WorldWideScience

Sample records for interatomic coulombic decay

  1. Interatomic Coulombic decay in helium nanodroplets

    DEFF Research Database (Denmark)

    Shcherbinin, Mykola; Laforge, Aaron; Sharma, Vandana

    2017-01-01

    , or in the droplet interior. ICD at the surface gives rise to energetic He+ ions as previously observed for free He dimers. ICD deeper inside leads to the ejection of slow He+ ions due to Coulomb explosion delayed by elastic collisions with neighboring He atoms, and to the formation of Hek+ complexes....

  2. Evidence of interatomic Coulombic decay in ArKr after Ar 2p Auger decay

    International Nuclear Information System (INIS)

    Morishita, Y; Saito, N; Suzuki, I H; Fukuzawa, H; Liu, X-J; Sakai, K; Pruemper, G; Ueda, K; Iwayama, H; Nagaya, K; Yao, M; Kreidi, K; Schoeffler, M; Jahnke, T; Schoessler, S; Doerner, R; Weber, T; Harries, J; Tamenori, Y

    2008-01-01

    We have identified interatomic Coulombic decay (ICD) processes in the ArKr dimer following Ar 2p Auger decay, using momentum-resolved electron-ion-ion coincidence spectroscopy and simultaneously determining the kinetic energy of the ICD electron and the KER between Ar 2+ and Kr + . We find that the spin-conserved ICD processes in which Ar 2+ (3p -3 3d) 1 P and 3 P decay to Ar 2+ (3p -2 ) 1 D and 3 P, respectively, ionizing the Kr atom, are significantly stronger than the spin-flip ICD processes in which Ar 2+ (3p -3 3d) 1 P and 3 P decay to Ar 2+ (3p -2 ) 3 P and 1 D, respectively

  3. Interatomic Coulombic decay following the Auger decay: Experimental evidence in rare-gas dimers

    International Nuclear Information System (INIS)

    Ueda, K.; Fukuzawa, H.; Liu, X.-J.; Sakai, K.; Pruemper, G.; Morishita, Y.; Saito, N.; Suzuki, I.H.; Nagaya, K.; Iwayama, H.; Yao, M.; Kreidi, K.; Schoeffler, M.; Jahnke, T.; Schoessler, S.; Doerner, R.; Weber, Th.; Harries, J.; Tamenori, Y.

    2008-01-01

    Interatomic Coulombic decay (ICD) in Ar 2 , ArKr and Kr 2 following Ar 2p or Kr 3d Auger decay has been investigated by means of momentum-resolved electron-ion-ion coincidence spectroscopy. This sequential decay leads to Coulombic dissociation into dication and monocation. Simultaneously determining the kinetic energy of the ICD electron and the kinetic energy release between the two atomic ions, we have been able to unambiguously identify the ICD channels. We find that, in general, spin-conserved ICD, in which the singlet (triplet) dicationic state produced via the atomic Auger decay preferentially decays to the singlet (triplet) state, transferring the energy to the other atom, is faster than spin-flip ICD, in which the Auger final singlet (triplet) dicationic state decays to the triplet (singlet) state. However, spin-flip ICD may take place when spin-conserved ICD becomes energetically forbidden. Dipole-forbidden ICDs from Kr 2+ (4s -21 S)-B (B = Ar or Kr) to Kr 2+ (4p -21 D, 3 P)-B + are also observed

  4. Interatomic Coulombic electron capture

    International Nuclear Information System (INIS)

    Gokhberg, K.; Cederbaum, L. S.

    2010-01-01

    In a previous publication [K. Gokhberg and L. S. Cederbaum, J. Phys. B 42, 231001 (2009)] we presented the interatomic Coulombic electron capture process--an efficient electron capture mechanism by atoms and ions in the presence of an environment. In the present work we derive and discuss the mechanism in detail. We demonstrate thereby that this mechanism belongs to a family of interatomic electron capture processes driven by electron correlation. In these processes the excess energy released in the capture event is transferred to the environment and used to ionize (or to excite) it. This family includes the processes where the capture is into the lowest or into an excited unoccupied orbital of an atom or ion and proceeds in step with the ionization (or excitation) of the environment, as well as the process where an intermediate autoionizing excited resonance state is formed in the capturing center which subsequently deexcites to a stable state transferring its excess energy to the environment. Detailed derivation of the asymptotic cross sections of these processes is presented. The derived expressions make clear that the environment assisted capture processes can be important for many systems. Illustrative examples are presented for a number of model systems for which the data needed to construct the various capture cross sections are available in the literature.

  5. Interatomic decay of inner-valence ionized states in ArXe clusters: Relativistic approach

    International Nuclear Information System (INIS)

    Fasshauer, Elke; Pernpointner, Markus; Gokhberg, Kirill

    2013-01-01

    In this work we investigate interatomic electronic decay processes taking place in mixed argon-xenon clusters upon the inner-valence ionization of an argon center. We demonstrate that both interatomic Coulombic decay and electron-transfer mediated decay (ETMD) are important in larger rare gas clusters as opposed to dimers. Calculated secondary electron spectra are shown to depend strongly on the spin-orbit coupling in the final states of the decay as well as the presence of polarizable environment. It follows from our calculations that ETMD is a pure interface process taking place between the argon-xenon layers. The interplay of all these effects is investigated in order to arrive at a suitable physical model for the decay of inner-valence vacancies taking place in mixed ArXe clusters.

  6. Evidence of sequential interatomic decay in argon trimers obtained by electron-triple-ion coincidence spectroscopy

    International Nuclear Information System (INIS)

    Liu, X-J; Saito, N; Fukuzawa, H; Morishita, Y; Stoychev, S; Kuleff, A; Suzuki, I H; Tamenori, Y; Richter, R; Pruemper, G; Ueda, K

    2007-01-01

    Sequential interatomic decay, where the first step is an Auger decay with interatomic character and the second step is a pure interatomic Coulombic decay (ICD), is identified in Ar trimers Ar 3 . The 2p hole state in Ar 3 decays via the L 2,3 M 1 M 2,3 Auger to the one-site two-hole states Ar ++ (3s -1 3p -1 )-Ar-Ar that couples to the two-site satellite states Ar + (3p -2 nl)-Ar + (3p -1 )-Ar. These states are subject to ICD to the states Ar + (3p -1 )-Ar + (3p -1 )-Ar + (3p -1 ), in which the nl electron fills the 3p hole in the same Ar site and one of the 3p electrons in the third Ar site is emitted as a slow ICD electron. This ICD process is identified unambiguously by electron-ion-ion-ion coincidence spectroscopy in which the kinetic energy of the slow ICD electron and the kinetic energy release among the three Ar + ions are measured in coincidence. (fast track communication)

  7. On the doubly ionized states of Ar2 and their intra- and interatomic decay to Ar23+

    International Nuclear Information System (INIS)

    Stoychev, Spas D.; Kuleff, Alexander I.; Tarantelli, Francesco; Cederbaum, Lorenz S.

    2008-01-01

    Potential energy curves of the Auger state Ar + (2p -1 )-Ar, the different one- and two-site dicationic states Ar 2 ++ (with energies in the range of 32-77 eV), and the lowest two-site tricationic states Ar ++ -Ar + (with energies in the range of 64-76 eV) computed using elaborated ab initio methods are reported. The accessible relaxation channels of the electronic states of Ar ++ -Ar populated by Auger decay are studied. In particular, we study in detail the interatomic Coulombic decay following the population of one-site satellite states of Ar ++ (3s -1 3p -1 )-Ar recently observed experimentally. Other relaxation pathways of Ar ++ -Ar, including radiative charge transfer, nuclear dynamics through curve crossing, and intra-atomic decay processes are also investigated

  8. Interatomic Coulombic electron capture in atomic, molecular, and quantum dot systems

    Directory of Open Access Journals (Sweden)

    Bande Annika

    2015-01-01

    Full Text Available The interatomic Coulombic electron capture (ICEC process has recently been predicted theoretically for clusters of atoms and molecules. For an atom A capturing an electron e(ε it competes with the well known photorecombination, because in an environment of neutral or anionic neighboring atoms B, A can transfer its excess energy in the ultrafast ICEC process to B which is then ionized. The cross section for e(ε + A + B → A− + B+ + e(ε′ has been obtained in an asymptotic approximation based on scattering theory for several clusters [1,2]. It was found that ICEC starts dominating the PR for distances among participating species of nanometers and lower. Therefore, we believe that the ICEC process might be of importance in the atmosphere, in biological systems, plasmas, or in nanostructured materials. As an example for the latter, ICEC has been investigated by means of electron dynamics in a model potential for semiconductor double quantum dots (QDs [3]. In the simplest case one QD captures an electron while the outgoing electron is emitted from the other. The reaction probability for this process was found to be relatively large.

  9. Coulomb Force Correction to the Decay b→ccs in the Threshold(Particles and Fields)

    OpenAIRE

    Kouhei, HASEGAWA; Department of Physics, University of Alberta

    2007-01-01

    We study the physical origins of the O(α_s) and O(α^2_s) corrections to the c-s current in the decay b→ccs in the threshold region δ=(M_b-2m_c)/2M_b ≪1. We obtain the corrections which are produced by the Coulomb force between the anti-charm and strange quarks. The Coulomb corrections C_Fπ^2 at O(α_s) and -C^2_Fπ^2ln δ at O(α^2_s) account for 300% and 120% of the corresponding terms in the Abelian-type perturbative corrections respectively. The differences between the Coulomb and perturbative...

  10. Scattering matrix for magnetic potentials with Coulomb decay at infinity

    CERN Document Server

    Yafaev, D

    2003-01-01

    We consider the Schr\\"odinger operator $H$ in the space $L_2({\\R}^d)$ with a magnetic potential $A(x)$ decaying as $|x|^{-1}$ at infinity and satisfying the transversal gauge condition $ =0$. Such potentials correspond, for example, to magnetic fields $B(x)$ with compact support and hence are quite general. Our goal is to study properties of the scattering matrix $S(\\lambda)$ associated to the operator $H$. In particular, we find the essential spectrum $\\sigma_{ess}$ of $S(\\lambda)$ in terms of the behaviour of $A(x)$ at infinity. It turns out that $\\sigma_{ess}(S(\\lambda))$ is normally a rich subset of the unit circle ${\\Bbb T}$ or even coincides with ${\\Bbb T}$. We find also the diagonal singularity of the scattering amplitude (of the kernel of $S(\\lambda)$ regarded as an integral operator). In general, $S(\\lambda)$ is a sum of a multiplication operator and of a singular integral operator. However, if the magnetic field decreases faster than $ |x|^{-2}$ for $d\\geq 3$ (and the total magnetic flux is an integ...

  11. Thermal algebraic-decay charge liquid driven by competing short-range Coulomb repulsion

    Science.gov (United States)

    Kaneko, Ryui; Nonomura, Yoshihiko; Kohno, Masanori

    2018-05-01

    We explore the possibility of a Berezinskii-Kosterlitz-Thouless-like critical phase for the charge degrees of freedom in the intermediate-temperature regime between the charge-ordered and disordered phases in two-dimensional systems with competing short-range Coulomb repulsion. As the simplest example, we investigate the extended Hubbard model with on-site and nearest-neighbor Coulomb interactions on a triangular lattice at half filling in the atomic limit by using a classical Monte Carlo method, and find a critical phase, characterized by algebraic decay of the charge correlation function, belonging to the universality class of the two-dimensional XY model with a Z6 anisotropy. Based on the results, we discuss possible conditions for the critical phase in materials.

  12. Exact inclusion of the Coulomb field in the photobeta decay of a nucleus and problem of bypassed elements

    International Nuclear Information System (INIS)

    Kopytin, I.V.; Karelin, K.N.; Nekipelov, A.A.

    2004-01-01

    The probability of the endothermic β - decay of nuclei that is stimulated by an electromagnetic field of Planck frequency spectrum (photobeta decay) is calculated, the effect of the Coulomb field on a relativistic electron and a virtual relativistic positron being exactly taken into account in this calculation. It is shown that the inclusion of Coulomb effects is of paramount importance and that the results of the calculations may differ by an order of magnitude from those that were obtained previously in the plane-wave approximation, depending on the energy range being considered. A model for the synthesis of bypassed elements in the interior of massive stars is proposed on the basis of the mechanism of the photobeta decay of stable elements that originate from s and r processes

  13. Investigation of beam purity after in-trap decay and Coulomb excitation of $^{62}$Mn-$^{62}$Fe

    CERN Multimedia

    Clement, E; Gernhaeuser, R A; Diriken, J V J; Huyse, M L

    2008-01-01

    The in-trap decay of short lived radioactive ions is not well understood. This poses a problem for Coulomb excitation experiments at MINIBALL, where the normalization of the experiment depends strongly on observed secondary target excitation, which in turn strongly depends on the knowledge of the beam composition. For pure ISOLDE beams of short lived isotopes, the in-trap decay becomes important since a large fraction of the beam is transformed in unwanted daughter isotopes. In this proposal we intend to quantify the production of these daughter products in the REXTRAP accurately by making use of the short lived isotopes $^{61,62}$Mn and the newly installed Bragg ionization chamber at the end of the REX linear accelerator. Apart from the technical interest, the A=62 beam provides as well a good physics case, concerning the development of collectivity in neutron-rich Fe isotopes. Coulomb excitation, utilizing the standard MINIBALL setup, is proposed on both A=62 Mn and Fe. The Fe beam would be the first post-a...

  14. Low-energy Coulomb excitation of $^{62}$Fe and $^{62}$Mn following in-beam decay of $^{62}$Mn

    CERN Document Server

    Gaffney, L P; Bastin, B; Bildstein, V; Blazhev, A; Bree, N; Darby, I; De Witte, H; DiJulio, D; Diriken, J; Fedosseev, V N; Fransen, Ch; Gernhäuser, R; Gustafsson, A; Hess, H; Huyse, M; Kesteloot, N; Kröll, Th; Lutter, R; Marsh, B A; Reiter, P; Seidlitz, M; Van Duppen, P; Voulot, D; Warr, N; Wenander, F; Wimmer, K; Wrzosek-Lipska, K

    2015-01-01

    Sub-barrier Coulomb-excitation was performed on a mixed beam of $^{62}$Mn and $^{62}$Fe, following in-trap $\\beta^{-}$ decay of $^{62}$Mn at REX-ISOLDE, CERN. The trapping and charge breeding times were varied in order to alter the composition of the beam, which was measured by means of an ionisation chamber at the zero-angle position of the Miniball array. A new transition was observed at 418 keV, which has been tentatively associated to a $2^{(+)},3^{(+)}\\rightarrow1^{+}_{g.s.}$ transition. This fixes the relative positions of the $\\beta$-decaying $4^{(+)}$ and $1^{+}$ states in $^{62}$Mn for the first time. Population of the $2^{+}_{1}$ state was observed in $^{62}$Fe and the cross-section determined by normalisation to the $^{109}$Ag target excitation. Combining this Coulomb-excitation cross-section with previously measured lifetimes of the $2^{+}_{1}$ state, the spectroscopic quadrupole moment, $Q_{s}(2^{+}_{1})$, is extracted, albeit with a large uncertainty.

  15. The role of three-body coulomb fields versus final state interactions in the decay of 12C-α-12C

    International Nuclear Information System (INIS)

    Quebert, J.L.; Bertault, D.; Scheurer, J.N.; Fouan, J.P.

    1980-01-01

    The alpha emission in 16 O + 12 C→ 12 C + α + 12 C has been thoroughly studied in the region of the rapidity plot: Ysub(α)=Ysub(c.m.). The three-body coulomb fields, as well as configurations close to alignment, account for the alpha yield which is observed. The apparent competition between direct and sequential decays is well explained by the coulomb break-up

  16. Overview of interatomic potentials

    International Nuclear Information System (INIS)

    Bonny, G.; Malerba, L.

    2005-12-01

    In this report an overview on interatomic potentials is given. This overview is by no means complete and it has merely the intention to give the reader an idea of where interatomic potentials come from, as well as to provide the basic ideas behind some commonly used methods for deriving interatomic potentials for molecular dynamics applications. We start by giving a short introduction about the concept of interatomic potential in the framework of quantum mechanics, followed by a short description of commonly used methods for deriving semi-empirical interatomic potentials. After some short theoretical notions on each method, some practical parameterizations of commonly used potentials are given, including very recent ones. An effort has been made to classify existing approaches within a rational and consequent scheme, which is believed to be of use for a thorough comprehension of the topic. Although these approaches can be used in a variety of different materials, we will only discuss the practical cases of metals. Following this, some widespread ad hoc modification of the general methods are discussed. The report is concluded by a generalization of the methods to multi-component materials, in particular metallic alloys. (author)

  17. Two-photon decay rates of hydrogenlike ions revisited by using Dirac-Coulomb Sturmian expansions of the first order

    Science.gov (United States)

    Bona, Zachée; Nganso, Hugues Merlain Tetchou; Ekogo, Thierry Blanchard; Njock, Moïse Godfroy Kwato

    2014-02-01

    A fully relativistic multipole scheme is formulated to study two-photon emission processes in hydrogenlike ions with an infinitely heavy, pointlike, and spinless nucleus of charge up to 100. By making use of the Sturmian expansion of the Dirac-Coulomb Green function of the first order constructed by Szmytkowski, closed-form expressions are derived for arbitrary multipole channels. In the nonrelativistic limit, well-known formulas established previously are retrieved. For the sake of assessing the effectiveness of our approach, numerical applications are then carried out for two-photon decay rates of the selected 2s1/2 and 2p1/2 atomic states. To this end, radial integrals, the most crucial quantities involved in the matrix elements, are treated with great care by means of two suitable techniques that agree with each other quite closely so that very accurate values are obtained regardless of the choice of parameters, such as radial quantum numbers and orders of spherical Bessel functions of the first kind. In addition, the convergence and stability of computations are checked in connection with the intermediate-state summation, which appears within the second-order perturbation theory. As expected, the gauge invariance of our fully relativistic multipole numbers is confirmed. Relativistic effects, and the influence of the negative spectrum of the complete set of Dirac-Coulomb Sturmians of first order and retardation truncations in the transition operator are examined. Finally, a comparison is undertaken of our two-photon relativistic calculations with refined predictions of other authors based on finite basis-set methods widely employed over the past decades.

  18. Interatomic inelastic current

    DEFF Research Database (Denmark)

    Hansen, Tim; Solomon, Gemma C.; Hansen, Thorsten

    2017-01-01

    In order to identify the location of an inelastic event and to distinguish between situations that are before or after this event, we derive equations for the interatomic inelastic transmission as a perturbation series in the electron-phonon interaction. This series contains both even and odd...... to second order and the 1st order correction represents the lowest order term of this new family of terms. We apply this to three model systems and are able to distinguish between situations before and after the inelastic event as steps in the 2nd order transmission. We also see that when the transmission...

  19. Handbook of interatomic potentials

    International Nuclear Information System (INIS)

    Stoneham, A.M.; Taylor, R.

    1981-08-01

    This Handbook collects together interatomic potentials for a large number of metals. Most of the potentials describe the interactions of host metal atoms with each other, and these, in some cases, may be applied to solid and liquid metals. In addition, there are potentials (a) for a metallic impurity alloyed with the host, (b) for a small number of chemical impurities in the metal (eg H, O), and (c) for rare-gas impurities, notably He. The Handbook is intended to be a convenient source of potentials for bulk, surface and defect calculations, both static and dynamic. (author)

  20. Electrostatic screening in classical Coulomb fluids: exponential or power-law decay or both? An investigation into the effect of dispersion interactions

    International Nuclear Information System (INIS)

    Kjellander, Roland

    2006-01-01

    It is shown that the nature of the non-electrostatic part of the pair interaction potential in classical Coulomb fluids can have a profound influence on the screening behaviour. Two cases are compared: (i) when the non-electrostatic part equals an arbitrary finite-ranged interaction and (ii) when a dispersion r -6 interaction potential is included. A formal analysis is done in exact statistical mechanics, including an investigation of the bridge function. It is found that the Coulombic r -1 and the dispersion r -6 potentials are coupled in a very intricate manner as regards the screening behaviour. The classical one-component plasma (OCP) is a particularly clear example due to its simplicity and is investigated in detail. When the dispersion r -6 potential is turned on, the screened electrostatic potential from a particle goes from a monotonic exponential decay, exp(-κr)/r, to a power-law decay, r -8 , for large r. The pair distribution function acquire, at the same time, an r -10 decay for large r instead of the exponential one. There still remains exponentially decaying contributions to both functions, but these contributions turn oscillatory when the r -6 interaction is switched on. When the Coulomb interaction is turned off but the dispersion r -6 pair potential is kept, the decay of the pair distribution function for large r goes over from the r -10 to an r -6 behaviour, which is the normal one for fluids of electroneutral particles with dispersion interactions. Differences and similarities compared to binary electrolytes are pointed out

  1. Measuring the effects of Coulomb repulsion via signal decay in an atmospheric pressure laser ionization ion mobility spectrometer.

    Science.gov (United States)

    Ihlenborg, Marvin; Schuster, Ann-Kathrin; Grotemeyer, Juergen; Gunzer, Frank

    2018-01-01

    Using lasers in ion mobility spectrometry offers a lot of advantages compared to standard ionization sources. Especially, the ion yield can be drastically increased. It can, however, reach levels where the Coulomb repulsion leads to unwanted side effects. Here, we investigate how the Coulomb repulsion can be detected apart from the typical signal broadening by measuring effects created already in the reaction region and comparing them with corresponding finite element method simulations.

  2. Interatom results for stage 2

    International Nuclear Information System (INIS)

    Coors, D.

    1990-01-01

    This report contains the Interatom results for Stage 2 of the ''IWGFR Programme on Intercomparison of LMFBR Core Mechanics Codes'' which was agreed upon on a Consultants Meeting in Vienna, 8-10 December, 1987. The calculations were performed with the 3D core mechanics code system DDT developed at Interatom and with the 2D core mechanics code FIAT. (author). 5 refs, 11 figs, 8 tabs

  3. The screening length of interatomic potential in atomic collisions

    International Nuclear Information System (INIS)

    Yamamura, Y.; Takeuchi, W.; Kawamura, T.

    1998-03-01

    In computer studies on the interaction of charged particle with solids, many authors treat the nuclear collision by the Thomas-Fermi screened Coulomb potential. For better agreement with experiment, the screening length is modified sometimes. We investigate the theoretical background for the correction factor of the screening length in the interatomic potential which can be deduced from two steps. The first step is to select the correction factor of an isolated atom so as to match the average radius of the Thomas-Fermi electron distribution with that of the Hartree-Fock electron distribution, where we use the Clementi and Roetti's table. The second step is to determine the correction factor of the screening length of the interatomic potential by using a combination rule. The correction factors obtained for the screening length are in good agreement with those determined by the computer analysis of the Impact Collision Ion Scattering Spectroscopy (ICISS) data. (author)

  4. Dressed ion theory of size-asymmetric electrolytes: effective ionic charges and the decay length of screened Coulomb potential and pair correlations.

    Science.gov (United States)

    Forsberg, Björn; Ulander, Johan; Kjellander, Roland

    2005-02-08

    The effects of ionic size asymmetry on long-range electrostatic interactions in electrolyte solutions are investigated within the primitive model. Using the formalism of dressed ion theory we analyze correlation functions from Monte Carlo simulations and the hypernetted chain approximation for size asymmetric 1:1 electrolytes. We obtain decay lengths of the screened Coulomb potential, effective charges of ions, and effective permittivity of the solution. It is found that the variation of these quantities with the degree of size asymmetry depends in a quite intricate manner on the interplay between the electrostatic coupling and excluded volume effects. In most cases the magnitude of the effective charge of the small ion species is larger than that of the large species; the difference increases with increasing size asymmetry. The effective charges of both species are larger (in absolute value) than the bare ionic charge, except for high asymmetry where the effective charge of the large ions can become smaller than the bare charge.

  5. Coulomb excitation

    International Nuclear Information System (INIS)

    McGowan, F.K.; Stelson, P.H.

    1974-01-01

    The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)

  6. Coulomb Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  7. Radiative capture versus Coulomb dissociation

    International Nuclear Information System (INIS)

    Esbensen, H.; Physics

    2006-01-01

    Measurements of the Coulomb dissociation of 8 B have been used to infer the rate of the inverse radiative proton capture on 7 Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed

  8. Radiative Capture versus Coulomb Dissociation

    International Nuclear Information System (INIS)

    Esbensen, Henning

    2006-01-01

    Measurements of the Coulomb dissociation of 8B have been used to infer the rate of the inverse radiative proton capture on 7Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed

  9. An Algorithm for Computing Screened Coulomb Scattering in Geant4

    OpenAIRE

    Mendenhall, Marcus H.; Weller, Robert A.

    2004-01-01

    An algorithm has been developed for the Geant4 Monte-Carlo package for the efficient computation of screened Coulomb interatomic scattering. It explicitly integrates the classical equations of motion for scattering events, resulting in precise tracking of both the projectile and the recoil target nucleus. The algorithm permits the user to plug in an arbitrary screening function, such as Lens-Jensen screening, which is good for backscattering calculations, or Ziegler-Biersack-Littmark screenin...

  10. Interatomic spacing distribution in multicomponent alloys

    International Nuclear Information System (INIS)

    Toda-Caraballo, I.; Wróbel, J.S.; Dudarev, S.L.; Nguyen-Manh, D.; Rivera-Díaz-del-Castillo, P.E.J.

    2015-01-01

    A methodology to compute the distribution of interatomic distances in highly concentrated multicomponent alloys is proposed. By using the unit cell parameter and bulk modulus of the elements involved, the method accurately describes the distortion in the lattice produced by the interaction of the different atomic species. To prove this, density functional theory calculations have been used to provide the description of the lattice in a monophasic BCC MoNbTaVW high entropy alloy and its five sub-quaternary systems at different temperatures. Short-range order is also well described by the new methodology, where the mean error in the predicted atomic coordinates in comparison with the atomistic simulations is in the order of 1–2 pm over all the compositions and temperatures considered. The new method can be applied to tailor solid solution hardening, highly dependent on the distribution of interatomic distances, and guide the design of new high entropy alloys with enhanced properties

  11. Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem

    Science.gov (United States)

    Tkatchenko, Alexandre; Ambrosetti, Alberto; DiStasio, Robert A.

    2013-02-01

    Interatomic pairwise methods are currently among the most popular and accurate ways to include dispersion energy in density functional theory calculations. However, when applied to more than two atoms, these methods are still frequently perceived to be based on ad hoc assumptions, rather than a rigorous derivation from quantum mechanics. Starting from the adiabatic connection fluctuation-dissipation (ACFD) theorem, an exact expression for the electronic exchange-correlation energy, we demonstrate that the pairwise interatomic dispersion energy for an arbitrary collection of isotropic polarizable dipoles emerges from the second-order expansion of the ACFD formula upon invoking the random-phase approximation (RPA) or the full-potential approximation. Moreover, for a system of quantum harmonic oscillators coupled through a dipole-dipole potential, we prove the equivalence between the full interaction energy obtained from the Hamiltonian diagonalization and the ACFD-RPA correlation energy. This property makes the Hamiltonian diagonalization an efficient method for the calculation of the many-body dispersion energy. In addition, we show that the switching function used to damp the dispersion interaction at short distances arises from a short-range screened Coulomb potential, whose role is to account for the spatial spread of the individual atomic dipole moments. By using the ACFD formula, we gain a deeper understanding of the approximations made in the interatomic pairwise approaches, providing a powerful formalism for further development of accurate and efficient methods for the calculation of the dispersion energy.

  12. Interatomic potentials for materials of nuclear interest

    International Nuclear Information System (INIS)

    Fernandez, Julian R.; Monti, Ana M.; Pasianot, Roberto C.; Simonelli, G.

    2007-01-01

    Procedures to develop embedded atom method (EAM) interatomic potentials are described, with foreseeable applications in nuclear materials. Their reliability is shown by evaluating relevant properties. The studied materials are Nb, Zr and U. The first two were then used to develop an inter species potential for the Zr-Nb binary system. In this sense, the Fe-Cu system was also studied starting from Fe and Cu potentials extracted from the literature. (author) [es

  13. Inter-atomic interaction between electrons, 2

    International Nuclear Information System (INIS)

    Haga, Eijiro; Kato, Tomohiko; Aisaka, Tsuyoshi.

    1978-01-01

    Intra- and inter-atomic interactions in the exchange process are defined with respect to the Wannier function rather than the atomic function. In relation to the neutron scattering data for nickel, the behavior for the effective exchange parameter I(q) in the q-dependent susceptibility is, in RPA, investigated by taking into account the main types of the nearest neighbor interactions and by extending our previous treatment. The different types of interactions lead to different behavior for the q-dependence of I(q). The contribution to I(q) from inter-atomic interactions other than the exchange type decreases as the surface area of the Fermi surface becomes large. For the exchange type, the l-th neighbor interaction with l<=4 is taken into account, and, from the comparison with the empirical result for I(q), it is found that the inter-atomic contribution to I(0) is about thirty percent with a reasonable decrease against l. (author)

  14. The eikonal phase of supersymmetric Coulomb partners

    CERN Document Server

    Lassaut, M; Lombard, R J

    1998-01-01

    We investigate the eikonal phase and its systematic corrections for the two supersymmetric Coulomb partners V sub 1 and V sub 2 derived by Amado. Apart from a constant shift of -pi for V sub 1 and -2 pi for V sub 2 , the eikonal phase decay to the eikonal phase of the Coulomb potential as 1/kb. For the potential V sub 2 , which is phase equivalent to the Coulomb potential, this result is only valid at b approx =0 and asymptotically; in the intermediate range, it constitutes a lower limit. (author)

  15. Coulomb states in atoms and solids

    International Nuclear Information System (INIS)

    Ortalano, D.M.

    1988-05-01

    In this dissertation, an empirical quantum defect approach to describe the valence excitons of the rare gas solids is developed. These Coulomb states are of s-symmetry and form a hydrogen-like series which converges to the bottom of the lowest conduction band. A non-zero quantum defect is found for all of the excitons of neon, argon and xenon. For these systems, then, there exists, in addition to the screened Coulombic component, a non-Coulombic component to the total exciton binding energy. The Wannier formalism is, therefore, inappropriate for the excitons of Ne, Ar and Xe. From the sign of the quantum defect, the non-Coulombic potential is repulsive for Ne and Ar, attractive for Xe, and nearly zero for Kr. This is opposite to that for the Rydberg states of the corresponding rare gas atoms, where the non-Coulombic potential between the electron and the cation is attractive for all of the atoms. The excitons then, are not simply perturbed Rydberg states of the corresponding rare gas atoms (i.e., the excitons do not possess atomic parentage). Interatomic term value/band gap energy correlations and reduced term value/reduced band gap correlations were performed. These correlations were exploited to provide further evidence against both the Wannier formalism and the atomic parentage view point. From these correlations, it was also discovered that the non-Coulombic potential varies smoothly across the valence isoelectronic series of solids, and that it becomes more attractive (or less repulsive) in going from neon to xenon. In order to address the atomic parentage controversy, it was necessary to compare the excitons to the low-n Rydberg states of the rare gas atoms. A review of the quantum defect description of the atomic Rydberg states is, therefore, presented. Also, Rydberg term value/ionization energy correlations are discussed and compared with the analogous exciton correlations. 7 refs., 10 figs., 5 tabs

  16. Orientational anharmonicity of interatomic interaction in cubic monocrystals

    International Nuclear Information System (INIS)

    Belomestnykh, Vladimir N.; Tesleva, Elena P.

    2010-01-01

    Anharmonicity of interatomic interaction from a position of physical acoustics under the standard conditions is investigated. It is shown that the measure of anharmonicity of interatomic interaction (Grilneisen parameter) is explicitly expressed through velocities of sound. Calculation results of orientation anharmonicity are shown on the example of 116 cubic monocrystals with different lattice structural type and type of chemical bond. Two types of anharmonicity interatomic interaction anisotropy are determined. Keywords: acoustics, orientational anharmonicity, Gruneisen parameter, velocity of sound

  17. INTERATOM experience of cleaning sodium-wetted components

    International Nuclear Information System (INIS)

    Haubold, W.

    1978-01-01

    INTERATOM has been concerned since 1967 with the development, testing, and application of methods to clean sodium wetted components by moist nitrogen, vacuum distillation or alcohol. The activities of INTERATOM in this area have been reported at the IAEA Specialists Meeting on 'Decontamination of Plant Components from Sodium and Radioactivity' in Dounreay, April 9-12, 1973. The three cleaning methods mentioned above are practised at present, too - with minor modifications - by INTERATOM and in the facilities of the SNR project. This note summarizes the experiences of INTERATOM with methods of sodium removal since 1973

  18. Heavy ion coulomb excitation and gamma decay studies of the one and two phonon giant dipole resonances in 208Pb and 209Bi

    International Nuclear Information System (INIS)

    Mueller, P.E.; Beene, J.R.; Bertrand, F.E.; Halbert, M.L.; Olive, D.H.; Varner, R.L.; Sherrill, B.; Thoennessen, M.; Lautridou, P.; Lefevre, F.; Marques, M.; Matulewicz, T.; Mittig, W.; Ostendorf, R.; Roussel-Chomaz, P.; Schutz, Y.; Pol, J. van; Wilschut, H.W.; Diaz, J.; Ferrero, J.L.; Marin, A.

    1994-01-01

    Projectile - phonon coincidences were measured for the scattering of an 80 MeV/nucleon 64 Zn beam from 208 Pb and 209 Bi targets at the GANIL heavy ion accelerator facility. Projectile-like particles between 0.5 and 4.5 relative to the incident beam direction were detected in the SPEG energy loss spectrometer where their momentum, charge, and mass were determined. Photons were detected in the BaF 2 scintillation detector array TAPS. Light charged particles produced in the reaction were detected in the KVI Forward Wall. The analysis of the data acquired in this experiment is focused on three different phenomena: (1) the two phonon giant dipole resonance, (2) time dependence of the decay of the one phonon giant dipole resonance, and (3) giant resonance strength in projectile nuclei. (orig.)

  19. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    Energy Technology Data Exchange (ETDEWEB)

    Fasshauer, Elke, E-mail: Elke.Fasshauer@uit.no [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Kolorenč, Přemysl [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic); Pernpointner, Markus [Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  20. Coulomb effects in particle distributions inclusive

    International Nuclear Information System (INIS)

    Erazmus, B.; Martin, L.; Pluta, J.; Stavinky, A.

    1997-01-01

    Single pion distributions from central 158 A.GeV/c Pb + Pb collisions measured by the NA44 experiment show the effect of Coulomb interaction with the net charge produced during the reaction. Coulomb effects are analyzed with the help of the microscopic model RQMD and a model including the Coulomb interaction. Different sets of kinematical characteristics of the net charge have been used to reproduce the experimental data and a strong sensitivity to the charge value has been found. This study has evidenced the non-negligible influence of a Coulomb charge, present in the region of the central rapidity in heavy ion collisions on the inclusive distributions of the produced particles. A more thorough analysis of the data obtained from the experiment NA44 is now under way to take into account the hyperon decay that can modify the fraction of different particles, particularly at low transverse momenta

  1. Phonon optimized interatomic potential for aluminum

    Directory of Open Access Journals (Sweden)

    Murali Gopal Muraleedharan

    2017-12-01

    Full Text Available We address the problem of generating a phonon optimized interatomic potential (POP for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA to optimize the free parameters in an empirical interatomic potential (EIP. For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT calculations. Existing potentials for aluminum, such as the embedded atom method (EAM and charge-optimized many-body (COMB3 potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE, employing Fermi’s Golden Rule to predict the phonon-phonon relaxation times.

  2. Phonon optimized interatomic potential for aluminum

    Science.gov (United States)

    Muraleedharan, Murali Gopal; Rohskopf, Andrew; Yang, Vigor; Henry, Asegun

    2017-12-01

    We address the problem of generating a phonon optimized interatomic potential (POP) for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA) to optimize the free parameters in an empirical interatomic potential (EIP). For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT) calculations. Existing potentials for aluminum, such as the embedded atom method (EAM) and charge-optimized many-body (COMB3) potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD) simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE), employing Fermi's Golden Rule to predict the phonon-phonon relaxation times.

  3. Interatomic potentials for fusion reactor material simulations

    International Nuclear Information System (INIS)

    Bjoerkas, C.

    2009-01-01

    In this thesis, the behaviour of a material situated in a fusion reactor was studied using molecular dynamics simulations. Simulations of processes in the next generation fusion reactor ITER include the reactor materials beryllium, carbon and tungsten as well as the plasma hydrogen isotopes. This means that interaction models, i.e. interatomic potentials, for this complicated quaternary system are needed. The task of finding such potentials is nonetheless nearly at its end, since models for the beryllium-carbon-hydrogen interactions were constructed in this thesis and as a continuation of that work, a beryllium-tungsten model is under development. These potentials are combinable with the earlier tungsten-carbon-hydrogen ones. The potentials were used to explain the chemical sputtering of beryllium due to deuterium plasma exposure. During experiments, a large fraction of the sputtered beryllium atoms were observed to be released as BeD molecules, and the simulations identified the swift chemical sputtering mechanism, previously not believed to be important in metals, as the underlying mechanism. Radiation damage in the reactor structural materials vanadium, iron and iron chromium, as well as in the wall material tungsten and the mixed alloy tungsten carbide, was also studied in this thesis. Interatomic potentials for vanadium, tungsten and iron were modified to be better suited for simulating collision cascades that are formed during particle irradiation, and the potential features affecting the resulting primary damage were identified. Including the often neglected electronic effects in the simulations was also shown to have an impact on the damage. With proper tuning of the electronphonon interaction strength, experimentally measured quantities related to ion-beam mixing in iron could be reproduced. The damage in tungsten carbide alloys showed elemental asymmetry, as the major part of the damage consisted of carbon defects. On the other hand, modelling the damage

  4. Investigating Coulomb's Law.

    Science.gov (United States)

    Noll, Ellis; Koehlinger, Mervin; Kowalski, Ludwik; Swackhamer, Gregg

    1998-01-01

    Describes the use of a computer-linked camera to demonstrate Coulomb's law. Suggests a way of reducing the difficulties in presenting Coulomb's law by teaching the inverse square law of gravity and the inverse square law of electricity in the same unit. (AIM)

  5. Diffusion in Coulomb crystals.

    Science.gov (United States)

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  6. Adventures in Coulomb Gauge

    International Nuclear Information System (INIS)

    Greensite, J.; Olejnik, S.

    2003-01-01

    We study the phase structure of SU(2) gauge theories at zero and high temperature, with and without scalar matter fields, in terms of the symmetric/broken realization of the remnant gauge symmetry which exists after fixing to Coulomb gauge. The symmetric realization is associated with a linearly rising color Coulomb potential (which we compute numerically), and is a necessary but not sufficient condition for confinement.

  7. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  8. [Non-empirical interatomic potentials for transition metals

    International Nuclear Information System (INIS)

    1993-01-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials

  9. Coulomb Friction Damper

    Science.gov (United States)

    Appleberry, W. T.

    1983-01-01

    Standard hydraulic shock absorber modified to form coulomb (linear friction) damper. Device damps very small velocities and is well suited for use with large masses mounted on soft springs. Damping force is easily adjusted for different loads. Dampers are more reliable than fluid dampers and also more economical to build and to maintain.

  10. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  11. Triton beta decay

    International Nuclear Information System (INIS)

    Saito, T.Y.; Wu, Y.; Ishikawa, S.; Sasakawa, T.

    1990-01-01

    Triton β-decay has been calculated using wave functions for 3 He and 3 H obtained from (Coulomb-modified) Faddeev equations for various interactions. We get a value for the Gamow-Teller matrix element of √3 (0.962±0.002) without regards to two- or three-nucleon inteactions. This value agrees with the experimental value. (orig.)

  12. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  13. A comparison of interatomic potentials for modeling tungsten nanocluster structures

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiannan; Shu, Xiaolin, E-mail: shuxlin@buaa.edu.cn; Jin, Shuo; Zhang, Xuesong; Zhang, Ying; Lu, Guang-Hong

    2017-02-15

    Molecular dynamic simulation is utilized to study the nanocluster and the fuzz structure on the PFM surface of tungsten. The polyhedral and linear cluster structures based on the icosahedron, cuboctahedron and rhombic dodecahedron are built up. Three interatomic potentials are used in calculating the relationship between the cluster energy and the number of atoms. The results are compared with first-principles calculation to show each potential’s best application scale. Furthermore, the transition between the icosahedral and the cuboctahedral clusters is observed in molecular dynamic simulation at different temperatures, which follows a critical curve for different numbers of atoms. The linear structures are proved to be stable at experimental temperatures by thermodynamics. The work presents a selection of interatomic potentials in simulating tungsten cluster systems and helps researchers understand the growth and evolution laws of clusters and the fuzz-like structure formation process in fusion devices.

  14. Interatomic potentials and the simulation of lattice defects in metals

    International Nuclear Information System (INIS)

    Heugten, W.F.W.M. van.

    1979-01-01

    The computer simulation technique is applied to investigate the properties of point defects and line defects in metals. For that purpose crystallites are constructed in which these defects are simulated. In the case of line defects (dislocations) the initial positions of the atoms, surrounding the dislocations, are determined using the elastic theory of anisotropic media. Hereafter the atoms in such crystallites are allowed to relax to there minimum potential energy positions under the influence of the interatomic forces. These forces are derived from interatomic interaction potentials. These potentials are together with the boundary conditions of the simulated crystallite the main input data in these computer simulation models. The metals considered include molybdenum, tungsten and tantalum. (Auth.)

  15. A comparison of interatomic potentials for modeling tungsten nanocluster structures

    International Nuclear Information System (INIS)

    Hao, Jiannan; Shu, Xiaolin; Jin, Shuo; Zhang, Xuesong; Zhang, Ying; Lu, Guang-Hong

    2017-01-01

    Molecular dynamic simulation is utilized to study the nanocluster and the fuzz structure on the PFM surface of tungsten. The polyhedral and linear cluster structures based on the icosahedron, cuboctahedron and rhombic dodecahedron are built up. Three interatomic potentials are used in calculating the relationship between the cluster energy and the number of atoms. The results are compared with first-principles calculation to show each potential’s best application scale. Furthermore, the transition between the icosahedral and the cuboctahedral clusters is observed in molecular dynamic simulation at different temperatures, which follows a critical curve for different numbers of atoms. The linear structures are proved to be stable at experimental temperatures by thermodynamics. The work presents a selection of interatomic potentials in simulating tungsten cluster systems and helps researchers understand the growth and evolution laws of clusters and the fuzz-like structure formation process in fusion devices.

  16. Development of an interatomic EAM type potential for Zr

    International Nuclear Information System (INIS)

    Pasianot, R.C.; Monti, A.M.

    1996-01-01

    In the present work are developed interatomic potentials of the embedded atom type (EAM) adequate for computer simulation of microstructural defects in the Zr lattice. It is observed that the less repulsive potential agrees better with the experimental data of the self-interstitial relaxation volume and predicts the basal crowdion as the stable configuration, the basal dumbbell having a formation energy slightly higher (0.01 eV). (author). 9 refs., 1 fig., 3 tabs

  17. COULN, a program for evaluating negative energy Coulomb functions

    International Nuclear Information System (INIS)

    Noble, C.J.; Thompson, I.J.

    1984-01-01

    Program COULN calculates exponentially decaying Whittaker functions, Wsub(K,μ)(z) corresponding to negative energy Coulomb functions. The method employed is most appropriate for parameter ranges which commonly occur in atomic and molecular asymptotic scattering problems using a close-coupling approximation in the presence of closed channels. (orig.)

  18. Hyperon excitation in nuclear coulomb field

    International Nuclear Information System (INIS)

    Vanyashin, A.V.; Nikitin, Yu.P.; Shan'gin, A.A.

    1981-01-01

    A possibility is studied to measure radiative decay partial widths from the 3/2 + decuplet hyperon resonances by means of the Coulomb excitation method of the octet hyperons. The expected contributions from the strong and electromagnetic interactions in the coherence range to the hyperon excitation cross sections on heavy nuclei and on the 4 He nucleus are estimated. The particle angular distributions in the reactions Σ-+A→Σ-(1385)+A and Λ+A→Σ 0 (1385)+A are analysed in order to determine the energy range where the background conditions are the most favorable to extract the electromagnetic mechanism of the hyperon excitation [ru

  19. An algorithm for computing screened Coulomb scattering in GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Mendenhall, Marcus H. [Vanderbilt University Free Electron Laser Center, P.O. Box 351816 Station B, Nashville, TN 37235-1816 (United States)]. E-mail: marcus.h.mendenhall@vanderbilt.edu; Weller, Robert A. [Department of Electrical Engineering and Computer Science, Vanderbilt University, P.O. Box 351821 Station B, Nashville, TN 37235-1821 (United States)]. E-mail: robert.a.weller@vanderbilt.edu

    2005-01-01

    An algorithm has been developed for the GEANT4 Monte-Carlo package for the efficient computation of screened Coulomb interatomic scattering. It explicitly integrates the classical equations of motion for scattering events, resulting in precise tracking of both the projectile and the recoil target nucleus. The algorithm permits the user to plug in an arbitrary screening function, such as Lens-Jensen screening, which is good for backscattering calculations, or Ziegler-Biersack-Littmark screening, which is good for nuclear straggling and implantation problems. This will allow many of the applications of the TRIM and SRIM codes to be extended into the much more general GEANT4 framework where nuclear and other effects can be included.

  20. An algorithm for computing screened Coulomb scattering in GEANT4

    International Nuclear Information System (INIS)

    Mendenhall, Marcus H.; Weller, Robert A.

    2005-01-01

    An algorithm has been developed for the GEANT4 Monte-Carlo package for the efficient computation of screened Coulomb interatomic scattering. It explicitly integrates the classical equations of motion for scattering events, resulting in precise tracking of both the projectile and the recoil target nucleus. The algorithm permits the user to plug in an arbitrary screening function, such as Lens-Jensen screening, which is good for backscattering calculations, or Ziegler-Biersack-Littmark screening, which is good for nuclear straggling and implantation problems. This will allow many of the applications of the TRIM and SRIM codes to be extended into the much more general GEANT4 framework where nuclear and other effects can be included

  1. Study on scalable Coulombic degradation for estimating the lifetime of organic light-emitting devices

    International Nuclear Information System (INIS)

    Zhang Wenwen; Hou Xun; Wu Zhaoxin; Liang Shixiong; Jiao Bo; Zhang Xinwen; Wang Dawei; Chen Zhijian; Gong Qihuang

    2011-01-01

    The luminance decays of organic light-emitting diodes (OLEDs) are investigated with initial luminance of 1000 to 20 000 cd m -2 through a scalable Coulombic degradation and a stretched exponential decay. We found that the estimated lifetime by scalable Coulombic degradation deviates from the experimental results when the OLEDs work with high initial luminance. By measuring the temperature of the device during degradation, we found that the higher device temperatures will lead to instabilities of organic materials in devices, which is expected to result in the difference between the experimental results and estimation using the scalable Coulombic degradation.

  2. Coulombic charge ice

    Science.gov (United States)

    McClarty, P. A.; O'Brien, A.; Pollmann, F.

    2014-05-01

    We consider a classical model of charges ±q on a pyrochlore lattice in the presence of long-range Coulomb interactions. This model first appeared in the early literature on charge order in magnetite [P. W. Anderson, Phys. Rev. 102, 1008 (1956), 10.1103/PhysRev.102.1008]. In the limit where the interactions become short ranged, the model has a ground state with an extensive entropy and dipolar charge-charge correlations. When long-range interactions are introduced, the exact degeneracy is broken. We study the thermodynamics of the model and show the presence of a correlated charge liquid within a temperature window in which the physics is well described as a liquid of screened charged defects. The structure factor in this phase, which has smeared pinch points at the reciprocal lattice points, may be used to detect charge ice experimentally. In addition, the model exhibits fractionally charged excitations ±q/2 which are shown to interact via a 1/r potential. At lower temperatures, the model exhibits a transition to a long-range ordered phase. We are able to treat the Coulombic charge ice model and the dipolar spin ice model on an equal footing by mapping both to a constrained charge model on the diamond lattice. We find that states of the two ice models are related by a staggering field which is reflected in the energetics of these two models. From this perspective, we can understand the origin of the spin ice and charge ice ground states as coming from a dipolar model on a diamond lattice. We study the properties of charge ice in an external electric field, finding that the correlated liquid is robust to the presence of a field in contrast to the case of spin ice in a magnetic field. Finally, we comment on the transport properties of Coulombic charge ice in the correlated liquid phase.

  3. Coulomb pair-creation

    International Nuclear Information System (INIS)

    Hrasko, P.; Foeldy, L.; Toth, A.

    1986-07-01

    Electron-positron pair production in strong Coulomb fields is outlined. It is shown that the singular behaviour of the adiabatic basis can be removed if solutions of the time dependent external field Dirac equation are used as a basis to expand the fermion field operator. This latter 'asymptotic basis' makes it possible to introduce Feynman-propagator. Applying the reduction technique, the computation of all of the basic quantities can be reduced to the solution of an integral equation. The positron spectrum for separable potential model with Lorentzian time dependence and for potential jump is analyzed in the pole approximation. (author)

  4. Coulomb energy, vortices, and confinement

    International Nuclear Information System (INIS)

    Greensite, Jeff; Olejnik, Stefan

    2003-01-01

    We estimate the Coulomb energy of static quarks from a Monte Carlo calculation of the correlator of timelike link variables in the Coulomb gauge. We find, in agreement with Cucchieri and Zwanziger, that this energy grows linearly with distance at large quark separations. The corresponding string tension, however, is several times greater than the accepted asymptotic string tension, indicating that a state containing only static sources, with no constituent gluons, is not the lowest energy flux tube state. The Coulomb energy is also measured on thermalized lattices with center vortices removed by the de Forcrand-D'Elia procedure. We find that when vortices are removed, the Coulomb string tension vanishes

  5. Dynamics of {sup 40,48}Ca+{sup 238}U→{sup 278,286}112{sup ⁎} reactions across the Coulomb barrier using dynamical cluster decay model

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Kirandeep; Kaur, Gurvinder; Sharma, Manoj K., E-mail: msharma@thapar.edu

    2014-01-15

    The role of deformations and related orientations (optimum or compact) is investigated in reference to dynamics of {sup 40,48}Ca+{sup 238}U→{sup 278,286}112{sup ⁎} reactions using dynamical cluster decay model (DCM). The use of quadrupole and hexadecapole deformations in the decay of compound system suggest that the degree of compactness changes with addition of higher order deformations. The decay cross-sections are calculated in reference to the available data, including β{sub 2}-static deformations within ‘optimum’ orientation approach. The comparative analysis of spherical, β{sub 2}-static and dynamic alongwith β{sub 4}-static deformations is investigated at comparable center of mass energy of 230 MeV for both nuclei. To address the specific role of optimized orientations in the decay of {sup 278}112{sup ⁎} and {sup 286}112{sup ⁎} nuclei, the calculations are done using equatorial compact and polar elongated orientations. Using hot equatorial collisions, symmetric fission is observed as the dominant decay mode across the barrier, which otherwise becomes asymmetric for cold elongated approach. The calculated cross-sections match nicely with experimental data using hot configuration but the same are overestimated for the use of cold (polar) orientation approach at deep sub-barrier region. This overestimation in the deep sub-barrier region may be associated with the quasi-fission decay channel. The contribution of QF in both {sup 278}112{sup ⁎} and {sup 286}112{sup ⁎} nuclei are predicted through the overestimated cross-sections being more for neutron-deficient {sup 278}112{sup ⁎} nucleus, in agreement with experimental results. Larger barrier modification ΔV{sub B} is observed at sub-barrier energies for both isotopes of Z=112 nucleus. Also the contribution of ΔV{sub B} at lower incident energies is relatively higher for cold elongated polar configuration as compared to hot compact equatorial configuration, causing overestimation of cross

  6. FAST TRACK COMMUNICATION: A Be-W interatomic potential

    Science.gov (United States)

    Björkas, C.; Henriksson, K. O. E.; Probst, M.; Nordlund, K.

    2010-09-01

    In this work, an interatomic potential for the beryllium-tungsten system is derived. It is the final piece of a potential puzzle, now containing all possible interactions between the fusion reactor materials beryllium, tungsten and carbon as well as the plasma hydrogen isotopes. The potential is suitable for plasma-wall interaction simulations and can describe the intermetallic Be2W and Be12W phases. The interaction energy between a Be surface and a W atom, and vice versa, agrees qualitatively with ab initio calculations. The potential can also reasonably describe BexWy molecules with x, y = 1, 2, 3, 4.

  7. Accurate Ne-heavier rare gas interatomic potentials

    International Nuclear Information System (INIS)

    Candori, R.; Pirani, F.; Vecchiocattivi, F.

    1983-01-01

    Accurate interatomic potential curves for Ne-heavier rare gas systems are obtained by a multiproperty analysis. The curves are given via a parametric function which consists of a modified Dunham expansion connected at long range with the van der Waals expansion. The experimental properties considered in the analysis are the differential scattering cross sections at two different collision energies, the integral cross sections in the glory energy range and the second virial coefficients. The transport properties are considered indirectly by using the potential energy values recently obtained by inversion of the transport coefficients. (author)

  8. Bayesian ensemble approach to error estimation of interatomic potentials

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel; Brown, K.S.

    2004-01-01

    Using a Bayesian approach a general method is developed to assess error bars on predictions made by models fitted to data. The error bars are estimated from fluctuations in ensembles of models sampling the model-parameter space with a probability density set by the minimum cost. The method...... is applied to the development of interatomic potentials for molybdenum using various potential forms and databases based on atomic forces. The calculated error bars on elastic constants, gamma-surface energies, structural energies, and dislocation properties are shown to provide realistic estimates...

  9. Parameterization of interatomic potential by genetic algorithms: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Partha S., E-mail: psghosh@barc.gov.in; Arya, A.; Dey, G. K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Ranawat, Y. S. [Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi-221005 (India)

    2015-06-24

    A framework for Genetic Algorithm based methodology is developed to systematically obtain and optimize parameters for interatomic force field functions for MD simulations by fitting to a reference data base. This methodology is applied to the fitting of ThO{sub 2} (CaF{sub 2} prototype) – a representative of ceramic based potential fuel for nuclear applications. The resulting GA optimized parameterization of ThO{sub 2} is able to capture basic structural, mechanical, thermo-physical properties and also describes defect structures within the permissible range.

  10. Integral equation for Coulomb problem

    International Nuclear Information System (INIS)

    Sasakawa, T.

    1986-01-01

    For short range potentials an inhomogeneous (homogeneous) Lippmann-Schwinger integral equation of the Fredholm type yields the wave function of scattering (bound) state. For the Coulomb potential, this statement is no more valid. It has been felt difficult to express the Coulomb wave function in a form of an integral equation with the Coulomb potential as the perturbation. In the present paper, the author shows that an inhomogeneous integral equation of a Volterra type with the Coulomb potential as the perturbation can be constructed both for the scattering and the bound states. The equation yielding the binding energy is given in an integral form. The present treatment is easily extended to the coupled Coulomb problems

  11. Coulomb double helical structure

    Science.gov (United States)

    Kamimura, Tetsuo; Ishihara, Osamu

    2012-01-01

    Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.

  12. Coulombic and radiative decay rates of the resonances of the exotic molecular ions ppμ, ppπ, ddμ, ddπ, and dtμ

    International Nuclear Information System (INIS)

    Kilic, Senem; Karr, Jean-Philippe; Hilico, Laurent

    2004-01-01

    The bound levels and the resonances (energy and width of the excited levels) of ppμ-like exotic molecules for J=0 total angular momentum have been computed with an accuracy in the 10 -11 a.u. range, by numerical diagonalization of the complex rotated Hamiltonian in a variational sturmian basis set. For the resonances below the N=2 dissociation threshold, the x-ray spontaneous emission spectrum is computed from the wave functions. The radiative decay rate of the first resonance of ppμ is found to be 0.0713 ps -1 , close to half that of a pμ(2p) atom, as expected in a simple Born-Oppenheimer picture of a resonance

  13. The Coulomb gap and low energy statistics for Coulomb glasses

    International Nuclear Information System (INIS)

    Glatz, Andreas; Vinokur, Valerii M; Bergli, Joakim; Kirkengen, Martin; Galperin, Yuri M

    2008-01-01

    We study the statistics of local energy minima in the configuration space of two-dimensional lattice Coulomb glasses with site disorder and the behavior of the Coulomb gap depending on the strength of random site energies. At intermediate disorder, i.e., when the typical strength of the disorder is of the same order as the nearest-neighbor Coulomb energy, the high energy tail of the distribution of the local minima is exponential. We furthermore analyze the structure of the local minima and show that most sites of the system have the same occupation numbers in all of these states. The density of states (DOS) shows a transition from the crystalline state at zero disorder (with a hard gap) to an intermediate, probably glassy state with a Coulomb gap. We analyze this Coulomb gap in some detail and show that the DOS deviates slightly from the traditional linear behavior in 2D. For finite systems these intermediate Coulomb gap states disappear for large disorder strengths and only a random localized state in which all electrons are in the minima of the random potential exists. Dedication: This paper is dedicated to Thomas Nattermann, our dearest friend, brilliant colleague, and outstanding teacher

  14. Interatomic forces and bonding mechanisms in MgO clusters

    International Nuclear Information System (INIS)

    Wright, N.F.; Painter, G.S.

    1990-01-01

    We report results from a first-principles local spin density quantum mechanical study of the energetics and elastic properties of a series of magnesium-oxygen clusters of various morphologies. The role of quantum effects, e.g. covalency, in the bonding character of diatomic MgO is determined by comparison of classical and quantum restoring force curves. The dependence of binding properties on geometry and metal to oxygen ratio is determined by comparison of binding energy curves for a series of clusters. Results show that while gross features of the binding curves may be represented by simple interatomic potentials, details require the many body corrections of a full quantum treatment. 6 refs., 5 figs

  15. Extending the accuracy of the SNAP interatomic potential form

    Science.gov (United States)

    Wood, Mitchell A.; Thompson, Aidan P.

    2018-06-01

    The Spectral Neighbor Analysis Potential (SNAP) is a classical interatomic potential that expresses the energy of each atom as a linear function of selected bispectrum components of the neighbor atoms. An extension of the SNAP form is proposed that includes quadratic terms in the bispectrum components. The extension is shown to provide a large increase in accuracy relative to the linear form, while incurring only a modest increase in computational cost. The mathematical structure of the quadratic SNAP form is similar to the embedded atom method (EAM), with the SNAP bispectrum components serving as counterparts to the two-body density functions in EAM. The effectiveness of the new form is demonstrated using an extensive set of training data for tantalum structures. Similar to artificial neural network potentials, the quadratic SNAP form requires substantially more training data in order to prevent overfitting. The quality of this new potential form is measured through a robust cross-validation analysis.

  16. Superheavy elements and decay properties

    Indian Academy of Sciences (India)

    chains from 294118 and, it can be seen that our predictions on the α decay ... The Coulomb and proximity potential model for deformed nuclei (CPPMDN) .... Here the half-life is in seconds, Q-value is in MeV and Z is the atomic number of the.

  17. Superheavy elements and decay properties

    Indian Academy of Sciences (India)

    2015-08-04

    Aug 4, 2015 ... The decay properties of the isotopes of = 115, 117, 118 and 119 have been extensively investigated, focussing on the newly synthesized isotopes within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The half-lives have also been evaluated using the Viola–Seaborg ...

  18. Coulomb excitation of {sup 123}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Hartig, Anna-Lena; Kroell, Thorsten; Ilieva, Stoyanka; Boenig, Sabine; Thuerauf, Michael [IKP, TU Darmstadt (Germany); Simpson, Gary; Drouet, Floriane; Ramdhane, Mourad [LPSC, Grenoble (France); Georgiev, Georgi [CSNSM, Orsay (France); Kesteloot, Nele; Wrzosek-Lipska, Kasia [KU, Leuven (Belgium); Jungclaus, Andrea; Illana Sison, Andres [CSIC, Madrid (Spain); Balabanski, Dimiter [INRNE-BAS, Sofia (Bulgaria); Warr, Nigel [Koeln Univ. (Germany). IKP; Voulot, Didier; Wenander, Fredrik; Marsh, Bruce [CERN, Geneva (Switzerland)

    2013-07-01

    On the neutron-rich side of the valley of stability in the vicinity of the double magic nucleus {sup 132}Sn one can find the {sup 123}Cd isotope. Surprisingly the neutron-rich even-A Cd isotopes in this region are showing signs of collectivity beyond that calculated by modern shell-model predictions. In order to gain a deeper insight in this phenomenon we started to extend these studies to odd-A Cd isotopes. As first isotope the exotic nucleus {sup 123}Cd was produced for safe Coulomb excitation by the ISOLDE facility at CERN and post-accelerated by REX-ISOLDE. The γ-decay from excited states was detected with the MINIBALL array. A report on the status of the ongoing analysis is given.

  19. Size-dependent disproportionation (in 2-20 nm regime) and hybrid Bond Valence derived interatomic potentials for BaTaO2N

    Science.gov (United States)

    Anbalagan, Kousika; Thomas, Tiju

    2018-05-01

    Interatomic potentials for complex materials (like ceramic systems) are important for realistic molecular dynamics (MD) simulations. Such simulations are relevant for understanding equilibrium, transport and dynamical properties of materials, especially in the nanoregime. Here we derive a hybrid interatomic potential (based on bond valence (BV) derived Morse and Coulomb terms), for modeling a complex ceramic, barium tantalum oxynitride (BaTaO2N). This material has been chosen due to its relevance for capacitive and photoactive applications. However, the material presents processing challenges such as the emergence of non-stoichiometric phases during processing, demonstrating complex processing-property correlations. This makes MD investigations of this material both scientifically and technologically relevant. The BV based hybrid potential presented here has been used for simulating sintering of BaTaO2N nanoparticles ( 2-20 nm) under different conditions (using the relevant canonical ensemble). Notably, we show that sintering of particles of diameter 10 nm in size results in the formation of a cluster of tantalum and oxygen atoms at the interface of the BaTaO2N particles. This is in agreement with the experimental reports. The results presented here suggest that the potential proposed can be used to explore dynamical properties of BaTaO2N and related systems. This work will also open avenues for development of nanoscience-enabled aid-free sintering approaches to this and related materials.

  20. Coulomb interaction in multiple scattering theory

    International Nuclear Information System (INIS)

    Ray, L.; Hoffmann, G.W.; Thaler, R.M.

    1980-01-01

    The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+ 208 Pb elastic scattering and compared with experimental data

  1. On macromolecular refinement at subatomic resolution with interatomic scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Afonine, Pavel V., E-mail: pafonine@lbl.gov; Grosse-Kunstleve, Ralf W.; Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720 (United States); Lunin, Vladimir Y. [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino 142290 (Russian Federation); Urzhumtsev, Alexandre [IGMBC, 1 Rue L. Fries, 67404 Illkirch and IBMC, 15 Rue R. Descartes, 67084 Strasbourg (France); Faculty of Sciences, Nancy University, 54506 Vandoeuvre-lès-Nancy (France); Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720 (United States)

    2007-11-01

    Modelling deformation electron density using interatomic scatters is simpler than multipolar methods, produces comparable results at subatomic resolution and can easily be applied to macromolecules. A study of the accurate electron-density distribution in molecular crystals at subatomic resolution (better than ∼1.0 Å) requires more detailed models than those based on independent spherical atoms. A tool that is conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8–1.0 Å, the number of experimental data is insufficient for full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented by additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark data sets gave results that were comparable in quality with the results of multipolar refinement and superior to those for conventional models. Applications to several data sets of both small molecules and macromolecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.

  2. A tungsten-rhenium interatomic potential for point defect studies

    Science.gov (United States)

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    2018-05-01

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures in the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancies and self-interstitial defects sufficiently accurately and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).

  3. Coulomb branches with complex singularities

    Science.gov (United States)

    Argyres, Philip C.; Martone, Mario

    2018-06-01

    We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.

  4. Multipole expansion of the retarded interatomic dispersion energy: derivation from quantum electrodynamics

    NARCIS (Netherlands)

    Michels, M.A.J.; Suttorp, L.G.

    1972-01-01

    The multipole expansion of the retarded dispersion energy of two atoms in nondegenerate ground states is derived. The result shows that multipoles of different order may give rise to dispersion energies varying in the same way for large interatomic separations.

  5. Gauge orbits and the Coulomb potential

    International Nuclear Information System (INIS)

    Greensite, J.

    2009-01-01

    If the color Coulomb potential is confining, then the Coulomb field energy of an isolated color charge is infinite on an infinite lattice, even if the usual UV divergence is lattice regulated. A simple criterion for Coulomb confinement is that the expectation value of timelike link variables vanishes in the Coulomb gauge, but it is unclear how this criterion is related to the spectrum of the corresponding Faddeev-Popov operator, which can be used to formulate a quite different criterion for Coulomb confinement. The purpose of this article is to connect the two seemingly different Coulomb confinement criteria, and explain the geometrical basis of the connection.

  6. Coulomb excitation of 189Os

    International Nuclear Information System (INIS)

    Brandao, S.B.

    1987-01-01

    The level structure of 189 Os has been studied by Coulomb excitation using 35 Cl, 28 Si, 16 O beams. GOSIA, a code written to analyze multiple Coulomb excitation, was used to obtain the reduced probabilities of transition B(E2). The results for interband and intraband turned out possible the classification of the states following Nilsson levels. Gamma-rays originating from deexcitation of 216.7 and 219.4 keV have been separated and the reduced probability of transition has been measured. (A.C.A.S.) [pt

  7. On rate-state and Coulomb failure models

    Science.gov (United States)

    Gomberg, J.; Beeler, N.; Blanpied, M.

    2000-01-01

    We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) Δt due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of Δt implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that Δt is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state Δt has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified

  8. Static and dynamic properties of two-dimensional Coulomb clusters.

    Science.gov (United States)

    Ash, Biswarup; Chakrabarti, J; Ghosal, Amit

    2017-10-01

    We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.

  9. Coulomb interactions in charged fluids.

    Science.gov (United States)

    Vernizzi, Graziano; Guerrero-García, Guillermo Iván; de la Cruz, Monica Olvera

    2011-07-01

    The use of Ewald summation schemes for calculating long-range Coulomb interactions, originally applied to ionic crystalline solids, is a very common practice in molecular simulations of charged fluids at present. Such a choice imposes an artificial periodicity which is generally absent in the liquid state. In this paper we propose a simple analytical O(N(2)) method which is based on Gauss's law for computing exactly the Coulomb interaction between charged particles in a simulation box, when it is averaged over all possible orientations of a surrounding infinite lattice. This method mitigates the periodicity typical of crystalline systems and it is suitable for numerical studies of ionic liquids, charged molecular fluids, and colloidal systems with Monte Carlo and molecular dynamics simulations.

  10. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  11. Ordering in classical Coulombic systems

    International Nuclear Information System (INIS)

    Schiffer, J. P.

    1998-01-01

    The author discusses the properties of classical Coulombic matter at low temperatures. It has been well known for some time [1,2] that infinite Coulombic matter will crystallize in body-centered cubic form when the quantity Λ (the dimensionless ratio of the average two-particle Coulomb energy to the kinetic energy per particle) is larger than approximately175. But the systems of such particles that have been produced in the laboratory in ion traps, or ion beams, are finite with surfaces defined by the boundary conditions that have to be satisfied. This results in ion clouds with sharply defined curved surfaces, and interior structures that show up as a set of concentric layers that are parallel to the outer surface. The ordering does not appear to be cubic, but the charges on each shell exhibit a ''hexatic'' pattern of equilateral triangles that is the characteristic of liquid crystals. The curvature of the surfaces prevents the structures on successive shells from interlocking in any simple fashion. This class of structures was first found in simulations [3] and later in experiments [4

  12. Attractive short-range interatomic potential in the lattice dynamics of niobium and tantalum

    International Nuclear Information System (INIS)

    Onwuagba, B.N.; Pal, S.

    1987-01-01

    It is shown in the framework of the pseudopotential approach that there is a sizable attractive short-range component of the interatomic potential due to the s-d interaction which has the same functional form in real space as the Born-Mayer repulsion due to the overlap of core electron wave functions centred on neighbouring ions. The magnitude of this attractive component is such as to completely cancel the conventional Born-Mayer repulsion, making the resultant short-range interatomic potential attractive rather than repulsive. Numerical calculations show that the attractive interatomics potential, which represents the local-field correction, leads to a better understanding of the occurrence of the soft modes in the phonon dispersion curves of niobium and tantalum

  13. Dielectric susceptibility of classical Coulomb systems. II

    International Nuclear Information System (INIS)

    Choquard, Ph.; Piller, B.; Rentsch, R.

    1987-01-01

    This paper deals with the shape dependence of the dielectric susceptibility (equivalently defined, in a canonical ensemble, by the mean square fluctuation of the electric polarization or by the second moment of the charge-charge correlation function) of classical Coulomb systems. The concept of partial second moment is introduced with the aim of analyzing the contributions to the total susceptibility of pairs of particles of increasing separation. For a disk-shaped one-component plasma with coupling parameter γ=2 it is shown, numerically and algebraically for small and large systems, that (1) the correlation function of two particles close to the edge of the disk decays as the inverse of the square of their distance, and (2) the susceptibility is made up of a bulk contribution, which saturates rapidly toward the Stillinger-Lovett value, and of surface contribution, which varies on the scale of the disk diameter and is described by a new law called the arc sine law. It is also shown that electrostatics and statistical mechanics with shape-dependent thermodynamic limits are consistent for the same model in a strip geometry, whereas the Stillinger-Lovett sum rule is verified for a boundary-free geometry such as the surface of a sphere. Some results of extensive computer simulations of one- and two-component plasmas in circular and elliptic geometries are shown. Anisotropy effects on the susceptibilities are clearly demonstrated and the arc sine law for a circular plasma is well confirmed

  14. Exclusion of nuclear forces in heavy-ion Coulomb excitation and Coulomb fission experiments

    International Nuclear Information System (INIS)

    Neese, R.E.; Guidry, M.W.

    1982-01-01

    A simple prescription for estimating the energy at which nuclear forces begin to play a role in heavy-ion Coulomb excitation and Coulomb fission experiments is presented. The method differs from most commonly used recipes in accounting for projectile and target nucleus deformation effects. Using a single adjustable parameter the formula reproduces the energy for the onset of Coulomb-nuclear interference effects for a broad range of heavy-ion systems. It is suggested that most Coulomb fission experiments which have been done involve both Coulomb and nuclear excitation processes and should more properly be termed Coulomb-nuclear fission experiments

  15. A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics

    International Nuclear Information System (INIS)

    Morante, S.; Rossi, G.C.

    2017-01-01

    We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.

  16. A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Morante, S., E-mail: morante@roma2.infn.it [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Rossi, G.C., E-mail: rossig@roma2.infn.it [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Compendio del Viminale, Piazza del Viminale 1, I-00184 Rome (Italy)

    2017-02-15

    We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.

  17. Virtual reality: electromagnetic decays and new hadrons

    International Nuclear Information System (INIS)

    Landsberg, L.G.

    1998-01-01

    The electromagnetic Coulomb processes and their application to study of radiative decays of hadrons and to the search for some exotic states are discussed. The Coulomb processes h + (Z, A) → (Z, A) involving collisions with virtual photons are photoproduction reactions on primary hadrons h. With pion, kaon or hyperon beams it is possible to study photoproduction on unstable targets (π, Κ, Υ). The results of several experiments for direct study of rare radiation decays of mesons are presented. The main features of the Coulomb production and coherent background reactions governed by strong interactions are considered. The main results of the Primakoff production study are summarized with some recent data in the SELEX experiment at E L = 600 eV obtained by means of Fermilab Tevatron. The SPHINX experiment allows to obtain new information on exotic baryons and other states [ru

  18. Coulomb potentials between spherical heavy ions

    International Nuclear Information System (INIS)

    Iwe, H.

    1982-01-01

    The Coulomb interaction between spherical nuclei having arbitrary radial nuclear charge distributions is calculated. All these realistic Coulomb potentials are given in terms of analytical expressions and are available for immediate application. So in no case a numerical computation of the Coulomb integral is required. The parameters of the charge distributions are taken from electron scattering analysis. The Coulomb self-energies of the charge distributions used are also calculated analytically in a closed form. For a number of nucleus-nucleus pairs, the Coulomb potentials derived from realistic charge distributions are compared with those normally used in various nucleus-nucleus optical model calculations. In this connection a detailed discussion of the problem how to choose consistently Coulomb parameters for different approximations is given. (orig.)

  19. Coulomb and nuclear excitations of narrow resonances in 17Ne

    Directory of Open Access Journals (Sweden)

    J. Marganiec

    2016-08-01

    Full Text Available New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the O15+p+p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.

  20. An astrophysical engine that stores gravitational work as nuclear Coulomb energy

    Science.gov (United States)

    Clayton, Donald

    2014-03-01

    I describe supernovae gravity machines that store large internal nuclear Coulomb energy, 0.80Z2A- 1 / 3MeV per nucleus. Excess of it is returned later by electron capture and positron emission. Decay energy manifests as (1) observable gamma-ray lines (2) light curves of supernovae (3) chemical energy of free carbon dissociated from CO molecules (4) huge abundances of radiogenic daughters. I illustrate by rapid silicon burning, a natural epoch in SN II. Gravitational work produces the high temperatures that photoeject nucleons and alpha particles from heavy nuclei. These are retained by other nuclei to balance photoejection rates (quasiequilibrium). The abundance distribution adjusts slowly as remaining abundance of Z = N 28Si decomposes, so p, n, α recaptures hug the Z = N line. This occurs in milliseconds, too rapidly for weak decay to alter bulk Z/N ratio. The figure displays those quasiequilibrium abundances color-coded to their decays. Z = N = 2k nuclei having k 10 are radioactive owing to excess Coulomb energy. Weak decays radiate that excess energy weeks later to fuel the four macroscopic energetic phenomena cited. How startling to think of the Coulomb nuclear force as storing cosmic energy and its weak decay releasing macroscopic activation to SNII.

  1. Coulomb blockade induced by magnetic field

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-01-01

    In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field

  2. Evaluation of the Coulomb logarithm using cutoff and screened Coulomb interaction potentials

    International Nuclear Information System (INIS)

    Ordonez, C.A.; Molina, M.I.

    1994-01-01

    The Coulomb logarithm is a fundamental plasma parameter which is commonly derived within the framework of the binary collision approximation. The conventional formula for the Coulomb logarithm, λ=ln Λ, takes into account a pure Coulomb interaction potential for binary collisions and is not accurate at small values (λ D in place of λ D (the Debye length) in the conventional formula for the Coulomb logarithm

  3. A gradient approximation for calculating Debye temperatures from pairwise interatomic potentials

    International Nuclear Information System (INIS)

    Jackson, D.P.

    1975-09-01

    A simple gradient approximation is given for calculating the effective Debye temperature of a cubic crystal from central pairwise interatomic potentials. For examples of the Morse potential applied to cubic metals the results are in generally good agreement with experiment. (author)

  4. Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Chakraborty S.

    2014-03-01

    Full Text Available Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s⊗νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al.

  5. The exact solution of a four-body Coulomb problem

    Science.gov (United States)

    Ray, Hasi

    2018-03-01

    The elastic collision between two H-like atoms utilizing an ab initio static-exchange model (SEM) in the center of mass (CM) frame considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly, is studied thoroughly. A coupled-channel methodology in momentum space is used to solve Lippman-Schwinger equation following the integral approach. The new SEM code [Ray, Pramana 83, 907 (2014)] in which the Born-Oppenheimer (BO) scattering amplitude acts as input to derive the SEM amplitude using partial wave analysis, is utilized to study the s-, p-, d-wave elastic phase shifts and the corresponding partial cross sections. An augmented-Born approximation is used to include the contribution of higher partial waves more accurately to determine the total/integrated elastic cross sections. The effective range theory is used to determine the scattering lengths and effective ranges in the s-wave elastic scattering. The systems studied are Ps-Ps, Ps-Mu, Ps-H, Ps-D, Ps-T, Mu-Mu, Mu-H, Mu-D, Mu-T, H-H, H-D, H-T, D-D, D-T, T-T. The SEM includes the non-adiabatic short-range effects due to exchange. The MSEM code [Ray, Pramana 83, 907 (2014)] is used to study the effect of the long-range van der Waals interaction due to induced dipole polarizabilities of the atoms in H(1s)-H(1s) elastic collision. The dependence of scattering length on the reduced mass of the system and the dependence of scattering length on the strength of long-range van der Waals interaction that varies with the minimum interatomic distance are observed. Contribution to the Topical Issue "Low Energy Positron and Electron Interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.

  6. Intersite Coulomb interaction and Heisenberg exchange

    NARCIS (Netherlands)

    Eder, R; van den Brink, J.; Sawatzky, G.A

    1996-01-01

    Based on exact diagonalization results for small clusters we discuss the effect of intersite Coulomb repulsion in Mott-Hubbard or charge transfers insulators. Whereas the exchange constant J for direct exchange is enhanced by intersite Coulomb interaction, that for superexchange is suppressed. The

  7. Coulomb Effects in Few-Body Reactions

    Directory of Open Access Journals (Sweden)

    Deltuva A.

    2010-04-01

    Full Text Available The method of screening and renormalization is used to include the Coulomb interaction between the charged particles in the momentum-space description of three- and four-body nuclear reactions. The necessity for the renormalization of the scattering amplitudes and the reliability of the method is demonstrated. The Coulomb effect on observables is discussed.

  8. Coulomb dissociation of N-20,N-21

    NARCIS (Netherlands)

    Roeder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhaeuser, Roman; Goebel, Kathrin; Kalantar-Nayestanaki, Nasser; Najafi, Mohammad Ali; Rigollet, Catherine; Stoica, V.; Streicher, Branislav; Van de Walle, J.

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N-20,N-21 are reported. Relativistic N-20,N-21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a

  9. Coulomb correction calculations of pp Bremsstrahlung

    International Nuclear Information System (INIS)

    Katsogiannis, A.; Amos, K.; Jetter, M.; von Geramb, H.V.

    1994-01-01

    The effects of the Coulomb interaction upon the photon cross section and analyzing power from pp Bremsstrahlung have been studied in detail. Off-shell properties of the Coulomb T matrices have been considered but the associated, Coulomb modified, hadronic T matrices are important elements in any analyses of low energy, forward proton scattering data. At the lowest energy considered (5 MeV), the full calculations gave cross sections that were half the size of those found without Coulomb effects or with a simple model approximation to them. With increasing energy, the cross sections varied to those characteristic of magnetic interaction dominance and the specific differences due to Coulomb effects diminished. 47 refs., 7 figs

  10. Coulomb dissociation in relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Mercier, M.T.

    1982-01-01

    Targets of 12 C, 59 Co, 89 Y, 197 Au and 238 U were bombarded by 2.1 GeV/A 1 H, 12 C and 20 Ne projectiles using the SuperHILAC and BEVATRON facilities at Lawrence Berkeley Laboratory (LBL). The beam flux was calculated by monitoring the decay of 11 C produced from the 12 C(projectile,projectile n) 11 C reaction. Residual gamma-ray activity from the Co, Y, Au and U targets was collected in order to trace the decay of several reaction products. The experiment focused on the calculation of cross sections for the formation of products with one neutron removed from the various target nuclei. Corrections to the saturation activity of each product were made for detector efficiency, gamma-ray absorption in the target, gamma-ray branching, beam geometry and secondary reactions. These date are shown to be inconsistent with a geometrical form given by sigma varies as (A/sub p/sup 1/3/ + A/sub t/sup 1/3/ - b) where b is a universal constant. In fact the data indicates the b = A/sub t/sup 1/3/. Instead the data can be fit quite well by a simple empirical relation, sigma/sub emp/ = 12.0 mb A/sub p/sup 1/3/ A/sub t/sup 1/3/. It is demonstrated that an empirical fit which varies as A/sub t/sup 1/3/ is also consistent with projectile fragmentation data measured by a group at LBL. In addition these data are compared to a theoretical prediction which is the sum of a renormalized Glauber term and a term which represents the contribution due to Coulomb or electromagnetic dissociation (ED). The theoretical predictions are quite low for the 12 C projectile data and high for the 20 Ne projectile data. The systematic trends from the comparison seem to indicate that theoretical prediction for the ED contribution is rising too fast as a function of projectile for a given target

  11. Coulomb string tension, asymptotic string tension, and the gluon chain

    OpenAIRE

    Greensite, Jeff; Szczepaniak, Adam P.

    2014-01-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  12. Radioactive Decay

    Science.gov (United States)

    Radioactive decay is the emission of energy in the form of ionizing radiation. Example decay chains illustrate how radioactive atoms can go through many transformations as they become stable and no longer radioactive.

  13. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. VIII. Role of Coulomb exchange

    International Nuclear Information System (INIS)

    Goriely, S.; Pearson, J. M.

    2008-01-01

    Following suggestions that the energy associated with Coulomb correlations and a possible charge-symmetry breaking of nuclear forces might largely cancel the Coulomb-exchange term, we refit the HFB-14 mass model without the Coulomb-exchange term to essentially all the mass data. The resulting mass model, HFB-15, gives a better fit to the 2149 mass data, σ rms falling from 0.729 to 0.678 MeV. The improvement in the energy differences between mirror nuclei is particularly striking: the Nolen-Schiffer anomaly, which is strong for HFB-14, is essentially eliminated. As for the extrapolation to highly neutron-rich nuclei, the HFB-15 model differs significantly from HFB-14, with up to 15 MeV less binding being predicted. However, the differences in the predicted values of differential quantities such as the neutron-separation energies, β-decay energies and fission barriers are very much smaller

  14. Electron stereodynamics in coulomb explosion of molecules by slow highly charged ions

    International Nuclear Information System (INIS)

    Ichimura, Atsushi; Ohyama-Yamaguchi, Tomoko

    2008-01-01

    The three-center Coulombic over-the-barrier model is developed for Coulomb explosion of a homonuclear diatomic molecule in collisions with a slow (∼10 eV/amu) highly charged ion. A conventional two-step picture of multiple electron transfer followed by Coulomb explosion is far from appropriate because the molecule sets out to dissociate before the incident ion approaches the closest distance. We treat the formation of a quasi-molecule and its decay into the three moving atomic ions. Charge-asymmetric population between fragment ions observed in a triple-coincidence measurement is suggested to reflect the bond elongation during a collision. Collisions of Kr 8+ + N 2 are analyzed. (author)

  15. Electronic decay cascades in media initiated by resonant absorption of X-ray photons

    Energy Technology Data Exchange (ETDEWEB)

    Miteva, Tsveta

    2015-07-16

    The resonant-Auger - interatomic Coulombic decay (RA-ICD) cascade was recently proposed as a very efficient means of controlling the generation site and energies of slow ICD electrons. The control mechanism was verified in a series of experiments where both the energy of the photons producing the initial core excitation, and the neighbouring species were varied. The aim of this thesis is to provide a detailed theoretical investigation of the RA-ICD cascade in rare-gas dimers and give a first insight into the course of the cascade in aqueous medium. The potential energy curves (PECs) of ionisation satellites are key ingredients in the theoretical description of electronic decay cascades. In the first chapter, we conducted a study on the PECs of the ionisation satellites of the ArHe dimer with a view to modelling such PECs in heavier dimers. Our results show that the complex valence structure in the rare-gas atom leads to the mixing of different electronic configurations of the dimer, which prevents one from assigning a single dicationic parent state to some of the ionisation satellites. In the second part of the thesis, we present and analyse the ICD-electron and kinetic-energy-release (KER) spectra following different resonant core excitations of Ar in the rare-gas dimers Ar{sub 2} and ArKr. We demonstrate that the manifold of ICD states populated in the resonant Auger process consists of fast- and slow-decaying ionisation satellites, and that the accurate description of nuclear dynamics in the latter ICD states is crucial for obtaining theoretical electron and KER spectra in good agreement with the experiment. We also show that by varying the neighbouring atom one can tune the energies of the emitted ICD electrons and even control the ICD yield. Finally, as a first step towards the investigation of the RA-ICD cascade in aqueous medium, we present and discuss the X-Ray absorption spectra of microsolvated clusters of Na{sup +} and Mg{sup 2+} at the metal 1s

  16. Weak decays

    International Nuclear Information System (INIS)

    Wojcicki, S.

    1978-11-01

    Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references

  17. Coulomb repulsion in short polypeptides.

    Science.gov (United States)

    Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M

    2015-01-08

    Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each

  18. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  19. Coulomb interaction in the supermultiplet basis

    International Nuclear Information System (INIS)

    Ruzha, Ya.Kh.; Guseva, T.V.; Tamberg, Yu.Ya.; Vanagas, V.V.

    1989-01-01

    An approximate expression for the matrix elements of the Coulomb interaction operator in the supermultiplet basis has been derived with the account for the orbitally-nonsymmetric terms. From the general expression a simplified formula for the Coulomb interaction energy has been proposed. On the basis of the expression obtained the contribution of the Coulomb interaction to the framework of a strongly restricted dynamic model in the light (4≤A≤40) and heavy (158≤A≤196) nuclei region has been studied. 19 refs.; 4 tabs

  20. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  1. Selfconsistent theory of Coulomb mixing in nuclei

    International Nuclear Information System (INIS)

    Pyatov, N.I.

    1978-01-01

    The theory of isobaric states is considered according to the Coulomb mixing in nuclei. For a given form of the isovestor potential the separable residual interactions are constructed by means of the isotopic invariance principle. The strength parameter of the force is found from a selfconsistency condition. The charge dependent force is represented by the Coulomb effective potential. The theory of the isobaric states is developed using the random phase approximation. The Coulomb mixing effects in the ground and isobaric 0 + states of even-mass nuclei are investigated

  2. Is there a contraction of the interatomic distance in small metal particles?

    DEFF Research Database (Denmark)

    Hansen, Lars Bruno; Stoltze, Per; Nørskov, Jens Kehlet

    1990-01-01

    A theoretical analysis is made of the bond lengths of small (100–1000 atoms) Cu particles at various temperatures. The interatomic interactions are calculated using the effective-medium theory and the finite-temperature properties obtained from a molecular-dynamics simulation. We find only very s...... small changes in bond length with particle size, but the motion in the small particles is very anharmonic. We use this observation to resolve the current experimental controversy about the existence of bond contraction for small metal particles.......A theoretical analysis is made of the bond lengths of small (100–1000 atoms) Cu particles at various temperatures. The interatomic interactions are calculated using the effective-medium theory and the finite-temperature properties obtained from a molecular-dynamics simulation. We find only very...

  3. Influence of the interatomic potentials on molecular dynamics simulations of displacement cascades

    CERN Document Server

    Becquart, C S; Legris, A; Van Duysen, J C

    2000-01-01

    Molecular dynamics (MD) is a powerful tool to study the displacement cascades initiated by the neutrons when they interact with matter. Key components of this technique are the interatomic potentials which model the binding of the different constitutive atoms. There exist many interatomic potentials dedicated to alpha-Fe and we have tested three of them for the study of radiation damage. We have found that the primary damage is potential sensitive. From our study, it appears that some characteristics of the potentials, not always considered, can be correlated to the type of damage produced by displacement cascades. The repulsive part of the potential has a strong influence on the cascade morphology. Moreover, equilibrium properties such as the atoms mean square displacements, the vacancy migration and vacancy-vacancy binding energies also appear to have some influence and should be investigated carefully when simulating radiation damage. It is therefore very important to use extreme care when trying to obtain...

  4. Search for spontaneous fission of 226Ra and systematics of the spontaneous fission, α-decay and cluster decay probabilities

    International Nuclear Information System (INIS)

    Mikheev, V.L.; Tret'yakova, S.P.; Golovchenko, A.N.; Timofeeva, O.V.; Hussonnois, M.; Le Naour, C.

    1998-01-01

    The low limit of the 226 Ra spontaneous fission half-life corresponding to T 1/2 ≥ 4 · 10 18 years is measured. The 226 Ra spontaneous fission probability proved to be about 50 times less than the value expected from the known systematics, connecting the ratios of theα-decay and spontaneous fission probabilities with the fissility parameter Z 2 /A. It is shown that the probabilities of spontaneous fission, α-decay and cluster decay can be systematized in the same way according to the difference between the decay products Coulomb energy near the scission point and decay energy Q

  5. Eutectic composite NiAl-Cr properties modeling based on interatomic interaction forces

    Science.gov (United States)

    Badamshin, I. Kh

    2018-03-01

    For new materials, information on the elasticity and strength characteristics necessary for calculating the stress-strain state of the turbine blades is limited. In these conditions, there is a need for theoretical methods for calculating the elastic and strength characteristics. The proposed theoretical methods are based on forces of interatomic interaction calculation. The classical methods based on the hypothesis of continuity do not allow calculating the material strength and thermophysical properties.

  6. The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance

    International Nuclear Information System (INIS)

    Zhou, X.L.; Zhao, T.S.; An, L.; Wei, L.; Zhang, C.

    2015-01-01

    An issue with conventional vanadium redox flow batteries (VRFB) with Nafion membranes is the crossover of vanadium ions, resulting in low coulombic efficiency and rapid decay in capacity. In this work, a VRFB with a polybenzimidazole (PBI) membrane is tested and compared with the Nafion system. Results show that the PBI-based VRFB exhibits a substantially higher coulombic efficiency of up to 99% at current densities ranging from 20 mA cm −2 to 80 mA cm −2 . More importantly, it is demonstrated that the PBI-based VRFB has a capacity decay rate of as low as 0.3% per cycle, which is four times lower than that of the Nafion system (1.3% per cycle). The improved coulombic efficiency and cycling performance are attributed to the low crossover of vanadium ions through the PBI membrane

  7. On the Coulomb displacement energy

    International Nuclear Information System (INIS)

    Sato, H.

    1976-01-01

    The Coulomb displacement energies of the T=1/2 mirror nuclei (A=15,17,27,29,31,33,39 and 41) are re-examined with the best available HF wave functions (the DME and the Skyrme II interaction), with the inclusion of all electromagnetic corrections. The results are compared with the experimental s.p. charge dependent energies extracted from the experimental data taking into account admixtures of core-excitation corrections with the help of present shell-model and co-existence model calculations. Although the so-called Nolen-Schiffer anomaly is not removed by these improvements, it is found that the remaining observed anomalies in the ground states of s.p. and s.h. systems can be resolved with the introduction of a simple, phenomenological charge symmetry breaking nucleon-nucleon force. This force can also account for the observed anomalies in the higher excited s.p. states, while those of the deeper s.h. states need further explanation. (Auth.)

  8. Facilitating the selection and creation of accurate interatomic potentials with robust tools and characterization

    Science.gov (United States)

    Trautt, Zachary T.; Tavazza, Francesca; Becker, Chandler A.

    2015-10-01

    The Materials Genome Initiative seeks to significantly decrease the cost and time of development and integration of new materials. Within the domain of atomistic simulations, several roadblocks stand in the way of reaching this goal. While the NIST Interatomic Potentials Repository hosts numerous interatomic potentials (force fields), researchers cannot immediately determine the best choice(s) for their use case. Researchers developing new potentials, specifically those in restricted environments, lack a comprehensive portfolio of efficient tools capable of calculating and archiving the properties of their potentials. This paper elucidates one solution to these problems, which uses Python-based scripts that are suitable for rapid property evaluation and human knowledge transfer. Calculation results are visible on the repository website, which reduces the time required to select an interatomic potential for a specific use case. Furthermore, property evaluation scripts are being integrated with modern platforms to improve discoverability and access of materials property data. To demonstrate these scripts and features, we will discuss the automation of stacking fault energy calculations and their application to additional elements. While the calculation methodology was developed previously, we are using it here as a case study in simulation automation and property calculations. We demonstrate how the use of Python scripts allows for rapid calculation in a more easily managed way where the calculations can be modified, and the results presented in user-friendly and concise ways. Additionally, the methods can be incorporated into other efforts, such as openKIM.

  9. Development of an inter-atomic potential for the Pd-H binary system.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A.; Hoyt, Jeffrey John (McMaster University, Hamilton, Ontario, Canada); Leonard, Francois Leonard; Griffin, Joshua D.; Zhou, Xiao Wang

    2007-09-01

    Ongoing research at Sandia National Laboratories has been in the area of developing models and simulation methods that can be used to uncover and illuminate the material defects created during He bubble growth in aging bulk metal tritides. Previous efforts have used molecular dynamics calculations to examine the physical mechanisms by which growing He bubbles in a Pd metal lattice create material defects. However, these efforts focused only on the growth of He bubbles in pure Pd and not on bubble growth in the material of interest, palladium tritide (PdT), or its non-radioactive isotope palladium hydride (PdH). The reason for this is that existing inter-atomic potentials do not adequately describe the thermodynamics of the Pd-H system, which includes a miscibility gap that leads to phase separation of the dilute (alpha) and concentrated (beta) alloys of H in Pd at room temperature. This document will report the results of research to either find or develop inter-atomic potentials for the Pd-H and Pd-T systems, including our efforts to use experimental data and density functional theory calculations to create an inter-atomic potential for this unique metal alloy system.

  10. Facilitating the selection and creation of accurate interatomic potentials with robust tools and characterization

    International Nuclear Information System (INIS)

    Trautt, Zachary T; Tavazza, Francesca; Becker, Chandler A

    2015-01-01

    The Materials Genome Initiative seeks to significantly decrease the cost and time of development and integration of new materials. Within the domain of atomistic simulations, several roadblocks stand in the way of reaching this goal. While the NIST Interatomic Potentials Repository hosts numerous interatomic potentials (force fields), researchers cannot immediately determine the best choice(s) for their use case. Researchers developing new potentials, specifically those in restricted environments, lack a comprehensive portfolio of efficient tools capable of calculating and archiving the properties of their potentials. This paper elucidates one solution to these problems, which uses Python-based scripts that are suitable for rapid property evaluation and human knowledge transfer. Calculation results are visible on the repository website, which reduces the time required to select an interatomic potential for a specific use case. Furthermore, property evaluation scripts are being integrated with modern platforms to improve discoverability and access of materials property data. To demonstrate these scripts and features, we will discuss the automation of stacking fault energy calculations and their application to additional elements. While the calculation methodology was developed previously, we are using it here as a case study in simulation automation and property calculations. We demonstrate how the use of Python scripts allows for rapid calculation in a more easily managed way where the calculations can be modified, and the results presented in user-friendly and concise ways. Additionally, the methods can be incorporated into other efforts, such as openKIM. (paper)

  11. A unitarized meson model including color Coulomb interaction

    International Nuclear Information System (INIS)

    Metzger, Kees.

    1990-01-01

    Ch. 1 gives a general introduction into the problem field of the thesis. It discusses in how far the internal structure of mesons is understood theoretically and which models exist. It discusses from a phenomenological point of view the problem of confinement indicates how quark models of mesons may provide insight in this phenomenon. In ch. 2 the formal theory of scattering in a system with confinement is given. It is shown how a coupled channel (CC) description and the work of other authors fit into this general framework. Explicit examples and arguments are given to support the CC treatment of such a system. In ch. 3 the full coupled-channel model as is employed in this thesis is presented. On the basis of arguments from the former chapters and the observed regularities in the experimental data, the choices underlying the model are supported. In this model confinement is described with a mass-dependent harmonic-oscillator potential and the presence of open (meson-meson) channels plays an essential role. In ch. 4 the unitarized model is applied to light scalar meson resonances. In this regime the contribution of the open channels is considerable. It is demonstrated that the model parameters as used for the description of the pseudo-scalar and vector mesons, unchanged can be used for the description of these mesons. Ch. 5 treats the color-Coulomb interaction. There the effect of the Coulomb interaction is studied in simple models without decay. The results of incorporating the color-Coulomb interaction into the full CC model are given in ch.6. Ch. 7 discusses the results of the previous chapters and the present status of the model. (author). 182 refs.; 16 figs.; 33 tabs

  12. Coulomb-Driven Relativistic Electron Beam Compression

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  13. Structure and Spectrum of Dust Coulomb Clusters

    International Nuclear Information System (INIS)

    Cheung, F.M.H.; Ford, C.; Barkby, S.; Samarian, A.A.; Vladimirov, S.V.

    2005-01-01

    In our study, the dynamics of Coulomb cluster systems were simulated for different number of particles. The spectra of energy states of dust Coulomb clusters corresponding to various packing sequences were obtained. The broadening of the spectrum due to inter-ring twist was discovered. It was found that the inter-ring twist will lead to a change in the energy spectrum of Coulomb cluster. This change was accompanied by a distortion of stable shells such that particles are able to compensate for any additional Coulomb energy (owing to the inter-ring twist) by further reducing their radial distance as much as possible. The overall effect is a change in the shape of the outer-shell from circular to elliptical

  14. Coulomb-Driven Relativistic Electron Beam Compression.

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-26

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  15. Experiments on Coulomb ionization by charged particles

    International Nuclear Information System (INIS)

    Andersen, J.U.; Laegsgaard, E.; Lund, M.

    1978-01-01

    Inner-shell ionization by light projectiles, i.e., in very asymmetric collisions, is often denoted 'Coulomb ionization' because it is caused by the Coulomb interaction between the electron and the projectile. Although with little justification, the term is also used to distinquish such processes, in which the projectile Coulomb field is a small perturbation, from ionization in more violent, nearly symmetric ion-atom collisions. A discussion of Coulomb ionization of atomic K shells is given, with emphasis on experimental methods and results. The discussion is not intended as a review of the field but rather as a progress report on the anthor's work on the subject. A more detailed account was recently presented at the ICPEAC meeting in Paris. (Auth.)

  16. Classical- and quantum mechanical Coulomb scattering

    International Nuclear Information System (INIS)

    Gratzl, W.

    1987-01-01

    Because in textbooks the quantum mechanical Coulomb scattering is either ignored or treated unsatisfactory, the present work attempts to present a physically plausible, mathematically correct but elementary treatment in a way that it can be used in textbooks and lectures on quantum mechanics. Coulomb scattering is derived as a limiting case of a screened Coulomb potential (finite range) within a time dependent quantum scattering theory. The difference in the asymptotic conditions for potentials of finite versus infinite range leads back to the classical Coulomb scattering. In the classical framework many concepts of the quantum theory can be introduced and are useful in an intuitive understanding of the quantum theory. The differences between classical and quantum scattering theory are likewise useful for didactic purposes. (qui)

  17. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  18. Monotonicity of energy eigenvalues for Coulomb systems

    International Nuclear Information System (INIS)

    Englisch, R.

    1983-01-01

    Generalising results by earlier workers for a large class of Hamiltonians (among others, Hamiltonians of Coulomb systems) which can be written in the form H(α) = H 0 + αH' the present works shows that their eigenvalues decrease with increasing α. This result is applied to Coulomb systems in which the distances between the infinitely heavy particles are varying and also is used to obtain a completion and simplification of proof for the stability of the biexciton. (author)

  19. Coulomb Distortion in the Inelastic Regime

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Solvignon, Dave Gaskell, John Arrington

    2009-09-01

    The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.

  20. Super-Coulombic atom-atom interactions in hyperbolic media

    Science.gov (United States)

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  1. Tur\\'an type inequalities for regular Coulomb wave functions

    OpenAIRE

    Baricz, Árpád

    2015-01-01

    Tur\\'an, Mitrinovi\\'c-Adamovi\\'c and Wilker type inequalities are deduced for regular Coulomb wave functions. The proofs are based on a Mittag-Leffler expansion for the regular Coulomb wave function, which may be of independent interest. Moreover, some complete monotonicity results concerning the Coulomb zeta functions and some interlacing properties of the zeros of Coulomb wave functions are given.

  2. Trinucleon asymptotic normalization constants including Coulomb effects

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Lehman, D.R.; Payne, G.L.

    1982-01-01

    Exact theoretical expressions for calculating the trinucleon S- and D-wave asymptotic normalization constants, with and without Coulomb effects, are presented. Coordinate-space Faddeev-type equations are used to generate the trinucleon wave functions, and integral relations for the asymptotic norms are derived within this framework. The definition of the asymptotic norms in the presence of the Coulomb interaction is emphasized. Numerical calculations are carried out for the s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison with previously published results is made. The first estimate of Coulomb effects for the D-wave asymptotic norm is given. All theoretical values are carefully compared with experiment and suggestions are made for improving the experimental situation. We find that Coulomb effects increase the 3 He S-wave asymptotic norm by less than 1% relative to that of 3 H, that Coulomb effects decrease the 3 He D-wave asymptotic norm by approximately 8% relative to that of 3 H, and that the distorted-wave Born approximation D-state parameter, D 2 , is only 1% smaller in magnitude for 3 He than for 3 H due to compensating Coulomb effects

  3. Plunger lifetime measurements after Coulomb excitation at intermediate beam energies

    Energy Technology Data Exchange (ETDEWEB)

    Hackstein, Matthias; Dewald, Alfred; Fransen, Christoph; Ilie, Gabriela; Jolie, Jan; Melon, Barbara; Pissulla, Thomas; Rother, Wolfram; Zell, Karl-Oskar [University of Cologne (Germany); Petkov, Pavel [University of Cologne (Germany); INRNE (Bulgaria); Chester, Aaron; Adrich, Przemyslaw; Bazin, Daniel; Bowen, Matt; Gade, Alexandra; Glasmacher, Thomas; Miller, Dave; Moeller, Victoria; Starosta, Krzysztof; Stolz, Andreas; Vaman, Constantin; Voss, Philip; Weissharr, Dirk [Michigan State Univerity (United States); Moeller, Oliver [TU Darmstadt (Germany)

    2008-07-01

    Two recoil-distance-doppler-shift (RDDS) experiments were performed at the NSCL/MSU using Coulomb excitations of the projectile nuclei {sup 110}Pd, {sup 114}Pd at beam energies of 54 MeV/u in order to investigate the evolution of deformation of neutron rich paladium isotopes. The experimental set-up consisted of a dedicated plunger device, developed at the University of Cologne, the SEGA Ge-array and the S800 spectrometer. Lifetimes of the 2{sub 1}{sup +}-states in {sup 110}Pd and {sup 114}Pd were derived from the analysis of the {gamma}-line-shapes as well as from the measured decay-curves. Special features of the data analysis, e.g. features originating from the very high recoil velocities, are discussed.

  4. Coulomb interactions in particle beams

    International Nuclear Information System (INIS)

    Jansen, G.H.

    1988-01-01

    This thesis presents a theoretical description of the Coulomb interaction between identical charged particles (electrons or ions) in focussed beam. The charge-density effects as well as the various statistical interaction effects, known as the Boersch effect and the 'trajectory displacement effect', are treated. An introductory literature survey is presented from which the large differences in theoretical approach appear. Subsequently the methods are investigated which are used in studies of comparable problems in plasma physics and stellar dynamics. These turn out to be applicable to particle beams only for certain extreme conditions. The approach finally chosen in this study is twofold. On the one hand use is made of a semi-analytical model in which the statistical and dynamical aspects of the N-particle problem are reduced to two-particle problem. This model results in a number of explicit equations in the experimental parameters, with ties of the beam can be determined directly. On the other hand use has been made of a purely numerical Monte Carlo model in which the kinematical equations of an ensemble interacting particles with 'at random' chosen starting conditions are solved exactly. This model does not lead to general expressions, but yields a specific numerical prediction for each simulated experimental situation. The results of both models appear to agree well mutually. This yields a consistent theory which complements the existing knowledge of particle optics and which allow the description of systems in which the interaction between particles can not be neglected. The predictions of this theory are qualitatively and quantitatively compared with those from some other models, recently reported in literature. (author). 256 refs.; 114 figs.; 1180 schemes; 5 tabs

  5. Tau decays

    International Nuclear Information System (INIS)

    Golutvin, A.

    1994-09-01

    The most recent experimental results of τ physics are reviewed. The covered topics include precision measurements of semihadronic τ decay and their impact on tau branching ratio budget, the current status of the tau consistency test, a determination of Michel parameters and τ neutrino helicity, and upper limits on lepton-number violating τ decays. (orig.)

  6. Decay tank

    International Nuclear Information System (INIS)

    Matsumura, Seiichi; Tagishi, Akinori; Sakata, Yuji; Kontani, Koji; Sudo, Yukio; Kaminaga, Masanori; Kameyama, Iwao; Ando, Koei; Ishiki, Masahiko.

    1990-01-01

    The present invention concerns an decay tank for decaying a radioactivity concentration of a fluid containing radioactive material. The inside of an decay tank body is partitioned by partitioning plates to form a flow channel. A porous plate is attached at the portion above the end of the partitioning plate, that is, a portion where the flow is just turned. A part of the porous plate has a slit-like opening on the side close to the partitioning plate, that is, the inner side of the flow at the turning portion thereof. Accordingly, the primary coolants passed through the pool type nuclear reactor and flown into the decay tank are flow caused to uniformly over the entire part of the tank without causing swirling. Since a distribution in a staying time is thus decreased, the effect of decaying 16 N as radioactive nuclides in the primary coolants is increased even in a limited volume of the tank. (I.N.)

  7. Interatomic interaction of additive elements and their influence on the processes in the double metal solutions

    Directory of Open Access Journals (Sweden)

    Марина Анатоліівна Рябікіна

    2016-07-01

    Full Text Available Modern industry uses a lot of elements as additives to improve the service characteristics of metal products that are to be used for various purposes. These elements can be divided into two groups: the first group includes the elements interacting with iron and improving its characteristics (alloying elements, and the second group includes the elements, that modify the characteristics of the structure and properties in an undesirable direction. These are trace elements: S, P, O, As, and others in steel. The negative impact of these elements shows itself as banding, the formation of non-metallic inclusions, flakes, grain boundary segregations et al. The influence of the elements of the both groups on the properties of steel depends on the nature and level of interatomic interaction in the alloy. Computational and analytical study of the major impurity elements in steel impact on the interatomic bond strength and the probability of forming complexes, clusters, and chemical compounds with the basic alloying elements in the steel has been carried out in the work. The theoretical parameter which defines the strength of the ion-covalent bond of two atoms: non-metallic – metallic is the electronegativity of elements. The electronegativity difference of the metal and non-metallic elements increasing, the ionic bonding and thermodynamic stability of these compounds  increase. On the other hand, concentration of valent electrons is a universal characteristic of an atomic element which determines many of its properties, and especially the energy of interatomic interaction. Energy calculations of pairwise interatomic impurity elements: H, C, N, S, P, As interaction with Fe and major alloying elements in steel: Mn, Cr, Si, V, Al, Ti, W, Cu, Mo, Nb were made. It has been stated that all the impurity elements except phosphorus, hydrogen and arsenic have sufficient high adhesion with the majority of the metal elements in the modern steels. Phosphorus does

  8. A W−Ne interatomic potential for simulation of neon implantation in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Backman, Marie; Juslin, Niklas; Huang, Guiyang [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996-2300 (United States); Wirth, Brian D., E-mail: bdwirth@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996-2300 (United States); P.O. Box 2008, MS-6003, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-08-15

    An interatomic pair potential for W−Ne is developed for atomistic molecular dynamics simulations of neon implantation in tungsten. The new potential predicts point defect energies and binding energies of small clusters that are in good agreement with electronic structure calculations. Molecular dynamics simulations of small neon clusters in tungsten show that trap mutation, in which an interstitial neon cluster displaces a tungsten atom from its lattice site, occurs for clusters of three or more neon atoms. However, near a free surface, trap mutation can occur at smaller sizes, including even a single neon interstitial in close proximity to a (100) or (110) surface.

  9. Modified embedded-atom method interatomic potential for the Fe-Al system

    International Nuclear Information System (INIS)

    Lee, Eunkoo; Lee, Byeong-Joo

    2010-01-01

    An interatomic potential for the Fe-Al binary system has been developed based on the modified embedded-atom method (MEAM) potential formalism. The potential can describe various fundamental physical properties of Fe-Al binary alloys-structural, elastic and thermodynamic properties, defect formation behavior and interactions between defects-in reasonable agreement with experimental data or higher-level calculations. The applicability of the potential to atomistic investigations of various defect formation behaviors and their effects on the mechanical properties of high aluminum steels as well as Fe-Al binary alloys is demonstrated.

  10. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as th......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means......, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...

  11. Coulomb explosion of “hot spot”

    Energy Technology Data Exchange (ETDEWEB)

    Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); Tomsk Polytechnic University, Tomsk (Russian Federation); Oreshkin, E. V. [P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Chaikovsky, S. A. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Institute of Electrophysics, UD, RAS, Ekaterinburg (Russian Federation); Artyomov, A. P. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation)

    2016-09-15

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  12. Coulomb explosion of “hot spot”

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Oreshkin, E. V.; Chaikovsky, S. A.; Artyomov, A. P.

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  13. Critical opalescence in the pure Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Bobrov, V.B., E-mail: vic5907@mail.r [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaia St., 13, Bd. 2. Moscow 125412 (Russian Federation); Trigger, S.A., E-mail: satron@mail.r [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaia St., 13, Bd. 2. Moscow 125412 (Russian Federation); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany)

    2011-04-18

    Highlights: The review of the critical opalescence problem is presented. Light scattering in a two-component electron-nuclear system is studied. The exact relations between the structure factors and compressibility are found. The obtained relations are valid for strong interaction for the Coulomb systems. The experimental verification of these relations is possible for various elements. - Abstract: Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.

  14. Critical opalescence in the pure Coulomb system

    International Nuclear Information System (INIS)

    Bobrov, V.B.; Trigger, S.A.

    2011-01-01

    Highlights: → The review of the critical opalescence problem is presented. → Light scattering in a two-component electron-nuclear system is studied. → The exact relations between the structure factors and compressibility are found. → The obtained relations are valid for strong interaction for the Coulomb systems. → The experimental verification of these relations is possible for various elements. - Abstract: Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.

  15. Coulomb collisions in the solar wind

    Science.gov (United States)

    Klein, L. W.; Ogilvie, K. W.; Burlaga, L. F.

    1985-01-01

    A major improvement of the present investigation over previous studies of the subject is related to the use of helium temperatures obtained from helium ion measurements uncontaminated by the high-velocity tail of the proton distribution. More observations, covering a large parameter range, were employed, and the effects of interspecies drift were taken into account. It is shown in a more definite way than has been done previously, that Coulomb collisions provide the most important mechanism bringing about equilibrium between helium and protons in the solar wind. Other mechanisms may play some part in restricted regions, but Coulomb collisions are dominant on the macroscale.

  16. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21...

  17. Critical behavior in graphene with Coulomb interactions.

    Science.gov (United States)

    Wang, Jianhui; Fertig, H A; Murthy, Ganpathy

    2010-05-07

    We demonstrate that, in the presence of Coulomb interactions, electrons in graphene behave like a critical system, supporting power law correlations with interaction-dependent exponents. An asymptotic analysis shows that the origin of this behavior lies in particle-hole scattering, for which the Coulomb interaction induces anomalously close approaches. With increasing interaction strength the relevant power law changes from real to complex, leading to an unusual instability characterized by a complex-valued susceptibility in the thermodynamic limit. Measurable quantities, as well as the connection to classical two-dimensional systems, are discussed.

  18. Observation of a Coulomb flux tube

    Science.gov (United States)

    Greensite, Jeff; Chung, Kristian

    2018-03-01

    In Coulomb gauge there is a longitudinal color electric field associated with a static quark-antiquark pair. We have measured the spatial distribution of this field, and find that it falls off exponentially with transverse distance from a line joining the two quarks. In other words there is a Coulomb flux tube, with a width that is somewhat smaller than that of the minimal energy flux tube associated with the asymptotic string tension. A confinement criterion for gauge theories with matter fields is also proposed.

  19. Perturbative ambiguities in Coulomb gauge QCD

    International Nuclear Information System (INIS)

    Doust, P.

    1987-01-01

    The naive Coulomb gauge Feynman rules in non-abelian gauge theory give rise to ambiguous integrals, in addition to the usual ultraviolet divergences. Generalizing the work of Cheng and Tsai, these ambiguities are resolved to all orders in perturbation theory, by defining a gauge that interpolates smoothly between the Feynman gauge and the Coulomb gauge. The extra terms V 1 +V 2 of Christ and Lee are identified with certain two-loop ambiguous terms. However, there still seem to be unsolved problems connected with renormalisation. copyright 1987 Academic Press, Inc

  20. Coulomb dissociation of N 20,21

    OpenAIRE

    Röder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N20,21 are reported. Relativistic N20,21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the N19(n,γ)N20 and N20(n,γ)N21 excitation functions and thermonuclear reaction rates have been determined. The N19(n,γ)N20 rate is...

  1. Critical opalescence in the pure Coulomb system

    Science.gov (United States)

    Bobrov, V. B.; Trigger, S. A.

    2011-04-01

    Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.

  2. Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method.

    Science.gov (United States)

    Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko

    2010-06-28

    We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.

  3. Tunneling in decay and fusion of compound nuclei

    International Nuclear Information System (INIS)

    Tarakanov, A.V.; Shilov, V.M.

    1988-01-01

    On the basis of the multichannel boundary-condition model we demonstrate the asymmetry of the total transmission of the Coulomb barrier taking into account the internal structure of the colliding nuclei. For decay the enhancement of the tunneling probability in comparison with the single-channel case is small. We prove the importance of taking into account states in which one of the decay-product fragments is in an excited state

  4. Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit".

    Science.gov (United States)

    Carrillo-Bernal, M A; Núñez-Yépez, H N; Salas-Brito, A L; Solis, Didier A

    2015-02-01

    In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1/√[x(2)+β(2)] to study the one-dimensional Coulomb problem by approaching the parameter β to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (β=0). Their claims regarding the possible existence of an even ground state with energy -∞ with a Dirac-δ eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.

  5. A Coulomb-Like Off-Shell T-Matrix with the Correct Coulomb Phase Shift

    International Nuclear Information System (INIS)

    Oryu, Shinsho; Watanabe, Takashi; Hiratsuka, Yasuhisa; Togawa, Yoshio

    2017-01-01

    We confirm the reliability of the well-known Coulomb renormalization method (CRM). It is found that the CRM is only available for a very-long-range screened Coulomb potential (SCP). However, such an SCP calculation in momentum space is considerably difficult because of the cancellation of significant digits. In contrast to the CRM, we propose a new method by using an on-shell equivalent SCP and the rest term. The two-potential theory with r-space is introduced, which defines fully the off-shell Coulomb amplitude. (author)

  6. First-principles interatomic potentials for transition-metal aluminides. III. Extension to ternary phase diagrams

    International Nuclear Information System (INIS)

    Widom, Mike; Al-Lehyani, Ibrahim; Moriarty, John A.

    2000-01-01

    Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase. (c) 2000 The American Physical Society

  7. Development of an empirical interatomic potential for the Ag–Ti system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ying, E-mail: y.zhou3@lboro.ac.uk [Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Smith, Roger [Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Kenny, Steven D. [Department of Materials, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Lloyd, Adam L. [Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2017-02-15

    Highlights: • A new modified embedded-atom method interatomic potential for Ag and Ti was developed. • Binding energies for various configurations were calculated using SIESTA and were used as the fitting target. • Two mixing rules for the embedded-atom method based on the same elemental potentials were also investigated. • The results showed that the MEAM with the optimised parameters gives the best agreement to the DFT results. - Abstract: Two interatomic potential mixing rules for the Ti–Ag system were investigated based on the embedded-atom method (EAM) elemental potentials. First principles calculations were performed using SIESTA for various configurations of the Ti–Ag system to see which model best fitted the ab initio results. The results showed that the surface energies, especially that of Ti, were not well fitted by either model and the surface binding energies differed from the ab initio calculations. As a result, the modified embedded-atom method (MEAM) was investigated. In contrast to the other models, surface energies for pure Ti calculated by MEAM were in good agreement with the experimental data and the ab initio results. The MEAM mixing rule was used to investigate Ag ad-atoms on Ti and Ti ad-atoms on Ag. The results showed good agreement with SIESTA after parameter optimisation.

  8. First-principles interatomic potentials for transition-metal aluminides. III. Extension to ternary phase diagrams

    Science.gov (United States)

    Widom, Mike; Al-Lehyani, Ibrahim; Moriarty, John A.

    2000-08-01

    Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase.

  9. Study of interatomic potential and thermal structural properties of β-Zn4Sb3

    International Nuclear Information System (INIS)

    Li, Guodong; Li, Yao; Liu, Lisheng; Zhang, Qingjie; Zhai, Pengcheng

    2012-01-01

    Highlights: ► The multi-body interatomic potentials of various models of β-Zn 4 Sb 3 have been developed to describe atomic interactions. ► The radial distribution function shows that the 10% vacancy of Zn site leads to the disorder of β-Zn 4 Sb 3 . ► The 10% vacancy of Zn site is the main cause of the exceptional low thermal conductivity. -- Abstract: Previous experimental research shows that the disordered Zn atoms in β-Zn 4 Sb 3 may have an important influence on its exceptionally low thermal conductivity and easily occurred phase transition. So the present work aims to study the influence of disordered Zn atoms on thermodynamics properties of β-Zn 4 Sb 3 by using molecular dynamics (MD) method. Firstly, based on first principles calculation and experimental results, the interatomic potentials of β-Zn 4 Sb 3 and MD analysis method are established, and the feasibility is verified. Then, the influence of disordered Zn atoms on thermal conductivity of β-Zn 4 Sb 3 is studied in detail. The simulation results indicate that the 10% vacant Zn atoms is the main reason for the exceptionally low thermal conductivity of β-Zn 4 Sb 3 , and it seems that the interstitial Zn atoms have little effect on its thermal conductivity.

  10. Temperature dependence in interatomic potentials and an improved potential for Ti

    International Nuclear Information System (INIS)

    Ackland, G J

    2012-01-01

    The process of deriving an interatomic potentials represents an attempt to integrate out the electronic degrees of freedom from the full quantum description of a condensed matter system. In practice it is the derivatives of the interatomic potentials which are used in molecular dynamics, as a model for the forces on a system. These forces should be the derivative of the free energy of the electronic system, which includes contributions from the entropy of the electronic states. This free energy is weakly temperature dependent, and although this can be safely neglected in many cases there are some systems where the electronic entropy plays a significant role. Here a method is proposed to incorporate electronic entropy in the Sommerfeld approximation into empirical potentials. The method is applied as a correction to an existing potential for titanium. Thermal properties of the new model are calculated, and a simple method for fixing the melting point and solid-solid phase transition temperature for existing models fitted to zero temperature data is presented.

  11. Synthesization of the Ar VIII 3s-3p beam-foil decay curve

    International Nuclear Information System (INIS)

    Lindgaard, A.; Veje, E.

    1981-01-01

    The beam-foil decay curve for the 3s-3p transition in Ar VIII has been simulated from experimentally determined relative initial level populations and transition probabilities calculated in the numerical Coulomb approximation. Good agreement is observed between simulated and measured decay curves. A discussion of the simulation is given. (Auth.)

  12. Reinvestigation of 56Ni decay

    International Nuclear Information System (INIS)

    Sur, B.; Norman, E.B.; Lesko, K.T.; Browne, E.; Larimer, R.

    1990-01-01

    In a series of experiments, we have reinvestigated the decay of the doubly magic nucleus 56 Ni, which is believed to be copiously produced in supernovae. We have confirmed its previously known decay scheme and half-life, and have searched for several rare decay modes. We establish an upper limit of 5.8x10 -7 for the branching ratio of the second forbidden unique β + decay to the 158-keV level in 56 Co, leading to a lower limit of 2.9x10 4 yr for the half-life of fully ionized 56 Ni nuclei in cosmic rays. We also establish an upper limit of 5.0x10 -3 for the branching ratio of the isospin forbidden Fermi electron capture transition to the 1451-keV level in 56 Co, which in turn leads to an upper limit of 124 keV for the isospin mixing Coulomb matrix element of the 56 Ni ground state

  13. Simplistic Coulomb Forces in Molecular Dynamics

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Schrøder, Thomas; Dyre, J. C.

    2012-01-01

    In this paper we compare the Wolf method to the shifted forces (SF) method for efficient computer simulation of bulk systems with Coulomb forces, taking results from the Ewald summation and particle mesh Ewald methods as representing the true behavior. We find that for the Hansen–McDonald molten...

  14. Coulomb's Electrical Measurements. Experiment No. 14.

    Science.gov (United States)

    Devons, Samuel

    Presented is information related to the life and work of Charles Coulomb as well as detailed notes of his measurements of the distribution of electricity on conductors. The two methods that he used (the large torsion balance, and the timing of "force" oscillations) are described. (SA)

  15. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  16. Coulomb Coupling Between Quantum Dots and Waveguides

    National Research Council Canada - National Science Library

    Porod, Wolfgang

    2000-01-01

    .... We considered both III-V and Si-based semiconductor systems. In later years, the AASERT award supported work on QCA realizations in Coulomb-blockade metal-dot systems, which were successful in demonstrating the basic QCA switching operation...

  17. Generalized Coulomb gauge without Gribov ambiguity

    Energy Technology Data Exchange (ETDEWEB)

    Fachin, S.; Parrinello, C. (New York Univ., NY (United States). Physics Dept.)

    1992-05-01

    We discuss a global gauge-fixing prescription that is free of the Gribov problem, preserves reflection positivity and contains as a limiting case the (maximal) Coulomb gauge. In such a formalism it is very easy to check that only color singlet states propagate in Euclidean time, for any value of [beta]. (orig.).

  18. Lee-Nauenberg theorem and Coulomb scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, H; Frenkel, J [Sao Paulo Univ. (Brazil). Instituto de Fisica

    1975-08-01

    Lee-Nauenberg analysis is extended to the case of Coulomb scattering, where the diagonal elements of the Hamiltonian interaction are singular functions. It is shown, using a simple argument, that the leading infrared singularities in the cross-section are mutually canceled out.

  19. Monotonicity and concavity in Coulomb systems

    International Nuclear Information System (INIS)

    Englisch, R.; Englisch, H.; Karl-Marx-Universitaet, Leipzig

    1986-01-01

    The eigenvalues of H(α) = H 0 + αH * , where H * is an arbitrary Coulomb potential, decrease with increasing α ≥ 0. Linear and parabolic bounds for the ground state energy are presented. These bounds are applied to the biexciton and the exciton at a neutral donor. (orig.)

  20. Signatures of Coulomb fission: a theoretical study

    International Nuclear Information System (INIS)

    Oberacker, V.; Kruse, H.; Pinkston, W.T.; Greiner, W.

    1979-01-01

    Evidence for Coulomb fission (CF) is noted first. Then the Hamiltonian is set down and explained, and an expression for the CF probability of CF is obtained. Results are summarized. Figures show the CF probability of 238 U as a function of projectile charge number and the excitation functions for CF of 238 U by 184 W and 136 Xe. 3 figures

  1. Coulomb Blockade of Tunnel-Coupled Quantum Dots

    National Research Council Canada - National Science Library

    Golden, John

    1997-01-01

    .... Though classical charging models can explain the Coulomb blockade of an isolated dot, they must be modified to explain the Coulomb blockade of dots coupled through the quantum mechanical tunneling of electrons...

  2. Coulomb singularity effects in tunnelling spectroscopy of individual impurities

    OpenAIRE

    Arseyev, P. I.; Maslova, N. S.; Panov, V. I.; Savinov, S. V.

    2002-01-01

    Non-equilibrium Coulomb effects in resonant tunnelling processes through deep impurity states are analyzed. It is shown that Coulomb vertex corrections to the tunnelling transfer amplitude lead to a power-law singularity in current- voltage characteristics

  3. Study of Ground State Wave-function of the Neutron-rich 29,30Na Isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Rahaman A.

    2014-03-01

    Full Text Available Coulomb breakup of unstable neutron rich nuclei 29,30Na around the ‘island of inversion’ has been studied at energy around 434 MeV/nucleon and 409 MeV/nucleon respectively. Four momentum vectors of fragments, decay neutron from excited projectile and γ-rays emitted from excited fragments after Coulomb breakup are measured in coincidence. For these nuclei, the low-lying dipole strength above one neutron threshold can be explained by direct breakup model. The analysis for Coulomb breakup of 29,30Na shows that large amount of the cross section yields the 28Na, 29Na core in ground state. The predominant ground-state configuration of 29,30Na is found to be 28Na(g.s⊗νs1/2 and 29Na(g.s⊗νs1/2,respectively.

  4. Sensitivity of Coulomb stress changes to slip models of source faults: A case study for the 2011 Mw 9.0 Tohoku-oki earthquake

    Science.gov (United States)

    Wang, J.; Xu, C.; Furlong, K.; Zhong, B.; Xiao, Z.; Yi, L.; Chen, T.

    2017-12-01

    Although Coulomb stress changes induced by earthquake events have been used to quantify stress transfers and to retrospectively explain stress triggering among earthquake sequences, realistic reliable prospective earthquake forecasting remains scarce. To generate a robust Coulomb stress map for earthquake forecasting, uncertainties in Coulomb stress changes associated with the source fault, receiver fault and friction coefficient and Skempton's coefficient need to be exhaustively considered. In this paper, we specifically explore the uncertainty in slip models of the source fault of the 2011 Mw 9.0 Tohoku-oki earthquake as a case study. This earthquake was chosen because of its wealth of finite-fault slip models. Based on the wealth of those slip models, we compute the coseismic Coulomb stress changes induced by this mainshock. Our results indicate that nearby Coulomb stress changes for each slip model can be quite different, both for the Coulomb stress map at a given depth and on the Pacific subducting slab. The triggering rates for three months of aftershocks of the mainshock, with and without considering the uncertainty in slip models, differ significantly, decreasing from 70% to 18%. Reliable Coulomb stress changes in the three seismogenic zones of Nanki, Tonankai and Tokai are insignificant, approximately only 0.04 bar. By contrast, the portions of the Pacific subducting slab at a depth of 80 km and beneath Tokyo received a positive Coulomb stress change of approximately 0.2 bar. The standard errors of the seismicity rate and earthquake probability based on the Coulomb rate-and-state model (CRS) decay much faster with elapsed time in stress triggering zones than in stress shadows, meaning that the uncertainties in Coulomb stress changes in stress triggering zones would not drastically affect assessments of the seismicity rate and earthquake probability based on the CRS in the intermediate to long term.

  5. Coulomb Excitation of Neutron Deficient Sn-Isotopes using REX-ISOLDE

    CERN Multimedia

    Di julio, D D; Kownacki, J M; Marechal, F; Andreoiu, C; Siem, S; Perrot, F; Van duppen, P L E; Napiorkowski, P J; Iwanicki, J S

    2002-01-01

    It is proposed to study the evolution of the reduced transition probabilities, B(E2; 0$^{+} \\rightarrow$ 2$^{+}$), for neutron deficient Sn isotopes by Coulomb excitation in inverse kinematics using REX-ISOLDE and the MINIBALL detector array. Measurements of the reduced transition matrix element for the transition between the ground state and the first excited 2$^{+}$ state in light even-even Sn isotopes provide a means to study e.g. core polarization effects in the $^{100}$Sn core. Previous attempts to measure this quantity have been carried out using the decay of isomeric states populated in fusion evaporation reactions. We thus propose to utilize the unique opportunity provided by REX-ISOLDE, after the energy upgrade to 3.1 MeV/u, to use the more model-independent approach of Coulomb excitation to measure this quantity in a number of isotopes in this region.

  6. Poisson equation in the Kohn-Sham Coulomb problem

    OpenAIRE

    Manby, F. R.; Knowles, Peter James

    2001-01-01

    We apply the Poisson equation to the quantum mechanical Coulomb problem for many-particle systems. By introducing a suitable basis set, the two-electron Coulomb integrals become simple overlaps. This offers the possibility of very rapid linear-scaling treatment of the Coulomb contribution to Kohn-Sham theory.

  7. B decays

    CERN Document Server

    Stone, Sheldon

    1992-01-01

    The study of b quarks has now reached a stage where it is useful to review what has been learned so far and also to look at the implications of future studies. The most important observations thus far - measurement of the "B" lifetime, B 0 - B 0 mixing, and the observation of b? u transitions, as well as more mundane results on hadronic and semileptonic transitions - are described in detail by experimentalists who have been closely involved with the measurements. Theoretical progress in understanding b quark decays, including the mechanisms of hadronic and semileptonic decays, are described. S

  8. B decays

    CERN Document Server

    Stone, Sheldon

    1994-01-01

    This book reviews the study of b quarks and also looks at the implications of future studies. The most important observations thus far - including measurement of the ""B"" lifetime and observations of b -> u transitions - as well as the more mundane results of hadronic and semileptonic transitions are described in detail by experimentalists who have been closely involved with the measurements. Theoretical progress in understanding b quark decays, including the mechanisms of hadronic and semileptonic decays, are described. Synthesizing the experimental and theoretical information, the authors d

  9. Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials

    Science.gov (United States)

    Thompson, Alexander

    In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties

  10. Coulomb gap triptych in a periodic array of metal nanocrystals.

    Science.gov (United States)

    Chen, Tianran; Skinner, Brian; Shklovskii, B I

    2012-09-21

    The Coulomb gap in the single-particle density of states (DOS) is a universal consequence of electron-electron interaction in disordered systems with localized electron states. Here we show that in arrays of monodisperse metallic nanocrystals, there is not one but three identical adjacent Coulomb gaps, which together form a structure that we call a "Coulomb gap triptych." We calculate the DOS and the conductivity in two- and three-dimensional arrays using a computer simulation. Unlike in the conventional Coulomb glass models, in nanocrystal arrays the DOS has a fixed width in the limit of large disorder. The Coulomb gap triptych can be studied via tunneling experiments.

  11. An interatomic potential for studying CuZr bulk metallic glasses

    International Nuclear Information System (INIS)

    Paduraru, A.; Kenoufi, A.; Bailey, N.P.; Schioetz, J.

    2007-01-01

    Glass forming ability has been found in only a small number of binary alloys, one being CuZr. In order to simulate this glass, we fitted an interatomic potential within Effective Medium Theory (EMT). For this purpose we use basic properties of the B2 crystal structure as calculated from Density Functional Theory (DFT) or obtained from experiments. We then performed Molecular Dynamics (MD) simulations of the cooling process and studied the thermodynamics and structure of CuZr glass. We find that the potential gives a good description of the CuZr glass, with a glass transition temperature and elastic constants close to the experimental values. The local atomic order, as witnessed by the radial distribution function, is also consistent with similar experimental data. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  12. Interatomic potentials from rainbow scattering of keV noble gas atoms under axial surface channeling

    International Nuclear Information System (INIS)

    Schueller, A.; Wethekam, S.; Mertens, A.; Maass, K.; Winter, H.; Gaertner, K.

    2005-01-01

    For grazing scattering of keV Ne and Ar atoms from a Ag(1 1 1) and a Cu(1 1 1) surface under axial surface channeling conditions we observe well defined peaks in the angular distributions for scattered projectiles. These peaks can be attributed to 'rainbow-scattering' and are closely related to the geometry of potential energy surfaces which can be approximated by the superposition of continuum potentials along strings of atoms in the surface plane. The dependence of rainbow angles on the scattering geometry provides stringent tests on the scattering potentials. From classical trajectory calculations based on universal (ZBL), adjusted Moliere (O'Connor and Biersack), and individual interatomic potentials we obtain corresponding rainbow angles for comparison with the experimental data. We find good overall agreement with the experiments for a description of trajectories based on adjusted Moliere and individual potentials, whereas the agreement is poorer for potentials with ZBL screening

  13. Retrieval of interatomic separations of molecules from laser-induced high-order harmonic spectra

    International Nuclear Information System (INIS)

    Le, Van-Hoang; Nguyen, Ngoc-Ty; Jin, C; Le, Anh-Thu; Lin, C D

    2008-01-01

    We illustrate an iterative method for retrieving the internuclear separations of N 2 , O 2 and CO 2 molecules using the high-order harmonics generated from these molecules by intense infrared laser pulses. We show that accurate results can be retrieved with a small set of harmonics and with one or few alignment angles of the molecules. For linear molecules the internuclear separations can also be retrieved from harmonics generated using isotropically distributed molecules. By extracting the transition dipole moment from the high-order harmonic spectra, we further demonstrated that it is preferable to retrieve the interatomic separation iteratively by fitting the extracted dipole moment. Our results show that time-resolved chemical imaging of molecules using infrared laser pulses with femtosecond temporal resolutions is possible

  14. A general transformation to canonical form for potentials in pairwise interatomic interactions.

    Science.gov (United States)

    Walton, Jay R; Rivera-Rivera, Luis A; Lucchese, Robert R; Bevan, John W

    2015-06-14

    A generalized formulation of explicit force-based transformations is introduced to investigate the concept of a canonical potential in both fundamental chemical and intermolecular bonding. Different classes of representative ground electronic state pairwise interatomic interactions are referenced to a chosen canonical potential illustrating application of such transformations. Specifically, accurately determined potentials of the diatomic molecules H2, H2(+), HF, LiH, argon dimer, and one-dimensional dissociative coordinates in Ar-HBr, OC-HF, and OC-Cl2 are investigated throughout their bound potentials. Advantages of the current formulation for accurately evaluating equilibrium dissociation energies and a fundamentally different unified perspective on nature of intermolecular interactions will be emphasized. In particular, this canonical approach has significance to previous assertions that there is no very fundamental distinction between van der Waals bonding and covalent bonding or for that matter hydrogen and halogen bonds.

  15. Thermal conductance of suspended nanoribbons: interplay between strain and interatomic potential nonlinearity

    Science.gov (United States)

    Barreto, Roberto; Florencia Carusela, M.; Monastra, Alejandro G.

    2017-10-01

    We investigate the role that nonlinearity in the interatomic potential has on the thermal conductance of a suspended nanoribbon when it is subjected to a longitudinal strain. To focus on the first cubic and quartic nonlinear terms of a general potential, we propose an atomic system based on an α-β Fermi-Pasta-Ulam nearest neighbor interaction. We perform classical molecular dynamics simulations to investigate the contribution of longitudinal, transversal and flexural modes to the thermal conductance as a function of the α-β parameters and the applied strain. We compare the cases where atoms are allowed to vibrate only in plane (2D) with the case of vibrations in and out of plane (3D). We find that the dependence of conductance on α and β relies on a crossover phenomenon between linear/nonlinear delocalized/localized flexural and transversal modes, driven by an on/off switch of the strain.

  16. The role of tungsten in the change of interatomic bond in Nb-W alloy

    International Nuclear Information System (INIS)

    Arkharov, V.I.; Samojlenko, Z.A.; Darovskikh, E.G.

    1982-01-01

    To study the chemical inhomogeneity and the peculiarities in electronic structure of solid solutions in fracture region, the X-ray spectral studies of niobium-tungsten alloys with 0.5; 1.0; 12.0; 13.6; 23.g mass % W have been carried out. The W concentration changes on the fracture and the difference in the electron energy distribution in the 4d-band in comparison between the fracture and mocrosection are determined. The niobium doping with tungsten is shown to be accompanied by the increase in the fraction of locally bound electrons as compared to the collectivized one. Alloys with 12-13% W are the most homogeneous in composition and electrons energy state. This state is characterized by features the increased number of electrons with noncompensated spins in intercrystalline boundaries as compared to a crystallite thickness. These alloys have homogeneous properties in sample microvolumes and large interatomic binding force

  17. Interatomic Potential to Simulate Radiation Damage in Fe-Cr Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bonny, G.; Pasianot, R.; Terentyev, D.; Malerba, L.

    2011-03-15

    The report presents an Fe-Cr interatomic potential to model high-Cr ferritic alloys. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and experimental excess vibrational entropy and phase diagram. In addition, DFT calculated point-defect properties, both interstitial and substitutional, are well reproduced, as is the screw dislocation core structure. As a first validation of the potential, we study the precipitation hardening of Fe-Cr alloys via static simulations of the interaction between Cr precipitates and screw dislocations. It is concluded that the description of the dislocation core modification near a precipitate might have a significant influence on the interaction mechanisms observed in dynamic simulations.

  18. Density-functional formulation of the generalized pseudopotential theory. III. Transition-metal interatomic potentials

    Science.gov (United States)

    Moriarty, John A.

    1988-08-01

    The first-principles, density-functional version of the generalized pseudopotential theory (GPT) developed in papers I and II of this series [Phys. Rev. B 16, 2537 (1977); 26, 1754 (1982)] for empty- and filled-d-band metals is here extended to pure transition metals with partially filled d bands. The present focus is on a rigorous, real-space expansion of the bulk total energy in terms of widely transferable, structure-independent interatomic potentials, including both central-force pair interactions and angular-force triplet and quadruplet interactions. To accomplish this expansion, a specialized set of starting equations is derived from the basic local-density formalism for a pure metal, including refined expansions for the exchange-correlation terms and a simplified yet accurate representation of the cohesive energy. The parent pseudo-Green's-function formalism of the GPT is then used to develop these equations in a plane-wave, localized-d-state basis. In this basis, the cohesive energy divides quite naturally into a large volume component and a smaller structural component. The volume component,which includes all one-ion intra-atomic energy contributions, already gives a good description of the cohesion in lowest order. The structural component is expanded in terms of weak interatomic matrix elements and gives rise to a multi-ion series which establishes the interatomic potentials. Special attention is focused on the dominant d-electron contributions to this series and complete formal results for the two-ion, three-ion, and four-ion d-state potentials (vd2, vd3, and vd4) are derived. In addition, a simplified model is used to demonstrate that while vd3 can be of comparable importance to vd2, vd4 is inherently small and the series is rapidly convergent beyond three-ion interactions. Analytic model forms are also derived for vd2 and vd3 in the case of canonical d bands. In this limit, vd2 is purely attractive and varies with interatomic distance as r-10, while

  19. Retrieval of interatomic separations of molecules from laser-induced high-order harmonic spectra

    Energy Technology Data Exchange (ETDEWEB)

    Le, Van-Hoang; Nguyen, Ngoc-Ty [Department of Physics, University of Pedagogy, 280 An Duong Vuong, Ward 5, Ho Chi Minh City (Viet Nam); Jin, C; Le, Anh-Thu; Lin, C D [J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 (United States)

    2008-04-28

    We illustrate an iterative method for retrieving the internuclear separations of N{sub 2}, O{sub 2} and CO{sub 2} molecules using the high-order harmonics generated from these molecules by intense infrared laser pulses. We show that accurate results can be retrieved with a small set of harmonics and with one or few alignment angles of the molecules. For linear molecules the internuclear separations can also be retrieved from harmonics generated using isotropically distributed molecules. By extracting the transition dipole moment from the high-order harmonic spectra, we further demonstrated that it is preferable to retrieve the interatomic separation iteratively by fitting the extracted dipole moment. Our results show that time-resolved chemical imaging of molecules using infrared laser pulses with femtosecond temporal resolutions is possible.

  20. Atomistic simulations of TeO₂-based glasses: interatomic potentials and molecular dynamics.

    Science.gov (United States)

    Gulenko, Anastasia; Masson, Olivier; Berghout, Abid; Hamani, David; Thomas, Philippe

    2014-07-21

    In this work we present for the first time empirical interatomic potentials that are able to reproduce TeO2-based systems. Using these potentials in classical molecular dynamics simulations, we obtained first results for the pure TeO2 glass structure model. The calculated pair distribution function is in good agreement with the experimental one, which indicates a realistic glass structure model. We investigated the short- and medium-range TeO2 glass structures. The local environment of the Te atom strongly varies, so that the glass structure model has a broad Q polyhedral distribution. The glass network is described as weakly connected with a large number of terminal oxygen atoms.

  1. Hypothetical planar and nanotubular crystalline structures with five interatomic bonds of Kepler nets type

    Directory of Open Access Journals (Sweden)

    Aleksey I. Kochaev

    2017-02-01

    Full Text Available The possibility of metastable existence of planar and non-chiral nanotubular crystalline lattices in the form of Kepler nets of 34324, 3342, and 346 types (the notations are given in Schläfly symbols, using ab initio calculations, has researched. Atoms of P, As, Sb, Bi from 15th group and atoms of S, Se, Te from 16th group of the periodic table were taken into consideration. The lengths of interatomic bonds corresponding to the steadiest states for such were determined. We found that among these new composed structures crystals encountered strong elastic properties. Besides, some of them can possess pyroelectric and piezoelectric properties. Our results can be used for nanoelectronics and nanoelectromechanical devices designing.

  2. Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dharmawardhana, C.C. [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States); Misra, A. [Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States); Aryal, S.; Rulis, P. [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States); Ching, W.Y., E-mail: ccdxz8@mail.umkc.edu [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States)

    2013-10-15

    Atomic scale properties of calcium silicate hydrate (CSH), the main binding phase of hardened Portland cement, are not well understood. Over a century of intense research has identified almost 50 different crystalline CSH minerals which are mainly categorized by their Ca/Si ratio. The electronic structure and interatomic bonding in four major CSH crystalline phases with structures close to those found in hardened cement are investigated via ab initio methods. Our result reveals the critical role of hydrogen bonding and importance of specifying precise locations for water molecules. Quantitative analysis of contributions from different bond types to the overall cohesion shows that while the Si-O covalent bonds dominate, the hydrogen bonding and Ca-O bonding are also very significant. Calculated results reveal the correlation between bond topology and interlayer cohesion. The overall bond order density (BOD) is found to be a more critical measure than the Ca/Si ratio in classifying different CSH crystals.

  3. Interatomic Potential to Simulate Radiation Damage in Fe-Cr Alloys

    International Nuclear Information System (INIS)

    Bonny, G.; Pasianot, R.; Terentyev, D.; Malerba, L.

    2011-01-01

    The report presents an Fe-Cr interatomic potential to model high-Cr ferritic alloys. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and experimental excess vibrational entropy and phase diagram. In addition, DFT calculated point-defect properties, both interstitial and substitutional, are well reproduced, as is the screw dislocation core structure. As a first validation of the potential, we study the precipitation hardening of Fe-Cr alloys via static simulations of the interaction between Cr precipitates and screw dislocations. It is concluded that the description of the dislocation core modification near a precipitate might have a significant influence on the interaction mechanisms observed in dynamic simulations.

  4. Total scattering cross sections and interatomic potentials for neutral hydrogen and helium on some noble gases

    International Nuclear Information System (INIS)

    Ruzic, D.N.; Cohen, S.A.

    1985-04-01

    Measurements of energy-dependent scattering cross sections for 30 to 1800 eV D incident on He, Ne, Ar, and Kr, and for 40 to 850 eV He incident on He, Ar, and Kr are presented. They are determined by using the charge-exchange efflux from the Princeton Large Torus tokamak as a source of D or He. These neutrals are passed through a gas-filled scattering cell and detected by a time-of-flight spectrometer. The cross section for scattering greater than the effective angle of the apparatus (approx. =20 mrad) is found by measuring the energy-dependent attenuation of D or He as a function of pressure in the scattering cell. The interatomic potential is extracted from the data

  5. Collective excitation frequencies and vortices of a Bose-Einstein condensed state with gravitylike interatomic attraction

    International Nuclear Information System (INIS)

    Ghosh, Tarun Kanti

    2002-01-01

    We study the collective excitations of a neutral atomic Bose-Einstein condensate with gravitylike 1/r interatomic attraction induced by an electromagnetic wave. Using the time-dependent variational approach, we derive an analytical spectrum for monopole and quadrupole mode frequencies of a gravitylike self-bound Bose condensed state at zero temperature. We also analyze the excitation frequencies of the Thomas-Fermi-gravity (TF-G) and gravity (G) regimes. Our result agrees excellently with that of Giovanazzi et al. [Europhysics Lett., 56, 1 (2001)], which is obtained within the sum-rule approach. We also consider the vortex state. We estimate the superfluid coherence length and the critical angular frequencies to create a vortex around the z axis. We find that the TF-G regime can exhibit the superfluid properties more prominently than the G regime. We find that the monopole mode frequency of the condensate decreases due to the presence of a vortex

  6. The effect of interatomic potential in molecular dynamics simulation of low energy ion implantation

    International Nuclear Information System (INIS)

    Chan, H.Y.; Nordlund, K.; Peltola, J.; Gossmann, H.-J.L.; Ma, N.L.; Srinivasan, M.P.; Benistant, F.; Chan, Lap

    2005-01-01

    Being able to accurately predict dopant profiles at sub-keV implant energies is critical for the microelectronic industry. Molecular Dynamics (MD), with its capability to account for multiple interactions as energy lowers, is an increasingly popular simulation method. We report our work on sub-keV implantation using MD and investigate the effect of different interatomic potentials on the range profiles. As an approximation, only pair potentials are considered in this work. Density Functional Theory (DFT) is used to calculate the pair potentials for a wide range of dopants (B, C, N, F, Si, P, Ga, Ge, As, In and Sb) in single crystalline silicon. A commonly used repulsive potential is also included in the study. Importance of the repulsive and attractive regions of the potential has been investigated with different elements and we show that a potential depicting the right attractive forces is especially important for heavy elements at low energies

  7. An interatomic potential model for molecular dynamics simulation of silicon etching by Br+-containing plasmas

    International Nuclear Information System (INIS)

    Ohta, H.; Iwakawa, A.; Eriguchi, K.; Ono, K.

    2008-01-01

    An interatomic potential model for Si-Br systems has been developed for performing classical molecular dynamics (MD) simulations. This model enables us to simulate atomic-scale reaction dynamics during Si etching processes by Br + -containing plasmas such as HBr and Br 2 plasmas, which are frequently utilized in state-of-the-art techniques for the fabrication of semiconductor devices. Our potential form is based on the well-known Stillinger-Weber potential function, and the model parameters were systematically determined from a database of potential energies obtained from ab initio quantum-chemical calculations using GAUSSIAN03. For parameter fitting, we propose an improved linear scheme that does not require any complicated nonlinear fitting as that in previous studies [H. Ohta and S. Hamaguchi, J. Chem. Phys. 115, 6679 (2001)]. In this paper, we present the potential derivation and simulation results of bombardment of a Si(100) surface using a monoenergetic Br + beam

  8. Coulomb focusing and ''path'' interference of autoionizing electrons produced in 10 keV He+ + He collisions

    International Nuclear Information System (INIS)

    Swenson, J.K.; Burgdoerfer, J.; Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N.

    1991-01-01

    Autoionizing electrons emitted following low energy ion-atom collisions may scatter significantly from the receding spectator ion's attractive Coulomb field. In such cases the observed electron intensity is ''focused'' in the direction of the scattering ion as a result of the effective compression of the emission solid angle. In addition, interference may occur between trajectories, corresponding to electrons scattering around opposite sides of the ion, which lead to the same final laboratory electron energy and emission angle. This Coulomb ''path'' interference mechanism manifests itself in the uncharacteristically rapid angular dependence of the He target 2s 2 1 S autoionizing state measured near 0 degree following low energy He + + He collisions. A classical trajectory model for Coulomb focusing is presented and a semi-classical approximation is used to model the Coulomb ''path'' interference mechanism. In this description we account for the evolution of the phase of the autoionizing state until its decay and the path dependence of the amplitude of the emitted electron following decay of the autoionizing state. Calculated model lineshapes, which include contributions from adjacent overlapping resonances, reproduce quite well the angular dependence observed in the data near 0 degree. 14 refs., 7 figs

  9. Zeroth-order exchange energy as a criterion for optimized atomic basis sets in interatomic force calculations

    International Nuclear Information System (INIS)

    Varandas, A.J.C.

    1980-01-01

    A suggestion is made for using the zeroth-order exchange term, at the one-exchange level, in the perturbation development of the interaction energy as a criterion for optmizing the atomic basis sets in interatomic force calculations. The approach is illustrated for the case of two helium atoms. (orig.)

  10. VoroMQA: Assessment of protein structure quality using interatomic contact areas.

    Science.gov (United States)

    Olechnovič, Kliment; Venclovas, Česlovas

    2017-06-01

    In the absence of experimentally determined protein structure many biological questions can be addressed using computational structural models. However, the utility of protein structural models depends on their quality. Therefore, the estimation of the quality of predicted structures is an important problem. One of the approaches to this problem is the use of knowledge-based statistical potentials. Such methods typically rely on the statistics of distances and angles of residue-residue or atom-atom interactions collected from experimentally determined structures. Here, we present VoroMQA (Voronoi tessellation-based Model Quality Assessment), a new method for the estimation of protein structure quality. Our method combines the idea of statistical potentials with the use of interatomic contact areas instead of distances. Contact areas, derived using Voronoi tessellation of protein structure, are used to describe and seamlessly integrate both explicit interactions between protein atoms and implicit interactions of protein atoms with solvent. VoroMQA produces scores at atomic, residue, and global levels, all in the fixed range from 0 to 1. The method was tested on the CASP data and compared to several other single-model quality assessment methods. VoroMQA showed strong performance in the recognition of the native structure and in the structural model selection tests, thus demonstrating the efficacy of interatomic contact areas in estimating protein structure quality. The software implementation of VoroMQA is freely available as a standalone application and as a web server at http://bioinformatics.lt/software/voromqa. Proteins 2017; 85:1131-1145. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Core polarization and Coulomb displacement energies

    International Nuclear Information System (INIS)

    Shlomo, S.; Love, W.G.

    1982-01-01

    The contributions of core polarization terms (other than the Auerbach-Kahana-Weneser (AKW) effect) to Coulomb displacement energies of mirror nuclei near A = 16 and A = 40 are examined within the particle-vibration coupling model. The parameters of the model are determined using updated data on the locations and strengths of multipole core excitations. In the absence of relevant data an energy-weighted sum rule (EWSR) is exploited. Taking into account multipole excitations up to L = 5 and subtracting the contributions which are due to short-range correlations, significant contributions (1-3%) to ΔEsub(c) are found. These corrections arise from particle coupling to low-lying collective states (long-range correlations). The implications of these results on the Coulomb energy problem are discussed. (Auth.)

  12. Nuclear sizes and the Coulomb Displacement Energy

    International Nuclear Information System (INIS)

    Van der Werf, S.Y.

    1997-01-01

    Data on Coulomb Displacement Energies in the mass range A = 40 - 240 are analyzed in the deformed Liquid Drop model and in the independent particle model. Reduced half-widths of Woods-Saxon mean-field potential of the resulting neutron-excess distributions are deduced. It is argued that the Nolen-Schiffer anomaly may be lifted by allowing for a slight binding-energy dependence of the mean-field potential geometry. (author)

  13. Chaos near the Coulomb barrier. Nuclear molecules

    International Nuclear Information System (INIS)

    Strayer, M.R.

    1984-01-01

    The present work examines in detail the classical behavior of the α + 14 C and the 12 C + 12 C(O + ) collison at energies near the Coulomb barrier. The long-time motion of the compound nuclear system is identified in terms of its classical quasiperiodic and chaotic behavior. The consequences of this motion are discussed and interpreted in terms of the evolution of the system along a dynamical energy surface. 45 references

  14. Coulomb dissociation studies for astrophysical thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)

    1998-06-01

    The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)

  15. Coulomb excitation of radioactive 20, 21Na

    Science.gov (United States)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Pearson, C.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Lisetskiy, A. F.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2009-12-01

    The low-energy structures of the radioactive nuclei 20, 21Na have been examined using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of ˜ 5×106 ions/s were accelerated to 1.7MeV/A and Coulomb excited in a 0.5mg/cm^2 natTi target. Two TIGRESS HPGe clover detectors perpendicular to the beam axis were used for γ -ray detection, while scattered nuclei were observed by the Si detector BAMBINO. For 21Na , Coulomb excitation from the 3/2+ ground state to the first excited 5/2+ state was observed, while for 20Na , Coulomb excitation was observed from the 2+ ground state to the first excited 3+ and 4+ states. For both beams, B ( λ L) values were determined using the 2+ rightarrow 0+ de-excitation in 48Ti as a reference. The resulting B( E2) ↓ value for 21Na is 137±9 e^2fm^4, while the resulting B( λ L) ↓ values for 20Na are 55±6 e^2fm^4 for the 3+ rightarrow 2+ , 35.7±5.7 e^2 fm^4 for the 4+ rightarrow 2+ , and 0.154±0.030 μ_ N^2 for the 4+ rightarrow 3+ transitions. This analysis significantly improves the measurement of the 21Na B( E2) value, and provides the first experimental determination of B( λ L) values for the proton dripline nucleus 20Na .-1

  16. How to calculate the Coulomb scattering amplitude

    International Nuclear Information System (INIS)

    Grosse, H.; Narnhofer, H.; Thirring, W.

    1974-01-01

    The derivation of scattering amplitudes for Coulomb scattering is discussed. A derivation of the S-matrix elements for a dense set of states in momentum space is given in the framework of time dependent scattering theory. The convergence of the S-matrix is studied. A purely algebraic derivation of the S-matrix elements and phase shifts is also presented. (HFdV)

  17. D-wave resonances in three-body system Ps- with pure Coulomb and screened Coulomb (Yukawa) potentials

    International Nuclear Information System (INIS)

    Kar, S.; Ho, Y.K.

    2009-01-01

    We have investigated the doubly excited 1 D e resonance states of Ps - interacting with pure Coulomb and screened Coulomb (Yukawa) potentials employing highly correlated wave functions. For pure Coulomb interaction, in the framework of stabilization method and complex coordinate rotation method we have obtained two resonances below the n = 2 threshold of the Ps atom. For screened Coulomb interaction, we employ the stabilization method to extract resonance parameters. Resonance energies and widths for the 1 D e resonance states of Ps - for different screening parameter ranging from infinity (pure Coulomb case) to a small value are also reported. (author)

  18. Regularization of the Coulomb scattering problem

    International Nuclear Information System (INIS)

    Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.

    2004-01-01

    The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers

  19. Coulomb explosion of large penetrating molecular clusters

    International Nuclear Information System (INIS)

    Wegner, H.E.; Thieberger, P.

    1981-01-01

    The main purpose of these Coulomb explosion measurements is to determine what kind of structure these and other complex molecules may have and also to determine what other special phenomena may come into play as these complex molecules pass through matter. Although the first preliminary measurements involving the Coulomb explosion of these molecules was reported at this workshop last year, the results are briefly summarized before going on to the more recent measurements obtained with a completely new kind of detector system. This new image intensifier detector system, coupled with a microcomputer, has proven to be a valuable tool in the study of the Coulomb explosion of complex molecules that penetrate matter. In the future, with some additional improvements in the system, and much better statistics for most of the molecules studied to date, it is expected that much new information will be gained about the structure of many kinds of complex molecular ions including the special effects that may be encountered when these fast molecular ions penetrate matter

  20. Coulomb Logarithm in Nonideal and Degenerate Plasmas

    Science.gov (United States)

    Filippov, A. V.; Starostin, A. N.; Gryaznov, V. K.

    2018-03-01

    Various methods for determining the Coulomb logarithm in the kinetic theory of transport and various variants of the choice of the plasma screening constant, taking into account and disregarding the contribution of the ion component and the boundary value of the electron wavevector are considered. The correlation of ions is taken into account using the Ornstein-Zernike integral equation in the hypernetted-chain approximation. It is found that the effect of ion correlation in a nondegenerate plasma is weak, while in a degenerate plasma, this effect must be taken into account when screening is determined by the electron component alone. The calculated values of the electrical conductivity of a hydrogen plasma are compared with the values determined experimentally in the megabar pressure range. It is shown that the values of the Coulomb logarithm can indeed be smaller than unity. Special experiments are proposed for a more exact determination of the Coulomb logarithm in a magnetic field for extremely high pressures, for which electron scattering by ions prevails.

  1. Cold transfer between deformed, Coulomb excited nuclei

    International Nuclear Information System (INIS)

    Bauer, H.

    1998-01-01

    The scattering system 162 Dy → 116 Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high γ-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in 162 Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)

  2. Resonant Coulomb excitation of atomic nuclei propagating through a crystal in the channeling mode

    International Nuclear Information System (INIS)

    Stepanov, A.V.

    1996-01-01

    The Coulomb-excitation total cross section and the distribution of decay products originating from a resonant state of a nucleus interacting with a crystal lattice has been calculated for the case of a single inelastic collision (with respect to internal degrees of freedom in a nucleus). These observables have been expressed in terms of time-dependent correlators which describe thermal oscillations of lattice nuclei and the motion of the center of mass of a nucleus propagating across a crystal target in the channelling mode. An expression generalizing the spectrum of equivalent photons calculated by the Weizsaecker-Williams method is given

  3. Coulomb-free and Coulomb-distorted recolliding quantum orbits in photoelectron holography

    Science.gov (United States)

    Maxwell, A. S.; Figueira de Morisson Faria, C.

    2018-06-01

    We perform a detailed analysis of the different types of orbits in the Coulomb quantum orbit strong-field approximation (CQSFA), ranging from direct to those undergoing hard collisions. We show that some of them exhibit clear counterparts in the standard formulations of the strong-field approximation for direct and rescattered above-threshold ionization, and show that the standard orbit classification commonly used in Coulomb-corrected models is over-simplified. We identify several types of rescattered orbits, such as those responsible for the low-energy structures reported in the literature, and determine the momentum regions in which they occur. We also find formerly overlooked interference patterns caused by backscattered Coulomb-corrected orbits and assess their effect on photoelectron angular distributions. These orbits improve the agreement of photoelectron angular distributions computed with the CQSFA with the outcome of ab initio methods for high energy phtotoelectrons perpendicular to the field polarization axis.

  4. Coulomb-Sturmian separable expansion approach: Three-body Faddeev calculations for Coulomb-like interactions

    International Nuclear Information System (INIS)

    Papp, Z.; Plessas, W.

    1996-01-01

    We demonstrate the feasibility and efficiency of the Coulomb-Sturmian separable expansion method for generating accurate solutions of the Faddeev equations. Results obtained with this method are reported for several benchmark cases of bosonic and fermionic three-body systems. Correct bound-state results in agreement with the ones established in the literature are achieved for short-range interactions. We outline the formalism for the treatment of three-body Coulomb systems and present a bound-state calculation for a three-boson system interacting via Coulomb plus short-range forces. The corresponding result is in good agreement with the answer from a recent stochastic-variational-method calculation. copyright 1996 The American Physical Society

  5. Detection of a π-μ coulomb bound states

    International Nuclear Information System (INIS)

    Coombes, R.; Flexer, R.; Hall, A.

    1977-01-01

    The detection of hydrogen-like atoms is reported consisting of a negative (or positive) pion and a positive (or negative) muon in a coulomb bound state. These π-μ atoms are formed when the PI and μ from the decay have sufficiently small relative momentum to bind. Only the evidence related to the detection of these atoms is discussed. The Ksub(L)sup(0) particles which give rise to ''atomic beam'' are produced by 30 GeV proton beam striking a 10 cm beryllium target. From analysis of data 33 events are chosen. For each of these events the parameter α = Psub(π)-Psub(μ)/Psub(π)+Psub(μ) is plotted, where PPI is the pion momentum, and Pμ is the muon momentum. A study of this parameter through an examination of e + e - pairs indicates that the acceptance of apparatus is flat within 30%. The data shows a clear peak at the predicted point containing a total of 21 events with an estimated background of 3 events. The width of the peak is consistent with that expected from measurement errors

  6. Proton decay theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay

  7. Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.

    Science.gov (United States)

    Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang

    2013-07-12

    We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.

  8. Phases and amplitudes for a modified repulsive Coulomb field

    International Nuclear Information System (INIS)

    Chidichimo, M.C.; Davison, T.S.

    1990-01-01

    The asymptotic form of the radial wave function for positive-energy states is calculated for the case of a repulsive Coulomb field. The cases of a pure Coulomb potential and a modified Coulomb potential are considered. Second-order analytic solutions for the amplitudes and phases are obtained when the modifications to the pure Coulombic potential take the form αr -2 +βr -3 +γr -4 , using the Jeffreys or WKB method. For the case of a pure Coulomb field, numerical results obtained from this method were compared with ''exact'' numerical results that were obtained using the analytic properties of the Coulomb wave functions. Tables are presented to show the conditions under which the method is accurate

  9. Coulomb excitation of {sup 8}Li

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Marlete; Britos, Tatiane Nassar [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Ciencias Exatas e da Terra; Descouvemont, Pierre [Universite Libre de Bruxelles (ULB), Brussels (Belgium). Physique Nucleaire Theorique et Physique Mathematique; Lepine-Szily, Alinka; Lichtenthaler Filho, Rubens; Barioni, Adriana; Silva, Diego Medeiros da; Pereira, Dirceu; Mendes Junior, Djalma Rosa; Pires, Kelly Cristina Cezaretto; Gasques, Leandro Romero; Morais, Maria Carmen; Added, Nemitala; Neto Faria, Pedro; Rec, Rafael [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear

    2012-07-01

    Full text: This work shows the Coulomb Excitation of {sup 8}Li on targets that have effectively behavior of Rutherford in angles and energies of interest for determining the value of the B(E2) electromagnetic transition. Theoretical aspects involved in this type of measure, known as COULEX [1], and some results in the literature [2-3] will be presented. Some problems with the targets and measurement system while performing an experiment on Coulomb Excitation of {sup 8}Li will be discussed: the energy resolution, background, possible contributions of the primary beam and also the excited states of the target near the region of elastic and inelastic peaks. They will be illustrated by measurements of the Coulomb Excitation of {sup 8}Li on targets of {sup 197}Au and {sup 208}Pb using the system RIBRAS(Brazilian Radioactive Ion Beam). In this case, the {sup 8}Li beam(T{sub 1/2} = 838 ms)is produced by {sup 9}Be({sup 7}Li;{sup 8} Li){sup 8}Be reaction from RIBRAS system which is installed at Instituto de Fisica of the Universidade de Sao Paulo. The primary {sup 7L}i beam is provided by Pelletron Accelerator. [1] K. Alder and A. Winther, Electromagnetic Excitation, North-Holland, New York, 1975; [2] P. Descouvemont and D. Baye, Phys. Letts. B 292, 235-238, 1992; [3] J. A. Brown, F. D. Becchetti, J. W. Jaenecke, K, Ashktorab, and D. A. Roberts, J. J. Kolata, R. J. Smith, and K. Lamkin, R. E. Warner, Phys. Rev. Letts., 66, 19, 1991; [4] R. J. Smith, J. J Kolata, K. Lamkin and A. Morsard, F. D. Becchetti, J. A. Brown, W. Z. Liu, J. W. Jaenecke, and D. A. Roberts, R. E. Warner, Phys. Rev. C, 43, 5, 1991. (author)

  10. Ordering transitions induced by Coulomb interactions

    International Nuclear Information System (INIS)

    Rovere, M.; Senatore, G.; Tosi, M.P.

    1988-11-01

    We briefly review recent progress in treating phase transitions to ordered states driven by Coulomb interactions. Wigner crystallization of the one-component plasma, in the degenerate Fermi limit and in the classical limit, is the foremost example and developments in its theory are discussed in some detail. Attention is also given to quasi-twodimensional realizations of the plasma model in the laboratory. The usefulness of these ideas in relation to freezing and ordering transitions is illustrated with reference to alkali metals, elemental and polar semiconductors, and various types of ionic systems (molten salts, colloidal suspensions and astrophysical plasmas). (author). 70 refs, 5 figs

  11. Resonances in the two centers Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Marcello

    2012-09-14

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  12. Resonances in the two centers Coulomb system

    International Nuclear Information System (INIS)

    Seri, Marcello

    2012-01-01

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  13. Dynamics in few body Coulomb problems

    International Nuclear Information System (INIS)

    Ovchinnikov, S.Y.; Macek, J.H.; Tantawi, R.S.; Sabbah, A.S.

    1999-01-01

    We develop the 'positive energy Sturmian technique' for the solution of time-dependent Schroedinger equations which describe few Coulomb centers with scattering initial conditions. The 'positive energy Sturmian technique' is based on the following main steps: (i) time-dependent scaled transformation; (ii) Fourier transformation into the frequency domain; (iii) outgoing wave Sturmian expansions; and (iv) solution of coupled equations. The technique has been applied in electron-atom and ion-atom collisions for calculations of energy and angular distributions of emitted electrons and excitations of atoms. Refs. 2 (author)

  14. Formation and decay of hot nuclei

    International Nuclear Information System (INIS)

    Planeta, R.

    1999-01-01

    Multifragmentation of excited nuclei of the 40 Ca + 40 Ca reaction at 35 MeV/nucleon has been studied using the multidetector system AMPHORA.Using special gating and reconstruction procedures we have observed projectile - like fragments, PLF, with different degrees of excitation, and also highly excited composite systems, CS, from incomplete fusion. This reconstruction procedure was verified by the Monte Carlo computer code of Sosin which describes the collision of heavy ions as a random walk transfer of nucleons. Agreement between the experimental data and the predictions of the code have strongly supported the thermalized character of the created hot sources. To investigate their decay characteristics we have used the conventional reduced velocity correlation method and also two signatures based on special features of particle emission from the 'freeze out volume'. They are: (i) - the distribution of the squared momentum of the heaviest emitted fragment; (ii) - the focusing of fragments by the Coulomb field of the decaying system. For the PLF, both methods, the reduced velocity correlation, and the distribution of the squared momentum of the heaviest emitted fragment, support the binary sequential decay, BSD, scenario below 3 MeV/nucleon excitation energy and prompt multifragmentation, PM, for higher excitations. For CS which has about twice the PLF electric charge the Coulomb focusing effect could be also observed. In that case all three signatures indicate prompt multifragmentation of the system contained inside the 'freeze-out' volume. Consistency of all these observations show that both the distribution of the squared momentum of the heaviest emitted fragment and the Coulomb focusing effect can be used as signatures of spinodal decomposition of 'hot' nuclear systems. (author)

  15. Bound and resonant states in Coulomb-like potentials

    International Nuclear Information System (INIS)

    Papp, Z.

    1985-12-01

    The potential separable expansion method was generalized for calculating bound and resonant states in Coulomb-like potentials. The complete set of Coulomb-Sturmian functions was taken as the basis to expand the short-range potential. On this basis the matrix elements of the Coulomb-Green functions were given in closed form as functions of the (complex) energy. The feasibility of the method is demonstrated by a numerical example. (author)

  16. 3D Oscillator and Coulomb Systems reduced from Kahler spaces

    OpenAIRE

    Nersessian, Armen; Yeranyan, Armen

    2003-01-01

    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kahler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kahler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid are originated. Then we construct the superintegrable oscillator system on three-dimensional sphere and ...

  17. Coulomb sum rules in the relativistic Fermi gas model

    International Nuclear Information System (INIS)

    Do Dang, G.; L'Huillier, M.; Nguyen Giai, Van.

    1986-11-01

    Coulomb sum rules are studied in the framework of the Fermi gas model. A distinction is made between mathematical and observable sum rules. Differences between non-relativistic and relativistic Fermi gas predictions are stressed. A method to deduce a Coulomb response function from the longitudinal response is proposed and tested numerically. This method is applied to the 40 Ca data to obtain the experimental Coulomb sum rule as a function of momentum transfer

  18. Hyperspherical Coulomb spheroidal basis in the Coulomb three-body problem

    International Nuclear Information System (INIS)

    Abramov, D. I.

    2013-01-01

    A hyperspherical Coulomb spheroidal (HSCS) representation is proposed for the Coulomb three-body problem. This is a new expansion in the set of well-known Coulomb spheroidal functions. The orthogonality of Coulomb spheroidal functions on a constant-hyperradius surface ρ = const rather than on a constant-internuclear-distance surface R = const, as in the traditional Born-Oppenheimer approach, is a distinguishing feature of the proposed approach. Owing to this, the HSCS representation proves to be consistent with the asymptotic conditions for the scattering problem at energies below the threshold for three-body breakup: only a finite number of radial functions do not vanish in the limit of ρ→∞, with the result that the formulation of the scattering problem becomes substantially simpler. In the proposed approach, the HSCS basis functions are considerably simpler than those in the well-known adiabatic hyperspherical representation, which is also consistent with the asymptotic conditions. Specifically, the HSCS basis functions are completely factorized. Therefore, there arise no problems associated with avoided crossings of adiabatic hyperspherical terms.

  19. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling......) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multi-electron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters...... on Coulomb drag in CQD systems....

  20. Empirical Coulomb matrix elements and the mass of 22Al

    International Nuclear Information System (INIS)

    Whitehead, R.R.; Watt, A.; Kelvin, D.; Rutherford, H.J.

    1976-01-01

    An attempt has been made to obtain a set of Coulomb matrix elements which fit the known Coulomb energy shifts in the nuclei of mass 18 to 22. The interaction obtained fits the data well with only a few exceptions, one of these being the Coulomb shift of the notorious third 0 + state in 18 Ne. These Coulomb matrix elements are used together with the Chung-Wildenthal interaction to obtain a new prediction for the mass excess of 22 Al. The results indicate that 22 Al should be bound against proton emission. (Auth.)

  1. Asymptotic freedom in the axial and Coulomb gauges

    International Nuclear Information System (INIS)

    Frenkel, J.; Taylor, J.C.

    1976-01-01

    The sources of the negative contribution to the charge renormalization factor gsup(B)/g-1 in Yang-Mills theories are investigated in the axial and Coulomb gauges. In the axial gauge, a Kaellen dispersion relation exists but the spectral function is not positive definite because of the prescription that is used to integrate the singular polarization vectors. In the Coulomb gauge, the negative contributions are (to the lowest order) isolated in the Coulomb self-energy corrections to the Coulomb field. (Auth.)

  2. Concerning the theory of radiation cascades of atomic collisions in a solid with an arbitrary interatomic interaction potential

    International Nuclear Information System (INIS)

    Ryazanov, A.I.; Metelkin, E.V.

    1980-01-01

    Cascades of atomic collisions created by high energy particles as a result of irradiation of solids by them are considered. The solution of the problem is based on the investigation of the Boltzmann stationary kinetic equation for moving atoms. For this equation a model scattering indicatrix is constructed with an arbitrary form of the potential of interaction of moving atoms with lattice atoms. The choice of the model scattering indicatrix of atoms is determined by the normalization, the average energy loss in a single collision and by the deviation of the energy losses really occurring in the collision from the mean value, as well as by the initial kinetic equation for moving atoms. The energy distribution of moving atoms for arbitrary interatomic interaction potentials has been obtained using the constructed model scattering indicatrix. On the basis of the theory constructed a cascade is calculated with an interatomic interaction potential in the form of the Thomas-Fermi potential and the power potential. (author)

  3. Ultrafast dynamics of Coulomb correlated excitons in GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Mycek, M.A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1995-12-01

    The author measures the transient nonlinear optical response of room temperature excitons in gallium arsenide quantum wells via multi-wave mixing experiments. The dynamics of the resonantly excited excitons is directly reflected by the ultrafast decay of the induced nonlinear polarization, which radiates the detected multi-wave mixing signal. She characterizes this ultrafast coherent emission in both amplitude and phase, using time- and frequency-domain measurement techniques, to better understand the role of Coulomb correlation in these systems. To interpret the experimental results, the nonlinear optical response of a dense medium is calculated using a model including Coulomb interaction. She contributes three new elements to previous theoretical and experimental studies of these systems. First, surpassing traditional time-integrated measurements, she temporally resolves the amplitude of the ultrafast coherent emission. Second, in addition to measuring the third-order four-wave mixing signal, she also investigates the fifth-order six-wave mixing response. Third, she characterizes the ultrafast phase dynamics of the nonlinear emission using interferometric techniques with an unprecedented resolution of approximately 140 attoseconds. The author finds that effects arising from Coulomb correlation dominate the nonlinear optical response when the density of excitons falls below 3 {times} 10{sup 11} cm{sup {minus}2}, the saturation density. These signatures of Coulomb correlation are investigated for increasing excitation density to gradually screen the interactions and test the validity of the model for dense media. The results are found to be qualitatively consistent with both the predictions of the model and with numerical solutions to the semiconductor Bloch equations. Importantly, the results also indicate current experimental and theoretical limitations, which should be addressed in future research.

  4. Spectral sum for the color-Coulomb potential in SU(3) Coulomb gauge lattice Yang-Mills theory

    International Nuclear Information System (INIS)

    Nakagawa, Y.; Nakamura, A.; Saito, T.; Toki, H.

    2010-01-01

    We discuss the essential role of the low-lying eigenmodes of the Faddeev-Popov (FP) ghost operator on the confining color-Coulomb potential using SU(3) quenched lattice simulations in the Coulomb gauge. The color-Coulomb potential is expressed as a spectral sum of the FP ghost operator and has been explored by partially summing the FP eigenmodes. We take into account the Gribov copy effects that have a great impact on the FP eigenvalues and the color-Coulomb potential. We observe that the lowest eigenvalue vanishes in the thermodynamic limit much faster than that in the Landau gauge. The color-Coulomb potential at large distances is governed by the near-zero FP eigenmodes; in particular, the lowest one accounts for a substantial portion of the color-Coulomb string tension comparable to the Wilson string tension.

  5. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Multiscale Science Dept.; Swiler, Laura P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Optimization and Uncertainty Quantification Dept.; Trott, Christian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Scalable Algorithms Dept.; Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Dept.; Tucker, Garritt J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Dept.; Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering

    2015-03-15

    Here, we present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

  6. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.P., E-mail: athomps@sandia.gov [Multiscale Science Department, Sandia National Laboratories, PO Box 5800, MS 1322, Albuquerque, NM 87185 (United States); Swiler, L.P., E-mail: lpswile@sandia.gov [Optimization and Uncertainty Quantification Department, Sandia National Laboratories, PO Box 5800, MS 1318, Albuquerque, NM 87185 (United States); Trott, C.R., E-mail: crtrott@sandia.gov [Scalable Algorithms Department, Sandia National Laboratories, PO Box 5800, MS 1322, Albuquerque, NM 87185 (United States); Foiles, S.M., E-mail: foiles@sandia.gov [Computational Materials and Data Science Department, Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185 (United States); Tucker, G.J., E-mail: gtucker@coe.drexel.edu [Computational Materials and Data Science Department, Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185 (United States); Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104 (United States)

    2015-03-15

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

  7. Low-order moment expansions to tight binding for interatomic potentials: Successes and failures

    International Nuclear Information System (INIS)

    Kress, J.D.; Voter, A.F.

    1995-01-01

    We discuss the use of moment-based approximations to tight binding. Using a maximum entropy form for the electronic density of states, we show that a general interatomic potential can be defined that is suitable for molecular-dynamics simulations and has several other desirable features. For covalent materials (C and Si), properties where the atoms are in equivalent environments are well converged at low-order moments. For defect environments, which offer a more critical (and relevant) test, the method is found to give less satisfactory results. For example, the vacancy formation energy for Si is too low by ∼2 eV at 10 moments relative to exact tight binding. Attempts to improve the accuracy were unsuccessful, leading to the conclusion that potentials based on this approach are inadequate for covalent materials. We speculate that this may be a deficiency of low-order moment methods in general. For metals, in contrast to the covalent systems, we find that the low-order moment approach is better behaved. This finding is consistent with the success of existing empirical fourth-moment potentials for metals

  8. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    International Nuclear Information System (INIS)

    Thompson, A.P.; Swiler, L.P.; Trott, C.R.; Foiles, S.M.; Tucker, G.J.

    2015-01-01

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum

  9. Probing the interatomic potential of solids with strong-field nonlinear phononics

    Science.gov (United States)

    von Hoegen, A.; Mankowsky, R.; Fechner, M.; Först, M.; Cavalleri, A.

    2018-03-01

    Nonlinear optical techniques at visible frequencies have long been applied to condensed matter spectroscopy. However, because many important excitations of solids are found at low energies, much can be gained from the extension of nonlinear optics to mid-infrared and terahertz frequencies. For example, the nonlinear excitation of lattice vibrations has enabled the dynamic control of material functions. So far it has only been possible to exploit second-order phonon nonlinearities at terahertz field strengths near one million volts per centimetre. Here we achieve an order-of-magnitude increase in field strength and explore higher-order phonon nonlinearities. We excite up to five harmonics of the A1 (transverse optical) phonon mode in the ferroelectric material lithium niobate. By using ultrashort mid-infrared laser pulses to drive the atoms far from their equilibrium positions, and measuring the large-amplitude atomic trajectories, we can sample the interatomic potential of lithium niobate, providing a benchmark for ab initio calculations for the material. Tomography of the energy surface by high-order nonlinear phononics could benefit many aspects of materials research, including the study of classical and quantum phase transitions.

  10. Physical Realization of von Neumann Lattices in Rotating Bose Gases with Dipole Interatomic Interactions.

    Science.gov (United States)

    Cheng, Szu-Cheng; Jheng, Shih-Da

    2016-08-22

    This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions.

  11. Development of an interatomic EAM type potential for Zr; Desarrollo de un potencial interatomico del tipo EAM para Zr

    Energy Technology Data Exchange (ETDEWEB)

    Pasianot, R C; Monti, A M [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Materiales

    1997-12-31

    In the present work are developed interatomic potentials of the embedded atom type (EAM) adequate for computer simulation of microstructural defects in the Zr lattice. It is observed that the less repulsive potential agrees better with the experimental data of the self-interstitial relaxation volume and predicts the basal crowdion as the stable configuration, the basal dumbbell having a formation energy slightly higher (0.01 eV). (author). 9 refs., 1 fig., 3 tabs.

  12. Heat Coulomb blockade of one ballistic channel

    Science.gov (United States)

    Sivre, E.; Anthore, A.; Parmentier, F. D.; Cavanna, A.; Gennser, U.; Ouerghi, A.; Jin, Y.; Pierre, F.

    2018-02-01

    Quantum mechanics and Coulomb interaction dictate the behaviour of small circuits. The thermal implications cover fundamental topics from quantum control of heat to quantum thermodynamics, with prospects of novel thermal machines and an ineluctably growing influence on nanocircuit engineering. Experimentally, the rare observations thus far include the universal thermal conductance quantum and heat interferometry. However, evidence for many-body thermal effects paving the way to markedly different heat and electrical behaviours in quantum circuits remains wanting. Here we report on the observation of the Coulomb blockade of electronic heat flow from a small metallic circuit node, beyond the widespread Wiedemann-Franz law paradigm. We demonstrate this thermal many-body phenomenon for perfect (ballistic) conduction channels to the node, where it amounts to the universal suppression of precisely one quantum of conductance for the transport of heat, but none for electricity. The inter-channel correlations that give rise to such selective heat current reduction emerge from local charge conservation, in the floating node over the full thermal frequency range (laws for thermal transport in nanocircuits.

  13. Pseudo-Coulomb potential in singlet superconductivity

    International Nuclear Information System (INIS)

    Daemen, L.L.; Overhauser, A.W.

    1988-01-01

    Reduction of the screened Coulomb potential parameter μ to μ/sup */ = μ/[1+μ ln(E/sub F//(h/2π)ω/sub D/)] is related to the pair correlation function at r = 0. This correlation function is calculated for both the simple Cooper-pair problem and standard Bardeen-Cooper-Schrieffer (BCS) theory by use of a two-square-well model (with λ and μ describing the attraction and repulsion). Results are compared with values obtained for a one-square-well model (having the suitable net attraction, e.g., λ-μ/sup */ in the BCS case). For the BCS case, the ''true'' pair correlation at r = 0 is reduced by a factor (μ/sup *//μ) 2 relative to the fictitious (one-square-well) value (even though Δ is the same for both models). The reduction factor is typically ≅(1/25. It follows that any short-range attractive contribution to superconducting pairing will suffer a reduction similar to that for the Coulomb repulsion

  14. Coulomb excitation of radioactive {sup 79}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Lister, C.J.; Blumenthal, D.; Davids, C.N. [and others

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  15. Elastic Coulomb breakup of 34Na

    Science.gov (United States)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  16. 4-center STO interelectron repulsion integrals with Coulomb Sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2018-01-01

    Abstract We present a method for evaluating 4-center electron repulsion integrals (ERI) for Slater-type orbitals by way of expansions in terms of Coulomb Sturmians. The ERIs can then be evaluated using our previously published methods for rapid evaluation of Coulomb Sturmians through hyperspherical...

  17. Coulomb corrections in the low-energy scattering

    International Nuclear Information System (INIS)

    Mur, V.D.; Popov, V.S.

    1985-01-01

    Renormalization of the coefficients of the ''effective range expansion'' is considered for the short-range Coulomb problem. The exactly solvable model of the Coulomb plus short range potential is considered. Exact solutions are compared with approximations frequently used in the theory of hadronic atoms

  18. Two-center Coulomb problem with Calogero interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hakobyan, T., E-mail: tigran.hakobyan@ysu.am; Nersessian, A., E-mail: arnerses@ysu.am [Armenia Tomsk Polytechnic University, Yerevan State University (Russian Federation)

    2017-03-15

    We show that the Calogero-type perturbation preserves the integrability and partial separation of variables for the Stark–Coulomb and two-center Coulomb problems, and present the explicit expressions of their constants of motion. We reveal that this perturbation preserves the spectra of initial systems, but leads to the change of degree of degeneracy.

  19. Known-to-Unknown Approach to Teach about Coulomb's Law

    Science.gov (United States)

    Thamburaj, P. K.

    2007-01-01

    Analogies from life experiences help students understand various relationships presented in an introductory chemistry course. Coulomb's law is a complex relationship encountered in introductory general chemistry. A proper understanding of the relationships between the quantities involved in Coulomb's law is necessary in order for students to…

  20. Coulomb-gas scaling, superfluid films, and the XY model

    International Nuclear Information System (INIS)

    Minnhagen, P.; Nylen, M.

    1985-01-01

    Coulomb-gas-scaling ideas are invoked as a link between the superfluid density of two-dimensional 4 He films and the XY model; the Coulomb-gas-scaling function epsilon(X) is extracted from experiments and is compared with Monte Carlo simulations of the XY model. The agreement is found to be excellent

  1. Antilocalization of Coulomb Blockade in a Ge-Si Nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum

    2014-01-01

    The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...

  2. Generalized coherent states for the Coulomb problem in one dimension

    International Nuclear Information System (INIS)

    Nouri, S.

    2002-01-01

    A set of generalized coherent states for the one-dimensional Coulomb problem in coordinate representation is constructed. At first, we obtain a mapping for proper transformation of the one-dimensional Coulomb problem into a nonrotating four-dimensional isotropic harmonic oscillator in the hyperspherical space, and the generalized coherent states for the one-dimensional Coulomb problem is then obtained in exact closed form. This exactly soluble model can provide an adequate means for a quantum coherency description of the Coulomb problem in one dimension, sample for coherent aspects of the exciton model in one-dimension example in high-temperature superconductivity, semiconductors, and polymers. Also, it can be useful for investigating the coherent scattering of the Coulomb particles in one dimension

  3. Separable expansions for local potentials with Coulomb interactions

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1976-01-01

    If two particles are interacting via a short range potential and a repulsive Coulomb potential the t matrix can be written as a sum of the Coulomb and the ''nuclear'' t matrices. In order to solve the three-nucleon problem with Coulomb interactions usually we need a separable representation of this ''nuclear'' t matrix. A recently proposed method for finding a separable expansion for local potentials is here extended to find a rapidly convergent separable expansion, with analytic form factors, for the ''nuclear'' part of the t matrix of a local potential, in the presence of Coulomb interactions. The method is illustrated for a two-term Malfliet-Tjon potential. In each rank the ''nuclear'' phase shift is close to the corresponding phase shift when the Coulomb interaction is switched off

  4. Eikonal representation of N-body Coulomb scattering amplitudes

    International Nuclear Information System (INIS)

    Fried, H.M.; Kang, K.; McKellar, B.H.J.

    1983-01-01

    A new technique for the construction of N-body Coulomb scattering amplitudes is proposed, suggested by the simplest case of N = 2: Calculate the scattering amplitude in eikonal approximation, discard the infinite phase factors which appear upon taking the limit of a Coulomb potential, and treat the remainder as an amplitude whose absolute value squared produces the exact, Coulomb differential cross section. The method easily generalizes to the N-body Coulomb problem for elastic scattering, and for inelastic rearrangement scattering of Coulomb bound states. We give explicit results for N = 3 and 4; in the N = 3 case we extract amplitudes for the processes (12)+3->1+2+3 (breakup), (12)+3->1+(23) (rearrangement), and (12)+3→(12)'+3 (inelastic scattering) as residues at the appropriate poles in the free-free amplitude. The method produces scattering amplitudes f/sub N/ given in terms of explicit quadratures over (N-2) 2 distinct integrands

  5. The Coulomb potential in quantum mechanics and related topics

    International Nuclear Information System (INIS)

    Haeringen, H. van.

    1978-01-01

    This dissertation consists of an analytic study of the Coulomb interaction in nonrelativistic quantum mechanics and some related topics. The author investigates in a number of self-contained articles various interesting and important properties of the Coulomb potential. Some of these properties are shared by other potentials which also play a role in quantum mechanics. For such related interactions a comparative study is made. The principal difficulties in the description of proton-deuteron scattering and break-up reactions, due to the Coulomb interaction, are studied by working out a simple model. The bound states are studied for the Coulomb plus Yamaguchi potential, for the symmetric shifted Coulomb potential, and for local potentials with an inverse-distance-squared asymptotic behaviour. (Auth.)

  6. Role amplification of the coulomb interaction in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok; Soni, S K; Pancholi, S K; Gupta, S L [AN SSSR, Moscow. Radiotekhnicheskij Inst.

    1976-10-01

    The genarally adopted estimate of coulomb interaction in nuclear reactions based on the comparison of relative energies of real particles participating in the reaction with the coulomb barrier has been shown to provide wrong presentation of the role of coulomb interaction in the reaction mechanism. The relative energy of particles participating in virtual processes forming the reaction mechanism and its relation to the coulomb barrier turn out to be tens of per cent less than for the particles in an inlet channel. This is the main reason of increasing the role of coulomb interaction in the reaction mechanism. This increase is particularly significant for nuclei with large charges, in particular, in heavy ion reaction.

  7. Interplay between superconductivity and Coulomb blockade

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Thomas; Sprenger, Susanne; Scheer, Elke [Universitaet Konstanz (Germany)

    2016-07-01

    Studying the interplay between superconductivity and Coulomb blockade (CB) can be achieved by investigating an all superconducting single electron transistor (SSET) consisting of an island coupled to the leads by two tunneling contacts. The majority of experiments performed so far were using superconducting tunnel contacts made from oxide layers, in which multiple Andreev reflections (MAR) can be excluded. Using a mechanically controlled break junction (MCBJ) made of aluminum enables tuning the contributions of MAR in one junction continuously and thereby addressing different transport regimes within the same sample. Our results offer the possibility to attribute particular features in the transport characteristics to the transmission probabilities of individual modes in the MCBJ contact. We discuss our findings in terms of dynamical CB, SSET behaviour and MAR when continuously opening the MCBJ from the fully closed state to a tunneling contact.

  8. Tests of a Coulomb-nuclear polarimeter

    International Nuclear Information System (INIS)

    Pauletta, G.; University of Texas, Austin, TX, 78712)

    1989-01-01

    We report on the development and testing of a polarimeter for the high energy polarized proton and antiproton beam at Fermi National Accelerator Laboratory (FNAL). The polarimeter was designed to make use of a small but well-known analyzing power in the region of Coulomb-nuclear interference (CNI) in order to obtain an absolute measurement of the polarization. Feasibility was established in the course of a brief running period at the end of the last fixed-target period at FNAL and potential for considerable improvement was revealed. Beam-time was insufficient to measure polarization accurately but the data obtained bears out design expectations for the beam-line and confirms polarization-tagging techniques to within uncertainties

  9. The ghost propagator in Coulomb gauge

    International Nuclear Information System (INIS)

    Watson, P.; Reinhardt, H.

    2011-01-01

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  10. 6d, Coulomb branch anomaly matching

    Science.gov (United States)

    Intriligator, Kenneth

    2014-10-01

    6d QFTs are constrained by the analog of 't Hooft anomaly matching: all anomalies for global symmetries and metric backgrounds are constants of RG flows, and for all vacua in moduli spaces. We discuss an anomaly matching mechanism for 6d theories on their Coulomb branch. It is a global symmetry analog of Green-Schwarz-West-Sagnotti anomaly cancellation, and requires the apparent anomaly mismatch to be a perfect square, . Then Δ I 8 is cancelled by making X 4 an electric/magnetic source for the tensor multiplet, so background gauge field instantons yield charged strings. This requires the coefficients in X 4 to be integrally quantized. We illustrate this for theories. We also consider the SCFTs from N small E8 instantons, verifying that the recent result for its anomaly polynomial fits with the anomaly matching mechanism.

  11. Effective temperature in relaxation of Coulomb glasses.

    Science.gov (United States)

    Somoza, A M; Ortuño, M; Caravaca, M; Pollak, M

    2008-08-01

    We study relaxation in two-dimensional Coulomb glasses up to macroscopic times. We use a kinetic Monte Carlo algorithm especially designed to escape efficiently from deep valleys around metastable states. We find that, during the relaxation process, the site occupancy follows a Fermi-Dirac distribution with an effective temperature much higher than the real temperature T. Long electron-hole excitations are characterized by T(eff), while short ones are thermalized at T. We argue that the density of states at the Fermi level is proportional to T(eff) and is a good thermometer to measure it. T(eff) decreases extremely slowly, roughly as the inverse of the logarithm of time, and it should affect hopping conductance in many experimental circumstances.

  12. Effective Coulomb interaction in multiorbital system

    International Nuclear Information System (INIS)

    Hase, Izumi; Yanagisawa, Takashi

    2013-01-01

    Transition metal atom generally takes various valences, and sometimes there are some 'missing valences', for example Fe usually takes 2+, 3+ and 5+, but does not take other valences so often. We have calculated the atomic multiplet energies for the high-spin and lowspin configurations within the ligand-field theory and the Hartree-Fock approximation, and found that the Coulomb interaction energy (U eff ) becomes small when the valence is 'missing'. In case U eff B /Fe only when U eff increased in most cases, but in some special cases U eff decreases and falls below the value U − 3J, which is the least value of the undistorted system.

  13. Coulomb excitation of {sup 107}Sn

    Energy Technology Data Exchange (ETDEWEB)

    DiJulio, D.D.; Cederkall, J.; Fahlander, C. [Lund University, Physics Department, 118, Lund (Sweden); Ekstroem, A. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Hjorth-Jensen, M. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Albers, M.; Blazhev, A.; Fransen, C.; Geibel, K.; Hess, H.; Reiter, P.; Seidlitz, M.; Taprogge, J.; Warr, N. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Bildstein, V.; Gernhaeuser, R.; Wimmer, K. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Darby, I.; Witte, H. de [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Diriken, J. [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Studiecentrum voor Kernenergie/Centre d' Etude de l' energie Nucleaire (SCK CEN), Mol (Belgium); Goergen, A.; Siem, S.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Lutter, R. [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Garching (Germany); Scheck, M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Walle, J.V. de [PH Department, Geneva 23 (Switzerland); Voulot, D.; Wenander, F. [AB Department, Geneva 23 (Switzerland)

    2012-07-15

    The radioactive isotope {sup 107}Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2{sup +} state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to {sup 100}Sn. Similar to the transition probabilities for the 2{sup +} states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d{sub 5/2} and g{sub 7/2} single-neutron states. (orig.)

  14. Complete correlation studies of two-proton decays: 6Be and 45Fe

    International Nuclear Information System (INIS)

    Grigorenko, L.; Wiser, T.D.; Miernik, K.; Charity, R.J.; Pfutzner, M.; Banu, A.; Bingham, C.R.; Cwiok, Mikolaj; Darby, Iain; Dominik, W.; Elson, J.M.; Ginter, T.N.; Grzywacz, R.; Janas, Z.; Karny, M.; Korgul, A.; Liddick, Sean; Mercurio, K.; Rajabali, Mustafa; Rykaczewski, Krzysztof Piotr; Shane, R.; Sobotka, L.G.; Stolz, A.; Trache, L.; Tribble, R.E.; Wuosmaa, A.H.; Zhukov, M.V.

    2009-01-01

    The complete three-body correlation pictures are experimentally reconstructed for the two-proton decays of the 6Be and 45Fe ground states. We are able to see qualitative similarities and differences between these decays. They demonstrate very good agreement with the predictions of a theoretical three-body cluster model. Validity of the theoretical methods for treatment of the three-body Coulombic decays of this class is thus established by the broad range of lifetimes and nuclear masses spanned by these cases. Implementations for decay dynamics and nuclear structure of 2p emitters are discussed.

  15. pd Scattering Using a Rigorous Coulomb Treatment: Reliability of the Renormalization Method for Screened-Coulomb Potentials

    International Nuclear Information System (INIS)

    Hiratsuka, Y.; Oryu, S.; Gojuki, S.

    2011-01-01

    Reliability of the screened Coulomb renormalization method, which was proposed in an elegant way by Alt-Sandhas-Zankel-Ziegelmann (ASZZ), is discussed on the basis of 'two-potential theory' for the three-body AGS equations with the Coulomb potential. In order to obtain ASZZ's formula, we define the on-shell Moller function, and calculate it by using the Haeringen criterion, i. e. 'the half-shell Coulomb amplitude is zero'. By these two steps, we can finally obtain the ASZZ formula for a small Coulomb phase shift. Furthermore, the reliability of the Haeringen criterion is thoroughly checked by a numerically rigorous calculation for the Coulomb LS-type equation. We find that the Haeringen criterion can be satisfied only in the higher energy region. We conclude that the ASZZ method can be verified in the case that the on-shell approximation to the Moller function is reasonable, and the Haeringen criterion is reliable. (author)

  16. Cluster decay of 218U isotope

    International Nuclear Information System (INIS)

    Shivakumaraswamy, G.; Umesh, T.K.

    2012-01-01

    The phenomenon of spontaneous emission of charged particles heavier than alpha particle and lighter than a fission fragment from radioactive nuclei without accompanied by the emission of neutrons is known as cluster radioactivity or exotic radioactivity. The process of emission of charged particles heavier than alpha particle and lighter than a fission fragment is called exotic decay or cluster decay. The phenomenon of cluster radioactivity was first predicted theoretically by Sandulescu et al in 1980. Rose and Jones made first experimental observations of 14 C emission from 223 Ra in 1984. Several cluster decay modes in trans-lead region have been experimentally observed. The half-life values for different modes of cluster decay from different isotopes of uranium have been calculated using different theoretical models such as the analytical super asymmetric model (ASAFM), Preformed cluster model (PCM) and Coulomb and Proximity potential model (CPPM) etc. Recently some semi-empirical formulae, i.e, single line of universal curve (UNIV), Universal decay law (UDL) for both alpha and cluster radioactivity have also been proposed to explain cluster decay data. The alpha decay half-life of 218-219 U isotopes has been experimentally measured in 2007. The half-life values for different cluster decay modes of 218 U isotopes have been calculated PCM model. Recently in 2011, the half-life values have also been calculated for some cluster decay modes of 222-236 U isotopes using the effective liquid drop description with the varying mass asymmetry (VMAS) shape and effective inertial coefficient. In the light of this, in the present work we have studied the cluster radioactivity of 218 U isotope. The logarithmic half-lives for few cluster decay modes from 218 U isotope have been calculated by using three different approaches, i.e, UNIV proposed by Poenaru et al in 2011, UDL proposed by Qi et al in 2009 and the CPPM model proposed by Santhosh et al in 2002. The CPPM based

  17. Scattering and stopping of swift diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1992-01-01

    The scattering and stopping of the fragments of a fast diatomic molecule under Coulomb explosion has been analysed theoretically. The central assumption in the scheme is the dominance of Coulomb explosion, while electronic stopping (including wake forces) and elastic scattering are treated as perturbations. Charge exchange has been neglected. Coulomb images of penetration phenomena are heavily distorted. For small penetrated layer thicknesses, images appear contracted in the direction of the molecular axis, and expanded perpendicular to it. This distortion is described quantitatively by a linear transformation. General expressions have been derived for the effect of continuous and stochastic forces on the distribution of fragment velocities from Coulomb explosion (the ''ring pattern''). Moreover, relations have been found that allow to scale velocity distributions valid in the absence of Coulomb explosion into distributions allowing for Coulomb explosion. Applications concern the shift in ring pattern due to electronic stopping, the lateral broadening due to multiple scattering, and the effect of zero-point motion on the Coulomb image of a molecule. (orig.)

  18. Some studies in scatering by Coulomb modified nuclear potentials

    International Nuclear Information System (INIS)

    Laha, U.

    1988-01-01

    Recently, there has been a surge of interest in theoretical questions concerning the Coulomb nuclear problems with the main emphasis on their off-shell behaviour. Earlier approaches to the problem made use of a version of the two-potential formula as used by Bajzer. A slightly different point of view is presented here. An expression for the interacting Green's function for motion in the Coulomb plus Graz potential is constructed and used to obtain the half-off-shell T matrix in the ''maximal reduced form''. Similar results were also derived for the off-shell Jost functions. It is explicitly demonstrated that Coulomb and Coulomb-like potentials the half-off-shell T matrix can be expressed in terms of on-and off-shell Jost functions in the same way as one does for a purely short range interaction. In presenting the results for T matrix and other related quantities, the Coulomb effect is included rigorously. Results clearly delineate the branch point singularities originating from the long range nature of the Coulomb interaction and thus provide a better understanding of the off-shell two-body Coulomb-like T matrices. It is hoped that these results will form an adequate starting point for rigorous calculations on few-body systems with charges. (author). 16 refs

  19. Scattering and stopping of swift diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1991-01-01

    The scattering and stopping of the fragments of a fast diatomic molecule under Coulomb explosion has been analyzed theoretically. The central assumption in the scheme is the dominance of Coulomb explosion, while electronic stopping (including wake forces) and elastic scattering are treated as perturbations. Charge exchange has been neglected. Coulomb images of penetration phenomena are heavily distorted. For small penetrated layer thicknesses, images appear contracted in the direction of the molecular axis, and expanded perpendicular to it. This distortion is described quantitatively by a linear transformation. General expressions have been derived for the effect of continuous and stochastic forces on the distribution of fragment velocities from Coulomb explosion (the ''ring pattern''). Moreover, relations have been found that allow to scale velocity distributions valid in the absence of Coulomb explosion into distributions allowing for Coulomb explosion. Applications concern the shift in ring pattern due to electronic stopping, the lateral broadening due to multiple scattering and the effect of zero-point motion on the Coulomb image of a molecule. 14 refs., 5 figs

  20. Dimensional regularization and renormalization of Coulomb gauge quantum electrodynamics

    International Nuclear Information System (INIS)

    Heckathorn, D.

    1979-01-01

    Quantum electrodynamics is renormalized in the Coulomb gauge with covariant counter terms and without momentum-dependent wave-function renormalization constants. It is shown how to dimensionally regularize non-covariant integrals occurring in this guage, and prove that the 'minimal' subtraction prescription excludes non-covariant counter terms. Motivated by the need for a renormalized Coulomb gauge formalism in certain practical calculations, the author introduces a convenient prescription with physical parameters. The renormalization group equations for the Coulomb gauge are derived. (Auth.)

  1. On the Emergence of the Coulomb Forces in Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Jan Naudts

    2017-01-01

    Full Text Available A simple transformation of field variables eliminates Coulomb forces from the theory of quantum electrodynamics. This suggests that Coulomb forces may be an emergent phenomenon rather than being fundamental. This possibility is investigated in the context of reducible quantum electrodynamics. It is shown that states exist which bind free photon and free electron fields. The binding energy peaks in the long-wavelength limit. This makes it plausible that Coulomb forces result from the interaction of the electron/positron field with long-wavelength transversely polarized photons.

  2. On Coulomb disintegration of relativistic nuclei and hypernuclei

    International Nuclear Information System (INIS)

    Lyuboshits, V.L.

    1989-01-01

    The dependence of the total cross-section of excitation and disintegration of a relativistic nucleus in the Coulomb field on the energy and parameters characterizing nuclear dimensions is investigated. The analogy with the problem of atomic ionization at the passage of charged particles through matter is used. The results are applied to the description of the Coulomb dissociation of nuclei with small binding energies. An explicit expression for the effective cross-section of the Coulomb disintegration of the hypernucleus-Λ 3 H into a deuteron and Λ-particle. 12 refs

  3. Coulomb corrections for interferometry analysis of expanding hadron systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinyukov, Yu.M.; Lednicky, R.; Pluta, J.; Erazmus, B. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Akkelin, S.V. [ITP, Kiev (Ukraine)

    1997-09-01

    The problem of the Coulomb corrections to the two-boson correlation functions for the systems formed in ultra-relativistic heavy ion collisions is considered for large effective system volumes. The modification of the standard zero-distance correction (so called Gamow or Coulomb factor) has been proposed for such a kind of systems. For the {pi}{sup +}{pi}{sup +} and K{sup +}K{sup +} correlation functions the analytical calculations of the Coulomb correction are compared with the exact numerical results. (author). 20 refs.

  4. Coulomb displacement energies in nuclei: a new approach

    International Nuclear Information System (INIS)

    Auerbach, N.; Tel Aviv Univ.; Bernard, V.; Nguyen, V.G.

    1978-04-01

    The neutron core polarization gives rise to an important correction to the direct Coulomb contribution when one calculates the Coulomb displacement energies. In the Hartree-Fock model it is shown that this correction is about 2% to 4.5% in medium and heavy nuclei. The core polarization as well as other higher order effects can be included by using a selfconsistent description of the analog state in a complete proton particle-neutron hole space. The Coulomb displacement energies in 48 Ca, 88 Sr and 208 Pb have been calculated using Skyrme interactions SIII and SIV. A good agreement with experiment is obtained

  5. Intergrain Coupling in Dusty-Plasma Coulomb Crystals

    International Nuclear Information System (INIS)

    Mohideen, U.; Smith, M.A.; Rahman, H.U.; Rosenberg, M.; Mendis, D.A.

    1998-01-01

    We have studied the lattice structure of dusty-plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the intergrain spacing results from an attractive electric-field-induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. copyright 1998 The American Physical Society

  6. Theoretical studies on the decay half-lives of hyper and normal ...

    Indian Academy of Sciences (India)

    K P SANTHOSH

    2018-02-10

    Feb 10, 2018 ... half-lives from hypernuclei, similar formalisms as the normal nuclei can be used. Here we have used the well- established Coulomb and proximity potential model. (CPPM) with the inclusion of lambda-nucleus potential for calculating the α decay half-lives of hypernuclei. In CPPM, the interacting potential ...

  7. Quantum dynamics of a BEC interacting with a single-mode quantized field in the presence of interatom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemian, E. [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Tavassoly, M.K., E-mail: mktavassoly@yazd.ac.ir [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Photonics Research Group, Engineering Research Center, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of)

    2016-09-23

    In this paper, we consider a model in which N two-level atoms in a Bose–Einstein condensate (BEC) interact with a single-mode quantized laser field. Our goal is to investigate the quantum dynamics of atoms in the BEC in the presence of interatom interactions. To achieve the purpose, at first, using the collective angular momentum operators, we try to reduce the dynamical Hamiltonian of the system to a well-known Jaynes–Cummings like model (JCM). We also use the Dicke model to construct the state of atomic subsystem, by which the analytical solution of the system may be obtained. Then, we analyze the atomic population inversion, the degree of entanglement between the “atoms in BEC” and the “field” as well as the Mandel parameter. Numerical results show that, the atomic population inversion, atom-field entanglement and quantum statistics of photons are very sensitive to the evolved parameters in the model (and so can be well-adjusted), such as the number of atoms in BEC, the intensity of initial field, the interatom coupling constant and detuning. To investigate the entanglement properties, we pay attention to the entropy and linear entropy. It is shown that, oscillations in the two entropy criteria may be seen, with some maxima of entanglement at some moments of time. Finally, looking for the quantum statistics, we evaluate the Mandel parameter, by which we demonstrate the sub-Poissonian statistics and so the nonclassical characteristics of the field state of system. Collapse-revival phenomenon, which is a distinguishable nonclassical characteristic of the system, can be apparently observed in the atomic population inversion and the Mandel parameter. - Highlights: • N two-level atoms in a BEC interacting with a laser field in the presence of interatom interactions is considered. • The atomic population inversion, degree of entanglement between the “atoms in BEC” and the “field” and the Mandel parameter are investigated. • Collapse

  8. Coulomb focusing and path'' interference of autoionizing electrons produced in 10 keV He sup + + He collisions

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, J.K. (Lawrence Livermore National Lab., CA (USA)); Burgdoerfer, J. (Tennessee Univ., Knoxville, TN (USA)); Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N. (Oak Ridge National Lab., TN (USA))

    1991-03-13

    Autoionizing electrons emitted following low energy ion-atom collisions may scatter significantly from the receding spectator ion's attractive Coulomb field. In such cases the observed electron intensity is focused'' in the direction of the scattering ion as a result of the effective compression of the emission solid angle. In addition, interference may occur between trajectories, corresponding to electrons scattering around opposite sides of the ion, which lead to the same final laboratory electron energy and emission angle. This Coulomb path'' interference mechanism manifests itself in the uncharacteristically rapid angular dependence of the He target 2s{sup 2} {sup 1}S autoionizing state measured near 0{degree} following low energy He{sup +} + He collisions. A classical trajectory model for Coulomb focusing is presented and a semi-classical approximation is used to model the Coulomb path'' interference mechanism. In this description we account for the evolution of the phase of the autoionizing state until its decay and the path dependence of the amplitude of the emitted electron following decay of the autoionizing state. Calculated model lineshapes, which include contributions from adjacent overlapping resonances, reproduce quite well the angular dependence observed in the data near 0{degree}. 14 refs., 7 figs.

  9. Reply to "Comment on 'Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit' ".

    Science.gov (United States)

    Gebremedhin, Daniel H; Weatherford, Charles A

    2015-02-01

    This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrödinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a δ(x), and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.

  10. Coulomb displacement energies and neutron density distributions

    International Nuclear Information System (INIS)

    Shlomo, S.

    1979-01-01

    We present a short review of the present status of the theory of Coulomb displacement energies, ΔEsub(c), discussing the Okamoto-Nolem-Schiffer anomaly and its solution. We emphasize, in particular, that contrary to previous hopes, ΔEsub(c) does not determine rsub(ex), the root-mean square (rms) radius of the excess (valence) neutron density distribution. Instead, ΔEsub(c) is very sensitive to the value of Δr = rsub(n) - rsub(p), the difference between the rms radii of the density distributions of all neutrons and all protons. For neutron rich nuclei, such as 48 Ca and 208 Pb, a value of Δr = 0.1 fm is found to be consistent with ΔEsub(c). This value of Δr, which is considerably smaller than that (of 0.2 - 0.3 fm) predicted by some common Hartree-Fock calculations, seems to be confirmed by very recent experimental results. (orig.)

  11. Correlation functions of Coulomb branch operators

    Energy Technology Data Exchange (ETDEWEB)

    Gerchkovitz, Efrat [Weizmann Institute of Science,Rehovot 76100 (Israel); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Ishtiaque, Nafiz [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Department of Physics, University of Waterloo,Waterloo, ON N2L 3G1 (Canada); Karasik, Avner; Komargodski, Zohar [Weizmann Institute of Science,Rehovot 76100 (Israel); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States)

    2017-01-24

    We consider the correlation functions of Coulomb branch operators in four-dimensional N=2 Superconformal Field Theories (SCFTs) involving exactly one anti-chiral operator. These extremal correlators are the “minimal' non-holomorphic local observables in the theory. We show that they can be expressed in terms of certain determinants of derivatives of the four-sphere partition function of an appropriate deformation of the SCFT. This relation between the extremal correlators and the deformed four-sphere partition function is non-trivial due to the presence of conformal anomalies, which lead to operator mixing on the sphere. Evaluating the deformed four-sphere partition function using supersymmetric localization, we compute the extremal correlators explicitly in many interesting examples. Additionally, the representation of the extremal correlators mentioned above leads to a system of integrable differential equations. We compare our exact results with previous perturbative computations and with the four-dimensional tt{sup ∗} equations. We also use our results to study some of the asymptotic properties of the perturbative series expansions we obtain in N=2 SQCD.

  12. Shakeoff Ionization near the Coulomb Barrier Energy

    Science.gov (United States)

    Sharma, Prashant; Nandi, T.

    2017-11-01

    We measure the projectile K x-ray spectra as a function of the beam energies around the Coulomb barrier in different collision systems. The energy is scanned in small steps around the barrier aiming to explore the nuclear effects on the elastically scattered projectile ions. The variation of the projectile x-ray energy with the ion-beam energies exhibits an unusual increase in between the interaction barrier and fusion barrier energies. This additional contribution to the projectile ionization can be attributed to the shakeoff of outer-shell electrons of the projectile ions due to the sudden nuclear recoil (˜10-21 sec ) caused by the attractive nuclear potential, which gets switched on near the interaction barrier energy. In the sudden approximation limit, the theoretical shakeoff probability calculation due to the nuclear recoil explains the observed data well. In addition to its fundamental interest, such processes can play a significant role in dark matter detection through the possible mechanism of x-ray emissions, where the weakly interacting massive particle-nucleus elastic scattering can lead to the nuclear-recoil-induced inner-shell vacancy creations. Furthermore, the present work may provide new prospects for atomic physics research at barrier energies as well as provide a novel technique to perform barrier distribution studies for two-body systems.

  13. Electron attraction mediated by Coulomb repulsion.

    Science.gov (United States)

    Hamo, A; Benyamini, A; Shapir, I; Khivrich, I; Waissman, J; Kaasbjerg, K; Oreg, Y; von Oppen, F; Ilani, S

    2016-07-21

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

  14. Optical Trapping of Ion Coulomb Crystals

    Science.gov (United States)

    Schmidt, Julian; Lambrecht, Alexander; Weckesser, Pascal; Debatin, Markus; Karpa, Leon; Schaetz, Tobias

    2018-04-01

    The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.

  15. Deep inelastic scattering near the Coulomb barrier

    International Nuclear Information System (INIS)

    Gehring, J.; Back, B.; Chan, K.

    1995-01-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems 124,112 Sn + 58,64 Ni by Wolfs et al. We previously extended these measurements to the system 136 Xe + 64 Ni and currently measured the system 124 Xe + 58 Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring

  16. Coulomb scattering in field and photofield emission

    International Nuclear Information System (INIS)

    Donders, P.J.; Lee, M.J.G.

    1987-01-01

    An anomalous high-energy tail has been observed in the measured total energy distribution (TED) in photofield emission from tungsten. The strength of this tail is proportional to the product of the photofield emission current and the total emission current. Similar high- and low-energy tails in the TED's in field emission, which have previously been reported by several workers, are also observed. In any given measurement, the fraction of the total photofield-emission current in the anomalous photofield-emission tail is approximately equal to the fraction of the total field-emission current in the anomalous field-emission tail. Measurements of both the absolute strengths and energy dependences of the anomalous tails are reported. The experimental observations are consistent with the predictions of a classical calculation of the energy transfer that results from the Coulomb interaction between electrons in the vacuum near the field emitter. The various internal mechanisms that have previously been invoked to account for the tails in field-emission TED's do not appear to contribute significantly to the anomalous distributions observed in the present work

  17. Deep inelastic scattering near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, J.; Back, B.; Chan, K. [and others

    1995-08-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.

  18. Coulomb-interacting billiards in circular cavities

    International Nuclear Information System (INIS)

    Solanpää, J; Räsänen, E; Nokelainen, J; Luukko, P J J

    2013-01-01

    We apply a molecular dynamics scheme to analyze classically chaotic properties of a two-dimensional circular billiard system containing two Coulomb-interacting electrons. As such, the system resembles a prototype model for a semiconductor quantum dot. The interaction strength is varied from the noninteracting limit with zero potential energy up to the strongly interacting regime where the relative kinetic energy approaches zero. At weak interactions the bouncing maps show jumps between quasi-regular orbits. In the strong-interaction limit we find an analytic expression for the bouncing map. Its validity in the general case is assessed by comparison with our numerical data. To obtain a more quantitative view on the dynamics as the interaction strength is varied, we compute and analyze the escape rates of the system. Apart from very weak or strong interactions, the escape rates show consistently exponential behavior, thus suggesting strongly chaotic dynamics and a phase space without significant sticky regions within the considered time scales. (paper)

  19. Fermi-edge singularity in one-dimensional electron systems with long-range Coulomb interactions

    International Nuclear Information System (INIS)

    Otani, H.; Ogawa, T.

    1996-01-01

    Effects of long-range Coulomb interactions on the Fermi-edge singularity in optical spectra are investigated theoretically for one-dimensional spin-1/2 fermion systems with the use of the Tomonaga-Luttinger bosonization technique. Low-energy excitation spectrum near the Fermi level shows that dispersion of the charge-density fluctuation remains gapless but is nonlinear when the electron-electron (e-e) Coulomb interaction is of the x -1 type (i.e., an infinite force range). Temporal behavior of the current-current correlation function is calculated analytically for arbitrary force ranges, λ e and λ h , of the e-e and the electron-hole (e-h) Coulomb interactions. (i) When both the e-e and the e-h interactions have large but finite force ranges (λ e h max[λ e ,λ h ]/v F . Corresponding optical spectrum near the Fermi edge (within an energy range of ℎv F /max[λ e ,λ h ]) exhibits the power-law divergence or the power-law convergence, which is an ordinary Fermi-edge singularity. (ii) When either the e-e or the e-h interaction is of the x -1 type (i.e., λ e →∞ and/or λ h →∞), an exponent of the correlation function is dependent on time to lead the faster decay than that of any power laws. Then the optical spectra show no power law dependence and always converge (become zero) at the Fermi edge, which is in striking contrast to the ordinary power-law singularity

  20. Defect creation in solids by a decay of electronic excitations

    International Nuclear Information System (INIS)

    Klinger, M.I.; Lushchik, Ch.B.; Mashovets, T.V.; Kholodar', G.A.; Shejnkman, M.K.; Ehlango, M.A.; Kievskij Gosudarstvennyj Univ.; AN Ukrainskoj SSR, Kiev. Inst. Poluprovodnikov)

    1985-01-01

    A new type of radiationless transitions in nonmetallic solids accompanied by neither the extraction of a heat nor the luminescence, but by a large (in comparison with the interatomic distance) displacements of a small number of atoms is discussed. A classification is given of the instabilities (electrostatic, electron-vibrational, structural) leading to a creation of the defects in crystalline and glassy solids. The processes of the defect creation, due to both the decay of self-trapped excitions in ionic crystals and the multiple ionization of atoms near the pre-existing charged centres in semiconductor are described. The mechanisms of the complex defects reconstruction in semiconductors by nonequilibrium charge carriers and by an electron-hole recombination are discussed. The role of charge carriers in a thermal defect generation is considered. A mechanism of the peculiar defect creation in glassy semiconductors is discussed

  1. Computational assignment of redox states to Coulomb blockade diamonds.

    Science.gov (United States)

    Olsen, Stine T; Arcisauskaite, Vaida; Hansen, Thorsten; Kongsted, Jacob; Mikkelsen, Kurt V

    2014-09-07

    With the advent of molecular transistors, electrochemistry can now be studied at the single-molecule level. Experimentally, the redox chemistry of the molecule manifests itself as features in the observed Coulomb blockade diamonds. We present a simple theoretical method for explicit construction of the Coulomb blockade diamonds of a molecule. A combined quantum mechanical/molecular mechanical method is invoked to calculate redox energies and polarizabilities of the molecules, including the screening effect of the metal leads. This direct approach circumvents the need for explicit modelling of the gate electrode. From the calculated parameters the Coulomb blockade diamonds are constructed using simple theory. We offer a theoretical tool for assignment of Coulomb blockade diamonds to specific redox states in particular, and a study of chemical details in the diamonds in general. With the ongoing experimental developments in molecular transistor experiments, our tool could find use in molecular electronics, electrochemistry, and electrocatalysis.

  2. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.

    Science.gov (United States)

    Ardelt, P-L; Gawarecki, K; Müller, K; Waeber, A M; Bechtold, A; Oberhofer, K; Daniels, J M; Klotz, F; Bichler, M; Kuhn, T; Krenner, H J; Machnikowski, P; Finley, J J

    2016-02-19

    We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k·p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.

  3. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.

    Science.gov (United States)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-13

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

  4. Applicability of the molecular dynamics method for the Coulomb plasma

    International Nuclear Information System (INIS)

    Zhidkov, A.G.; Galeev, R.Kh.

    1993-01-01

    Calculations of the local Lyapunov parameter determining the character of movement, n paticle systems, interacting according to the Coulomb law are conducted. The calculations are presented for the most probable states of fully ionized plasma

  5. Analytical evaluation of integrals over Coulomb wave functions

    International Nuclear Information System (INIS)

    Nesbet, R.K.

    1988-01-01

    Indefinite integrals of products of Coulomb wave functions over the interval (r, ∞) can be evaluated by conversion to continued fractions. Examples are given of normalization and dipole transition integrals required in photoionization calculations. (orig.)

  6. The Coulomb Branch of 3d N= 4 Theories

    Science.gov (United States)

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide

    2017-09-01

    We propose a construction for the quantum-corrected Coulomb branch of a general 3d gauge theory with N=4 supersymmetry, in terms of local coordinates associated with an abelianized theory. In a fixed complex structure, the holomorphic functions on the Coulomb branch are given by expectation values of chiral monopole operators. We construct the chiral ring of such operators, using equivariant integration over BPS moduli spaces. We also quantize the chiral ring, which corresponds to placing the 3d theory in a 2d Omega background. Then, by unifying all complex structures in a twistor space, we encode the full hyperkähler metric on the Coulomb branch. We verify our proposals in a multitude of examples, including SQCD and linear quiver gauge theories, whose Coulomb branches have alternative descriptions as solutions to Bogomolnyi and/or Nahm equations.

  7. Impact of density-dependent symmetry energy and Coulomb ...

    Indian Academy of Sciences (India)

    2014-03-07

    Mar 7, 2014 ... The IMF production increases with the stiffness of symmetry energy. .... to clusterization using minimum spanning tree MST(M) method .... To understand the direct role of Coulomb interactions, we display in figure 4 the mean.

  8. Coulomb Dissociation as a Tool of Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Utsunomiya, H.

    2000-01-01

    My talk will begin with an introduction of the Coulomb dissociation method, proceed to discussions on Coulomb breakup of 7 Li with respect to the big-bang nucleosynthesis and end with the revision of astrophysical S-factors. The methodology based on the virtual photon source will be introduced in view of experimental techniques. The discussion will include the quantum tunnelling effect in non-resonant breakup, the lifetime of continuum states, and Coulomb distortion of relevant cross sections. Roles of multi-step processes and different multipolarities will also be discussed on the basis of solving a time-dependent Schroedinger equation. My talk will present quantitative results. The theoretical framework of the Coulomb dissociation method and a broad scope of its applications are given by G. Baur. Applications to radioactive nuclei which have quickly become vogue are discussed in the related lecture of J. Kiener. (author)

  9. Fusion and quasi-elastic processes near the Coulomb barrier

    International Nuclear Information System (INIS)

    Abriola, D.

    1987-01-01

    An overview of the fusion phenomenon below Coulomb barrier is presented. The current theoretical descriptions, emphasizing the relations with direct reactions are discussed. The definition and systematic behaviour of the fusion enhancement below the Coulomb barrier are also presented. The role of coupling to surface degrees of freedom, namely permanent deformations of nuclei, inelastic and transfer channels is shown. The importance of studies describing simultaneously quase-elastic processes and fusion are also shown. (M.C.K.) [pt

  10. Coulomb Sturmians as a basis for molecular calculations

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2012-01-01

    mathematical difficulty of evaluating interelectron repulsion integrals when exponential-type orbitals (ETOs) are used. In this paper we show that when many-centre Coulomb Sturmian ETOs are used as a basis, the most important integrals can be evaluated rapidly and accurately by means of the theory...... of hyperspherical harmonics. For the remaining many-centre integrals, Coulomb Sturmians are shown to have advantages over other ETOs. Pilot calculations are performed on N-electron molecules using the Generalized Sturmian Method....

  11. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  12. Ginzburg criterion for ionic fluids: the effect of Coulomb interactions.

    Science.gov (United States)

    Patsahan, O

    2013-08-01

    The effect of the Coulomb interactions on the crossover between mean-field and Ising critical behavior in ionic fluids is studied using the Ginzburg criterion. We consider the charge-asymmetric primitive model supplemented by short-range attractive interactions in the vicinity of the gas-liquid critical point. The model without Coulomb interactions exhibiting typical Ising critical behavior is used to calibrate the Ginzburg temperature of the systems comprising electrostatic interactions. Using the collective variables method, we derive a microscopic-based effective Hamiltonian for the full model. We obtain explicit expressions for all the relevant Hamiltonian coefficients within the framework of the same approximation, i.e., the one-loop approximation. Then we consistently calculate the reduced Ginzburg temperature t(G) for both the purely Coulombic model (a restricted primitive model) and the purely nonionic model (a hard-sphere square-well model) as well as for the model parameters ranging between these two limiting cases. Contrary to the previous theoretical estimates, we obtain the reduced Ginzburg temperature for the purely Coulombic model to be about 20 times smaller than for the nonionic model. For the full model including both short-range and long-range interactions, we show that t(G) approaches the value found for the purely Coulombic model when the strength of the Coulomb interactions becomes sufficiently large. Our results suggest a key role of Coulomb interactions in the crossover behavior observed experimentally in ionic fluids as well as confirm the Ising-like criticality in the Coulomb-dominated ionic systems.

  13. Regularized friction and continuation: Comparison with Coulomb's law

    OpenAIRE

    Vigué, Pierre; Vergez, Christophe; Karkar, Sami; Cochelin, Bruno

    2016-01-01

    International audience; Periodic solutions of systems with friction are difficult to investigate because of the irregular nature of friction laws. This paper examines periodic solutions and most notably stick-slip, on a simple one-degre-of-freedom system (mass, spring, damper, belt), with Coulomb's friction law, and with a regularized friction law (i.e. the friction coefficient becomes a function of relative speed, with a stiffness parameter). With Coulomb's law, the stick-slip solution is co...

  14. Absence of Debye screening in the quantum Coulomb system

    International Nuclear Information System (INIS)

    Brydges, D.C.; Keller, G.

    1994-01-01

    We present an approximation to the quantum Coulomb plasma at equilibrium which captures the power-law violations of Debye screening which have been reported in recent papers. The objectives are (1) to produce a simpler model which we will study in forthcoming papers, and (2) to develop a strategy by which the absence of screening can be proven for the low-density quantum Coulomb plasma itself

  15. Trace of a water droplet exerted by coulomb force. 2

    International Nuclear Information System (INIS)

    Sugita, Hideaki; Murakami, Takuro; Nakazawa, Takeshi; Nakasako, Makoto; Yoshimura, Takuma; Osarakawa, Toshihiro

    2002-01-01

    The movement of water droplets in the air-water separator is based on the principle of the electrostatic precipitator with positive and negative poles. The mechanism of separation is that the water droplets charged negative ions or electrons by corona discharge are collected on the positive pole by Coulomb force operating between the both poles. This paper describes the theoretical analyses that how the movement of a water droplet is affected by Coulomb force in the air-water separator. (author)

  16. Unstable system with Coulomb interaction distorted near the origin

    International Nuclear Information System (INIS)

    Kerbikov, B.O.

    1981-01-01

    An unstable system with Coulomb interaction distorted at small distances is considered. The results are applicable to hadronic atoms analysis. A detailed investigation of the model which can be solved exactly is presented. This model contains the separable short-range potential with the Yamaguchi form factor. Closed expressions for the modified effective range function and the Coulomb-modified scattering length ase obtained [ru

  17. The generalized parabolic Coulomb wavefunction in spherical coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Gasaneo, G. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Departamento de Fisica, Universidad del Sur, Buenos Aires (Argentina); Colavecchia, F.D.; Garibotti, C.R. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Centro Atomico Bariloche, Rio Negro (Argentina); Otranto, S. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Departamento de Fisica, Universidad del Sur, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Centro Atomico Bariloche, Rio Negro (Argentina)

    2001-10-19

    In this work we present a detailed study of the recently introduced {delta}{sub m,n} basis for three Coulomb particles. We show that the scattering and generalized Coulomb problems as well as a {phi}{sub 2} approach can be viewed as particular cases of this basis. We derive a partial wave expansion for {delta}{sub m,n} functions and analyse the reduction to some of the precedent cases. (author)

  18. Coulomb interference and bending slope in hadron-hadron scattering

    International Nuclear Information System (INIS)

    Pereira, Flavio I.; Ferreira, Erasmo

    1994-01-01

    With the purpose of testing the results of QCD calculations on the structure of the forward elastic scattering cross-section, we analyse the coulombic-nuclear interference occurring at small values of the momentum transfer. We emphasize the influence of the hadronic structures on the determination of the Coulomb phase and consequently on the t-dependence of the strong interaction slope parameter. (author)

  19. Determination of the B(E3,0$^{+}$ $\\rightarrow$ 3$^{-}$) strength in the octupole correlated nuclei $^{142,144}$Ba using Coulomb excitation

    CERN Multimedia

    We propose to exploit the unique capability of ISOLDE to provide intense post-accelerated $^{142}$Ba and $^{144}$Ba ion beams from the HIE-ISOLDE facility to enable the Coulomb excitation of the first 3$^-$ state in these nuclei. By measuring the $\\gamma$-ray yields of the E1 decays from the 3$^-$ state using the MINIBALL array, we can obtain the interesting transition matrix element. The results will give quantitative information about octupole correlations in these nuclei.

  20. Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Ruestes, C.J., E-mail: cjruestes@hotmail.com [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); CONICET, Mendoza 5500 (Argentina); Stukowski, A. [Technische Universität Darmstadt, Darmstadt 64287 (Germany); Tang, Y. [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072 (China); Tramontina, D.R. [Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); Erhart, P. [Chalmers University of Technology, Department of Applied Physics, Gothenburg 41296 (Sweden); Remington, B.A. [Lawrence Livermore National Lab, Livermore, CA 94550 (United States); Urbassek, H.M. [Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern 67663 (Germany); Meyers, M.A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Bringa, E.M. [Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); CONICET, Mendoza 5500 (Argentina)

    2014-09-08

    Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037–0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically necessary dislocation theory.

  1. Sputtering of octatetraene by 15 keV C{sub 60} projectiles: Comparison of reactive interatomic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kanski, Michal; Maciazek, Dawid; Golunski, Mikolaj; Postawa, Zbigniew, E-mail: zbigniew.postawa@uj.edu.pl

    2017-02-15

    Highlights: • Probing the effect of interatomic potentials on sputtering of an octatetraene sample. • Problems with charge calculations are observed during cluster impact for ReaxFF. • COMB3 leads to a very low sputtering yield due to abrupt energy dissipation. • AIREBO is computationally the most efficient, while ReaxFF is more accurate. - Abstract: Molecular dynamics computer simulations have been used to probe the effect of the AIREBO, ReaxFF and COMB3 interatomic potentials on sputtering of an organic sample composed of octatetraene molecules. The system is bombarded by a 15 keV C{sub 60} projectile at normal incidence. The effect of the applied force fields on the total time of simulation, the calculated sputtering yield and the angular distribution of sputtered particles is investigated and discussed. It has been found that caution should be taken when simulating particles ejection from nonhomogeneous systems that undergo significant fragmentation described by the ReaxFF. In this case, the charge state of many particles is improper due to an inadequacy of a procedure used for calculating partial charges on atoms in molecules for conditions present during sputtering. A two-step simulation procedure is proposed to minimize the effect of this deficiency. There is also a possible problem with the COMB3 potential, at least at conditions present during cluster impact, as its results are very different from AIREBO or ReaxFF.

  2. Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution

    International Nuclear Information System (INIS)

    Ruestes, C.J.; Stukowski, A.; Tang, Y.; Tramontina, D.R.; Erhart, P.; Remington, B.A.; Urbassek, H.M.; Meyers, M.A.; Bringa, E.M.

    2014-01-01

    Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037–0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically necessary dislocation theory

  3. Measurements of octupole collectivity in $^{220,222}$Rn and $^{222,224}$Ra using Coulomb excitation

    CERN Multimedia

    Kruecken, R; Larsen, A; Hurst, A M; Voulot, D; Grahn, T; Clement, E; Wadsworth, R; Gernhaeuser, R A; Siem, S; Huyse, M L; Iwanicki, J S

    2008-01-01

    We propose to exploit the unique capability of ISOLDE to provide post-accelerated $^{220,222}$Rn and $^{222,224}$Ra ion beams from the REX facility to enable the Coulomb excitation of the first 3$^{-}$ states in these nuclei. By measuring the $\\gamma$-ray yields of the E1 decays from the 3$^{-}$ state using the MINIBALL array we can obtain the transition matrix elements. This will give quantitative information about octupole correlations in these nuclei. We require 22 shifts to fulfil the aims of the experiment.

  4. Search for Coulomb-induced multifragmentation in the reaction Gd+U at 36 MeV/u

    International Nuclear Information System (INIS)

    Bacri, C.O.; Squalli, M.; Borderie, B.; Frankland, J.D.; Parlog, M.; Rivet, M.F.; Tassan-Got, L.; Charvet, J.L.

    1996-03-01

    Coulomb-induced multifragmentation is looked for in the study of the system Gd+U at 36 MeV/u with the 4π INDRA detector. Events corresponding to fragment emission from a single source were selected in the system Gd+U using global variables. Different kinematical correlations between the emitted fragments are discussed. Comparisons with simulations are used to extract the shape of the system which decays by multifragmentation, and also to obtain quantitative information about possible expansion effects. (K.A.)

  5. Approximate Coulomb effects in the three-body scattering problem

    International Nuclear Information System (INIS)

    Haftel, M.I.; Zankel, H.

    1981-01-01

    From the momentum space Faddeev equations we derive approximate expressions which describe the Coulomb-nuclear interference in the three-body elastic scattering, rearrangement, and breakup problems and apply the formalism to p-d elastic scattering. The approximations treat the Coulomb interference as mainly a two-body effect, but we allow for the charge distribution of the deuteron in the p-d calculations. Real and imaginary parts of the Coulomb correction to the elastic scattering phase shifts are described in terms of on-shell quantities only. In the case of pure Coulomb breakup we recover the distorted-wave Born approximation result. Comparing the derived approximation with the full Faddeev p-d elastic scattering calculation, which includes the Coulomb force, we obtain good qualitative agreement in S and P waves, but disagreement in repulsive higher partial waves. The on-shell approximation investigated is found to be superior to other current approximations. The calculated differential cross sections at 10 MeV raise the question of whether there is a significant Coulomb-nuclear interference at backward angles

  6. Characterization of ion Coulomb crystals in a linear Paul trap

    International Nuclear Information System (INIS)

    Okada, K.; Takayanagi, T.; Wada, M.; Ohtani, S.; Schuessler, H. A.

    2010-01-01

    We describe a simple and fast method for simulating observed images of ion Coulomb crystals. In doing so, cold elastic collisions between Coulomb crystals and virtual very light atoms are implemented in a molecular dynamics (MD) simulation code. Such an approach reproduces the observed images of Coulomb crystals by obtaining density plots of the statistics of existence of each ion. The simple method has the advantage of short computing time in comparison with previous calculation methods. As a demonstration of the simulation, the formation of a planar Coulomb crystal with a small number of ions has been investigated in detail in a linear ion trap both experimentally and by simulation. However, also large Coulomb crystals including up to 1400 ions have been photographed and simulated to extract the secular temperature and the number of ions. For medium-sized crystals, a comparison between experiments and calculations has been performed. Moreover, an MD simulation of the sympathetic cooling of small molecular ions was performed in order to test the possibility of extracting the temperature and the number of refrigerated molecular ions from crystal images of laser-cooled ions. Such information is basic to studying ultracold ion-molecule reactions using ion Coulomb crystals including sympathetically cooled molecular ions.

  7. Three-body Coulomb breakup of 11Li in the complex scaling method

    International Nuclear Information System (INIS)

    Myo, Takayuki; Aoyama, Shigeyoshi; Kato, Kiyoshi; Ikeda, Kiyomi

    2003-01-01

    Coulomb breakup strengths of 11 Li into a three-body 9 Li+n+n system are studied in the complex scaling method. We decompose the transition strengths into the contributions from three-body resonances, two-body '' 10 Li+n'' and three-body '' 9 Li+n+n'' continuum states. In the calculated results, we cannot find the dipole resonances with a sharp decay width in 11 Li. There is a low energy enhancement in the breakup strength, which is produced by both the two- and three-body continuum states. The enhancement given by the three-body continuum states is found to have a strong connection to the halo structure of 11 Li. The calculated breakup strength distribution is compared with the experimental data from MSU, RIKEN and GSI

  8. Distributional sources for Newman's holomorphic Coulomb field

    International Nuclear Information System (INIS)

    Kaiser, Gerald

    2004-01-01

    Newman (1973 J. Math. Phys. 14 102-3) considered the holomorphic extension E-tilde(z) of the Coulomb field E(x) in R 3 . From an analysis of its multipole expansion, he concluded that the real and imaginary parts E(x+iy)≡Re E-tilde(x+iy), H(x+iy)≡Im E-tilde(x+iy), viewed as functions of x, are the electric and magnetic fields generated by a spinning ring of charge R. This represents the EM part of the Kerr-Newman solution to the Einstein-Maxwell equations (Newman E T and Janis A I 1965 J. Math. Phys. 6 915-7; Newman E T et al 1965 J. Math. Phys. 6 918-9). As already pointed out in Newman and Janis (1965 J. Math. Phys. 6 915-7), this interpretation is somewhat problematic since the fields are double-valued. To make them single-valued, a branch cut must be introduced so that R is replaced by a charged disc D having R as its boundary. In the context of curved spacetime, D becomes a spinning disc of charge and mass representing the singularity of the Kerr-Newman solution. Here we confirm the above interpretation of E and H without resorting to asymptotic expansions, by computing the charge and current densities directly as distributions in R 3 supported in D. This will show that D spins rigidly at the critical rate so that its rim R moves at the speed of light

  9. Optical Trapping of Ion Coulomb Crystals

    Directory of Open Access Journals (Sweden)

    Julian Schmidt

    2018-05-01

    Full Text Available The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.

  10. Functional theory of extended Coulomb systems

    International Nuclear Information System (INIS)

    Martin, R.M.; Ortiz, G.

    1997-01-01

    A consistent formulation is presented for a functional theory of extended quantum many-particle systems with long-range Coulomb interactions, which extends the density-functional theory of Hohenberg and Kohn to encompass the theory of dielectrics formulated in terms of electric fields and polarization. We show that a complete description of insulators in the thermodynamic limit requires a functional of density and macroscopic polarization; nevertheless, for any insulator the state with zero macroscopic electric field can be considered a reference state that is a functional of the density alone. Dielectric phenomena involve the behavior of the material in the presence of macroscopic electric fields that induce changes of the macroscopic polarization from its equilibrium value in the reference state. In the thermodynamic limit there is strictly no ground state and constraints must be placed upon the electronic wave functions in order to have a well-defined energy functional; within these constrained subspaces the Hohenberg-Kohn theorems can be generalized in terms of the density and the change in the macroscopic polarization. The essential role of the polarization is shown by an explicit example of two potentials that lead to the same periodic density in a crystal, but different macroscopic electric fields and polarization. In the Kohn-Sham approach both the kinetic and the exchange-correlation energy are shown to depend upon the changes in polarization; this leads to generalized Kohn-Sham equations with a nonlocal operator. The effect can be traced to the polarization of the average exchange-correlation hole itself in the presence of macroscopic fields, which is essential for an exact description of static dielectric phenomena. copyright 1997 The American Physical Society

  11. Kinetic theory for strongly coupled Coulomb systems

    Science.gov (United States)

    Dufty, James; Wrighton, Jeffrey

    2018-01-01

    The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.

  12. Proton-/sup 90/Zr interaction at sub-Coulomb proton energies

    International Nuclear Information System (INIS)

    Laird, C.E.; Flynn, D.; Hershberger, R.L.; Gabbard, F.

    1987-01-01

    The proton-/sup 90/Zr interaction at sub-Coulomb energies has been investigated in the context of the Lane model, with isospin coupling included, and with alternate decay modes represented with the Hauser-Feshbach model. Scattering and reaction cross sections were accurately measured in order to obtain enough information to constrain the real and absorptive parts of the proton potential. Differential elastic scattering excitation functions were measured at back angles of 135 0 and 165 0 from 2 to 7 MeV, with cross section accuracies of 3%. The energy range was sufficient to go from a region where the backscattering was predominantly Coulomb, enabling additional checks on the cross section accuracies, to a region where the gross structure of the cross sections deviated significantly from Rutherford scattering. Radiative capture cross sections were measured from 1.9 to 5.7 MeV proton energies. The capture cross sections were obtained by summing the measured cross sections for the first two primary gamma rays in addition to some 34 other transitions which terminated on the ground and first excited state. The total inelastic scattering cross section to all /sup 90/Zr excited states (except the first excited state which has been previously measured) was measured at several energies between 3.9 and 5.7 MeV by observing the radiative decay of the residual, excited /sup 90/Zr nuclei. The analysis yielded several model parameters suggestive of large nuclear structure effects. The depth of the absorptive potential was found to vary as W/sub D/ = 2.73+0.70 E/sub p/ in the 2 to 7 MeV proton energy range studied. A real diffuseness of 0.54 fm, significantly smaller than that obtained in neighboring nuclei, was obtained

  13. Predictions on the modes of decay of even Z superheavy isotopes within the range 104 ≤ Z ≤ 136

    Science.gov (United States)

    Santhosh, K. P.; Nithya, C.

    2018-01-01

    The decay modes and half lives of all the even Z isotopes of superheavy elements within the range 104 ≤ Z ≤ 136 have been predicted by comparing the alpha decay half-lives with the spontaneous fission half-lives. The Coulomb and proximity potential model for deformed nuclei (CPPMDN) and the shell-effect-dependent formula of Santhosh et al. are used to calculate the alpha half-lives and spontaneous fission half-lives respectively. For theoretical comparison the alpha decay half-lives are also calculated using Coulomb and proximity potential model (CPPM), the Viola-Seaborg-Sobiczewski semi-empirical (VSS) relation, the universal (UNIV) curve of Poenaru et al., the analytical formula of Royer and the universal decay law (UDL) of Qi et al. Another tool used for the evaluation of spontaneous fission half-lives is the semi-empirical formula of Xu et al. The nuclei with alpha decay half-lives less than spontaneous fission half-lives will survive fission and hence decay through alpha emission. The predicted half lives and decay modes are compared with the available experimental results. The one-proton and two-proton separation energies of all the isotopes are calculated to find nuclei which lie beyond the proton drip line. Among 1119 even Z nuclei within the range 104 ≤ Z ≤ 136, 164 nuclei show sequential alpha emission followed by subsequent spontaneous fission. Since the isotopes decay through alpha decay chain and the half-lives are in measurable range, these isotopes are predicted to be synthesized and detected in laboratory via alpha decay. 2 nuclei will decay by alpha decay followed by proton emission, 54 nuclei show full alpha chains, 642 nuclei will decay through spontaneous fission, 166 nuclei exhibit proton decay and 91 isotopes are found to be stable against alpha decay. All the isotopes are tabulated according to their decay modes. The study is intended to enhance further experimental investigations in superheavy region.

  14. Coulomb interaction in atomic and nuclear physics: Inner-Shell excitation, Coulomb dissociation of nuclei, and nuclear polarizability in electronic atoms

    International Nuclear Information System (INIS)

    Hoffmann, B.

    1984-07-01

    In three chapters different physical situations are described which have commonly the Coulomb interaction as driving force. The first two chapters study the Coulomb interactions in connection with the excitation of inner electron shells and the Coulomb excitation of nuclei in first order. In the third part on effect ofthe Coulomb interaction between electronic shell and nucleus is treated in second order (nuclear polarization), and its effect on the isotopic and isomeric shift is studied. (orig./HSI) [de

  15. General decay law for emission of charged particles and exotic cluster radioactivity

    International Nuclear Information System (INIS)

    Sahu, Basudeb; Paira, Ramkrishna; Rath, Biswanath

    2013-01-01

    For the emission of charged particles from metastable nuclei, a general decay formula is developed based on the basic phenomenon of resonances occurring in quantum scattering process under Coulomb-nuclear potential. It relates the half-lives of monopole radioactive decays with the Q-values of the outgoing elements in different angular momentum states as well as the masses and charges of the nuclei involved in the decay. The relation is found to be a generalization of the Geiger–Nuttall law in α radioactivity and it explains well all known emission of charged particles including clusters, alpha and proton carrying angular momenta

  16. Dental Caries (Tooth Decay)

    Science.gov (United States)

    ... Materials Contact Us Home Research Data & Statistics Dental Caries (Tooth Decay) Dental caries (tooth decay) remains the most prevalent chronic disease ... adults, even though it is largely preventable. Although caries has significantly decreased for most Americans over the ...

  17. Dental Caries (Tooth Decay)

    Science.gov (United States)

    ... Contact Us Home Research Data & Statistics Share Dental Caries (Tooth Decay) Dental caries (tooth decay) remains the most prevalent chronic disease ... adults, even though it is largely preventable. Although caries has significantly decreased for most Americans over the ...

  18. An atomic string model for a screw dislocation in iron: Implications for the development of interatomic potentials

    International Nuclear Information System (INIS)

    Gilbert, M.R.; Dudarev, S.L.; Chiesa, S.; Derlet, P.M.

    2009-01-01

    Thermally activated motion of screw dislocations is the rate-determining mechanism for plastic deformation and fracture of body centred cubic (bcc) metals and alloys. Recent experimental observations by S.G. Roberts' group at Oxford showed that ductile-brittle behaviour of bcc vanadium, tungsten, pure iron, and iron-chromium alloys is controlled by an Arrhenius process in which the energy for thermal activation is proportional to the formation energy for a double kink on a b= 1/2 screw dislocation, where b is the Burgers vector of the dislocation. Interpreting these experimental observations and extending the analysis to the case of irradiated materials requires developing a full quantitative treatment for perfect and kinked screw dislocations. Modelling screw dislocations also presents a challenge for the development of interatomic potentials. Recent density functional theory (DFT) calculations have revealed that the ground-state structure of the core of screw dislocations in all the bcc transition metals is non-degenerate and symmetric, whereas inter-atomic potentials used in molecular dynamics simulations for these metals often predict a degenerate, symmetry-broken core-structure. In this work we show how, by treating the structure of a screw dislocation within a multistring Frenkel-Kontorova model, we can develop a criterion that guarantees the correct symmetric core of the dislocation. Extending this treatment, we find a systematic recipe for constructing Finnis-Sinclair-type potentials that are able, as a matter of routine, produce non-degenerate core structures of 1/2 screw dislocations. Modelling thermally activated mobility of screw dislocations also requires that the transition pathway between stable core positions of a dislocation is accurately reproduced. DFT data indicates that the shape of the 'Peierls energy barrier' is a single-hump curve, including transitional configurations close to the so-called 'hard' structure. Interatomic potentials have, up

  19. MODEL RADIOACTIVE RADON DECAY

    Directory of Open Access Journals (Sweden)

    R.I. Parovik

    2012-06-01

    Full Text Available In a model of radioactive decay of radon in the sample (222Rn. The model assumes that the probability of the decay of radon and its half-life depends on the fractal properties of the geological environment. The dependencies of the decay parameters of the fractal dimension of the medium.

  20. Coulomb effects in relativistic laser-assisted Mott scattering

    International Nuclear Information System (INIS)

    Ngoko Djiokap, J.M.; Kwato Njock, M.G.; Tetchou Nganso, H.M.

    2004-09-01

    We reconsider the influence of the Coulomb interaction on the process of relativistic Mott scattering in a powerful electromagnetic plane wave for which the ponderomotive energy is of the order of the magnitude of the electron's rest mass. Coulomb effects of the bare nucleus on the laser-dressed electron are treated more completely than in the previous work of Li et al. [J. Phys. B: At. Mol. Opt. Phys. 37 (2004) 653]. To this end we use Coulomb-Dirac-Volkov functions to describe the initial and the final states of the electron. First-order Born differential cross sections of induced and inverse bremsstrahlung are obtained for circularly and linearly polarized laser light. Numerical calculations are carried out from both polarizations, for various nucleus charge values, three angular configurations and an incident energy in the MeV range. It is found that for parameters used in the present work, incorporating Coulomb effects of the target nucleus either in the initial state or in the final state yields cross sections which are quite similar whatever the scattering geometry and polarization considered. When Coulomb distortions are included in both states, the cross sections are strongly modified with the increase of Z, as compared to the outcome of the prior form of the T-matrix treatment. (author)

  1. Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo

    Science.gov (United States)

    Motta, Mario; Zhang, Shiwei

    2018-05-01

    We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.

  2. Scattering of thermal He beams by crossed atomic and molecular beams. I. Sensitivity of the elastic differential cross section to the interatomic potential

    International Nuclear Information System (INIS)

    Keil, M.; Kuppermann, A.

    1978-01-01

    The ability of diffraction oscillations in atomic beam scattering experiments to uniquely determine interatomic potentials for highly quantal systems is examined. Assumed but realistic potentials are used to generate, by scattering calculations and incorporation of random errors, differential cross sections which are then treated as if they were ''experimental'' data. From these, attempts are made to recover the initial potential by varying the parameters of assumed mathematical forms different from the original one, until a best fit to the ''experimental'' results is obtained. It is found that the region of the interaction potential around the van der Waals minimum is accurately determined by the ''measured'' differential cross sections over a range of interatomic separations significantly wider than would be expected classically. It is also found, for collision energies at which the weakly repulsive wall is appreciably sampled, that the SPF--Dunham and double Morse--van der Waals types of potentials lead to accurate determinations of the interatomic potential, whereas many other mathematical forms do not. Analytical parameterizations most appropriate for obtaining accurate interatomic potentials from thermal DCS experiments, for a given highly quantal system, may depend on the collision energy used

  3. Calculation of nuclear radius using alpha decay

    International Nuclear Information System (INIS)

    Castro, R.B. de.

    1988-01-01

    Using a Quantum Theory approach for the Alpha-Decay process, a formula is deduced for determination of the nuclear radius of the s-state, that is, a nuclear model with a spherical shell. The hypothesis that it is possible to individualize the alpha particle and the daughter nucleus at the moment of the alpha particle emission is considered. In considered in these conditions, the treatment of a two body problem considered as point particles, repelling each other by Coulomb's Law. Using the new values of the fundamental physical constants, experimentally determinated, by substitution of their numerical values in the proposed, new values of nuclear radii are obtained. These values are compared with those found in the literature. (author) [pt

  4. Radiative decays of single heavy flavour baryons

    International Nuclear Information System (INIS)

    Majethiya, Ajay; Patel, Bhavin; Vinodkumar, P.C.

    2009-01-01

    The electromagnetic transitions between (J P =(3)/(2) + ) and (J P =(1)/(2) + ) baryons are important decay modes to observe new hadronic states experimentally. For the estimation of these transitions widths, we employ a non-relativistic quark potential model description with color Coulomb plus linear confinement potential. Such a description has been employed to compute the ground-state masses and magnetic moments of the single heavy flavor baryons. The magnetic moments of the baryons are obtained using the spin-flavor structure of the constituting quark composition of the baryon. Here, we also define an effective constituent mass of the quarks (ecqm) by taking into account the binding effects of the quarks within the baryon. The radiative transition widths are computed in terms of the magnetic moments of the baryon and the photon energy. Our results are compared with other theoretical models. (orig.)

  5. Dynamics of Db isotopes formed in reactions induced by 238U, 248Cm, and 249Bk across the Coulomb barrier

    Science.gov (United States)

    Kaur, Gurjit; Sandhu, Kirandeep; Kaur, Amandeep; Sharma, Manoj K.

    2018-05-01

    The dynamical cluster decay model is employed to investigate the decay of *265Db and *267Db nuclei, formed in the 27Al+238U , 18O+249Bk , and 19F+248Cm hot fusion reactions at energies around the Coulomb barrier. First, the fission dynamics of the 27Al+238U reaction is explored by investigating the fragmentation and preformation yield of the reaction. The symmetric mass distribution of the fission fragments is observed for *265Db nucleus, when static β2 i deformations are used within hot optimum orientation approach. However, the mass split gets broaden for the use of β2 i-dynamical hot configuration of the fragments and becomes clearly asymmetric for the cold-static-deformed approach. Within the application of cold orientations of fragments, a new fission channel is observed at mass asymmetry η =0.29 . In addition to 238U-induced reaction, the work is carried out to address the fission and neutron evaporation cross sections of *267Db nucleus formed via 19F+248Cm and 18O+249Bk reactions, besides a comprehensive analysis of fusion and capture processes. Higher fusion cross sections and compound nucleus formation probabilities (PCN) are obtained for the 18O+249Bk reaction, as larger mass asymmetry in the entrance channel leads to reduced Coulomb factor. Finally, the role of sticking (IS) and nonsticking (INS) moments of inertia is analyzed for the 4 n and 5 n channels of *267Db nuclear system.

  6. Verification of the Rigidity of the Coulomb Field in Motion

    Science.gov (United States)

    Blinov, S. V.; Bulyzhenkov, I. É.

    2018-06-01

    Laplace, analyzing the stability of the Solar System, was the first to calculate that the velocity of the motion of force fields can significantly exceed the velocity of light waves. In electrodynamics, the Coulomb field should rigidly accompany its source for instantaneous force action in distant regions. Such rigid motion was recently inferred from experiments at the Frascati Beam Test Facility with short beams of relativistic electrons. The comments of the authors on their observations are at odds with the comments of theoreticians on retarded potentials, which motivates a detailed study of the positions of both sides. Predictions of measurements, based on the Lienard-Wiechert potentials, are used to propose an unambiguous scheme for testing the rigidity of the Coulomb field. Realization of the proposed experimental scheme could independently refute or support the assertions of the Italian physicists regarding the rigid motion of Coulomb fields and likewise the nondual field approach to macroscopic reality.

  7. Fast Electron Repulsion Integrals for Molecular Coulomb Sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil

    2013-01-01

    A new method is presented for calculating interelectron repulsion integrals for molecular Coulomb Sturmian basis sets. This makes use of an expansion of densities in terms of 2k-Sturmians, and the interelectron repulsion integrals are then calculated by a method based on the theory of hyperspheri......A new method is presented for calculating interelectron repulsion integrals for molecular Coulomb Sturmian basis sets. This makes use of an expansion of densities in terms of 2k-Sturmians, and the interelectron repulsion integrals are then calculated by a method based on the theory...... of hyperspherical harmonics. A rudimentary software library has been implemented and preliminary benchmarks indicate very good performance: On average 40 ns, or approximately 80 clock cycles, per electron repulsion integral. This makes molecular Coulomb Sturmians competitive with Gaussian type orbitals in terms...

  8. Metal nanoparticle film-based room temperature Coulomb transistor.

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-07-01

    Single-electron transistors would represent an approach to developing less power-consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations.

  9. Coulomb matrix elements in multi-orbital Hubbard models.

    Science.gov (United States)

    Bünemann, Jörg; Gebhard, Florian

    2017-04-26

    Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.

  10. Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study

    DEFF Research Database (Denmark)

    Lunde, Anders Mathias; Flensborg, Karsten; Jauho, Antti-Pekka

    2005-01-01

    We calculate the intershell resistance R-21 in a multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F) (e.g., a gate voltage), varying the chirality of the inner and outer tubes. This is done in a so-called Coulomb drag setup, where a current I-1 in one shell induces...... a voltage drop V-2 in another shell by the screened Coulomb interaction between the shells neglecting the intershell tunneling. We provide benchmark results for R-21 = V2/I-1 within the Fermi liquid theory using Boltzmann equations. The band structure gives rise to strongly chirality-dependent suppression...... effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R-21 and even the sign of R-21 can change depending on the chirality...

  11. Metal nanoparticle film–based room temperature Coulomb transistor

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-01-01

    Single-electron transistors would represent an approach to developing less power–consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations. PMID:28740864

  12. Electron transport in the presence of a Coulomb field

    International Nuclear Information System (INIS)

    Burgdoerfer, J.; Gibbons, J.

    1990-01-01

    We analyze the modifications of the transport behavior of electrons in dense media due to the presence of a strong Coulomb field generated by an ion moving initially in close phase-space correlation with the electrons. These modifications play a profound role in convoy electron emission in ion-solid collisions. The transport behavior is studied within the framework of a classical phase-space master equation. The nonseparable master equation is solved numerically using test-particle discretization and Monte Carlo sampling. In the limit of vanishing Coulomb forces the master equation becomes separable and can be reduced to standard one-dimensional kinetic equations for free-electron transport that can be solved exactly. The comparison to free-electron transport is used to gauge both the reliability of test-particle discretization and the significance of Coulomb distortion of the distribution functions. Applications to convoy-electron emission are discussed

  13. Decay properties of {sup 256-339}Ds superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P.; Nithya, C. [Kannur University, School of Pure and Applied Physics, Payyanur, Kerala (India)

    2017-09-15

    The decay properties of 84 isotopes of darmstadtium superheavy nuclei (Z = 110) have been studied using various theoretical models. The proton emission half-lives, the alpha decay half-lives, the spontaneous fission half-lives and the cluster decay half-lives of all the isotopes are evaluated. The one-proton emission half-lives and the alpha decay half-lives are predicted using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The calculated alpha half-lives are compared with the available experimental results as well as with the predictions of other theoretical models. The predicted half-lives matches well with the experimental results. The one-proton half-lives are also compared with the predictions using other formalisms. The shell-effect-dependent formula of Santhosh et al. has been employed for calculating the spontaneous fission half-lives. A theoretical comparison of spontaneous fission half-lives with four different formalisms is performed. By comparing the one-proton emission half-lives, the alpha decay half-lives and the spontaneous fission half-lives decay modes are predicted for all the isotopes of Ds. It is seen that the isotopes within the range 256 ≤ A ≤ 263 and 279 ≤ A ≤ 339 decay through spontaneous fission and the isotopes 264 ≤ A ≤ 278 exhibit alpha decay. Cluster decay half-lives are calculated using different models including the Coulomb and proximity potential (CPPM), for determining the magicities in the superheavy region. The effect of magicity at N = 184 and N = 202 were confirmed from the plot of log{sub 10}T{sub 1/2} versus neutron number of the daughter nuclei for the emission of different clusters. We hope that the systematic and detailed study of all the possible decay modes of {sup 256-339}Ds using various theoretical models will be helpful in the experimental identification of the isotopes of the element in the future. (orig.)

  14. Testing the Predictive Power of Coulomb Stress on Aftershock Sequences

    Science.gov (United States)

    Woessner, J.; Lombardi, A.; Werner, M. J.; Marzocchi, W.

    2009-12-01

    Empirical and statistical models of clustered seismicity are usually strongly stochastic and perceived to be uninformative in their forecasts, since only marginal distributions are used, such as the Omori-Utsu and Gutenberg-Richter laws. In contrast, so-called physics-based aftershock models, based on seismic rate changes calculated from Coulomb stress changes and rate-and-state friction, make more specific predictions: anisotropic stress shadows and multiplicative rate changes. We test the predictive power of models based on Coulomb stress changes against statistical models, including the popular Short Term Earthquake Probabilities and Epidemic-Type Aftershock Sequences models: We score and compare retrospective forecasts on the aftershock sequences of the 1992 Landers, USA, the 1997 Colfiorito, Italy, and the 2008 Selfoss, Iceland, earthquakes. To quantify predictability, we use likelihood-based metrics that test the consistency of the forecasts with the data, including modified and existing tests used in prospective forecast experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results indicate that a statistical model performs best. Moreover, two Coulomb model classes seem unable to compete: Models based on deterministic Coulomb stress changes calculated from a given fault-slip model, and those based on fixed receiver faults. One model of Coulomb stress changes does perform well and sometimes outperforms the statistical models, but its predictive information is diluted, because of uncertainties included in the fault-slip model. Our results suggest that models based on Coulomb stress changes need to incorporate stochastic features that represent model and data uncertainty.

  15. Description of proton radioactivity using the Coulomb and proximity potential model for deformed nuclei

    Science.gov (United States)

    Santhosh, K. P.; Sukumaran, Indu

    2017-09-01

    Half-life predictions have been performed for the proton emitters with Z >50 in the ground state and isomeric state using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The agreement of the calculated values with the experimental data made it possible to predict some proton emissions that are not verified experimentally yet. For a comparison, the calculations also are performed using other theoretical models, such as the Gamow-like model of Zdeb et al. [Eur. Phys. J. A 52, 323 (2016), 10.1140/epja/i2016-16323-7], the semiempirical relation of Hatsukawa et al. [Phys. Rev. C 42, 674 (1990), 10.1103/PhysRevC.42.674], and the CPPM of Santhosh et al. [Pramana 58, 611 (2002)], 10.1007/s12043-002-0019-2. The Geiger-Nuttall law, originally observed for α decay, studied for proton radioactivity is found to work well provided it is plotted for the isotopes of a given proton emitter nuclide with the same ℓ value. The universal curve is found to be valid for proton radioactivity also as we obtained a single straight line for all proton emissions irrespective of the parents. Through the analysis of the experimentally measured half-lives of 44 proton emitters, the study revealed that the present systematic study lends support to a unified description for studying α decay, cluster radioactivity, and proton radioactivity.

  16. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems.

    Science.gov (United States)

    Badalyan, S M; Shylau, A A; Jauho, A P

    2017-09-22

    We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q. Accordingly, the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength. The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the system parameters and be used in plasmonic applications.

  17. Physics of the Non-Abelian Coulomb Phase

    DEFF Research Database (Denmark)

    Ryttov, Thomas A.; Shrock, Robert

    2018-01-01

    are applied to obtain further estimates of $\\gamma_{\\bar\\psi\\psi,IR}$ and $\\beta'_{IR}$ for several SU($N_c$) groups and representations $R$, and comparisons are made with lattice measurements. We apply our results to obtain new estimates of the extent of the respective non-Abelian Coulomb phases in several....... It is shown that an expansion of $\\gamma_{\\bar\\psi\\psi,IR}$ to $O(\\Delta_f^4)$ is quite accurate throughout the entire non-Abelian Coulomb phase of this supersymmetric theory....

  18. Two-dimensional QCD in the Coulomb gauge

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Nefed'ev, A.V.

    2002-01-01

    Various aspects of the 't Hooft model for two-dimensional QCD in the limit of infinite number of colours in the Coulomb gauge are discussed. The properties of mesonic excitations are studied, with special emphasis on the pion. Attention is paid to the dual role of the pion. which, while a genuine qq-bar state, is a Goldstone boson of two-dimensional QCD as well. In particular, the validity of the soft-pion theorems is demonstrated. It is shown that the Coulomb gauge is the most suitable choice for the study of hadronic observables involving pions [ru

  19. Coulomb Final State Interactions for Gaussian Wave Packets

    CERN Document Server

    Wiedemann, Urs Achim; Heinz, Ulrich W

    1999-01-01

    Two-particle like-sign and unlike-sign correlations including Coulomb final state interactions are calculated for Gaussian wave packets emitted from a Gaussian source. We show that the width of the wave packets can be fully absorbed into the spatial and momentum space widths of an effective emission function for plane wave states, and that Coulomb final state interaction effects are sensitive only to the latter, but not to the wave packet width itself. Results from analytical and numerical calculations are compared with recently published work by other authors.

  20. Coulomb corrections for interferometry analysis of expanding hadron systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinyukov, Yu.M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Institute for Theoretical Physics of National Acad. Sci., Kiev (Ukraine); Lednicky, R. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Institute of Physics, Prague (Czech Republic); Akkelin, S.V. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Teoreticheskoj Fiziki; Pluta, J. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Warsaw Univ. (Poland). Inst. of Physics; Erazmus, B. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees

    1998-10-01

    The problem of the Coulomb corrections to the two-boson correlation functions for the systems formed in ultra-relativistic heavy ion collisions is considered for large effective volumes predicted in the realistic evolution scenarios taking into account the collective flows. A simple modification of the standard zero-distance correction (so called Gamow or Coulomb factor) has been proposed for such a kind of systems. For {pi}{sup +}{pi}{sup +} and K{sup +}K{sup +} correlation functions this approximate analytical approach is compared with the exact numerical results and a good agreement is found for typical conditions at SPS, RHIC and even LHC energies. (author) 21 refs.

  1. Vibrational motions in rotating nuclei studied by Coulomb excitations

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R [Kyushu Univ., Fukuoka (Japan). Dept. of Physics

    1998-03-01

    As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)

  2. Role of Coulomb repulsion in multilayer cuprate superconductor

    International Nuclear Information System (INIS)

    Singh Chauhan, Ekta; Singh, Vipul; Masih, Piyush

    2012-01-01

    Although BCS theory completely neglects coulomb repulsion; Anderson and Morel showed very early that it plays a central role in superconductivity. Since all high T c superconductors are based on the structure of closely spaced square planner CuO 2 layers and role of interlayer interaction plays important role in enhancement of T c . Therefore the work has been dealt with 'Role of Coulomb repulsion in Multilayer Cuprate Superconductors'. An expression for transition temperature T c is obtained by using simple integration technique and is numerically solved. It has found that T c decreases with electronic repulsion. (author)

  3. Coulomb breakup of 31Ne using finite range DWBA

    International Nuclear Information System (INIS)

    Shubhchintak; Chatterjee, R.

    2013-01-01

    Coulomb breakup of nuclei away from the valley of stability have been one of the most successful probes to unravel their structure. However, it is only recently that one is venturing into medium mass nuclei like 23 O and 31 Ne. This is a very new and exciting development which has expanded the field of light exotic nuclei to the deformed medium mass region. In this contribution, an extension of the previously proposed theory of Coulomb breakup within the post-form finite range distorted wave Born approximation to include deformation of the projectile is reported

  4. Higher-order dynamical effects in Coulomb dissociation

    International Nuclear Information System (INIS)

    Esbensen, H.

    1994-06-01

    We study the effect of higher-order processes in Coulomb dissociation of 11 Li by numerically solving the three-dimensional time-dependent Schroedinger equation for the relative motion of a di-neutron and the 9 Li core. Comparisons are made to first-order perturbation theory and to measurements. The calculated Coulomb reacceleration effects improve the agreement with experiment, but some discrepancy remains. The effects are much smaller in the dissociation of 11 Be, and they decrease with increasing beam energy. (orig.)

  5. α-decay half-lives of some nuclei from ground state to ground state using different nuclear potential

    Directory of Open Access Journals (Sweden)

    Akrawy Dashty T.

    2018-01-01

    Full Text Available Theoretical α-decay half-lives of some nuclei from ground state to ground state are calculated using different nuclear potential model including Coulomb proximity potential (CPPM, Royer proximity potential and Broglia and Winther 1991. The calculated values comparing with experimental data, it is observed that the CPPM model is in good agreement with the experimental data.

  6. Effects of screened Coulomb (Yukawa) and exponential-cosine-screened Coulomb potentials on photoionization of H and He+

    International Nuclear Information System (INIS)

    Lin, C.Y.; Ho, Y.K.

    2010-01-01

    The screening effects due to the exponential-cosine-screened Coulomb and screened Coulomb (Yukawa) potentials on photoionization processes are explored within the framework of complex coordinate rotation method. The energy levels of H and He + in both screened potentials shifted with various Debye screening lengths are presented. The photoionization cross sections illustrate the considerable screening effects on photoionization processes in low energy region. The shape resonances can be found near ionization thresholds for certain of Debye screening lengths. The relations between the appearance of resonances and the existence of quasi-bound states under shielding conditions are discussed. (authors)

  7. The structure of small molecules with the Coulomb Explosion method

    International Nuclear Information System (INIS)

    Vager, Z.; Kanter, E.P.

    1987-01-01

    The content of this paper is divided into two parts: (1) achievements of the last two years in studying molecular ion structure with the aid of the newly developed Coulomb-Explosion (CE) method, and (2) the understanding of the modern CE data in terms of an invariant density of nuclear coordinates of the studied molecule

  8. Yangian Y(sl(2)) in Coulomb problem

    International Nuclear Information System (INIS)

    Zhang Shengli

    1998-01-01

    In this paper, the Yangian Y(sl(2)) is shown existing in the system that a particle moves in Coulomb field. The generators of Y(sl(2)) are constructed in terms of the angular momentum operators and so-called Yangian Runge-Lenz vector. The selection rule and matrix element of Y(sl(2)) generators are calculated. (orig.)

  9. Renormalizable Non-Covariant Gauges and Coulomb Gauge Limit

    CERN Document Server

    Baulieu, L

    1999-01-01

    To study ``physical'' gauges such as the Coulomb, light-cone, axial or temporal gauge, we consider ``interpolating'' gauges which interpolate linearly between a covariant gauge, such as the Feynman or Landau gauge, and a physical gauge. Lorentz breaking by the gauge-fixing term of interpolating gauges is controlled by extending the BRST method to include not only the local gauge group, but also the global Lorentz group. We enumerate the possible divergences of interpolating gauges, and show that they are renormalizable, and we show that the expectation value of physical observables is the same as in a covariant gauge. In the second part of the article we study the Coulomb-gauge as the singular limit of the Landau-Coulomb interpolating gauge. We find that unrenormalized and renormalized correlation functions are finite in this limit. We also find that there are finite two-loop diagrams of ``unphysical'' particles that are not present in formal canonical quantization in the Coulomb gauge. We verify that in the ...

  10. Asymptotic coulombic conditions in the electron capture process

    International Nuclear Information System (INIS)

    Corchs, S.E.; Maidagan, J.M.; Rivarola, R.D.

    1990-01-01

    Several first order perturbative approximations of the transition amplitude for electronic capture are studied. Different models in which the long range Coulomb potential is represented by different internuclear dependent phases, in the initial and final wave functions, are analysed and compared. (Author). 8 refs., 2 figs

  11. Molecular integrals for slater type orbitals using coulomb sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2014-01-01

    The use of Slater type orbitals in molecular calculations is hindered by the slowness of integral evaluation. In the present paper, we introduce a method for overcoming this problem by expanding STO's in terms of Coulomb Sturmians, for which the problem of evaluating molecular integrals rapidly has...

  12. Imaging of Coulomb-Driven Quantum Hall Edge States

    KAUST Repository

    Lai, Keji; Kundhikanjana, Worasom; Kelly, Michael A.; Shen, Zhi-Xun; Shabani, Javad; Shayegan, Mansour

    2011-01-01

    The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb

  13. Coulomb corrections to scattering length and effective radius

    International Nuclear Information System (INIS)

    Mur, V.D.; Kudryavtsev, A.E.; Popov, V.S.

    1983-01-01

    The problem considered is extraction of the ''purely nuclear'' scattering length asub(s) (corresponding to the strong potential Vsub(s) at the Coulomb interaction switched off) from the Coulomb-nuclear scattering length asub(cs), which is an object of experimental measurement. The difference between asub(s) and asub(cs) is especially large if the potential Vsub(s) has a level (real or virtual) with an energy close to zero. For this case formulae are obtained relating the scattering lengths asub(s) and asub(cs), as well as the effective radii rsub(s) and rsub(cs). The results are extended to states with arbitrary angular momenta l. It is shown that the Coulomb correction is especially large for the coefficient with ksup(2l) in the expansion of the effective radius; in this case the correction contains a large logarithm ln(asub(B)/rsub(0)). The Coulomb renormalization of other terms in the effective radius espansion is of order (rsub(0)/asub(B)), where r 0 is the nuclear force radius, asub(B) is the Bohr radius. The obtained formulae are tried on a number of model potentials Vsub(s), used in nuclear physics

  14. Using the Screened Coulomb Potential to Illustrate the Variational Method

    Science.gov (United States)

    Zuniga, Jose; Bastida, Adolfo; Requena, Alberto

    2012-01-01

    The screened Coulomb potential, or Yukawa potential, is used to illustrate the application of the single and linear variational methods. The trial variational functions are expressed in terms of Slater-type functions, for which the integrals needed to carry out the variational calculations are easily evaluated in closed form. The variational…

  15. Coulomb Interactions in Hanbury Brown-Twiss Experiments with Electrons

    Science.gov (United States)

    Shen, Kan

    2009-01-01

    This dissertation examines the effect of Coulomb interactions in Hanbury Brown-Twiss (HBT) type experiments with electrons. HBT experiments deal with intensity interference, which is related to the second-order correlation function of the particle field. This is an extension of the usual amplitude interference experiment, such as Young's…

  16. Plasmon-mediated Coulomb drag between graphene waveguides

    DEFF Research Database (Denmark)

    Shylau, Artsem A.; Jauho, Antti-Pekka

    2014-01-01

    We analyze theoretically charge transport in Coulomb coupled graphene waveguides (GWGs). The GWGs are defined using antidot lattices, and the lateral geometry bypasses many technological challenges of earlier designs. The drag resistivity ρD, which is a measure of the many-particle interactions...

  17. Coulomb energy of uniformly charged spheroidal shell systems.

    Science.gov (United States)

    Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera

    2015-03-01

    We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.

  18. The Coulomb law and atomic levels in a superstrong B

    Directory of Open Access Journals (Sweden)

    Vysotsky M.I.

    2014-04-01

    Full Text Available The spectrum of atomic levels of hydrogen-like ions originating from the lowest Landau level in an external homogeneous superstrong magnetic field is obtained. The influence of the screening of the Coulomb potential on the values of critical nuclear charges is studied.

  19. A conceivable lattice structure of the Coulomb law

    International Nuclear Information System (INIS)

    Papp, E.; Santilli, R.M.

    1983-01-01

    A few heuristic remarks on recent extensions of the Coulomb law via effective potentials and other means, which appear to admit a lattice structure in time and space whose spacing are given by the characteristic period of the elctron and its Compton wave-length, respectively, are presented

  20. Chaos in a coulombic muffin-tin potential

    International Nuclear Information System (INIS)

    Brandis, S.

    1994-04-01

    We study the two-dimensional classical scattering dynamics by a Muffin-Tin potential with 3 Coulomb singularities. A complete symbolic dynamics for the periodic orbits is derivd. The classical trajectories are shown to be hyperbolic everywhere in phase space and to carry no conjugate points. (orig.)

  1. WIX: statistical nuclear multifragmentation with collective expansion and Coulomb forces

    Science.gov (United States)

    Randrup, J.∅rgen

    1993-10-01

    By suitable augmentation of the event generator FREESCO, a code WIX has been constructed with which it is possible to simulate the statistical multifragmentation of a specified nuclear source, which may be both hollow and deformed, in the presence of a collective expansion and with the interfragment Coulomb forces included.

  2. Generalized second-order Coulomb phase shift functions

    International Nuclear Information System (INIS)

    Rosendorff, S.

    1982-01-01

    Some specific properties and the evaluation of the generalized second-order Coulomb phase shift functions (two-dimensional integrals of four spherical cylinder functions) are discussed. The dependence on the three momenta k 1 ,k-bar,k 2 , corresponding to the final, intermediate, and initial states is illustrated

  3. Coulomb plus strong interaction bound states - momentum space numerical solutions

    International Nuclear Information System (INIS)

    Heddle, D.P.; Tabakin, F.

    1985-01-01

    The levels and widths of hadronic atoms are calculated in momentum space using an inverse algorithm for the eigenvalue problem. The Coulomb singularity is handled by the Lande substraction method. Relativistic, nonlocal, complex hadron-nucleus interactions are incorporated as well as vacuum polarization and finite size effects. Coordinate space wavefunctions are obtained by employing a Fourier Bessel transformation. (orig.)

  4. Semiclassical treatment of nuclear effects in Coulomb excitation

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F; Donangelo, R [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Rasmussen, J O; Ring, P; Stoyer, M A [Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.

    1990-09-27

    We introduce the effects of the nuclear potential in the semiclassical Alder-Winther-de Boer method, both in the coupling matrix elements and as corrections to the Rutherford orbit. We compare our results to those of pure Coulomb excitation and to coupled-channel calculations. (orig.).

  5. Coulomb displacement energies between analog levels for 44 < = A < = 239

    International Nuclear Information System (INIS)

    Antony, M.S.; Britz, J.; Pape, A.

    1985-08-01

    Experimental Coulomb displacement energie ΔEsub(C) between isobaric analog levels are tabulated for 44 <- A <- 239, extending recent work in which similar data were presented for 3 <- A <- 45. An overall parametrization in anti-Z/A sup(1/3) and uniform radius parameters rsub(o) are given

  6. Structure of light neutron-rich nuclei through Coulomb dissociation

    Indian Academy of Sciences (India)

    The data analysis for Coulomb breakup of. ½ .... C (605 MeV/u) breaking up into a neutron and a .... direct break up model delivers a cross section of 107 mb for a ... separation energy for the last neutron in the even isotopes = 20 to 24 is 7 to 8 ...

  7. Coulomb fission and transfer fission at heavy ion collisions

    International Nuclear Information System (INIS)

    Himmele, G.

    1981-01-01

    In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de

  8. Analytic structure of many-body Coulombic wave functions

    DEFF Research Database (Denmark)

    Fournais, Søren; Hoffmann-Ostenhof, Maria; Hoffmann-Ostenhof, Thomas

    2009-01-01

    We investigate the analytic structure of solutions of non-relativistic Schrödinger equations describing Coulombic many-particle systems. We prove the following: Let ψ(x) with denote an N-electron wavefunction of such a system with one nucleus fixed at the origin. Then in a neighbourhood of a coal...

  9. On the role of coulomb forces in atomic radiative emission

    International Nuclear Information System (INIS)

    Yngstroem, S.

    1988-10-01

    It is shown how the generalized Coulomb interaction (electric and magnetic fields of force) competes with the radiative interaction causing overall inhibition of the radiative capability of atoms and ions in a gaseous sample of matter. Basic quantum mechanical aspects of the electromagnetic interaction are discussed in a heuristic introduction followed by a more precise treatment in the formalism of relativistic quantum electrodynamics. (author)

  10. Duffin-Kemmer-Petiau equation under a scalar Coulomb interaction

    International Nuclear Information System (INIS)

    Hassanabadi, H.; Yazarloo, B. H.; Zarrinkamar, S.; Rajabi, A. A.

    2011-01-01

    Approximate analytical solutions of a Duffin-Kemmer-Petiau (DKP) equation are obtained via an elegant ansatz after successive transformations. Apart from the wide application of the DKP equation in both cosmology and theoretical nuclear physics as well as the physical significance of the Coulomb interaction, this is particularly important as we have provided a solution to the corresponding Heun equation.

  11. Excitation and photon decay of giant multipole resonances

    International Nuclear Information System (INIS)

    Bertrand, F.E.; Beene, J.R.

    1990-01-01

    A brief review of the excitation of giant multipole resonances via Coulomb excitation is given which emphasizes the very large cross sections that can be realized through this reaction for both isoscalar and isovector resonances. Discussion and results where available, are provide for the measurement of the photon decay of one and two phonon giant resonances. It is pointed out throughout the presentation that the use of E1 photons as a ''tag'' provides a means to observe weakly excited resonances that cannot be observed in the singles spectra. 14 refs., 12 figs., 1 tab

  12. Electromagnetic corrections in {eta}{yields}3{pi} decays

    Energy Technology Data Exchange (ETDEWEB)

    Ditsche, Christoph; Kubis, Bastian [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany); Forschungszentrum Juelich, Institut fuer Kernphysik (Theorie), Institute for Advanced Simulations, and Juelich Center for Hadron Physics, Juelich (Germany)

    2009-03-15

    We re-evaluate the electromagnetic corrections to {eta}{yields}3{pi} decays at next-to-leading order in the chiral expansion, arguing that effects of order e{sup 2}(m{sub u}-m{sub d}) disregarded so far are not negligible compared to other contributions of order e {sup 2} times a light-quark mass. Despite the appearance of the Coulomb pole in {eta}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0} and cusps in {eta}{yields}3{pi}{sup 0}, the overall corrections remain small. (orig.)

  13. Electromagnetic corrections in η→3π decays

    International Nuclear Information System (INIS)

    Ditsche, Christoph; Kubis, Bastian; Meissner, Ulf G.

    2009-01-01

    We re-evaluate the electromagnetic corrections to η→3π decays at next-to-leading order in the chiral expansion, arguing that effects of order e 2 (m u -m d ) disregarded so far are not negligible compared to other contributions of order e 2 times a light-quark mass. Despite the appearance of the Coulomb pole in η→π + π - π 0 and cusps in η→3π 0 , the overall corrections remain small. (orig.)

  14. Exact solution of the N-dimensional generalized Dirac-Coulomb equation

    International Nuclear Information System (INIS)

    Tutik, R.S.

    1992-01-01

    An exact solution to the bound state problem for the N-dimensional generalized Dirac-Coulomb equation, whose potential contains both the Lorentz-vector and Lorentz-scalar terms of the Coulomb form, is obtained. 24 refs. (author)

  15. SYMPOSIUM: Rare decays

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-04-15

    Late last year, a symposium entitled 'Rare Decays' attracted 115 participants to a hotel in Vancouver, Canada. These participants were particle physicists interested in checking conventional selection rules to look for clues of possible new behaviour outside today's accepted 'Standard Model'. For physicists, 'rare decays' include processes that have so far not been seen, explicitly forbidden by the rules of the Standard Model, or processes highly suppressed because the decay is dominated by an easier route, or includes processes resulting from multiple transitions.

  16. Effective Majorana neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Lucia [Instituto de Fisica, Facultad de Ingenieria,Universidad de la Republica, Montevideo (Uruguay); Romero, Ismael; Peressutti, Javier; Sampayo, Oscar A. [Universidad Nacional de Mar del Plata, Departamento de Fisica, Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR) CONICET, UNMDP, Mar del Plata (Argentina)

    2016-08-15

    We study the decay of heavy sterile Majorana neutrinos according to the interactions obtained from an effective general theory. We describe the two- and three-body decays for a wide range of neutrino masses. The results obtained and presented in this work could be useful for the study of the production and detection of these particles in a variety of high energy physics experiments and astrophysical observations. We show in different figures the dominant branching ratios and the total decay width. (orig.)

  17. Axigluon decays of toponium

    International Nuclear Information System (INIS)

    Faustov, R.N.; Vasilevskaya, I.G.

    1990-01-01

    Chiral-colour model predicts the existence of axigluons which is an octet of massive axial-vector gauge bosons. In this respect toponium decays into axigluons and gluons are of interest. The following toponium decays are considered: θ → Ag, θ → AAg, θ → ggg → AAg. The width of toponium S-state decays is calculated under various possible values of axigluon mass

  18. Decay of 143La

    International Nuclear Information System (INIS)

    Blachot, J.; Dousson, S.; Monnand, E.; Schussler, F.

    1976-01-01

    The decay of 143 La has been investigated. Sources have been obtained from 2 isotope separators (ISERE, OSIRIS). 12 gamma rays, with the most intense at 620keV representing only 1.4% of decay, have been attributed to the 143 La decay. A level scheme has been found and compared with the one deduced from (d,p) and (n,γ) reactions on 142 Ce [fr

  19. The Coulomb-nuclear force interference in the system 32S + 60Ni

    International Nuclear Information System (INIS)

    Dannhaeuser, G.

    1980-01-01

    For the reaction 60 Ni( 32 S, 32 S*) 60 Ni* using particle-γ-coincidences the excitation functions of 32 S(2 + 1 ) and 60 Ni(2 + 1 ) for projectile energies of 70-100 MeV as well as with Si single counters the angular distribution of the elastically and inelastically scattered 32 S ions for incident energies of 90, 95, and 100 MeV were measured. A comparison of the measurements with the results of different computer codes led to following results: 1.) At the determination of the static quadrupole moment Q 2 of 32 S using the reorientation effect the influence of the nuclear force can be neglected for projectile energies Esub(P) 32 S the value Q 2 = -0.18 +- 0.04 eb was found. (Hereby destructive interference with the virtual excitation of the 2 + 2 -state is assumed). 3.) For projectile energies Esub(P) >= 72 MeV at which the excitation by nuclear forces was small against the Coulomb excitation, an evaluation of the excitation function of 32 S(2 + 1 ) by the semiclassical code NCL, which regards the influence of the nuclear interaction approximatively, yielded values for the static quadrupole moment, which agree within the measurement errors with the above value. 4.) For the quantitative analysis of the measured angular distributions a quantum mechanical CC-code was required. 5.) Using the semiclassical CC-code NCL an illustrative and detailed interpretation of the excitation functions of 32 S(2 + 1 ) and 60 Ni(2 + 1 ) could be given. 6.) The code NCL allows the study of the influence of the Coulomb-nuclear force interference on the temporal behaviour of the excitation process. 7.) Using the code NCL the angular distribution of the decay γ quanta for a fixed particle-scattering angle theta approx. 0 in dependence on the incident energy was calculated. (orig.) [de

  20. Systematics of alpha Q-values. Potential dependence of the alpha decay life time

    International Nuclear Information System (INIS)

    Sato, Hiroshi

    1994-01-01

    It has been considered that the life time of α decay can be explained by calculating the probability of α getting out through the composite field of nuclear force and Coulomb force, that alpha and remaining nuclei make, by tunnel effect. However, when the detailed theoretical calculation was performed, the large difference from the experimental values was found. The researches which, have been carried out before are introduced. In this report, it is shown that when the treatment of Arima and Yoshida's way is carried out by using the realistic field of nuclear force and Coulomb force, the half life of α decay in considerably wide range can be calculated by considering the results of Tonozuka and Arima. The systematics of α Q-values is explained. The method of determining the life time of α decay is examined. The comparison of the calculated values and the experimental values of the α decay of 20 Ne and 212 Po is shown. This method of calculating the half life of α decay can reproduce the experimental values well. The application is considered to the estimation of the life of unstable nuclei, the new approach to heavy particle decay and others. (K.I.)

  1. Predictions on the modes of decay of odd Z superheavy isotopes within the range 105 ≤ Z ≤ 135

    Science.gov (United States)

    Santhosh, K. P.; Nithya, C.

    2018-05-01

    The decay modes of 1051 odd Z superheavy nuclei within the range 105 ≤ Z ≤ 135, and their daughter nuclei are studied by comparing the alpha decay half-lives with the spontaneous fission half-lives. The alpha decay half-lives are calculated using the Coulomb and proximity potential model for deformed nuclei (CPPMDN) proposed by Santhosh et al. (2011) and the spontaneous fission half-lives are obtained with the shell-effect dependent formula of Santhosh et al. (Santhosh and Nithya, 2016). For a theoretical comparison, the alpha decay half-lives are also computed with the Coulomb and proximity potential model (CPPM), Viola-Seaborg-Sobiczewski semi-empirical relation (VSS), Universal curve of Poenaru et al. (UNIV), the analytical formula of Royer, and the Universal decay law of Qi et al. (UDL). The predicted decay modes and half-lives were compared with the available experimental results. The proton and neutron separation energies are calculated to identify those nuclei, which decay through proton and neutron emission. From the entire study of odd Z superheavy elements, it is seen that among 1051 nuclei, 233 nuclei exhibit proton emission and 18 nuclei exhibit neutron emission. 56 nuclei are stable against alpha decay with negative Q value for the decay. 92 nuclei show alpha decay followed by spontaneous fission and 9 nuclei show alpha decay followed by proton emission. 39 nuclei decay through full alpha chain and 595 nuclei decay through spontaneous fission. We hope that the study will be very useful for the future experimental investigations in this field.

  2. Representation of the Coulomb Matrix Elements by Means of Appell Hypergeometric Function F 2

    Science.gov (United States)

    Bentalha, Zine el abidine

    2018-06-01

    Exact analytical representation for the Coulomb matrix elements by means of Appell's double series F 2 is derived. The finite sum obtained for the Appell function F 2 allows us to evaluate explicitly the matrix elements of the two-body Coulomb interaction in the lowest Landau level. An application requiring the matrix elements of Coulomb potential in quantum Hall effect regime is presented.

  3. Weak interaction studies from nuclear beta decay

    International Nuclear Information System (INIS)

    Morita, M.

    1981-01-01

    The studies performed at the theoretical nuclear physics division of the Laboratory of Nuclear Studies, Osaka University, are reported. Electron spin density and internal conversion process, nuclear excitation by electron transition, beta decay, weak charged current, and beta-ray angular distributions in oriented nuclei have been studied. The relative intensity of internal conversion electrons for the case in which the radial wave functions of orbital electrons are different for electron spin up and down was calculated. The calculated value was in good agreement with the experimental one. The nuclear excitation following the transition of orbital electrons was studied. The calculated probability of the nuclear excitation of Os 189 was 1.4 x 10 - 7 in conformity with the experimental value 1.7 x 10 - 7 . The second class current and other problems on beta-decay have been extensively studied, and described elsewhere. Concerning weak charged current, the effects of all induced terms, the time component of main axial vector, all partial waves of leptons, Coulomb correction for the electrons in finite size nuclei, and radiative correction were studied. The beta-ray angular distribution for the 1 + -- 0 + transition in oriented B 12 and N 12 was investigated. In this connection, investigation on the weak magnetism to include all higher order corrections for the evaluation of the spectral shape factors was performed. Other works carried out by the author and his collaborators are also explained. (Kato, T.)

  4. Induced nuclear beta decay

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1986-01-01

    Certain nuclear beta decay transitions normally inhibited by angular momentum or parity considerations can be induced to occur by the application of an electromagnetic field. Such decays can be useful in the controlled production of power, and in fission waste disposal

  5. B decays to baryons

    Indian Academy of Sciences (India)

    We note that two-body decays to baryons are suppressed relative to three- and four-body decays. In most of these analyses, the invariant baryon–antibaryon mass shows an enhancement near the threshold. We propose a phenomenological interpretation of this quite common feature of hadronization to baryons.

  6. Multiple preequilibrium decay processes

    International Nuclear Information System (INIS)

    Blann, M.

    1987-11-01

    Several treatments of multiple preequilibrium decay are reviewed with emphasis on the exciton and hybrid models. We show the expected behavior of this decay mode as a function of incident nucleon energy. The algorithms used in the hybrid model treatment are reviewed, and comparisons are made between predictions of the hybrid model and a broad range of experimental results. 24 refs., 20 figs

  7. Aspects of B decays

    International Nuclear Information System (INIS)

    Faller, Sven

    2011-01-01

    B-meson decays are a good probe for testing the flavour sector of the standard model of particle physics. The standard model describes at present all experimental data satisfactorily, although some ''tensions'' exist, i.e. two to three sigma deviations from the predictions, in particular in B decays. The arguments against the standard model are thus purely theoretical. These tensions between experimental data and theoretical predictions provide an extension of the standard model by new physics contributions. Within the flavour sector main theoretical uncertainties are related to the hadronic matrix elements. For exclusive semileptonic anti B → D (*) l anti ν decays QCD sum rule techniques, which are suitable for studying hadronic matrix elements, however, with substantial, but estimable hadronic uncertainties, are used. The exploration of new physics effects in B-meson decays is done in an twofold way. In exclusive semileptonic anti B → D (*) l anti ν decays the effect of additional right-handed vector as well as left- and right-handed scalar and tensor hadronic current structures in the decay rates and the form factors are studied at the non-recoil point. As a second approach one studied the non-leptonic B 0 s →J/ψφ and B 0 →J/ψK S,L decays discussing CP violating effects in the time-dependent decay amplitudes by considering new physics phase in the B 0 - anti B 0 mixing phase. (orig.)

  8. α -decay chains of superheavy nuclei with Z =125

    Science.gov (United States)

    Santhosh, K. P.; Nithya, C.

    2018-04-01

    The decay properties of the isotopes of Z =125 within the range 303 ≤ A ≤ 339 are investigated. The calculation of proton separation energies reveals that isotopes 125-309303 may decay through proton emission. Four different mass tables are used to show the sensitivity of the mass models used to calculate the Q values as well as the α-decay half-lives. α -decay chains are predicted by comparing the α half-lives calculated within the Coulomb and proximity potential model for deformed nuclei (CPPMDN) [Nucl. Phys. A 850, 34 (2011), 10.1016/j.nuclphysa.2010.12.002] with the spontaneous fission half-lives using the shell-effect-dependent formula [Phys. Rev. C 94, 054621 (2016), 10.1103/PhysRevC.94.054621]. It is seen that isotopes 125,311310 show 6α chains. 5α chains can be seen from isotopes 125-318312. Isotopes 125,320319 exhibit 2α chains and 323125 exhibits 1α chain. All the other isotopes, that is, 125 321 ,322 ,324 -339 may decay through spontaneous fission. The α half-lives using CPPMDN are compared with five other theoretical formalisms and are seen to be matching with each other. We hope that our studies will be helpful in designing future experiments to explore the island of stability.

  9. Experimental and simulated beam-foil decay curves for some transitions in Zn II

    International Nuclear Information System (INIS)

    Hultberg, S.; Liljeby, L.; Mannervik, S.; Veje, E.; Lindgaard, A.

    1980-01-01

    Experimental beam-foil decay curves for the 4s-4p, 4p-4d, 4d-4f, and the 4p-5s transitions in Zn II are compared to decay curves synthesized from transition probabilities calculated in the numerical Coulomb approximation and either measured initial level populations or population models. Good agreement exists between experimental curves and those based on the measured initial level populations for the 5s, 4d, and 4f levels while certain deviations are noted for the 4p term. None of the applied population models reproduce all experimental curves satisfyingly well. In addition, lifetimes are determined experimentally for 7 terms in Zn II, and good agreement with the numerical Coulomb approximation lifetimes is generally found except for some p terms. Beam-foil excitation-mechanism results for zinc are presented and compared to previous results from light projectiles. (Auth.)

  10. Decay of hypernuclei

    International Nuclear Information System (INIS)

    Bando, H.

    1985-01-01

    The pionic and non-mesonic decays of hypernuclei are discussed. In the first part, various decay processes which could be useful to obtain information of hypernuclear structure are discussed. The experimental data concerning the pionic and non-mesonic decays are discussed in the second part. As the experimental data, there are only few lifetime data and some crude data on the non-mesonic to π decay ratio. In the third and the fourth parts, some theoretical analyses are made on the pionic and the nonmesonic decays. DDHF calculation was performed for Λ and N systems by using Skyrme type ΛN and NN effective interactions. A suppression factor of the order of 10 -3 for A nearly equal 100 was obtained. (Aoki, K.)

  11. Rare Decays at LHCb

    CERN Document Server

    Belyaev, Ivan

    2006-01-01

    Rare loop-induced decays are sensitive to New Physics in many Standard Model extensions. In this paper we discuss the reconstruction of the radiative penguin decays $B^0_d \\to K^{*0} \\gamma, B^0_s \\to \\phi \\gamma , B^0_d \\to \\omega \\gamma, \\Lambda_b \\to \\Lambda \\gamma$, the electroweak penguin decays $B^0_d \\to K^{*0} \\mu^+ \\mu^-, B^+_u \\to K^+ \\mu^+ \\mu^-$, the gluonic penguin decays $B^0_d \\to \\phi K^0_S, B^0_s \\to \\phi \\phi$, and the decay $B^0_s \\to \\mu^+\\mu^-$ at LHCb. The selection criteria, evaluated efficiencies, expected annual yields and $B/S$ estimates are presented.

  12. Interplay of intra-atomic and interatomic effects: An investigation of the 2p core level spectra of atomic Fe and molecular FeCl2

    International Nuclear Information System (INIS)

    Richter, T.; Wolff, T.; Zimmermann, P.; Godehusen, K.; Martins, M.

    2004-01-01

    The 2p photoabsorption and photoelectron spectra of atomic Fe and molecular FeCl 2 were studied by photoion and photoelectron spectroscopy using monochromatized synchrotron radiation and atomic or molecular beam technique. The atomic spectra were analyzed with configuration interaction calculations yielding excellent agreement between experiment and theory. For the analysis of the molecular photoelectron spectrum which shows pronounced interatomic effects, a charge transfer model was used, introducing an additional 3d 7 configuration. The resulting good agreement between the experimental and theoretical spectrum and the remarkable similarity of the molecular with the corresponding spectrum in the solid phase opens a way to a better understanding of the interplay of the interatomic and intra-atomic interactions in the 2p core level spectra of the 3d metal compounds

  13. Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods

    International Nuclear Information System (INIS)

    Mauser, Christian

    2011-01-01

    In this thesis the Coulomb interaction and its influence on localization effects and dynamics of charge carriers in semiconductor nanocrystals were studied. In the studied nanostructures it deals with colloidal tetrapod heterostructures, which consist of a cadmium selenide (CdSe) core and four tetraedrical grown cadmium sulfide (CdS) respectively cadmium telluride (CdTe) legs, which exhibit a type-I respectively type-II band transition. The dynamics and interactions were studied by means of photoluminescence (PL) and absorption measurements both on the ensemble and on single nanoparticles, as well as time-resolved PL and transient absorption spectroscopy. Additionally theoretical simulations of the wave-function distributions were performed, which are based on the effective-mass approximation. The special band structure of the CdSe/CdS tetrapods offers a unique possibility to study the Coulomb interaction. The flat conduction band in these heterostructures makes the electron via the Coulomb interaction sensitive to the localization position of the hole within the structure. The valence band has instead a potential maximum in the CdSe, which leads to a directed localization of the hole and the photoluminescence of the core. Polarization-resolved measurements showed hereby an anisotropy of the photoluminescence, which could be explained by means of simulations of the wave-function distribution with an asymmetry at the branching point. Charge-carrier localization occur mainly both in longer structures and in trap states in the CdS leg and can be demonstrated in form of a dual emission from a nanocrystal. The charge-carrier dynamics of electron and hole in tetrapods is indeed coupled by the Coulomb interaction, however it cannot be completely described in an exciton picture. The coupled dynamics and the Coulomb interaction were studied concerning a possible influence of the geometry in CdSe/CdS nanorods and compared with those of the tetrapods. The interactions of the

  14. Interatomic potential to predict the favored and optimized compositions for ternary Cu-Zr-Hf metallic glasses

    International Nuclear Information System (INIS)

    Luo, S. Y.; Cui, Y. Y.; Dai, Y.; Li, J. H.; Liu, B. X.

    2012-01-01

    Under the framework of smoothed and long range second-moment approximation of tight-binding, a realistic interatomic potential was first constructed for the Cu-Zr-Hf ternary metal system. Applying the constructed potential, Monte Carlo simulations were carried out to compare the relative stability of crystalline solid solution versus its disordered counterpart over the entire composition triangle of the system (as a function of alloy composition). Simulations not only reveal that the origin of metallic glass formation but also determine, in the composition triangle, a quadrilateral region, within which metallic glass formation is energetically favored. It is proposed to define the energy differences between the crystalline solid solutions and disordered states as the driving force for amorphization and the corresponding calculations pinpoint an optimized composition locating at an composition of Cu 55 Zr 10 Hf 35 , around which the driving force for metallic glass formation reaches its maximum, suggesting that the ternary Cu-Zr-Hf metallic glasses designed to have the compositions around Cu 55 Zr 10 Hf 35 could be more stable than other alloys in the system. Moreover, for the Cu 55 Zr 10 Hf 35 metallic glass, the Voronoi tessellation calculations reveal some interesting features of its atomic configurations and coordination polyhedra distribution.

  15. Anharmonic correlated Debye model high-order expanded interatomic effective potential and Debye-Waller factors of bcc crystals

    Energy Technology Data Exchange (ETDEWEB)

    Van Hung, Nguyen, E-mail: hungnv@vnu.edu.vn [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Hue, Trinh Thi [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Khoa, Ha Dang [School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Vuong, Dinh Quoc [Quang Ninh Education & Training Department, Nguyen Van Cu, Ha Long, Quang Ninh (Viet Nam)

    2016-12-15

    High-order expanded interatomic effective potential and Debye-Waller factors (DWFs) for local vibrational amplitudes in X-ray absorption fine structure (XAFS) of bcc crystals have been studied based on the anharmonic correlated Debye model. DWFs are presented in terms of cumulant expansion up to the fourth order and the many-body effects are taken into account in the present one-dimensional model based on the first shell near neighbor contribution approach used in the derivations of the anharmonic effective potential and XAFS cumulants where Morse potential is assumed to describe the single-pair atomic interaction. Analytical expressions for the dispersion relation, correlated Debye frequency and temperature and four first temperature-dependent XAFS cumulants have been derived based on the many-body perturbation approach. Thermodynamic properties and anharmonic effects in XAFS of bcc crystals described by the obtained cumulants have been in detail discussed. The advantage and efficiency of the present theory are illustrated by good agreement of the numerical results for Mo, Fe and W with experiment.

  16. α decay chains in 271-294115 superheavy nuclei

    International Nuclear Information System (INIS)

    Santhosh, K. P.; Priyanka, B.; Joseph, Jayesh George; Sahadevan, Sabina

    2011-01-01

    α decay of 271-294 115 superheavy nuclei is studied using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The predicted α half-lives of 287 115 and 288 115 nuclei and their decay products are in good agreement with experimental values. Comparison of α and spontaneous fission half-lives predicts four-α chains and three-α chains, respectively, from 287 115 and 288 115 nuclei and are in agreement with experimental observation. Our study predicts two-α chains from 273,274,289 115, three-α chains from 275 115, and four-α chains consistently from 284,285,286 115 nuclei. These observations will be useful for further experimental investigation in this region.

  17. A comparative analysis of alpha-decay half-lives for even-even 178Pb to 234U isotopes

    Science.gov (United States)

    Hosseini, S. S.; Hassanabadi, H.; Zarrinkamar, S.

    2018-02-01

    The feasibility for the alpha decay from the even-even transitions of 178Pb to 234U isotopes has been studied within the Coulomb and proximity potential model (CPPM). The alpha decay half-lives are considered from different theoretical approaches using Semi-empirical formula of Poenaru et al. (SemFIS), the Universal Decay law (UDL) of Qi et al., Akrawy-Dorin formula of Akrawy and Poenaru (ADF), the Scaling law of Brown (SLB) and the Scaling Law of Horoi et al. (SLH). The numerical results obtained by the CPPM and compared with other method as well the experimental data.

  18. An Effective Method to Accurately Calculate the Phase Space Factors for β"-β"- Decay

    International Nuclear Information System (INIS)

    Horoi, Mihai; Neacsu, Andrei

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  19. Spherical harmonic expansion of short-range screened Coulomb interactions

    Energy Technology Data Exchange (ETDEWEB)

    Angyan, Janos G [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Gerber, Iann [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Marsman, Martijn [Institut fuer Materialphysik and Center for Computational Materials Science, Universitaet Wien, Sensengasse 8, A-1090, Vienna (Austria)

    2006-07-07

    Spherical harmonic expansions of the screened Coulomb interaction kernel involving the complementary error function are required in various problems in atomic, molecular and solid state physics, like for the evaluation of Ewald-type lattice sums or for range-separated hybrid density functionals. A general analytical expression is derived for the kernel, which is non-separable in the radial variables. With the help of series expansions a separable approximate form is proposed, which is in close analogy with the conventional multipole expansion of the Coulomb kernel in spherical harmonics. The convergence behaviour of these expansions is studied and illustrated by the electrostatic potential of an elementary charge distribution formed by products of Slater-type atomic orbitals.

  20. Nucleon-nucleon correlations and the Coulomb Displacement Energy

    International Nuclear Information System (INIS)

    Van Neck, D.; Waroquier, M.; Heyde, K.

    1997-01-01

    Coulomb Displacement Energies (CDE) are accurately known for a wide range of nuclear masses. Assuming isospin independence in the nuclear Hamiltonian, the CDE can in first instance be interpreted as the Coulomb interaction energy between the density of the excess neutrons and the proton charge density in the parent nucleus. However, when using reasonable mean-field models for the proton and neutron density one underestimates the CDE by about 8% on average. This discrepancy is known as the Nolen-Schiffer anomaly, and various explanations have been put forward in the past. In this work the role of nucleon-nucleon correlations are re-examined. Calculations for the pair density functions in various nuclei are presented. Preliminary results suggest that the modifications to the mean-field pair density functions cause an enhancement of the CDE in the order of 4%, which is rather A-independent. (author)

  1. Coulomb repulsion in (TMTSF)2X and (TMTTF)2X

    DEFF Research Database (Denmark)

    Mortensen, Kell; Engler, E. M.

    1985-01-01

    On the basis of studies of transport properties of (TMTSF)2 X, (TMTTF)2X and their binary alloys the authors discuss the role of on-site Coulomb repulsion relative to the transfer integrals. In TMTTF-salts U/ta are believed to be large, resulting in a Hubbard gap, whereas U/ta in TMTSF-salts are ......On the basis of studies of transport properties of (TMTSF)2 X, (TMTTF)2X and their binary alloys the authors discuss the role of on-site Coulomb repulsion relative to the transfer integrals. In TMTTF-salts U/ta are believed to be large, resulting in a Hubbard gap, whereas U/ta in TMTSF...

  2. Prospects for coherently driven nuclear radiation by Coulomb excitation

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Carroll, J.J.

    2006-01-01

    Possible experiments are discussed in which the Coulomb excitation of nuclear isomers would be followed by sequential energy release. The possibility of the coherent Coulomb excitation of nuclei ensconced in a crystal by channeled relativistic heavy projectiles is considered. The phase shift between neighbor-nuclei excitations can be identical to the photon phase shift for emission in forward direction. Thus, the elementary string of atoms can radiate coherently with emission of characteristic nuclear γ rays and the intensity of the radiation could be increased due to the summation of amplitudes. The Moessbauer conditions should be important for this new type of collective radiation that could be promising in the context of the γ-lasing problem

  3. Stability of Dirac Liquids with Strong Coulomb Interaction.

    Science.gov (United States)

    Tupitsyn, Igor S; Prokof'ev, Nikolay V

    2017-01-13

    We develop and apply the diagrammatic Monte Carlo technique to address the problem of the stability of the Dirac liquid state (in a graphene-type system) against the strong long-range part of the Coulomb interaction. So far, all attempts to deal with this problem in the field-theoretical framework were limited either to perturbative or random phase approximation and functional renormalization group treatments, with diametrically opposite conclusions. Our calculations aim at the approximation-free solution with controlled accuracy by computing vertex corrections from higher-order skeleton diagrams and establishing the renormalization group flow of the effective Coulomb coupling constant. We unambiguously show that with increasing the system size L (up to ln(L)∼40), the coupling constant always flows towards zero; i.e., the two-dimensional Dirac liquid is an asymptotically free T=0 state with divergent Fermi velocity.

  4. Coulomb effects in low-energy nuclear fragmentation

    Science.gov (United States)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  5. A Coulomb collision algorithm for weighted particle simulations

    Science.gov (United States)

    Miller, Ronald H.; Combi, Michael R.

    1994-01-01

    A binary Coulomb collision algorithm is developed for weighted particle simulations employing Monte Carlo techniques. Charged particles within a given spatial grid cell are pair-wise scattered, explicitly conserving momentum and implicitly conserving energy. A similar algorithm developed by Takizuka and Abe (1977) conserves momentum and energy provided the particles are unweighted (each particle representing equal fractions of the total particle density). If applied as is to simulations incorporating weighted particles, the plasma temperatures equilibrate to an incorrect temperature, as compared to theory. Using the appropriate pairing statistics, a Coulomb collision algorithm is developed for weighted particles. The algorithm conserves energy and momentum and produces the appropriate relaxation time scales as compared to theoretical predictions. Such an algorithm is necessary for future work studying self-consistent multi-species kinetic transport.

  6. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene

    Science.gov (United States)

    Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.

    2015-01-01

    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955

  7. Coulomb artifacts and bottomonium hyperfine splitting in lattice NRQCD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada); Penin, A.A. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology,Wolfgang-Gaede-Strasse 1, 76128 Karlsruhe (Germany); Rayyan, A. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada)

    2017-02-16

    We study the role of the lattice artifacts associated with the Coulomb binding effects in the analysis of the heavy quarkonium within lattice NRQCD. We find that a “naïve” perturbative matching generates spurious linear Coulomb artifacts, which result in a large systematic error in the lattice predictions for the heavy quarkonium spectrum. This effect is responsible, in particular, for the discrepancy between the recent determinations of the bottomonium hyperfine splitting in the radiatively improved lattice NRQCD (DOI: 10.1103/PhysRevD.92.054502; Arxiv:1309.5797). We show that the correct matching procedure which provides full control over discretization errors is based on the asymptotic expansion of the lattice theory about the continuum limit, which gives M{sub Υ(1S)}−M{sub η{sub b(1S)}}=52.9±5.5 MeV (DOI: 10.1103/PhysRevD.92.054502).

  8. Coulomb excitation of atoms by fast multicharged ions

    International Nuclear Information System (INIS)

    Yudin, G.L.

    1980-01-01

    Investigated is coulomb eXcitation of discrete levels of a hydrogen-like atom by a fast multicharged ion. Obtained are dependences of probabilities of channels 1S→nS and 1S→nP on the sight parameter in the zero order of sudden excitation theory. 1S-2S transition is considered in detail. Carried out are calculations for excitation of the hydrogen atom by the wholy bare carbon atom. It is shown, that at low values of excitation pr.ocess parameter eta excitation probability is a monotonously decreasing function of the impact parameter. With the growth of eta the situation is changed, and at low impact parameters the probability of 1S-2S transition is decreased. At high impact parameters approximation of sudden excitations is unacceptable, here lagging of coulomb interaction is essential

  9. Simulation of Coulomb interaction effects in electron sources

    International Nuclear Information System (INIS)

    Rouse, John; Zhu Xieqing; Liu Haoning; Munro, Eric

    2011-01-01

    Over many years, we have developed electron source simulation software that has been used widely in the electron optics community to aid the development of rotationally symmetric electron and ion guns. The simulation includes the modelling of cathode emission and the effects of volumetric space charge. In the present paper we describe the existing software and explain how we have extended this software to include the effects of discrete Coulomb interactions between the electrons as they travel from the cathode surface to the exit of the gun. In the paper, we will describe the numerical models we have employed, the techniques we have used to maximize the speed of the Coulomb force computation and present several illustrative examples of cases analyzed using the new software, including thermal field emitters, LaB 6 guns and flat dispenser-type cathodes.

  10. Coulomb and Nuclear Breakup at Low Energies: Scaling Laws

    Directory of Open Access Journals (Sweden)

    Hussein M. S.

    2013-12-01

    Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.

  11. An entropic form for NLFP with coulombic-like potential

    International Nuclear Information System (INIS)

    Grassi, A.

    2012-01-01

    Here it is proposed a new entropy form for which it is possible to obtain a stationary solution of the Non-Linear Fokker–Planck equation (NLFP) with coulombic-like potentials. The general properties of this new entropy form are shown and the results are compared with those obtained by other entropy forms. Finally, the behavior of the stationary solution in presence of two point charges is also shown. -- Highlights: ► In this Letter we have proposed a new form of entropy. ► Starting from this new entropy form a Non-Linear Fokker–Planck equation has been derived. ► The stationary solution of the Non-Linear Fokker–Planck equation is obtained by using an external coulombic-like potential. ► A comparison with other forms of entropies has been proposed in the case of a single or two point charges.

  12. The Coulomb break-up of 9Be

    International Nuclear Information System (INIS)

    Macdonald, E.W.; Shotter, A.C.; Branford, D.; Rahighi, J.; Davinson, T.; Davis, N.J.

    1992-01-01

    Kinematically complete data is presented on the break-up reaction 120 Sn( 9 Be, 8 Be g.s +n) 120 Sn g.s. at E beam =90 MeV for several scattering angles inside the grazing angle. These data are compared with the predictions of a Coulomb break-up model. It is shown that the data can be understood in terms of the Coulomb model provided some account is taken of the interactions of the break-up fragments with the target. Analysis of the 9 Be break-up data, using radio-isotope measurements of the 9 Be(γ, n) cross-section, indicates that for this photo-disintegration reaction there is probably a significant direct component to the threshold cross-section, in addition to a threshold resonance at 1.69 MeV. (orig.)

  13. Coulomb oscillations in three-layer graphene nanostructures

    International Nuclear Information System (INIS)

    Guettinger, J; Stampfer, C; Molitor, F; Graf, D; Ihn, T; Ensslin, K

    2008-01-01

    We present transport measurements on a tunable three-layer graphene single electron transistor (SET). The device consists of an etched three-layer graphene flake with two narrow constrictions separating the island from source and drain contacts. Three lateral graphene gates are used to electrostatically tune the device. An individual three-layer graphene constriction has been investigated separately showing a transport gap near the charge neutrality point. The graphene tunneling barriers show a strongly nonmonotonic coupling as a function of gate voltage indicating the presence of localized states in the constrictions. We show Coulomb oscillations and Coulomb diamond measurements proving the functionality of the graphene SET. A charging energy of ∼0.6 meV is extracted.

  14. Is the ground state of Yang-Mills theory Coulombic?

    Science.gov (United States)

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; Lutz, W.; McMullan, D.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  15. An infinite family of superintegrable deformations of the Coulomb potential

    International Nuclear Information System (INIS)

    Post, Sarah; Winternitz, Pavel

    2010-01-01

    We introduce a new family of Hamiltonians with a deformed Kepler-Coulomb potential dependent on an indexing parameter k. We show that this family is superintegrable for all rational k and compute the classical trajectories and quantum wavefunctions. We show that this system is related, via coupling constant metamorphosis, to a family of superintegrable deformations of the harmonic oscillator given by Tremblay, Turbiner and Winternitz. In doing so, we prove that all Hamiltonians with an oscillator term are related by coupling constant metamorphosis to systems with a Kepler-Coulomb term, both on Euclidean space. We also look at the effect of the transformation on the integrals of the motion, the classical trajectories and the wavefunctions, and give the transformed integrals explicitly for the classical system. (fast track communication)

  16. An infinite family of superintegrable deformations of the Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Post, Sarah [Centre de recherches mathematiques, CP 6128 succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada); Winternitz, Pavel, E-mail: post@CRM.UMontreal.C, E-mail: wintern@CRM.UMontreal.C [Centre de recherches mathematiques and Departement de mathematiques et de statistique, CP 6128 succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada)

    2010-06-04

    We introduce a new family of Hamiltonians with a deformed Kepler-Coulomb potential dependent on an indexing parameter k. We show that this family is superintegrable for all rational k and compute the classical trajectories and quantum wavefunctions. We show that this system is related, via coupling constant metamorphosis, to a family of superintegrable deformations of the harmonic oscillator given by Tremblay, Turbiner and Winternitz. In doing so, we prove that all Hamiltonians with an oscillator term are related by coupling constant metamorphosis to systems with a Kepler-Coulomb term, both on Euclidean space. We also look at the effect of the transformation on the integrals of the motion, the classical trajectories and the wavefunctions, and give the transformed integrals explicitly for the classical system. (fast track communication)

  17. Unsafe Coulomb excitation of $^{240-244}Pu$

    CERN Document Server

    Wiedenhöver, I; Hackman, L; Ahmad, I; Greene, J P; Amro, H; Carpenter, M P; Nisius, D T; Reiter, P; Lauritsen, T; Lister, C J; Khoo, T L; Siem, S; Cizewski, J A; Seweryniak, D; Uusitalo, J; Macchiavelli, A O; Chowdhury, P; Seabury, E H; Cline, D; Wu, C Y

    1999-01-01

    The high spin states of /sup 240/Pu and /sup 244/Pu have been investigated with GAMMASPHERE at ATLAS, using Coulomb excitation with a /sup 208/Pb beam at energies above the Coulomb barrier. Data on a transfer channel leading to /sup 242/Pu were obtained as well. In the case of /sup 244/Pu, the yrast band was extended to 34h(cross), revealing the completed pi i/sub 13/2/ alignment, a "first" for actinide nuclei. The yrast sequence of /sup 242/Pu was also extended to higher spin and a similar backbend was delineated. In contrast, while the ground state band of /sup 240/Pu was measured up to the highest rotational frequencies ever reported in the actinide region (~300 keV), no sign of particle alignment was observed. (11 refs).

  18. Unified approach to probing Coulomb effects in tunnel ionization for any ellipticity of laser light.

    Science.gov (United States)

    Landsman, A S; Hofmann, C; Pfeiffer, A N; Cirelli, C; Keller, U

    2013-12-27

    We present experimental data that show significant deviations from theoretical predictions for the location of the center of the electron momenta distribution at low values of ellipticity ε of laser light. We show that these deviations are caused by significant Coulomb focusing along the minor axis of polarization, something that is normally neglected in the analysis of electron dynamics, even in cases where the Coulomb correction is otherwise taken into account. By investigating ellipticity-resolved electron momenta distributions in the plane of polarization, we show that Coulomb focusing predominates at lower values of ellipticity of laser light, while Coulomb asymmetry becomes important at higher values, showing that these two complementary phenomena can be used to probe long-range Coulomb interaction at all polarizations of laser light. Our results suggest that both the breakdown of Coulomb focusing and the onset of Coulomb asymmetry are linked to the disappearance of Rydberg states with increasing ellipticity.

  19. Charm Decays at BABAR

    International Nuclear Information System (INIS)

    Charles, M.

    2004-01-01

    The results of several studies of charmed mesons and baryons at BABAR are presented. First, searches for the rare decays D 0 → l + l - are presented and new upper limits on these processes are established. Second, a measurement of the branching fraction of the isospin-violating hadronic decay D* s (2112) + → D s + π 0 relative to the radiative decay D* s (2112) + → D s + γ is made. Third, the decays of D* sJ (2317) + and D sJ (2460) + mesons are studied and ratios of branching fractions are measured. Fourth, Cabibbo-suppressed decays of the Λ c + are examined and their branching fractions measured relative to Cabibbo-allowed modes. Fifth, the Χ c 0 is studied through its decays to Χ - π + and (Omega) - K + ; in addition to measuring the ratio of branching fractions for Χ c 0 produced from the c(bar c) continuum, the uncorrected momentum spectrum is measured, providing clear confirmation of Χ c 0 production in B decays

  20. Iconic decay in schizophrenia.

    Science.gov (United States)

    Hahn, Britta; Kappenman, Emily S; Robinson, Benjamin M; Fuller, Rebecca L; Luck, Steven J; Gold, James M

    2011-09-01

    Working memory impairment is considered a core deficit in schizophrenia, but the precise nature of this deficit has not been determined. Multiple lines of evidence implicate deficits at the encoding stage. During encoding, information is held in a precategorical sensory store termed iconic memory, a literal image of the stimulus with high capacity but rapid decay. Pathologically increased iconic decay could reduce the number of items that can be transferred into working memory before the information is lost and could thus contribute to the working memory deficit seen in the illness. The current study used a partial report procedure to test the hypothesis that patients with schizophrenia (n = 37) display faster iconic memory decay than matched healthy control participants (n = 28). Six letters, arranged in a circle, were presented for 50 ms. Following a variable delay of 0-1000 ms, a central arrow cue indicated the item to be reported. In both patients and control subjects, recall accuracy decreased with increasing cue delay, reflecting decay of the iconic representation of the stimulus array. Patients displayed impaired memory performance across all cue delays, consistent with an impairment in working memory, but the rate of iconic memory decay did not differ between patients and controls. This provides clear evidence against faster loss of iconic memory representations in schizophrenia, ruling out iconic decay as an underlying source of the working memory impairment in this population. Thus, iconic decay rate can be added to a growing list of unimpaired cognitive building blocks in schizophrenia.

  1. On Coulomb collisions in bi-Maxwellian plasmas

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2009-01-01

    Roč. 16, č. 5 (2009), 054501/1-054501/4 ISSN 1070-664X R&D Projects: GA AV ČR IAA300420702 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : Coulomb collisions * transport coefficients * bi-Maxwellian distribution function Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.475, year: 2009 http://link.aip.org/link/?PHPAEN/16/054501/1

  2. Core polarization and the Coulomb energy difference of mirror nuclei

    International Nuclear Information System (INIS)

    Barroso, A.

    1977-01-01

    The effect of the core polarization on the Coulomb displacement energies of mirror nuclei with a LS doubly closed shell plus or minus one nucleon is studied. Using the Kallio-Kolltveit interaction it is found that the first-order configuration mixing including 2p-2h core excitations is too small and sometimes of the wrong sign to explain the Nolen-Schiffer anomaly. (Auth.)

  3. Extended Kepler–Coulomb quantum superintegrable systems in three dimensions

    International Nuclear Information System (INIS)

    Kalnins, E G; Kress, J M; Miller, W Jr

    2013-01-01

    The quantum Kepler–Coulomb system in three dimensions is well known to be second order superintegrable, with a symmetry algebra that closes polynomially under commutators. This polynomial closure is also typical for second order superintegrable systems in 2D and for second order systems in 3D with nondegenerate (four-parameter) potentials. However, the degenerate three-parameter potential for the 3D Kepler–Coulomb system (also second order superintegrable) is an exception, as its symmetry algebra does not close polynomially. The 3D four-parameter potential for the extended Kepler–Coulomb system is not even second order superintegrable, but Verrier and Evans (2008 J. Math. Phys. 49 022902) showed it was fourth order superintegrable, and Tanoudis and Daskaloyannis (2011 arXiv:11020397v1) showed that, if a second fourth order symmetry is added to the generators, the symmetry algebra closes polynomially. Here, based on the Tremblay, Turbiner and Winternitz construction, we consider an infinite class of quantum extended Kepler–Coulomb three- and four-parameter systems indexed by a pair of rational numbers (k 1 , k 2 ) and reducing to the usual systems when k 1 = k 2 = 1. We show these systems to be superintegrable of arbitrarily high order and determine the structure of their symmetry algebras. We demonstrate that the symmetry algebras close algebraically; only for systems admitting extra discrete symmetries is polynomial closure achieved. Underlying the structure theory is the existence of raising and lowering operators, not themselves symmetry operators or even defined independent of basis, that can be employed to construct the symmetry operators and their structure relations. (paper)

  4. Coulomb interaction rules timescales in potassium ion channel tunneling

    Science.gov (United States)

    De March, N.; Prado, S. D.; Brunnet, L. G.

    2018-06-01

    Assuming the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010 New J. Phys. 12 085001) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, the addition of moderate noise helps coherent ion transport.

  5. Coulomb ionization of inner shells by heavy charged particles

    International Nuclear Information System (INIS)

    Lapicki, G.

    1975-01-01

    The theory of inner-shell Coulomb ionization by heavy charged particles, of atomic number small compared to the target atomic number, is developed through the extension of work by Brandt and his coworkers for K shells to L shells. In slow collisions relative to the characteristic times of the inner shell electrons, the quantum-mechanical predictions in the plane-wave Born approximation (PWBA) can exceed experimental cross sections by orders of magnitude. The effects of the perturbation of the atom by and the Coulomb deflection of the particle during collisions are included in the theory. The perturbed atomic states amount to a binding of the inner-shell electrons to the moving particle in slow collisions, and to a polarization of the inner shells by the particle passing at large impact parameters during nonadiabatic collisions. These effects, not contained in the PWBA, are treated in the framework of the perturbed stationary state (PSS) theory for slow collisions and in terms of the harmonic oscillator model of Ashley, Brandt, and Ritchie for stopping powers in fast collisions. The effect of the Coulomb deflection of the particle in the field of the target nucleus on the cross sections is incorporated in the semiclassical approximation of Bang and Hansteen. Except for the lightest target atoms, the contribution of electron capture by the particles to inner-shell ionizations is shown to be negligible. The theory as developed earlier for the K shell, and here for L shells, agrees well with the vast body of experimental data on inner-shell Coulomb ionization by heavy charged particles

  6. Coulomb reacceleration as a clock for nuclear reactions -- II

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Bertsch, G.F.

    1994-01-01

    Reacceleration effects in the Coulomb breakup of nuclei are modeled with the two-dimensional time-dependent Schroedinger equation, extending a previous one-dimensional study. The present model better describes the individual contributions of longitudinal and transverse forces to the breakup and reacceleration. Reacceleration effects are found to preserve a strong memory of the pre-breakup phase of the reaction, as was concluded with the one-dimensional model

  7. Space charge-limited emission studies using Coulomb's Law

    OpenAIRE

    Carr, Christopher G.

    2004-01-01

    Approved for Public Release; Distribution is Unlimited Child and Langmuir introduced a solution to space charge limited emission in an infinite area planar diode. The solution follows from starting with Poisson's equation, and requires solving a non-linear differential equation. This approach can also be applied to cylindrical and spherical geometries, but only for one-dimensional cases. By approaching the problem from Coulomb's law and applying the effect of an assumed charge distribution...

  8. Existence for viscoplastic contact with Coulomb friction problems

    Directory of Open Access Journals (Sweden)

    Amina Amassad

    2002-01-01

    frictional contact between an elastic-viscoplastic body and a rigid obstacle. We model the frictional contact both by a Tresca's friction law and a regularized Coulomb's law. We assume, in a first part, that the contact is bilateral and that no separation takes place. In a second part, we consider the Signorini unilateral contact conditions. Proofs are based on a time-discretization method, Banach and Schauder fixed point theorems.

  9. Probing Minicharged Particles with Tests of Coulomb's Law

    International Nuclear Information System (INIS)

    Jaeckel, Joerg

    2009-01-01

    Minicharged particles arise in many extensions of the standard model. Their contribution to the vacuum polarization modifies Coulomb's law via the Uehling potential. In this Letter, we argue that tests for electromagnetic fifth forces can therefore be a sensitive probe of minicharged particles. In the low mass range < or approx. μeV existing constraints from Cavendish type experiments provide the best model-independent bounds on minicharged particles.

  10. Many-Body Coulomb Gauge Exotic and Charmed Hybrids

    OpenAIRE

    Llanes-Estrada, Felipe J.; Cotanch, Stephen R.

    2000-01-01

    Utilizing a QCD Coulomb gauge Hamiltonian with linear confinement specified by lattice, we report a relativistic many-body calculation for the light exotic and charmed hybrid mesons. The Hamiltonian successfully describes both quark and gluon sectors, with vacuum and quasiparticle properties generated by a BCS transformation and more elaborate TDA and RPA diagonalizations for the meson ($q\\bar{q}$) and glueball ($gg$) masses. Hybrids entail a computationally intense relativistic three quasipa...

  11. Superheavy Elements and Beyond: - Supercritical Coulomb Field and Giant Quasiatoms

    International Nuclear Information System (INIS)

    Greiner, Walter

    2007-01-01

    The status of theory of Superheavy Nuclei is reviewed. Based with the Two-Center Shell Model Potential Energy Surfaces are calculated. Fusion, fission, quasifission and other processes are discussed. I particular time-delay during the formation of giant quasi atoms/molecules will be crucial for observing the change of the Dirac vacuum in supercritical Coulomb fields by spontaneous positron emission. It will be shown how the various phenomena are interrelated

  12. Coulomb two-body problem with internal structure

    International Nuclear Information System (INIS)

    Kuperin, Yu.A.; Makarov, K.A.; Mel'nikov, Yu.B.

    1988-01-01

    The methods of the theory of extensions to an enlarged Hilbert space are used to construct a model of the interaction of the external (Coulomb) and internal (quark) channels in the two-body problem. The mutual influence of the spectra of the corresponding channel Hamiltonians is studied: it leads, in particular, to a rearrangement of the spectra of hadronic atoms. An explicit representation is obtained for the S matrix, and its singularities on the energy shell are studied

  13. Sine-Gordon mean field theory of a Coulomb gas

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Alexandre; Barbosa, Marcia C.; Levin, Yan

    1997-12-31

    Full text. The Coulomb gas provides a paradigm for the study of various models of critical phenomena. In particular, it is well known that the two dimensional (2 D). Coulomb gas can be directly used to study the superfluidity transition in {sup 4} He films, arrays of Josephson junctions, roughening transition, etc. Not withstanding its versatility, our full understanding of the most basic model of Coulomb gas, namely an ensemble of hard spheres carrying either positive or negative charges at their center, is still lacking. It is now well accepted that at low density the two dimensional plasma of equal number of positive and negative particles undergoes a Kosterlitz-Thouless (KT) metal insulator transition. This transition is of an infinite order and is characterized by a diverging Debye screening length. As the density of particles increases, the validity of the KT theory becomes questionable and the possibility of the KT transition being replaced by some kind of first order discontinuity has been speculated for a long time. In this work sine-Gordon field theory is used to investigate the phase diagram of a neutral Coulomb gas. A variational mean-field free energy is constructed and the corresponding phase diagrams in two and three dimensions are obtained. When analyzed in terms of chemical potential, the sine-Gordon theory predicts the phase diagram topologically identical to the Monte Carlo simulations and a recently developed Debye-Huckel-Bjerrum theory. In 2D, we find that the infinite-order Kosterlitz-Thouless line terminates in a tricritical point, after which the metal-insulator transition becomes first order. However, when the transformation from chemical potential to the density is made the whole insulating phase is mapped onto zero density. (author)

  14. Multiple Coulomb ordered strings of ions in a storage ring

    International Nuclear Information System (INIS)

    Hasse, Rainer W.

    2002-01-01

    We explain that the anomalous frequency shifts of very close masses measured in the high precision mass measurement experiments in the ESR storage ring result from the locking of Coulomb interacting strings of ions. Here two concentric strings which run horizontally close to each other for many revolutions are captured into a single string if their thermal clouds overlap. They give up their identity and lock into an average frequency

  15. Coulomb excitations for a short linear chain of metallic shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhemchuzhna, Liubov, E-mail: lzhemchuzhna@unm.edu [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country (Spain); Iurov, Andrii [Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Gao, Bo [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States)

    2015-03-15

    A self-consistent-field theory is given for the electronic collective modes of a chain containing a finite number, N, of Coulomb-coupled spherical two-dimensional electron gases arranged with their centers along a straight line, for simulating electromagnetic response of a narrow-ribbon of metallic shells. The separation between nearest-neighbor shells is arbitrary and because of the quantization of the electron energy levels due to their confinement to the spherical surface, all angular momenta L of the Coulomb excitations, as well as their projections M on the quantization axis, are coupled. However, for incoming light with a given polarization, only one angular momentum quantum number is usually required. Therefore, the electromagnetic response of the narrow-ribbon of metallic shells is expected to be controlled externally by selecting different polarizations for incident light. We show that, when N = 3, the next-nearest-neighbor Coulomb coupling is larger than its value if they are located at opposite ends of a right-angle triangle forming the triad. Additionally, the frequencies of the plasma excitations are found to depend on the orientation of the line joining them with respect to the axis of quantization since the magnetic field generated from the induced oscillating electric dipole moment on one sphere can couple to the induced magnetic dipole moment on another. Although the transverse inter-shell electromagnetic coupling can be modeled by an effective dynamic medium, the longitudinal inter-shell Coulomb coupling, on the other hand, can still significantly modify the electromagnetic property of this effective medium between shells.

  16. Coulomb effects in the deuteron-nucleus interaction

    International Nuclear Information System (INIS)

    Kuz'michev, V.E.; Peresypkin, V.V.

    1990-01-01

    The authors develop a consistent theory for calculation of the potential of the deuteron interaction with the Coulomb field of a nucleus. They study the properties of this potential at large distances and give its explicit form at the deuteron-breakup threshold. In the limit of low energies they derive the potential, which includes intermediate off-energy-shell states, and explain the physical nature of its constants. The accuracy of the transition to the polarization interaction is estimated

  17. Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei

    Science.gov (United States)

    Shamami, S. Rahimi; Pahlavani, M. R.

    2018-01-01

    A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.

  18. Weak radiative hyperon decays

    International Nuclear Information System (INIS)

    Roberts, B.L.; Booth, E.C.; Gall, K.P.; McIntyre, E.K.; Miller, J.P.; Whitehouse, D.A.; Bassalleck, B.; Hall, J.R.; Larson, K.D.; Wolfe, D.M.; Fickinger, W.J.; Robinson, D.K.; Hallin, A.L.; Hasinoff, M.D.; Measday, D.F.; Noble, A.J.; Waltham, C.E.; Hessey, N.P.; Lowe, J.; Horvath, D.; Salomon, M.

    1990-01-01

    New measurements of the Σ + and Λ weak radiative decays are discussed. The hyperons were produced at rest by the reaction K - p → Yπ where Y = Σ + or Λ. The monoenergetic pion was used to tag the hyperon production, and the branching ratios were determined from the relative amplitudes of Σ + → pγ to Σ + → pπ 0 and Λ → nγ to Λ → nπ 0 . The photons from weak radiative decays and from π 0 decays were detected with modular NaI arrays. (orig.)

  19. SYMPOSIUM: Rare decays

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Late last year, a symposium entitled 'Rare Decays' attracted 115 participants to a hotel in Vancouver, Canada. These participants were particle physicists interested in checking conventional selection rules to look for clues of possible new behaviour outside today's accepted 'Standard Model'. For physicists, 'rare decays' include processes that have so far not been seen, explicitly forbidden by the rules of the Standard Model, or processes highly suppressed because the decay is dominated by an easier route, or includes processes resulting from multiple transitions

  20. Engineering drag currents in Coulomb coupled quantum dots

    Science.gov (United States)

    Lim, Jong Soo; Sánchez, David; López, Rosa

    2018-02-01

    The Coulomb drag phenomenon in a Coulomb-coupled double quantum dot system is revisited with a simple model that highlights the importance of simultaneous tunneling of electrons. Previously, cotunneling effects on the drag current in mesoscopic setups have been reported both theoretically and experimentally. However, in both cases the sequential tunneling contribution to the drag current was always present unless the drag level position were too far away from resonance. Here, we consider the case of very large Coulomb interaction between the dots, whereby the drag current needs to be assisted by cotunneling events. As a consequence, a quantum coherent drag effect takes place. Further, we demonstrate that by properly engineering the tunneling probabilities using band tailoring it is possible to control the sign of the drag and drive currents, allowing them to flow in parallel or antiparallel directions. We also show that the drag current can be manipulated by varying the drag gate potential and is thus governed by electron- or hole-like transport.

  1. Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.

    Science.gov (United States)

    Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W

    2016-01-22

    In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5  GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.

  2. Effect of Coulomb stress on the Gutenberg-Richter law

    Science.gov (United States)

    Navas-Portella, V.; Corral, A.; Jimenez, A.

    2017-12-01

    Coulomb stress theory has been used for years in seismology to understand how earthquakes trigger each other. Whenever an earthquake occurs, the stress field changes in its neighbourhood, with places with positive values brought closer to failure, whereas negative values distance away that location from failure. Earthquake models that relate rate changes and Coulomb stress after a main event, such as the rate-and-state model, assume negative and positive stress values affect rate changes according to the same functional form. As a first order approximation, under uniform background seismicity before the main event, different values of the b-exponent in the Gutenberg-Richter law would indicate different behaviour for positive and negative stress. In this work, we study the Gutenberg-Richter law in the aftershock sequence of the Landers earthquake (California, 1992, MW=7.3). By using a statistically based fitting method, we discuss whether the sign of Coulomb stresses and the distance to the fault have a significant effect on the value of the b-exponent.

  3. Quasi-exactly solvable relativistic soft-core Coulomb models

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Davids, E-mail: davagboola@gmail.com; Zhang, Yao-Zhong, E-mail: yzz@maths.uq.edu.au

    2012-09-15

    By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.

  4. The Yang-Mills vacuum wave functional in Coulomb gauge

    International Nuclear Information System (INIS)

    Campagnari, Davide R.

    2011-01-01

    Yang-Mills theories are the building blocks of today's Standard Model of elementary particle physics. Besides methods based on a discretization of space-time (lattice gauge theory), also analytic methods are feasible, either in the Lagrangian or in the Hamiltonian formulation of the theory. This thesis focuses on the Hamiltonian approach to Yang-Mills theories in Coulomb gauge. The thesis is presented in cumulative form. After an introduction into the general formulation of Yang-Mills theories, the Hamilton operator in Coulomb gauge is derived. Chap. 1 deals with the heat-kernel expansion of the Faddeev-Popov determinant. In Chapters 2 and 3, the high-energy behaviour of the theory is investigated. To this purpose, perturbative methods are applied, and the results are compared with the ones stemming from functional methods in Coulomb and Landau gauge. Chap. 4 is devoted to the variational approach. Variational ansatzes going beyond the Gaussian form for the vacuum wave functional are considered and treated using Dyson-Schwinger techniques. Equations for the higher-order variational kernels are derived and their effects are estimated. Chap. 5 presents an application of the previously obtained propagators, namely the evaluation of the topological susceptibility, which is related to the mass of the η meson. Finally, a short overview of the perturbative treatment of dynamical fermion fields is presented.

  5. Coulomb excitation of the proton-dripline nucleus Na20

    Science.gov (United States)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Pearson, C. J.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Lisetskiy, A. F.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2009-10-01

    The low-energy structure of the proton dripline nucleus Na20 has been studied using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. A 1.7-MeV/nucleon Na20 beam of ~5×106 ions/s was Coulomb excited by a 0.5-mg/cm2natTi target. Scattered beam and target particles were detected by the BAMBINO segmented Si detector while γ rays were detected by two TIGRESS HPGe clover detectors set perpendicular to the beam axis. Coulomb excitation from the 2+ ground state to the first excited 3+ and 4+ states was observed, and B(λL) values were determined using the 2+→0+ de-excitation in Ti48 as a reference. The resulting B(λL)↓ values are B(E2;3+→2+)=55±6e2fm4 (17.0±1.9 W.u.), B(E2;4+→2+)=35.7±5.7e2fm4 (11.1±1.8 W.u.), and B(M1;4+→3+)=0.154±0.030μN2 (0.086±0.017 W.u.). These measurements provide the first experimental determination of B(λL) values for this proton dripline nucleus of astrophysical interest.

  6. Heavy ion collisions at energies near the Coulomb barrier 1990

    International Nuclear Information System (INIS)

    Nagarajan, M.A.

    1991-01-01

    During recent years, detailed experimental and theoretical investigations have been carried out on heavy ion collisions at energies close to the Coulomb barrier. These studies have provided direct evidence of strong couplings between the various reaction channels available at energies near the top of the Coulomb barrier. This field of research has remained the focus of interest and with improved experimental techniques, new detailed high resolution data have been obtained. The workshop on ''Heavy Ion Collisions at Energies Close to the Coulomb Barrier'' was organized with the aim of reviewing the current understanding of the collision dynamics and to discuss future directions in this area of research. The topics discussed at the workshop were broadly classified under the titles: quasielastic reactions; fusion of heavy ions; and shape and spin dependence in heavy ion collisions. The last of these topics was included to review new data obtained with polarized heavy ions and their theoretical interpretations. This volume contains the invited and contributed talks as well as a few short presentations during panel discussions. (author)

  7. A complex angular momentum theory of modified Coulomb scattering

    International Nuclear Information System (INIS)

    Thylwe, K.E.; Connor, J.N.L.

    1985-01-01

    The paper develops an exact complex angular momentum (CAM) theory of elastic scattering for a complex optical potential with a Coulombic tail. The present CAM theory avoids complications due to the long range nature of the Coulombic potential in a straightforward way. The Sommerfeld-Watson transformation together with a travelling wave (near-side far-side) decomposition, is used to obtain an exact representation for the scattering amplitude f(theta) in terms of a background integral fsub(B)(theta) and a series of subamplitudes fsup((+-))sub(n)(theta). New exact representations are derived for fsub(B)(theta) when the scattering matrix element S(lambda) possesses local symmetries of the type S(-lambda)=S(lambda)exp(+-2iπlambda) and S(-lambda)=S(lambda). The exact results obtained in this paper unify the CAM theory of scattering for Coulombic and short range potentials and are especially suitable for the introduction of semiclassical approximations. (author)

  8. Interaction of charged 3D soliton with Coulomb center

    International Nuclear Information System (INIS)

    Rybakov, Yu.P.

    1996-03-01

    The Einstein - de Broglie particle-soliton concept is applied to simulate stationary states of an electron in a hydrogen atom. According to this concept, the electron is described by the localized regular solutions to some nonlinear equations. In the framework of Synge model for interacting scalar and electromagnetic fields a system of integral equations has been obtained, which describes the interaction between charged 3D soliton and Coulomb center. The asymptotic expressions for physical fields, describing soliton moving around the fixed Coulomb center, have been obtained with the help of integral equations. It is shown that the electron-soliton center travels along some stationary orbit around the Coulomb center. The electromagnetic radiation is absent as the Poynting vector has non-wave asymptote O(r -3 ) after averaging over angles, i.e. the existence of spherical surface corresponding to null Poynting vector stream, has been proved. Vector lines for Poynting vector are constructed in asymptotical area. (author). 22 refs, 2 figs

  9. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  10. Dynamics of {sup 58}Ni + {sup 54}Fe → {sup 112}Xe* reaction across the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India)

    2014-03-15

    The dynamical cluster-decay model (DCM) has been applied to study the decay of the {sup 112}Xe* compound nucleus formed in the massive heavy-ion reaction {sup 58}Ni + {sup 54}Fe at energies across the Coulomb barrier with E{sub c.m.} ∼ 85-110 MeV. The calculations are done for spherical fragmentation as well as by including deformation and orientation degrees of freedom of the decaying fragments. DCM-based cross sections give a nice description of the experimental fusion excitation function σ{sub ER}, within one parameter fitting, the neck length parameter (ΔR), whose value remains within the range of nuclear proximity interaction. The barrier height corresponding to the neck length parameter brings into the picture the barrier modification which enables us to address the data particularly at below barrier energies. The role of excitation energy (or temperature), deformations, orientations, angular momentum and diffuseness parameter is investigated to understand the dynamics of the {sup 58}Ni + {sup 54}Fe reaction. Finally the N/Z dependence of the fragmentation structure of different compound systems formed via {sup 58}Ni beam (projectile) is explored. (orig.)

  11. Determination of the B(E3;0$^+\\!\\rightarrow$ 3$^{-}$) strength in the octupole correlated nucleus $^{144}$Ba using Coulomb excitation

    CERN Multimedia

    We propose to exploit the unique capability of ISOLDE to provide intense post-accelerated $^{144}$Ba ion beams from the REX facility to enable the Coulomb excitation of the first 3$^{-}$ state in this nucleus. By measuring the $\\gamma$-ray yields of the E1 decay connecting the 3$^{-}$ and 2$^{+}$ states using the MINIBALL array, we can obtain the interesting transition matrix element. The result will give quantitative information about octupole correlations in this nucleus. We require 27 shifts to fulfill the aims of the experiment.

  12. Teleportation via decay

    Indian Academy of Sciences (India)

    therefore normally plays a negative role in quantum information processing [1]. ... of a decay be used in a fruitful way for quantum information process- ing? ..... The model independent portions of the analysis of communication through a noisy.

  13. Decay of Hoyle state

    Indian Academy of Sciences (India)

    2014-11-02

    Nov 2, 2014 ... T K RANA, C BHATTACHARYA, S KUNDU, ... of various direct 3α decay mechanisms of the Hoyle state. ... Pramana – J. Phys., Vol. ... FMD predicts a compact triangle shape and LEFT predicts a bent arm chain structure,.

  14. RARE KAON DECAYS

    International Nuclear Information System (INIS)

    LITTENBERG, L.

    2005-01-01

    Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type

  15. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    2012-10-06

    Oct 6, 2012 ... Anyhow, the 'multi-isotope' ansatz is needed to compensate for matrix element ... The neccessary half-life requirement to touch this ... site energy depositions (like double beta decay) and multiple site interactions (most of.

  16. Cavities/Tooth Decay

    Science.gov (United States)

    ... milk, ice cream, honey, sugar, soda, dried fruit, cake, cookies, hard candy and mints, dry cereal, and ... teeth can wear down and gums may recede, making teeth more vulnerable to root decay. Older adults ...

  17. Inflaton decay in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Endo, M.; Takahashi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yanagida, T.T. [Tokyo Univ. (Japan). Dept. of Physics]|[Tokyo Univ. (Japan). Research Center for the Early Universe

    2007-06-15

    We discuss inflaton decay in supergravity, taking account of the gravitational effects. It is shown that, if the inflaton has a nonzero vacuum expectation value, it generically couples to any matter fields that appear in the superpotential at the tree level, and to any gauge sectors through anomalies in the supergravity. Through these processes, the inflaton generically decays into the supersymmetry breaking sector, producing many gravitinos. The inflaton also directly decays into a pair of the gravitinos. We derive constraints on both inflation models and supersymmetry breaking scenarios for avoiding overproduction of the gravitinos. Furthermore, the inflaton naturally decays into the visible sector via the top Yukawa coupling and SU(3){sub C} gauge interactions. (orig.)

  18. Inflaton decay in supergravity

    International Nuclear Information System (INIS)

    Endo, M.; Takahashi, F.; Yanagida, T.T.; Tokyo Univ.

    2007-06-01

    We discuss inflaton decay in supergravity, taking account of the gravitational effects. It is shown that, if the inflaton has a nonzero vacuum expectation value, it generically couples to any matter fields that appear in the superpotential at the tree level, and to any gauge sectors through anomalies in the supergravity. Through these processes, the inflaton generically decays into the supersymmetry breaking sector, producing many gravitinos. The inflaton also directly decays into a pair of the gravitinos. We derive constraints on both inflation models and supersymmetry breaking scenarios for avoiding overproduction of the gravitinos. Furthermore, the inflaton naturally decays into the visible sector via the top Yukawa coupling and SU(3) C gauge interactions. (orig.)

  19. Double beta decay: experiments

    International Nuclear Information System (INIS)

    Fiorini, Ettore

    2006-01-01

    The results obtained so far and those of the running experiments on neutrinoless double beta decay are reviewed. The plans for second generation experiments, the techniques to be adopted and the expected sensitivities are compared and discussed

  20. A comparison of Coulomb and pseudo-Coulomb friction implementations: Application to the table contact phase of gymnastics vaulting.

    Science.gov (United States)

    Jackson, M I; Hiley, M J; Yeadon, M R

    2011-10-13

    In the table contact phase of gymnastics vaulting both dynamic and static friction act. The purpose of this study was to develop a method of simulating Coulomb friction that incorporated both dynamic and static phases and to compare the results with those obtained using a pseudo-Coulomb implementation of friction when applied to the table contact phase of gymnastics vaulting. Kinematic data were obtained from an elite level gymnast performing handspring straight somersault vaults using a Vicon optoelectronic motion capture system. An angle-driven computer model of vaulting that simulated the interaction between a seven segment gymnast and a single segment vaulting table during the table contact phase of the vault was developed. Both dynamic and static friction were incorporated within the model by switching between two implementations of the tangential frictional force. Two vaulting trials were used to determine the model parameters using a genetic algorithm to match simulations to recorded performances. A third independent trial was used to evaluate the model and close agreement was found between the simulation and the recorded performance with an overall difference of 13.5%. The two-state simulation model was found to be capable of replicating performance at take-off and also of replicating key contact phase features such as the normal and tangential motion of the hands. The results of the two-state model were compared to those using a pseudo-Coulomb friction implementation within the simulation model. The two-state model achieved similar overall results to those of the pseudo-Coulomb model but obtained solutions more rapidly. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Detection of π-μ Coulomb bound states

    International Nuclear Information System (INIS)

    Coombes, R.; Flexer, R.; Hall, A.; Kennelly, R.; Kirkby, J.; Piccioni, R.; Porat, D.; Schwartz, M.; Spitzer, R.; Toraskar, J.; Wiesner, S.; Budick, B.; Kast, J.W.

    1976-01-01

    We have observed atoms consisting of a pion and a muon produced in the decay K/subL/ 0 → (πμ)/suba//subt//subo//subm/ν. This represents the first observations of an atom composed of two unstable particles and of an atomic decay of an elementary particle

  2. Streamer chamber: pion decay

    CERN Multimedia

    1992-01-01

    The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.

  3. Aspects of B decays

    Energy Technology Data Exchange (ETDEWEB)

    Faller, Sven

    2011-03-04

    B-meson decays are a good probe for testing the flavour sector of the standard model of particle physics. The standard model describes at present all experimental data satisfactorily, although some ''tensions'' exist, i.e. two to three sigma deviations from the predictions, in particular in B decays. The arguments against the standard model are thus purely theoretical. These tensions between experimental data and theoretical predictions provide an extension of the standard model by new physics contributions. Within the flavour sector main theoretical uncertainties are related to the hadronic matrix elements. For exclusive semileptonic anti B {yields} D{sup (*)}l anti {nu} decays QCD sum rule techniques, which are suitable for studying hadronic matrix elements, however, with substantial, but estimable hadronic uncertainties, are used. The exploration of new physics effects in B-meson decays is done in an twofold way. In exclusive semileptonic anti B {yields} D{sup (*)}l anti {nu} decays the effect of additional right-handed vector as well as left- and right-handed scalar and tensor hadronic current structures in the decay rates and the form factors are studied at the non-recoil point. As a second approach one studied the non-leptonic B{sup 0}{sub s}{yields}J/{psi}{phi} and B{sup 0}{yields}J/{psi}K{sub S,L} decays discussing CP violating effects in the time-dependent decay amplitudes by considering new physics phase in the B{sup 0}- anti B{sup 0} mixing phase. (orig.)

  4. Tau decays into kaons

    International Nuclear Information System (INIS)

    Finkemeier, M.; Mirkes, E.

    1995-04-01

    Predictions for semi-leptonic decay rates of the τ lepton into two meson final states and three meson final states are derived. The hadronic matrix elements are expressed in terms of form factors, which can be predicted by chiral Lagrangians supplemented by informations about all possible low-lying resonances in the different channels. Isospin symmetry relations among the different final states are carefully taken into account. The calculated brancing ratios are compared with measured decay rates where data are available

  5. Iconic Decay in Schizophrenia

    OpenAIRE

    Hahn, Britta; Kappenman, Emily S.; Robinson, Benjamin M.; Fuller, Rebecca L.; Luck, Steven J.; Gold, James M.

    2010-01-01

    Working memory impairment is considered a core deficit in schizophrenia, but the precise nature of this deficit has not been determined. Multiple lines of evidence implicate deficits at the encoding stage. During encoding, information is held in a precategorical sensory store termed iconic memory, a literal image of the stimulus with high capacity but rapid decay. Pathologically increased iconic decay could reduce the number of items that can be transferred into working memory before the info...

  6. Annihilation decays of bottomonium

    International Nuclear Information System (INIS)

    Monteiro, Antony Prakash; Bhat, Manjunath; D'Souza, Praveen P.; Vijaya Kumar, K.B.

    2016-01-01

    The bound state of a bottom quark b and its anti quark b-bar known as bottomonium was first seen in the spectrum of μμ"- pairs produced in 400 GeV proton-nucleus collisions at Fermilab. It was discovered as spin triplet states ϒ(1S), ϒ(2S) and ϒ(3S) by E288 collaboration at Fermilab. We have calculated annihilation decay widths of bottomonium states. The calculated decay widths are presented

  7. Rare psi decays

    International Nuclear Information System (INIS)

    Partridge, R.

    1986-01-01

    Slightly more than ten years have passed since the psi was discovered, yet the study of psi decays continues to be an active and fruitful area of research. One reason for such longevity is that each successive experiment has increased their sensitivity over previous experiments either by improving detection efficiency or by increasing statistics. This has allowed the observation and, in some cases, detailed studies of rare psi decays. Branching ratios of ≅10-/sup 4/ are now routinely studied, while certain decay channels are beginning to show interesting effects at the 10-/sup 5/ level. Future experiments at the Beijing Electron Positron Collider (BEPC) have the potential for increasing sensitivities by one or two orders of magnitude, thus enabling many interesting studies impossible with current data samples. The author first examines the extent to which psi decays can be used to study electroweak phenomena. The remainder of this work is devoted to the more traditional task of using the psi to study quarks, gluons, and the properties of the strong interaction. Of particular interest is the study of radioactive psi decays, where a number of new particles have been discovered. Recent results regarding two of these particles, the θ(1700) and iota(1450), are discussed, as well as a study of the quark content of the eta and eta' using decays of the psi to vector-pseudoscalar final states

  8. Decays of supernova neutrinos

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2002-01-01

    Supernova neutrinos could be well-suited for probing neutrino decay, since decay may be observed even for very small decay rates or coupling constants. We will introduce an effective operator framework for the combined description of neutrino decay and neutrino oscillations for supernova neutrinos, which can especially take into account two properties: one is the radially symmetric neutrino flux, allowing a decay product to be re-directed towards the observer even if the parent neutrino had a different original direction of propagation. The other is decoherence because of the long baselines for coherently produced neutrinos. We will demonstrate how to use this effective theory to calculate the time-dependent fluxes at the detector. In addition, we will show the implications of a Majoron-like decay model. As a result, we will demonstrate that for certain parameter values one may observe some effects which could also mimic signals similar to the ones expected from supernova models, making it in general harder to separate neutrino and supernova properties

  9. Rare and forbidden decays

    CERN Document Server

    Trampetic, Josip

    2002-01-01

    In these lectures I first cover radiative and semileptonic B decays, including the QCD corrections for the quark subprocesses. The exclusive modes and the evaluation of the hadronic matrix elements, i.e. the relevant hadronic form factors, are the second step. Small effects due to the long-distance, spectator contributions, etc. are discussed next. The second section we started with non-leptonic decays, typically $B \\to \\pi\\pi, K\\pi, \\rho\\pi,...$ We describe in more detail our prediction for decays dominated by the $b\\to s \\eta_c$ transition. Reports on the most recent experimental results are given at the end of each subsection. In the second part of the lectures I discuss decays forbidden by the Lorentz and gauge invariance, and due to the violation of the angular moment conservation, generally called the Standard Model-forbiden decays. However, the non-commutative QED and/or non-commutative Standard Model (NCSM), developed in a series of works in the last few years allow some of those decay modes. These ar...

  10. Determination of the interatomic potential from elastic differential cross sections at fixed energy: Functional sensitivity analysis approach

    International Nuclear Information System (INIS)

    Ho, T.; Rabitz, H.

    1989-01-01

    Elastic differential cross sections in atomic crossed beam experiments contain detailed information about the underlying interatomic potentials. The functional sensitivity density of the cross sections with respect to the potential δσ(θ)/δV(R) reveals such information and has been implemented in an iterative inversion procedure, analogous to that of the Newton--Raphson technique. The stability of the inversion is achieved with the use of the regularization method of Tikhonov and Miller. It is shown that given a set of well resolved and noise-free differential cross section data within a limited angular range and given a reasonable starting reference potential, the recovered potential accurately resembles the desired one in the important region, i.e., the region to which the scattering data are sensitive. The region of importance depends upon the collision energy relative to the well depth of the potential under study; usually a higher collision energy penetrates deeper into the repulsive part of the potential and thus accordingly yields a more accurate potential in that part. The inversion procedure produces also a quality function indicating the well determined radial region. Moreover, the extracted potential is quite independent of the functional form of the reference potential in contrast to curve fitting approaches. As illustrations, the model inert gas systems He--Ne and Ne--Ar have been considered. For collision energies within an order of magnitude of the associated potential well depth, the attractive part of the potential can be determined to high precision provided that scattering data at small enough angles are available

  11. Effective non-Coulombic power-law potential for the study of light and heavy mesons

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1982-01-01

    From purely phenomenological considerations we have shown that it is possible to describe successfully the heavy meson spectra of cc-bar and bb-bar systems in the framework of an effective non-Coulombic power-law potential in the form V(r) = V 0 +ar/sup ν/ (with a,ν>0). The nonsingular short-distance behavior of this potential, which is in apparent contradiction with the predictions of quantum- chromodynamics, does not pose any problem in explaining the fine-hyperfine splitting, if we prescribe the spin dependence to be generated through this static confining potential in the form of an approximately equal admixture of scalar and vector parts with no contributions from the anomalous quark magnetic moments. This nonrelativistic formalsm, when extended to a unified study of the entire meson spectra including the ordinary light and the heavy mesons, gives a very good account of the meson masses, fine-hyperfine splittings, electromagnetic transition rates, and leptonic decay widths without reflecting any inadequacy in the short- and long-range behavior of this simple effective power-law potential

  12. Neutron decay, semileptonic hyperon decay and the Cabibbo model

    International Nuclear Information System (INIS)

    Siebert, H.W.

    1989-01-01

    The decay rates and formfactor ratios of neutron decay and semileptonic hyperon decays are compared in the framework of the Cabibbo model. The results indicate SU(3) symmetry breaking. The Kobayashi-Maskawa matrix element V us determined from these decays is in good agreement with the value determined from K→πeν decays, and with unitarity of the KM-matrix. (orig.)

  13. α -decay chains of superheavy Mt-279265 isotopes

    Science.gov (United States)

    Santhosh, K. P.; Nithya, C.

    2017-10-01

    The α -decay chains of the isotopes Mt-279265 are predicted by comparing the α half-lives calculated within the Coulomb and proximity potential model for deformed nuclei of Santhosh et al. [Nucl. Phys. A 850, 34 (2011)], 10.1016/j.nuclphysa.2010.12.002 with the spontaneous fission half-lives using the shell-effect-dependent formula of Santhosh and Nithya [Phys. Rev. C 94, 054621 (2016)], 10.1103/PhysRevC.94.054621. α half-lives also are calculated using different theoretical formalisms for comparison. The predicted half-lives and decay modes match well with the experimental results. The use of four different mass tables for calculating the α - decay energies indicates that the mass table of Wang et al. [Chin. Phys. C 41, 030003 (2017)], 10.1088/1674-1137/41/3/030003, which is based on the AME2016 atomic mass evaluation, is in better agreement with experimental results. The paper predicts long α chains from 265,267-269,271-273MT with half-lives within experimental limits. The isotopes 274-276,278Mt exhibit 2α chains followed by spontaneous fission. The 2α chain of 266Mt and the 4α chain of 270Mt end with electron capture. The isotopes Mt,279277 decay via spontaneous fission. We hope that the paper will open up new areas in this field.

  14. Probing the P -wave charmonium decays of Bc meson

    Science.gov (United States)

    Rui, Zhou

    2018-02-01

    Motivated by the large number of Bc meson decay modes observed recently by several detectors at the LHC, we present a detailed analysis of the Bc meson decaying to the P -wave charmonium states and a light pseudoscalar (P ) or vector (V ) meson within the framework of perturbative QCD factorization. The P -wave charmonium distribution amplitudes are extracted from the n =2 , l =1 Schrödinger states for a Coulomb potential, which can be taken as the universal nonperturbative objects to analyze the hard exclusive processes with P -wave charmonium production. It is found that these decays have large branching ratios of the order of 10-5˜10-2 , which seem to be in the reach of future experiments. We also provide predictions for the polarization fractions and relative phases of Bc→(χc 1,χc 2,hc)V decays. It is expected that the longitudinal polarization amplitudes dominate the branching ratios according to the quark helicity analysis, and the magnitudes and phases of parallel polarization amplitude are approximately equal to the perpendicular ones. The obtained results are compared with available experimental data, our previous studies, and numbers from other approaches.

  15. Spectroscopy of pseudoscalar and vector mesons and their electroweak decays

    International Nuclear Information System (INIS)

    Ablakulov, Kh.

    1997-01-01

    Proceeding from the effective action of QCD for bilocal meson fields the formula for the action describing the spectroscopy of mesons and their electroweak decays is obtained. The numerical solutions of the Salpeter equation (SE) for the qq-bound state and the Schwinger-Dyson equation (SDE) for the quark phase function are obtained with potential as sum of the oscillator and Coulomb terms. It is shown that for the oscillator potential and current quark mass m 0 0 → γγ) are 3-4 times smaller than their experimentations. This discrepancy was not removed even choosing other shapes of the potential. In order to resolve this problem the modification of the SDE, which consists in introducing the additional terms that do not change asymptotical properties of solutions of this equation is proposed. Using such modification both constant fπ and Γ(π 0 → γγ) are reproduced on a good quantitative level. The new SE for vector mesons is proposed and its solution with potential mentioned above gives the mass spectra of these mesons. Considering the τ → ρν decay the representation for leptonic decay constant of ρ meson f π , which expresses via solutions of the SDE and the proposed SE with a given potential is obtained. It is shown that the proposed SE allows to describe both the spectroscopy of vector mesons and their leptonic decay constants on a satisfactory level in comparison with the experimental values. (author)

  16. CP violation in B decay

    OpenAIRE

    Yamamoto, Hitoshi

    2001-01-01

    We review the physics of CP violation in B decays. After introducing the CKM matrix and how it causes CP violation, we cover three types of CP violation that can occur in B decays: CP violation in mixing, CP violation by mixing-decay interference, and CP violation in decay.

  17. Radioactive decay and labeled compounds

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter on radioactive decay and labeled compounds has numerous intext equations and worked, sample problems. Topics covered include the following: terms and mathematics of radioactive decay; examples of calculations; graphs of decay equations; radioactivity or activity; activity measurements; activity decay; half-life determinations; labeled compounds. A 20 problem set is also included. 1 ref., 4 figs., 1 tab

  18. Strength loss in decayed wood

    Science.gov (United States)

    Rebecca E. Ibach; Patricia K. Lebow

    2014-01-01

    Wood is a durable engineering material when used in an appropriate manner, but it is susceptible to biological decay when a log, sawn product, or final product is not stored, handled, or designed properly. Even before the biological decay of wood becomes visually apparent, the decay can cause the wood to become structurally unsound. The progression of decay to that...

  19. Sigma beta decay

    International Nuclear Information System (INIS)

    Newman, D.E.

    1975-01-01

    Describes an experiment to measure beta decays of the sigma particle. Sigmas produced by stopping a K - beam in a liquid hydrogen target decayed in the following reactions: Kp → Σπ; Σ → Neν. The electron and pion were detected by wire spark chambers in a magnetic spectrometer and by plastic scintillators, and were differentiated by a threshold gas Cherenkov counter. The neutron was detected by liquid scintillation counters. The data (n = 3) shell electrons or the highly excited electrons decay first. Instead, it is suggested that when there are two to five electrons in highly excited states immediately after a heavy ion--atom collision the first transitions to occur will be among highly excited Rydberg states in a cascade down to the 4s, 4p, and 3d-subshells. If one of the long lived states becomes occupied by electrons promoted during the collision or by electrons falling from higher levels, it will not decay until after the valence shell decays. LMM rates calculated to test the methods used are compared to previous works. The mixing coefficients are given in terms of the states 4s4p, 45sp+-, and 5s5p. The applicability of Cooper, Fano, and Prats' discussion of the energies and transition rates of doubly excited states is considered

  20. Coulomb stress analysis of the 21 February 2008 Mw= 6.0 Wells, Nevada, earthquake

    Science.gov (United States)

    Sevilgen, Volkan

    2011-01-01

    Static Coulomb stress changes imparted by the February 21, 2008 Wells, Nevada earthquake are calculated, using an 8 x 6 km rectangular patch with a uniform slip as a source fault. Stress changes are resolved on nearby active faults using their rake, dip, and strike direction, assuming a fault friction of 0.4. The largest Coulomb stress increase (0.2 bars) imparted to surrounding major active faults from the Wells earthquake occurs on the Clover Hill fault, which may be the southern continuation of the ruptured fault. A 0.1 bar Coulomb stress increase is calculated on the western Snake Mountains fault. Coulomb stress decreases of 0.5 bars are calculated for the northern parts of the Independence and Ruby Mountains faults. The Coulomb stress change is calculated on relocated aftershocks assuming that they have the same strike, dip, and rake, as the source fault. Under this assumption, 75% of the aftershocks received a Coulomb stress increase.