, surface tension, density, temperature calculation methods, realistic boundary conditions, etc. Heat transfer between solid and fluids has been a challenging area in MD simulations, and has only been minimally explored (especially for a practical fluid like water). Conventionally, an

  4. Molecular dynamics simulations of surfactant and nanoparticle self-assembly at liquid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Luo Mingxiang; Dai, Lenore L [Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409 (United States)

    2007-09-19

    We have performed molecular dynamics (MD) simulations to investigate self-assembly at water-trichloroethylene (TCE) interfaces with the emphasis on systems containing modified hydrocarbon nanoparticles (1.2 nm in diameter) and sodium dodecyl sulfate (SDS) surfactants. The nanoparticles and surfactants were first distributed randomly in the water phase. The MD simulations have clearly shown the progress of migration and final equilibrium of the SDS molecules at the water-TCE interfaces with the nanoparticles either at or in the vicinity of the interfaces. One unique feature is the 'attachment' of surfactant molecules to the nanoparticle clusters in the water phase followed by the 'detachment' at the water-TCE interfaces. At low concentrations of surfactants, the surfactants and nanoparticles co-equilibrate at the interfaces. However, the surfactants, at high concentrations, competitively dominate the interfaces and deplete nanoparticles away from the interfaces. The interfacial properties, such as interfacial thickness and interfacial tension, are significantly influenced by the presence of the surfactants, but not the nanoparticles. The order of the surfactants at the interfaces increases with increasing surfactant concentration, but is independent of nanoparticle concentration. Finally, the simulation has shown that surfactants can aggregate along the water-TCE interfaces, with and without the presence of nanoparticles.

  5. Interface control document between PUREX/UO3 Plant Transition and Solid Waste Disposal Division

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1994-01-01

    This interface control document (ICD) between PUREX/UO 3 Plant Transition (PPT) and Solid Waste Disposal Division (SWD) establishes at a top level the functional responsibilities of each division where interfaces exist between the two divisions. Since the PUREX Transition and Solid Waste Disposal divisions operate autonomously, it is important that each division has a clear understanding of the other division's expectations regarding these interfaces. This ICD primarily deals with solid wastes generated by the PPT. In addition to delineating functional responsibilities, the ICD includes a baseline description of those wastes that will require management as part of the interface between the divisions. The baseline description of wastes includes waste volumes and timing for use in planning the proper waste management capabilities: the primary purpose of this ICD is to ensure defensibility of expected waste stream volumes and Characteristics for future waste management facilities. Waste descriptions must be as complete as-possible to ensure adequate treatment, storage, and disposal capability will exist. The ICD also facilitates integration of existing or planned waste management capabilities of the PUREX. Transition and Solid Waste Disposal divisions. The ICD does not impact or affect the existing processes or procedures for shipping, packaging, or approval for shipping wastes by generators to the Solid Waste Division

  6. Pyridinium ionic liquid-based liquid-solid extraction of inorganic and organic iodine from Laminaria.

    Science.gov (United States)

    Peng, Li-Qing; Yu, Wen-Yan; Xu, Jing-Jing; Cao, Jun

    2018-01-15

    A simple, green and effective extraction method, namely, pyridinium ionic liquid- (IL) based liquid-solid extraction (LSE), was first designed to extract the main inorganic and organic iodine compounds (I - , monoiodo-tyrosine (MIT) and diiodo-tyrosine (DIT)). The optimal extraction conditions were as follows: ultrasonic intensity 100W, IL ([EPy]Br) concentration 200mM, extraction time 30min, liquid/solid ratio 10mL/g, and pH value 6.5. The morphologies of Laminaria were studied by scanning electron microscopy and transmission electron microscopy. The recovery values of I - , MIT and DIT from Laminaria were in the range of 88% to 94%, and limits of detection were in the range of 59.40 to 283.6ng/g. The proposed method was applied to the extraction and determination of iodine compounds in three Laminaria. The results showed that IL-based LSE could be a promising method for rapid extraction of bioactive iodine from complex food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Studies of extractant molecules in solution and at liquid-liquid interfaces: structural and mechanistic aspects of synergy effects

    International Nuclear Information System (INIS)

    Baaden, Marc

    2000-01-01

    Molecular dynamics simulations reported herein provide new important insights into cation recognition and complexation in solution as well as liquid-liquid extraction, with a particular focus on the microscopic events taking place at the interface between two immiscible liquids. Preliminary studies concerned the representation of the trivalent rare earth cations La 3+ , Eu 3+ and Yb 3+ in force field simulations, probing structural and energetic features on an experimentally characterized model system based on substituted pyridine dicarboxamide ligands. Complexation of such cations by a novel calixarene derivative was investigated showing unexpected features, such as the position of the cation in the complex. Independent experimental studies published subsequently support these findings. Another part of the work is related to industrial liquid-liquid extraction systems using tri-n-butyl phosphate (TBP) as co-solvent, extractant, surfactant and synergist. We investigate 1) concentration effects simulating up to 60 TBP at a water/chloroform interface, 2) acidity using a neutral and ionic model of HNO 3 and 3) synergistic aspects of mixed TBP/calixarene extraction systems. These simulations provide the first microscopic insights into such issues. We finally addressed the topic of solute transfer across the water/chloroform interface. The potential of mean force for such a process has been calculated by both standard methods and novel approaches [fr

  8. Study on Orbital Liquid Transport and Interface Behavior in Vane Tank

    Science.gov (United States)

    Kang, Qi; Rui, Wei

    2016-07-01

    Liquid propellant tank is used to supply gas free liquid for spacecraft as an important part of propulsion system. The liquid behavior dominated by surface tension in microgravity is obviously different with that on the ground, which put forward a new challenge to the liquid transport and relocation. The experiments which are investigated at drop tower in National Microgravity Lab have concentrated on liquid relocation following thruster firing. Considered that the liquid located at the bottom in the direction of the acceleration vector, a sphere scale vane tank is used to study the liquid-gas interface behaviors with different acceleration vector and different filling independently and we obtain a series of stable equilibrium interface and relocation time. We find that there is an obvious sedimentation in the direction of acceleration vector when fill rate greater than 2% fill. Suggestions have been put forward that outer vanes transferring liquid to the outlet should be fixed and small holes should be dogged at the vane close to the center post to improve the liquid flow between different vanes when B0 is greater than 2.5. The research about liquid transport alone ribbon vanes is simulated though software Flow3D. The simulation process is verified by comparing the liquid lip and vapor-liquid interface obtained from drop tower experiment and simulation result when fill rate is 15%. Then the influence of fill rate, numbers of vanes and the gap between vane and wall is studied through the same simulate process. Vanes' configurations are also changed to study the effect on the lip and liquid volume below some section. Some suggestions are put forward for the design of vanes.

  9. Electrophoretic transport of biomolecules across liquid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Thomas; Hardt, Steffen [Center of Smart Interfaces, TU Darmstadt, Petersenstrasse 32, D-64287 Darmstadt (Germany); Muenchow, Goetz, E-mail: hardt@csi.tu-darmstadt.de [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-20, D-55129 Mainz (Germany)

    2011-05-11

    The mass transfer resistance of a liquid-liquid interface in an aqueous two-phase system composed of poly(ethylene glycol) and dextran is investigated. Different types of proteins and DNA stained with fluorescent dyes serve as probes to study the transport processes close to the interface. A microfluidic device is employed to enable the electrophoretic transport of biomolecules from one phase to another. The results obtained for proteins can be explained solely via the different electrophoretic mobilities and different affinities of the molecules to the two phases, without any indications of a significant mass transfer resistance of the liquid-liquid interface. By contrast, DNA molecules adsorb to the interface and only desorb under an increased electric field strength. The desorption process carries the signature of a thermally activated escape from a metastable state, as reflected in the exponential decay of the fluorescence intensity at the interface as a function of time.

  10. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    Science.gov (United States)

    Sun, Guanqing

    The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the

  11. Metal extraction by solid-liquid agglomerates

    International Nuclear Information System (INIS)

    Fuller, E.F.

    1980-01-01

    Dissolved metal values are extracted from a liquid e.g. uranium from phosphoric acid by contacting the liquid with agglomerates for a time to load the agglomerate with the metal value, separating the loaded agglomerates from the liquid phase and stripping the metal value from the loaded agglomerate. The agglomerate may be made by combining finely divided solid particles with a binding liquid to form a paste, adding a suspending liquid to form a mixture, the suspending liquid and binding liquid being immiscible in each other and the solid particles being insoluble in the suspending liquid and shearing the mixture to form the agglomerate. (author)

  12. Bias-induced conformational switching of supramolecular networks of trimesic acid at the solid-liquid interface

    Science.gov (United States)

    Ubink, J.; Enache, M.; Stöhr, M.

    2018-05-01

    Using the tip of a scanning tunneling microscope, an electric field-induced reversible phase transition between two planar porous structures ("chickenwire" and "flower") of trimesic acid was accomplished at the nonanoic acid/highly oriented pyrolytic graphite interface. The chickenwire structure was exclusively observed for negative sample bias, while for positive sample bias only the more densely packed flower structure was found. We suggest that the slightly negatively charged carboxyl groups of the trimesic acid molecule are the determining factor for this observation: their adsorption behavior varies with the sample bias and is thus responsible for the switching behavior.

  13. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Science.gov (United States)

    2010-07-01

    ... What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? The following solid and liquid wastes and discharges information and cooling water intake... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What solid and liquid wastes and discharges...

  14. Solid foam packings for multiphase reactors: Modelling of liquid holdup and mass transfer

    NARCIS (Netherlands)

    Stemmet, C.P.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.

    2006-01-01

    In this paper, experimental and modeling results are presented of the liquid holdup and gas–liquid mass transfer characteristics of solid foam packings. Experiments were done in a semi-2D transparent bubble column with solid foam packings of aluminum in the range of 5–40 pores per inch (ppi). The

  15. Contacting particulate solids with liquids

    International Nuclear Information System (INIS)

    Hodgson, T.D.

    1980-01-01

    Apparatus is described for contacting particulate solids with a fluid. The particular applications described are 1) an acid dissolver for dissolving plutonium from plutonium contaminated ash produced by the incineration of waste such as rubber gloves, tissue paper etc. and 2) apparatus for dissolving gel spheres of nuclear fuel material. The liquid, e.g. acid for use in a leaching process flows through a vertical conduit and past a series of baffles spaced along the axis of the conduit. Each baffle defines a mixing chamber and provides a small gap around its perimeter between the baffle and the wall of the conduit. The baffles are provided with sloping top surfaces for preventing solid particles from settling on the baffles and sloping undersurfaces to improve mixing of the liquid and the solid particles. The liquid flows upwards in the conduit but solid particles may be fed from the top or from the bottom of the conduit to mix with the liquid. Gas may be introduced to promote improved flow conditions. (U.K.)

  16. Equilibrium and surface stability of liquid dielectric interface in electrical and gravitational fields

    Energy Technology Data Exchange (ETDEWEB)

    Ievlev, I I; Isers, A B

    1976-01-01

    An examination is made of the problem of locating the stable equilibrium surface shape of the interface between two liquid, uniform, isotropic, ideal dielectrics subject to the force of gravity, surface tension, and electrical forces. The conditions for the equilibrium and surface stability of the interface were obtained from the minimum free energy principle. These conditions are used for solving problems on locating the stable equilibrium interface boundary between two dielectrics positioned between infinite charged vertical plates, between infinite vertical coaxial cylinders, between infinite grounded plates and two horizontal charged thin cylinders placed between them. 8 references, 4 figures.

  17. Simulations of electrolytes at the liquid-liquid interface and of lanthanide cations complexes in gas phase; Simulations d'electrolytes a l'interface liquide/liquide et de complexes de cations lanthanides en phase gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Berny, F

    2000-07-01

    Two processes related to liquid/liquid extraction of ions by extractant molecules were studied: the ion approach at the interface and the ion complexation by ligands. In the first part, the behaviour of salts at the chloroform/water interface was simulated by molecular dynamics. The aim was to understand the way these salts ions approach the interface in order to be extracted. Some ions are repelled by the interface (K{sup +}, Cl{sup -}, UO{sub 2}{sup 2+}, Na{sup +}, NO{sub 3}{sup -}) whereas others adsorb (amphiphilic molecules and also ClO{sub 4}{sup -}, SCN{sup -}, guanidinium Gu{sup +} and picrate Pic{sup -}). The surface-active counter-ions make the ion approach at the interface easier. In a perfectly homogeneous mixture of the two solvents (water and chloroform) de-mixing, the ions seem to influence the phases separation rate. Nitric acid which is known to favour liquid/liquid extraction reveals strong adsorption at the interface in its neutral form and a smaller one in its ionic form (H{sub 3}O{sup +}/NO{sub 3}{sup -}). HNO{sub 3} and H{sub 3}O{sup +} display particular orientations at the interface: hydrogen atoms are pointing in the direction of the water slab. The nature of the organic phase can also influence the ion approach at the interface. For example, Gu{sup +} and Pic{sup -} adsorb much less at the supercritical CO{sub 2}/water interface than at the chloroform/water interface. In the second part, complexes of La{sup 3+}, Eu{sup 3+} and Yb{sup 3+} with ligands such as amide, urea, thio-amide, thiourea were studied by quantum mechanics. Our calculations show that cation-ligand interactions depend on the nature of substituents on ligands, on the presence of counter-ions or on the number of ligands in the complex. Sulfur compounds seem to less interact with cations than oxygen compounds. Ureas interact as much as amides and are potentially good ligands. (author)

  18. Evaluation of the Effect of Exhausts from Liquid and Solid Rockets on Ozone Layer

    Science.gov (United States)

    Yamagiwa, Yoshiki; Ishimaki, Tetsuya

    This paper reports the analytical results of the influences of solid rocket and liquid rocket exhausts on ozone layer. It is worried about that the exhausts from solid propellant rockets cause the ozone depletion in the ozone layer. Some researchers try to develop the analytical model of ozone depletion by rocket exhausts to understand its physical phenomena and to find the effective design of rocket to minimize its effect. However, these models do not include the exhausts from liquid rocket although there are many cases to use solid rocket boosters with a liquid rocket at the same time in practical situations. We constructed combined analytical model include the solid rocket exhausts and liquid rocket exhausts to analyze their effects. From the analytical results, we find that the exhausts from liquid rocket suppress the ozone depletion by solid rocket exhausts.

  19. NMR studies of the molecules dynamics to the solid-liquid interfaces: from graded porous materials to oil rocks; Etudes RMN de la dynamique des molecules aux interfaces solide-liquide: des materiaux poreux calibres aux roches petroliferes

    Energy Technology Data Exchange (ETDEWEB)

    Godefroy, S

    2001-11-01

    Low field NMR relaxation for laboratory or in-situ applications provides critical information for oil recovery such as porosity, saturation, and permeability of rocks. In addition, pore size distribution and wettability can also be obtained in some cases. The technique relies on the measurement of proton longitudinal (T{sub 1}) or transverse (T{sub 2}) nuclear relaxation times. For better predictions, the surface micro-dynamics and the chemical properties of the liquids entrapped in the pore space are important and must be characterized. It is well known that the NMR relaxation is enhanced by the paramagnetic impurities at the pore surface but many other parameters influence the relaxation time distributions. These parameters are used to derive the petrophysical properties of the rocks. We propose here an original method to probe the dynamics of water and oil at the pore surface. In the present study, we used both nuclear relaxation at 2.2 MHz and field cycling Nuclear Magnetic Relaxation Dispersion (NMRD) techniques. We applied these two techniques to different kinds of water or oil saturated macroporous media (grain packings, outcrop and reservoir rocks with SiO{sub 2} or CaCO{sub 3} surfaces). We studied the dependence of NMR relaxation on pore size, magnetic field and temperature. Varying the pore size and the surface density of paramagnetic impurities of water saturated grain packings allowed experimental evidence for the two limiting regimes of the water relaxation in pores (surface- and diffusion-limited regimes). NMRD technique (evolution of 1/T{sub 1} with the magnetic field) allowed us to probe liquid surface dynamics in water or oil fully saturated grain packing, outcrop rocks or reservoir rocks (water- and oil-wet surfaces). We evidenced a two-dimensional molecular surface diffusion and directly estimated important parameters such as correlation times, residence times and molecular self-diffusion on the surface. Finally, we proved that the temperature

  20. Electrolytic charge inversion at the liquid-solid interface in a nanopore in a doped semiconductor membrane

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, Maria E [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Leburton, Jean-Pierre [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2007-04-11

    The electrostatics of a nanopore in a doped semiconductor membrane immersed in an electrolyte is studied with a numerical model. Unlike dielectric membranes that always attract excess positive ion charges at the electrolyte/membrane interface whenever a negative surface charge is present, semiconductor membranes exhibit more versatility in controlling the double layer at the membrane surface. The presence of dopant charge in the semiconductor membrane, the shape of the nanopore and the negative surface charge resulting from the pore fabrication process have competing influences on the double layer formation. The inversion of the electrolyte surface charge from negative to positive is observed for n-Si membranes as a function of the membrane surface charge density, while no such inversion occurs for dielectric and p-Si membranes.

  1. New decontamination processes for liquid effluents and solid materials

    International Nuclear Information System (INIS)

    Faure, S.

    2008-01-01

    New decontamination processes are being studied in order to protect workers and to reduce strongly the quantity of secondary wastes produced. 2 decontamination processes for liquid nuclear wastes are under studies. First, the coprecipitation process whose improvement is based on a better control of the 2 coupled mechanisms involved in the process: the formation of adsorbent particles and the uptake of radionuclides. Secondly, the column process whose development focuses on new materials that can be used to absorb cesium in a reversible way. 3 new decontamination processes for solid materials are being developed. First, processes using drying gels are under investigation in order to treat materials like lead, aluminium, iron and stainless steel. Real decontamination of hot cells by drying gel process has been performed and a decontamination factor between 16 and 25 has been obtained on stainless steels. Secondly, new foam decontamination processes have been developed, they are based on the use of new foams stabilized by biodegradable non-ionic surfactants: alkyl-poly-glucosides and viscofiers or nano-particles. The aim is to increase the foam lifetime. Thirdly, new surfactants in solution decontamination processes have been studied, the aim is to decontaminate through degreasing by using acidic surfactants. The idea is to combine emulsification and wetting power. (A.C.)

  2. Solid-melt interface structure and growth of Cu alloy single crystals

    International Nuclear Information System (INIS)

    Tomimitsu, Hiroshi; Kamada, Kohji.

    1983-01-01

    Crystal-melt interface behavior during the growth of Cu-base solid solutions by the Bridgman method is discussed on the basis of experimental evidence obtained by neutron diffraction topography. Advantages of neutron diffraction topography for the characterization of large single crystals, such as dealt with in this paper, are emphasized. Evidence was odserved of extremely regular crystal growth along directions, irrespective of the macroscopic growth direction. This contrasts with the previously believed (110) normal growth which is a conclusion of growth theory based on molecular kinetics at the solid-melt interface. In consequence, we believe that the kinetics at the interface is a minor factor in the meltgrowth of metal single crystals. Revised melt-growth theory should include both the growth and the formation of the regular structure as evidenced by neutron diffraction topography. (author)

  3. Introduction to optical methods for characterizing liquid crystals at interfaces.

    Science.gov (United States)

    Miller, Daniel S; Carlton, Rebecca J; Mushenheim, Peter C; Abbott, Nicholas L

    2013-03-12

    This Instructional Review describes methods and underlying principles that can be used to characterize both the orientations assumed spontaneously by liquid crystals (LCs) at interfaces and the strength with which the LCs are held in those orientations (so-called anchoring energies). The application of these methods to several different classes of LC interfaces is described, including solid and aqueous interfaces as well as planar and nonplanar interfaces (such as those that define a LC-in-water emulsion droplet). These methods, which enable fundamental studies of the ordering of LCs at polymeric, chemically functionalized, and biomolecular interfaces, are described in this Instructional Review on a level that can be easily understood by a nonexpert reader such as an undergraduate or graduate student. We focus on optical methods because they are based on instrumentation that is found widely in research and teaching laboratories.

  4. Wave structure and transfer mechanisms at the interface of liquid films (a bibliographic synthesis)

    International Nuclear Information System (INIS)

    Spindler, Bertrand.

    1978-10-01

    The flow of a liquid film occurs in many industrial apparatuses. The waves which propagate at the film interface increase the momentum, mass and heat transfer rates of the system. The interface structure is studied; the different patterns of waves with their parameters (shape, amplitude, wavelength, celerity, frequency) and phenomena such as droplet entrainment are examined. An explanation is then given for the increase of transfer rates [fr

  5. Modeling and simulation of liquid diffusion through a porous finitely elastic solid

    KAUST Repository

    Zhao, Qiangsheng

    2013-01-29

    A new theory is proposed for the continuum modeling of liquid flow through a porous elastic solid. The solid and the voids are assumed to jointly constitute the macroscopic solid phase, while the liquid volume fraction is included as a separate state variable. A finite element implementation is employed to assess the predictive capacity of the proposed theory, with particular emphasis on the mechanical response of Nafion® membranes to the flow of water. © 2013 Springer-Verlag Berlin Heidelberg.

  6. Large Eddy and Interface Simulation (LEIS) of liquid entrainment in turbulent stratified flow

    International Nuclear Information System (INIS)

    Gulati, S.; Buongiorno, J.; Lakehal, D.

    2011-01-01

    Dryout of the liquid film on the fuel rods in BWR fuel assemblies leads to an abrupt decrease in heat transfer coefficient and can result in fuel failure. The process of mechanical mass transfer from the continuous liquid field into the continuous vapor field along the liquid-vapor interface is called entrainment and is the dominant depletion mechanism for the liquid film in annular flow. Using interface tracking methods combined with a Large Eddy Simulation approach, implemented in the Computational Multi-Fluid Dynamics (CMFD) code TransAT®, we are studying entrainment phenomena in BWR fuel assemblies. In this paper we report on the CMFD simulation approaches and the current validation effort for the code. (author)

  7. Experimental and numerical study of the migration of gas bubbles through an interface between two liquids

    International Nuclear Information System (INIS)

    Bonhomme, R.

    2012-01-01

    In order to predict the evolution of a hypothetical accident in pressurized water nuclear reactors, this study aims to understand the dynamics of gas bubbles ascending in a stratified mixture made of two superimposed liquids. To this aim, an experimental device equipped with two high-speed video cameras was designed, allowing us to observe isolated air bubbles and bubble trains crossing a horizontal interface separating two Newtonian immiscible liquids initially at rest. The size of the bubbles and the viscosity contrast between the two liquids were varied by more than one and four orders of magnitude respectively, making it possible to observe a wide variety of flow regimes. In some situations, small millimetric bubbles remain trapped at the liquid-liquid interface, whereas larger bubbles succeed in crossing the interface and tow a significant column of lower fluid behind them. After the influence of the physical parameters was qualitatively established thanks to simple models, direct numerical simulations of several selected experimental situations were performed with two different approaches. These are both based on the incompressible Navier-Stokes equations, one making use of an interface capturing technique, the other of a diffuse Cahn-Hilliard description. Comparisons between experimental and numerical results confirmed the reliability of the computational approaches in most situations but also highlighted the need for improvements to capture small-scale physical phenomena especially those related to film drainage. (author)

  8. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Science.gov (United States)

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  9. A Process and Environment Aware Sierra/SolidMechanics Cohesive Zone Modeling Capability for Polymer/Solid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, E. D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chambers, Robert S. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hughes, Lindsey Gloe [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kropka, Jamie Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stevens, Mark J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance and reliability of many mechanical and electrical components depend on the integrity of po lymer - to - solid interfaces . Such interfaces are found in adhesively bonded joints, encapsulated or underfilled electronic modules, protective coatings, and laminates. The work described herein was aimed at improving Sandia's finite element - based capability to predict interfacial crack growth by 1) using a high fidelity nonlinear viscoelastic material model for the adhesive in fracture simulations, and 2) developing and implementing a novel cohesive zone fracture model that generates a mode - mixity dependent toughness as a natural consequence of its formulation (i.e., generates the observed increase in interfacial toughness wi th increasing crack - tip interfacial shear). Furthermore, molecular dynamics simulations were used to study fundamental material/interfa cial physics so as to develop a fuller understanding of the connection between molecular structure and failure . Also reported are test results that quantify how joint strength and interfacial toughness vary with temperature.

  10. On the stability of the interface between dense plasma and liquid under electrical pulse discharge in liquid medium

    International Nuclear Information System (INIS)

    Starchyk, P.D.; Porytskyy, P.V.

    2005-01-01

    It is shown that the most important influence on the plasma of electrical pulse discharges in liquid have the processes in a zone of its contact with condensed medium. The investigations of growth of corrugations are conducted which arise on an interface between both the plasma channels of electrical pulse discharges and limiting it liquid. It is shown that the growth of perturbations caused by Rayleigh-Taylor instability are nonlinearly saturated. It is established the interconnection between both the pointed perturbations and the parameters of a dense plasma of discharge channel

  11. Solidity of viscous liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    1999-01-01

    Recent NMR experiments on supercooled toluene and glycerol by Hinze and Böhmer show that small rotation angles dominate with only a few large molecular rotations. These results are here interpreted by assuming that viscous liquids are solidlike on short length scales. A characteristic length...

  12. Microsphere Wetting, Meniscus Structure, and Capillary Interactions on a Curved Liquid Interface

    Science.gov (United States)

    Kim, Paul; Dinsmore, Anthony; Hoagland, David; Russell, Thomas

    A small spherical microparticle on a cylindrically curved liquid interface locally induces a quadrupolar interface deformation to maintain a constant contact angle about its wetted periphery. Measured by optical profilometry, this deformation was compared to a recent theoretical expression, and good agreement was noted for contact line shape, particle vertical position, and deformation vs. (distance, angle, particle size, interfacial curvature). Interface quadrupoles lead to particle capillary interactions in analogy to 2D electrostatic quadrupoles, and as one consequence, spheres on a cylindrical interface assemble tetragonally, i.e., into a square lattice. This assembly was monitored in the optical microscope, with particles interacting as predicted, into a square lattice aligned with the underlying cylindrical axis. These particles and assemblies were driven to the middle of the curved interface by capillary interaction with pinned liquid contact lines on each side of the liquid cylindrical section used in the experiments. These phenomena can inform the directed interfacial assembly of micro-sized spherical objects, with potential application in fabrication of functional devices and materials, encapsulation, and emulsification.

  13. Forces between a rigid probe particle and a liquid interface. II. The general case.

    Science.gov (United States)

    Dagastine, R R; White, L R

    2002-03-15

    The semianalytic theory developed previously (Chan, D. Y. C., Dagastine, R. R., and White, L. R., J. Colloid Interface Sci. 236, 141 (2001)) to predict the force curve of an AFM measurement at a liquid interface using a colloidal probe has been expanded to incorporate a general force law with both attractive and repulsive forces. Expressions for the gradient of the force curve are developed to calculate the point at which the probe particle on the cantilever will spontaneously jump in toward the liquid interface. The calculation of the jump instability is reduced to a straightforward embroidery of the simple algorithms presented in Chan et al. In a variety of sample calculations using force laws including van der Waals, electrostatic, and hydrophobic forces for both oil/water and bubble/water interfaces, we have duplicated the general behaviors observed in several AFM investigations at liquid interfaces. The behavior of the drop as a Hookean spring and the numerical difficulties of a full numerical calculation of F(deltaX) are also discussed.

  14. Dynamics at Solid State Surfaces and Interfaces, Volume 1 Current Developments

    CERN Document Server

    Bovensiepen, Uwe; Wolf, Martin

    2010-01-01

    This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques. The whole is rounded off by a look at future developments.

  15. Adsorption of polyelectrolytes at liquid-liquid interfaces and its effect on emulsification

    NARCIS (Netherlands)

    Böhm, J.T.C.

    1974-01-01

    In this study we have investigated the adsorption behaviour of a number of synthetic polyelectrolytes at the paraffin oil-water interface and the properties of paraffin oil-in-water emulsions stabilized by these polyelectrolytes.

    Polyacrylic acid (PAA), polymethacrylic acid (PMA)

  16. Density of Ni-Al Alloys in Liquid and Solid-Liquid Coexistence State Measured by a Modified Pycnometric Method

    Institute of Scientific and Technical Information of China (English)

    Liang FANG; Feng XIAO; Zushu LI; Zainan TAO

    2004-01-01

    The density of Ni-Al alloys in both liquid state and solid-liquid coexistence state was measured with a modified pycnometric method. It was found that the density of NI-Al alloys decreases with increasing temperature and Al concentration in the alloys. The molar volume of liquid Ni-Al binary alloys increases with the increase of temperature and Al concentration. The partial molar volume of Al in NI-Al binary alloy was calculated approximately. The molar volume of liquid NI-Al alloy determined in the present work shows a negative deviation from the ideal linear molar volume.

  17. Liquid and Solid Meal Replacement Products Differentially Affect Postprandial Appetite and Food Intake in Older Adults

    Science.gov (United States)

    Stull, April J.; Apolzan, John W.; Thalacker-Mercer, Anna E.; Iglay, Heidi B.; Campbell, Wayne W.

    2008-01-01

    Liquid and solid foods are documented to elicit differential appetitive and food intake responses. This study was designed to assess the influences of liquid vs solid meal replacement products on postprandial appetite ratings and subsequent food intake in healthy older adults. This study used a randomized and crossover design with two 1-day trials (1 week between trials), and 24 adults (12 men and 12 women) aged 50 to 80 years with body mass index (calculated as kg/m2) between 22 and 30 participated. After an overnight fast, the subjects consumed meal replacement products as either a beverage (liquid) or a bar (solid). The meal replacement products provided 25% of each subject's daily estimated energy needs with comparable macro-nutrient compositions. Subjects rated their appetite on a 100 mm quasilogarithmic visual analog scale before and 15, 30, 45, 60, 90, 120, and 150 minutes after consuming the meal replacement product. At minute 120, each subject consumed cooked oatmeal ad libitum to a “comfortable level of fullness.” Postprandial composite (area under the curve from minute 15 to minute 120) hunger was higher (P=0.04) for the liquid vs solid meal replacement products and desire to eat (P=0.15), preoccupation with thoughts of food (P=0.07), and fullness (P=0.25) did not differ for the liquid vs solid meal replacement products. On average, the subjects consumed 13.4% more oatmeal after the liquid vs solid (P=0.006) meal replacement product. These results indicate that meal replacement products in liquid and solid form do not elicit comparable appetitive and ingestive behavior responses and that meal replacement products in liquid form blunt the postprandial decline in hunger and increase subsequent food intake in older adults. PMID:18589034

  18. Measurement of interactions between solid particles, liquid droplets, and/or gas bubbles in a liquid using an integrated thin film drainage apparatus.

    Science.gov (United States)

    Wang, Louxiang; Sharp, David; Masliyah, Jacob; Xu, Zhenghe

    2013-03-19

    A novel device was designed to measure drainage dynamics of thin liquid films confined between a solid particle, an immiscible liquid droplet, and/or gas bubble. Equipped with a bimorph force sensor, a computer-interfaced video capture, and a data acquisition system, the newly designed integrated thin film drainage apparatus (ITFDA) allows for the direct and simultaneous measurements of force barrier, true film drainage time, and bubble/droplet deformation under a well-controlled external force, receding and advancing contact angles, capillary force, and adhesion (detachment) force between an air bubble or oil droplet and a solid, a liquid, or an air bubble in an immiscible liquid. Using the diaphragm of a high-frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this newly designed device is capable of measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocities up to 50 mm/s and displacement range up to 1 mm. The results showed that the ITFDA was capable of measuring hydrodynamic resistance, film drainage time, and other important physical parameters between air bubbles and solid particles in aqueous solutions. As an example of illustrating the versatility, the ITFDA was also applied to other important systems such as interactions between air bubble and oil droplet, two air bubbles, and two oil droplets in an aqueous solution.

  19. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Paulo B. [Univ. of California, Berkeley, CA (United States)

    1998-12-14

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayer are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayer at Iiquidhapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the confirmational order of surfactant monolayers.

  20. Relationships between oesophageal transit and solid and liquid gastric emptying in diabetes mellitus

    International Nuclear Information System (INIS)

    Horowitz, M.; Maddox, A.F.; Wishart, J.M.; Harding, P.E.; Chatterton, B.E.; Shearman, D.J.C.

    1991-01-01

    In 87 randomly selected diabetic patients (67 type 1, 20 type 2) and 25 control subjects, gastric emptying of digestible solid and liquid meals and oesophageal transit of a solid bolus were measured with scintigraphic techniques. Gastrointestinal symptoms, autonomic nerve function and glycaemic control were evaluated in the diabetic patients. Gastric emptying and oesophageal transit were slower (P 15 mmol/l. These results indicate that gastric emptying in patients with diabetes mellitus should be assessed by liquid as well as by solid test meals and that oesophageal transit should not be used as a predictor of generalised diabetic gastroenteropathy. (orig.)

  1. Management of radioactive liquid and solid wastes at the Research Reactor Institute, Kyoto University, (3)

    International Nuclear Information System (INIS)

    Tsutsui, Tenson; Shimoura, K.; Koyama, A.

    1977-11-01

    In this report, the management of radioactive liquid and solid wastes at the Research Reactor Institute, Kyoto University during past 6 years, from April in 1971 to March in 1977 are reviewed. (auth.)

  2. The influence of a solid and liquid bolus on food-stimulated gastroesophageal reflux

    Energy Technology Data Exchange (ETDEWEB)

    Naeser, A.; Behrens, J.K.; Vejen-Christiansen, L.; Funch-Jensen, P.; Thommesen, P. (Aarhus Kommunehospital (Denmark). GI Motility Lab. Aarhus Kommunehospital (Denmark). Dept. of Diagnostic Radiology R)

    1992-02-01

    Using a radiological method to demonstrate food-stimulated gastroesophageal reflux (GER), a comparative study was carried out employing a solid, already validated bolus versus a liquid one. One hundred and four consecutive patients received both a solid and a liquid bolus in randomized order. GER was observed in 37 (35.6%) patients receiving the solid bolus versus 28 (26.9%) with the liquid one. This means that the solid bolus provokes significantly more reflux (P<0.02). GER, grade II (reflux above the level of the carina), occurred equally often as a result of both types of bolus, however. The study suggests that significant, food-stimulated GER is independent of the consistency of the foodstuffs and may be detected employing a liquid bolus. This result might be used in the examination of infants for GER, using milk as a food stimulus. (orig.).

  3. Development and Evaluation of Liquid and Solid Self-Emulsifying Drug Delivery Systems for Atorvastatin

    Directory of Open Access Journals (Sweden)

    Anna Czajkowska-Kośnik

    2015-11-01

    Full Text Available The objective of this work was to design and characterize liquid and solid self-emulsifying drug delivery systems (SEDDS for poorly soluble atorvastatin. To optimize the composition of liquid atorvastatin-SEDDS, solubility tests, pseudoternary phase diagrams, emulsification studies and other in vitro examinations (thermodynamic stability, droplet size and zeta potential analysis were performed. Due to the disadvantages of liquid SEDDS (few choices for dosage forms, low stability and portability during the manufacturing process, attempts were also made to obtain solid SEDDS. Solid SEDDS were successfully obtained using the spray drying technique from two optimized liquid formulations, CF3 and OF2. Despite liquid SEDDS formulation, CF3 was characterized by lower turbidity, higher percentage transmittance and better self-emulsifying properties, and based on the in vitro dissolution study it can be concluded that better solubilization properties were exhibited by solid formulation OF2. Overall, the studies demonstrated the possibility of formulating liquid and solid SEEDS as promising carriers of atorvastatin. SEDDS, with their unique solubilization properties, provide the opportunity to deliver lipophilic drugs to the gastrointestinal tract in a solubilized state, avoiding dissolution—a restricting factor in absorption rate of BCS Class 2 drugs, including atorvastatin.

  4. Molecular dynamics simulations of hydrophobous ions at the liquid-liquid interfaces: case of dicarbollide anions as synergy agents and of ionic liquids as extracting medium

    International Nuclear Information System (INIS)

    Chevrot, G.

    2008-01-01

    Based on molecular dynamics simulations, we first describe the distribution of dicarbollide salts (CCD - , Mn + ) in concentrated monophasic solutions (water, chloroform, octanol, nitrobenzene) and in the corresponding biphasic 'oil' - water solutions. We point to the importance of surface activity of the CCD - s and of their self-aggregation in water, with marked counterions effects, and we explain the synergistic effect of CCD - s in the Eu 3+ extraction by BTP ligands. In the second part of the thesis we report exploratory simulations on the extraction of Sr 2+ by 18-crown-6 to an hydrophobic ionic liquid ([BMI][PF6]), focusing on the liquid - liquid interface. Analogies and differences with a classical aqueous interface are outlined. (author)

  5. UKAEA contract no. 3: miscellaneous solid, liquid and gaseous wastes

    International Nuclear Information System (INIS)

    Partridge, B.A.

    1984-12-01

    This document reports work carried out in 1982/83 on the following topics concerned with the treatment and disposal of intermediate level wastes: flowsheeting; dewatering low and medium level radioactive wastes; applications of ultrafiltration in the treatment of radioactive liquid wastes; ion exchange processes; electrical processes for the treatment of medium active liquid wastes; chemical conversion of Zircaloy cladding to oxide; fast reactor fuel element cladding; dissolver residues; fuel cladding and ion exchanger immobilisation - radioactive trials; thermal techniques; development and assessment of medium level waste forms. (U.K.)

  6. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    Science.gov (United States)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  7. Gas-liquid interface of room-temperature ionic liquids.

    Science.gov (United States)

    Santos, Cherry S; Baldelli, Steven

    2010-06-01

    The organization of ions at the interface of ionic liquids and the vacuum is an ideal system to test new ideas and concepts on the interfacial chemistry of electrolyte systems in the limit of no solvent medium. Whilst electrolyte systems have numerous theoretical and experimental methods used to investigate their properties, the ionic liquids are relatively new and our understanding of the interfacial properties is just beginning to be explored. In this critical review, the gas-liquid interface is reviewed, as this interface does not depend on the preparation of another medium and thus produces a natural interface. The interface has been investigated by sum frequency generation vibrational spectroscopy and ultra-high vacuum techniques. The results provide a detailed molecular-level view of the surface composition and structure. These have been complemented by theoretical studies. The combinations of treatments on this interface are starting to provide a somewhat convergent description of how the ions are organized at this neat interface (108 references).

  8. Magnetically Enhanced Solid-Liquid Separation

    Science.gov (United States)

    Rey, C. M.; Keller, K.; Fuchs, B.

    2005-07-01

    DuPont is developing an entirely new method of solid-liquid filtration involving the use of magnetic fields and magnetic field gradients. The new hybrid process, entitled Magnetically Enhanced Solid-Liquid Separation (MESLS), is designed to improve the de-watering kinetics and reduce the residual moisture content of solid particulates mechanically separated from liquid slurries. Gravitation, pressure, temperature, centrifugation, and fluid dynamics have dictated traditional solid-liquid separation for the past 50 years. The introduction of an external field (i.e. the magnetic field) offers the promise to manipulate particle behavior in an entirely new manner, which leads to increased process efficiency. Traditional solid-liquid separation typically consists of two primary steps. The first is a mechanical step in which the solid particulate is separated from the liquid using e.g. gas pressure through a filter membrane, centrifugation, etc. The second step is a thermal drying process, which is required due to imperfect mechanical separation. The thermal drying process is over 100-200 times less energy efficient than the mechanical step. Since enormous volumes of materials are processed each year, more efficient mechanical solid-liquid separations can be leveraged into dramatic reductions in overall energy consumption by reducing downstream drying requirements have a tremendous impact on energy consumption. Using DuPont's MESLS process, initial test results showed four very important effects of the magnetic field on the solid-liquid filtration process: 1) reduction of the time to reach gas breakthrough, 2) less loss of solid into the filtrate, 3) reduction of the (solids) residual moisture content, and 4) acceleration of the de-watering kinetics. These test results and their potential impact on future commercial solid-liquid filtration is discussed. New applications can be found in mining, chemical and bioprocesses.

  9. Silicon MEMS for Detection of Liquid and Solid Fronts

    NARCIS (Netherlands)

    Wei, J.

    2010-01-01

    High-precision manipulation of small-size objects is an attractive and challenging topic for both industrial production and fundamental scientific research. The capability of monitoring micro-samples during handling is essential to the accuracy and efficiency of a handling system for both liquid and

  10. Using Peltier Cells to Study Solid-Liquid-Vapour Transitions and Supercooling

    Science.gov (United States)

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states…

  11. Novel materials and methods for solid-phase extraction and liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, Diana [Iowa State Univ., Ames, IA (United States)

    1997-06-24

    This report contains a general introduction which discusses solid-phase extraction and solid-phase micro-extraction as sample preparation techniques for high-performance liquid chromatography, which is also evaluated in the study. This report also contains the Conclusions section. Four sections have been removed and processed separately: silicalite as a sorbent for solid-phase extraction; a new, high-capacity carboxylic acid functionalized resin for solid-phase extraction; semi-micro solid-phase extraction of organic compounds from aqueous and biological samples; and the high-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve.

  12. Heat and Mass Transfer during Solid-Liquid Phase Transition of n-Alkanes in the C{sub 16} to C{sub 19} Range

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, Rune

    2002-07-01

    The main goal of this project has been to study heat and mass transfer during solid-liquid phase transition of n-alkanes in the in the C{sub 16} to C{sub 19} range. Phase transitions of both mixtures and pure components have been investigated. All experiments and simulations have been performed without any convection. Thermal conductivities have been determined at the melting point for solid and liquid unbranched alkanes ranging from C{sub 16} to C{sub 19}. An assessment of the error of the method has been performed. The measurements of solid conductivities are in accordance with measurements reported previously and confirm the applicability of the method. Liquid conductivities are higher than extrapolated values from the literature. The enhanced conductivity is believed to be caused by structural changes close to the melting point which is not taken into account when extrapolating values from the literature. Experiments have been performed for the purpose of investigating the freezing of mixtures of n-alkanes in the C{sub 16}-C{sub 19} range. The positions of the solid-liquid interfaces have been measured as freezing occurred. Calculations of the ratio of liquid and solid conductivities show that the solid structure of mixtures of the investigated n-alkanes is predominantly in a rotator structure at the temperatures investigated. There are indications of a transformation into an orthorhombic structure at lower temperatures. The temperatures on the solid-liquid interface have been measured, and compared with calculated values from chapter 4. The temperature of the interface is represented better by the measured interfacial temperatures than by the calculated interfacial temperatures. The experimental results indicate that the diffusion of heat is the limiting mechanism of phase transition. This result in a homogeneous liquid composition. A numerical model has been developed in order to simulate the experimental freezing of mixtures. The model represents the results

  13. Method and apparatus for treating liquid contaminated with radioactive particulate solids

    International Nuclear Information System (INIS)

    Hirs, G.

    1976-01-01

    A method and apparatus reduces the amount of radioactive solids resulting from the filtration of particulate contaminants from liquid in a nuclear reactor plant. A filtration system includes a pre-filter comprising a sheet filter medium through which the reactor liquid passes to remove relatively large particulate contaminants for storage or disposal. The reactor liquid is then passed through a bed of granular filter medium to accumulate substantially all the previously non-filtered contaminants and thereby provide a clarified liquid suitable for reuse in the reactor. Backwash liquid is flowed through the granular filter bed to remove and entrain the accumulated contaminants into a slurry which is received by a reservoir where the slurry is maintained quiescently to settle the contaminants. Removal of liquid from the reservoir concentrates the contaminants for storage or further processing, without the necessity of large quantities of filter aids that would increase the quantity of storage-requiring contaminated solids

  14. Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Ndanou, S., E-mail: serge.ndanou@univ-amu.fr; Favrie, N., E-mail: nicolas.favrie@univ-amu.fr; Gavrilyuk, S., E-mail: sergey.gavrilyuk@univ-amu.fr

    2015-08-15

    We extend the model of diffuse solid–fluid interfaces developed earlier by authors of this paper to the case of arbitrary number of interacting hyperelastic solids. Plastic transformations of solids are taken into account through a Maxwell type model. The specific energy of each solid is given in separable form: it is the sum of a hydrodynamic part of the energy depending only on the density and the entropy, and an elastic part of the energy which is unaffected by the volume change. It allows us to naturally pass to the fluid description in the limit of vanishing shear modulus. In spite of a large number of governing equations, the model has a quite simple mathematical structure: it is a duplication of a single visco-elastic model. The model is well posed both mathematically and thermodynamically: it is hyperbolic and compatible with the second law of thermodynamics. The resulting model can be applied in the situations involving an arbitrary number of fluids and solids. In particular, we show the ability of the model to describe spallation and penetration phenomena occurring during high velocity impacts.

  15. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    Science.gov (United States)

    Miranda, Paulo Barbeitas

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayers are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayers at liquid/vapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the conformational order of surfactant monolayers. The first part of the Thesis is concerned with surfactant monolayers at the air/water interface (Langmuir films). Surface crystallization of an alcohol Langmuir film and of liquid alkanes are studied and their phase transition behaviors are found to be of different nature, although driven by similar intermolecular interactions. The effect of crystalline order of Langmuir monolayers on the interfacial water structure is also investigated. It is shown that water forms a well-ordered hydrogen-bonded network underneath an alcohol monolayer, in contrast to a fatty acid monolayer which induces a more disordered structure. In the latter case, ionization of the monolayer becomes more significant with increase of the water pH value, leading to an electric-field-induced ordering of interfacial water molecules. We also show that the orientation and conformation of fairly complicated molecules in a Langmuir monolayer can be completely mapped out using a combination of SFG and second harmonic generation (SHG). For a quantitative analysis of molecular orientation at an interface, local-field corrections must be included. The second part is a study of self-assembled surfactant monolayers at the

  16. Evaluation of Epirubicin in Thermogelling and Bioadhesive Liquid and Solid Suppository Formulations for Rectal Administration

    Directory of Open Access Journals (Sweden)

    Yu-Li Lo

    2013-12-01

    Full Text Available Temperature sensitive Pluronic (Plu and pH-sensitive polyacrylic acid (PAA were successfully mixed in different ratios to form in situ gelling formulations for colon cancer therapy. The major formulations were prepared as the liquid and solid suppository dosage forms. Epirubicin (Epi was chosen as a model anticancer drug. In vitro characterization and in vivo pharmacokinetics and therapeutic efficacy of Epi in six Plu/PAA formulations were evaluated. Our in vitro data indicate that Epi in Plu 14%/PAA 0.75% of both solid and liquid suppositories possess significant cytotoxicity, strong bioadhesive force, long-term appropriate suppository base, sustained release, and high accumulation of Epi in rat rectums. These solid and liquid suppositories were retained in the upper rectum of Sprague-Dawley (SD rats for at least 12 h. An in vivo pharmacokinetic study using SD rats showed that after rectal administration of solid and liquid suppositories, Epi had greater area under the curve and higher relative bioavailability than in a rectal solution. These solid and liquid suppositories exhibited remarkable inhibition on the tumor growth of CT26 bearing Balb/c mice in vivo. Our findings suggest that in situ thermogelling and mucoadhesive suppositories demonstrate a great potential as colon anticancer delivery systems for protracted release of chemotherapeutic agents.

  17. Magnetic coupling between liquid 3He and a solid state substrate: a new approach

    Science.gov (United States)

    Klochkov, Alexander V.; Naletov, Vladimir V.; Tayurskii, Dmitrii A.; Tagirov, Murat S.; Suzuki, Haruhiko

    2000-07-01

    We suggest a new approach for solving the long-standing problem of a magnetic coupling between liquid 3He and a solid state substrate at temperatures above the Fermi temperature. The approach is based on our previous careful investigations of the physical state of a solid substrate by means of several experimental methods (EPR, NMR, conductometry, and magnetization measurements). The developed approach allows, first, to get more detailed information about the magnetic coupling phenomenon by varying the repetition time in pulse NMR investigations of liquid 3He in contact with the solid state substrate and, second, to compare the obtained dependences and the data of NMR-cryoporometry and AFM-microscopy.

  18. Analysis of the stability of native oxide films at liquid lead/metal interfaces

    International Nuclear Information System (INIS)

    Lesueur, C.; Chatain, D.; Gas, P.; Bergman, C.; Baque, F.

    2002-01-01

    The interface between liquid lead and different metallic solids (pure metals: Al, Fe and Ni, and T91 steel) was investigated below 400 deg C under ultrahigh vacuum (UHV) by wetting experiments. The aim was to check the physical stability of native oxide films grown at the surface of the substrates, along a contact with liquid lead. Two types of metallic substrates were used: i) conventional bulk polycrystals, and ii) nanocrystalline films obtained by e-beam evaporation under UHV. The actual contact between liquid lead and the solid substrates was achieved by preparing lead drops in-situ. Wetting experiments were performed using sessile drop and/or liquid bridge methods. Fresh solid surfaces and former liquid/solid interfaces can be explored by squeezing and stretching a liquid lead bridge formed between two parallel and horizontal substrates. It is shown that the contact with liquid lead produces the detachment of the native oxide films grown on the metallic solids. It is concluded that if oxide coatings are needed to protect a metallic solid from attack by liquid lead, they should be self-renewable. (authors)

  19. Dilution and separation of solids and liquids of broiler litter for supply of digester

    Energy Technology Data Exchange (ETDEWEB)

    Aires, Airon Magno; Lucas Junior, Jorge de; Xavier, Cristiane de Almeida Neves; Miranda, Adelia Pereira; Fukayama, Ellen Hatsumi [Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias

    2008-07-01

    The solid separation techniques indicate that it can promote a support in anaerobic biological process. This trial was realized in FCAV-UNESP, Jaboticabal, Brazil, in Rural Engineering Department. For this trial two tests were developed, using broiler litter water diluted and separated in a 3mm mesh screen: the treatments consisted in (1kg) broiler litter diluted in (2kg) of water, (1kg) broiler litter and (4kg) water, (1kg) broiler litter diluted in (6kg) of water, (1kg) broiler litter and (8kg) of water, (1kg) broiler litter diluted in (10kg) of water, (1kg) broiler litter and (12kg) water and (1kg) broiler litter diluted in (14kg) of water. Total solids (TS), solid and liquid fraction and biogas production were estimated. There were no significant differences related to solid fraction retained in screen. As the broiler litter became more diluted, a raise in the liquid fractions quantities was observed, ranging from 20.9 to 89.4% of the total diluted waste. Biogas production potentials ranged from 0.2364 to 0.4666 m{sup 3} of biogas by 100kg of liquid fraction. Organic carbon numbers ranged from 0.21 to 0.47kg by 100kg of liquid fraction and 5.36 to 6.18kg by 100kg of solid fraction. The highest values obtained for this element in liquid fractions dilutions were 2:1 and 6:1 with 0.46 and 0.47kg by 100kg respectively. The separation of liquid and solid fraction of broiler litter was viable in the smaller dilutions, because those guarantee a reduction in the anaerobic digester implementation costs and dilution water economy. Solid fraction has potential for composting, mainly in a great scale production. (author)

  20. Molecular mechanics and structure of the fluid-solid interface in simple fluids

    Science.gov (United States)

    Wang, Gerald J.; Hadjiconstantinou, Nicolas G.

    2017-09-01

    Near a fluid-solid interface, the fluid spatial density profile is highly nonuniform at the molecular scale. This nonuniformity can have profound effects on the dynamical behavior of the fluid and has been shown to play an especially important role when modeling a wide variety of nanoscale heat and momentum transfer phenomena. We use molecular-mechanics arguments and molecular-dynamics (MD) simulations to develop a better understanding of the structure of the first fluid layer directly adjacent to the solid in the layering regime, as delineated by a nondimensional number that compares the effects of wall-fluid interaction to thermal energy. Using asymptotic analysis of the Nernst-Planck equation, we show that features of the fluid density profile close to the wall, such as the areal density of the first layer ΣFL (defined as the number of atoms in this layer per unit of fluid-solid interfacial area), can be expressed as polynomial functions of the fluid average density ρave. This is found to be in agreement with MD simulations, which also show that the width of the first layer hFL is a linear function of the average density and only a weak function of the temperature T . These results can be combined to show that, for system average densities corresponding to a dense fluid (ρave≥0.7 ), the ratio C ≡ΣFLρavehFL, representing a density enhancement with respect to the bulk fluid, depends only weakly on temperature and is essentially independent of density. Further MD simulations suggest that the above results, nominally valid for large systems (solid in contact with semi-infinite fluid), also describe fluid-solid interfaces under considerable nanoconfinement, provided ρave is appropriately defined.

  1. Formation and filtration characteristics of solids generated in a high level liquid waste treatment process. Solids formation behavior from simulated high level liquid waste

    International Nuclear Information System (INIS)

    Kondo, Y.; Kubota, M.

    1997-01-01

    The solids formation behavior in a simulated high level liquid waste (HLLW) was experimentally examined, when the simulated HLLW was treated in the ordinary way of actual HLLW treatment process. Solids formation conditions and mechanism were closely discussed. The solids formation during a concentration step can be explained by considering the formation of zirconium phosphate, phosphomolybdic acid and precipitation of strontium and barium nitrates and their solubilities. For the solids formation during the denitration step, at least four courses were observed; formation of an undissolved material by a chemical reaction with each other of solute elements (zirconium, molybdenum, tellurium) precipitation by reduction (platinum group metals) formation of hydroxide or carbonate compounds (chromium, neodymium, iron, nickel, strontium, barium) and a physical adsorption to stable solid such as zirconium molybdate (nickel, strontium, barium). (author)

  2. Liquid-liquid interface assisted synthesis of size- and thickness-controlled Ag nanoplates

    International Nuclear Information System (INIS)

    Jin Mingshang; Kuang Qin; Han Xiguang; Xie Shuifen; Xie Zhaoxiong; Zheng Lansun

    2010-01-01

    Here we proposed a synthetic method of high-purity Ag nanoplates by the reduction of aqueous Ag + ions at the aqueous-organic interface with the reductant ferrocene. We demonstrated that the as-prepared Ag nanoplates can be widely tunable from 600 nm to 7 μm in size and from 10 to 35 nm in thickness, simply by adjusting the component of organic phase. To our knowledge, there are few methods to tailor the size and the thickness of metal nanoplates in such a large range although many efforts have been made aiming to realize it. Our proposed synthetic strategy is rapid, template-free, seed-less, and high-yield, and could be applied to synthesize analogous two-dimensional nanostructures of other noble metals, such as Pt, Au, and Pd. - Graphical abstract: High-purity Ag nanoplates were synthesized by the reduction of aqueous Ag + ions at the aqueous-organic interface with the reductant ferrocene, the size and thickness of which were widely tunable.

  3. Static and dynamic properties of proteins adsorbed at liquid interfaces

    NARCIS (Netherlands)

    Benjamins, J.

    2000-01-01

    The aim of the investigation described in this thesis was to increase the level of understanding of the role that proteins play in the preparation and subsequent stabilisation of foams and emulsions. One aspect of this role is facilitation of break-up, due to surface tension lowering. A

  4. Study of Baffle Boundary and System Parameters on Liquid-Solid Coupling Vibration of Rectangular Liquid-Storage Structure

    Directory of Open Access Journals (Sweden)

    Wei Jing

    2016-01-01

    Full Text Available In order to study the vibration problem of liquid-solid coupling of rectangular liquid-storage structure with horizontal elastic baffle, ignoring the influence of surface gravity wave, two different velocity potential functions corresponding to the liquid above and below the elastic baffle are assumed; based on the theory of mathematical equation and energy method, the formulas of basic frequency of liquid-solid coupling vibration system are derived, the baffle joined to the tank wall with 3 kinds of boundary conditions, namely, four edges simply supported, two opposite edges clamped and two opposite edges simply supported, and four edges clamped; the influence rules of baffle length-width ratio, the ratio of baffle height to liquid level, baffle elastic modulus, baffle density, baffle thickness, and liquid density on the coupling vibration performance are studied. The results show that the frequency of the clamped boundary is minimum; the influences of baffle length-width ratio and relative height on the basic frequency are much greater than that of the other system parameters; the relation between baffle length-width ratio and the frequency is exponential, while baffle relative height has a parabola relation with the frequency; the larger the baffle length-width ratio, the closer the baffle to the liquid level; the coupling frequency will be reduced more obviously.

  5. Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid-Solution Interfaces.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S

    2015-06-23

    Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.

  6. Structure of the liquid-vapor interface of a dilute ternary alloy: Pb and In in Ga

    International Nuclear Information System (INIS)

    Yang Bin; Li Dongxu; Rice, Stuart A.

    2003-01-01

    We report the results of experimental studies of how the competition between two solutes to segregate in the liquid-vapor interface of a dilute ternary alloy influences the composition and structure of that interface. The system studied has small amounts of Pb and In dissolved in Ga; it differs from a previous study of dilute alloys containing small amounts of Pb and Sn dissolved in Ga by the addition of a new variable, namely, the valence difference between the solute atoms Pb and In. This valence difference influences the electron density distribution in the alloy liquid-vapor interface in proportion to the excess concentrations of the solute species in the interface, and thereby should affect the structure of the interface. We find that for a ternary PbInGa alloy that contains 0.039 at. % Pb and 6.31 at. % In, the Pb that segregates in the liquid-vapor interface forms a two-dimensional hexagonal crystal phase that undergoes a first-order transition to a disordered phase at T=29.0±0.1 deg. C. The two-dimensional crystalline Pb forms about 0.6 of a full monolayer; the remainder of the outer stratum of the liquid-vapor interface is filled with two-dimensional liquid In. For a ternary PbInGa alloy that contains the same amount of Pb and 12.2 at. % In, the Pb that segregates in the liquid-vapor interface forms a two-dimensional liquid down to 26.0 deg. C, the lowest temperature at which data were taken. For temperatures in excess of 29.0 deg. C two-dimensional liquid Pb and two-dimensional liquid In coexist in the interface, with the fractional occupation of the monolayer by In exceeding the fractional occupation by Pb

  7. Wetting, meniscus structure, and capillary interactions of microspheres bound to a cylindrical liquid interface.

    Science.gov (United States)

    Kim, Paul Y; Dinsmore, Anthony D; Hoagland, David A; Russell, Thomas P

    2018-03-14

    Wetting, meniscus structure, and capillary interactions for polystyrene microspheres deposited on constant curvature cylindrical liquid interfaces, constructed from nonvolatile ionic or oligomeric liquids, were studied by optical interferometry and optical microscopy. The liquid interface curvature resulted from the preferential wetting of finite width lines patterned onto planar silicon substrates. Key variables included sphere diameter, nominal (or average) contact angle, and deviatoric interfacial curvature. Menisci adopted the quadrupolar symmetry anticipated by theory, with interfacial deformation closely following predicted dependences on sphere diameter and nominal contact angle. Unexpectedly, the contact angle was not constant locally around the contact line, the nominal contact angle varied among seemingly identical spheres, and the maximum interface deviation did not follow the predicted dependence on deviatoric interfacial curvature. Instead, this deviation was up to an order-of-magnitude larger than predicted. Trajectories of neighboring microspheres visually manifested quadrupole-quadrupole interactions, eventually producing square sphere packings that foreshadow interfacial assembly as a potential route to hierarchical 2D particle structures.

  8. What happens when iron becomes wet? Observation of reactions at interfaces between liquid and metal surfaces

    CERN Document Server

    Kimura, M

    2003-01-01

    Synchrotron-radiation has been applied to investigation of interfaces between liquid and metal surfaces, with a special attention to corrosion. Three topics are shown: (1) nano structures of rusts formed on steel after atmospheric corrosion. Evolution of 'Fe(O, OH) sub 6 network' is the key to understand how the durable rusts prevent from formation of more rusts. (2) In situ observation of reactions at the interface has been carried out for localized corrosion of stainless steel. It is shown that change in states of Cr sup 3 sup + and Br sup - ions near the interface is deeply related with a breakout of the passivation film. (3) A structural phase transformation on a Cu sub 3 Au(001) surface was investigated. Ordering remains even at a temperature higher than the bulk-critical temperature, showing surface-induced ordering. These approaches gives us crucial information for a new steel-product. (author)

  9. Light-Induced Contraction/Expansion of 1D Photoswitchable Metallopolymer Monitored at the Solid-Liquid Interface.

    Science.gov (United States)

    Garah, Mohamed El; Borré, Etienne; Ciesielski, Artur; Dianat, Arezoo; Gutierrez, Rafael; Cuniberti, Gianaurelio; Bellemin-Laponnaz, Stéphane; Mauro, Matteo; Samorì, Paolo

    2017-10-01

    The use of a bottom-up approach to the fabrication of nanopatterned functional surfaces, which are capable to respond to external stimuli, is of great current interest. Herein, the preparation of light-responsive, linear supramolecular metallopolymers constituted by the ideally infinite repetition of a ditopic ligand bearing an azoaryl moiety and Co(II) coordination nodes is described. The supramolecular polymerization process is followed by optical spectroscopy in dimethylformamide solution. Noteworthy, a submolecularly resolved scanning tunneling microscopy (STM) study of the in situ reversible trans-to-cis photoisomerization of a photoswitchable metallopolymer that self-assembles into 2D crystalline patterns onto a highly oriented pyrolytic graphite surface is achieved for the first time. The STM analysis of the nanopatterned surfaces is corroborated by modeling the physisorbed species onto a graphene slab before and after irradiation by means of density functional theory calculation. Significantly, switching of the monolayers consisting of supramolecular Co(II) metallopolymer bearing trans-azoaryl units to a novel pattern based on cis isomers can be triggered by UV light and reversed back to the trans conformer by using visible light, thereby restoring the trans-based supramolecular 2D packing. These findings represent a step forward toward the design and preparation of photoresponsive "smart" surfaces organized with an atomic precision. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Particle and liquid motion in semi-solid aluminium alloys: A quantitative in situ microradioscopy study

    International Nuclear Information System (INIS)

    Zabler, S.; Ershov, A.; Rack, A.; Garcia-Moreno, F.; Baumbach, T.; Banhart, J.

    2013-01-01

    Semi-solid melts exhibit a very unpredictable rheology and filling dynamics, when injected into thin-walled components. Optimization of the process requires an insight into the casting process during injection. For this purpose we injected semi-solid an Al–Ge alloy into two different thin channel geometries while recording high resolution radiographs at fast frame rates (up to 1000 images per s). Comparison of a bottleneck channel, which has previously been used for slower experiments, with a right-angle turn geometry reveals a significant influence of the channel shape on the flow behaviour of the particle–liquid mixture. While the bottleneck is quickly sealed with densified solid, turbulences in the right-angle turn apparently permit solid particles and clusters to move conjointly with the liquid and thus achieve a more complete filling. Single particle trajectories and rapid break-up of solid skeletons in such a system have been observed for the first time in situ

  11. 3-Dimensional atomic scale structure of the ionic liquid-graphite interface elucidated by AM-AFM and quantum chemical simulations

    Science.gov (United States)

    Page, Alister J.; Elbourne, Aaron; Stefanovic, Ryan; Addicoat, Matthew A.; Warr, Gregory G.; Voïtchovsky, Kislon; Atkin, Rob

    2014-06-01

    In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)-bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL-solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level structure immersed in a viscous liquid and (d) it has been demonstrated that the IL structure at solid surfaces is a consequence of both thermodynamic and kinetic effects. The lateral structure of the PAN-graphite interface is highly ordered and consists of remarkably well-defined domains of a rhomboidal superstructure composed of propylammonium cations preferentially aligned along two of the three directions in the underlying graphite lattice. The nanostructure is primarily determined by the cation. Van der Waals interactions between the propylammonium chains and the surface mean that the cation is enriched in the surface layer, and is much less mobile than the anion. The presence of a heterogeneous lateral structure at an ionic liquid-solid interface has wide ranging ramifications for ionic liquid applications, including lubrication, capacitive charge storage and electrodeposition.In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)-bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL-solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level

  12. Isocratic Solid Phase Extraction-Liquid Chromatography (SPE-LC) Interfaced to High-Performance Tandem Mass Spectrometry for Rapid Protein Identification

    DEFF Research Database (Denmark)

    Hørning, Ole B; Kjeldsen, Frank; Theodorsen, Søren

    2008-01-01

    the isocratic solid phase extraction-liquid chromatography (SPE-LC) technology for rapid separation ( approximately 8 min) of simple peptide samples. We now extend these studies to demonstrate the potential of SPE-LC separation in combination with a hybrid linear ion trap-Orbitrap tandem mass spectrometer...

  13. Relationships between oesophageal transit and solid and liquid gastric emptying in diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, M.; Maddox, A.F.; Wishart, J.M.; Harding, P.E.; Chatterton, B.E.; Shearman, D.J.C. (Royal Adelaide Hospital (Australia))

    1991-04-01

    In 87 randomly selected diabetic patients (67 type 1, 20 type 2) and 25 control subjects, gastric emptying of digestible solid and liquid meals and oesophageal transit of a solid bolus were measured with scintigraphic techniques. Gastrointestinal symptoms, autonomic nerve function and glycaemic control were evaluated in the diabetic patients. Gastric emptying and oesophageal transit were slower (P<0.001) in the diabetic patients compared with the control subjects, and both were delayed in about 40% of them. There was a relatively weak (r=0.32; P<0.01) relationship between solid and liquid gastric emptying, and no significant correlation (r=0.11, NS) between oesophageal transit and gastric emptying of the solid meal. Scores for upper gastrointestinal symptoms and autonomic nerve function correlated weakly (r=0.21; P<0.05) with both oesophageal transit and gastric emptying. Gastric emptying of the liquid meal was slower (P<0.05) in patients with blood glucose concentrations >15 mmol/l. These results indicate that gastric emptying in patients with diabetes mellitus should be assessed by liquid as well as by solid test meals and that oesophageal transit should not be used as a predictor of generalised diabetic gastroenteropathy. (orig.).

  14. Structure of ionic liquid-water mixtures at interfaces: x-ray and neutron reflectometry studies

    International Nuclear Information System (INIS)

    Lauw, Yansen; Rodopoulos, Theo; Horne, Mike; Follink, Bart; Hamilton, Bill; Knott, Robert; Nelson, Andy

    2009-01-01

    Full text: Fundamental studies on the effect of water in ionic liquids are necessary since the overall performance of ionic liquids in many industrial applications is often hampered by the presence of water.[1] Based on this understanding, the surface and interfacial structures of 1-butyl-1methylpyrrolidinium trifluoromethylsulfonylimide [C4mpyr][NTf2] ionic liquid-water mixtures were probed using x-ray and neutron reflectometry techniques. At the gas-liquid surface, a thick cation+water layer was detected next to the phase boundary, followed by an increasing presence of anion towards the bulk. The overall thickness of the surface exhibits non-monotonic trends with an increasing water content, which explains similar phenomenological trends in surface tension reported in the literature.[2] At an electrified interface, the interfacial structure of pure ionic liquids probed by neutron reflectometry shows similar trends to those predicted by a mean-field model.[3] However, the presence of water within the electrical double-layer is less obvious, although it is widely known that water reduces electrochemical window of ionic liquids. To shed light on this issue, further studies are currently in progress.

  15. Electrodeposition of Polymer Nanostructures using Three Diffuse Double Layers: Polymerization beyond the Liquid/Liquid Interfaces

    Science.gov (United States)

    Divya, Velpula; Sangaranarayanan, M. V.

    2018-04-01

    Nanostructured conducting polymers have received immense attention during the past few decades on account of their phenomenal usefulness in diverse contexts, while the interface between two immiscible liquids is of great interest in chemical and biological applications. Here we propose a novel Electrode(solid)/Electrolyte(aqueous)/Electrolyte(organic) Interfacial assembly for the synthesis of polymeric nanostructures using a novel concept of three diffuse double layers. There exist remarkable differences between the morphologies of the polymers synthesized using the conventional electrode/electrolyte method and that of the new approach. In contrast to the commonly employed electrodeposition at liquid/liquid interfaces, these polymer modified electrodes can be directly employed in diverse applications such as sensors, supercapacitors etc.

  16. Mobile Interfaces: Liquids as a Perfect Structural Material for Multifunctional, Antifouling Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Grinthal, A; Aizenberg, J

    2014-01-14

    Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design and fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions able to operate in harsh, changing environments not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. With nearly unlimited design possibilities and unmatched interfacial properties, liquid materials as long-term stable interfaces yet in their fully liquid state may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.

  17. Associations between added sugar (solid vs. liquid) intakes, diet quality, and adiposity indicators in Canadian children.

    Science.gov (United States)

    Wang, JiaWei; Shang, Lei; Light, Kelly; O'Loughlin, Jennifer; Paradis, Gilles; Gray-Donald, Katherine

    2015-08-01

    Little is known about the influence of different forms of added sugar intake on diet quality or their association with obesity among youth. Dietary intake was assessed by three 24-h recalls in 613 Canadian children (aged 8-10 years). Added sugars (mean of 3-day intakes) were categorized according to source (solid or liquid). Dietary intake and the Canadian Healthy Eating Index (« HEI-C ») were compared across tertiles of solid and liquid added sugars separately as were adiposity indicators (body mass index (BMI), fat mass (dual-energy X-ray absorptiometry), and waist circumference). Cross-sectional associations were examined in linear regression models adjusting for age, sex, energy intake, and physical activity (7-day accelerometer). Added sugar contributed 12% of total energy intake (204 kcal) on average, of which 78% was from solid sources. Higher consumption of added sugars from either solid or liquid source was associated with higher total energy, lower intake of micronutrients, vegetables and fruit, and lower HEI-C score. Additionally liquid sources were associated with lower intake of dairy products. A 10-g higher consumption of added sugars from liquid sources was associated with 0.4 serving/day lower of vegetables and fruit, 0.4-kg/m(2) higher BMI, a 0.5-kg higher fat mass, and a 0.9-cm higher waist circumference whereas the associations of added sugars from solid sources and adiposity indicators tended to be negative. In conclusion, higher consumption of added sugar from either solid or liquid sources was associated with lower overall diet quality. Adiposity indicators were only positively associated with added sugars from liquid sources.

  18. Evaluation and ranking of the tank focus area solid liquid separation needs

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, D.J.

    1995-08-17

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) addresses remediation of liquid waste currently stored in underground tanks. Several baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment for ion exchange, and (c) volume reduction of sludge and wash water. The solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. Prior to ion exchange of radioactive ions, removal of insoluble solids is needed to prevent bed fouling and downstream contamination. Volume reduction of washed sludge solids would reduce the tank space required for interim storage. The scope of this document is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. The document summarizes previous alkaline waste testing, with an emphasis on crossflow filtration, to-obtain a general understanding of the behavior of radioactive wastes on available equipment. The document also provides general information about filtration and a path forward for testing.

  19. Evaluation and ranking of the tank focus area solid liquid separation needs

    International Nuclear Information System (INIS)

    McCadbe, D.J.

    1995-01-01

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) addresses remediation of liquid waste currently stored in underground tanks. Several baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment for ion exchange, and (c) volume reduction of sludge and wash water. The solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. Prior to ion exchange of radioactive ions, removal of insoluble solids is needed to prevent bed fouling and downstream contamination. Volume reduction of washed sludge solids would reduce the tank space required for interim storage. The scope of this document is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. The document summarizes previous alkaline waste testing, with an emphasis on crossflow filtration, to-obtain a general understanding of the behavior of radioactive wastes on available equipment. The document also provides general information about filtration and a path forward for testing

  20. Surface energies of metals in both liquid and solid states

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension (γ m ), surface energy (γ SV ), surface excess entropy (-dγ/dT), surface excess enthalpy (H s ), coefficient of thermal expansion (α m and α b ), sound velocity (c m ) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  1. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    International Nuclear Information System (INIS)

    Stout, R B

    2001-01-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For

  2. The flexibility of SIMPSON and SIMMOL for numerical simulations in solid-and liquid-state NMR spectroscopy

    International Nuclear Information System (INIS)

    Vosegaard, T.; Malmendal, A.; Nielsen, N.C.

    2002-01-01

    Addressing the need for numerical simulations in the design and interpretation of advanced solid- and liquid-state NMR experiments, we present a number of novel features for numerical simulations based on the SIMPSON and SIMMOL open source software packages. Major attention is devoted to the flexibility of these Tcl-interfaced programs for numerical simulation of NMR experiments being complicated by demands for efficient powder averaging, large spin systems, and multiple-pulse rf irradiation. These features are exemplified by fast simulation of second-order quadrupolar powder patterns using crystallite interpolation, analysis of rotary resonance triple-quantum excitation for quadrupolar nuclei, iterative fitting of MQ-MAS spectra by combination of SIMIPSON and MINUIT, simulation of multiple-dimensional PISEMA-type correlation experiments for macroscopically oriented membrane proteins, simulation of Hartman-Hahn polarization transfers in liquid-state NMR, and visualization of the spin evolution under complex composite broad-band excitation pulses. (author)

  3. Basic research needs and opportunities on interfaces in solar materials

    Energy Technology Data Exchange (ETDEWEB)

    Czanderna, A. W.; Gottschall, R. J. [eds.

    1981-04-01

    The workshop on research needs and recommended research programs on interfaces in solar energy conversion devices was held June 30-July 3, 1980. The papers deal mainly with solid-solid, solid-liquid, and solid-gas interfaces, sometimes involving multilayer solid-solid interfaces. They deal mainly with instrumental techniques of studying these interfaces so they can be optimized, so they can be fabricated with quality control and so changes with time can be forecast. The latter is required because a long lifetime (20 yrs is suggested) is necessary for economic reasons. Fifteen papers have been entered individually into EDB and ERA. (LTN)

  4. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Science.gov (United States)

    2010-07-01

    ... following solid and liquid wastes and discharges information and cooling water intake information must... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? 250.248 Section 250.248...

  5. Clinical Evaluation of Radionuclide Esophageal Transit Studies using Liquid and Solid Foods

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Jae Gol; Lee, Min Jae; Song, Chi Wook; Hyun, Jin Hai; Suh, Won Hyuck [Korea University College of Medicine, Seoul (Korea, Republic of)

    1995-03-15

    The author performed radionuclide esophageal transit studies(RETS) with liquid and solid boluses using the same day protocol in 90 normal controls and 164 patients with various primary esophageal motility disorders who were diagnosed by manometric criteria and clinical courses. The authors calculated mean esophageal transit time(MTT) and mean residual retention(MRR) in each of the liquid and solid studies, and classified time-activity curve(TAC) patterns. The normal criteria of RETS with liquid bolus were MTT<24 sec, MRR<9%, and the TAC pattern that showed rapid declining slope and flat low residual(Type 1). The normal criteria of RETS with solid bolus were MTT<35 sec, MRR<9% and TAC of type 1. With these normal criteria, the sensitivity and the specificity of the liquid study were 62.2% and 97.8%, respectively. The sensitivity increased to 75.4% with the solid study. The author also found that the RETS was highly reproducible. The achalasia typically showed no effective emptying of both liquid and solid boluses during the whole study period, and was well differentiated by its extremely long transit time and high retention from the other motility disorders. The diffuse esophageal spasm(DES) and nonspecific esophageal motility disorder(NEMD) showed intermediate delay in transit time and increased retention. In the groups of hypertensive lower esophageal sphincter(LES), hypotensive LES and nutcracker, there noted no significant difference with the normal control group in terms of MTT and MRR. The DES and NEMD could be more easily identified by solid studies that showed more marked delay in MTT and increased MRR as compared with the liquid study. In conclusion, esophageal scintigraphy is a safe, noninvasive and physiologic method for the evaluation of esophageal emptying.

  6. A multi-phase equation of state for solid and liquid lead

    International Nuclear Information System (INIS)

    Robinson, C.M.

    2004-01-01

    This paper considers a multi-phase equation of state for solid and liquid lead. The thermodynamically consistent equation of state is constructed by calculating separate equations of state for the solid and liquid phases. The melt curve is the curve in the pressure, temperature plane where the Gibb's free energy of the solid and liquid phases are equal. In each phase a complete equation of state is obtained using the assumptions that the specific heat capacity is constant and that the Grueneisen parameter is proportional to the specific volume. The parameters for the equation of state are obtained from experimental data. In particular they are chosen to match melt curve and principal Hugoniot data. Predictions are made for the shock pressure required for melt to occur on shock and release

  7. Thermophysical properties of solid and liquid pure and alloyed Pu: A review

    Energy Technology Data Exchange (ETDEWEB)

    Boivineau, M., E-mail: michel.boivineau@cea.f [CEA, Centre de Valduc, Departement de Recherches sur les Materiaux Nucleaires, F-21120 Is-sur-Tille (France)

    2009-08-01

    The thermophysical properties of both solid and liquid pure and alloyed plutonium have been investigated up to 4000 K by use of a resistive pulse heating technique, the so-called isobaric expansion experiment (IEX). Electrical resistivity, specific volume (density), latent heats of transformations, heat of fusion have been measured and extended in the whole liquid region. Additional static measurements have been also performed in order to determine the heat transport properties such as heat capacity, thermal diffusivity and thermal conductivity of plutonium alloys. After a first part devoted to additional results on pure Pu under rapid heating, this paper mostly deals with studies on different delta-stabilized Pu alloys in the high temperature range, particularly in the liquid state which is the principal originality of this work. In addition to the thermophysical data mentioned above, an attention is also paid onto sound velocity measurements on these alloys in the solid and liquid states. Hence, an anomalous behavior such as elastic softening is confirmed in the delta phase as already reported previously. Moreover, sound velocity and equation of state parameters (adiabatic and thermal bulk moduli, Grueneisen parameter, and specific heats ratio) have been investigated on liquid alloyed Pu. Such results confirm previous works on liquid pure Pu by presenting an atypical dual behavior of sound velocity, and are discussed in terms of delocalization process of the 5f electrons of both liquid pure and alloyed Pu.

  8. Ionic liquid-modified materials for solid-phase extraction and separation: a review.

    Science.gov (United States)

    Vidal, Lorena; Riekkola, Marja-Liisa; Canals, Antonio

    2012-02-17

    In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. SOLID AND LIQUID PINEAPPLE WASTE UTILIZATION FOR LACTIC ACID FERMENTATION USING Lactobacillus delbrueckii

    Directory of Open Access Journals (Sweden)

    Abdullah Abdullah

    2012-01-01

    Full Text Available The liquid and solid  pineapple wastes contain mainly sucrose, glucose, fructose and other nutrients. It therefore can potentially be used as carbon source for fermentation to produce organic acid. Recently, lactic acid has been considered to be an important raw material for production of biodegradable lactate polymer. The experiments were  carried out in batch fermentation using  the  liquid and solid pineapple wastes to produce lactic acid. The anaerobic fermentation of lactic acid were performed at 40 oC, pH 6, 5% inocolum and  50 rpm. Initially  results show that the liquid pineapple waste by  using Lactobacillus delbrueckii can be used as carbon source  for lactic acid fermentation. The production of lactic acid  are found to be 79 % yield, while only  56% yield was produced by using solid waste. 

  10. Solid and liquid 129Xe NMR signals enhanced by spin-exchange optical pumping under flow

    International Nuclear Information System (INIS)

    Zhou Xin; Luo Jun; Sun Xianping; Zeng Xizhi; Liu Maili; Liu Wuyang

    2002-01-01

    Laser-polarized 129 Xe gas was produced by spin-exchange with Cs atom optically pumped with diode laser array in a low field under flow. The nuclear spin polarizations of the solid and liquid 129 Xe frozen from the laser-polarized 129 Xe gas were 2.16% and 1.45% respectively in the SY-80M NMR spectrometer, which corresponded to the enhancements of 6000 and 5000 compared to those without optical pumping under the same conditions. It could provide the base and possibility for quantum computers using laser-enhanced solid and liquid 129 Xe. Polarization loss of transport and state change was also discussed

  11. Transire, a Program for Generating Solid-State Interface Structures

    Science.gov (United States)

    2017-09-14

    ARL-TR-8134 ● SEP 2017 US Army Research Laboratory Transire, a Program for Generating Solid-State Interface Structures by...Program for Generating Solid-State Interface Structures by Caleb M Carlin and Berend C Rinderspacher Weapons and Materials Research Directorate, ARL...

  12. Practical solid and liquid phase markers for studying gastric emptying in man

    International Nuclear Information System (INIS)

    Thomforde, G.M.; Brown, M.L.; Malagelada, J.R.

    1985-01-01

    This paper presents a method used to evaluate solid and liquid phase markers for radionuclide gastric emptying studies. The authors conducted in vitro and in vivo comparative experiments employing several radiolabeled markers. Among the solid phase markers tested, Tc-99m-sulfur colloid in vivo-labeled liver and I-131-fiber performed optimally. However, Tc-99M sulfur colloid in scrambled egg showed very acceptable performance and it is significantly easier to prepare. Among liquid phase markers, they found In-111-DTPA stabilized with 1% albumin to be a good agent and appropriate for dual isotope emptying studies

  13. On the relation between texture perception and fundamental mechanical parameters for liquids and time dependent solids

    NARCIS (Netherlands)

    Vliet, van T.

    2002-01-01

    Abstract Aspects of the relationship between texture perception in the mouth and fundamental mechanical parameters for liquids and time dependent solids are discussed. The emphasis is on the physical side of the relation. The importance is stressed of the incorporation of a thorough knowledge of

  14. Solids precipitation in crude oils, gas-to-liquids and their blends

    Science.gov (United States)

    Ramanathan, Karthik

    Gas-to-liquids (GTL) liquids are obtained from syngas by the Fischer-Tropsch synthesis. The blending of GTL liquids produced from natural gas/coal reserves and crude oils is a possibility in the near future for multiple reasons. Solids precipitation is a major problem in pipelines and refineries leading to significant additional operating costs. The effect of the addition of a paraffinic GTL liquid to crude oils on solids precipitation was investigated in this study. A Fourier transform infrared (FT-IR) spectroscopic technique was used to obtain solid-liquid equilibria (SLE) data for the various samples. The SLE of multiple systems of model oils composed of n-alkanes was investigated preliminarily. Blends of a model oil simulating a GTL liquid composition and a crude oil showed that the wax precipitation temperature (WPT) decreased upon blending. Three crude oils from different geographic regions (Alaskan North Slope, Colorado and Venezuela) and a laboratory-produced GTL liquid were used in the preparation of blends with five different concentrations of the GTL liquid. The wax precipitation temperatures of the blends were found to decrease with the increasing addition of the GTL liquid for all the oils. This effect was attributed to the solvent effect of the low molecular weight-paraffinic GTL liquid on the crude oils. The weight percent solid precipitated that was estimated as a function of temperature did not show a uniform trend for the set of crude oils. The asphaltene onset studies done on the blends with near-infrared spectroscopy indicated that the addition of GTL liquid could have a stabilizing effect on the asphaltenes in some oils. Analytical techniques such as distillation, solvent separation, HPLC, GC, and GPC were used to obtain detailed composition data on the samples. Two sets of compositional data with 49 and 86 pseudo-components were used to describe the three crude oils used in the blending work. The wax precipitation was calculated using a

  15. Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid

    Science.gov (United States)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2006-03-01

    The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.

  16. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico

    International Nuclear Information System (INIS)

    Garcia A, E.; Hernandez F, I. Y.; Fernandez R, E.; Monroy G, F.; Lizcano C, D.

    2014-10-01

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  17. Solid and liquid radioactive waste management of the Nuclear Technology Development Center (CDTN) - NUCLEBRAS

    International Nuclear Information System (INIS)

    Guzella, M.F.R.; Miaw, S.T.W.; Mourao, R.P.; Prado, M.A.S. do; Reis, L.C.A.; Santos, P.O.; Silva, E.M.P.

    1986-01-01

    Low level liquid and solid wastes are produced in several laboratories of the NUCLEAR TECHNOLOGY DEVELOPMENT CENTER (CDTN)-NUCLEBRAS. In the last years, the intensification of technical activities at the Center has increased the radioactive waste volumes. Therefore, the implementation of a Radioactive Waste Management Program has begun. This Program includes the systematic of activities from the waste collection to the transportation for the final disposal. The liquid and solid waste are collected separately in proper containers and stored for later treatment according to the processes available or under development at the Center. (Author) [pt

  18. Solid and liquid radioactive waste management of the Nuclear Technology Development Center (CDTN)- Nuclebras

    International Nuclear Information System (INIS)

    Guzella, M.F.R.; Mourao, R.P.; Reis, L.C.A.; Silva, E.M.P.; Miaw, S.T.W.; Prado, M.A.S.; Santos, P.O.

    1986-01-01

    Low level liquid and solid wastes are produced in several laboratories of the NUCLEAR TECHNOLOGY DEVELOPMENT CENTER (CDTN) - NUCLEBRAS. In the last years, the intensification of technical activities at the Center has increased the radioactive waste volumes. Therefore, the implementation of a Radioactive Waste Management Program has begun. This Program includes the systematic of activities from the waste collection to the transportation for the final disposal. The liquid and solid waste are collected separately in proper containers and stored for later treatment according to the processes available or under development at the Center. (Author) [pt

  19. Mathematical modeling of planar and spherical vapor–liquid phase interfaces for multicomponent fluids

    Directory of Open Access Journals (Sweden)

    Celný David

    2016-01-01

    Full Text Available Development of methods for accurate modeling of phase interfaces is important for understanding various natural processes and for applications in technology such as power production and carbon dioxide separation and storage. In particular, prediction of the course of the non-equilibrium phase transition processes requires knowledge of the properties of the strongly curved phase interfaces of microscopic droplets. In our work, we focus on the spherical vapor–liquid phase interfaces for binary mixtures. We developed a robust computational method to determine the density and concentration profiles. The fundamentals of our approach lie in the Cahn-Hilliard gradient theory, allowing to transcribe the functional formulation into a system of ordinary Euler-Langrange equations. This system is then split and modified into a shape suitable for iterative computation. For this task, we combine the Newton-Raphson and the shooting methods providing a good convergence speed. For the thermodynamic roperties, the PC–SAFT equation of state is used. We determine the density and concentration profiles for spherical phase interfaces at various saturation factors for the binary mixture of CO2 and C9H20. The computed concentration profiles allow to the determine the work of formation and other characteristics of the microscopic droplets.

  20. Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) Pickering emulsions

    Science.gov (United States)

    Thijssen, J. H. J.; Vermant, J.

    2018-01-01

    Interface-dominated materials are commonly encountered in both science and technology, and typical examples include foams and emulsions. Conventionally stabilised by surfactants, emulsions can also be stabilised by micron-sized particles. These so-called Pickering-Ramsden (PR) emulsions have received substantial interest, as they are model arrested systems, rather ubiquitous in industry and promising templates for advanced materials. The mechanical properties of the particle-laden liquid-liquid interface, probed via interfacial rheology, have been shown to play an important role in the formation and stability of PR emulsions. However, the morphological processes which control the formation of emulsions and foams in mixing devices, such as deformation, break-up, and coalescence, are complex and diverse, making it difficult to identify the precise role of the interfacial rheological properties. Interestingly, the role of interfacial rheology in the stability of bicontinuous PR emulsions (bijels) has been virtually unexplored, even though the phase separation process which leads to the formation of these systems is relatively simple and the interfacial deformation processes can be better conceptualised. Hence, the aims of this topical review are twofold. First, we review the existing literature on the interfacial rheology of particle-laden liquid interfaces in rheometrical flows, focussing mainly on model latex suspensions consisting of polystyrene particles carrying sulfate groups, which have been most extensively studied to date. The goal of this part of the review is to identify the generic features of the rheology of such systems. Secondly, we will discuss the relevance of these results to the formation and stability of PR emulsions and bijels.

  1. Kinetics of Isothermal Reactive Diffusion Between Solid Cu and Liquid Sn

    Science.gov (United States)

    O, M.; Suzuki, T.; Kajihara, M.

    2018-01-01

    The Cu/Sn system is one of the most fundamental and important metallic systems for solder joints in electric devices. To realize reliable solder joints, information on reactive diffusion at the solder joint is very important. In the present study, we experimentally investigated the kinetics of the reactive diffusion between solid Cu and liquid Sn using semi-infinite Cu/Sn diffusion couples prepared by an isothermal bonding technique. Isothermal annealing of the diffusion couple was conducted in the temperature range of 533-603 K for various times up to 172.8 ks (48 h). Using annealing, an intermetallic layer composed of Cu6Sn5 with scallop morphology and Cu3Sn with rather uniform thickness is formed at the original Cu/Sn interface in the diffusion couple. The growth of the Cu6Sn5 scallop occurs much more quickly than that of the Cu3Sn layer and thus predominates in the overall growth of the intermetallic layer. This tendency becomes more remarkable at lower annealing temperatures. The total thickness of the intermetallic layer is proportional to a power function of the annealing time, and the exponent of the power function is close to unity at all the annealing temperatures. This means that volume diffusion controls the intermetallic growth and the morphology of the Cu6Sn5/Sn interface influences the rate-controlling process. Adopting a mean value of 0.99 for the exponent, we obtain a value of 26 kJ/mol for the activation enthalpy of the intermetallic growth.

  2. Solution properties of solid and liquid potassium-indium alloys

    International Nuclear Information System (INIS)

    Takenaka, T.; Saboungi, M.L.

    1987-01-01

    It was recently shown by a combination of electrical resistivity, thermodynamic, and structural measurements that equiatomic alloys formed between K or Na and either Bi, Sb, Te, or Pb show pronounced deviations from ordinary metallic behavior and from ideal solution behavior, e.g., small values for the electrical conductivity and sharp peaks for the Darken excess stability function. Physical explanation of this behavior has been advanced on the basis of the formation of complex structural species similar to those reported for the corresponding solid alloys. The authors have chosen K-In alloys for several reasons. Phase diagram considerations coupled with small electronegativity differences between K and In would lead one to predict small deviations from ideal behavior, thus, this system would be suitable to test for oddities in alloy solution behavior in systems which deviate little from ideal behavior. Others have demonstrated that the position of the peak in the electrical resistivity changed in going from Li to Na and to K in the following sequence X/sub In/ ≅ 0.25, 0.40, and 0.50, respectively. The thermodynamic properties of these alloys would be expected to present similar trends

  3. Solid on liquid deposition, a review of technological solutions

    OpenAIRE

    Homsy, Alexandra; Laux, Edith; Jeandupeux, Laure; Charmet, Jérôme; Bitterli, Roland; Botta, Chiara; Rebetez, Yves; Banakh, Oksana; Keppner, Herbert

    2015-01-01

    Solid-on-liquid deposition (SOLID) techniques are of great interest to the MEMS and NEMS (Micro- and Nano Electro Mechanical Systems) community because of potential applications in biomedical engineering, on-chip liquid trapping, tunable micro-lenses, and replacements of gate oxides. However, depositing solids on liquid with subsequent hermetic sealing is difficult because liquids tend to have a lower density than solids. Furthermore, current systems seen in nature lack thermal, mechanical or...

  4. Experimental (solid + liquid) or (liquid + liquid) phase equilibria of (amine + nitrile) binary mixtures

    International Nuclear Information System (INIS)

    Domanska, Urszula; Marciniak, Malgorzata

    2007-01-01

    (Solid + liquid) phase diagrams have been determined for (hexylamine, or octylamine, or 1,3-diaminopropane + acetonitrile) mixtures. Simple eutectic systems have been observed in these mixtures. (Liquid + liquid) phase diagrams have been determined for (octylamine, or decylamine + propanenitrile, or + butanenitrile) mixtures. Mixtures with propanenitrile and butanenitrile show immiscibility in the liquid phase with an upper critical solution temperature, UCST. (Solid + liquid) phase diagrams have been correlated using NRTL, NRTL 1, Wilson and UNIQUAC equations. (Liquid + liquid) phase diagrams have been correlated using NRTL equation

  5. International school on high field NMR spectroscopy for solids and liquids

    International Nuclear Information System (INIS)

    Marion, D.; Meier, B.; Keeler, J.; Berthault, P.; Vedrine, P.; Grandinetti, P.; Delsuc, M.A.; Spiess, H.

    2006-01-01

    The aim of the school is to offer high-level pedagogical courses on a wide range of liquid- and solid-state NMR concepts and techniques: theory, instrumentation (magnets and probes), data acquisition, processing and analysis, measurement of dipolar and quadrupolar couplings, spin relaxation and hyper-polarization. This document gathers only the slides of most presentations

  6. International school on high field NMR spectroscopy for solids and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Marion, D.; Meier, B.; Keeler, J.; Berthault, P.; Vedrine, P.; Grandinetti, P.; Delsuc, M.A.; Spiess, H

    2006-07-01

    The aim of the school is to offer high-level pedagogical courses on a wide range of liquid- and solid-state NMR concepts and techniques: theory, instrumentation (magnets and probes), data acquisition, processing and analysis, measurement of dipolar and quadrupolar couplings, spin relaxation and hyper-polarization. This document gathers only the slides of most presentations.

  7. Role of fluttering dislocations in the thermal interface resistance between a silicon crystal and plastic solid 4He

    Science.gov (United States)

    Amrit, Jay; Ramiere, Aymeric; Volz, Sebastian

    2018-01-01

    A quantum solid (solid 4He) in contact with a classical solid defines a new class of interfaces. In addition to its quantum nature, solid 4He is indeed a very plastic medium. We examine the thermal interface resistance upon solidification of superfluid 4He in contact with a silicon crystal surface (111) and show that dislocations play a crucial role in the thermal interface transport. The growth of solid 4He and the measurements are conducted at the minimum of the melting curve of helium (0.778 K and ˜25 bar ). The results display a first-order transition in the Kapitza resistance from a value of RK ,L=(80 ±8 ) c m2K /W at a pressure of 24.5 bar to a value of RK ,S=(41.7 ±8 ) c m2K /W after the formation of solid helium at ˜25.2 bar . The drop in RK ,S is only of a factor of ˜2 , although transverse phonon modes in solid 4He now participate in heat transmission at the interface. We provide an explanation for the measured RK ,S by considering the interaction of thermal phonons with vibrating dislocations in solid 4He. We demonstrate that this mechanism, also called fluttering, induces a thermal resistance RF l∝NdT-6 , where T is the temperature and Nd is the density of dislocations. We estimate that for dislocation densities on the order of ˜107c m-2 , RF l predominates over the boundary resistance RK ,S. These fundamental findings shed light on the role of dislocations and provide a quantitative explanation for previous experiments which showed no measurable change in the Kapitza resistance between Cu and superfluid 4He upon solidification of the latter. This demonstrates the possibility of using dislocations as an additional means to tailor thermal resistances at interfaces, formed especially with a plastic material.

  8. Joint Cementation of liquid and solid radioactive waste in decommissioning of atomic objects

    International Nuclear Information System (INIS)

    Varlakov, A.; Varlakova, G.; Germanov, A.; Sukhanov, L.

    2015-01-01

    Joint cementation of liquid and solid radioactive waste (RW) directly in the containers that serve as the final packaging allows the reduction of waste amounts sent for storage and disposal. In the A.A. Bochvar Research Institute we have created a mobile unit and conducted tests on joint grouting of solid RW with the use of cement mixtures prepared on the basis of liquid RW. Two variants of void filling between the fragments of solid RW in a container: pouring and impregnation were examined. Impregnation is the so-called method suggested to be used for the solid RW with small fragments and dense filling layer. In this case the gaps between the waste are filled with the cement compound by using special technological procedures, in particular, the vibration action on the container filled with waste and the use of cement mixture with high level of penetration. It was observed that the pouring method is right for the cementation of solid RW with fragment sizes not exceeding 100-150 mm. Impregnation method can be used for the joint grouting of practically all types of solid RW regardless their size and fragments homogeneity. Cementation of densely packed and large size solid RW by impregnation guarantees the joint grouting of the lower layers of the waste in the container and can be controlled by determination of the impregnation degree and density of the cement mixture that passed through the waste layer

  9. Atomistic Simulation of Interfaces in Materials of Solid State Ionics

    Science.gov (United States)

    Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.

  10. Response of Solid and Liquid Targets to High Power Proton Beams for Neutrino Factories

    CERN Document Server

    Sievers, P

    2000-01-01

    The response of solid and liquid targets to rapid heating by the incident proton beam is assessed in a classical way, among other things by solving the wave equation under linear conditions and in cylindrical symmetry. This study provides bench mark values and allows to identify critical issues and limiting factors which can help to guide further investigations with more sophisticated means.

  11. Tribological properties of rice starch in liquid and semi-solid food model systems

    NARCIS (Netherlands)

    Liu, K.; Stieger, M.A.; Linden, van der E.; Velde, van de Fred

    2016-01-01

    This study investigated the tribological and rheological properties of liquid and semi-solid food model systems containing micro-granular rice starch. Native (uncooked) and gelatinized rice starch dispersions, o/w emulsions and emulsion-filled gelatin gels were studied as food model systems. Native

  12. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures.

    Science.gov (United States)

    Zhan, Yijian; Meschke, Günther

    2017-07-08

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.

  13. Influence of liquid viscosity and surface tension on the gas-liquid mass transfer coefficient for solid foam packings in co-current two-phase flow

    NARCIS (Netherlands)

    Stemmet, C.P.; Bartelds, F.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.

    2008-01-01

    The gas–liquid mass transfer coefficient and other hydrodynamic parameters such as liquid holdup and frictional pressure drop are presented for gas and liquid moving in co-current upflow and downflow through solid foam packings of 10 and of 40 pores per linear inch (ppi). The effect of increasing

  14. SCATLAW: a code of scattering law and cross sections calculation for liquids and solids

    International Nuclear Information System (INIS)

    Padureanu, I.; Rapeanu, S.; Rotarascu, G.; Craciun, C.

    1978-11-01

    A code for calculation of the scattering law S(Q,ω), differential and double differential cross sections and scattering kernels in the energy range E(0 - 683 meV) and wave-vector transfer Q(0 - 40 A -1 ) is presented. The code can be used both for solids and liquids which are coherent or incoherent scatterer. For liquids the calculations are based on the most recent theoretical models involving the correlation functions and generalized field approach. The phonon expansion model and the free gas model are also analysed in term of frequency spectra obtained from inelastic neutron scattering using time-of-flight technique. Several results on liquid sodium at T = 233 deg C and on liquid bismuth at T = 286 deg C and T = 402 deg C are presented. (author)

  15. Liquid-phase and solid-phase radioimmunoassay with herpes simplex virus type 1 nucleocapsids

    International Nuclear Information System (INIS)

    Bystricka, M.; Rajcani, J.; Libikova, H.; Sabo, A.; Foeldes, O.; Sadlon, J.

    1985-01-01

    Liquid-phase radioimmunoassay and solid-phase radioimmunoassay are described using 125 I-labelled or immobilized nucleocapsids (NC) of herpes simplex virus (HSV) type1. These techniques appeared sensitive and specific for quantitation of HSV-NC antigens and corresponding antibodies. (author)

  16. The Little Heat Engine: Heat Transfer in Solids, Liquids and Gases

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-10-01

    Full Text Available In this work, an introductory exposition of the laws of thermodynamics and radiative heat transfer is presented while exploring the concepts of the ideal solid, the lattice, and the vibrational, translational, and rotational degrees of freedom. Analysis of heat transfer in this manner helps scientists to recognize that the laws of thermal radiation are strictly applicable only to the ideal solid. On the Earth, such a solid is best represented by either graphite or soot. Indeed, certain forms of graphite can approach perfect absorption over a relatively large frequency range. Nonetheless, in dealing with heat, solids will eventually sublime or melt. Similarly, liquids will give way to the gas phase. That thermal conductivity eventually decreases in the solid signals an inability to further dissipate heat and the coming breakdown of Planck’s law. Ultimately, this breakdown is reflected in the thermal emission of gases. Interestingly, total gaseous emissivity can de- crease with increasing temperature. Consequently, neither solids, liquids, or gases can maintain the behavior predicted by the laws of thermal emission. Since the laws of thermal emission are, in fact, not universal, the extension of these principles to non-solids constitutes a serious overextension of the work of Kirchhoff, Wien, Stefan and Planck.

  17. Physical Education between the social project of solid modernity and the of liquid modernity

    Directory of Open Access Journals (Sweden)

    Sidinei Pithan da Silva

    2012-09-01

    Full Text Available Grounded on Bauman’s thought, the present paper focuses on the constitution of social legitimacy and identity of Physical Education in the context of transition from solid to liquid modernity. This thought favors the understanding of the nature of the crisis that has crossed the identity discourse of Physical Education. The text signals the limits and possibilities of both the modern and the post-modern educational discourses. In this context, it describes a modern scenario that is marked by two distinct moments, the one of modernity at its solid stage, and that of modernity at its liquid stage. The first one, of solid modernity, social condition of surveillance, rationalization and control, performs the functional / adaptive role of putting everyone under the same rigid order (managed society. The second one, of liquid modernity, of the social condition of insignificance and irrationalism, plays the functional role of putting and keeping everyone under the same flexible Market disorder. From the scientific, mechanic focus of both the body and the physical education in solid modernity we have moved to the relativist and esthetic focus of body and physical education in liquid modernity.

  18. Interface control document between Analytical Services and Solid Waste Disposal Division

    International Nuclear Information System (INIS)

    Venetz, T.J.

    1995-01-01

    This interface control document (ICD) between Analytical Services and Solid Waste Disposal (SWD) establishes a baseline description of the support needed and the wastes that will require management as part of the interface between the two divisions. It is important that each division has a clear understanding of the other division's expectations regarding levels and type of support needed. This ICD deals with the waste sampling support needed by SWD and the waste generated by the specified analytical laboratories. The baseline description of wastes includes waste volumes, characteristics and shipping schedules, which will be used to plan the proper support requirements. The laboratories included in this document are 222-S Laboratory Facility, the Waste Sampling and Characterization Facility (WSCF) and the Chemical Engineering Laboratory. These three facilities provide support to the entire site and are not associated with one major program/facility. The laboratories associated with major facilities or programs such as Engineering/Environmental Development Laboratory at K Basins Operation are not within the scope of this document

  19. Formation and filtration characteristics of solids generated in a high level liquid waste treatment process. Filtration characteristics of solids formed in simulated high level liquid waste

    International Nuclear Information System (INIS)

    Kondo, Y.; Kubota, M.

    1997-01-01

    The filtration characteristics of solids generated in a simulated high level liquid waste (HLLW) were experimentally examined, when the simulated HLLW was processed according to the ordinary way of actual HLLW treatment process. The filtration characteristics of solids depended on the particle size. The phosphomolybdic acid, which was very fine particle with about 0.1 μm diameter, made slurry a 'difficult-to-filter' slurry, if the phosphomolybdic acid content (wt%) to the whole solids in a slurry exceeded 50wt%. On the contrary, the zirconium compounds (zirconium molybdate and zirconium telluride) had positive effect on filtration characteristics because of their relatively large particle size of about 3 to 5 μm. When the zirconium compounds content was above 50 wt%, slurry became a 'easy-to-filter' slurry. A centrifugal sedimentation was discussed as a solid/liquid separation technique for very fine particles such as phosphomolybdic acid. The theoretical feed flow rate corresponded to 0.1 μm diameter particles was about 20 1/h at the centrifugal acceleration of about 8000 G. (author)

  20. Simulation of the formation of two-dimensional Coulomb liquids and solids in dusty plasmas

    International Nuclear Information System (INIS)

    Hwang, H.H.; Kushner, M.J.

    1997-01-01

    Dust particle transport in low-temperature plasmas has recently received considerable attention due to the desire to minimize contamination of wafers during plasma processing of microelectronics devices. Laser light scattering observations of dust particles near wafers in reactive-ion-etching (RIE) radio frequency (rf) discharges have revealed clouds which display collective behavior. These observations have motivated experimental studies of the Coulomb liquid and solid properties of these systems. In this paper, we present results from a two-dimensional model for dust particle transport in RIE rf discharges in which we include particle-particle Coulomb interactions. We predict the formation of Coulomb liquids and solids. These predictions are based both on values of Γ>2 (liquid) and Γ>170 (solid), where Γ is the ratio of electrostatic potential energy to thermal energy, and on crystal-like structure in the pair correlation function. We find that Coulomb liquids and solids composed of trapped dust particles in RIE discharges are preferentially formed with increasing gas pressure, decreasing particle size, and decreasing rf power. We also observe the ejection of particles from dust crystals which completely fill trapping sites, as well as lattice disordering followed by annealing and refreezing. copyright 1997 American Institute of Physics

  1. Elastic waves at periodically-structured surfaces and interfaces of solids

    Directory of Open Access Journals (Sweden)

    A. G. Every

    2014-12-01

    Full Text Available This paper presents a simple treatment of elastic wave scattering at periodically structured surfaces and interfaces of solids, and the existence and nature of surface acoustic waves (SAW and interfacial (IW waves at such structures. Our treatment is embodied in phenomenological models in which the periodicity resides in the boundary conditions. These yield zone folding and band gaps at the boundary of, and within the Brillouin zone. Above the transverse bulk wave threshold, there occur leaky or pseudo-SAW and pseudo-IW, which are attenuated via radiation into the bulk wave continuum. These have a pronounced effect on the transmission and reflection of bulk waves. We provide examples of pseudo-SAW and pseudo-IW for which the coupling to the bulk wave continuum vanishes at isloated points in the dispersion relation. These supersonic guided waves correspond to embedded discrete eigenvalues within a radiation continuum. We stress the generality of the phenomena that are exhibited at widely different scales of length and frequency, and their relevance to situations as diverse as the guiding of seismic waves in mine stopes, the metrology of periodic metal interconnect structures in the semiconductor industry, and elastic wave scattering by an array of coplanar cracks in a solid.

  2. Interactions of solid and liquid lithium with steady state hydrogen and helium plasmas

    International Nuclear Information System (INIS)

    Hirooka, Y.; Nishikawa, M.; Ohgaki, H.; Ohtsuka, Y.

    2005-01-01

    A variety of innovative Plasma-Facing Component (PFC) concepts, employing moving solid or liquid surfaces, have recently been proposed in order to resolve technical issues, associated with the applications of currently used PFCs in future steady state fusion devices. As the first step to evaluate the concept using flowing-liquids for PFCs, steady state hydrogen and helium plasma interactions with solid and standing liquid lithium have been investigated in the present work, using the H α and He-I spectroscopy at the ion bombarding energies up to 150eV and at the lithium temperatures between room temperature and 480 deg C. Data indicate that hydrogen recycling over liquid lithium is clearly reduced, relative to that over solid lithium, whereas helium recycling does not show the same trend. From the kinetic analysis of these recycling time constant data, the activation energies for the overall recycling processes have been evaluated to be 0.02±0.01eV, both for hydrogen and helium plasmas. Also, it has been found that the activation energy is nearly independent of ion bombarding energy. (author)

  3. Liquid plugs bouncing against a solid basis, comparison of SIMMER-III and PLEXUS results

    International Nuclear Information System (INIS)

    Maschek, W.; Arnecke, G.; Flad, M.

    1995-01-01

    The SIMMER III code is being tested by application to problems of reactor accidents. The fluid dynamics/thermohydraulics part of the code can be applied also to evaporation/condensation, melt, and freezing phenomena. For a liquid plug bouncing against a solid basis, the momentum transfer is calculated. PLEXUS results turn out to be in significant disagreement with the SIMMER calculations. (orig.)

  4. Management of radioactive low level liquid, gaseous, and solid wastes in the 200 areas

    International Nuclear Information System (INIS)

    White, A.T.

    1976-01-01

    The practices which are currently used for handling radioactive waste are outlined. These include burial of solid waste, scrubbing of off gas streams, and routing liquid effluents (mostly cooling water) to open ponds where the water percolates to the water table

  5. Visual observation of gas hydrates nucleation and growth at a water - organic liquid interface

    Science.gov (United States)

    Stoporev, Andrey S.; Semenov, Anton P.; Medvedev, Vladimir I.; Sizikov, Artem A.; Gushchin, Pavel A.; Vinokurov, Vladimir A.; Manakov, Andrey Yu.

    2018-03-01

    Visual observation of nucleation sites of methane and methane-ethane-propane hydrates and their further growth in water - organic liquid - gas systems with/without surfactants was carried out. Sapphire Rocking Cell RCS6 with transparent sapphire cells was used. The experiments were conducted at the supercooling ΔTsub = 20.2 °C. Decane, toluene and crude oils were used as organics. Gas hydrate nucleation occurred on water - metal - gas and water - sapphire - organic liquid three-phase contact lines. At the initial stage of growth hydrate crystals rapidly covered the water - gas or water - organics interfaces (depending on the nucleation site). Further hydrate phase accrete on cell walls (sapphire surface) and into the organics volume. At this stage, growth was accompanied by water «drawing out» from under initial hydrate film formed at water - organic interface. Apparently, it takes place due to water capillary inflow in the reaction zone. It was shown that the hydrate crystal morphology depends on the organic phase composition. In the case of water-in-decane emulsion relay hydrate crystallization was observed in the whole sample, originating most likely due to the hydrate crystal intergrowth through decane. Contacts of such crystals with adjacent water droplets result in rapid hydrate crystallization on this droplet.

  6. Molecular dynamics simulations of hydrophobous ions at the liquid-liquid interfaces: case of dicarbollide anions as synergy agents and of ionic liquids as extracting medium; Simulations par dynamique moleculaire d'ions hydrophobes aux interfaces liquide - liquide: le cas des anions dicarbollides comme agents de synergie et celui des liquides ioniques comme milieu extractant

    Energy Technology Data Exchange (ETDEWEB)

    Chevrot, G

    2008-01-15

    Based on molecular dynamics simulations, we first describe the distribution of dicarbollide salts (CCD{sup -}, Mn{sup +}) in concentrated monophasic solutions (water, chloroform, octanol, nitrobenzene) and in the corresponding biphasic 'oil' - water solutions. We point to the importance of surface activity of the CCD{sup -}s and of their self-aggregation in water, with marked counterions effects, and we explain the synergistic effect of CCD{sup -}s in the Eu{sup 3+} extraction by BTP ligands. In the second part of the thesis we report exploratory simulations on the extraction of Sr{sup 2+} by 18-crown-6 to an hydrophobic ionic liquid ([BMI][PF6]), focusing on the liquid - liquid interface. Analogies and differences with a classical aqueous interface are outlined. (author)

  7. The physics of pattern formation at liquid interfaces

    International Nuclear Information System (INIS)

    Maher, J.V.

    1991-06-01

    This report discusses the following physics of liquid interfaces: pattern formation; perturbing Saffman-Taylor flow with a small gap-gradient; scaling of radial patterns in a viscoelastic solution; dynamic surface tension at an interface between miscible liquids; and random systems

  8. Electrochemical detection of dopamine using arrays of liquid-liquid micro-interfaces created within micromachined silicon membranes

    International Nuclear Information System (INIS)

    Berduque, Alfonso; Zazpe, Raul; Arrigan, Damien W.M.

    2008-01-01

    The detection of protonated dopamine by differential pulse voltammetry (DPV) and square wave voltammetry (SWV) at arrays of micro-interfaces between two immiscible electrolyte solutions (μITIES) is presented. Microfabricated porous silicon membranes (consisting of eight pores, 26.6 μm in radius and 500 μm pore-pore separation, in a hexagonal layout) were prepared by photolithographic and etching procedures. The membrane pores were fabricated with hydrophobic internal walls so that the organic phase filled the pores and created the liquid interface at the aqueous side of the membrane. These were used for harnessing the benefits of three-dimensional diffusion to the interface and for interface stabilisation. The liquid-liquid interface provides a simple method to overcome the major problem in the voltammetric detection of dopamine at solid electrodes due to the co-existence of ascorbate at higher concentrations. Selectivity for dopamine over ascorbate was achieved by the use of dibenzo-18-crown-6 (DB18C6) for the facilitated ion transfer of dopamine across the μITIES array. Under these conditions, the presence of ascorbate in excess did not interfere in the detection of dopamine and the lowest concentration detectable was ca. 0.5 μM. In addition, the drawback of current signal saturation (non-linear increase of the peak current with the concentration of dopamine) observed at conventional (millimetre-sized) liquid-liquid interfaces was overcome using the microfabricated porous membranes

  9. Solid and liquid thermal expansion and structural observations in the quasicrystalline Cd84Yb16 compound

    International Nuclear Information System (INIS)

    Kramer, M.J.; Lograsso, T.A.; Sordelet, D.J.

    2010-01-01

    The structure of single-grain Cd 84 Yb 16 samples aligned along the twofold and fivefold axes has been followed from 300 to 1050 K using high-energy synchrotron X-rays. The quasicrystal phase is stable up to its melting temperature of 914 K and has a large linear thermal expansion of 37.1 ppm K -1 over this temperature range. The samples melt congruently over a temperature range of less than 1 K. The liquid is 7% less dense than the solid and, upon cooling from the melt, the quasicrystal phase directly solidifies within a 1 K interval. The amount of undercooling achieved, about 5-25 K, was dependent on the cooling rate. The total scattering function of the liquid is consistent with a dilute liquid Cd structure. These results agree with suggestions that the structure of the liquid must undergo reordering in order to form the solid phases. However, there is no compelling evidence for icosahedral short-range order in the liquid prior to the formation of the quasicrystalline structure.

  10. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Peng, C.T.; Hua, R.L.; Souers, P.C.; Coronado, P.R.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21 K and 9 K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenyl-alanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritium are potentially useful agents for labeling peptides and proteins. 11 refs., 1 fig., 3 tabs

  11. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Souers, P.C.; Coronado, P.R.; Peng, C.T.; Hua, R.L.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21/degree/K and 9/degree/K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenylalanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritiums are potentially useful agents for labeling peptides and proteins

  12. Evaluation of Nitrate and Nitrite Reduction Kinetics Related to Liquid-Air-Interface Corrosion

    International Nuclear Information System (INIS)

    Li, Xiaoji; Gui, F.; Cong, Hongbo; Brossia, C.S.; Frankel, G.S.

    2014-01-01

    Liquid-air interface (LAI) corrosion has been a concern for causing leaks in the carbon steel tanks used for holding high-level radioactive liquid waste. To assist in understanding the mechanism of LAI corrosion, the kinetics of nitrate and nitrite reduction reactions were investigated electrochemically. Cyclic voltammetry and cathodic polarization measurements indicated that the nitrite reduction reaction exhibited faster kinetics than the nitrate reduction reaction at higher cathodic overpotential. However, the primary reduction reaction at the open circuit potential under aerated conditions was the oxygen reduction reaction. The reduction of residual oxygen was also the dominant cathodic reaction at open circuit potential in deaerated conditions. Moreover, the kinetics of oxygen reduction on steel electrodes were significantly influenced by the sample immersion conditions (partial vs. full) for aerated liquid nuclear waste simulants, but not for deaerated conditions. Lastly, the gaseous products formed during LAI corrosion were analyzed using the gas detector tube method and gas chromatography-mass spectrometry and found to contain NH 3 , NO 2 and NO. However, the results suggested that these products were caused by the local acidification generated by the hydrolysis of cations after LAI corrosion underwent extensive propagation, instead of being directly reduced in alkaline conditions. Thus, the results in this work showed that the kinetics of nitrate and nitrite reduction could not generate a salt concentration cell in the meniscus region to cause LAI corrosion

  13. Characterization of solid-solution interface by potentiometric titration and electrophoretic mobility

    International Nuclear Information System (INIS)

    Lindecker, C.; Drot, R.; Fourest, B.; Simoni, E.

    1999-01-01

    The study of nuclear waste storage in deep geological sites involves the understanding of processes which could produce a possible dispersion or retention of radioelements. The dispersion of solid particles in aqueous solution is consequently important to be characterized. In this bi-phased system it is necessary to determine the characteristics of the solid-solution interface. The method used of this study is the techniques of potentiometric titration applied to heterogeneous systems. The material studied were phosphate matrices which were synthesized in the laboratory. The dependence of their surface change upon the nature of the electrolytes was investigated

  14. The incorporation of low and medium level radioactive wastes (solids and liquids) in cement

    International Nuclear Information System (INIS)

    Palmer, J.D.; Smith, D.L.G.

    1986-01-01

    The use of cement has been investigated for the immobilization of liquid and solid low and medium level radioactive waste. 220 litre mixing trials have demonstrated that the high temperatures generated during the setting of ordinary Portland cement/simulant waste mixes can be significantly reduced by the use of a blend of ground granulated blast furnace slag and ordinary Portland cement. Laboratory and 220 litre trials using simulant wastes showed that the blended cement gave an improvement in properties of the cemented waste product, e.g. stability and reduction in leach rates compared with ordinary Portland cement formulations. A range of 220 litre scale mixing systems for the incorporation of liquid and solid wastes in cement was investigated. The work has confirmed that cement-based processes can be used for the immobilization of most types of low and medium level waste

  15. Interface structure between tetraglyme and graphite

    Science.gov (United States)

    Minato, Taketoshi; Araki, Yuki; Umeda, Kenichi; Yamanaka, Toshiro; Okazaki, Ken-ichi; Onishi, Hiroshi; Abe, Takeshi; Ogumi, Zempachi

    2017-09-01

    Clarification of the details of the interface structure between liquids and solids is crucial for understanding the fundamental processes of physical functions. Herein, we investigate the structure of the interface between tetraglyme and graphite and propose a model for the interface structure based on the observation of frequency-modulation atomic force microscopy in liquids. The ordering and distorted adsorption of tetraglyme on graphite were observed. It is found that tetraglyme stably adsorbs on graphite. Density functional theory calculations supported the adsorption structure. In the liquid phase, there is a layered structure of the molecular distribution with an average distance of 0.60 nm between layers.

  16. Temperature dependence of the positron annihilation in liquid and solid bismuth and gallium

    International Nuclear Information System (INIS)

    Szymanski, C.; Chabik, S.; Pajak, J.; Rozenfeld, B.

    1980-01-01

    The annihilation rate is measured for liquid and solid Bi and Ga at the peak of angular correlation curve. Linear increase of this rate observed up to the melting point confirms the lack of positron trapping in solid Bi and Ga. At the melting point a nearly 20% increase of the counting rate is observed for Ga, while for Bi about 5% decrease is noticed. The anomalies found in the F(T) curve for the liquid phase are associated with the existence of cluster atoms and with the process of their structure rebuilding. With the exception of small momenta ranges there are no noticeable variations of the electron momentum distribution measured at different temperatures. (author)

  17. Water at silica/liquid water interfaces investigated by DFT-MD simulations

    Science.gov (United States)

    Gaigeot, Marie-Pierre

    This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.

  18. Gastric emptying of a physiologic mixed solid-liquid meal

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.S.; Malmud, L.S.; Bandini, P.; Rock, E.

    1982-05-01

    The purposes of this study were to use a noninvasive scintigraphic technique to measure gastric emptying of liquids and solids simultaneously, to study the interactions between emptying of the liquid and solid components of meals in normal subjects, and to employ dual isotope gastric scintigraphy to evaluate gastric emptying of liquids and solids in patients with clinical evidence of gastric outlet obstruction. The solid component of the test meal consisted of chicken liver, labeled in vivo with /sup 99m/Tc sulfur colloid, and the liquid component was water mixed with /sup 111/In DTPA. The rates of emptying were quantitated using a gamma camera on line to a digital computer. Twenty normal subjects were studied using this combined solid-liquid meal. Ten of them also ingested a liquid meal alone and ten a solid meal alone. Liquid emptied from the stomach significantly more rapidly than did solids. The emptying curve for liquids was exponential compared to a linear emptying curve for solids. The gastric emptying rate of the liquid component was slowed significantly by simultaneous ingestion of solids, but the emptying rate of solids was not affected by liquids. Several patients with clinical gastric outlet obstruction were evaluated. Both combined and selective abnormalities for gastric emptying of liquids and solids were demonstrated.

  19. Measurement of scattering cross sections of liquid and solid hydrogen, deuterium and deuterium hydride for thermal neutrons

    International Nuclear Information System (INIS)

    Seiffert, W.D.

    1984-01-01

    The scattering cross sections for liquid and solid normal hydrogen, para-hydrogen, deuterium and deuterium hydride were measured for thermal neutrons at various temperatures. Solid samples of para-hydrogen exhibit distinct Bragg scattering. Liquid samples of deuterium and para-hydrogen also exhibit distinct coherence phenomena, which is indicative of strong local ordering of the molecules. In para-hydrogen and deuterium hydride, the threshold for scattering with excitation of rotations is distinctly visible. The positions of the thresholds show that the molecules in liquid hydrogen are not unhindered in their movement. After the beginning of the rotational excitation the scattering cross sections of liquid and solid para-hydrogen have different shapes which is to be explained by the differences in the dynamics of the liquid and the solid specimen. 22 references

  20. Three-body interactions in liquid and solid hydrogen: Evidence from vibrational spectroscopy

    Science.gov (United States)

    Hinde, Robert

    2008-03-01

    In the cryogenic low-density liquid and solid phases of H2 and D2, the H2 and D2 molecules retain good rotational and vibrational quantum numbers that characterize their internal degrees of freedom. High-resolution infrared and Raman spectroscopic experiments provide extremely sensitive probes of these degrees of freedom. We present here fully-first-principles calculations of the infrared and Raman spectra of liquid and solid H2 and D2, calculations that employ a high-quality six-dimensional coupled-cluster H2-H2 potential energy surface and quantum Monte Carlo treatments of the single-molecule translational degrees of freedom. The computed spectra agree very well with experimental results once we include three-body interactions among the molecules, interactions which we also compute using coupled-cluster quantum chemical methods. We predict the vibrational spectra of liquid and solid H2 at several temperatures and densities to provide a framework for interpreting recent experiments designed to search for superfluid behavior in small H2 droplets. We also present preliminary calculations of the spectra of mixed H2/D2 solids that show how positional disorder affects the spectral line shapes in these systems.

  1. Numerical and experimental study of liquid breakup process in solid rocket motor nozzle

    Science.gov (United States)

    Yen, Yi-Hsin

    Rocket propulsion is an important travel method for space exploration and national defense, rockets needs to be able to withstand wide range of operation environment and also stable and precise enough to carry sophisticated payload into orbit, those engineering requirement makes rocket becomes one of the state of the art industry. The rocket family have been classified into two major group of liquid and solid rocket based on the fuel phase of liquid or solid state. The solid rocket has the advantages of simple working mechanism, less maintenance and preparing procedure and higher storage safety, those characters of solid rocket make it becomes popular in aerospace industry. Aluminum based propellant is widely used in solid rocket motor (SRM) industry due to its avalibility, combusion performance and economical fuel option, however after aluminum react with oxidant of amonimum perchrate (AP), it will generate liquid phase alumina (Al2O3) as product in high temperature (2,700˜3,000 K) combustion chamber enviornment. The liquid phase alumina particles aggromorate inside combustion chamber into larger particle which becomes major erosion calprit on inner nozzle wall while alumina aggromorates impinge on the nozzle wall surface. The erosion mechanism result nozzle throat material removal, increase the performance optimized throat diameter and reduce nozzle exit to throat area ratio which leads to the reduction of exhaust gas velocity, Mach number and lower the propulsion thrust force. The approach to avoid particle erosion phenomenon taking place in SRM's nozzle is to reduce the alumina particle size inside combustion chamber which could be done by further breakup of the alumina droplet size in SRM's combustion chamber. The study of liquid breakup mechanism is an important means to smaller combustion chamber alumina droplet size and mitigate the erosion tack place on rocket nozzle region. In this study, a straight two phase air-water flow channel experiment is set up

  2. Probing the liquid crystal alignment interface and switching dynamics in a slab waveguide architecture

    Science.gov (United States)

    Gotjen, Henry G.; Kolacz, Jakub; Myers, Jason D.; Frantz, Jesse A.; Bekele, Robel Y.; Naciri, Jawad; Spillmann, Christopher M.

    2018-02-01

    A non-mechanical refractive laser beam steering device has been developed to provide continuous, two-dimensional steering of infrared beams. The technology implements a dielectric slab waveguide architecture with a liquid crystal (LC) cladding. With voltage control, the birefringence of the LC can be leveraged to tune the effective index of the waveguide under an electrode. With a clever prism electrode design a beam coupled into the waveguide can be deflected continuously in two dimensions as it is coupled out into free space. The optical interaction with LC in this beamsteerer is unique from typical LC applications: only the thin layer of LC (100s of nm) near the alignment interface interacts with the beam's evanescent field. Whereas most LC interactions take place over short path lengths (microns) in the bulk of the material, here we can interrogate the behavior of LC near the alignment interface over long path lengths (centimeters). In this work the beamsteerer is leveraged as a tool to study the behavior of LC near the alignment layer in contrast to the bulk material. We find that scattering is substantially decreased near the alignment interface due to the influence of the surface anchoring energy to suppress thermal fluctuations. By tracking the position of the deflected beam with a high speed camera, we measure response times of the LC near the interface in off-to-on switching ( ms) and on-to-off switching ( 100ms). Combined, this work will provide a path for improved alignment techniques, greater optical throughput, and faster response times in this unique approach to non-mechanical beamsteering.

  3. Greenhouse Gas Emissions from Solid and Liquid Organic Fertilizers Applied to Lettuce.

    Science.gov (United States)

    Toonsiri, Phasita; Del Grosso, Stephen J; Sukor, Arina; Davis, Jessica G

    2016-11-01

    Improper application of nitrogen (N) fertilizer and environmental factors can cause the loss of nitrous oxide (NO) to the environment. Different types of fertilizers with different C/N ratios may have different effects on the environment. The focus of this study was to evaluate the effects of environmental factors and four organic fertilizers (feather meal, blood meal, fish emulsion, and cyano-fertilizer) applied at different rates (0, 28, 56, and 112 kg N ha) on NO emissions and to track CO emissions from a lettuce field ( L.). The study was conducted in 2013 and 2014 and compared preplant-applied solid fertilizers (feather meal and blood meal) and multiple applications of liquid fertilizers (fish emulsion and cyano-fertilizer). Three days a week, NO and CO emissions were measured twice per day in 2013 and once per day in 2014 using a closed-static chamber, and gas samples were analyzed by gas chromatography. Preplant-applied solid fertilizers significantly increased cumulative NO emissions as compared with control, but multiple applications of liquid fertilizers did not. Emission factors for NO ranged from 0 to 0.1% for multiple applications of liquid fertilizers and 0.6 to 11% for preplant-applied solid fertilizers, which could be overestimated due to chamber placement over fertilizer bands. In 2014, solid fertilizers with higher C/N ratios (3.3-3.5) resulted in higher CO emissions than liquid fertilizers (C/N ratio, 0.9-1.5). Therefore, organic farmers should consider the use of multiple applications of liquid fertilizers as a means to reduce soil greenhouse gas emissions while maintaining high yields. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. [The physics of pattern formation at liquid interfaces

    International Nuclear Information System (INIS)

    1990-01-01

    This paper discusses pattern formation at liquid interfaces and interfaces within disordered materials. The particular topics discussed are: a racetrack for competing viscous fingers; an experimental realization of periodic boundary conditions; what sets the length scale for patterns between miscible liquids; the fractal dimension of radial Hele-Shaw patterns; detailed analyses of low-contrast Saffman-Taylor flows; and the wetting/absorption properties of polystyrene spheres in binary liquid mixtures

  5. Unique self-assembly behavior of a triblock copolymer and fabrication of catalytically active gold nanoparticle/polymer thin films at the liquid/liquid interface

    International Nuclear Information System (INIS)

    Shang, Ke; Geng, Yuanyuan; Xu, Xingtao; Wang, Changwei; Lee, Yong-Ill; Hao, Jingcheng; Liu, Hong-Guo

    2014-01-01

    Gold nanoparticle-doped poly(2-vinylpyridine)-block-polystyrene-block-poly(2-vinylpyridine) (P2VP-b-PS-b-P2VP) thin films were prepared at the planar liquid/liquid interface between the chloroform solution of the polymer and aqueous solution of HAuCl 4 . Transmission electron microscopic (TEM) investigations revealed that foam films composed of microcapsules as well as one-dimensional belts were formed, and numerous Au nanoparticles were incorporated in the walls of the microcapsules and the nanobelts. The walls and the belts have layered structure. The formation mechanism of the foams and the belts was attributed to adsorption of the polymer molecules, combination of the polymer molecules with AuCl 4 − ions, microphase separation and self-assembly of the composite molecules at the interface. This microstructure is different apparently from those formed in solutions, in casting or spin-coating thin films and at the air/water interface of this triblock copolymer, reflecting unique self-assembly behavior at the liquid/liquid interface. This microstructure is also different from those formed by homo-P2VP and P4VP-b-PS-b-P4VP at the liquid/liquid interface, indicating the effects of molecular structures on the self-assembly behaviors of the polymers. After further treatment by UV-light irradiation and KBH 4 aqueous solution, the gold species were reduced completely, as indicated by UV–vis spectra and X-ray photoelectron spectra (XPS). Thermogravimetric analysis indicated that the composite films have high thermal stability, and the content of gold was estimated to be about 9.1%. These composite films exhibited high catalytic activity for the reduction of 4-nitrophenol by KBH 4 in aqueous solutions. - Highlights: • P2VP-b-PS-b-P2VP formed microcapsules and nanobelts at the liquid/liquid interface. • Its self-assembly behavior differs from P4VP-b-PS-b-P4VP at the interface. • This behavior also differs from those in solution, in film and at air/water interface

  6. Unique self-assembly behavior of a triblock copolymer and fabrication of catalytically active gold nanoparticle/polymer thin films at the liquid/liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Ke; Geng, Yuanyuan; Xu, Xingtao [Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100 (China); Wang, Changwei [Environmental Monitoring Center of Shandong Province, Jinan 250013 (China); Lee, Yong-Ill [Anastro Laboratory, Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Hao, Jingcheng [Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100 (China); Liu, Hong-Guo, E-mail: hgliu@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100 (China)

    2014-07-01

    Gold nanoparticle-doped poly(2-vinylpyridine)-block-polystyrene-block-poly(2-vinylpyridine) (P2VP-b-PS-b-P2VP) thin films were prepared at the planar liquid/liquid interface between the chloroform solution of the polymer and aqueous solution of HAuCl{sub 4}. Transmission electron microscopic (TEM) investigations revealed that foam films composed of microcapsules as well as one-dimensional belts were formed, and numerous Au nanoparticles were incorporated in the walls of the microcapsules and the nanobelts. The walls and the belts have layered structure. The formation mechanism of the foams and the belts was attributed to adsorption of the polymer molecules, combination of the polymer molecules with AuCl{sub 4}{sup −} ions, microphase separation and self-assembly of the composite molecules at the interface. This microstructure is different apparently from those formed in solutions, in casting or spin-coating thin films and at the air/water interface of this triblock copolymer, reflecting unique self-assembly behavior at the liquid/liquid interface. This microstructure is also different from those formed by homo-P2VP and P4VP-b-PS-b-P4VP at the liquid/liquid interface, indicating the effects of molecular structures on the self-assembly behaviors of the polymers. After further treatment by UV-light irradiation and KBH{sub 4} aqueous solution, the gold species were reduced completely, as indicated by UV–vis spectra and X-ray photoelectron spectra (XPS). Thermogravimetric analysis indicated that the composite films have high thermal stability, and the content of gold was estimated to be about 9.1%. These composite films exhibited high catalytic activity for the reduction of 4-nitrophenol by KBH{sub 4} in aqueous solutions. - Highlights: • P2VP-b-PS-b-P2VP formed microcapsules and nanobelts at the liquid/liquid interface. • Its self-assembly behavior differs from P4VP-b-PS-b-P4VP at the interface. • This behavior also differs from those in solution, in film and

  7. Fertilizer potential of liquid and solid effluent from thermophilic anaerobic digestion of poultry waste.

    Science.gov (United States)

    Liedl, B E; Bombardiere, J; Chaffield, J M

    2006-01-01

    Thermophilic anaerobic treatment of poultry litter produces an effluent stream of digested materials that can be separated into solid and liquid fractions for use as a crop fertilizer. The majority of the phosphorus is partitioned into the solid fraction while the majority of the nitrogen is present in the liquid fraction in the form of ammonium. These materials were tested over six years as an alternative fertilizer for the production of vegetable, fruit, and grassland crops. Application of the solids as a field crop fertilizer for vegetables and blueberries resulted in lower yields than the other fertilizer treatments, but an increase in soil phosphorus over a four-year period. Application of the digested liquids on grass and vegetable plots resulted in similar or superior yields to plots treated with commercially available nitrogen fertilizers. Hydroponic production of lettuce using liquid effluent was comparable to a commercial hydroponic fertilizer regime; however, the effluent treatment for hydroponic tomato production required supplementation and conversion of ammonium to nitrate. While not a total fertilizer solution, our research shows the effectiveness of digested effluent as part of a nutrient management program which could turn a livestock residuals problem into a crop nutrient resource.

  8. Effect of bile diversion on satiety and fat absorption from liquid and solid dietary sources

    International Nuclear Information System (INIS)

    Doty, J.E.; Gu, Y.G.; Meyer, J.H.

    1988-01-01

    In previous studies, liquid fat has been used to determine the effect of bile diversion on fat absorption. Since protein digests, in addition to bile salts, are capable of solubilizing lipids, we hypothesized that fat incorporated in the protein-rich matrix of solid food would be less sensitive to bile diversion than fat ingested as an oil or liquid. Using [3H]glycerol triether as a nonabsorbable fat recovery marker, we determined how much [14C]triolein was absorbed from solid (chicken liver) and liquid (margarine) dietary sources. After a standard liquid/solid meal with either the chicken liver or margarine labeled, midintestinal chyme was collected for 6 hr, extracted, and counted for 14C and 3H activity. Zero, eighty, or one hundred percent of endogenous bile was diverted. Fat absorption from both chicken liver and margarine was nearly complete by midintestine with 0% diversion and was little affected by diversion of 80% of bile. Complete biliary diversion significantly decreased fat absorption from margarine (87.9 +/- 4.4 to 37.2 +/- 9.2%, P less than 0.05) but reduced [14C]triolein absorption from chicken liver less consistently and insignificantly (78.8 +/- 6.9 to 43.9 +/- 10.6%). These data indicate that fat absorption is not solely dependent on bile and support the hypothesis that fat ingested in a cellular matrix is less dependent on bile than liquid fat. Using these same animals but with the midintestinal cannulas plugged to expose the distal intestine to unabsorbed luminal nutrients, we also demonstrated that bile diversion of an initial meal reduced food consumption at a meal offered 3 hr later

  9. Synchrotron X-ray studies of liquid-vapor interfaces

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1986-01-01

    The density profile ρ(z) across a liquid-vapor interface may be determined by the reflectivity R(θ) of X-rays at grazing angle incidence θ. The relation between R(θ) and ρ(z) is discussed, and experimental examples illustrating thermal roughness of simple liquids and smectic layering of liquid...

  10. Layerless fabrication with continuous liquid interface production.

    Science.gov (United States)

    Janusziewicz, Rima; Tumbleston, John R; Quintanilla, Adam L; Mecham, Sue J; DeSimone, Joseph M

    2016-10-18

    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology.

  11. Molecular scale structure and dynamics at an ionic liquid/electrode interface

    DEFF Research Database (Denmark)

    Reichert, Peter; Kjær, Kasper Skov; Brandt van Driel, Tim

    2018-01-01

    After a century of research, the potential-dependent ion distribution at electrode/electrolyte interfaces is still under debate. In particular for solvent-free electrolytes such as room-temperature ionic liquids, classical theories for the electrical double layer are not applicable. Using a combi...

  12. Accelerated Metastable Solid-liquid Interdiffusion Bonding with High Thermal Stability and Power Handling

    Science.gov (United States)

    Huang, Ting-Chia; Smet, Vanessa; Kawamoto, Satomi; Pulugurtha, Markondeya R.; Tummala, Rao R.

    2018-01-01

    Emerging high-performance systems are driving the need for advanced packaging solutions such as 3-D integrated circuits (ICs) and 2.5-D system integration with increasing performance and reliability requirements for off-chip interconnections. Solid-liquid interdiffusion (SLID) bonding resulting in all-intermetallic joints has been proposed to extend the applicability of solders, but faces fundamental and manufacturing challenges hindering its wide adoption. This paper introduces a Cu-Sn SLID interconnection technology, aiming at stabilization of the microstructure in the Cu6Sn5 metastable phase rather than the usual stable Cu3Sn phase. This enables formation of a void-free interface yielding higher mechanical strength than standard SLID bonding, as well as significantly reducing the transition time. The metastable SLID technology retains the benefits of standard SLID with superior I/O pitch scalability, thermal stability and current handling capability, while advancing assembly manufacturability. In the proposed concept, the interfacial reaction is controlled by introducing Ni(P) diffusion barrier layers, designed to effectively isolate the metastable Cu6Sn5 phase preventing any further transformation. Theoretical diffusion and kinetic models were applied to design the Ni-Cu-Sn interconnection stack to achieve the targeted joint composition. A daisy chain test vehicle was used to demonstrate this technology as a first proof of concept. Full transition to Cu6Sn5 was successfully achieved within a minute at 260°C as confirmed by scanning electron microscope (SEM) and x-ray energy dispersive spectroscopy (XEDS) analysis. The joint composition was stable through 10× reflow, with outstanding bond strength averaging 90 MPa. The metastable SLID interconnections also showed excellent electromigration performance, surviving 500 h of current stressing at 105 A/cm2 at 150°C.

  13. Interface analysis of A1 matrix composites produced by hot isostatic pressing, squeeze casting and semi-solid processing

    International Nuclear Information System (INIS)

    Shamsul, J.B.; Zainal Arifin Ahmad; Faaizulaswad, M.S.; Azmi, R.

    2000-01-01

    The interface analysis has been carried out an aluminium based composites system produced by hot isostatic pressing, squeeze casting and semi-solid processing. A range of different fabrication techniques has been used to produce different types of microstructure of Al 2124 (Al-Cu-Mg) reinforced with 5 weight % SiC particles. Blending followed by hot isostatic pressing is used to fabricate composite I. Composite II was 6061 (Al-Si-Mg) wrought aluminium alloy reinforced with fibres of alumina-silica (V f = 0.58) and fabricated by squeeze casting. Finally, A356 (AlSi7Mg0.3) alloy was reinforced with 20 Vol.% of SiC particles (13 μm) and namely as composite III. Composite III is fabricated by semi-solid processing. Interface analysis was done by optical microscopy, scanning and transmission electron microscopy. Composite I exhibited good interface bonding and dislocation was also observed near the interface. Elements such as Al, Fe, Cr, Mn were found near the interface of composite II and intermetallic of iron rich inclusion and Mg 2 Si were observed near the interface of composite III. (Author)

  14. Thermal transport across solid-solid interfaces enhanced by pre-interface isotope-phonon scattering

    Science.gov (United States)

    Lee, Eungkyu; Luo, Tengfei

    2018-01-01

    Thermal transport across solid interfaces can play critical roles in the thermal management of electronics. In this letter, we use non-equilibrium molecular dynamics simulations to investigate the isotope effect on the thermal transport across SiC/GaN interfaces. It is found that engineered isotopes (e.g., 10% 15N or 71Ga) in the GaN layer can increase the interfacial thermal conductance compared to the isotopically pure case by as much as 23%. Different isotope doping features, such as the isotope concentration, skin depth of the isotope region, and its distance from the interface, are investigated, and all of them lead to increases in thermal conductance. Studies of spectral temperatures of phonon modes indicate that interfacial thermal transport due to low-frequency phonons (transport. This work may provide insights into interfacial thermal transport and useful guidance to practical material design.

  15. Investigation of surface charge density on solid–liquid interfaces by modulating the electrical double layer

    International Nuclear Information System (INIS)

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-01-01

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid–liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid–liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid–liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid–liquid interfaces. (paper)

  16. Microfluidic electrochemical device and process for chemical imaging and electrochemical analysis at the electrode-liquid interface in-situ

    Science.gov (United States)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li; Zhu, Zihua; Marshall, Matthew J.

    2016-03-01

    A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.

  17. Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers

    Directory of Open Access Journals (Sweden)

    Kobelke Jens

    2014-09-01

    Full Text Available All-solid microstructured optical fibers (MOF allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI, or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters (e.g., the RI homogeneity of the cladding are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-µm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process.

  18. Globally-Optimized Local Pseudopotentials for (Orbital-Free) Density Functional Theory Simulations of Liquids and Solids.

    Science.gov (United States)

    Del Rio, Beatriz G; Dieterich, Johannes M; Carter, Emily A

    2017-08-08

    The accuracy of local pseudopotentials (LPSs) is one of two major determinants of the fidelity of orbital-free density functional theory (OFDFT) simulations. We present a global optimization strategy for LPSs that enables OFDFT to reproduce solid and liquid properties obtained from Kohn-Sham DFT. Our optimization strategy can fit arbitrary properties from both solid and liquid phases, so the resulting globally optimized local pseudopotentials (goLPSs) can be used in solid and/or liquid-phase simulations depending on the fitting process. We show three test cases proving that we can (1) improve solid properties compared to our previous bulk-derived local pseudopotential generation scheme; (2) refine predicted liquid and solid properties by adding force matching data; and (3) generate a from-scratch, accurate goLPS from the local channel of a non-local pseudopotential. The proposed scheme therefore serves as a full and improved LPS construction protocol.

  19. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water

    Energy Technology Data Exchange (ETDEWEB)

    Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148 (United States); Kumar, Revati [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70808 (United States)

    2015-07-28

    The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is a hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water’s liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface.

  20. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water

    International Nuclear Information System (INIS)

    Soniat, Marielle; Rick, Steven W.; Kumar, Revati

    2015-01-01

    The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is a hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water’s liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface

  1. Sulfur solubility of liquid and solid Fe-Cr alloys. A thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, Peter [Leoben Univ. (Austria). Dept. of General, Analytical and Physical Chemistry

    2015-04-15

    Gibbs energy modeling for sulfur solving liquid and solid iron-chromium phases with body- and face-centered cubic structure has been carried out using a substitutional approach. Experimental data available from the literature on sulfur potentials in the temperature range 1 525 to 1 755 C for the liquid metallic phase and 1 000 to 1 300 C for the solid alloys have been taken into consideration. Recent thermodynamic evaluations of the Fe-S and Cr-S binary subsystems served as basis for the presented work. The obtained models allow a satisfactory reproduction of the majority of the sulfur potential data as well as the prediction of an isothermal partial section at 1 300 C. Consistent embedding of the optimized Gibbs energies within a recent thermodynamic modeling of the complete Cr-Fe-S system is achieved.

  2. Fluorine nuclear magnetic resonance study of enrichment effects in gaseous, liquid and solid uranium hexafluoride

    International Nuclear Information System (INIS)

    Ursu, I.; Demco, D.E.; Simplaceanu, V.; Valcu, N.

    1977-01-01

    The nuclear magnetic resonance method is able to provide information concerning the isotopic content of 235 U in UF 6 by means of measuring the nuclear magnetic transverse relaxation time (T,L2) of 19 F nuclei in liquid UF 6 . In this work, the sources of errors in the T 2 measurements have been analysed and methods for reducing them are dicussed. Typical errors in T 2 determinations are below 2%. The enrichment estimations made by using the linear calibration curves had a deviation of less than 2% with some exceptions. It was found that the chemical impurities may significantly affect the enrichment estimations. 19 F NMR spectra of liquid and gaseous UF 6 at low pressures did not reveal any structure or enrichment effect. The longitudinal nuclear magnetic relaxation of 19 F nuclei in low pressure, gaseous and solid UF 6 showed no enrichment dependence, nor the dipolar relaxation time in solid UF 6 did. (author)

  3. Kinetic energy of solid and liquid para-hydrogen: a path integral Monte Carlo simulation

    International Nuclear Information System (INIS)

    Zoppi, M.; Neumann, M.

    1992-01-01

    The translational (center of mass) kinetic energy of solid and liquid para-hydrogen have been recently measured by means of Deep Inelastic Neutron Scattering. We have evaluated the same quantity, in similar thermodynamic conditions, by means of Path Integral Monte Carlo computer simulation, modelling the system as composed of a set of spherical molecules interacting through a pairwise additive Lennard-Jones potential. In spite of the crude approximations on the interaction potential, the agreement is excellent. The pressure was also computed by means of the same simulations. This quantity, compared with the equation of state for solid para-hydrogen given by Driessen and Silvera, gives an agreement of a lesser quality and a negative value for the liquid state. We attribute this discrepancy to the limitations of the Lennard-Jones potential. (orig.)

  4. Development of Combustion Tube for Gaseous, Liquid, and Solid Fuels to Study Flame Acceleration and DDT

    Science.gov (United States)

    Graziano, Tyler J.

    An experimental combustion tube of 20 ft. in length and 10.25 in. in internal diameter was designed and fabricated in order to perform combustion tests to study deflagration rates, flame acceleration, and the possibility of DDT. The experiment was designed to allow gaseous, liquid, or solid fuels, or any combination of the three to produce a homogenous fuel/air mixture within the tube. Combustion tests were initiated with a hydrogen/oxygen torch igniter and the resulting flame behavior was measured with high frequency ion probes and pressure transducers. Tests were performed with a variety of gaseous and liquid fuels in an unobstructed tube with a closed ignition end and open muzzle. The flame performance with the gaseous fuels is loosely correlated with the expansion ratio, while there is a stronger correlation with the laminar flame speed. The strongest correlation to flame performance is the run-up distance scaling factor. This trend was not observed with the liquid fuels. The reason for this is likely due to incomplete evaporation of the liquid fuel droplets resulting in a partially unburned mixture, effectively altering the intended equivalence ratio. Results suggest that the simple theory for run-up distance and flame acceleration must be modified to more accurately predict the behavior of gaseous fuels. Also, it is likely that more complex spray combustion modeling is required to accurately predict the flame behavior for liquid fuels.

  5. In-Bore Liquid Injection for Barrel Cooling: Comparison of Liquid and Solid Additives Using Constant Breach Pressure Ideal Gun Calculations

    National Research Council Canada - National Science Library

    Kotlar, Anthony

    1999-01-01

    .... These calculations give limiting values for projectile muzzle kinetic energy (KE), assuming complete mixing of the liquid additive and the solid propellant This is a worst-case scenario for the new concept to reduce gun barrel heating...

  6. Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy

    Science.gov (United States)

    Boivineau, M.; Cagran, C.; Doytier, D.; Eyraud, V.; Nadal, M.-H.; Wilthan, B.; Pottlacher, G.

    2006-03-01

    Ti-6Al-4V (TA6V) titanium alloy is widely used in industrial applications such as aeronautic and aerospace due to its good mechanical properties at high temperatures. Experiments on two different resistive pulse heating devices (CEA Valduc and TU-Graz) have been carried out in order to study thermophysical properties (such as electrical resistivity, volume expansion, heat of fusion, heat capacity, normal spectral emissivity, thermal diffusivity, and thermal conductivity) of both solid and liquid Ti-6Al-4V. Fast time-resolved measurements of current, voltage, and surface radiation and shadowgraphs of the volume have been undertaken. At TU-Graz, a fast laser polarimeter has been used for determining the emissivity of liquid Ti-6Al-4V at 684.5 nm and a differential scanning calorimeter (DSC) for measuring the heat capacity of solid Ti-6Al-4V. This study deals with the specific behavior of the different solid phase transitions (effect of heating rate) and the melting region, and emphasizes the liquid state ( T > 2000 K).

  7. Analytical methods for radionuclides in liquid and solid media

    International Nuclear Information System (INIS)

    Sedlet, J.

    1983-01-01

    This lecture describes in vitro techniques for the radiochemical determination and dosimetry of radionuclides in the body that have been metabolized and are in the circulatory system. Measurements are made in the excretions and other body specimens such as blood, perspiration, hair, exhaled air, and tissue. 13 references, 4 tables

  8. Mechanism of Lecithin Adsorption at a Liquid/Liquid Interface

    Czech Academy of Sciences Publication Activity Database

    Mareček, Vladimír; Lhotský, Alexandr; Jänchenová, Hana

    2003-01-01

    Roč. 107, č. 19 (2003), s. 4573-4578 ISSN 1089-5647 R&D Projects: GA ČR GA203/00/0636 Institutional research plan: CEZ:AV0Z4040901 Keywords : adsorption * mechanism of lecithin * liquid/liquid interface Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003

  9. Using Peltier cells to study solid-liquid-vapour transitions and supercooling

    International Nuclear Information System (INIS)

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states (supercooling). The thermoelectric module (a technological evolution of the thermocouple) is by itself an interesting subject that offers a clear example of both thermo-electric (Seebeck effect) and electro-thermal (Peltier effect) energy transformation. We report here some cooling/heating measurements for several liquids and mixtures, including water, salt/water, ethanol/water and sodium acetate, showing how to evaluate the phenomena of freezing point depression and elevation, and how to evaluate the water latent heat

  10. Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Lors, Christine [Universite Lille Nord de France, 1bis rue Georges Lefevre, 59044 Lille Cedex (France); Ecole des Mines de Douai, LGCgE-MPE-GCE, 941 rue Charles-Bourseul, 59500 Douai (France); Centre National de Recherche sur les Sites et Sols Pollues, 930 Boulevard Lahure, BP 537, 59505 Douai Cedex (France); Ponge, Jean-Francois, E-mail: ponge@mnhn.fr [Museum National d' Histoire Naturelle, Departement Ecologie et Gestion de la Biodiversite, CNRS UMR 7179, 4 Avenue du Petit-Chateau, 91800 Brunoy (France); Martinez Aldaya, Maite [Museum National d' Histoire Naturelle, Departement Ecologie et Gestion de la Biodiversite, CNRS UMR 7179, 4 Avenue du Petit-Chateau, 91800 Brunoy (France); Damidot, Denis [Universite Lille Nord de France, 1bis rue Georges Lefevre, 59044 Lille Cedex (France); Ecole des Mines de Douai, LGCgE-MPE-GCE, 941 rue Charles-Bourseul, 59500 Douai (France)

    2011-10-15

    Bioassays on aqueous and solid phases of contaminated soils were compared, belonging to a wide array of trophic and response levels and using ecoscores for evaluating ecotoxicological and genotoxicological endpoints. The method was applied to four coke factory soils contaminated mainly with PAHs, but also to a lesser extent by heavy metals and cyanides. Aquatic bioassays do not differ from terrestrial bioassays when scaling soils according to toxicity but they are complementary from the viewpoint of ecological relevance. Both aquatic and terrestrial endpoints are strongly correlated with concentrations of 3-ring PAHs. This evaluation procedure allows us to propose a cost-effective battery which embraces a wide array of test organisms and response levels: it includes two rapid bioassays (Microtox) and springtail avoidance), a micronucleus test and three bioassays of a longer duration (algal growth, lettuce germination and springtail reproduction). This battery can be recommended for a cost-effective assessment of polluted/remediated soils. - Highlights: > Comparison of liquid- and solid-phase bioassays on contaminated soils, using ecoscores. > Complementarity of liquid- and solid-phase bioassays for the evaluation of environmental hazards. > Proposal for a restricted battery of 5 most sensitive tests. > Use of this restricted battery for a cost-effective assessment of polluted/remediated soils. - Aqueous and solid phases of contaminated soils give similar results in terms of toxicity but are complementary for the evaluation of environmental hazards by ecoscores.

  11. Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils

    International Nuclear Information System (INIS)

    Lors, Christine; Ponge, Jean-Francois; Martinez Aldaya, Maite; Damidot, Denis

    2011-01-01

    Bioassays on aqueous and solid phases of contaminated soils were compared, belonging to a wide array of trophic and response levels and using ecoscores for evaluating ecotoxicological and genotoxicological endpoints. The method was applied to four coke factory soils contaminated mainly with PAHs, but also to a lesser extent by heavy metals and cyanides. Aquatic bioassays do not differ from terrestrial bioassays when scaling soils according to toxicity but they are complementary from the viewpoint of ecological relevance. Both aquatic and terrestrial endpoints are strongly correlated with concentrations of 3-ring PAHs. This evaluation procedure allows us to propose a cost-effective battery which embraces a wide array of test organisms and response levels: it includes two rapid bioassays (Microtox) and springtail avoidance), a micronucleus test and three bioassays of a longer duration (algal growth, lettuce germination and springtail reproduction). This battery can be recommended for a cost-effective assessment of polluted/remediated soils. - Highlights: → Comparison of liquid- and solid-phase bioassays on contaminated soils, using ecoscores. → Complementarity of liquid- and solid-phase bioassays for the evaluation of environmental hazards. → Proposal for a restricted battery of 5 most sensitive tests. → Use of this restricted battery for a cost-effective assessment of polluted/remediated soils. - Aqueous and solid phases of contaminated soils give similar results in terms of toxicity but are complementary for the evaluation of environmental hazards by ecoscores.

  12. Propagation of plane waves at the interface of an elastic solid half-space and a microstretch thermoelastic diffusion solid half-space

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    Full Text Available The problem of reflection and refraction phenomenon due to plane waves incident obliquely at a plane interface between uniform elastic solid half-space and microstretch thermoelastic diffusion solid half-space has been studied. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence, frequency of incident wave and are influenced by the microstretch thermoelastic diffusion properties of the media. The expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios have been computed numerically for a particular model. The variations of energy ratios with angle of incidence are shown for thermoelastic diffusion media in the context of Lord-Shulman (L-S (1967 and Green-Lindsay (G-L (1972 theories. The conservation of energy at the interface is verified. Some particular cases are also deduced from the present investigation.

  13. Effects of Mixtures on Liquid and Solid Fragment Size Distributions

    Science.gov (United States)

    2016-05-01

    bins, too few size bins, fixed bin widths, or inadequately- varying bin widths. Overpopulated bins – which typically occur for smaller fragments...2010 C. V. B. Cunningham, The Kuz-Ram Fragmentation Model – 20 Years On, In R. Holmberg et. al., Editors, Proceedings of the 3 rd World ...1992 P. K. Sahoo and T. Riedel, Mean Value Theorems and Functional Equations, World Scientific, 1998 K. A. Sallam, C. Aalburg, G.M. Faeth

  14. Mercury removal from liquid and solid mixed waste

    International Nuclear Information System (INIS)

    Gates, D.D.; Klasson, K.T.; Corder, S.L.; Cameron, P.A.; Perona, J.J.

    1995-01-01

    Based on bench-scale laboratory experiments, the following conclusions were reached: Sulfur-impregnated, activated, carbon pellets (Mersorb) can be used to remove mercury (Hg 2+ ) to below EPA's toxic characteristic level (0.2 mg/L). Mersorb works under acid conditions (pH 2) but its capacity is reduced by approximately 50% compared with neutral conditions. Competing ions present in the target waste stream reduced the Mersorb capacity by 50%. Mersorb appears to be economical compared with leading ion exchange resin. KI/I 2 leaching solution can be used to remove up to 99% of Hg in contaminated soil and glass. KI/I 2 leaching solution worked well with several mercury species, including Hg 0 , HgO, HgS, and HgCl 2 . KI/I 2 leaching solution worked well with a wide variety of initial mercury concentrations. Radionuclide surrogate studies suggested that uranium will not partition into KI/I 2 leaching solutions. Cesium may partition into the KI/I 2 leaching solution because of the high solubility of cesium salts

  15. Scattering of light at the growing solid-melt interface

    International Nuclear Information System (INIS)

    Gontijo, I.

    1987-12-01

    The scattering of light at the growing solid-melt interface of biphenyl and naphthalene was studied using the Photon Correlation Spectroscopy technique. The origin of this light scattering remained without a satisfactory explanation since its discovery at the ice-water interface in 1978. Recently, a model based on the segregation of gaseous impurities at the interface and subsequent precipitation of microbubbles was proposed to explain this phenomenon. We report here the first experimental results that confirm the microbbubles hypothesis. (author)

  16. COMPARATIVE EVALUTION OF CEPHALOSPORIN-C PRODUCTION IN SOLID STATE FERMENTATION AND SUBMERGED LIQUID CULTURE

    Directory of Open Access Journals (Sweden)

    Mahdi Rezazarandi

    2012-08-01

    Full Text Available The advantages of solid state fermentation (SSF utilization in producing enzymes & secondary metabolites have been shown, whereas, submerged liquid fermentation (SLF condition has the major usage in industrial production of antibiotics. As an antibiotic of B-lactams group, cephalosporin-C (CPC is indicated due to its wide effect and broad convention in treatment of infectious diseases. Regarding industrial production of CPC regularly done in SLF condition, we compared CPC production sum in SLF and SSF conditions. In this analysis, A. chrysogenum was employed, which was inoculated to SLF and SSF, while internal fermenter conditions were totally under control. After extraction of CPC, productions in two states of SLF and SSF were compared using the cylinder plate method. According to Antibiotic assay and production amount comparison, results expressed a ratio of development of production in SSF conditions to SLF conditions. Regarding previous studies on a solid state fermenter and its advantages, in this study, convenience of SSF conditions compared to SLF conditions was experimented. Also mentioning that maintaining the condition of solid state fermenter is more comfortable and practical than liquid state fermenter, using a solid based fermenter to produce antibiotics, especially CPC, can be appropriate. Considering appropriate control conditions of SSF to produce secondary metabolites, decrease in expenses, and increase of production, taking advantage of it in order to increase production parallel to modern methods, such as genetically manipulating CPC producing microorganisms are recommended to pharmacological industries. Also, to make this method applicable, further studies in industrial criterion seem necessary.

  17. Growth and dissolution of liquid 3He droplets in solid 4He matrix

    International Nuclear Information System (INIS)

    Gan'shin, A.N.; Grigor'ev, V.N.; Majdanov, V.A.; Penzev, A.A.; Rudavskij, Eh.Ya.; Rybalko, A.S.

    2000-01-01

    The phase separation kinetics of solid 3 He - 4 He mixtures was investigated using pressure measurements in the conditions when the two-phase system formed consists of concentrated phase liquid droplets (almost pure 3 He) in the dilute phase crystal matrix (almost pure 4 He). It is shown that the liquid droplet growth may be described by a sum of two exponential processes with small and large time contacts as cooling down step by step. This is a result of the strong influence of strains which appear in the crystal at the phase separation due to a large difference in molar volume between the phases and probably give rise to plastic deformation of the matrix and to non-equilibrium 3 He concentration in it. The 3 He atom transfer occurs only to the extent of strain relaxation. It is found that the cyclic growth and dissolution of the liquid droplets affect the crystal quality and lead to pressure increase. The coexistence of liquid and solid phases in droplets is speculated to be possible

  18. A study of a stable Al-Cu-Fe quasicrystal in solid and liquid state

    International Nuclear Information System (INIS)

    Chen Lifan; Chen Xishen

    1992-01-01

    A stable Al 65 Cu 20 Fe 15 quasicrystal with an icosahedral structure is studied in solid and liquid state. It is found that the icosahedral phase in Al 65 Cu 20 Fe 15 alloy does not grow directly from the pure liquid state, but rather forms between monoclinic Al 13 Fe 4 and residual liquid state at 865degC. The melting point of the Al 65 Cu 20 Fe 15 icosahedral quasicrystal occurs at 865degC and that of the Al 65 Cu 20 Fe 15 alloy occurs at 1008degC. Moreover, the monoclinic Al 13 Fe 4 is transformed into the icosahedral phase easily at the temperature of 845degC. The icosahedral quasicrystal in Al 65 Cu 20 Fe 15 alloy has a high thermal stability even at 950degC. Above 950degC, the icosahedral structure tends to an amorphous structure. (orig.)

  19. A modified free-volume-based model for predicting vapor-liquid and solid-liquid equilibria for size asymmetric systems

    DEFF Research Database (Denmark)

    Radfarnia, H.R.; Ghotbi, C.; Taghikhani, V.

    2005-01-01

    The main purpose of this work is to present a free-volume combinatorial term in predicting vapor-liquid equilibrium (VLE) and solid-liquid equilibrium (SLE) of polymer/solvent and light and heavy hydrocarbon/hydrocarbon mixtures. The proposed term is based on a modification of the original Freed ...

  20. Bifurcation of elastic solids with sliding interfaces

    Science.gov (United States)

    Bigoni, D.; Bordignon, N.; Piccolroaz, A.; Stupkiewicz, S.

    2018-01-01

    Lubricated sliding contact between soft solids is an interesting topic in biomechanics and for the design of small-scale engineering devices. As a model of this mechanical set-up, two elastic nonlinear solids are considered jointed through a frictionless and bilateral surface, so that continuity of the normal component of the Cauchy traction holds across the surface, but the tangential component is null. Moreover, the displacement can develop only in a way that the bodies in contact do neither detach, nor overlap. Surprisingly, this finite strain problem has not been correctly formulated until now, so this formulation is the objective of the present paper. The incremental equations are shown to be non-trivial and different from previously (and erroneously) employed conditions. In particular, an exclusion condition for bifurcation is derived to show that previous formulations based on frictionless contact or `spring-type' interfacial conditions are not able to predict bifurcations in tension, while experiments-one of which, ad hoc designed, is reported-show that these bifurcations are a reality and become possible when the correct sliding interface model is used. The presented results introduce a methodology for the determination of bifurcations and instabilities occurring during lubricated sliding between soft bodies in contact.

  1. Power and Energy Management Strategy for Solid State Transformer Interfaced DC Microgrid

    Science.gov (United States)

    Yu, Xunwei

    As a result of more and more applications of renewable energy into our ordinary life, how to construct a microgrid (MG) based on the distributed renewable energy resources and energy storages, and then to supply a reliable and flexible power to the conventional power system are the hottest topics nowadays. Comparing to the AC microgrid (AC MG), DC microgrid (DC MG) gets more attentions, because it has its own advantages, such as high efficiency, easy to integrate the DC energy sources and energy storages, and so on. Furthermore, the interaction between DC MG system and the distribution system is also an important and practical issue. In Future Renewable Electric Energy Delivery and Management Systems Center (FREEDM), the Solid State Transformer (SST) is built, which can transform the distribution system to the low AC and DC system directly (usually home application level). Thus, the SST gives a new promising solution for low voltage level MG to interface the distribution level system instead of the traditional transformer. So a SST interfaced DC MG is proposed. However, it also brings new challenges in the design and control fields for this system because the system gets more complicated, which includes distributed energy sources and storages, load, and SST. The purpose of this dissertation is to design a reliable and flexible SST interfaced DC MG based on the renewable energy sources and energy storages, which can operate in islanding mode and SST-enabled mode. Dual Half Bridge (DHB) is selected as the topology for DC/DC converter in DC MG. The DHB operation procedure and average model are analyzed, which is the basis for the system modeling, control and operation. Furthermore, two novel power and energy management strategies are proposed. The first one is a distributed energy management strategy for the DC MG operating in the SST-enabled mode. In this method, the system is not only in distributed control to increase the system reliability, but the power sharing

  2. Inelastic Scattering of Neutrons in Solids and Liquids. V. II. Proceedings of the Symposium on Inelastic Scattering of Neurons in Solids and Liquids

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-01-15

    The Chalk River Symposium on Inelastic Scattering of Neutrons in Solids and Liquids was the International Atomic Energy Agency's second symposium held on this subject. The previous one was held in 1960 in Vienna and the very first international meeting in this field took place in 1957 in Stockholm. At the Stockholm meeting only 11 papers from six countries were presented; this was the very beginning of a rapidly developing new branch of physics. At the Vienna Symposium there were 50 papers from 12 countries. At Chalk River 67 papers from 13 countries and three international organizations, the European Atomic Energy Community, the Joint Institute for Nuclear Research and the International Atomic Energy Agency, were presented and discussed. In several other countries, either research in this field has already begun or preparations to start it are under way. This is an indication that the interest in using inelastic scattering of neutrons as a method to study the internal dynamics of solids, liquids and molecules is continuously increasing. On the other hand, a deeper knowledge of the dynamic properties of moderators plays an important role in the understanding of the process of thermalization of neutrons. The latter study is of special importance in promoting advances in nuclear reactor technology. In the light of these developments the International Atomic Energy Agency, with the co-sponsorship of the United Nations Educational, Scientific and Cultural Organization, organized the Symposium at Chalk River from 10 to 14 September 1962 on the generous invitation of the Government of Canada and Atomic Energy of Canada Limited.

  3. Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    York, Roger L. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilic peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal

  4. Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.

    2000-01-01

    Using a simple molecular model based on the Lennard-Jones potential, we systematically study the elastic properties of liquid-liquid interfaces containing surfactant molecules by means of extensive and large-scale molecular dynamics simulations. The main elastic constants of the interface, corres...

  5. Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces

    International Nuclear Information System (INIS)

    Petrishchev, Vitaly; Leonov, Sergey; Adamovich, Igor V

    2014-01-01

    Surface ionization wave discharges generated by high-voltage nanosecond pulses, propagating over a planar quartz surface and over liquid surfaces (distilled water and 1-butanol) have been studied in a rectangular cross section test cell. The discharge was initiated using a custom-made, alternating polarity, high-voltage nanosecond pulse plasma generator, operated at a pulse repetition rate of 100–500 Hz, with a pulse peak voltage and current of 10–15 kV and 7–20 A, respectively, a pulse FWHM of ∼100 ns, and a coupled pulse energy of 2–9 mJ/pulse. Wave speed was measured using a capacitive probe. ICCD camera images demonstrated that the ionization wave propagated predominantly over the quartz wall or over the liquid surface adjacent to the grounded waveguide placed along the bottom wall of the test cell. Under all experimental conditions tested, the surface plasma ‘sheet’ was diffuse and fairly uniform, both for positive and negative polarities. The parameters of ionization wave discharge propagating over distilled water and 1-butanol surfaces were close to those of the discharge over a quartz wall. No perturbation of the liquid surface by the discharge was detected. In most cases, the positive polarity surface ionization wave propagated at a higher speed and over a longer distance compared to the negative polarity wave. For all three sets of experiments (surface ionization wave discharge over quartz, water and 1-butanol), wave speed and travel distance decreased with pressure. Diffuse, highly reproducible surface ionization wave discharge was also observed over the liquid butanol–saturated butanol vapor interface, as well as over the distilled water–saturated water vapor interface, without buffer gas flow. No significant difference was detected between surface ionization discharges sustained using single-polarity (positive or negative), or alternating polarity high-voltage pulses. Plasma emission images yielded preliminary evidence of charge

  6. Young-Laplace equation for liquid crystal interfaces

    Science.gov (United States)

    Rey, Alejandro D.

    2000-12-01

    This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.

  7. Solid-liquid interfacial energy of aminomethylpropanediol

    International Nuclear Information System (INIS)

    Ocak, Yavuz; Keslioglu, Kazim; Marasli, Necmettin; Akbulut, Sezen

    2008-01-01

    The grain boundary groove shapes for equilibrated solid aminomethylpropanediol, 2-amino-2 methyl-1.3 propanediol (AMPD) with its melt were directly observed by using a horizontal temperature gradient stage. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient (Γ), solid-liquid interfacial energy (σ SL ) and grain boundary energy (σ gb ) of AMPD have been determined to be (5.4 ± 0.5) x 10 -8 K m, (8.5 ± 1.3) x 10 -3 J m -2 and (16.5 ± 2.8) x 10 -3 J m -2 , respectively. The ratio of thermal conductivity of equilibrated liquid phase to solid phase for the AMPD has also been measured to be 1.12 at the melting temperature

  8. Solid-liquid interfacial energy of aminomethylpropanediol

    Energy Technology Data Exchange (ETDEWEB)

    Ocak, Yavuz; Keslioglu, Kazim; Marasli, Necmettin [Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri (Turkey); Akbulut, Sezen [Department of Physics, Institute of Science and Technology, Erciyes University, 38039 Kayseri (Turkey)], E-mail: marasli@erciyes.edu.tr

    2008-03-21

    The grain boundary groove shapes for equilibrated solid aminomethylpropanediol, 2-amino-2 methyl-1.3 propanediol (AMPD) with its melt were directly observed by using a horizontal temperature gradient stage. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient ({gamma}), solid-liquid interfacial energy ({sigma}{sub SL}) and grain boundary energy ({sigma}{sub gb}) of AMPD have been determined to be (5.4 {+-} 0.5) x 10{sup -8} K m, (8.5 {+-} 1.3) x 10{sup -3} J m{sup -2} and (16.5 {+-} 2.8) x 10{sup -3} J m{sup -2}, respectively. The ratio of thermal conductivity of equilibrated liquid phase to solid phase for the AMPD has also been measured to be 1.12 at the melting temperature.

  9. Volume reduction and solidification of liquid and solid low-level radioactive waste

    International Nuclear Information System (INIS)

    May, J.R.

    1979-01-01

    This paper presents a brief background of the development of a method of radioactive waste volume reduction using a unique fluidized bed calciner/incinerator. The volume reduction system is capable of processing a variety of liquid chemical wastes, spent ion exchange resin beads, filter treatment sludges, contaminated lubricating oils, and miscellaneous combustible solids such as paper, rags, protective clothing, wood, etc. All of these wastes are processed in one chemical reaction vessel. Detailed process data is presented that shows the system is capable of reducing the total volume of disposable radioactive waste generated by light water reactors by a factor of 10. Equally important to reducing the volume of power reactor radwaste is the final form of the stored or disposable radwaste. This paper also presents process data related to a new radwaste solidification system, presently being developed, that is particularly suited for immobilizing the granular solids and ashes resulting from volume reduction by calcination and/or incineration

  10. Broadband luminescence in liquid-solid transition

    CERN Document Server

    Achilov, M F; Trunilina, O V

    2002-01-01

    Broadband luminescence (BBL) intensity behavior in liquid-solid transition in polyethyleneglycol-600 has been established. Oscillation of BBL intensity observed in liquid-polycrystal transition are not found to observed in liquid-amorphous solid transition. It is shown that application of the theory of electron state tails to interpretation of BBL spectral properties in liquids demands restriction. BBL spectroscopy may be applied for optimization of preparation of polymers with determined properties. (author)

  11. Comparison of rumen bacteria distribution in original rumen digesta, rumen liquid and solid fractions in lactating Holstein cows

    OpenAIRE

    Ji, Shoukun; Zhang, Hongtao; Yan, Hui; Azarfar, Arash; Shi, Haitao; Alugongo, Gibson; Li, Shengli; Cao, Zhijun; Wang, Yajing

    2017-01-01

    Background Original rumen digesta, rumen liquid and solid fractions have been frequently used to assess the rumen bacterial community. However, bacterial profiles in rumen original digesta, liquid and solid fractions vary from each other and need to be better established. Methods To compare bacterial profiles in each fraction, samples of rumen digesta from six cows fed either a high fiber diet (HFD) or a high energy diet (HED) were collected via rumen fistulas. Rumen digesta was then squeezed...

  12. Parallel gastric emptying of nonhydrolyzable fat and water after a solid-liquid meal in humans

    International Nuclear Information System (INIS)

    Cortot, A.; Phillips, S.F.; Malagelada, J.R.

    1982-01-01

    Our aim was to examine the control of gastric emptying of the oil phase of a mixed solid and liquid meal. Previous studies had shown that liquid dietary fats normally leave the stomach at a slower rate than does water. We wished to determine whether the slower emptying of fats was due to the physical characteristics of food (lower density and greater viscosity than water), to retardation by duodenal feedback mechanisms, or whether both factors contributed. Thus, we quantified the emptying rates of water and sucrose polyester (a nonabsorbable analog of dietary fat) ingested by healthy volunteers as a mixed solid and liquid meal. Gastric emptying was quantified by an intubation-perfusion method incorporating an occlusive jejunal balloon to facilitate recovery. Four phase-specific, nonabsorbable markers were used. [14C[Sucrose octaoleate and polyethylene glycol were incorporated in the meal and traced the lipid and water phases, respectively; [3H]glycerol triether and phenolsulfonphthalein were used as duodenal recovery markers. Sucrose polyester (substituting for dietary fat) was emptied very rapidly, and at about the same rate as was water, in contrast to natural fat, which empties very slowly. Emptying of water was rapid and comparable to that observed after mixed meals containing natural fat. These results imply that gastric emptying of the oil phase is controlled by receptors sensitive to the hydrolytic products of fat digestion and that the slow emptying of dietary fat is not simply due to its lower density

  13. Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production.

    Science.gov (United States)

    Miller, Andrew T; Safranski, David L; Wood, Catherine; Guldberg, Robert E; Gall, Ken

    2017-11-01

    Polyurethane (PU) based elastomers continue to gain popularity in a variety of biomedical applications as compliant implant materials. In parallel, advancements in additive manufacturing continue to provide new opportunities for biomedical applications by enabling the creation of more complex architectures for tissue scaffolding and patient specific implants. The purpose of this study was to examine the effects of printed architecture on the monotonic and cyclic mechanical behavior of elastomeric PUs and to compare the structure-property relationship across two different printing approaches. We examined the tensile fatigue of notched specimens, 3D crosshatch scaffolds, and two 3D spherical pore architectures in a physically crosslinked polycarbonate urethane (PCU) printed via fused deposition modeling (FDM) as well as a photo-cured, chemically-crosslinked, elastomeric PU printed via continuous liquid interface production (CLIP). Both elastomers were relatively tolerant of 3D geometrical features as compared to stiffer synthetic implant materials such as PEEK and titanium. PCU and crosslinked PU samples with 3D porous structures demonstrated a reduced tensile failure stress as expected without a significant effect on tensile failure strain. PCU crosshatch samples demonstrated similar performance in strain-based tensile fatigue as solid controls; however, when plotted against stress amplitude and adjusted by porosity, it was clear that the architecture had an impact on performance. Square shaped notches or pores in crosslinked PU appeared to have a modest effect on strain-based tensile fatigue while circular shaped notches and pores had little impact relative to smooth samples. When plotted against stress amplitude, any differences in fatigue performance were small or not statistically significant for crosslinked PU samples. Despite the slight difference in local architecture and tolerances, crosslinked PU solid samples were found to perform on par with PCU solid

  14. Diffuse scattering from the liquid-vapor interfaces of dilute Bi:Ga, Tl:Ga, and Pb:Ga alloys

    International Nuclear Information System (INIS)

    Li Dongxu; Jiang Xu; Rice, Stuart A.; Lin Binhua; Meron, Mati

    2005-01-01

    As part of a study of the in-plane wave-vector (q xy ) dependence of the effective Hamiltonian for the liquid-vapor interface, H(q), the wave-vector dependences of diffuse x-ray scattering from the liquid-vapor interfaces of dilute alloys of Bi in Ga, Tl in Ga, and Pb in Ga have been measured. In these dilute alloys the solute component segregates as a monolayer that forms the outermost stratum of the liquid-vapor interfaces, and the density distribution along the normal to the interface is stratified. Over the temperature ranges that the alloy interfaces were studied, the Tl and Pb monolayers exhibit both crystalline and liquid phases while the Bi monolayer is always liquid. The diffuse scattering from the liquid-vapor interfaces of these alloys displays interesting differences with that from the liquid-vapor interface of pure Ga. The presence of a segregated monolayer of solute in the liquid-vapor interface of the alloy appears to slightly suppress the fluctuations in an intermediate wave-vector range in a fashion that preserves the validity of the macroscopic capillary wave model to smaller wavelengths than in pure liquid Ga, and there is an increase in diffuse scattering when the Tl and Pb monolayers melt. The surface intrinsic roughness from fitting the wave-vector dependence of surface tension is 5.0 pm for the Tl:Ga alloy and 1.4 pm for the Bi:Ga alloy. Also, a mode of excitation that contributes to diffuse scattering from the liquid-vapor interface of Pb in Ga, but does not contribute to diffuse scattering from the liquid-vapor interface of Ga, has been identified. It is proposed that this mode corresponds to the separation of the Pb and Ga layers in the regime 1 nm -1 ≤q xy ≤10 nm -1

  15. 1-Dimensional Analysis of Ultrasound at Closed Interface of Solid

    International Nuclear Information System (INIS)

    Yamawaki, H

    2014-01-01

    As a first step to investigate mechanism of nonlinear ultrasonic generation at closed cracks, computer simulation for ultrasonic propagation in 1 -dimensional solid including closed interface was examined using Improved-FDM. Fundamental calculation model which described interaction between open / closure motion of the interface and ultrasonic stress was developed. In the model, compression stress is distributed over the entire solid, as motive force for closure of the interface. The interface is exhibited by the small region, and its open / closure are determined using calculated strain of the region. As a result, motion of the interface causing generation of saw-tooth like displacement waveform was observed. Amplitude modulation of displacement waveform was also observed, and it indicated possibility that small fluctuation of open / closure timing caused the modulation of the amplitude

  16. Non-Faradaic Li + Migration and Chemical Coordination across Solid-State Battery Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gittleson, Forrest S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); El Gabaly, Farid [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-10-17

    Efficient and reversible charge transfer is essential to realizing high-performance solid-state batteries. Efforts to enhance charge transfer at critical electrode–electrolyte interfaces have proven successful, yet interfacial chemistry and its impact on cell function remains poorly understood. Using X-ray photoelectron spectroscopy combined with electrochemical techniques, we elucidate chemical coordination near the LiCoO2–LIPON interface, providing experimental validation of space-charge separation. Space-charge layers, defined by local enrichment and depletion of charges, have previously been theorized and modeled, but the unique chemistry of solid-state battery interfaces is now revealed. Here we highlight the non-Faradaic migration of Li+ ions from the electrode to the electrolyte, which reduces reversible cathodic capacity by ~15%. Inserting a thin, ion-conducting LiNbO3 interlayer between the electrode and electrolyte, however, can reduce space-charge separation, mitigate the loss of Li+ from LiCoO2, and return cathodic capacity to its theoretical value. This work illustrates the importance of interfacial chemistry in understanding and improving solid-state batteries.

  17. Combustible gas production (methane) and biodegradation of solid and liquid mixtures of meat industry wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, A.; Al-Kassir, A.; Cuadros, F.; Lopez-Rodriguez, F. [School of Engineering, University of Extremadura, Avda. De Elva, s/n, 06071, Badajoz (Spain); Mohamad, A.A. [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta (Canada)

    2010-05-15

    This work is devoted to determine the optimal operational conditions on the methane production as well as on the biodegradation obtained from the anaerobic codigestion of solid (fat, intestines, rumen, bowels, whiskers, etc.) and liquid (blood, washing water, manure, etc.) wastes of meat industry, particularly the ones rising from the municipal slaughterhouse of Badajoz (Spain). The experiments were performed using a 2 l capacity discontinuous digester at 38 C. The loading rate were 0.5, 1, 2, 3, and 4.5 g COD for wastewater (washing water and blood; Mixture 1), and 0.5, 1, 2, 3, and 4 g COD for the co-digestion of a mixture of 97% liquid effluent and 3% solid wastes v/v (Mixture 2) which represents the annual mean composition of the waste generated by the slaughterhouse. The maximal biodegradation rates obtained were: Mixture 1, 56.9% for a COD load of 1 g; and Mixture 2, 19.1% for a COD load of 2 g. For both mixtures, the greatest methane production was for the maximum COD load (4.5 g for Mixture 1, and 4 g for Mixture 2), at which values the amounts of methane obtained during and at the end of the co-digestion were practically indistinguishable between the two mixtures. The results will be used to design, construct, and establish the optimal operating conditions of a continuous complete-mixture biodigester. (author)

  18. Injection and swirl driven flowfields in solid and liquid rocket motors

    Science.gov (United States)

    Vyas, Anand B.

    In this work, we seek approximate analytical solutions to describe the bulk flow motion in certain types of solid and liquid rocket motors. In the case of an idealized solid rocket motor, a cylindrical double base propellant grain with steady regression rate is considered. The well known inviscid profile determined by Culick is extended here to include the effects of viscosity and steady grain regression. The approximate analytical solution for the cold flow is obtained from similarity principles, perturbation methods and the method of variation of parameters. The velocity, vorticity, pressure gradient and the shear stress distributions are determined and interpreted for different rates of wall regression and injection Reynolds number. The liquid propellant rocket engine considered here is based on a novel design that gives rise to a cyclonic flow. The resulting bidirectional motion is triggered by the tangential injection of an oxidizer just upstream of the chamber nozzle. Velocity, vorticity and pressure gradient distributions are determined for the bulk gas dynamics using a non-reactive inviscid model. Viscous corrections are then incorporated to explain the formation of a forced vortex near the core. Our results compare favorably with numerical simulations and experimental measurements obtained by other researchers. They also indicate that the bidirectional vortex in a cylindrical chamber is a physical solution of the Euler equations. In closing, we investigate the possibility of multi-directional flow behavior as predicted by Euler's equation and as reported recently in laboratory experiments.

  19. Phase-field model of vapor-liquid-solid nanowire growth

    Science.gov (United States)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  20. Electromagnetic control of mass transfer at liquid/liquid interfaces

    International Nuclear Information System (INIS)

    Saadi, B.

    2006-04-01

    Most metallurgical processes, such as steel refining or nuclear waste processing; the interfaces between two liquid phases are the regions of mass transfer. These transfers require the implementation of a means of stirring to accelerate the kinetics of the pollutants transfer between both phases. This thesis deals with the use of the electromagnetic forces to stir, without any material contact, the bath core and the interface in order to control or even increase the kinetic transfers. To achieve this, two complementary experimental installations were used. The first experiment allows the measurement of the Indium transfer, initially dissolved in mercury towards a covering electrolyte layer and the velocity field in mercury. The performed experiments, determine the topology of the fields flows speeds in the mercury bath, moreover the behaviour of the transfer kinetics versus the intensity of the magnetic field are established. This evolution is correlated with the dynamic behaviour of the mercury surface. The second installation allows the characterization of an element transfer (Pb, Zr or Ce) initially contained in a fluorinated salt towards an antimony matrix containing lithium. It appears that all transfers kinetics are very fast. The proposed experimental set-up is particularly efficient for Cerium transfer (limited by the interface) but does not present any action for Zirconium transfer. (author)

  1. Instructional Review: An Introduction to Optical Methods for Characterizing Liquid Crystals at Interfaces

    Science.gov (United States)

    Miller, Daniel S.; Carlton, Rebecca J.; Mushenheim, Peter C.; Abbott, Nicholas L.

    2013-01-01

    This Instructional Review describes methods and underlying principles that can be used to characterize both the orientations assumed spontaneously by liquid crystals (LCs) at interfaces and the strength with which the LCs are held in those orientations (so-called anchoring energies). The application of these methods to several different classes of LC interfaces is described, including solid and aqueous interfaces as well as planar and non-planar interfaces (such as those that define a LC-in-water emulsion droplet). These methods, which enable fundamental studies of the ordering of LCs at polymeric, chemically-functionalized and biomolecular interfaces, are described in this article at a level that can be easily understood by a non-expert reader such as an undergraduate or graduate student. We focus on optical methods because they are based on instrumentation that is found widely in research and teaching laboratories. PMID:23347378

  2. Fundamentals of interfacial and colloid science Vol III: Liquid-fluid interfaces

    NARCIS (Netherlands)

    Lyklema, J.

    2000-01-01

    This volume deals with various aspects of surface tensions and interfacial tensions. Together with the phenomenon of adsorption (enrichment of molecules at interfaces), these tensions constitute the basic characteristics of interfaces. The authors try to keep the treatment systematic and deductive.

  3. Radionuclide distribution in TMI-2 reactor building basement liquids and solids

    International Nuclear Information System (INIS)

    Horan, J.T.; McIsaac, C.V.; Keefer, D.G.

    1984-01-01

    As a result of the TMI-2 accident, approximately 2.46 x 10 6 L of contaminated water were released to the Reactor Building basement. The principal fission product release pathway from the damaged core was through the reactor coolant system (RCS) to the pressurizer, through the pressure-operated relief valve (PORV) on the pressurizer to the Reactor Coolant Drain Tank (RCDT), and then through the RCDT rupture disk to the Reactor Building basement. Since August 1979, a number of efforts have been made to determine the location, quantity, and composition of fission products released to the Reactor Building basement. These efforts have included sampling of the basement water and solids, the basement sump pump recirculation line, the RCDT, and visual surveys using a closed circuit television (CCTV) system. The analysis of basement samples has provided data on the physical and radioisotopic characteristics of the liquids and solids. This paper describes the sample collection techniques and discusses radiochemical analyses results

  4. Physical measurements with a high-energy proton beam using liquid and solid tissue substitutes

    International Nuclear Information System (INIS)

    Constantinou, C.; Kember, N.F.; Huxtable, G.; Whitehead, C.

    1980-01-01

    The measurement of the physical parameters of a high-energy proton beam, using a range of liquid and solid tissue substitutes, is described. The system, the detectors used and the experimental verification of the tissue equivalence of the new tissue substitutes is presented. The measurements with the scattered but uncollimated proton beam in muscle-and brain-equivalent liquids and in water are compared to similar data obtained from the scattered but collimated beam. The effect of lung, fat and bone on the dose distributions in composite phantoms is also investigated and the necessary corrections established. A simulated patient treatment indicated that the Bragg peak can be positioned with an error not exceeding +-0.5 mm. (author)

  5. Waves reflected by solid wall and wave interaction in vapour bubbly liquids

    International Nuclear Information System (INIS)

    Duong, N.H.; Nguyen, V.T.

    2004-01-01

    The vapour bubbly liquids are met in many natural and industrial processes, including in energy equipment. In the nuclear power plants this kind of medium appears in reactor cores (PWR, BWR and etc.), in turbine generators and in heat transfer loops. Due to some circumstances (for example, a hit caused by detonations or strong collisions) the pressure waves can appear in the bubbly liquid medium contained in those facilities. These waves propagate in the mixtures and interact with themselves and with structures. It is important that what will occur during mentioned above processes. The knowledge of this kind processes will be useful for analysing the different sorts of the processes occurred in the energy facilities where the vapor bubbly liquids are used as working or heat transfer medium, like nuclear power plants, and also useful in finding the measures for prevention of unfavourable phenomena (for example, during wave interactions maybe appear too high pressures, which could lead into damages of facilities and etc.) and safety operating the equipment. From the physical point of view, the waves in this kind of medium are interesting that owing to non-linear, dispersion and dissipation effects the wave patterns in them may be diverse and easy altered. In the paper the investigation results of the waves reflected by solid wall or structure of the moderate intensity shock waves, and the behaviour of pressure in the process of wave interaction in some mixtures of liquid with vapour bubbles (of radium ∼1 mm) are presented. (author)

  6. A computer program for processing experimental Compton profile of solids and liquids

    International Nuclear Information System (INIS)

    Das, G.P.

    1984-01-01

    A computer program COMPRO has been developed for processing experimental Compton profile data of solids and liquids generated by inelastic gamma ray scattering using a solid state detector and a multichannel analyser. It also calculates the fourier transform of the profile yielding the one electron autocorrelation function in position space. The theory behind the method of calculation is outlined and the various data processing steps needed to be applied on the raw experimental data have been discussed in detail. A flow chart of the program is given and the various subroutines of the program, method of feeding the input data and the method of presenting the final result are briefly described. The procedure is illustrated by measurement on a polycrystalline sample of manganese. The actual listing of the program along with the test run input data and the test run output data is also given. (M.G.B.)

  7. Liquids - vapor and liquids - solids equilibria in the system Th(NO3)4 - UO2(NO3)2 - HNO3 - H2O

    International Nuclear Information System (INIS)

    Volk, V.I.; Vakhrushin, A.Yu.; Mamaev, S.L.; Zhirnov, Yu.P.

    1999-01-01

    Liquids - vapor and liquids - solids equilibria in the system Th(NO 3 ) 4 - UO 2 (NO 3 ) 2 - HNO 3 - H 2 O were investigated. It was established that in this system thorium nitrate hexahydrate and uranyl nitrate hexa- and trihydrate are formed. Empiric equations of solubility isotherm at 25 deg C were found. Densities of liquid phases of the system were determined. It was established that uranyl nitrates and thorium nitrates salt out nitric acid in vapor phase just as separately so in the case of mutual presence. Empiric equation fixing relationship between nitric acid concentration in condensed phase and concentrations of all components in liquid phase was found

  8. Research priorities in bioconversion of municipal solid waste to produce chemicals, liquid and gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J. [BABA Ltd., Reading (United Kingdom)

    1988-09-01

    Areas for future research on the bioconversion of municipal solid wastes are highlighted in order to optimise the potential use of this resource to make chemical, liquid and gaseous fuels. Despite widespread research, a biological understanding of bioconversion technologies, including landfill gas, composting and anaerobic digestion, has yet to be established. Specifically, work on the development and growth of microorganisms in uncontrolled systems and the detailed biochemistry of purified strains needs to be undertaken. The microbial breakdown of xenobiotics to clean up polluted sites, and as an alternative to incineration of toxic organic wastes, is viewed as a desirable outcome of such an understanding. (UK)

  9. A feasibility study of hydrothermal treatment of rice straw for multi-production of solid fuel and liquid fertilizer

    Science.gov (United States)

    Samnang, S.; Prawisudha, P.; Pasek, A. D.

    2017-05-01

    Energy use has increased steadily over the last century due to population and industry increase. With the growing of GHG, biomass becomes an essential contributor to the world energy need. Indonesia is the third rice producer in the world. Rice straw has been converted to solid fuel by Hydrothermal Treatment (HT) for electricity generation. HT is a boiling solid organic or inorganic substance in water at high pressure and temperature within a holding time. HT converts high moisture content biomass into dried, uniform, pulverized, and higher energy density solid fuels. HT can effectively transport nutrient components in biomass into a liquid product known as fertilizer. This paper deals with an evaluation of hydrothermal treatment of rice straw for solid fuel and liquid fertilizer. An investigation of rice straw characteristics were completed for Bandung rice straw with various condition of temperature, biomass-water ratio, and holding time in the purpose to find the changes of calorific value for solid product and (N, P, K, and pH) for liquid product. The results showed that solid product at 225 °C and 90 min consists in a heating value 13.8 MJ/kg equal to lignite B. Liquid product at 225 °C and 90 min had the NPK content similar to that of micronutrients compound liquid fertilizer. The dried solid product should be useful for Coal Fire Power Plant, and the liquid product is suitable for plants. This research proves that hydrothermal process can be applied to rice straw to produce solid fuel and liquid fertilizer with adequate quality.

  10. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.; Serne, R. Jeffrey; Icenhower, Jonathan P.; Scheele, Randall D.; Um, Wooyong; Qafoku, Nikolla

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidification treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.

  11. Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications

    Directory of Open Access Journals (Sweden)

    P. Tolias

    2017-12-01

    Full Text Available The status of the literature is reviewed for several thermophysical properties of pure solid and liquid tungsten which constitute input for the modelling of intense plasma-surface interaction phenomena that are important for fusion applications. Reliable experimental data are analyzed for the latent heat of fusion, the electrical resistivity, the specific isobaric heat capacity, the thermal conductivity and the mass density from the room temperature up to the boiling point of tungsten as well as for the surface tension and the dynamic viscosity across the liquid state. Analytical expressions of high accuracy are recommended for these thermophysical properties that involved a minimum degree of extrapolations. In particular, extrapolations were only required for the surface tension and viscosity.

  12. Computer aided testing of steel samples deformation at coexistence liquid and solid phase

    International Nuclear Information System (INIS)

    Hojny, M.; Glowacki, M.

    2007-01-01

    The paper reports the results of experimental and theoretical work leading to construction of a CAE system dedicated to the numerical simulation of plastic deformation of steel at coexistence liquid and solid phase. A coupled thermal-mechanical model including inverse analysis technique was adopted for the solver. The advantage of the solution was the analytical form of both incompressibility and mass conservation conditions. This can prevent usual FEM variational solution problems concerning unintentional specimen volume loss caused by the numerical errors. The only well known machine allowing tests in the discussed temperature range is the GLEEBLE thermo-mechanical simulator. Experiments of deformation of steel in semi-solid state by using this machine are very expensive. Therefore, application of dedicated computer simulation system with inverse method makes tests possible and results in lowering testing cost

  13. Inelastic Scattering of Neutrons in Solids and Liquids. V. I. Proceedings of the Symposium on Inelastic Scattering of Neutrons in Solids and Liquids

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-01-15

    The Chalk River Symposium on Inelastic Scattering of Neutrons in Solids and Liquids was the International Atomic Energy Agency's second symposium held on this subject. The previous one was held in 1960 in Vienna and the very first international meeting in'this field took place in 1957 in Stockholm. At the Stockholm meeting only 11 papers from six countries were presented; this was ihe very beginning of a rapidly developing new branch of physics. At the Vienna Symposium there were 50 papers from 12 countries. At Chalk River 67 papers from 13 countries and three international organizations, the European Atomic Energy Community, the Joint Institute for Nuclear Research and the International Atomic Energy Agency, were presented and discussed. In several other countries, either research in this field has already begun or preparations to start it are under way. This is an indication that the interest in using inelastic scattering of neutrons as a method to study the internal dynamics of solids, liquids and molecules is continuously increasing. On the other hand, a deeper knowledge of the dynamic properties of moderators plays an important role in the understanding of the process of thermalization of neutrons. The latter study is of special importance in promoting advances in nuclear reactor technology. In the light of these developments the International Atomic Energy Agency, with the co-sponsorship of the United Nations Educational, Scienific and Cultural Organization, organized the Symposium at Chalk River rom 10 to 14 September 1962 on the generous invitation of the Government of Canada and Atomic Energy of Canada Limited. The proceedings now published contain all the 67 papers and the records of the discussions. The Proceedings of the Symposium on Inelastic Scattering of Neutrons in Solids and Liquids consist of the full texts of the papers accepted, in the original language in which they were submitted, together with abstracts of these papers in English, French

  14. Adsorption of copolymers at polymer/air and polymer/solid interfaces

    Science.gov (United States)

    Oslanec, Robert

    Using mainly low-energy forward recoil spectrometry (LE-FRES) and neutron reflectivity (NR), copolymer behavior at polymer/air and polymer/solid interfaces is investigated. For a miscible blend of poly(styrene-ran-acrylonitrile) copolymers, the volume fraction profile of the copolymer with lower acrylonitrile content is flat near the surface in contrast to mean field predictions. Including copolymer polydispersity into a self consistent mean field (SCMF) model does not account for this profile shape. LE-FRES and NR is also used to study poly(deuterated styrene-block-methyl-methacrylate) (dPS-b-PMMA) adsorption from a polymer matrix to a silicon oxide substrate. The interfacial excess, zsp*, layer thickness, L, and layer-matrix width, w, depend strongly on the number of matrix segments, P, for P 2N, the matrix chains are repelled from the adsorbed layer and the layer characteristics become independent of P. An SCMF model of block copolymer adsorption is developed. SCMF predictions are in qualitative agreement with the experimental behavior of zsp*, L, and w as a function of P. Using this model, the interaction energy of the MMA block with the oxide substrate is found to be -8ksb{B}T. In a subsequent experiment, the matrix/dPS interaction is made increasingly unfavorable by increasing the 4-bromostyrene mole fraction, x, in a poly(styrene-ran-4-bromostyrene) (PBrsbxS) matrix. Whereas experiments show that zsp* slightly decreases as x increases, the SCMF model predicts that zsp* should increase as the matrix becomes more unfavorable. Upon including a small matrix attraction for the substrate, the SCMF model shows that zsp* decreases with x because of competition between PBrsbxS and dPS-b-PMMA for adsorbing sites. In thin film dewetting experiments on silicon oxide, the addition of dPS-b-PMMA to PS coatings acts to slow hole growth and prevent holes from impinging. Dewetting studies show that longer dPS-b-PMMA chains are more effective stabilizing agents than shorter

  15. Evaluation of small-bowel transit for solid and liquid test meal in healthy men and women

    International Nuclear Information System (INIS)

    Bennink, R.; Maegdenbergh, V. van den; De Roo, M.; Mortelmans, L.; Peeters, M.; Geypens, B.; Rutgeerts, P.

    1999-01-01

    Evaluation of severe functional gastrointestinal motility disorders requires an investigation of the entire gastrointestinal tract. This should be possible with a single radionuclide imaging study. The purpose of this study was (1) to define normal values of small-bowel transit in men and women and (2) to assess a possible difference between gender or test meal, since it has been shown that women have slower gastric emptying than men, and gastric emptying of solids is slower than liquids. A standard gastric-emptying test for a solid (technetium-99m sulphur colloids, 230 Kcal) and liquid (indium-111 DTPA water) test meal was performed in 12 healthy male and 12 healthy female volunteers. After 135 min, the volunteer was place in the supine position for static imaging of the abdomen every 15 min for 6 h. Decay and crossover-corrected geometric mean gastric-emptying data were fit to a modified power exponential function to determine the 10% stomach emptying time for solids and liquids separately. An ROI was drawn around the caecum and ascending colon to determine the arrival time of at least 10% of the solid and liquid test meal. Ten percent small-bowel transit time (10% SBTT) and orocaecal transit time (OCTT) were calculated. The OCTT for males and females, respectively for solids and liquids, are 294.6±18.8; 301.3±24.5; 294.6±18.8 and 301.3±24.5 min. The 10% SBTT for males and females, respectively for solids and liquids, are 280.3±18.4; 280.6±24.0; 288.2±18.9 and 297.4±24.4 (means±SEM) min. We observed a simultaneous transfer of solids and liquids from the terminal ileum to caecum (correlation coefficient 0.90). There is no statistically significant difference in SBTT between gender or solids and liquids. In contrast to the gastric-emptying time, the SBTT of solids and liquids were not significantly different nor was a gender difference found. Determination of the OCTT seems to be the simplest and most accurate approach to measure SBTT. Since ileocaecal

  16. Evaluation of small-bowel transit for solid and liquid test meal in healthy men and women

    Energy Technology Data Exchange (ETDEWEB)

    Bennink, R.; Maegdenbergh, V. van den; De Roo, M.; Mortelmans, L. [Katholieke Univ. Leuven (Belgium). Dept. of Nuclear Medicine; Peeters, M.; Geypens, B.; Rutgeerts, P. [Katholieke Univ. Leuven (Belgium). Dept. of Gastroenterology

    1999-12-01

    Evaluation of severe functional gastrointestinal motility disorders requires an investigation of the entire gastrointestinal tract. This should be possible with a single radionuclide imaging study. The purpose of this study was (1) to define normal values of small-bowel transit in men and women and (2) to assess a possible difference between gender or test meal, since it has been shown that women have slower gastric emptying than men, and gastric emptying of solids is slower than liquids. A standard gastric-emptying test for a solid (technetium-99m sulphur colloids, 230 Kcal) and liquid (indium-111 DTPA water) test meal was performed in 12 healthy male and 12 healthy female volunteers. After 135 min, the volunteer was place in the supine position for static imaging of the abdomen every 15 min for 6 h. Decay and crossover-corrected geometric mean gastric-emptying data were fit to a modified power exponential function to determine the 10% stomach emptying time for solids and liquids separately. An ROI was drawn around the caecum and ascending colon to determine the arrival time of at least 10% of the solid and liquid test meal. Ten percent small-bowel transit time (10% SBTT) and orocaecal transit time (OCTT) were calculated. The OCTT for males and females, respectively for solids and liquids, are 294.6{+-}18.8; 301.3{+-}24.5; 294.6{+-}18.8 and 301.3{+-}24.5 min. The 10% SBTT for males and females, respectively for solids and liquids, are 280.3{+-}18.4; 280.6{+-}24.0; 288.2{+-}18.9 and 297.4{+-}24.4 (means{+-}SEM) min. We observed a simultaneous transfer of solids and liquids from the terminal ileum to caecum (correlation coefficient 0.90). There is no statistically significant difference in SBTT between gender or solids and liquids. In contrast to the gastric-emptying time, the SBTT of solids and liquids were not significantly different nor was a gender difference found. Determination of the OCTT seems to be the simplest and most accurate approach to measure SBTT

  17. Hybrids - Best of both worlds. [liquid and solid propellants mated for safe reliable and low cost launch vehicles

    Science.gov (United States)

    Goldberg, Ben E.; Wiley, Dan R.

    1991-01-01

    An overview is presented of hybrid rocket propulsion systems whereby combining solids and liquids for launch vehicles could produce a safe, reliable, and low-cost product. The primary subsystems of a hybrid system consist of the oxidizer tank and feed system, an injector system, a solid fuel grain enclosed in a pressure vessel case, a mixing chamber, and a nozzle. The hybrid rocket has an inert grain, which reduces costs of development, transportation, manufacturing, and launch by avoiding many safety measures that must be taken when operating with solids. Other than their use in launch vehicles, hybrids are excellent for simulating the exhaust of solid rocket motors for material development.

  18. Use of molecular beams for the analysis of liquid and solid organic compounds

    International Nuclear Information System (INIS)

    Devienne, F.M.; Giroud, Josiane.

    1975-01-01

    The chemical composition of every solid can be determined by the M.B.S.A. method (Molecular Beam Surface Analysis). The method was used to analyze deposits on a filter paper, obtained by evaporation of a liquid solution, as well a liquid films with very low evaporation rate (dioctyl-azelate for instance). The S.C.I.C. method (Separation of Ions by Collision) was used to know exactly the composition of ions of fixed mass, separated by an electromagnet. The separated ions collide a target gas (helium or argon); apart of them are dissociated and the composition and structure of the primary ions can be deduced from the kinetic energy of the dissociated ions. Results obtained from such analysis of a thin film of baryum acetate on a platinum substrate are given [fr

  19. Solid-liquid phase equilibria of Fe-Cr-Al alloys and spinels

    Science.gov (United States)

    McMurray, J. W.; Hu, R.; Ushakov, S. V.; Shin, D.; Pint, B. A.; Terrani, K. A.; Navrotsky, A.

    2017-08-01

    Ferritic FeCrAl alloys are candidate accident tolerant cladding materials. There is a paucity of data concerning the melting behavior for FeCrAl and its oxides. Analysis tools have therefore had to utilize assumptions for simulations using FeCrAl cladding. The focus of this study is to examine in some detail the solid-liquid phase equilibria of FeCrAl alloys and spinels with the aim of improving the accuracy of severe accident scenario computational studies.

  20. A comparison of the performance of solid and liquid lubricants in oscillating spacecraft ball bearings

    Science.gov (United States)

    Gill, S.

    1994-01-01

    The European Space Tribology Laboratory (ESTL) has been engaged in a program to compare the performance of oscillating ball bearings when lubricated by a number of space lubricants, both liquid and solid. The results have shown that mean torque levels are increased by up to a factor of five above the normal running torque, and that often torque peaks of even greater magnitudes are present at the ends of travel. It is believed that these effects are caused by a build-up of compacted debris in the contact zone, thus reducing the ball/race conformity ratio.

  1. Experimental determination and prediction of liquid-solid equilibria for binary (methyl palimitate + naphthalene mixture

    Directory of Open Access Journals (Sweden)

    Benziane M.

    2013-07-01

    Full Text Available Solid-liquid equilibria for binary mixtures of {Methyl palmitate (1 + Naphthalene (2} were measured using differential scanning calorimeter (DSC. Simple eutectic behaviours for this system are observed. The experimental results were correlated by means of the NRTL, Wilson, UNIQUAC and ideal models. The root-mean-square deviations of the solubility temperatures for all measured data vary from 0.5477 K (for UNIQUAC model to 3.34K; the deviation depend on the model used. The best solubility correlation was obtained with UNIQUAC model and this observation confirms previous results.

  2. Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface

    Energy Technology Data Exchange (ETDEWEB)

    Masson, R., E-mail: roland.masson@unice.fr [LJAD, University Nice Sophia Antipolis, CNRS UMR 7351 (France); Team COFFEE INRIA Sophia Antipolis Méditerranée (France); Trenty, L., E-mail: laurent.trenty@andra.fr [Andra, Chatenay Malabry (France); Zhang, Y., E-mail: yumeng.zhang@unice.fr [LJAD, University Nice Sophia Antipolis, CNRS UMR 7351 (France); Team COFFEE INRIA Sophia Antipolis Méditerranée (France)

    2016-09-15

    This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a two point flux approximation based on a low-frequency diagonal approximation of a Steklov–Poincaré type operator. The splitting algorithm and the reduced model are applied in particular to the modelling of the mass exchanges at the interface between the storage and the ventilation galleries in radioactive waste deposits.

  3. Surface rheological properties of liquid-liquid interfaces stabilized by protein fibrillar aggregates and protein-polysaccharide complexes

    NARCIS (Netherlands)

    Humblet-Hua, K.N.P.; Linden, van der E.; Sagis, L.M.C.

    2013-01-01

    In this study we have investigated the surface rheological properties of oil-water interfaces stabilized by fibrils from lysozyme (long and semi-flexible and short and rigid ones), fibrils from ovalbumin (short and semi-flexible), lysozyme-pectin complexes, or ovalbumin-pectin complexes. We have

  4. Nucleation and growth of vapor bubbles in the liquid bulk and at a solid surface

    International Nuclear Information System (INIS)

    Yagov, V.V.

    1977-01-01

    The main achievements in the study of the vapor phase origin in liquid and the subsequent growth of the vapor bubbles are presented briefly, and a number of issues on which there is no single opinion as yet are also outlined. The theory of homogeneous nucleation and a great number of experiments make it possible not only to explain qualitatively the causes of spontaneous formation of vapor nucleation centers in the metastable liquid but provides a simple computational relation for the estimating the intensity of this process. None of the existing hypotheses, however, can give a complete answer to the question of the mechanism of the vapor phase nucleation on a solid surface under ''pure conditions'', although this is a more pressing problem. At the same time, the role of cavities of reservoir type (with a narrow orifice) on the surface under heating as reliable stabilizers of the vapor formation (especially in liquid metals) is clarified from the practical point of view. Thus, the identification of technology for production of such cavities would make it possible to increase substantially the efficiency of heat transferring surfaces. Any computational relations for the growth of bubbles on the heating surface also are (and, according to the author, necessarily will be) approximate ones, although considerable success has been achieved in this field

  5. A method of estimating hydrogen in solid and liquid samples by means of neutron thermalisation

    International Nuclear Information System (INIS)

    Carter, D.H.; Sanders, J.E.

    1967-06-01

    The count-rate of a cadmium-covered Pu239 fission chamber placed in a reactor neutron flux increases when a hydrogen-containing material is inserted due to the thermalisation of epicadmium neutrons. This effect forms the basis of a non-destructive method of estimating hydrogen in solid or liquid samples, and trial experiments to demonstrate the principles have been made. The sensitivity is such that hydrogen down to 10 p.p.m. in a typical metal should be detected. A useful feature of the method is its very low response to elements other than hydrogen. (author)

  6. General aspects of solid on liquid growth mechanisms

    International Nuclear Information System (INIS)

    Laux, E; Charmet, J; Haquette, H; Banakh, O; Jeandupeux, L; Graf, B; Keppner, H

    2009-01-01

    Liquids, in general, tend to have a lower density as solids and therefore it is not straightforward to deposit solid over liquids in a way that the liquid becomes hermetically sealed under the solid layer. The authors review that several phenomena that can easily be observed in nature are only due to particular anomalies and solid on liquid is rather an exception as the rule. Natural solid on liquid systems are lacking of thermal, mechanical or chemical stability. It is not surprising, that one is not at all used thinking about to e.g. replace the gate oxide in a thin film transistor by a thin film of oil, or, to find in other microsystems functional liquids between a stack of thin solid films. However, once this becomes a serious option, a large variety of new Microsystems with new functionalities can be easily designed. In another paper (this conference and [1]) the authors pioneered that the polymer Parylene (poly(p-xylylene)) can be deposited on liquids coming already quite close to the above mentioned vision. In this paper the authors ask if one can synthesize other solid on liquid systems and surprisingly conclude, based on experimental evidence, that solid on liquid deposition seems to rather be the rule and not the exception.

  7. Liquid-solid extraction of cationic metals by cationic amphiphiles

    International Nuclear Information System (INIS)

    Muller, W.

    2010-01-01

    In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX..) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl - , NO 3 - , C 2 O 4 2- ) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu 2+ , Zn 2+ , UO 2 2+ , Fe 3+ , Nd 3+ , Eu 3+ , Th 4+ ) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration. (author) [fr

  8. Microjets and coated wheels: versatile tools for exploring collisions and reactions at gas-liquid interfaces.

    Science.gov (United States)

    Faust, Jennifer A; Nathanson, Gilbert M

    2016-07-07

    This tutorial review describes experimental aspects of two techniques for investigating collisions and reactions at the surfaces of liquids in vacuum. These gas-liquid scattering experiments provide insights into the dynamics of interfacial processes while minimizing interference from vapor-phase collisions. We begin with a historical survey and then compare attributes of the microjet and coated-wheel techniques, developed by Manfred Faubel and John Fenn, respectively, for studies of high- and low-vapor pressure liquids in vacuum. Our objective is to highlight the strengths and shortcomings of each technique and summarize lessons we have learned in using them for scattering and evaporation experiments. We conclude by describing recent microjet studies of energy transfer between O2 and liquid hydrocarbons, HCl dissociation in salty water, and super-Maxwellian helium evaporation.

  9. Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces

    Science.gov (United States)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2017-10-01

    We investigate the stability of electrodeposition at solid-solid interfaces for materials exhibiting an anisotropic mechanical response. The stability of electrodeposition or resistance to the formation of dendrites is studied within a linear stability analysis. The deformation and stress equations are solved using the Stroh formalism and faithfully recover the boundary conditions at the interface. The stability parameter is used to quantify the stability of different solid-solid interfaces incorporating the full anisotropy of the elastic tensor of the two materials. Results show a high degree of variability in the stability parameter depending on the crystallographic orientation of the solids in contact, and point to opportunities for exploiting this effect in developing Li metal anodes.

  10. Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations.

    Science.gov (United States)

    Waldbaur, Ansgar; Kittelmann, Jörg; Radtke, Carsten P; Hubbuch, Jürgen; Rapp, Bastian E

    2013-06-21

    We describe a generic microfluidic interface design that allows the connection of microfluidic chips to established industrial liquid handling stations (LHS). A molding tool has been designed that allows fabrication of low-cost disposable polydimethylsiloxane (PDMS) chips with interfaces that provide convenient and reversible connection of the microfluidic chip to industrial LHS. The concept allows complete freedom of design for the microfluidic chip itself. In this setup all peripheral fluidic components (such as valves and pumps) usually required for microfluidic experiments are provided by the LHS. Experiments (including readout) can be carried out fully automated using the hardware and software provided by LHS manufacturer. Our approach uses a chip interface that is compatible with widely used and industrially established LHS which is a significant advancement towards near-industrial experimental design in microfluidics and will greatly facilitate the acceptance and translation of microfluidics technology in industry.

  11. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar, E-mail: p.saha@iitg.ac.in

    2015-12-15

    Highlights: • Simultaneous removal of two heavy metals lead and cadmium. • Conversion of liquid waste to solid precipitation. • Precipitation facilitates the metals transportation through LM. • Solidification of liquid waste minimizes the final removal of waste. - Abstract: Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of “sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil” was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na{sub 2}CO{sub 3}) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals.

  12. Directivity patterns and pulse profiles of ultrasound emitted by laser action on interface between transparent and opaque solids: Analytical theory

    International Nuclear Information System (INIS)

    Nikitin, Sergey M.; Tournat, Vincent; Chigarev, Nikolay; Castagnede, Bernard; Gusev, Vitalyi; Bulou, Alain; Zerr, Andreas

    2014-01-01

    The analytical theory for the directivity patterns of ultrasounds emitted from laser-irradiated interface between two isotropic solids is developed. It is valid for arbitrary combinations of transparent and opaque materials. The directivity patterns are derived both in two-dimensional and in three-dimensional geometries, by accounting for the specific features of the sound generation by the photo-induced mechanical stresses distributed in the volume, essential in the laser ultrasonics. In particular, the theory accounts for the contribution to the emitted propagating acoustic fields from the converted by the interface evanescent photo-generated compression-dilatation waves. The precise analytical solutions for the profiles of longitudinal and shear acoustic pulses emitted in different directions are proposed. The developed theory can be applied for dimensional scaling, optimization, and interpretation of the high-pressure laser ultrasonics experiments in diamond anvil cell

  13. Effect of fermentation time of mixture of solid and liquid wastes from tapioca industry to percentage reduction of TSS (Total Suspended Solids)

    Science.gov (United States)

    Pandia, S.; Tanata, S.; Rachel, M.; Octiva, C.; Sialagan, N.

    2018-02-01

    The waste from tapioca industry is as an organic waste that contains many important compounds such as carbohydrate, protein, and glucose. This research as aimed to know the effect of fermentation time from solid waste combined with waste-water from the tapioca industry to percentage reduction of TSS. The study was started by mixing the solid and liquid wastes from tapioca industry at a ratio of 70:30, 60:40, 50:50, 40:60, and 30:70 (w/w) with a starter from solid waste of cattle in a batch anaerobic digester. The percentage reduction of TSS was 72.2289 at a ratio by weight of the composition of solid and liquid wastes from tapioca industry was 70:30 after 30 days of fermentation time.

  14. The Laser Damage Threshold for Materials and the Relation Between Solid-Melt and Melt-Vapor Interface Velocities

    International Nuclear Information System (INIS)

    Khalil, Osama Mostafa

    2010-01-01

    Numerous experiments have demonstrated and analytic theories have predicted that there is a threshold for pulsed laser ablation of a wide range of materials. Optical surface damage threshold is a very complex and important application of high-power lasers. Optical damage may also be considered to be the initial phase of laser ablation. In this work it was determined the time required and the threshold energy of a layer of thickness to heat up. We used the Finite Difference method to simulate the process of laser-target interaction in three cases. Namely, the case before melting begins using a continuous wave (c.w) laser source and a pulsed laser source, the case after the first change of state (from solid to melt), and the case after the second change of state (from melt to vapor). And also study the relation between the solid-melt and melt-vapor interface velocities to have a commonsense of the laser ablation process.

  15. The effect of residual chlorides on resultant properties of solid and liquid phases after carbonization process

    Energy Technology Data Exchange (ETDEWEB)

    Plevova Eva; Sugarkova Vera; Kaloc Miroslav [Institute of Geonics ASCR, Ostrava (Czech Republic). Laboratory of Petrology

    2004-07-01

    The low-concentration condition was employed to model the carbonisation mode for local (Czech Republic) coals with higher concentrations of some metals. After completing the carbonisation, mass balance calculations were performed. Results show that the presence of zinc dichloride, copper dichloride and sodium chloride caused the most pronounced impediment to the formation of tar in contrast to lead dichloride and aluminium chloride that increased tar. The results demonstrated that adding of chloride agents effect both the course of the coking process and the properties of solid and liquid products of coking. Evaluation of the solid phase showed that chloride addition caused a decrease of the caking and swelling value, which corresponds with measurements of plasticity values that are of significant influence on mechanical properties closely related to coking plant processes. Evaluation of the liquid phase pointed towards an increase of aromatic hydrocarbons and their derivatives (especially phenanthrene, fluoranthene, acenaphthylene, pyrene) but a decrease of naphthalene and methylnaphthalene. Chloride addition increased aromaticity and caused a difference in substitution rate at aromatic nucleus. Mesophase estimation indicated extensive mosaic, domain and laminated anisotropic texture occurrence after chloride addition, mainly NaCl and CuCl{sub 2} addition. A more detailed evaluation including detailed screening, TGA, IR and RTG analysis will be subject of further investigation. 4 refs., 2 figs., 5 tabs.

  16. Structure and Capacitance of Electrical Double Layers at the Graphene–Ionic Liquid Interface

    Directory of Open Access Journals (Sweden)

    Pengfei Lu

    2017-09-01

    Full Text Available Molecular dynamics simulations are carried out to investigate the structure and capacitance of the electrical double layers (EDLs at the interface of vertically oriented graphene and ionic liquids [EMIM]+/[BF4]−. The distribution and migration of the ions in the EDL on the rough and non-rough electrode surfaces with different charge densities are compared and analyzed, and the effect of the electrode surface morphology on the capacitance of the EDL is clarified. The results suggest that alternate distributions of anions and cations in several consecutive layers are formed in the EDL on the electrode surface. When the electrode is charged, the layers of [BF4]− anions experience more significant migration than those of [EMIM]+ cations. These ion layers can be extended deeper into the bulk electrolyte solution by the stronger interaction of the rough electrode, compared to those on the non-rough electrode surface. The potential energy valley of ions on the neutral electrode surface establishes a potential energy difference to compensate the energy cost of the ion accumulation, and is capable of producing a potential drop across the EDL on the uncharged electrode surface. Due to the greater effective contact area between the ions and electrode, the rough electrode possesses a larger capacitance than the non-rough one. In addition, it is harder for the larger-sized [EMIM]+ cations to accumulate in the narrow grooves on the rough electrode, when compared with the smaller [BF4]−. Consequently, the double-hump-shaped C–V curve (which demonstrates the relationship between differential capacitance and potential drop across the EDL for the rough electrode is asymmetric, where the capacitance increases more significantly when the electrode is positively charged.

  17. METHODS FOR THE SAFE STORAGE, HANDLING, AND DISPOSAL OF PYROPHORIC LIQUIDS AND SOLIDS IN THE LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, F.; Kuntamukkula, M.; Alnajjar, M.; Quigley, D.; Freshwater, D.; Bigger, S.

    2010-02-02

    Pyrophoric reagents represent an important class of reactants because they can participate in many different types of reactions. They are very useful in organic synthesis and in industrial applications. The Occupational Safety and Health Administration (OSHA) and the National Fire Protection Association (NFPA) define Pyrophorics as substances that will self-ignite in air at temperatures of 130 F (54.4 C) or less. However, the U.S. Department of Transportation (DOT) uses criteria different from the auto-ignition temperature criterion. The DOT defines a pyrophoric material as a liquid or solid that, even in small quantities and without an external ignition source, can ignite within five minutes after coming in contact with air when tested according to the United Nations Manual of Tests and Criteria. The Environmental Protection Agency has adopted the DOT definition. Regardless of which definition is used, oxidation of the pyrophoric reagents by oxygen or exothermic reactions with moisture in the air (resulting in the generation of a flammable gas such as hydrogen) is so rapid that ignition occurs spontaneously. Due to the inherent nature of pyrophoric substances to ignite spontaneously upon exposure to air, special precautions must be taken to ensure their safe handling and use. Pyrophoric gases (such as diborane, dichloroborane, phosphine, etc.) are typically the easiest class of pyrophoric substances to handle since the gas can be plumbed directly to the application and used remotely. Pyrophoric solids and liquids, however, require the user to physically manipulate them when transferring them from one container to another. Failure to follow proper safety precautions could result in serious injury or unintended consequences to laboratory personnel. Because of this danger, pyrophorics should be handled only by experienced personnel. Users with limited experience must be trained on how to handle pyrophoric reagents and consult with a knowledgeable staff member prior

  18. Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator

    International Nuclear Information System (INIS)

    Deckers, Jan; Mols, Ludo

    2007-01-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

  19. Applications and Properties of Ionic Liquid- Based Gels and Soft Solid Composites

    Science.gov (United States)

    Voss, Bret Alan McGinness

    2011-12-01

    Solid-liquid composites (gels) have a combination of properties that afford new material applications in which high solute diffusion is desirable. These composites have a soft-solid mechanical integrity and will not flow under gravity, but entrain a liquid matrix (i.e. 60-98 mass %) which allows for high diffusion and high reactivity. Room temperature ionic liquid (RTILs) are molten organic salts with a melting point below room temperature and negligible vapor pressure. If the RTILs are used as the liquid component of a gel, then the gel matrix will not evaporate (unlike other organic solvents) and may be used for long term applications. This thesis research applies RTIL gels for two new applications; carbon dioxide/nitrogen separation and chemical warfare agent (CWA) barrier and decontamination. Separating CO2 from the flue gas of coal and gas fired power-plants is an increasingly economically and environmentally important gas separation. In this first study, RTIL gels are cast in a supported membrane and gas permeability and ideal selectivity are measured. The RTIL matrix has an inherent affinity for CO2 and provides a high diffusion, hence high permeability (i.e. 500-700 barrer). The solidifying component is a low molecular-weight organic gelator (LMOG) which through physical bonding interactions (i.e. hydrogen bonding, pi-pi stacking and van der Walls forces) forms an entangled network which provides mechanical stability (i.e. increase trans-membrane pressure required to expel selective material from the support). In these studies two LMOGs and five RTILs are used to make supported gel membranes and determine gas permeability and temperature dependent trends. The second application for RTIL gels is a decontaminating barrier for CWAs and toxic industrial compounds (TICs). In these studies a layer of RTIL gel is applied on top of a substrate contaminated with a CWA simulant (i.e. chloroethylethylsulfide, CEES). The gel performs well as a barrier, preventing CEES

  20. Kinetics and reversibility of radiocaesium solid/liquid partitioning in sediments

    International Nuclear Information System (INIS)

    Comans, R.N.J.

    1998-01-01

    The kinetics and reversibility of radiocaesium solid/liquid partitioning in sediments have been reviewed and interpreted in terms of a mechanistic framework. This framework is based on the premise that radiocaesium is almost exclusively and highly-selectively bound to the frayed particle edges of illitic clay minerals in the sediments. Several processes with distinctly different rates can be distinguished in radiocaesium sorption to sediments. 2- and 3-box kinetic models can describe both the overall solid/liquid partitioning in sediments and the reversible (exchangeable) and irreversible (nonexchangeable or 'fixed') fractions of radiocaesium in sediments over time scales relevant for natural aquatic systems. The obtained rate parameters indicate that reversible partitioning of radiocaesium dominates over the first few days following a contamination event, whereas irreversible kinetics becomes important over time scales of weeks to months. The slow process, which reduces the exchangeability of sediment-bound radiocaesium over time, is believed to result from a migration of radiocaesium from exchangeable sites on the frayed edges of illite towards less-exchangeable interlayer sites. Long-term extraction of radiocaesium from historically contaminated sediments has given evidence for a reverse (remobilization) process with a half-life of the order of tens of years. These findings suggest that the long-term exchangeability of radiocaesium in sediments may be higher than the few % which is generally assumed. (orig.)

  1. An ab initio study of the structure and dynamics of bulk liquid Cd and its liquid-vapor interface

    International Nuclear Information System (INIS)

    Calderín, L; González, L E; González, D J

    2013-01-01

    Several static and dynamic properties of bulk liquid Cd at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals collective density excitations with an associated dispersion relation which points to a small positive dispersion. Results are also reported for several transport coefficients. Additional simulations have also been performed at a slightly higher temperature in order to study the structure of the free liquid surface. The ionic density profile shows an oscillatory behavior with two different wavelengths, as the spacing between the outer and first inner layer is different from that between the other inner layers. The calculated reflectivity shows a marked maximum whose origin is related to the surface layering, along with a shoulder located at a much smaller wavevector transfer.

  2. Sheath liquid interface for the coupling of normal-phase liquid chromatography with electrospray mass spectrometry and its application to the analysis of neoflavonoids.

    Science.gov (United States)

    Charles, Laurence; Laure, Frédéric; Raharivelomanana, Phila; Bianchini, Jean-Pierre

    2005-01-01

    A novel interface that allows normal-phase liquid chromatography to be coupled with electrospray ionization (ESI) is reported. A make-up solution of 60 mM ammonium acetate in methanol, infused at a 5 microl min(-1) flow-rate at the tip of the electrospray probe, provides a sheath liquid which is poorly miscible with the chromatographic effluent, but promotes efficient ionization of the targeted analytes. Protonated molecules generated in the ESI source were subjected to tandem mass spectrometric experiments in a triple-quadrupole mass spectrometer. The main fragmentation reactions were characterized for each analyte and specific mass spectral transitions were used to acquire chromatographic data in the multiple reaction monitoring detection mode. Results obtained during optimization of the sheath liquid composition and flow-rate suggest that the electrospray process was mainly under the control of the make-up solution, and that it forms an external charged layer around a neutral chromatographic mobile phase core. This sheath liquid interface was implemented for the analysis of some neoflavonoid compounds and its performance was evaluated. Limits of detection were established for calophillolide, inophyllum B, inophyllum P and inophyllum C at 100, 25, 15 and 100 ng ml(-1), respectively.

  3. A novel approach for simultaneous measurements of Hall effect and magnetoresistance effect in solid and liquid state of gallium and mercury metals

    International Nuclear Information System (INIS)

    Ogita, M.; Nakao, M.; Singh, C.D.; Mogi, I.; Awaji, S.

    2004-01-01

    An AC-DC method has been proposed for simultaneous measurements of Hall effect and magnetoresistance effect in solid and liquid state of Ga and Hg metals. In low magnetic field Hall signal in solid state is proportional to magnetic field B, while in liquid state Hall signal is affected by magnetoresistance effect. It has been found that magnetoresistance has a B 2 dependence on magnetic field and affects the Hall signal. In high magnetic field, the Hall effect in liquid state is affected by a very large magnetoresistance effect compared in solid state. The magnetoresistance effect in liquid state is higher than solid state

  4. Development and Optimization of a Flocculation Procedure for Improved Solid-Liquid Separation of Digested Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Caroline; Lischeske, James J.; Sievers, David A.

    2015-11-03

    One viable treatment method for conversion of lignocellulosic biomass to biofuels begins with saccharification (thermochemical pretreatment and enzymatic hydrolysis), followed by fermentation or catalytic upgrading to fuels such as ethanol, butanol, or other hydrocarbons. The post-hydrolysis slurry is typically 4-8 percent insoluble solids, predominantly consisting of lignin. Suspended solids are known to inhibit fermentation as well as poison catalysts and obstruct flow in catalyst beds. Thus a solid-liquid separation following enzymatic hydrolysis would be highly favorable for process economics, however the material is not easily separated by filtration or gravimetric methods. Use of a polyacrylamide flocculant to bind the suspended particles in a corn stover hydrolyzate slurry into larger flocs (1-2mm diameter) has been found to be extremely helpful in improving separation. Recent and ongoing research on novel pretreatment methods yields hydrolyzate material with diverse characteristics. Therefore, we need a thorough understanding of rapid and successful flocculation design in order to quickly achieve process design goals. In this study potential indicators of flocculation performance were investigated in order to develop a rapid analysis method for flocculation procedure in the context of a novel hydrolyzate material. Flocculation conditions were optimized on flocculant type and loading, pH, and mixing time. Filtration flux of the hydrolyzate slurry was improved 170-fold using a cationic polyacrylamide flocculant with a dosing of approximately 22 mg flocculant/g insoluble solids at an approximate pH of 3. With cake washing, sugar recovery exceeded 90 percent with asymptotic yield at 15 L wash water/kg insoluble solids.

  5. Perspective: Chemical reactions in ionic liquids monitored through the gas (vacuum)/liquid interface.

    Science.gov (United States)

    Maier, F; Niedermaier, I; Steinrück, H-P

    2017-05-07

    This perspective analyzes the potential of X-ray photoelectron spectroscopy under ultrahigh vacuum (UHV) conditions to follow chemical reactions in ionic liquids in situ. Traditionally, only reactions occurring on solid surfaces were investigated by X-ray photoelectron spectroscopy (XPS) in situ. This was due to the high vapor pressures of common liquids or solvents, which are not compatible with the required UHV conditions. It was only recently realized that the situation is very different when studying reactions in Ionic Liquids (ILs), which have an inherently low vapor pressure, and first studies have been performed within the last years. Compared to classical spectroscopy techniques used to monitor chemical reactions, the advantage of XPS is that through the analysis of their core levels all relevant elements can be quantified and their chemical state can be analyzed under well-defined (ultraclean) conditions. In this perspective, we cover six very different reactions which occur in the IL, with the IL, or at an IL/support interface, demonstrating the outstanding potential of in situ XPS to gain insights into liquid phase reactions in the near-surface region.

  6. Temperature and compositional dependence of solid-liquid interfacial energy: application of the Cahn-Hilliard theory

    International Nuclear Information System (INIS)

    Shimizu, I.; Takei, Y.

    2005-01-01

    A simple thermodynamic method to estimate the solid-liquid interfacial energy (or interfacial tension) is proposed, based on the Cahn-Hilliard theory. In the model, the liquid is treated as a regular solution, and the interfacial layers are assumed to have liquid-like thermodynamic properties. In eutectic systems, interfacial adsorption occurs within a few atomic layers, and interfacial energy monotonously increases with decreasing concentration of the solid species in the liquid phase. If non-ideal atomic interaction is strong and the liquid immiscibility region appears in the phase diagrams (this is the case of monotectic systems), the interfacial thickness drastically increases and the interfacial energy is reduced around the immiscibility gap

  7. Simultaneous estimation of liquid and solid gastric emptying using radiolabelled egg and water in supine normal subjects.

    Science.gov (United States)

    Kris, M G; Yeh, S D; Gralla, R J; Young, C W

    1986-01-01

    To develop an additional method for the measurement of gastric emptying in supine subjects, 10 normal subjects were given a test meal containing 99Tc-labelled scrambled egg as the "solid" phase marker and 111In in tapwater as the marker for the "liquid" phase. The mean time for emptying 50% of the "solid" phase (t1/2) was 85 min and 29 min for the "liquid" phase. Three individuals were restudied with a mean difference between the two determinations of 10.8% for the "solid" phase and 6.5% for the "liquid" phase. Twenty-six additional studies attempted have been successfully completed in symptomatic patients with advanced cancer. This method provides a simple and reproducible procedure for the determination of gastric emptying that yields results similar to those reported for other test meals and can be used in debilitated patients.

  8. Simultaneous solid phase extraction of cobalt, strontium and cesium from liquid radioactive waste using microcrystalline naphthalene

    International Nuclear Information System (INIS)

    Hamed, Mostafa Mohamed; Attallah, Mohamed Fathy; Metwally, Sayed Sayed

    2014-01-01

    Most of the procedures developed for the extraction of cobalt, strontium and cesium by solid phase extraction do not employ simultaneous extraction of them. In this study, rapid simultaneous removal of Co 2+ , Sr 2+ and Cs + on microcrystalline naphthalene as solid-phase extractant was investigated. These ions were allowed to form chelates with oxine and then adsorbed on freshly microcrystalline naphthalene from aqueous solutions. The solid phase extraction procedure (SPE) was optimized by using model solution containing Co 2+ , Sr 2+ and Cs + in batch system. The effects of different parameters such as variation in pH, reagent concentration, standing time, naphthalene solution concentration and contact time on the simultaneous removal of these ions was studied. The obtained results indicated that, sorption was found to be rapid, and the percentage removal of Co 2+ , Sr 2+ and Cs + was found to be 98, 79 and 68% within 10 min, respectively. The kinetics of the sorption process was investigated to understand the kinetic characteristics of sorption of metal chelates onto microcrystalline naphthalene. The developed procedure has been successfully applied to the removal and recovery of 60 Co and 134 Cs from liquid radioactive waste. The parameters can be used for designing a plant for treatment of wastewater economically.

  9. Interface adsorption and micelle formation of ionic liquid 1-hexyl-3-methylimidazolium chloride in the toluene + water system

    International Nuclear Information System (INIS)

    Asadabadi, Simin; Saien, Javad; Khakizadeh, Vahid

    2013-01-01

    Highlights: • Introducing the used ionic liquid causes a significant reduction in toluene–water interfacial tension. • Temperature has a significant effect on the interfacial tension as well as forming micelle in bulk solution. • The Frumkin model provides a suitable isotherm for the studied system. • Tendency, effectiveness of adsorption and repulsive interaction vary with increasing temperature. • Under saturated interface, entropy and energy changes associated with adsorption show a maximum value at about 303.2 K. -- Abstract: The influence of synthesized ionic liquid 1-hexyl-3-methylimidazolium chloride adsorption on equilibrium interfacial tension of toluene–water was studied within concentration range of (1.00 ⋅ 10 −4 to 6.00 ⋅ 10 −1 ) mol · dm −3 and temperature range of (293.2 to 313.2) K. Very similar to conventional surfactants, the interfacial tension was decreased with both of these parameters. Meanwhile, the CMC values showed a minimum value within the temperature range studied. The Frumkin adsorption isotherm that accounts for the non-ideal adsorption at the interface showed adequately well for modeling the experimental results. Accordingly quantities like interface excess concentration, adsorption tendency and interaction parameter between adsorbed molecules were obtained at different temperatures. Entropy and energy changes associated with adsorption were also obtained from the temperature dependency of interfacial tension. The adsorption tendency and efficiency increased with temperature, and the maximum interface excess concentration and electrostatic repulsion were achieved at about T = 303.2 K

  10. Neutron studies of liquid and solid helium: Progress report, May 1, 1987-April 30, 1988

    International Nuclear Information System (INIS)

    Glyde, H.R.

    1988-01-01

    Liquid and solid helium are prototype simple and solids displaying a wide spectrum of quantum properties. Understanding gained in these simple systems can be readily applied to more complicated materials. Neutron scattering studies carried out at DOE supported national facilities and the associated development of theory and models continue to reveal new physics in these facinating materials. During the past year we have measured the dynamic for factor, S(Q,ω), in superfluid and normal liquid 4 He accurately as a function of temperature. This shows that the sharp one-phonon excitation, which exists in the superfluid phase below T/sub lambda/, either disappears at or changes entirely in character at the transition to the normal phase. Thus the sharp one-phonon excitation can be associated with superfluidity (or a condensate). However, we find the weight of scattering in the one-phonon peak, Z(Q,T), is not porportional to the superfluid density, /rho//sub S/(T). We have also measured S(Q,ω) in the range 3 ≤ Q ≤ 15 /angstrom//sup /minus/1/ in order to obtain the width W(Q) and peak position, E(Q), of S(Q,ω) as a function of Q. We have made microscopic calculations of S(Q,ω) in the range 3 ≤ Q ≤ 15 /angstrom//sup /minus/1/ in both liquid 3 He and 4 He. The aim is a first principles evaluation of W(Q) and E(Q) as a function of Q for comparsion with experiments

  11. Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues.

    Science.gov (United States)

    Bauer, Alexander; Mayr, Herwig; Hopfner-Sixt, Katharina; Amon, Thomas

    2009-06-01

    The Austrian "green electricity act" (Okostromgesetz) has led to an increase in biogas power plant size and consequently to an increased use of biomass. A biogas power plant with a generating capacity of 500 kW(el) consumes up to 38,000 kg of biomass per day. 260 ha of cropland is required to produce this mass. The high water content of biomass necessitates a high transport volume for energy crops and fermentation residues. The transport and application of fermentation residues to farmland is the last step in this logistic chain. The use of fermentation residues as fertilizer closes the nutrient cycle and is a central element in the efficient use of biomass for power production. Treatment of fermentation residues by separation into liquid and solid phases may be a solution to the transport problem. This paper presents detailed results from the monitoring of two biogas plants and from the analysis of the separation of fermentation residues. Furthermore, two different separator technologies for the separation of fermentation residues of biogas plants were analyzed. The examined biogas plants correspond to the current technological state of the art and have designs developed specifically for the utilization of energy crops. The hydraulic retention time ranged between 45.0 and 83.7 days. The specific methane yields were 0.40-0.43 m(3)N CH(4) per kg VS. The volume loads ranged between 3.69 and 4.00 kg VS/m(3). The degree of degradation was between 77.3% and 82.14%. The screw extractor separator was better suited for biogas slurry separation than the rotary screen separator. The screw extractor separator exhibited a high throughput and good separation efficiency. The efficiency of slurry separation depended on the dry matter content of the fermentation residue. The higher the dry matter content, the higher the proportion of solid phase after separation. In this project, we found that the fermentation residues could be divided into 79.2% fluid phase with a dry matter

  12. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yicun; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2015-07-07

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm{sup −1} and a positive band centered at 1670 cm{sup −1}. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  13. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    Science.gov (United States)

    Ni, Yicun; Skinner, J. L.

    2015-07-01

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm-1 and a positive band centered at 1670 cm-1. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  14. Nitrogen losses and chemical parameters during co-composting of solid wastes and liquid pig manure.

    Science.gov (United States)

    Vázquez, M A; de la Varga, D; Plana, R; Soto, M

    2017-07-04

    The aim of this research was to study nitrogen losses during the treatment of the liquid fraction (LF) of pig manure by co-composting and to establish the best conditions for compost production with higher nitrogen and low heavy metal contents. Windrows were constituted with the solid fraction (SF) of pig manure, different organic waste (SF of pig manure, sawdust and grape bagasse) as co-substrate and Populus spp. wood chips as bulking material and watered intensely with the LF. Results show that nitrogen losses ranged from 30% to 66% of initial nitrogen and were mainly governed by substrate to bulking mass ratio and liquid fraction to substrate (LF/S) ratio, and only secondarily by operational parameters. Nitrogen losses decreased from 55-65% at low LF/S ratios (1.7-1.9 m 3 /t total solids (TS)) to 30-39% at high LF/S ratios (4.4-4.7 m 3 /t TS). Therefore, integrating the LF in the composting process at high LF/S ratios favoured nitrogen recovery and conservation. Nitrogen in the fine fraction (ranging from 27% to 48% of initial nitrogen) was governed by operational parameters, namely pH and temperature. Final compost showed low content in most heavy metals, but Zn was higher than the limits for compost use in agriculture. Zn content in the obtained compost varied from 1863 to 3269 mg/kg dm, depending on several factors. The options for obtaining better quality composts from the LF of pig manure are selecting co-substrates with low heavy metal content and using them instead of the SF of pig manure.

  15. Development of an interface for directly coupled solid-phase extraction and GC-MS analysis

    NARCIS (Netherlands)

    Öllers, M.J.H.; van Lieshout, H.P.M.; Janssen, J.G.M.; Cramers, C.A.M.G.

    Solid-phase extraction (SPE) is widely used as a sample preparation technique in numerous application areas of chromatography. Large-volume injection is an attractive technique for coupling SPE to gas chromatography (GC) because it provides improved detection limits and circumvents the need for

  16. Basic research needs and opportunities at the solid-gas interface

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, M B; Cathcart, J V; Hansen, R S; Kliewer, K L; Landman, U; Park, R L; Shatynski, S R

    1982-04-01

    S-G reactions that may occur at surfaces of devices exposed to the normal solar environment are of major concern in solar technology. It becomes necessary to know how the properties of a particular component layer are affected by the manufacturing environment (air, vacuum etc.) and especially to know how the overall operation of the device is influenced by the cumulative effect of various surface reactions. This problem is of special importance in solar applications because of the frequent use of multilayer technology and the long lifetime requirements for components. There are a number of important chemical reactions which involve photoconversion and/or photocatalysis. In these processes, S-G interfaces occur on the catalysts and their support materials. Major research needs include a detailed understanding of semiconductor surfaces with and without chemisorbed species, understanding of the photoconversion and photocatalysis mechanisms, effects of sensitizers, understanding of spill-over phenomena, theoretical calculations and new experimental methods for analysis of the S-G interface under ambient pressure. In both thermal conversion and catalytic conversion systems the transfer of energy occurring at S-G interfaces is very important. The problem is not simple, especially under high UV fluxes and on non-metallic systems. It is conceivable that useful resonant energy transfers may be predictable.

  17. Subthreshold radiation-induced processes in the bulk and on surfaces and interfaces of solids

    International Nuclear Information System (INIS)

    Itoh, N.

    1998-01-01

    A review is given on the processes induced under irradiation by electronic encounters and by elastic encounters below the knock-on threshold. It is pointed out that electronic encounters cause bond scission that results in defect formation and sputtering in a variety of materials. The conditions for generation of permanent radiation-induced process as a consequence of electronic encounters are critically examined. Two critical issues are localization of electronic excitation energy and energetics. Self-trapping of excitons is one way of localization; otherwise defects are involved in localization and therefore in radiation-induced processes (RIP) by electronic excitation. Arguments on energetics indicate presence of linear and nonlinear electronic process with respect to the density of excitation. The registration of energetic heavy-ion tracks is explained in terms of non-linear electronic processes. The difference in the processes in the bulk, on surfaces and at interfaces is critically discussed. The possible contribution of subthreshold elastic encounters to thermodynamically driven interface reaction is also discussed. (orig.)

  18. Lead(ii) soaps: crystal structures, polymorphism, and solid and liquid mesophases.

    Science.gov (United States)

    Martínez-Casado, F J; Ramos-Riesco, M; Rodríguez-Cheda, J A; Redondo-Yélamos, M I; Garrido, L; Fernández-Martínez, A; García-Barriocanal, J; da Silva, I; Durán-Olivencia, M; Poulain, A

    2017-07-05

    The long-chain members of the lead(ii) alkanoate series or soaps, from octanoate to octadecanoate, have been thoroughly characterized by means of XRD, PDF analysis, DSC, FTIR, ssNMR and other techniques, in all their phases and mesophases. The crystal structures at room temperature of all of the members of the series are now solved, showing the existence of two polymorphic forms in the room temperature crystal phase, different to short and long-chain members. Only nonanoate and decanoate present both forms, and this polymorphism is proven to be monotropic. At higher temperature, these compounds present a solid mesophase, defined as rotator, a liquid crystal phase and a liquid phase, all of which have a similar local arrangement. Since some lead(ii) soaps appear as degradation compounds in oil paintings, the solved crystal structures of lead(ii) soaps can now be used as fingerprints for their detection using X-ray diffraction. Pair distribution function analysis on these compounds is very similar in the same phases and mesophases for the different members, showing the same short range order. This observation suggests that this technique could also be used in the detection of these compounds in disordered phases or in the initial stages of formation in paintings.

  19. Probing buried solid-solid interfaces in magnetic multilayer structures and other nanostructures using spectroscopy excited by soft x-ray standing waves

    International Nuclear Information System (INIS)

    Yang, S.-H.; Mun, B.S.; Mannella, N.; Sell, B.; Ritchey, S.B.; Fadley, C.S.; Pham, L.; Nambu, A.; Watanabe, M.

    2004-01-01

    Full text: Buried solid-solid interfaces are becoming increasingly more important in all aspects of nanoscience, and we here dis- cuss the st applications of a new method for selectively studying them with the vuv/soft x-ray spectroscopies. As specific examples, magnetic multilayer structures represent key elements of current developments in spintronics, including giant magnetoresistance, exchange bias, and magnetic tunnel resistance. The buried interfaces in such structures are of key importance to their performance, but have up to now been difficult to study selectively with these spectroscopies. This novel method involves excitation of photoelectrons or fluorescent x-rays with soft x-ray standing waves created by Bragg reflection from a multilayer mirror substrate on which the sample is grown. We will discuss core and valence photoemission, as well soft x-ray emission, results from applying this method to multilayer structures relevant to both giant magnetoresistance (Fe/Cr-[2]) and magnetic tunnel junctions (Al 2 O 3 /FeCo) , including magnetic dichroism measurements. Work supported by the Director, Of e of Science, Of e of Basic Energy Sciences, Materials Science and Engineering Division, U.S. Department of Energy, Contract No. DE-AC03-76SF000

  20. Liquid-solid phase transition of Ge-Sb-Te alloy observed by in-situ transmission electron microscopy

    International Nuclear Information System (INIS)

    Berlin, Katja; Trampert, Achim

    2017-01-01

    Melting and crystallization dynamics of the multi-component Ge-Sb-Te alloy have been investigated by in-situ transmission electron microscopy (TEM). Starting point of the phase transition study is an ordered hexagonal Ge 1 Sb 2 Te 4 thin film on Si(111) where the crystal structure and the chemical composition are verified by scanning TEM and electron energy-loss spectroscopy, respectively. The in-situ observation of the liquid phase at 600°C including the liquid-solid and liquid-vacuum interfaces and their movements was made possible due to an encapsulation of the TEM sample. The solid-liquid interface during melting displays a broad and diffuse transition zone characterized by a vacancy induced disordered state. Although the velocities of interface movements are measured to be in the nanometer per second scale, both, for crystallization and solidification, the underlying dynamic processes are considerably different. Melting reveals linear dependence on time, whereas crystallization exhibits a non-linear time-dependency featuring a superimposed start-stop motion. Our results may provide valuable insight into the atomic mechanisms at interfaces during the liquid-solid phase transition of Ge-Sb-Te alloys. - Highlights: • In-situ TEM observation of liquid Ge-Sb-Te phase transition due to encapsulation. • During melting: Observation of non-ordered interface transition due to premelting. • During solidification: Observation of non-linear time-dependent crystallization.

  1. Liquid-solid phase transition of Ge-Sb-Te alloy observed by in-situ transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Katja, E-mail: katja.berlin@pdi-berlin.de; Trampert, Achim

    2017-07-15

    Melting and crystallization dynamics of the multi-component Ge-Sb-Te alloy have been investigated by in-situ transmission electron microscopy (TEM). Starting point of the phase transition study is an ordered hexagonal Ge{sub 1}Sb{sub 2}Te{sub 4} thin film on Si(111) where the crystal structure and the chemical composition are verified by scanning TEM and electron energy-loss spectroscopy, respectively. The in-situ observation of the liquid phase at 600°C including the liquid-solid and liquid-vacuum interfaces and their movements was made possible due to an encapsulation of the TEM sample. The solid-liquid interface during melting displays a broad and diffuse transition zone characterized by a vacancy induced disordered state. Although the velocities of interface movements are measured to be in the nanometer per second scale, both, for crystallization and solidification, the underlying dynamic processes are considerably different. Melting reveals linear dependence on time, whereas crystallization exhibits a non-linear time-dependency featuring a superimposed start-stop motion. Our results may provide valuable insight into the atomic mechanisms at interfaces during the liquid-solid phase transition of Ge-Sb-Te alloys. - Highlights: • In-situ TEM observation of liquid Ge-Sb-Te phase transition due to encapsulation. • During melting: Observation of non-ordered interface transition due to premelting. • During solidification: Observation of non-linear time-dependent crystallization.

  2. Fracture mechanics of piezoelectric solids with interface cracks

    CERN Document Server

    Govorukha, Volodymyr; Loboda, Volodymyr; Lapusta, Yuri

    2017-01-01

    This book provides a comprehensive study of cracks situated at the interface of two piezoelectric materials. It discusses different electric boundary conditions along the crack faces, in particular the cases of electrically permeable, impermeable, partially permeable, and conducting cracks. The book also elaborates on a new technique for the determination of electromechanical fields at the tips of interface cracks in finite sized piezoceramic bodies of arbitrary shape under different load types. It solves scientific problems of solid mechanics in connection with the investigation of electromechanical fields in piezoceramic bodies with interface cracks, and develops calculation models and solution methods for plane fracture mechanical problems for piecewise homogeneous piezoceramic bodies with cracks at the interfaces. It discusses the “open” crack model, which leads to a physically unrealistic oscillating singularity at the crack tips, and the contact zone model for in-plane straight interface cracks betw...

  3. Quantitative analysis of liquid penetration kinetics and slaking of aggregates as related to solid-liquid interfacial properties

    Science.gov (United States)

    Goebel, Marc-O.; Woche, Susanne K.; Bachmann, Jörg

    2012-06-01

    .83, respectively) and θi (r = 0.89 and r = -0.76, respectively) than the organic carbon content (r = 0.62 and -0.52, respectively), suggesting that stability was primarily controlled by aggregate interfacial properties. Calculation of liquid penetrativity as a function of surface tension and contact angle clearly demonstrated the importance of both solid and liquid interfacial properties in determining the stability of subcritically water repellent aggregates against slaking.

  4. Using oxidized liquid and solid human waste as nutrients for Chlorella vulgaris and cyanobacterium Oscillatoria deflexa

    Science.gov (United States)

    Trifonov, Sergey V.; Kalacheva, Galina; Tirranen, Lyalya; Gribovskaya, Iliada

    At stationary terrestrial and space stations with closed and partially closed substance exchange not only plants, but also algae can regenerate atmosphere. Their biomass can be used for feeding Daphnia and Moina species, which, in their turn, serve as food for fish. In addition, it is possible to use algae for production of biological fuel. We suggested two methods of human waste mineralization: dry (evaporation with subsequent incineration in a muffle furnace) and wet (oxidation in a reactor using hydrogen peroxide). The research task was to prepare nutrient media for green alga Chlorella vulgaris and cyanobacterium Oscillatoria deflexa using liquid human waste mineralized by dry method, and to prepare media for chlorella on the basis of 1) liquid and 2) liquid and solid human waste mineralized by wet method. The algae were grown in batch culture in a climate chamber with the following parameters: illumination 7 klx, temperature 27-30 (°) C, culture density 1-2 g/l of dry weight. The control for chlorella was Tamiya medium, pH-5, and for oscillstoria — Zarrouk medium, pH-10. Maximum permissible concentrations of NaCl, Cl, urea (NH _{2}) _{2}CO, and native urine were established for algae. Missing ingredients (such as salts and acids) for experimental nutrient media were determined: their addition made it possible to obtain the biomass production not less than that in the control. The estimation was given of the mineral and biochemical composition of algae grown on experimental media. Microbiological test revealed absence of foreign microbial flora in experimental cultures.

  5. Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S; Cook, J; Juratovac, J; Goodwillie, J; Burke, T

    2011-10-25

    Algaeventure Systems (AVS) has previously demonstrated an innovative technology for dewatering algae slurries that dramatically reduces energy consumption by utilizing surface physics and capillary action. Funded by a $6M ARPA-E award, transforming the original Harvesting, Dewatering and Drying (HDD) prototype machine into a commercially viable technology has required significant attention to material performance, integration of sensors and control systems, and especially addressing scaling issues that would allow processing extreme volumes of algal cultivation media/slurry. Decoupling the harvesting, dewatering and drying processes, and addressing the rate limiting steps for each of the individual steps has allowed for the development individual technologies that may be tailored to the specific needs of various cultivation systems. The primary performance metric used by AVS to assess the economic viability of its Solid-Liquid Separation (SLS) dewatering technology is algae mass production rate as a function of power consumption (cost), cake solids/moisture content, and solids capture efficiency. An associated secondary performance metric is algae mass loading rate which is dependent on hydraulic loading rate, area-specific hydraulic processing capacity (gpm/in2), filter:capillary belt contact area, and influent algae concentration. The system is capable of dewatering 4 g/L (0.4%) algae streams to solids concentrations up to 30% with capture efficiencies of 80+%, however mass production is highly dependent on average cell size (which determines filter mesh size and percent open area). This paper will present data detailing the scaling efforts to date. Characterization and performance data for novel membranes, as well as optimization of off-the-shelf filter materials will be examined. Third party validation from Ohio University on performance and operating cost, as well as design modification suggestions will be discussed. Extrapolation of current productivities

  6. Evolution of short range order in Ar: Liquid to glass and solid transitions-A computational study

    Science.gov (United States)

    Shor, Stanislav; Yahel, Eyal; Makov, Guy

    2018-04-01

    The evolution of the short range order (SRO) as a function of temperature in a Lennard-Jones model liquid with Ar parameters was determined and juxtaposed with thermodynamic and kinetic properties obtained as the liquid was cooled (heated) and transformed between crystalline solid or glassy states and an undercooled liquid. The Lennard-Jones system was studied by non-equilibrium molecular dynamics simulations of large supercells (approximately 20000 atoms) rapidly cooled or heated at selected quenching rates and at constant pressure. The liquid to solid transition was identified by discontinuities in the atomic volume and molar enthalpy; the glass transition temperature range was identified from the temperature dependence of the self-diffusion. The SRO was studied within the quasi-crystalline model (QCM) framework and compared with the Steinhardt bond order parameters. Within the QCM it was found that the SRO evolves from a bcc-like order in the liquid through a bct-like short range order (c/a=1.2) in the supercooled liquid which persists into the glass and finally to a fcc-like ordering in the crystalline solid. The variation of the SRO that results from the QCM compares well with that obtained with Steinhardt's bond order parameters. The hypothesis of icosahedral order in liquids and glasses is not supported by our results.

  7. Mechanisms and kinetics of electrodeposition of alkali metals on solid and liquid mercury electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wenzhe.

    1993-01-01

    Electroreduction of alkali metal ions at mercury is an important area in electrochemistry related to the battery industry. In this work, four major topics were considered: alkali metal/mercury interactions; electrosorption of alkali metal ions on solid mercury; electroreduction of alkali metal/crown ether complexes; and ammonium amalgam formation. The formation of alkali metal-mercury intermetallic compounds was studied on liquid and frozen thin layer mercury electrodes. The stoichiometry of the compounds produced under these conditions was determined using cyclic voltammetry. As expected, formation of a new phase was preceded by nucleation phenomena, which were particularly easy to monitor at solid Hg electrodes. The nucleation kinetics were studied using the chronoamperometric method. At very low temperatures, when the mobility of mercury atoms was restricted, the electrosorption of alkali metal ions on solid mercury electrodes was noted. Subsequent study allowed determination of the electrosorption parameters. The free energy of electrosorption is discussed in terms of interactions between alkali metals and mercury. The effect of crown ethers on the kinetics of alkali metal ion reduction was studied at both standard size and ultramicro-mercury electrodes in nonaqueous solutions using ultrafast cyclic voltammetry and ac voltammetry. The usefulness of ultrafast cyclic voltammetry with ultramicroelectrodes in measurements of the kinetics of amalgam formation was verified in a brief study of cadmium ion reduction. The mechanism of the complex reduction at mercury was analyzed based on the free energy changes before and after the activation state. In addition, the stoichiometry and formation constants of the crown ether/alkali metal complexes were determined using cyclic voltammetry. The mechanism of electroreduction of ammonium ions at mercury electrodes in non-aqueous media was analyzed.

  8. First principles calculations for liquids and solids using maximally localized Wannier functions

    Science.gov (United States)

    Swartz, Charles W., VI

    The field of condensed matter computational physics has seen an explosion of applicability over the last 50+ years. Since the very first calculations with ENIAC and MANIAC the field has continued to pushed the boundaries of what is possible; from the first large-scale molecular dynamics simulation, to the implementation of Density Functional Theory and large scale Car-Parrinello molecular dynamics, to million-core turbulence calculations by Standford. These milestones represent not only technological advances but theoretical breakthroughs and algorithmic improvements as well. The work in this thesis was completed in the hopes of furthering such advancement, even by a small fraction. Here we will focus mainly on the calculation of electronic and structural properties of solids and liquids, where we shall implement a wide range of novel approaches that are both computational efficient and physically enlightening. To this end we routinely will work with maximally localized Wannier functions (MLWFs) which have recently seen a revival in mainstream scientific literature. MLWFs present us with interesting opportunity to calculate a localized orbital within the planewave formalism of atomistic simulations. Such a localization will prove to be invaluable in the construction of layer-based superlattice models, linear scaling hybrid functional schemes and model quasiparticle calculations. In the first application of MLWF we will look at modeling functional piezoelectricity in superlattices. Based on the locality principle of insulating superlattices, we apply the method of Wu et al to the piezoelectric strains of individual layers under iifixed displacement field. For a superlattice of arbitrary stacking sequence an accurate model is acquired for predicting piezoelectricity. By applying the model in the superlattices where ferroelectric and antiferrodistortive modes are in competition, functional piezoelectricity can be achieved. A strong nonlinear effect is observed and can

  9. A new approach to determine the density of liquids and solids without measuring mass and volume: introducing the solidensimeter

    Science.gov (United States)

    Kiriktaş, Halit; Şahin, Mehmet; Eslek, Sinan; Kiriktaş, İrem

    2018-05-01

    This study aims to design a mechanism with which the density of any solid or liquid can be determined without measuring its mass and volume in order to help students comprehend the concept of density more easily. The solidensimeter comprises of two scaled and nested glass containers (graduated cylinder or beaker) and sufficient water. In this method, the density measurement was made using the Archimedes’ principle stating that an object fully submerged in a liquid displaces the same amount of liquid as its volume, while an object partially submerged or floating displaces the same amount of liquid as its mass. Using this method, the density of any solids or liquids can be determined using a simple mathematical ratio. At the end of the process a mechanism that helps students to comprehend the density topic more easily was designed. The system is easy-to-design, uses low-cost equipment and enables one to determine the density of any solid or liquid without measuring its mass and volume.

  10. The dynamics of liquid drops and their interaction with solids of varying wettabilities

    KAUST Repository

    Sprittles, J. E.

    2012-01-01

    Microdrop impact and spreading phenomena are explored as an interface formation process using a recently developed computational framework. The accuracy of the results obtained from this framework for the simulation of high deformation free-surface flows is confirmed by a comparison with previous numerical studies for the large amplitude oscillations of free liquid drops. Our code\\'s ability to produce high resolution benchmark calculations for dynamic wetting flows is then demonstrated by simulating microdrop impact and spreading on surfaces of greatly differing wettability. The simulations allow one to see features of the process which go beyond the resolution available to experimental analysis. Strong interfacial effects which are observed at the microfluidic scale are then harnessed by designing surfaces of varying wettability that allow new methods of flow control to be developed. © 2012 American Institute of Physics.

  11. Room-temperature solid phase ionic liquid (RTSPIL) coated Ω-transaminases: Development and application in organic solvents

    DEFF Research Database (Denmark)

    Grabner, B.; Nazario, M. A.; Gundersen, M. T.

    2018-01-01

    ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co‐lyophilization and ......ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co...

  12. Scanning electrochemical microscopy determination of hydrogen flux at liquid|liquid interface with potentiometric probe

    OpenAIRE

    Jedraszko, Justyna; Nogala, Wojciech; Adamiak, Wojciech; Girault, Hubert H.; Opallo, Marcin

    2014-01-01

    Scanning electrochemical microscopy potentiometric determination of local hydrogen concentration and its flux next to the liquid|liquid interface was demonstrated. This method is based on the shift of open circuit potential of Pt-based reversible hydrogen electrode. The detection system was verified with a system generating hydrogen under galvanostatic conditions. Then, it was applied to aqueous|1,2-dichloroethane interface where hydrogen is produced with decamethylferrocene as electron donor.

  13. Ab initio theory of the electronic structure of nf-ions in solids and liquids

    International Nuclear Information System (INIS)

    Kulagin, N.

    1998-01-01

    Full text: In the books and papers we developed the self-consistent field theory of nl- ions in Me+n:[L]k- clusters, where k is number of ligands - L, by ion-ligands distance - R. The results which were obtained for all RE and AC ions for Me+n:[L]k, where L - F - , O -2 and so on ligands, are closely corresponded to experimental data. The expression for energy of the cluster may be write as: E = E 0 + kE 1 + k'(E z + E c + E e + E ex ), (Eq.1), where E 0 and E 1 are the energies of the free nl-ion and surrounding one; E z , E c and E e are the energy of electrons interaction with 'strange' nucleus, Coulomb electron-electron interaction and exchange one. E ex is the energy of the interaction of electrons and nucleus with external field. The equations for the radial one-electron wave functions of the ions in the cluster were obtained by minimizing the Eq. 1 for the radial orbitals of the central ion and ligand one. We have received the general system of equations of the self-consistent field for cluster in liquids and solid states. The results of calculations of the energy structure of clusters and values of the standard radial integrals (spectroscopy parameters) for Ac-ions in 1-2-3 superconductors and RE-ions in garnet crystals by different values of R are qualitatively and quantitatively correct. We've got the best results for pressure dependence of Nd ions spectra, change of optical and X-Ray spectra after irradiation of garnets. We explained the nature of anomalous in SrTiO 3 and separate lasers crystals by used of results of the calculations. In the framework of our approach we obtained the best accuracy for the energy of X- Ray lines for all nf- ions in solids and liquids

  14. Ionic liquid and solid HF equivalent amine-poly(hydrogen fluoride) complexes effecting efficient environmentally friendly isobutane-isobutylene alkylation.

    Science.gov (United States)

    Olah, George A; Mathew, Thomas; Goeppert, Alain; Török, Béla; Bucsi, Imre; Li, Xing-Ya; Wang, Qi; Marinez, Eric R; Batamack, Patrice; Aniszfeld, Robert; Prakash, G K Surya

    2005-04-27

    Isoparaffin-olefin alkylation was investigated using liquid as well as solid onium poly(hydrogen fluoride) catalysts. These new immobilized anhydrous HF catalysts contain varied amines and nitrogen-containing polymers as complexing agents. The liquid poly(hydrogen fluoride) complexes of amines are typical ionic liquids, which are convenient media and serve as HF equivalent catalysts with decreased volatility for isoparaffin-olefin alkylation. Polymeric solid amine:poly(hydrogen fluoride) complexes are excellent solid HF equivalents for similar alkylation acid catalysis. Isobutane-isobutylene or 2-butene alkylation gave excellent yields of high octane alkylates (up to RON = 94). Apart from their excellent catalytic performance, the new catalyst systems significantly reduce environmental hazards due to the low volatility of complexed