WorldWideScience

Sample records for interactome predicts spatiotemporal

  1. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins.

    Directory of Open Access Journals (Sweden)

    Raffi Tonikian

    2009-10-01

    Full Text Available SH3 domains are peptide recognition modules that mediate the assembly of diverse biological complexes. We scanned billions of phage-displayed peptides to map the binding specificities of the SH3 domain family in the budding yeast, Saccharomyces cerevisiae. Although most of the SH3 domains fall into the canonical classes I and II, each domain utilizes distinct features of its cognate ligands to achieve binding selectivity. Furthermore, we uncovered several SH3 domains with specificity profiles that clearly deviate from the two canonical classes. In conjunction with phage display, we used yeast two-hybrid and peptide array screening to independently identify SH3 domain binding partners. The results from the three complementary techniques were integrated using a Bayesian algorithm to generate a high-confidence yeast SH3 domain interaction map. The interaction map was enriched for proteins involved in endocytosis, revealing a set of SH3-mediated interactions that underlie formation of protein complexes essential to this biological pathway. We used the SH3 domain interaction network to predict the dynamic localization of several previously uncharacterized endocytic proteins, and our analysis suggests a novel role for the SH3 domains of Lsb3p and Lsb4p as hubs that recruit and assemble several endocytic complexes.

  2. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize.

    Directory of Open Access Journals (Sweden)

    Matt eGeisler

    2015-06-01

    Full Text Available Interactomes are genome-wide roadmaps of protein-protein interactions. They have been produced for humans, yeast, the fruit fly, and Arabidopsis thaliana and have become invaluable tools for generating and testing hypotheses. A predicted interactome for Zea mays (PiZeaM is presented here as an aid to the research community for this valuable crop species. PiZeaM was built using a proven method of interologs (interacting orthologs that were identified using both one-to-one and many-to-many orthology between genomes of maize and reference species. Where both maize orthologs occurred for an experimentally determined interaction in the reference species, we predicted a likely interaction in maize. A total of 49,026 unique interactions for 6,004 maize proteins were predicted. These interactions are enriched for processes that are evolutionarily conserved, but include many otherwise poorly annotated proteins in maize. The predicted maize interactions were further analyzed by comparing annotation of interacting proteins, including different layers of ontology. A map of pairwise gene co-expression was also generated and compared to predicted interactions. Two global subnetworks were constructed for highly conserved interactions. These subnetworks showed clear clustering of proteins by function. Another subnetwork was created for disease response using a bait and prey strategy to capture interacting partners for proteins that respond to other organisms. Closer examination of this subnetwork revealed the connectivity between biotic and abiotic hormone stress pathways. We believe PiZeaM will provide a useful tool for the prediction of protein function and analysis of pathways for Z. mays researchers and is presented in this paper as a reference tool for the exploration of protein interactions in maize.

  3. Energy prediction using spatiotemporal pattern networks

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhanhong; Liu, Chao; Akintayo, Adedotun; Henze, Gregor P.; Sarkar, Soumik

    2017-11-01

    This paper presents a novel data-driven technique based on the spatiotemporal pattern network (STPN) for energy/power prediction for complex dynamical systems. Built on symbolic dynamical filtering, the STPN framework is used to capture not only the individual system characteristics but also the pair-wise causal dependencies among different sub-systems. To quantify causal dependencies, a mutual information based metric is presented and an energy prediction approach is subsequently proposed based on the STPN framework. To validate the proposed scheme, two case studies are presented, one involving wind turbine power prediction (supply side energy) using the Western Wind Integration data set generated by the National Renewable Energy Laboratory (NREL) for identifying spatiotemporal characteristics, and the other, residential electric energy disaggregation (demand side energy) using the Building America 2010 data set from NREL for exploring temporal features. In the energy disaggregation context, convex programming techniques beyond the STPN framework are developed and applied to achieve improved disaggregation performance.

  4. Efficient Prediction of Progesterone Receptor Interactome Using a Support Vector Machine Model

    Directory of Open Access Journals (Sweden)

    Ji-Long Liu

    2015-03-01

    Full Text Available Protein-protein interaction (PPI is essential for almost all cellular processes and identification of PPI is a crucial task for biomedical researchers. So far, most computational studies of PPI are intended for pair-wise prediction. Theoretically, predicting protein partners for a single protein is likely a simpler problem. Given enough data for a particular protein, the results can be more accurate than general PPI predictors. In the present study, we assessed the potential of using the support vector machine (SVM model with selected features centered on a particular protein for PPI prediction. As a proof-of-concept study, we applied this method to identify the interactome of progesterone receptor (PR, a protein which is essential for coordinating female reproduction in mammals by mediating the actions of ovarian progesterone. We achieved an accuracy of 91.9%, sensitivity of 92.8% and specificity of 91.2%. Our method is generally applicable to any other proteins and therefore may be of help in guiding biomedical experiments.

  5. Spatiotemporal patterns and predictability of cyberattacks.

    Directory of Open Access Journals (Sweden)

    Yu-Zhong Chen

    Full Text Available A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term "spatio" refers to the IP address space. In particular, we focus on analyzing macroscopic properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack "fingerprints" and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches.

  6. Exploitation of complex network topology for link prediction in biological interactomes

    KAUST Repository

    Alanis Lobato, Gregorio

    2014-06-01

    The network representation of the interactions between proteins and genes allows for a holistic perspective of the complex machinery underlying the living cell. However, the large number of interacting entities within the cell makes network construction a daunting and arduous task, prone to errors and missing information. Fortunately, the structure of biological networks is not different from that of other complex systems, such as social networks, the world-wide web or power grids, for which growth models have been proposed to better understand their structure and function. This means that we can design tools based on these models in order to exploit the topology of biological interactomes with the aim to construct more complete and reliable maps of the cell. In this work, we propose three novel and powerful approaches for the prediction of interactions in biological networks and conclude that it is possible to mine the topology of these complex system representations and produce reliable and biologically meaningful information that enriches the datasets to which we have access today.

  7. A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).

    Science.gov (United States)

    Stacey, R Greg; Skinnider, Michael A; Scott, Nichollas E; Foster, Leonard J

    2017-10-23

    An organism's protein interactome, or complete network of protein-protein interactions, defines the protein complexes that drive cellular processes. Techniques for studying protein complexes have traditionally applied targeted strategies such as yeast two-hybrid or affinity purification-mass spectrometry to assess protein interactions. However, given the vast number of protein complexes, more scalable methods are necessary to accelerate interaction discovery and to construct whole interactomes. We recently developed a complementary technique based on the use of protein correlation profiling (PCP) and stable isotope labeling in amino acids in cell culture (SILAC) to assess chromatographic co-elution as evidence of interacting proteins. Importantly, PCP-SILAC is also capable of measuring protein interactions simultaneously under multiple biological conditions, allowing the detection of treatment-specific changes to an interactome. Given the uniqueness and high dimensionality of co-elution data, new tools are needed to compare protein elution profiles, control false discovery rates, and construct an accurate interactome. Here we describe a freely available bioinformatics pipeline, PrInCE, for the analysis of co-elution data. PrInCE is a modular, open-source library that is computationally inexpensive, able to use label and label-free data, and capable of detecting tens of thousands of protein-protein interactions. Using a machine learning approach, PrInCE offers greatly reduced run time, more predicted interactions at the same stringency, prediction of protein complexes, and greater ease of use over previous bioinformatics tools for co-elution data. PrInCE is implemented in Matlab (version R2017a). Source code and standalone executable programs for Windows and Mac OSX are available at https://github.com/fosterlab/PrInCE , where usage instructions can be found. An example dataset and output are also provided for testing purposes. PrInCE is the first fast and easy

  8. Evidence That a Psychopathology Interactome Has Diagnostic Value, Predicting Clinical Needs: An Experience Sampling Study

    Science.gov (United States)

    van Os, Jim; Lataster, Tineke; Delespaul, Philippe; Wichers, Marieke; Myin-Germeys, Inez

    2014-01-01

    Background For the purpose of diagnosis, psychopathology can be represented as categories of mental disorder, symptom dimensions or symptom networks. Also, psychopathology can be assessed at different levels of temporal resolution (monthly episodes, daily fluctuating symptoms, momentary fluctuating mental states). We tested the diagnostic value, in terms of prediction of treatment needs, of the combination of symptom networks and momentary assessment level. Method Fifty-seven patients with a psychotic disorder participated in an ESM study, capturing psychotic experiences, emotions and circumstances at 10 semi-random moments in the flow of daily life over a period of 6 days. Symptoms were assessed by interview with the Positive and Negative Syndrome Scale (PANSS); treatment needs were assessed using the Camberwell Assessment of Need (CAN). Results Psychotic symptoms assessed with the PANSS (Clinical Psychotic Symptoms) were strongly associated with psychotic experiences assessed with ESM (Momentary Psychotic Experiences). However, the degree to which Momentary Psychotic Experiences manifested as Clinical Psychotic Symptoms was determined by level of momentary negative affect (higher levels increasing probability of Momentary Psychotic Experiences manifesting as Clinical Psychotic Symptoms), momentary positive affect (higher levels decreasing probability of Clinical Psychotic Symptoms), greater persistence of Momentary Psychotic Experiences (persistence predicting increased probability of Clinical Psychotic Symptoms) and momentary environmental stress associated with events and activities (higher levels increasing probability of Clinical Psychotic Symptoms). Similarly, the degree to which momentary visual or auditory hallucinations manifested as Clinical Psychotic Symptoms was strongly contingent on the level of accompanying momentary paranoid delusional ideation. Momentary Psychotic Experiences were associated with CAN unmet treatment needs, over and above PANSS

  9. Sequence- and interactome-based prediction of viral protein hotspots targeting host proteins: a case study for HIV Nef.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk.

  10. Exploitation of complex network topology for link prediction in biological interactomes

    KAUST Repository

    Alanis Lobato, Gregorio

    2014-01-01

    In this work, we propose three novel and powerful approaches for the prediction of interactions in biological networks and conclude that it is possible to mine the topology of these complex system representations and produce reliable

  11. Validating spatiotemporal predictions of an important pest of small grains.

    Science.gov (United States)

    Merrill, Scott C; Holtzer, Thomas O; Peairs, Frank B; Lester, Philip J

    2015-01-01

    Arthropod pests are typically managed using tactics applied uniformly to the whole field. Precision pest management applies tactics under the assumption that within-field pest pressure differences exist. This approach allows for more precise and judicious use of scouting resources and management tactics. For example, a portion of a field delineated as attractive to pests may be selected to receive extra monitoring attention. Likely because of the high variability in pest dynamics, little attention has been given to developing precision pest prediction models. Here, multimodel synthesis was used to develop a spatiotemporal model predicting the density of a key pest of wheat, the Russian wheat aphid, Diuraphis noxia (Kurdjumov). Spatially implicit and spatially explicit models were synthesized to generate spatiotemporal pest pressure predictions. Cross-validation and field validation were used to confirm model efficacy. A strong within-field signal depicting aphid density was confirmed with low prediction errors. Results show that the within-field model predictions will provide higher-quality information than would be provided by traditional field scouting. With improvements to the broad-scale model component, the model synthesis approach and resulting tool could improve pest management strategy and provide a template for the development of spatially explicit pest pressure models. © 2014 Society of Chemical Industry.

  12. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks.

    Science.gov (United States)

    Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei

    2017-06-26

    Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction.

  13. Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.

    Science.gov (United States)

    Keller, Joshua P; Chang, Howard H; Strickland, Matthew J; Szpiro, Adam A

    2017-05-01

    Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.

  14. Triangle network motifs predict complexes by complementing high-error interactomes with structural information.

    Science.gov (United States)

    Andreopoulos, Bill; Winter, Christof; Labudde, Dirk; Schroeder, Michael

    2009-06-27

    A lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that relatively little structural information would be sufficient

  15. Triangle network motifs predict complexes by complementing high-error interactomes with structural information

    Directory of Open Access Journals (Sweden)

    Labudde Dirk

    2009-06-01

    Full Text Available Abstract Background A lot of high-throughput studies produce protein-protein interaction networks (PPINs with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. Results We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS. PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Conclusion Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that

  16. Statistical Approaches for Spatiotemporal Prediction of Low Flows

    Science.gov (United States)

    Fangmann, A.; Haberlandt, U.

    2017-12-01

    An adequate assessment of regional climate change impacts on streamflow requires the integration of various sources of information and modeling approaches. This study proposes simple statistical tools for inclusion into model ensembles, which are fast and straightforward in their application, yet able to yield accurate streamflow predictions in time and space. Target variables for all approaches are annual low flow indices derived from a data set of 51 records of average daily discharge for northwestern Germany. The models require input of climatic data in the form of meteorological drought indices, derived from observed daily climatic variables, averaged over the streamflow gauges' catchments areas. Four different modeling approaches are analyzed. Basis for all pose multiple linear regression models that estimate low flows as a function of a set of meteorological indices and/or physiographic and climatic catchment descriptors. For the first method, individual regression models are fitted at each station, predicting annual low flow values from a set of annual meteorological indices, which are subsequently regionalized using a set of catchment characteristics. The second method combines temporal and spatial prediction within a single panel data regression model, allowing estimation of annual low flow values from input of both annual meteorological indices and catchment descriptors. The third and fourth methods represent non-stationary low flow frequency analyses and require fitting of regional distribution functions. Method three is subject to a spatiotemporal prediction of an index value, method four to estimation of L-moments that adapt the regional frequency distribution to the at-site conditions. The results show that method two outperforms successive prediction in time and space. Method three also shows a high performance in the near future period, but since it relies on a stationary distribution, its application for prediction of far future changes may be

  17. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks

    Directory of Open Access Journals (Sweden)

    Haiyang Yu

    2017-06-01

    Full Text Available Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs, for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs and long short-term memory (LSTM neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction.

  18. Spatiotemporal property and predictability of large-scale human mobility

    Science.gov (United States)

    Zhang, Hai-Tao; Zhu, Tao; Fu, Dongfei; Xu, Bowen; Han, Xiao-Pu; Chen, Duxin

    2018-04-01

    Spatiotemporal characteristics of human mobility emerging from complexity on individual scale have been extensively studied due to the application potential on human behavior prediction and recommendation, and control of epidemic spreading. We collect and investigate a comprehensive data set of human activities on large geographical scales, including both websites browse and mobile towers visit. Numerical results show that the degree of activity decays as a power law, indicating that human behaviors are reminiscent of scale-free random walks known as Lévy flight. More significantly, this study suggests that human activities on large geographical scales have specific non-Markovian characteristics, such as a two-segment power-law distribution of dwelling time and a high possibility for prediction. Furthermore, a scale-free featured mobility model with two essential ingredients, i.e., preferential return and exploration, and a Gaussian distribution assumption on the exploration tendency parameter is proposed, which outperforms existing human mobility models under scenarios of large geographical scales.

  19. Predicting BCI subject performance using probabilistic spatio-temporal filters.

    Directory of Open Access Journals (Sweden)

    Heung-Il Suk

    Full Text Available Recently, spatio-temporal filtering to enhance decoding for Brain-Computer-Interfacing (BCI has become increasingly popular. In this work, we discuss a novel, fully Bayesian-and thereby probabilistic-framework, called Bayesian Spatio-Spectral Filter Optimization (BSSFO and apply it to a large data set of 80 non-invasive EEG-based BCI experiments. Across the full frequency range, the BSSFO framework allows to analyze which spatio-spectral parameters are common and which ones differ across the subject population. As expected, large variability of brain rhythms is observed between subjects. We have clustered subjects according to similarities in their corresponding spectral characteristics from the BSSFO model, which is found to reflect their BCI performances well. In BCI, a considerable percentage of subjects is unable to use a BCI for communication, due to their missing ability to modulate their brain rhythms-a phenomenon sometimes denoted as BCI-illiteracy or inability. Predicting individual subjects' performance preceding the actual, time-consuming BCI-experiment enhances the usage of BCIs, e.g., by detecting users with BCI inability. This work additionally contributes by using the novel BSSFO method to predict the BCI-performance using only 2 minutes and 3 channels of resting-state EEG data recorded before the actual BCI-experiment. Specifically, by grouping the individual frequency characteristics we have nicely classified them into the subject 'prototypes' (like μ - or β -rhythm type subjects or users without ability to communicate with a BCI, and then by further building a linear regression model based on the grouping we could predict subjects' performance with the maximum correlation coefficient of 0.581 with the performance later seen in the actual BCI session.

  20. Droughts in Amazonia: Spatiotemporal Variability, Teleconnections, and Seasonal Predictions

    Science.gov (United States)

    Lima, Carlos H. R.; AghaKouchak, Amir

    2017-12-01

    Most Amazonia drought studies have focused on rainfall deficits and their impact on river discharges, while the analysis of other important driver variables, such as temperature and soil moisture, has attracted less attention. Here we try to better understand the spatiotemporal dynamics of Amazonia droughts and associated climate teleconnections as characterized by the Palmer Drought Severity Index (PDSI), which integrates information from rainfall deficit, temperature anomalies, and soil moisture capacity. The results reveal that Amazonia droughts are most related to one dominant pattern across the entire region, followed by two seesaw kind of patterns: north-south and east-west. The main two modes are correlated with sea surface temperature (SST) anomalies in the tropical Pacific and Atlantic oceans. The teleconnections associated with global SST are then used to build a seasonal forecast model for PDSI over Amazonia based on predictors obtained from a sparse canonical correlation analysis approach. A unique feature of the presented drought prediction method is using only a few number of predictors to avoid excessive noise in the predictor space. Cross-validated results show correlations between observed and predicted spatial average PDSI up to 0.60 and 0.45 for lead times of 5 and 9 months, respectively. To the best of our knowledge, this is the first study in the region that, based on cross-validation results, leads to appreciable forecast skills for lead times beyond 4 months. This is a step forward in better understanding the dynamics of Amazonia droughts and improving risk assessment and management, through improved drought forecasting.

  1. 3D structure prediction of histone acetyltransferase (HAC proteins of the p300/CBP family and their interactome in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Amar Cemanovic

    2014-09-01

    Full Text Available Histone acetylation is an important posttranslational modification correlated with gene activation. In Arabidopsis thaliana the histone acetyltransferase (HAC proteins of the CBP family are homologous to animal p300/CREB (cAMP-responsive element-binding proteins, which are important histone acetyltransferases participating in many physiological processes, including proliferation, differentiation, and apoptosis. In this study the 3-D structure of all HAC protein subunits in Arabidopsis thaliana: HAC1, HAC2, HAC4, HAC5 and HAC12 is predicted by homology modeling and confirmed by Ramachandran plot analysis. The amino acid sequences HAC family members are highly similar to the sequences of the homologous human p300/CREB protein. Conservation of p300/CBP domains among the HAC proteins was examined further by sequence alignment and pattern search. The domains of p300/CBP required for the HAC function, such as PHD, TAZ and ZZ domains, are conserved in all HAC proteins. Interactome analysis revealed that HAC1, HAC5 and HAC12 proteins interact with S-adenosylmethionine-dependent methyltransferase domaincontaining protein that shows methyltransferase activity, suggesting an additional function of the HAC proteins. Additionally, HAC5 has a strong interaction value for the putative c-myb-like transcription factor MYB3R-4, which suggests that it also may have a function in regulation of DNA replication.

  2. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks.

    KAUST Repository

    Cannistraci, C.V.

    2013-04-08

    Growth and remodelling impact the network topology of complex systems, yet a general theory explaining how new links arise between existing nodes has been lacking, and little is known about the topological properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution of a network might be predicted by mere topological features. We show how a link/community-based strategy triggers substantial prediction improvements because it accounts for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems that use self-organisation as a major adaptation strategy. These systems seem designed for global delivery of information and processing via multiple local modules. Conversely, non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems in which information/energy storage is crucial.

  3. Spatio-Temporal Analysis to Predict Environmental Influence on Malaria

    Science.gov (United States)

    Baig, S.; Sarfraz, M. S.

    2018-05-01

    Malaria is a vector borne disease which is a major cause of morbidity and mortality. It is one of the major diseases in the category of infectious diseases. The survival and bionomics of malaria is affected by environmental factors such as climatic, demographic and land-use/land-cover etc. Currently, a very few under developing countries are using Geo-informatics approaches to control this disease. Gujrat a district of Pakistan, is still under threat of malaria disease. Current research is carried on malaria incidents obtained from District Executive Officer of Health Gujrat. The objective of this study was to explore the spatio-temporal patterns of malaria in district Gujrat and to identify the areas being affected by Malaria. Furthermore, it has been also analyzed the relationship between malaria incident and environmental factors in highly favorable zones. Data is analyzed based on spatial and temporal patterns using (Moran's I). Moreover cluster and hot spots analysis were performed on the incident data. This study shows positive correlation with rainfall, vegetation index, population density and water bodies; while it shows positive and negative correlation with temperature in different seasons. However, variation between amount of vegetation and water bodies were observed. Finding of this research can help the decision makers to take preventive measures and reduce the morbidity and mortality related with malaria in Gujrat, Pakistan.

  4. Next Place Prediction Based on Spatiotemporal Pattern Mining of Mobile Device Logs

    Directory of Open Access Journals (Sweden)

    Sungjun Lee

    2016-01-01

    Full Text Available Due to the recent explosive growth of location-aware services based on mobile devices, predicting the next places of a user is of increasing importance to enable proactive information services. In this paper, we introduce a data-driven framework that aims to predict the user’s next places using his/her past visiting patterns analyzed from mobile device logs. Specifically, the notion of the spatiotemporal-periodic (STP pattern is proposed to capture the visits with spatiotemporal periodicity by focusing on a detail level of location for each individual. Subsequently, we present algorithms that extract the STP patterns from a user’s past visiting behaviors and predict the next places based on the patterns. The experiment results obtained by using a real-world dataset show that the proposed methods are more effective in predicting the user’s next places than the previous approaches considered in most cases.

  5. Next Place Prediction Based on Spatiotemporal Pattern Mining of Mobile Device Logs.

    Science.gov (United States)

    Lee, Sungjun; Lim, Junseok; Park, Jonghun; Kim, Kwanho

    2016-01-23

    Due to the recent explosive growth of location-aware services based on mobile devices, predicting the next places of a user is of increasing importance to enable proactive information services. In this paper, we introduce a data-driven framework that aims to predict the user's next places using his/her past visiting patterns analyzed from mobile device logs. Specifically, the notion of the spatiotemporal-periodic (STP) pattern is proposed to capture the visits with spatiotemporal periodicity by focusing on a detail level of location for each individual. Subsequently, we present algorithms that extract the STP patterns from a user's past visiting behaviors and predict the next places based on the patterns. The experiment results obtained by using a real-world dataset show that the proposed methods are more effective in predicting the user's next places than the previous approaches considered in most cases.

  6. Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions - a crime case study

    OpenAIRE

    Adepeju, M.; Rosser, G.; Cheng, T.

    2016-01-01

    Many physical and sociological processes are represented as discrete events in time and space. These spatio-temporal point processes are often sparse, meaning that they cannot be aggregated and treated with conventional regression models. Models based on the point process framework may be employed instead for prediction purposes. Evaluating the predictive performance of these models poses a unique challenge, as the same sparseness prevents the use of popular measures such as the root mean squ...

  7. Urban Link Travel Time Prediction Based on a Gradient Boosting Method Considering Spatiotemporal Correlations

    Directory of Open Access Journals (Sweden)

    Faming Zhang

    2016-11-01

    Full Text Available The prediction of travel times is challenging because of the sparseness of real-time traffic data and the intrinsic uncertainty of travel on congested urban road networks. We propose a new gradient–boosted regression tree method to accurately predict travel times. This model accounts for spatiotemporal correlations extracted from historical and real-time traffic data for adjacent and target links. This method can deliver high prediction accuracy by combining simple regression trees with poor performance. It corrects the error found in existing models for improved prediction accuracy. Our spatiotemporal gradient–boosted regression tree model was verified in experiments. The training data were obtained from big data reflecting historic traffic conditions collected by probe vehicles in Wuhan from January to May 2014. Real-time data were extracted from 11 weeks of GPS records collected in Wuhan from 5 May 2014 to 20 July 2014. Based on these data, we predicted link travel time for the period from 21 July 2014 to 25 July 2014. Experiments showed that our proposed spatiotemporal gradient–boosted regression tree model obtained better results than gradient boosting, random forest, or autoregressive integrated moving average approaches. Furthermore, these results indicate the advantages of our model for urban link travel time prediction.

  8. Cell Interactomics and Carcinogenetic Mechanisms

    CERN Document Server

    Baianu, IC; Report to the Institute of Genomics

    2004-01-01

    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quant...

  9. Proactive Spatiotemporal Resource Allocation and Predictive Visual Analytics for Community Policing and Law Enforcement.

    Science.gov (United States)

    Malik, Abish; Maciejewski, Ross; Towers, Sherry; McCullough, Sean; Ebert, David S

    2014-12-01

    In this paper, we present a visual analytics approach that provides decision makers with a proactive and predictive environment in order to assist them in making effective resource allocation and deployment decisions. The challenges involved with such predictive analytics processes include end-users' understanding, and the application of the underlying statistical algorithms at the right spatiotemporal granularity levels so that good prediction estimates can be established. In our approach, we provide analysts with a suite of natural scale templates and methods that enable them to focus and drill down to appropriate geospatial and temporal resolution levels. Our forecasting technique is based on the Seasonal Trend decomposition based on Loess (STL) method, which we apply in a spatiotemporal visual analytics context to provide analysts with predicted levels of future activity. We also present a novel kernel density estimation technique we have developed, in which the prediction process is influenced by the spatial correlation of recent incidents at nearby locations. We demonstrate our techniques by applying our methodology to Criminal, Traffic and Civil (CTC) incident datasets.

  10. Predictive spatio-temporal model for spatially sparse global solar radiation data

    International Nuclear Information System (INIS)

    André, Maïna; Dabo-Niang, Sophie; Soubdhan, Ted; Ould-Baba, Hanany

    2016-01-01

    This paper introduces a new approach for the forecasting of solar radiation series at a located station for very short time scale. We built a multivariate model in using few stations (3 stations) separated with irregular distances from 26 km to 56 km. The proposed model is a spatio temporal vector autoregressive VAR model specifically designed for the analysis of spatially sparse spatio-temporal data. This model differs from classic linear models in using spatial and temporal parameters where the available predictors are the lagged values at each station. A spatial structure of stations is defined by the sequential introduction of predictors in the model. Moreover, an iterative strategy in the process of our model will select the necessary stations removing the uninteresting predictors and also selecting the optimal p-order. We studied the performance of this model. The metric error, the relative root mean squared error (rRMSE), is presented at different short time scales. Moreover, we compared the results of our model to simple and well known persistence model and those found in literature. - Highlights: • A spatio-temporal VAR forecast model is used for spatially sparse data solar. • Lags and locations are selected by an optimization strategy. • Definition of spatial ordering of predictors influences forecasting results. • The model shows a better performance predictive at 30 min ahead in our context. • Benchmarking study shows a more accurate forecast at 1 h ahead with spatio-temporal VAR.

  11. Spatio-Temporal Variation and Prediction of Ischemic Heart Disease Hospitalizations in Shenzhen, China

    Directory of Open Access Journals (Sweden)

    Yanxia Wang

    2014-05-01

    Full Text Available Ischemic heart disease (IHD is a leading cause of death worldwide. Urban public health and medical management in Shenzhen, an international city in the developing country of China, is challenged by an increasing burden of IHD. This study analyzed the spatio-temporal variation of IHD hospital admissions from 2003 to 2012 utilizing spatial statistics, spatial analysis, and space-time scan statistics. The spatial statistics and spatial analysis measured the incidence rate (hospital admissions per 1,000 residents and the standardized rate (the observed cases standardized by the expected cases of IHD at the district level to determine the spatio-temporal distribution and identify patterns of change. The space-time scan statistics was used to identify spatio-temporal clusters of IHD hospital admissions at the district level. The other objective of this study was to forecast the IHD hospital admissions over the next three years (2013–2015 to predict the IHD incidence rates and the varying burdens of IHD-related medical services among the districts in Shenzhen. The results show that the highest hospital admissions, incidence rates, and standardized rates of IHD are in Futian. From 2003 to 2012, the IHD hospital admissions exhibited similar mean centers and directional distributions, with a slight increase in admissions toward the north in accordance with the movement of the total population. The incidence rates of IHD exhibited a gradual increase from 2003 to 2012 for all districts in Shenzhen, which may be the result of the rapid development of the economy and the increasing traffic pollution. In addition, some neighboring areas exhibited similar temporal change patterns, which were also detected by the spatio-temporal cluster analysis. Futian and Dapeng would have the highest and the lowest hospital admissions, respectively, although these districts have the highest incidence rates among all of the districts from 2013 to 2015 based on the prediction

  12. Spatiotemporal trends in Canadian domestic wild boar production and habitat predict wild pig distribution

    DEFF Research Database (Denmark)

    Michel, Nicole; Laforge, Michel; van Beest, Floris

    2017-01-01

    eradication of wild pigs is rarely feasible after establishment over large areas, effective management will depend on strengthening regulations and enforcement of containment practices for Canadian domestic wild boar farms. Initiation of coordinated provincial and federal efforts to implement population...... wild boar and test the propagule pressure hypothesis to improve predictive ability of an existing habitat-based model of wild pigs. We reviewed spatiotemporal patterns in domestic wild boar production across ten Canadian provinces during 1991–2011 and evaluated the ability of wild boar farm...... distribution to improve predictive models of wild pig occurrence using a resource selection probability function for wild pigs in Saskatchewan. Domestic wild boar production in Canada increased from 1991 to 2001 followed by sharp declines in all provinces. The distribution of domestic wild boar farms in 2006...

  13. Spatio-Temporal Series Remote Sensing Image Prediction Based on Multi-Dictionary Bayesian Fusion

    Directory of Open Access Journals (Sweden)

    Chu He

    2017-11-01

    Full Text Available Contradictions in spatial resolution and temporal coverage emerge from earth observation remote sensing images due to limitations in technology and cost. Therefore, how to combine remote sensing images with low spatial yet high temporal resolution as well as those with high spatial yet low temporal resolution to construct images with both high spatial resolution and high temporal coverage has become an important problem called spatio-temporal fusion problem in both research and practice. A Multi-Dictionary Bayesian Spatio-Temporal Reflectance Fusion Model (MDBFM has been proposed in this paper. First, multiple dictionaries from regions of different classes are trained. Second, a Bayesian framework is constructed to solve the dictionary selection problem. A pixel-dictionary likehood function and a dictionary-dictionary prior function are constructed under the Bayesian framework. Third, remote sensing images before and after the middle moment are combined to predict images at the middle moment. Diverse shapes and textures information is learned from different landscapes in multi-dictionary learning to help dictionaries capture the distinctions between regions. The Bayesian framework makes full use of the priori information while the input image is classified. The experiments with one simulated dataset and two satellite datasets validate that the MDBFM is highly effective in both subjective and objective evaluation indexes. The results of MDBFM show more precise details and have a higher similarity with real images when dealing with both type changes and phenology changes.

  14. A multi-scale modeling framework for individualized, spatiotemporal prediction of drug effects and toxicological risk

    Directory of Open Access Journals (Sweden)

    Juan Guillermo eDiaz Ochoa

    2013-01-01

    Full Text Available In this study, we focus on a novel multi-scale modeling approach for spatiotemporal prediction of the distribution of substances and resulting hepatotoxicity by combining cellular models, a 2D liver model, and whole-body model. As a case study, we focused on predicting human hepatotoxicity upon treatment with acetaminophen based on in vitro toxicity data and potential inter-individual variability in gene expression and enzyme activities. By aggregating mechanistic, genome-based in silico cells to a novel 2D liver model and eventually to a whole body model, we predicted pharmacokinetic properties, metabolism, and the onset of hepatotoxicity in an in silico patient. Depending on the concentration of acetaminophen in the liver and the accumulation of toxic metabolites, cell integrity in the liver as a function of space and time as well as changes in the elimination rate of substances were estimated. We show that the variations in elimination rates also influence the distribution of acetaminophen and its metabolites in the whole body. Our results are in agreement with experimental results. What is more, the integrated model also predicted variations in drug toxicity depending on alterations of metabolic enzyme activities. Variations in enzyme activity, in turn, reflect genetic characteristics or diseases of individuals. In conclusion, this framework presents an important basis for efficiently integrating inter-individual variability data into models, paving the way for personalized or stratified predictions of drug toxicity and efficacy.

  15. Neurobiological mechanisms behind the spatiotemporal illusions of awareness that are used for advocating prediction or postdiction

    Directory of Open Access Journals (Sweden)

    Talis eBachmann

    2013-01-01

    Full Text Available The fact that it takes time for the brain to process information from the changing environment underlies many experimental phenomena of awareness of spatiotemporal events, including a number of astonishing illusions. These phenomena have been explained from the predictive and postdictive theoretical perspectives. Here I describe the most extensively studied phenomena in order to see how well the two perspectives can explain them. Next, the neurobiological perceptual retouch mechanism of producing stimulation awareness is characterized and its work in causing the listed illusions is described. A perspective on how brain mechanisms of conscious perception produce the phenomena supportive of the postdictive view is presented in this article. At the same time, some of the phenomena cannot be explained by the traditional postdictive account, but can be interpreted from the perceptual retouch theory perspective.

  16. Serial interactome capture of the human cell nucleus.

    Science.gov (United States)

    Conrad, Thomas; Albrecht, Anne-Susann; de Melo Costa, Veronica Rodrigues; Sauer, Sascha; Meierhofer, David; Ørom, Ulf Andersson

    2016-04-04

    Novel RNA-guided cellular functions are paralleled by an increasing number of RNA-binding proteins (RBPs). Here we present 'serial RNA interactome capture' (serIC), a multiple purification procedure of ultraviolet-crosslinked poly(A)-RNA-protein complexes that enables global RBP detection with high specificity. We apply serIC to the nuclei of proliferating K562 cells to obtain the first human nuclear RNA interactome. The domain composition of the 382 identified nuclear RBPs markedly differs from previous IC experiments, including few factors without known RNA-binding domains that are in good agreement with computationally predicted RNA binding. serIC extends the number of DNA-RNA-binding proteins (DRBPs), and reveals a network of RBPs involved in p53 signalling and double-strand break repair. serIC is an effective tool to couple global RBP capture with additional selection or labelling steps for specific detection of highly purified RBPs.

  17. An adaptive mode-driven spatiotemporal motion vector prediction for wavelet video coding

    Science.gov (United States)

    Zhao, Fan; Liu, Guizhong; Qi, Yong

    2010-07-01

    The three-dimensional subband/wavelet codecs use 5/3 filters rather than Haar filters for the motion compensation temporal filtering (MCTF) to improve the coding gain. In order to curb the increased motion vector rate, an adaptive motion mode driven spatiotemporal motion vector prediction (AMDST-MVP) scheme is proposed. First, by making use of the direction histograms of four motion vector fields resulting from the initial spatial motion vector prediction (SMVP), the motion mode of the current GOP is determined according to whether the fast or complex motion exists in the current GOP. Then the GOP-level MVP scheme is thereby determined by either the S-MVP or the AMDST-MVP, namely, AMDST-MVP is the combination of S-MVP and temporal-MVP (T-MVP). If the latter is adopted, the motion vector difference (MVD) between the neighboring MV fields and the S-MVP resulting MV of the current block is employed to decide whether or not the MV of co-located block in the previous frame is used for prediction the current block. Experimental results show that AMDST-MVP not only can improve the coding efficiency but also reduce the number of computation complexity.

  18. Organization of physical interactomes as uncovered by network schemas.

    Science.gov (United States)

    Banks, Eric; Nabieva, Elena; Chazelle, Bernard; Singh, Mona

    2008-10-01

    Large-scale protein-protein interaction networks provide new opportunities for understanding cellular organization and functioning. We introduce network schemas to elucidate shared mechanisms within interactomes. Network schemas specify descriptions of proteins and the topology of interactions among them. We develop algorithms for systematically uncovering recurring, over-represented schemas in physical interaction networks. We apply our methods to the S. cerevisiae interactome, focusing on schemas consisting of proteins described via sequence motifs and molecular function annotations and interacting with one another in one of four basic network topologies. We identify hundreds of recurring and over-represented network schemas of various complexity, and demonstrate via graph-theoretic representations how more complex schemas are organized in terms of their lower-order constituents. The uncovered schemas span a wide range of cellular activities, with many signaling and transport related higher-order schemas. We establish the functional importance of the schemas by showing that they correspond to functionally cohesive sets of proteins, are enriched in the frequency with which they have instances in the H. sapiens interactome, and are useful for predicting protein function. Our findings suggest that network schemas are a powerful paradigm for organizing, interrogating, and annotating cellular networks.

  19. Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon.

    Science.gov (United States)

    Putman, Nathan F; Jenkins, Erica S; Michielsens, Catherine G J; Noakes, David L G

    2014-10-06

    Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon

    Science.gov (United States)

    Putman, Nathan F.; Jenkins, Erica S.; Michielsens, Catherine G. J.; Noakes, David L. G.

    2014-01-01

    Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species. PMID:25056214

  1. Proteomic-coupled-network analysis of T877A-androgen receptor interactomes can predict clinical prostate cancer outcomes between White (non-Hispanic and African-American groups.

    Directory of Open Access Journals (Sweden)

    Naif Zaman

    Full Text Available The androgen receptor (AR remains an important contributor to the neoplastic evolution of prostate cancer (CaP. CaP progression is linked to several somatic AR mutational changes that endow upon the AR dramatic gain-of-function properties. One of the most common somatic mutations identified is Thr877-to-Ala (T877A, located in the ligand-binding domain, that results in a receptor capable of promiscuous binding and activation by a variety of steroid hormones and ligands including estrogens, progestins, glucocorticoids, and several anti-androgens. In an attempt to further define somatic mutated AR gain-of-function properties, as a consequence of its promiscuous ligand binding, we undertook a proteomic/network analysis approach to characterize the protein interactome of the mutant T877A-AR in LNCaP cells under eight different ligand-specific treatments (dihydrotestosterone, mibolerone, R1881, testosterone, estradiol, progesterone, dexamethasone, and cyproterone acetate. In extending the analysis of our multi-ligand complexes of the mutant T877A-AR we observed significant enrichment of specific complexes between normal and primary prostatic tumors, which were furthermore correlated with known clinical outcomes. Further analysis of certain mutant T877A-AR complexes showed specific population preferences distinguishing primary prostatic disease between white (non-Hispanic vs. African-American males. Moreover, these cancer-related AR-protein complexes demonstrated predictive survival outcomes specific to CaP, and not for breast, lung, lymphoma or medulloblastoma cancers. Our study, by coupling data generated by our proteomics to network analysis of clinical samples, has helped to define real and novel biological pathways in complicated gain-of-function AR complex systems.

  2. Using a predictive model to evaluate spatiotemporal variability in streamflow permanence across the Pacific Northwest region

    Science.gov (United States)

    Jaeger, K. L.

    2017-12-01

    The U.S. Geological Survey (USGS) has developed the PRObability Of Streamflow PERmanence (PROSPER) model, a GIS-based empirical model that provides predictions of the annual probability of a stream channel having year-round flow (Streamflow permanence probability; SPP) for any unregulated and minimally-impaired stream channel in the Pacific Northwest (Washington, Oregon, Idaho, western Montana). The model provides annual predictions for 2004-2016 at a 30-m spatial resolution based on monthly or annually updated values of climatic conditions, and static physiographic variables associated with the upstream basin. Prediction locations correspond to the channel network consistent with the National Hydrography Dataset stream grid and are publicly available through the USGS StreamStats platform (https://water.usgs.gov/osw/streamstats/). In snowmelt-driven systems, the most informative predictor variable was mean upstream snow water equivalent on May 1, which highlights the influence of late spring snow cover for supporting streamflow in mountain river networks. In non-snowmelt-driven systems, the most informative variable was mean annual precipitation. Streamflow permanence probabilities varied across the study area by geography and from year-to-year. Notably lower SPP corresponded to the climatically drier subregions of the study area. Higher SPP were concentrated in coastal and higher elevation mountain regions. In addition, SPP appeared to trend with average hydroclimatic conditions, which were also geographically coherent. The year-to-year variability lends support for the growing recognition of the spatiotemporal dynamism of streamflow permanence. An analysis of three focus basins located in contrasting geographical and hydroclimatic settings demonstrates differences in the sensitivity of streamflow permanence to antecedent climate conditions as a function of geography. Consequently, results suggest that PROSPER model can be a useful tool to evaluate regions of the

  3. A Spatiotemporal Prediction Framework for Air Pollution Based on Deep RNN

    Science.gov (United States)

    Fan, J.; Li, Q.; Hou, J.; Feng, X.; Karimian, H.; Lin, S.

    2017-10-01

    Time series data in practical applications always contain missing values due to sensor malfunction, network failure, outliers etc. In order to handle missing values in time series, as well as the lack of considering temporal properties in machine learning models, we propose a spatiotemporal prediction framework based on missing value processing algorithms and deep recurrent neural network (DRNN). By using missing tag and missing interval to represent time series patterns, we implement three different missing value fixing algorithms, which are further incorporated into deep neural network that consists of LSTM (Long Short-term Memory) layers and fully connected layers. Real-world air quality and meteorological datasets (Jingjinji area, China) are used for model training and testing. Deep feed forward neural networks (DFNN) and gradient boosting decision trees (GBDT) are trained as baseline models against the proposed DRNN. Performances of three missing value fixing algorithms, as well as different machine learning models are evaluated and analysed. Experiments show that the proposed DRNN framework outperforms both DFNN and GBDT, therefore validating the capacity of the proposed framework. Our results also provides useful insights for better understanding of different strategies that handle missing values.

  4. A Spatiotemporal Prediction Framework for Air Pollution Based on Deep RNN

    Directory of Open Access Journals (Sweden)

    J. Fan

    2017-10-01

    Full Text Available Time series data in practical applications always contain missing values due to sensor malfunction, network failure, outliers etc. In order to handle missing values in time series, as well as the lack of considering temporal properties in machine learning models, we propose a spatiotemporal prediction framework based on missing value processing algorithms and deep recurrent neural network (DRNN. By using missing tag and missing interval to represent time series patterns, we implement three different missing value fixing algorithms, which are further incorporated into deep neural network that consists of LSTM (Long Short-term Memory layers and fully connected layers. Real-world air quality and meteorological datasets (Jingjinji area, China are used for model training and testing. Deep feed forward neural networks (DFNN and gradient boosting decision trees (GBDT are trained as baseline models against the proposed DRNN. Performances of three missing value fixing algorithms, as well as different machine learning models are evaluated and analysed. Experiments show that the proposed DRNN framework outperforms both DFNN and GBDT, therefore validating the capacity of the proposed framework. Our results also provides useful insights for better understanding of different strategies that handle missing values.

  5. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    Science.gov (United States)

    Hengl, Tomislav; Heuvelink, Gerard B. M.; Perčec Tadić, Melita; Pebesma, Edzer J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10-fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval

  6. Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment.

    Science.gov (United States)

    Zhan, Yu; Luo, Yuzhou; Deng, Xunfei; Grieneisen, Michael L; Zhang, Minghua; Di, Baofeng

    2018-02-01

    In China, ozone pollution shows an increasing trend and becomes the primary air pollutant in warm seasons. Leveraging the air quality monitoring network, a random forest model is developed to predict the daily maximum 8-h average ozone concentrations ([O 3 ] MDA8 ) across China in 2015 for human exposure assessment. This model captures the observed spatiotemporal variations of [O 3 ] MDA8 by using the data of meteorology, elevation, and recent-year emission inventories (cross-validation R 2  = 0.69 and RMSE = 26 μg/m 3 ). Compared with chemical transport models that require a plenty of variables and expensive computation, the random forest model shows comparable or higher predictive performance based on only a handful of readily-available variables at much lower computational cost. The nationwide population-weighted [O 3 ] MDA8 is predicted to be 84 ± 23 μg/m 3 annually, with the highest seasonal mean in the summer (103 ± 8 μg/m 3 ). The summer [O 3 ] MDA8 is predicted to be the highest in North China (125 ± 17 μg/m 3 ). Approximately 58% of the population lives in areas with more than 100 nonattainment days ([O 3 ] MDA8 >100 μg/m 3 ), and 12% of the population are exposed to [O 3 ] MDA8 >160 μg/m 3 (WHO Interim Target 1) for more than 30 days. As the most populous zones in China, the Beijing-Tianjin Metro, Yangtze River Delta, Pearl River Delta, and Sichuan Basin are predicted to be at 154, 141, 124, and 98 nonattainment days, respectively. Effective controls of O 3 pollution are urgently needed for the highly-populated zones, especially the Beijing-Tianjin Metro with seasonal [O 3 ] MDA8 of 140 ± 29 μg/m 3 in summer. To the best of the authors' knowledge, this study is the first statistical modeling work of ambient O 3 for China at the national level. This timely and extensively validated [O 3 ] MDA8 dataset is valuable for refining epidemiological analyses on O 3 pollution in China. Copyright © 2017 Elsevier Ltd. All rights

  7. An instantaneous spatiotemporal model to predict a bicyclist's Black Carbon exposure based on mobile noise measurements

    Science.gov (United States)

    Dekoninck, Luc; Botteldooren, Dick; Int Panis, Luc

    2013-11-01

    Several studies have shown that a significant amount of daily air pollution exposure, in particular Black Carbon (BC), is inhaled during trips. Assessing this contribution to exposure remains difficult because on the one hand local air pollution maps lack spatio-temporal resolution, at the other hand direct measurement of particulate matter concentration remains expensive. This paper proposes to use in-traffic noise measurements in combination with geographical and meteorological information for predicting BC exposure during commuting trips. Mobile noise measurements are cheaper and easier to perform than mobile air pollution measurements and can easily be used in participatory sensing campaigns. The uniqueness of the proposed model lies in the choice of noise indicators that goes beyond the traditional overall A-weighted noise level used in previous work. Noise and BC exposures are both related to the traffic intensity but also to traffic speed and traffic dynamics. Inspired by theoretical knowledge on the emission of noise and BC, the low frequency engine related noise and the difference between high frequency and low frequency noise that indicates the traffic speed, are introduced in the model. In addition, it is shown that splitting BC in a local and a background component significantly improves the model. The coefficients of the proposed model are extracted from 200 commuter bicycle trips. The predicted average exposure over a single trip correlates with measurements with a Pearson coefficient of 0.78 using only four parameters: the low frequency noise level, wind speed, the difference between high and low frequency noise and a street canyon index expressing local air pollution dispersion properties.

  8. Geostatistical prediction of microbial water quality throughout a stream network using meteorology, land cover, and spatiotemporal autocorrelation.

    Science.gov (United States)

    Holcomb, David Andrew; Messier, Kyle P; Serre, Marc L; Rowny, Jakob G; Stewart, Jill R

    2018-06-11

    Predictive modeling is promising as an inexpensive tool to assess water quality. We developed geostatistical predictive models of microbial water quality that empirically modelled spatiotemporal autocorrelation in measured fecal coliform (FC) bacteria concentrations to improve prediction. We compared five geostatistical models featuring different autocorrelation structures, fit to 676 observations from 19 locations in North Carolina's Jordan Lake watershed using meteorological and land cover predictor variables. Though stream distance metrics (with and without flow-weighting) failed to improve prediction over the Euclidean distance metric, incorporating temporal autocorrelation substantially improved prediction over the space-only models. We predicted FC throughout the stream network daily for one year, designating locations "impaired", "unimpaired", or "unassessed" if the probability of exceeding the state standard was >90%, 10% but <90%, respectively. We could assign impairment status to more of the stream network on days any FC were measured, suggesting frequent sample-based monitoring remains necessary, though implementing spatiotemporal predictive models may reduce the number of concurrent sampling locations required to adequately assess water quality. Together, these results suggest that prioritizing sampling at different times and conditions using geographically sparse monitoring networks is adequate to build robust and informative geostatistical models of water quality impairment.

  9. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing

    Directory of Open Access Journals (Sweden)

    Valentina Ciullo

    2018-05-01

    Full Text Available The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition or onset (temporal condition were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation.Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between

  10. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing.

    Science.gov (United States)

    Ciullo, Valentina; Vecchio, Daniela; Gili, Tommaso; Spalletta, Gianfranco; Piras, Federica

    2018-01-01

    The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition) or onset (temporal condition) were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation. Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between explicit and

  11. A Modified Spatiotemporal Fusion Algorithm Using Phenological Information for Predicting Reflectance of Paddy Rice in Southern China

    Directory of Open Access Journals (Sweden)

    Mengxue Liu

    2018-05-01

    Full Text Available Satellite data for studying surface dynamics in heterogeneous landscapes are missing due to frequent cloud contamination, low temporal resolution, and technological difficulties in developing satellites. A modified spatiotemporal fusion algorithm for predicting the reflectance of paddy rice is presented in this paper. The algorithm uses phenological information extracted from a moderate-resolution imaging spectroradiometer enhanced vegetation index time series to improve the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM. The algorithm is tested with satellite data on Yueyang City, China. The main contribution of the modified algorithm is the selection of similar neighborhood pixels by using phenological information to improve accuracy. Results show that the modified algorithm performs better than ESTARFM in visual inspection and quantitative metrics, especially for paddy rice. This modified algorithm provides not only new ideas for the improvement of spatiotemporal data fusion method, but also technical support for the generation of remote sensing data with high spatial and temporal resolution.

  12. Network Traffic Prediction Based on Deep Belief Network and Spatiotemporal Compressive Sensing in Wireless Mesh Backbone Networks

    Directory of Open Access Journals (Sweden)

    Laisen Nie

    2018-01-01

    Full Text Available Wireless mesh network is prevalent for providing a decentralized access for users and other intelligent devices. Meanwhile, it can be employed as the infrastructure of the last few miles connectivity for various network applications, for example, Internet of Things (IoT and mobile networks. For a wireless mesh backbone network, it has obtained extensive attention because of its large capacity and low cost. Network traffic prediction is important for network planning and routing configurations that are implemented to improve the quality of service for users. This paper proposes a network traffic prediction method based on a deep learning architecture and the Spatiotemporal Compressive Sensing method. The proposed method first adopts discrete wavelet transform to extract the low-pass component of network traffic that describes the long-range dependence of itself. Then, a prediction model is built by learning a deep architecture based on the deep belief network from the extracted low-pass component. Otherwise, for the remaining high-pass component that expresses the gusty and irregular fluctuations of network traffic, the Spatiotemporal Compressive Sensing method is adopted to predict it. Based on the predictors of two components, we can obtain a predictor of network traffic. From the simulation, the proposed prediction method outperforms three existing methods.

  13. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments

    Science.gov (United States)

    Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia

    2017-03-01

    Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent.

  14. The human interactome knowledge base (hint-kb): An integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique

    KAUST Repository

    Theofilatos, Konstantinos A.

    2013-07-12

    Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about experimentally and computationally detected human PPIs as well as their corresponding annotation data. However, these databases contain many false positive interactions, are partial and only a few of them incorporate data from various sources. To overcome these limitations, we have developed HINT-KB (http://biotools.ceid.upatras.gr/hint-kb/), a knowledge base that integrates data from various sources, provides a user-friendly interface for their retrieval, cal-culatesasetoffeaturesofinterest and computesaconfidence score for every candidate protein interaction. This confidence score is essential for filtering the false positive interactions which are present in existing databases, predicting new protein interactions and measuring the frequency of each true protein interaction. For this reason, a novel machine learning hybrid methodology, called (Evolutionary Kalman Mathematical Modelling—EvoKalMaModel), was used to achieve an accurate and interpretable scoring methodology. The experimental results indicated that the proposed scoring scheme outperforms existing computational methods for the prediction of PPIs.

  15. Information flow analysis of interactome networks.

    Directory of Open Access Journals (Sweden)

    Patrycja Vasilyev Missiuro

    2009-04-01

    Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we

  16. Inferring modules from human protein interactome classes

    Directory of Open Access Journals (Sweden)

    Chaurasia Gautam

    2010-07-01

    Full Text Available Abstract Background The integration of protein-protein interaction networks derived from high-throughput screening approaches and complementary sources is a key topic in systems biology. Although integration of protein interaction data is conventionally performed, the effects of this procedure on the result of network analyses has not been examined yet. In particular, in order to optimize the fusion of heterogeneous interaction datasets, it is crucial to consider not only their degree of coverage and accuracy, but also their mutual dependencies and additional salient features. Results We examined this issue based on the analysis of modules detected by network clustering methods applied to both integrated and individual (disaggregated data sources, which we call interactome classes. Due to class diversity, we deal with variable dependencies of data features arising from structural specificities and biases, but also from possible overlaps. Since highly connected regions of the human interactome may point to potential protein complexes, we have focused on the concept of modularity, and elucidated the detection power of module extraction algorithms by independent validations based on GO, MIPS and KEGG. From the combination of protein interactions with gene expressions, a confidence scoring scheme has been proposed before proceeding via GO with further classification in permanent and transient modules. Conclusions Disaggregated interactomes are shown to be informative for inferring modularity, thus contributing to perform an effective integrative analysis. Validation of the extracted modules by multiple annotation allows for the assessment of confidence measures assigned to the modules in a protein pathway context. Notably, the proposed multilayer confidence scheme can be used for network calibration by enabling a transition from unweighted to weighted interactomes based on biological evidence.

  17. Spatiotemporal prediction of fine particulate matter using high resolution satellite images in the southeastern U.S 2003–2011

    Science.gov (United States)

    Lee, Mihye; Kloog, Itai; Chudnovsky, Alexandra; Lyapustin, Alexei; Wang, Yujie; Melly, Steven; Coull, Brent; Koutrakis, Petros; Schwartz, Joel

    2016-01-01

    Numerous studies have demonstrated that fine particulate matter (PM2.5, particles smaller than 2.5 μm in aerodynamic diameter) is associated with adverse health outcomes. The use of ground monitoring stations of PM2.5 to assess personal exposure; however, induces measurement error. Land use regression provides spatially resolved predictions but land use terms do not vary temporally. Meanwhile, the advent of satellite-retrieved aerosol optical depth (AOD) products have made possible to predict the spatial and temporal patterns of PM2.5 exposures. In this paper, we used AOD data with other PM2.5 variables such as meteorological variables, land use regression, and spatial smoothing to predict daily concentrations of PM2.5 at a 1 km2 resolution of the southeastern United States including the seven states of Georgia, North Carolina, South Carolina, Alabama, Tennessee, Mississippi, and Florida for the years from 2003 through 2011. We divided the study area into 3 regions and applied separate mixed-effect models to calibrate AOD using ground PM2.5 measurements and other spatiotemporal predictors. Using 10-fold cross-validation, we obtained out of sample R2 values of 0.77, 0.81, and 0.70 with the square root of the mean squared prediction errors (RMSPE) of 2.89, 2.51, and 2.82 μg/m3 for regions 1, 2, and 3, respectively. The slopes of the relationships between predicted PM2.5 and held out measurements were approximately 1 indicating no bias between the observed and modeled PM2.5 concentrations. Predictions can be used in epidemiological studies investigating the effects of both acute and chronic exposures to PM2.5. Our model results will also extend the existing studies on PM2.5 which have mostly focused on urban areas due to the paucity of monitors in rural areas. PMID:26082149

  18. Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm

    Science.gov (United States)

    Zhan, Yu; Luo, Yuzhou; Deng, Xunfei; Chen, Huajin; Grieneisen, Michael L.; Shen, Xueyou; Zhu, Lizhong; Zhang, Minghua

    2017-04-01

    A high degree of uncertainty associated with the emission inventory for China tends to degrade the performance of chemical transport models in predicting PM2.5 concentrations especially on a daily basis. In this study a novel machine learning algorithm, Geographically-Weighted Gradient Boosting Machine (GW-GBM), was developed by improving GBM through building spatial smoothing kernels to weigh the loss function. This modification addressed the spatial nonstationarity of the relationships between PM2.5 concentrations and predictor variables such as aerosol optical depth (AOD) and meteorological conditions. GW-GBM also overcame the estimation bias of PM2.5 concentrations due to missing AOD retrievals, and thus potentially improved subsequent exposure analyses. GW-GBM showed good performance in predicting daily PM2.5 concentrations (R2 = 0.76, RMSE = 23.0 μg/m3) even with partially missing AOD data, which was better than the original GBM model (R2 = 0.71, RMSE = 25.3 μg/m3). On the basis of the continuous spatiotemporal prediction of PM2.5 concentrations, it was predicted that 95% of the population lived in areas where the estimated annual mean PM2.5 concentration was higher than 35 μg/m3, and 45% of the population was exposed to PM2.5 >75 μg/m3 for over 100 days in 2014. GW-GBM accurately predicted continuous daily PM2.5 concentrations in China for assessing acute human health effects.

  19. Spatiotemporal Context Awareness for Urban Traffic Modeling and Prediction: Sparse Representation Based Variable Selection.

    Directory of Open Access Journals (Sweden)

    Su Yang

    Full Text Available Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1 Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2 The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3 The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks.

  20. Spatiotemporal Context Awareness for Urban Traffic Modeling and Prediction: Sparse Representation Based Variable Selection.

    Science.gov (United States)

    Yang, Su; Shi, Shixiong; Hu, Xiaobing; Wang, Minjie

    2015-01-01

    Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1) Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2) The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3) The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks.

  1. Spatio-temporal patterns and predictions of phytoplankton assemblages in a subtropical river delta system

    DEFF Research Database (Denmark)

    Wang, Chao; Li, Xinhui; Wang, Xiangxiu

    2016-01-01

    Spatial and seasonal sampling within a subtropical river delta system, the Pearl River Delta (China), provided data to determine seasonal phytoplankton patterns and develop prediction models. The high nutrient levels and frequent water exchanges resulted in a phytoplankton community with greatest...

  2. An online spatiotemporal prediction model for dengue fever epidemic in Kaohsiung (Taiwan).

    Science.gov (United States)

    Yu, Hwa-Lung; Angulo, José M; Cheng, Ming-Hung; Wu, Jiaping; Christakos, George

    2014-05-01

    The emergence and re-emergence of disease epidemics is a complex question that may be influenced by diverse factors, including the space-time dynamics of human populations, environmental conditions, and associated uncertainties. This study proposes a stochastic framework to integrate space-time dynamics in the form of a Susceptible-Infected-Recovered (SIR) model, together with uncertain disease observations, into a Bayesian maximum entropy (BME) framework. The resulting model (BME-SIR) can be used to predict space-time disease spread. Specifically, it was applied to obtain a space-time prediction of the dengue fever (DF) epidemic that took place in Kaohsiung City (Taiwan) during 2002. In implementing the model, the SIR parameters were continually updated and information on new cases of infection was incorporated. The results obtained show that the proposed model is rigorous to user-specified initial values of unknown model parameters, that is, transmission and recovery rates. In general, this model provides a good characterization of the spatial diffusion of the DF epidemic, especially in the city districts proximal to the location of the outbreak. Prediction performance may be affected by various factors, such as virus serotypes and human intervention, which can change the space-time dynamics of disease diffusion. The proposed BME-SIR disease prediction model can provide government agencies with a valuable reference for the timely identification, control, and prevention of DF spread in space and time. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Accuracy of spatio-temporal RARX model predictions of water table depths

    NARCIS (Netherlands)

    Knotters, M.; Bierkens, M.F.P.

    2002-01-01

    Time series of water table depths (Ht) are predicted in space using a regionalised autoregressive exogenous variable (RARX) model with precipitation surplus (Pt) as input variable. Because of their physical basis, RARX model parameters can be guessed from auxiliary information such as a digital

  4. Assessing the Defoliation of Pine Forests in a Long Time-Series and Spatiotemporal Prediction of the Defoliation Using Landsat Data

    Directory of Open Access Journals (Sweden)

    Chenghao Zhu

    2018-02-01

    Full Text Available Pine forests (Pinus tabulaeformis have been in danger of defoliation by a caterpillar in the west Liaoning province of China for more than thirty years. This paper aims to assess and predict the degree of damage to pine forests by using remote sensing and ancillary data. Through regression analysis of the pine foliage remaining ratios of field plots with several vegetation indexes of Landsat data, a feasible inversion model was obtained to detect the degree of damage using the Normalized Difference Infrared Index of 5th band (NDII5. After comparing the inversion result of the degree of damage to the pine in 29 years and the historical damage record, quantized results of damage assessment in a long time-series were accurately obtained. Based on the correlation analysis between meteorological variables and the degree of damage from 1984 to 2015, the average degree of damage was predicted in temporal scale. By adding topographic and other variables, a linear prediction model in spatiotemporal scale was constructed. The spatiotemporal model was based on 5015 public pine points for 24 years and reached 0.6169 in the correlation coefficient. This paper provided a feasible and quantitative method in the spatiotemporal prediction of forest pest occurrence by remote sensing.

  5. Mining protein interactomes to improve their reliability and support the advancement of network medicine

    KAUST Repository

    Alanis Lobato, Gregorio

    2015-09-23

    High-throughput detection of protein interactions has had a major impact in our understanding of the intricate molecular machinery underlying the living cell, and has permitted the construction of very large protein interactomes. The protein networks that are currently available are incomplete and a significant percentage of their interactions are false positives. Fortunately, the structural properties observed in good quality social or technological networks are also present in biological systems. This has encouraged the development of tools, to improve the reliability of protein networks and predict new interactions based merely on the topological characteristics of their components. Since diseases are rarely caused by the malfunction of a single protein, having a more complete and reliable interactome is crucial in order to identify groups of inter-related proteins involved in disease etiology. These system components can then be targeted with minimal collateral damage. In this article, an important number of network mining tools is reviewed, together with resources from which reliable protein interactomes can be constructed. In addition to the review, a few representative examples of how molecular and clinical data can be integrated to deepen our understanding of pathogenesis are discussed.

  6. Mining protein interactomes to improve their reliability and support the advancement of network medicine

    Directory of Open Access Journals (Sweden)

    Gregorio eAlanis-Lobato

    2015-09-01

    Full Text Available High-throughput detection of protein interactions has had a major impact in our understanding of the intricate molecular machinery underlying the living cell, and has permitted the construction of very large protein interactomes. The protein networks that are currently available are incomplete and a significant percentage of their interactions are false positives. Fortunately, the structural properties observed in good quality social or technological networks are also present in biological systems. This has encouraged the development of tools, to improve the reliability of protein networks and predict new interactions based merely on the topological characteristics of their components. Since diseases are rarely caused by the malfunction of a single protein, having a more complete and reliable interactome is crucial in order to identify groups of inter-related proteins involved in disease aetiology. These system components can then be targeted with minimal collateral damage. In this article, an important number of network mining tools is reviewed, together with resources from which reliable protein interactomes can be constructed. In addition to the review, a few representative examples of how molecular and clinical data can be integrated to deepen our understanding of pathogenesis are discussed.

  7. Spatiotemporal Prediction of Fine Particulate Matter Using High-Resolution Satellite Images in the Southeastern US 2003-2011

    Science.gov (United States)

    Lee, Mihye; Kloog, Itai; Chudnovsky, Alexandra; Lyapustin, Alexei; Wang, Yujie; Melly, Steven; Coull, Brent; Koutrakis, Petros; Schwartz, Joel

    2016-01-01

    Numerous studies have demonstrated that fine particulate matter (PM(sub 2.5), particles smaller than 2.5 micrometers in aerodynamic diameter) is associated with adverse health outcomes. The use of ground monitoring stations of PM(sub 2.5) to assess personal exposure, however, induces measurement error. Land-use regression provides spatially resolved predictions but land-use terms do not vary temporally. Meanwhile, the advent of satellite-retrieved aerosol optical depth (AOD) products have made possible to predict the spatial and temporal patterns of PM(sub 2.5) exposures. In this paper, we used AOD data with other PM(sub 2.5) variables, such as meteorological variables, land-use regression, and spatial smoothing to predict daily concentrations of PM(sub 2.5) at a 1 sq km resolution of the Southeastern United States including the seven states of Georgia, North Carolina, South Carolina, Alabama, Tennessee, Mississippi, and Florida for the years from 2003 to 2011. We divided the study area into three regions and applied separate mixed-effect models to calibrate AOD using ground PM(sub 2.5) measurements and other spatiotemporal predictors. Using 10-fold cross-validation, we obtained out of sample R2 values of 0.77, 0.81, and 0.70 with the square root of the mean squared prediction errors of 2.89, 2.51, and 2.82 cu micrograms for regions 1, 2, and 3, respectively. The slopes of the relationships between predicted PM2.5 and held out measurements were approximately 1 indicating no bias between the observed and modeled PM(sub 2.5) concentrations. Predictions can be used in epidemiological studies investigating the effects of both acute and chronic exposures to PM(sub 2.5). Our model results will also extend the existing studies on PM(sub 2.5) which have mostly focused on urban areas because of the paucity of monitors in rural areas.

  8. Spatiotemporal variability and predictability of Normalized Difference Vegetation Index (NDVI) in Alberta, Canada.

    Science.gov (United States)

    Jiang, Rengui; Xie, Jiancang; He, Hailong; Kuo, Chun-Chao; Zhu, Jiwei; Yang, Mingxiang

    2016-09-01

    As one of the most popular vegetation indices to monitor terrestrial vegetation productivity, Normalized Difference Vegetation Index (NDVI) has been widely used to study the plant growth and vegetation productivity around the world, especially the dynamic response of vegetation to climate change in terms of precipitation and temperature. Alberta is the most important agricultural and forestry province and with the best climatic observation systems in Canada. However, few studies pertaining to climate change and vegetation productivity are found. The objectives of this paper therefore were to better understand impacts of climate change on vegetation productivity in Alberta using the NDVI and provide reference for policy makers and stakeholders. We investigated the following: (1) the variations of Alberta's smoothed NDVI (sNDVI, eliminated noise compared to NDVI) and two climatic variables (precipitation and temperature) using non-parametric Mann-Kendall monotonic test and Thiel-Sen's slope; (2) the relationships between sNDVI and climatic variables, and the potential predictability of sNDVI using climatic variables as predictors based on two predicted models; and (3) the use of a linear regression model and an artificial neural network calibrated by the genetic algorithm (ANN-GA) to estimate Alberta's sNDVI using precipitation and temperature as predictors. The results showed that (1) the monthly sNDVI has increased during the past 30 years and a lengthened growing season was detected; (2) vegetation productivity in northern Alberta was mainly temperature driven and the vegetation in southern Alberta was predominantly precipitation driven for the period of 1982-2011; and (3) better performances of the sNDVI-climate relationships were obtained by nonlinear model (ANN-GA) than using linear (regression) model. Similar results detected in both monthly and summer sNDVI prediction using climatic variables as predictors revealed the applicability of two models for

  9. 5D Modelling: An Efficient Approach for Creating Spatiotemporal Predictive 3D Maps of Large-Scale Cultural Resources

    Science.gov (United States)

    Doulamis, A.; Doulamis, N.; Ioannidis, C.; Chrysouli, C.; Grammalidis, N.; Dimitropoulos, K.; Potsiou, C.; Stathopoulou, E.-K.; Ioannides, M.

    2015-08-01

    Outdoor large-scale cultural sites are mostly sensitive to environmental, natural and human made factors, implying an imminent need for a spatio-temporal assessment to identify regions of potential cultural interest (material degradation, structuring, conservation). On the other hand, in Cultural Heritage research quite different actors are involved (archaeologists, curators, conservators, simple users) each of diverse needs. All these statements advocate that a 5D modelling (3D geometry plus time plus levels of details) is ideally required for preservation and assessment of outdoor large scale cultural sites, which is currently implemented as a simple aggregation of 3D digital models at different time and levels of details. The main bottleneck of such an approach is its complexity, making 5D modelling impossible to be validated in real life conditions. In this paper, a cost effective and affordable framework for 5D modelling is proposed based on a spatial-temporal dependent aggregation of 3D digital models, by incorporating a predictive assessment procedure to indicate which regions (surfaces) of an object should be reconstructed at higher levels of details at next time instances and which at lower ones. In this way, dynamic change history maps are created, indicating spatial probabilities of regions needed further 3D modelling at forthcoming instances. Using these maps, predictive assessment can be made, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 5D Digital Cultural Heritage Model (5D-DCHM) is implemented using open interoperable standards based on the CityGML framework, which also allows the description of additional semantic metadata information. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 5D-DCHM geometry and the respective semantic information. The open source 3DCity

  10. Spatiotemporal neural characterization of prediction error valence and surprise during reward learning in humans.

    Science.gov (United States)

    Fouragnan, Elsa; Queirazza, Filippo; Retzler, Chris; Mullinger, Karen J; Philiastides, Marios G

    2017-07-06

    Reward learning depends on accurate reward associations with potential choices. These associations can be attained with reinforcement learning mechanisms using a reward prediction error (RPE) signal (the difference between actual and expected rewards) for updating future reward expectations. Despite an extensive body of literature on the influence of RPE on learning, little has been done to investigate the potentially separate contributions of RPE valence (positive or negative) and surprise (absolute degree of deviation from expectations). Here, we coupled single-trial electroencephalography with simultaneously acquired fMRI, during a probabilistic reversal-learning task, to offer evidence of temporally overlapping but largely distinct spatial representations of RPE valence and surprise. Electrophysiological variability in RPE valence correlated with activity in regions of the human reward network promoting approach or avoidance learning. Electrophysiological variability in RPE surprise correlated primarily with activity in regions of the human attentional network controlling the speed of learning. Crucially, despite the largely separate spatial extend of these representations our EEG-informed fMRI approach uniquely revealed a linear superposition of the two RPE components in a smaller network encompassing visuo-mnemonic and reward areas. Activity in this network was further predictive of stimulus value updating indicating a comparable contribution of both signals to reward learning.

  11. Unraveling the Plant-Soil Interactome

    Science.gov (United States)

    Lipton, M. S.; Hixson, K.; Ahkami, A. H.; HaHandkumbura, P. P.; Hess, N. J.; Fang, Y.; Fortin, D.; Stanfill, B.; Yabusaki, S.; Engbrecht, K. M.; Baker, E.; Renslow, R.; Jansson, C.

    2017-12-01

    Plant photosynthesis is the primary conduit of carbon fixation from the atmosphere to the terrestrial ecosystem. While more is known about plant physiology and biochemistry, the interplay between genetic and environmental factors that govern partitioning of carbon to above- and below ground plant biomass, to microbes, to the soil, and respired to the atmosphere is not well understood holistically. To address this knowledge gap there is a need to define, study, comprehend, and model the plant ecosystem as an integrated system of integrated biotic and abiotic processes and feedbacks. Local rhizosphere conditions are an important control on plant performance but are in turn affected by plant uptake and rhizodeposition processes. C3 and C4 plants have different CO2 fixation strategies and likely have differential metabolic profiles resulting in different carbon sources exuding to the rhizosphere. In this presentation, we report on an integrated capability to better understand plant-soil interactions, including modeling tools that address the spatiotemporal hydrobiogeochemistry in the rhizosphere. Comparing Brachypodium distachyon, (Brachypodium) as our C3 representative and Setaria viridis (Setaria) as our C4 representative, we designed, highly controlled single-plant experimental ecosystems based these model grasses to enable quantitative prediction of ecosystem traits and responses as a function of plant genotype and environmental variables. A metabolomics survey of 30 Brachypodium genotypes grown under control and drought conditions revealed specific metabolites that correlated with biomass production and drought tolerance. A comparison of Brachypodium and Setaria grown with control and a future predicted elevated CO2 level revealed changes in biomass accumulation and metabolite profiles between the C3 and C4 species in both leaves and roots. Finally, we are building an mechanistic modeling capability that will contribute to a better basis for modeling plant water

  12. Predicting breeding habitat for amphibians: a spatiotemporal analysis across Yellowstone National Park.

    Science.gov (United States)

    Bartelt, Paul E; Gallant, Alisa L; Klaver, Robert W; Wright, Chris K; Patla, Debra A; Peterson, Charles R

    2011-10-01

    The ability to predict amphibian breeding across landscapes is important for informing land management decisions and helping biologists better understand and remediate factors contributing to declines in amphibian populations. We built geospatial models of likely breeding habitats for each of four amphibian species that breed in Yellowstone National Park (YNP). We used field data collected in 2000-2002 from 497 sites among 16 basins and predictor variables from geospatial models produced from remotely sensed data (e.g., digital elevation model, complex topographic index, landform data, wetland probability, and vegetative cover). Except for 31 sites in one basin that were surveyed in both 2000 and 2002, all sites were surveyed once. We used polytomous regression to build statistical models for each species of amphibian from (1) field survey site data only, (2) field data combined with data from geospatial models, and (3) data from geospatial models only. Based on measures of receiver operating characteristic (ROC) scores, models of the second type best explained likely breeding habitat because they contained the most information (ROC values ranged from 0.70 to 0.88). However, models of the third type could be applied to the entire YNP landscape and produced maps that could be verified with reserve field data. Accuracy rates for models built for single years were highly variable, ranging from 0.30 to 0.78. Accuracy rates for models built with data combined from multiple years were higher and less variable, ranging from 0.60 to 0.80. Combining results from the geospatial multiyear models yielded maps of "core" breeding areas (areas with high probability values for all three years) surrounded by areas that scored high for only one or two years, providing an estimate of variability among years. Such information can highlight landscape options for amphibian conservation. For example, our models identify alternative areas that could be protected for each species

  13. A Unified Spatiotemporal Modeling Approach for Predicting Concentrations of Multiple Air Pollutants in the Multi-Ethnic Study of Atherosclerosis and Air Pollution

    Science.gov (United States)

    Olives, Casey; Kim, Sun-Young; Sheppard, Lianne; Sampson, Paul D.; Szpiro, Adam A.; Oron, Assaf P.; Lindström, Johan; Vedal, Sverre; Kaufman, Joel D.

    2014-01-01

    Background: Cohort studies of the relationship between air pollution exposure and chronic health effects require predictions of exposure over long periods of time. Objectives: We developed a unified modeling approach for predicting fine particulate matter, nitrogen dioxide, oxides of nitrogen, and black carbon (as measured by light absorption coefficient) in six U.S. metropolitan regions from 1999 through early 2012 as part of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Methods: We obtained monitoring data from regulatory networks and supplemented those data with study-specific measurements collected from MESA Air community locations and participants’ homes. In each region, we applied a spatiotemporal model that included a long-term spatial mean, time trends with spatially varying coefficients, and a spatiotemporal residual. The mean structure was derived from a large set of geographic covariates that was reduced using partial least-squares regression. We estimated time trends from observed time series and used spatial smoothing methods to borrow strength between observations. Results: Prediction accuracy was high for most models, with cross-validation R2 (R2CV) > 0.80 at regulatory and fixed sites for most regions and pollutants. At home sites, overall R2CV ranged from 0.45 to 0.92, and temporally adjusted R2CV ranged from 0.23 to 0.92. Conclusions: This novel spatiotemporal modeling approach provides accurate fine-scale predictions in multiple regions for four pollutants. We have generated participant-specific predictions for MESA Air to investigate health effects of long-term air pollution exposures. These successes highlight modeling advances that can be adopted more widely in modern cohort studies. Citation: Keller JP, Olives C, Kim SY, Sheppard L, Sampson PD, Szpiro AA, Oron AP, Lindström J, Vedal S, Kaufman JD. 2015. A unified spatiotemporal modeling approach for predicting concentrations of multiple air pollutants in the Multi

  14. The Topology of the Growing Human Interactome Data

    Directory of Open Access Journals (Sweden)

    Janjić Vuk

    2014-06-01

    Full Text Available We have long moved past the one-gene-one-function concept originally proposed by Beadle and Tatum back in 1941; but the full understanding of genotype-phenotype relations still largely relies on the analysis of static, snapshot-like, interaction data sets. Here, we look at what global patterns can be uncovered if we simply trace back the human interactome network over the last decade of protein-protein interaction (PPI screening. We take a purely topological approach and find that as the human interactome is getting denser, it is not only gaining in structure (in terms of now being better fit by structured network models than before, but also there are patterns in the way in which it is growing: (a newly added proteins tend to get linked to existing proteins in the interactome that are not know to interact; and (b new proteins tend to link to already well connected proteins. Moreover, the alignment between human and yeast interactomes spanning over 40% of yeast’s proteins - that are involved in regulation of transcription, RNA splicing and other cellcycle- related processes-suggests the existence of a part of the interactome which remains topologically and functionally unaffected through evolution. Furthermore, we find a small sub-network, specific to the “core” of the human interactome and involved in regulation of transcription and cancer development, whose wiring has not changed within the human interactome over the last 10 years of interacome data acquisition. Finally, we introduce a generalisation of the clustering coefficient of a network as a new measure called the cycle coefficient, and use it to show that PPI networks of human and model organisms are wired in a tight way which forbids the occurrence large cycles.

  15. Spatiotemporal Data Mining: A Computational Perspective

    Directory of Open Access Journals (Sweden)

    Shashi Shekhar

    2015-10-01

    Full Text Available Explosive growth in geospatial and temporal data as well as the emergence of new technologies emphasize the need for automated discovery of spatiotemporal knowledge. Spatiotemporal data mining studies the process of discovering interesting and previously unknown, but potentially useful patterns from large spatiotemporal databases. It has broad application domains including ecology and environmental management, public safety, transportation, earth science, epidemiology, and climatology. The complexity of spatiotemporal data and intrinsic relationships limits the usefulness of conventional data science techniques for extracting spatiotemporal patterns. In this survey, we review recent computational techniques and tools in spatiotemporal data mining, focusing on several major pattern families: spatiotemporal outlier, spatiotemporal coupling and tele-coupling, spatiotemporal prediction, spatiotemporal partitioning and summarization, spatiotemporal hotspots, and change detection. Compared with other surveys in the literature, this paper emphasizes the statistical foundations of spatiotemporal data mining and provides comprehensive coverage of computational approaches for various pattern families. ISPRS Int. J. Geo-Inf. 2015, 4 2307 We also list popular software tools for spatiotemporal data analysis. The survey concludes with a look at future research needs.

  16. Quantum Interactomics and Cancer Molecular Mechanisms: I. Report Outline

    CERN Document Server

    Baianu, I C

    2004-01-01

    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quant...

  17. "Fuzziness" in the celular interactome: a historical perspective.

    Science.gov (United States)

    Welch, G Rickey

    2012-01-01

    Some historical background is given for appreciating the impact of the empirical construct known as the cellular protein-protein interactome, which is a seemingly de novo entity that has arisen of late within the context of postgenomic systems biology. The approach here builds on a generalized principle of "fuzziness" in protein behavior, proposed by Tompa and Fuxreiter.(1) Recent controversies in the analysis and interpretation of the interactome studies are rationalized historically under the auspices of this concept. There is an extensive literature on protein-protein interactions, dating to the mid-1900s, which may help clarify the "fuzziness" in the interactome picture and, also, provide a basis for understanding the physiological importance of protein-protein interactions in vivo.

  18. A critical and Integrated View of the Yeast Interactome

    Directory of Open Access Journals (Sweden)

    Stephen G. Oliver

    2006-04-01

    Full Text Available Global studies of protein–protein interactions are crucial to both elucidating gene function and producing an integrated view of the workings of living cells. High-throughput studies of the yeast interactome have been performed using both genetic and biochemical screens. Despite their size, the overlap between these experimental datasets is very limited. This could be due to each approach sampling only a small fraction of the total interactome. Alternatively, a large proportion of the data from these screens may represent false-positive interactions. We have used the Genome Information Management System (GIMS to integrate interactome datasets with transcriptome and protein annotation data and have found significant evidence that the proportion of false-positive results is high. Not all high-throughput datasets are similarly contaminated, and the tandem affinity purification (TAP approach appears to yield a high proportion of reliable interactions for which corroborating evidence is available. From our integrative analyses, we have generated a set of verified interactome data for yeast.

  19. Dynamic zebrafish interactome reveals transcriptional mechanisms of dioxin toxicity.

    Directory of Open Access Journals (Sweden)

    Andrey Alexeyenko

    2010-05-01

    Full Text Available In order to generate hypotheses regarding the mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin causes toxicity, we analyzed global gene expression changes in developing zebrafish embryos exposed to this potent toxicant in the context of a dynamic gene network. For this purpose, we also computationally inferred a zebrafish (Danio rerio interactome based on orthologs and interaction data from other eukaryotes.Using novel computational tools to analyze this interactome, we distinguished between dioxin-dependent and dioxin-independent interactions between proteins, and tracked the temporal propagation of dioxin-dependent transcriptional changes from a few genes that were altered initially, to large groups of biologically coherent genes at later times. The most notable processes altered at later developmental stages were calcium and iron metabolism, embryonic morphogenesis including neuronal and retinal development, a variety of mitochondria-related functions, and generalized stress response (not including induction of antioxidant genes. Within the interactome, many of these responses were connected to cytochrome P4501A (cyp1a as well as other genes that were dioxin-regulated one day after exposure. This suggests that cyp1a may play a key role initiating the toxic dysregulation of those processes, rather than serving simply as a passive marker of dioxin exposure, as suggested by earlier research.Thus, a powerful microarray experiment coupled with a flexible interactome and multi-pronged interactome tools (which are now made publicly available for microarray analysis and related work suggest the hypothesis that dioxin, best known in fish as a potent cardioteratogen, has many other targets. Many of these types of toxicity have been observed in mammalian species and are potentially caused by alterations to cyp1a.

  20. Crowd Sourcing a New Paradigm for Interactome Driven Drug Target Identification in Mycobacterium tuberculosis

    Science.gov (United States)

    Rohira, Harsha; Bhat, Ashwini G.; Passi, Anurag; Mukherjee, Keya; Choudhary, Kumari Sonal; Kumar, Vikas; Arora, Anshula; Munusamy, Prabhakaran; Subramanian, Ahalyaa; Venkatachalam, Aparna; S, Gayathri; Raj, Sweety; Chitra, Vijaya; Verma, Kaveri; Zaheer, Salman; J, Balaganesh; Gurusamy, Malarvizhi; Razeeth, Mohammed; Raja, Ilamathi; Thandapani, Madhumohan; Mevada, Vishal; Soni, Raviraj; Rana, Shruti; Ramanna, Girish Muthagadhalli; Raghavan, Swetha; Subramanya, Sunil N.; Kholia, Trupti; Patel, Rajesh; Bhavnani, Varsha; Chiranjeevi, Lakavath; Sengupta, Soumi; Singh, Pankaj Kumar; Atray, Naresh; Gandhi, Swati; Avasthi, Tiruvayipati Suma; Nisthar, Shefin; Anurag, Meenakshi; Sharma, Pratibha; Hasija, Yasha; Dash, Debasis; Sharma, Arun; Scaria, Vinod; Thomas, Zakir; Chandra, Nagasuma; Brahmachari, Samir K.; Bhardwaj, Anshu

    2012-01-01

    A decade since the availability of Mycobacterium tuberculosis (Mtb) genome sequence, no promising drug has seen the light of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we synergized crowd sourcing and social networking methods through an initiative ‘Connect to Decode’ (C2D) to generate the first and largest manually curated interactome of Mtb termed ‘interactome pathway’ (IPW), encompassing a total of 1434 proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction, metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins, which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to our unique approach. PMID:22808064

  1. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis.

    Science.gov (United States)

    Klopffleisch, Karsten; Phan, Nguyen; Augustin, Kelsey; Bayne, Robert S; Booker, Katherine S; Botella, Jose R; Carpita, Nicholas C; Carr, Tyrell; Chen, Jin-Gui; Cooke, Thomas Ryan; Frick-Cheng, Arwen; Friedman, Erin J; Fulk, Brandon; Hahn, Michael G; Jiang, Kun; Jorda, Lucia; Kruppe, Lydia; Liu, Chenggang; Lorek, Justine; McCann, Maureen C; Molina, Antonio; Moriyama, Etsuko N; Mukhtar, M Shahid; Mudgil, Yashwanti; Pattathil, Sivakumar; Schwarz, John; Seta, Steven; Tan, Matthew; Temp, Ulrike; Trusov, Yuri; Urano, Daisuke; Welter, Bastian; Yang, Jing; Panstruga, Ralph; Uhrig, Joachim F; Jones, Alan M

    2011-09-27

    The heterotrimeric G-protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.

  2. Crowd sourcing a new paradigm for interactome driven drug target identification in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Rohit Vashisht

    Full Text Available A decade since the availability of Mycobacterium tuberculosis (Mtb genome sequence, no promising drug has seen the light of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we synergized crowd sourcing and social networking methods through an initiative 'Connect to Decode' (C2D to generate the first and largest manually curated interactome of Mtb termed 'interactome pathway' (IPW, encompassing a total of 1434 proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction, metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins, which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to our unique approach.

  3. Functional interactome of Aquaporin 1 sub-family reveals new physiological functions in Arabidopsis Thaliana

    Directory of Open Access Journals (Sweden)

    Mohamed Ragab Abdel Gawwad

    2013-09-01

    Full Text Available Aquaporins are channel proteins found in plasma membranes and intercellular membranes of different cellular compartments, facilitate the water flux, solutes and gases across the cellular plasma membranes. The present study highlights the sub-family plasma membrane intrinsic protein (PIP predicting the 3-D structure and analyzing the functional interactome of it homologs. PIP1 homologs integrate with many proteins with different plant physiological roles in Arabidopsis thaliana including; PIP1A and PIP1B: facilitate the transport of water, diffusion of amino acids and/or peptides from the vacuolar compartment to the cytoplasm, play a role in the control of cell turgor and cell expansion and involved in root water uptake respectively. In addition we found that PIP1B plays a defensive role against Pseudomonas syringae infection through the interaction with the plasma membrane Rps2 protein. Another substantial function of PIP1C via the interaction with PIP2E is the response to nematode infection. Generally, PIP1 sub-family interactome controlling many physiological processes in plant cell like; osmoregulation in plants under high osmotic stress such as under a high salt, response to nematode, facilitate the transport of water across cell membrane and regulation of floral initiation in Arabidopsis thaliana.

  4. Improved microarray-based decision support with graph encoded interactome data.

    Directory of Open Access Journals (Sweden)

    Anneleen Daemen

    Full Text Available In the past, microarray studies have been criticized due to noise and the limited overlap between gene signatures. Prior biological knowledge should therefore be incorporated as side information in models based on gene expression data to improve the accuracy of diagnosis and prognosis in cancer. As prior knowledge, we investigated interaction and pathway information from the human interactome on different aspects of biological systems. By exploiting the properties of kernel methods, relations between genes with similar functions but active in alternative pathways could be incorporated in a support vector machine classifier based on spectral graph theory. Using 10 microarray data sets, we first reduced the number of data sources relevant for multiple cancer types and outcomes. Three sources on metabolic pathway information (KEGG, protein-protein interactions (OPHID and miRNA-gene targeting (microRNA.org outperformed the other sources with regard to the considered class of models. Both fixed and adaptive approaches were subsequently considered to combine the three corresponding classifiers. Averaging the predictions of these classifiers performed best and was significantly better than the model based on microarray data only. These results were confirmed on 6 validation microarray sets, with a significantly improved performance in 4 of them. Integrating interactome data thus improves classification of cancer outcome for the investigated microarray technologies and cancer types. Moreover, this strategy can be incorporated in any kernel method or non-linear version of a non-kernel method.

  5. Enhanced Prediction of Src Homology 2 (SH2) Domain Binding Potentials Using a Fluorescence Polarization-derived c-Met, c-Kit, ErbB, and Androgen Receptor Interactome*

    Science.gov (United States)

    Leung, Kin K.; Hause, Ronald J.; Barkinge, John L.; Ciaccio, Mark F.; Chuu, Chih-Pin; Jones, Richard B.

    2014-01-01

    Many human diseases are associated with aberrant regulation of phosphoprotein signaling networks. Src homology 2 (SH2) domains represent the major class of protein domains in metazoans that interact with proteins phosphorylated on the amino acid residue tyrosine. Although current SH2 domain prediction algorithms perform well at predicting the sequences of phosphorylated peptides that are likely to result in the highest possible interaction affinity in the context of random peptide library screens, these algorithms do poorly at predicting the interaction potential of SH2 domains with physiologically derived protein sequences. We employed a high throughput interaction assay system to empirically determine the affinity between 93 human SH2 domains and phosphopeptides abstracted from several receptor tyrosine kinases and signaling proteins. The resulting interaction experiments revealed over 1000 novel peptide-protein interactions and provided a glimpse into the common and specific interaction potentials of c-Met, c-Kit, GAB1, and the human androgen receptor. We used these data to build a permutation-based logistic regression classifier that performed considerably better than existing algorithms for predicting the interaction potential of several SH2 domains. PMID:24728074

  6. Spatiotemporal optical solitons

    International Nuclear Information System (INIS)

    Malomed, Boris A; Mihalache, Dumitru; Wise, Frank; Torner, Lluis

    2005-01-01

    In the course of the past several years, a new level of understanding has been achieved about conditions for the existence, stability, and generation of spatiotemporal optical solitons, which are nondiffracting and nondispersing wavepackets propagating in nonlinear optical media. Experimentally, effectively two-dimensional (2D) spatiotemporal solitons that overcome diffraction in one transverse spatial dimension have been created in quadratic nonlinear media. With regard to the theory, fundamentally new features of light pulses that self-trap in one or two transverse spatial dimensions and do not spread out in time, when propagating in various optical media, were thoroughly investigated in models with various nonlinearities. Stable vorticity-carrying spatiotemporal solitons have been predicted too, in media with competing nonlinearities (quadratic-cubic or cubic-quintic). This article offers an up-to-date survey of experimental and theoretical results in this field. Both achievements and outstanding difficulties are reviewed, and open problems are highlighted. Also briefly described are recent predictions for stable 2D and 3D solitons in Bose-Einstein condensates supported by full or low-dimensional optical lattices. (review article)

  7. Assessing the Influence of Spatio-Temporal Context for Next Place Prediction using Different Machine Learning Approaches

    Directory of Open Access Journals (Sweden)

    Jorim Urner

    2018-04-01

    Full Text Available For next place prediction, machine learning methods which incorporate contextual data are frequently used. However, previous studies often do not allow deriving generalizable methodological recommendations, since they use different datasets, methods for discretizing space, scales of prediction, prediction algorithms, and context data, and therefore lack comparability. Additionally, the cold start problem for new users is an issue. In this study, we predict next places based on one trajectory dataset but with systematically varying prediction algorithms, methods for space discretization, scales of prediction (based on a novel hierarchical approach, and incorporated context data. This allows to evaluate the relative influence of these factors on the overall prediction accuracy. Moreover, in order to tackle the cold start problem prevalent in recommender and prediction systems, we test the effect of training the predictor on all users instead of each individual one. We find that the prediction accuracy shows a varying dependency on the method of space discretization and the incorporated contextual factors at different spatial scales. Moreover, our user-independent approach reaches a prediction accuracy of around 75%, and is therefore an alternative to existing user-specific models. This research provides valuable insights into the individual and combinatory effects of model parameters and algorithms on the next place prediction accuracy. The results presented in this paper can be used to determine the influence of various contextual factors and to help researchers building more accurate prediction models. It is also a starting point for future work creating a comprehensive framework to guide the building of prediction models.

  8. Mapping the Small Molecule Interactome by Mass Spectrometry.

    Science.gov (United States)

    Flaxman, Hope A; Woo, Christina M

    2018-01-16

    Mapping small molecule interactions throughout the proteome provides the critical structural basis for functional analysis of their impact on biochemistry. However, translation of mass spectrometry-based proteomics methods to directly profile the interaction between a small molecule and the whole proteome is challenging because of the substoichiometric nature of many interactions, the diversity of covalent and noncovalent interactions involved, and the subsequent computational complexity associated with their spectral assignment. Recent advances in chemical proteomics have begun fill this gap to provide a structural basis for the breadth of small molecule-protein interactions in the whole proteome. Innovations enabling direct characterization of the small molecule interactome include faster, more sensitive instrumentation coupled to chemical conjugation, enrichment, and labeling methods that facilitate detection and assignment. These methods have started to measure molecular interaction hotspots due to inherent differences in local amino acid reactivity and binding affinity throughout the proteome. Measurement of the small molecule interactome is producing structural insights and methods for probing and engineering protein biochemistry. Direct structural characterization of the small molecule interactome is a rapidly emerging area pushing new frontiers in biochemistry at the interface of small molecules and the proteome.

  9. A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties

    Directory of Open Access Journals (Sweden)

    Sergio Solinas

    2010-05-01

    Full Text Available The way the cerebellar granular layer transforms incoming mossy fiber signals into new spike patterns to be related to Purkinje cells is not yet clear. Here, a realistic computational model of the granular layer was developed and used to address four main functional hypotheses: center-surround organization, time-windowing, high-pass filtering in responses to spike bursts and coherent oscillations in response to diffuse random activity. The model network was activated using patterns inspired by those recorded in vivo. Burst stimulation of a small mossy fiber bundle resulted in granule cell bursts delimited in time (time windowing and space (center-surround by network inhibition. This burst-burst transmission showed marked frequency-dependence configuring a high-pass filter with cut-off frequency around 100 Hz. The contrast between center and surround properties was regulated by the excitatory-inhibitory balance. The stronger excitation made the center more responsive to 10-50 Hz input frequencies and enhanced the granule cell output (with spike occurring earlier and with higher frequency and number compared to the surround. Finally, over a certain level of mossy fiber background activity, the circuit generated coherent oscillations in the theta-frequency band. All these processes were fine-tuned by NMDA and GABA-A receptor activation and neurotransmitter vesicle cycling in the cerebellar glomeruli. This model shows that available knowledge on cellular mechanisms is sufficient to unify the main functional hypotheses on the cerebellum granular layer and suggests that this network can behave as an adaptable spatio-temporal filter coordinated by theta-frequency oscillations.

  10. SESAM – a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages

    DEFF Research Database (Denmark)

    Guisan, Antoine; Rahbek, Carsten

    2011-01-01

    Two different approaches currently prevail for predicting spatial patterns of species assemblages. The first approach (macroecological modelling, MEM) focuses directly on realized properties of species assemblages, whereas the second approach (stacked species distribution modelling, S-SDM) starts...

  11. Interactome of the hepatitis C virus: Literature mining with ANDSystem.

    Science.gov (United States)

    Saik, Olga V; Ivanisenko, Timofey V; Demenkov, Pavel S; Ivanisenko, Vladimir A

    2016-06-15

    A study of the molecular genetics mechanisms of host-pathogen interactions is of paramount importance in developing drugs against viral diseases. Currently, the literature contains a huge amount of information that describes interactions between HCV and human proteins. In addition, there are many factual databases that contain experimentally verified data on HCV-host interactions. The sources of such data are the original data along with the data manually extracted from the literature. However, the manual analysis of scientific publications is time consuming and, because of this, databases created with such an approach often do not have complete information. One of the most promising methods to provide actualisation and completeness of information is text mining. Here, with the use of a previously developed method by the authors using ANDSystem, an automated extraction of information on the interactions between HCV and human proteins was conducted. As a data source for the text mining approach, PubMed abstracts and full text articles were used. Additionally, external factual databases were analyzed. On the basis of this analysis, a special version of ANDSystem, extended with the HCV interactome, was created. The HCV interactome contains information about the interactions between 969 human and 11 HCV proteins. Among the 969 proteins, 153 'new' proteins were found not previously referred to in any external databases of protein-protein interactions for HCV-host interactions. Thus, the extended ANDSystem possesses a more comprehensive detailing of HCV-host interactions versus other existing databases. It was interesting that HCV proteins more preferably interact with human proteins that were already involved in a large number of protein-protein interactions as well as those associated with many diseases. Among human proteins of the HCV interactome, there were a large number of proteins regulated by microRNAs. It turned out that the results obtained for protein

  12. Identification of human disease genes from interactome network using graphlet interaction.

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Wang

    Full Text Available Identifying genes related to human diseases, such as cancer and cardiovascular disease, etc., is an important task in biomedical research because of its applications in disease diagnosis and treatment. Interactome networks, especially protein-protein interaction networks, had been used to disease genes identification based on the hypothesis that strong candidate genes tend to closely relate to each other in some kinds of measure on the network. We proposed a new measure to analyze the relationship between network nodes which was called graphlet interaction. The graphlet interaction contained 28 different isomers. The results showed that the numbers of the graphlet interaction isomers between disease genes in interactome networks were significantly larger than random picked genes, while graphlet signatures were not. Then, we designed a new type of score, based on the network properties, to identify disease genes using graphlet interaction. The genes with higher scores were more likely to be disease genes, and all candidate genes were ranked according to their scores. Then the approach was evaluated by leave-one-out cross-validation. The precision of the current approach achieved 90% at about 10% recall, which was apparently higher than the previous three predominant algorithms, random walk, Endeavour and neighborhood based method. Finally, the approach was applied to predict new disease genes related to 4 common diseases, most of which were identified by other independent experimental researches. In conclusion, we demonstrate that the graphlet interaction is an effective tool to analyze the network properties of disease genes, and the scores calculated by graphlet interaction is more precise in identifying disease genes.

  13. Identification of Human Disease Genes from Interactome Network Using Graphlet Interaction

    Science.gov (United States)

    Yang, Lun; Wei, Dong-Qing; Qi, Ying-Xin; Jiang, Zong-Lai

    2014-01-01

    Identifying genes related to human diseases, such as cancer and cardiovascular disease, etc., is an important task in biomedical research because of its applications in disease diagnosis and treatment. Interactome networks, especially protein-protein interaction networks, had been used to disease genes identification based on the hypothesis that strong candidate genes tend to closely relate to each other in some kinds of measure on the network. We proposed a new measure to analyze the relationship between network nodes which was called graphlet interaction. The graphlet interaction contained 28 different isomers. The results showed that the numbers of the graphlet interaction isomers between disease genes in interactome networks were significantly larger than random picked genes, while graphlet signatures were not. Then, we designed a new type of score, based on the network properties, to identify disease genes using graphlet interaction. The genes with higher scores were more likely to be disease genes, and all candidate genes were ranked according to their scores. Then the approach was evaluated by leave-one-out cross-validation. The precision of the current approach achieved 90% at about 10% recall, which was apparently higher than the previous three predominant algorithms, random walk, Endeavour and neighborhood based method. Finally, the approach was applied to predict new disease genes related to 4 common diseases, most of which were identified by other independent experimental researches. In conclusion, we demonstrate that the graphlet interaction is an effective tool to analyze the network properties of disease genes, and the scores calculated by graphlet interaction is more precise in identifying disease genes. PMID:24465923

  14. Comparison of spatiotemporal prediction models of daily exposure of individuals to ambient nitrogen dioxide and ozone in Montreal, Canada.

    Science.gov (United States)

    Buteau, Stephane; Hatzopoulou, Marianne; Crouse, Dan L; Smargiassi, Audrey; Burnett, Richard T; Logan, Travis; Cavellin, Laure Deville; Goldberg, Mark S

    2017-07-01

    In previous studies investigating the short-term health effects of ambient air pollution the exposure metric that is often used is the daily average across monitors, thus assuming that all individuals have the same daily exposure. Studies that incorporate space-time exposures of individuals are essential to further our understanding of the short-term health effects of ambient air pollution. As part of a longitudinal cohort study of the acute effects of air pollution that incorporated subject-specific information and medical histories of subjects throughout the follow-up, the purpose of this study was to develop and compare different prediction models using data from fixed-site monitors and other monitoring campaigns to estimate daily, spatially-resolved concentrations of ozone (O 3 ) and nitrogen dioxide (NO 2 ) of participants' residences in Montreal, 1991-2002. We used the following methods to predict spatially-resolved daily concentrations of O 3 and NO 2 for each geographic region in Montreal (defined by three-character postal code areas): (1) assigning concentrations from the nearest monitor; (2) spatial interpolation using inverse-distance weighting; (3) back-extrapolation from a land-use regression model from a dense monitoring survey, and; (4) a combination of a land-use and Bayesian maximum entropy model. We used a variety of indices of agreement to compare estimates of exposure assigned from the different methods, notably scatterplots of pairwise predictions, distribution of differences and computation of the absolute agreement intraclass correlation (ICC). For each pairwise prediction, we also produced maps of the ICCs by these regions indicating the spatial variability in the degree of agreement. We found some substantial differences in agreement across pairs of methods in daily mean predicted concentrations of O 3 and NO 2 . On a given day and postal code area the difference in the concentration assigned could be as high as 131ppb for O 3 and 108ppb

  15. Spatiotemporal floodplain mapping and prediction using HEC-RAS - GIS tools: Case of the Mejerda river, Tunisia

    Science.gov (United States)

    Ben Khalfallah, C.; Saidi, S.

    2018-06-01

    The floods have become a scourge in recent years (Floods of, 2003, 2006, 2009, 2011, and 2012), increasingly frequent and devastating. Tunisia does not escape flooding problems, the flood management requires basically a better knowledge of the phenomenon (flood), and the use of predictive methods. In order to limit this risk, we became interested in hydrodynamics modeling of Medjerda basin. To reach this aim, rainfall distribution is studied and mapped using GIS tools. In addition, flood and return period estimation of rainfall are calculated using Hyfran. Also, Simulations of recent floods are calculated and mapped using HEC-RAS and HEC-GeoRAS for the most recent flood occurred in February-March 2015 in Medjerda basin. The analysis of the results shows a good correlation between simulated parameters and those measured. There is a flood of the river exceeding 240 m3/s (DGRE, 2015) and more flowing sections are observed in the future simulations; for return periods of 10yr, 20yr and 50yr.

  16. Interactome analysis of transcriptional coactivator multiprotein bridging factor 1 unveils a yeast AP-1-like transcription factor involved in oxidation tolerance of mycopathogen Beauveria bassiana.

    Science.gov (United States)

    Chu, Xin-Ling; Dong, Wei-Xia; Ding, Jin-Li; Feng, Ming-Guang; Ying, Sheng-Hua

    2018-02-01

    Oxidation tolerance is an important determinant to predict the virulence and biocontrol potential of Beauveria bassiana, a well-known entomopathogenic fungus. As a transcriptional coactivator, multiprotein bridging factor 1 mediates the activity of transcription factor in diverse physiological processes, and its homolog in B. bassiana (BbMBF1) contributes to fungal oxidation tolerance. In this study, the BbMBF1-interactomes under oxidative stress and normal growth condition were deciphered by mass spectrometry integrated with the immunoprecipitation. BbMBF1p factor has a broad interaction with proteins that are involved in various cellular processes, and this interaction is dynamically regulated by oxidative stress. Importantly, a B. bassiana homolog of yeast AP-1-like transcription factor (BbAP-1) was specifically associated with the BbMBF1-interactome under oxidation and significantly contributed to fungal oxidation tolerance. In addition, qPCR analysis revealed that several antioxidant genes are jointly controlled by BbAP-1 and BbMBF1. Conclusively, it is proposed that BbMBF1p protein mediates BbAP-1p factor to transcribe the downstream antioxidant genes in B. bassiana under oxidative stress. This study demonstrates for the first time a proteomic view of the MBF1-interactome in fungi, and presents an initial framework to probe the transcriptional mechanism involved in fungal response to oxidation, which will provide a new strategy to improve the biocontrol efficacy of B. bassiana.

  17. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates

    OpenAIRE

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2013-01-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implem...

  18. Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models

    Science.gov (United States)

    Spatio-temporal variability of soil moisture (') is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time ' monitoring methods. This restricted the comprehensive and intensive examination of ' dynamic...

  19. Characterization and interactome study of white spot syndrome virus envelope protein VP11.

    Directory of Open Access Journals (Sweden)

    Wang-Jing Liu

    Full Text Available White spot syndrome virus (WSSV is a large enveloped virus. The WSSV viral particle consists of three structural layers that surround its core DNA: an outer envelope, a tegument and a nucleocapsid. Here we characterize the WSSV structural protein VP11 (WSSV394, GenBank accession number AF440570, and use an interactome approach to analyze the possible associations between this protein and an array of other WSSV and host proteins. Temporal transcription analysis showed that vp11 is an early gene. Western blot hybridization of the intact viral particles and fractionation of the viral components, and immunoelectron microscopy showed that VP11 is an envelope protein. Membrane topology software predicted VP11 to be a type of transmembrane protein with a highly hydrophobic transmembrane domain at its N-terminal. Based on an immunofluorescence assay performed on VP11-transfected Sf9 cells and a trypsin digestion analysis of the virion, we conclude that, contrary to topology software prediction, the C-terminal of this protein is in fact inside the virion. Yeast two-hybrid screening combined with co-immunoprecipitation assays found that VP11 directly interacted with at least 12 other WSSV structural proteins as well as itself. An oligomerization assay further showed that VP11 could form dimers. VP11 is also the first reported WSSV structural protein to interact with the major nucleocapsid protein VP664.

  20. In vitro nuclear interactome of the HIV-1 Tat protein.

    LENUS (Irish Health Repository)

    Gautier, Virginie W

    2009-01-01

    BACKGROUND: One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86-101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry. RESULTS: Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied in silico analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture. CONCLUSION: We have completed the in vitro Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will

  1. Unsupervised Learning of Spatiotemporal Features by Video Completion

    OpenAIRE

    Nallabolu, Adithya Reddy

    2017-01-01

    In this work, we present an unsupervised representation learning approach for learning rich spatiotemporal features from videos without the supervision from semantic labels. We propose to learn the spatiotemporal features by training a 3D convolutional neural network (CNN) using video completion as a surrogate task. Using a large collection of unlabeled videos, we train the CNN to predict the missing pixels of a spatiotemporal hole given the remaining parts of the video through minimizing per...

  2. Building and analyzing protein interactome networks by cross-species comparisons

    Directory of Open Access Journals (Sweden)

    Blackman Barron

    2010-03-01

    Full Text Available Abstract Background A genomic catalogue of protein-protein interactions is a rich source of information, particularly for exploring the relationships between proteins. Numerous systems-wide and small-scale experiments have been conducted to identify interactions; however, our knowledge of all interactions for any one species is incomplete, and alternative means to expand these network maps is needed. We therefore took a comparative biology approach to predict protein-protein interactions across five species (human, mouse, fly, worm, and yeast and developed InterologFinder for research biologists to easily navigate this data. We also developed a confidence score for interactions based on available experimental evidence and conservation across species. Results The connectivity of the resultant networks was determined to have scale-free distribution, small-world properties, and increased local modularity, indicating that the added interactions do not disrupt our current understanding of protein network structures. We show examples of how these improved interactomes can be used to analyze a genome-scale dataset (RNAi screen and to assign new function to proteins. Predicted interactions within this dataset were tested by co-immunoprecipitation, resulting in a high rate of validation, suggesting the high quality of networks produced. Conclusions Protein-protein interactions were predicted in five species, based on orthology. An InteroScore, a score accounting for homology, number of orthologues with evidence of interactions, and number of unique observations of interactions, is given to each known and predicted interaction. Our website http://www.interologfinder.org provides research biologists intuitive access to this data.

  3. Molecular characterization and interactome analysis of Trypanosoma cruzi tryparedoxin II.

    Science.gov (United States)

    Arias, Diego G; Piñeyro, María Dolores; Iglesias, Alberto A; Guerrero, Sergio A; Robello, Carlos

    2015-04-29

    Trypanosoma cruzi, the causative agent of Chagas disease, possesses two tryparedoxins (TcTXNI and TcTXNII), belonging to the thioredoxin superfamily. TXNs are oxidoreductases which mediate electron transfer between trypanothione and peroxiredoxins. This constitutes a difference with the host cells, in which these activities are mediated by thioredoxins. These differences make TXNs an attractive target for drug development. In a previous work we characterized TcTXNI, including the redox interactome. In this work we extend the study to TcTXNII. We demonstrate that TcTXNII is a transmembrane protein anchored to the surface of the mitochondria and endoplasmic reticulum, with a cytoplasmatic orientation of the redox domain. It would be expressed during the metacyclogenesis process. In order to continue with the characterization of the redox interactome of T. cruzi, we designed an active site mutant TcTXNII lacking the resolving cysteine, and through the expression of this mutant protein and incubation with T. cruzi proteins, heterodisulfide complexes were isolated by affinity chromatography and identified by mass spectrometry. This allowed us to identify sixteen TcTXNII interacting proteins, which are involved in a wide range of cellular processes, indicating the relevance of TcTXNII, and contributing to our understanding of the redox interactome of T. cruzi. T. cruzi, the causative agent of Chagas disease, constitutes a major sanitary problem in Latin America. The number of estimated infected persons is ca. 8 million, 28 million people are at risk of infection and ~20,000 deaths occur per year in endemic regions. No vaccines are available at present, and most drugs currently in use were developed decades ago and show variable efficacy with undesirable side effects. The parasite is able to live and prolipherate inside macrophage phagosomes, where it is exposed to cytotoxic reactive oxygen and nitrogen species, derived from macrophage activation. Therefore, T. cruzi

  4. Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae.

    Science.gov (United States)

    Uthe, Henriette; Vanselow, Jens T; Schlosser, Andreas

    2017-02-27

    Here we present the most comprehensive analysis of the yeast Mediator complex interactome to date. Particularly gentle cell lysis and co-immunopurification conditions allowed us to preserve even transient protein-protein interactions and to comprehensively probe the molecular environment of the Mediator complex in the cell. Metabolic 15 N-labeling thereby enabled stringent discrimination between bona fide interaction partners and nonspecifically captured proteins. Our data indicates a functional role for Mediator beyond transcription initiation. We identified a large number of Mediator-interacting proteins and protein complexes, such as RNA polymerase II, general transcription factors, a large number of transcriptional activators, the SAGA complex, chromatin remodeling complexes, histone chaperones, highly acetylated histones, as well as proteins playing a role in co-transcriptional processes, such as splicing, mRNA decapping and mRNA decay. Moreover, our data provides clear evidence, that the Mediator complex interacts not only with RNA polymerase II, but also with RNA polymerases I and III, and indicates a functional role of the Mediator complex in rRNA processing and ribosome biogenesis.

  5. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome

    KAUST Repository

    Kö ster, Tino; Marondedze, Claudius; Meyer, Katja; Staiger, Dorothee

    2017-01-01

    RNA–protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture – where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.

  6. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome

    KAUST Repository

    Köster, Tino

    2017-04-13

    RNA–protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture – where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.

  7. A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis

    DEFF Research Database (Denmark)

    Mechelli, Rosella; Umeton, Renato; Policano, Claudia

    2013-01-01

    of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge......, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate...... immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated...

  8. Interactome of Obesity: Obesidome : Genetic Obesity, Stress Induced Obesity, Pathogenic Obesity Interaction.

    Science.gov (United States)

    Geronikolou, Styliani A; Pavlopoulou, Athanasia; Cokkinos, Dennis; Chrousos, George

    2017-01-01

    Obesity is a chronic disease of increasing prevalence reaching epidemic proportions. Genetic defects as well as epigenetic effects contribute to the obesity phenotype. Investigating gene (e.g. MC4R defects)-environment (behavior, infectious agents, stress) interactions is a relative new field of great research interest. In this study, we have made an effort to create an interactome (henceforth referred to as "obesidome"), where extrinsic stressors response, intrinsic predisposition, immunity response to inflammation and autonomous nervous system implications are integrated. These pathways are presented in one interactome network for the first time. In our study, obesity-related genes/gene products were found to form a complex interactions network.

  9. Spatio-temporal modeling for residential burglary

    NARCIS (Netherlands)

    Mahfoud, M.; Bhulai, Sandjai; van der Mei, R.D.; Bhulai, Sandjai; Kardaras, Dimitris

    2017-01-01

    Spatio-temporal modeling is widely recognized as a promising means for predicting crime patterns. Despite their enormous potential, the available methods are still in their infancy. A lot of research focuses on crime hotspot detection and geographic crime clusters, while a systematic approach to

  10. Dissection of protein interactomics highlights microRNA synergy.

    Science.gov (United States)

    Zhu, Wenliang; Zhao, Yilei; Xu, Yingqi; Sun, Yong; Wang, Zhe; Yuan, Wei; Du, Zhimin

    2013-01-01

    Despite a large amount of microRNAs (miRNAs) have been validated to play crucial roles in human biology and disease, there is little systematic insight into the nature and scale of the potential synergistic interactions executed by miRNAs themselves. Here we established an integrated parameter synergy score to determine miRNA synergy, by combining the two mechanisms for miRNA-miRNA interactions, miRNA-mediated gene co-regulation and functional association between target gene products, into one single parameter. Receiver operating characteristic (ROC) analysis indicated that synergy score accurately identified the gene ontology-defined miRNA synergy (AUC = 0.9415, psynergy, implying poor expectancy of widespread synergy. However, targeting more key genes made two miRNAs more likely to act synergistically. Compared to other miRNAs, miR-21 was a highly exceptional case due to frequent appearance in the top synergistic miRNA pairs. This result highlighted its essential role in coordinating or strengthening physiological and pathological functions of other miRNAs. The synergistic effect of miR-21 and miR-1 were functionally validated for their significant influences on myocardial apoptosis, cardiac hypertrophy and fibrosis. The novel approach established in this study enables easy and effective identification of condition-restricted potent miRNA synergy simply by concentrating the available protein interactomics and miRNA-target interaction data into a single parameter synergy score. Our results may be important for understanding synergistic gene regulation by miRNAs and may have significant implications for miRNA combination therapy of cardiovascular disease.

  11. Deep sequencing of cardiac microRNA-mRNA interactomes in clinical and experimental cardiomyopathy.

    Science.gov (United States)

    Matkovich, Scot J; Dorn, Gerald W

    2015-01-01

    MicroRNAs are a family of short (~21 nucleotide) noncoding RNAs that serve key roles in cellular growth and differentiation and the response of the heart to stress stimuli. As the sequence-specific recognition element of RNA-induced silencing complexes (RISCs), microRNAs bind mRNAs and prevent their translation via mechanisms that may include transcript degradation and/or prevention of ribosome binding. Short microRNA sequences and the ability of microRNAs to bind to mRNA sites having only partial/imperfect sequence complementarity complicate purely computational analyses of microRNA-mRNA interactomes. Furthermore, computational microRNA target prediction programs typically ignore biological context, and therefore the principal determinants of microRNA-mRNA binding: the presence and quantity of each. To address these deficiencies we describe an empirical method, developed via studies of stressed and failing hearts, to determine disease-induced changes in microRNAs, mRNAs, and the mRNAs targeted to the RISC, without cross-linking mRNAs to RISC proteins. Deep sequencing methods are used to determine RNA abundances, delivering unbiased, quantitative RNA data limited only by their annotation in the genome of interest. We describe the laboratory bench steps required to perform these experiments, experimental design strategies to achieve an appropriate number of sequencing reads per biological replicate, and computer-based processing tools and procedures to convert large raw sequencing data files into gene expression measures useful for differential expression analyses.

  12. A highly efficient approach to protein interactome mapping based on collaborative filtering framework.

    Science.gov (United States)

    Luo, Xin; You, Zhuhong; Zhou, Mengchu; Li, Shuai; Leung, Hareton; Xia, Yunni; Zhu, Qingsheng

    2015-01-09

    The comprehensive mapping of protein-protein interactions (PPIs) is highly desired for one to gain deep insights into both fundamental cell biology processes and the pathology of diseases. Finely-set small-scale experiments are not only very expensive but also inefficient to identify numerous interactomes despite their high accuracy. High-throughput screening techniques enable efficient identification of PPIs; yet the desire to further extract useful knowledge from these data leads to the problem of binary interactome mapping. Network topology-based approaches prove to be highly efficient in addressing this problem; however, their performance deteriorates significantly on sparse putative PPI networks. Motivated by the success of collaborative filtering (CF)-based approaches to the problem of personalized-recommendation on large, sparse rating matrices, this work aims at implementing a highly efficient CF-based approach to binary interactome mapping. To achieve this, we first propose a CF framework for it. Under this framework, we model the given data into an interactome weight matrix, where the feature-vectors of involved proteins are extracted. With them, we design the rescaled cosine coefficient to model the inter-neighborhood similarity among involved proteins, for taking the mapping process. Experimental results on three large, sparse datasets demonstrate that the proposed approach outperforms several sophisticated topology-based approaches significantly.

  13. Construction and application of a protein and genetic interaction network (yeast interactome).

    Science.gov (United States)

    Stuart, Gregory R; Copeland, William C; Strand, Micheline K

    2009-04-01

    Cytoscape is a bioinformatic data analysis and visualization platform that is well-suited to the analysis of gene expression data. To facilitate the analysis of yeast microarray data using Cytoscape, we constructed an interaction network (interactome) using the curated interaction data available from the Saccharomyces Genome Database (www.yeastgenome.org) and the database of yeast transcription factors at YEASTRACT (www.yeastract.com). These data were formatted and imported into Cytoscape using semi-automated methods, including Linux-based scripts, that simplified the process while minimizing the introduction of processing errors. The methods described for the construction of this yeast interactome are generally applicable to the construction of any interactome. Using Cytoscape, we illustrate the use of this interactome through the analysis of expression data from a recent yeast diauxic shift experiment. We also report and briefly describe the complex associations among transcription factors that result in the regulation of thousands of genes through coordinated changes in expression of dozens of transcription factors. These cells are thus able to sensitively regulate cellular metabolism in response to changes in genetic or environmental conditions through relatively small changes in the expression of large numbers of genes, affecting the entire yeast metabolome.

  14. Comparison of Spatiotemporal Fusion Models: A Review

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2015-02-01

    Full Text Available Simultaneously capturing spatial and temporal dynamics is always a challenge for the remote sensing community. Spatiotemporal fusion has gained wide interest in various applications for its superiority in integrating both fine spatial resolution and frequent temporal coverage. Though many advances have been made in spatiotemporal fusion model development and applications in the past decade, a unified comparison among existing fusion models is still limited. In this research, we classify the models into three categories: transformation-based, reconstruction-based, and learning-based models. The objective of this study is to (i compare four fusion models (STARFM, ESTARFM, ISTAFM, and SPSTFM under a one Landsat-MODIS (L-M pair prediction mode and two L-M pair prediction mode using time-series datasets from the Coleambally irrigation area and Poyang Lake wetland; (ii quantitatively assess prediction accuracy considering spatiotemporal comparability, landscape heterogeneity, and model parameter selection; and (iii discuss the advantages and disadvantages of the three categories of spatiotemporal fusion models.

  15. Indeterminacy and Spatiotemporal Data

    DEFF Research Database (Denmark)

    Pfoser, D.; Tryfona, N.; Jensen, Christian Søndergaard

    2005-01-01

    For some spatiotemporal applications, it can be assumed that the modeled world is precise and bounded, and that our record of it is precise. While these simplifying assumptions are sufficient in applications like a land information system, they are unnecessarily crude for many other applications...

  16. Spatio-Temporal Rule Mining

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo; Pedersen, Torben Bach

    2005-01-01

    Recent advances in communication and information technology, such as the increasing accuracy of GPS technology and the miniaturization of wireless communication devices pave the road for Location-Based Services (LBS). To achieve high quality for such services, spatio-temporal data mining techniques...... are needed. In this paper, we describe experiences with spatio-temporal rule mining in a Danish data mining company. First, a number of real world spatio-temporal data sets are described, leading to a taxonomy of spatio-temporal data. Second, the paper describes a general methodology that transforms...... the spatio-temporal rule mining task to the traditional market basket analysis task and applies it to the described data sets, enabling traditional association rule mining methods to discover spatio-temporal rules for LBS. Finally, unique issues in spatio-temporal rule mining are identified and discussed....

  17. Spatiotemporal drought forecasting using nonlinear models

    Science.gov (United States)

    Vasiliades, Lampros; Loukas, Athanasios

    2010-05-01

    Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. In order to achieve spatiotemporal forecasting, some mature analysis tools, e.g., time series and spatial statistics are extended to the spatial dimension and the temporal dimension, respectively. Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Despite the widespread application of nonlinear mathematical models, comparative studies on spatiotemporal drought forecasting using different models are still a huge task for modellers. This study uses a promising approach, the Gamma Test (GT), to select the input variables and the training data length, so that the trial and error workload could be greatly reduced. The GT enables to quickly evaluate and estimate the best mean squared error that can be achieved by a smooth model on any unseen data for a given selection of inputs, prior to model construction. The GT is applied to forecast droughts using monthly Standardized Precipitation Index (SPI) timeseries at multiple timescales in several precipitation stations at Pinios river basin in Thessaly region, Greece. Several nonlinear models have been developed efficiently, with the aid of the GT, for 1-month up to 12-month ahead forecasting. Several temporal and spatial statistical indices were considered for the performance evaluation of the models. The predicted results show reasonably good agreement with the actual data for short lead times, whereas the forecasting accuracy decreases with

  18. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    International Nuclear Information System (INIS)

    Stamov, Dimitar R; Stock, Erik; Franz, Clemens M; Jähnke, Torsten; Haschke, Heiko

    2015-01-01

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I

  19. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  20. Serum Amyloid P Component (SAP) Interactome in Human Plasma Containing Physiological Calcium Levels.

    Science.gov (United States)

    Poulsen, Ebbe Toftgaard; Pedersen, Kata Wolff; Marzeda, Anna Maria; Enghild, Jan J

    2017-02-14

    The pentraxin serum amyloid P component (SAP) is secreted by the liver and found in plasma at a concentration of approximately 30 mg/L. SAP is a 25 kDa homopentamer known to bind both protein and nonprotein ligands, all in a calcium-dependent manner. The function of SAP is unclear but likely involves the humoral innate immune system spanning the complement system, inflammation, and coagulation. Also, SAP is known to bind to the generic structure of amyloid deposits and possibly to protect them against proteolysis. In this study, we have characterized the SAP interactome in human plasma containing the physiological Ca 2+ concentration using SAP affinity pull-down and co-immunoprecipitation experiments followed by mass spectrometry analyses. The analyses resulted in the identification of 33 proteins, of which 24 were direct or indirect interaction partners not previously reported. The SAP interactome can be divided into categories that include apolipoproteins, the complement system, coagulation, and proteolytic regulation.

  1. Next Generation Protein Interactomes for Plant Systems Biology and Biomass Feedstock Research

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph Robert [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Trigg, Shelly [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Univ. of California, San Diego, CA (United States). Biological Sciences Dept.; Garza, Renee [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Song, Haili [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; MacWilliams, Andrew [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Nery, Joseph [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Reina, Joaquin [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Bartlett, Anna [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Castanon, Rosa [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Goubil, Adeline [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Feeney, Joseph [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; O' Malley, Ronan [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Huang, Shao-shan Carol [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Zhang, Zhuzhu [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Galli, Mary [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.

    2016-11-30

    Biofuel crop cultivation is a necessary step in heading towards a sustainable future, making their genomic studies a priority. While technology platforms that currently exist for studying non-model crop species, like switch-grass or sorghum, have yielded large quantities of genomic and expression data, still a large gap exists between molecular mechanism and phenotype. The aspect of molecular activity at the level of protein-protein interactions has recently begun to bridge this gap, providing a more global perspective. Interactome analysis has defined more specific functional roles of proteins based on their interaction partners, neighborhoods, and other network features, making it possible to distinguish unique modules of immune response to different plant pathogens(Jiang, Dong, and Zhang 2016). As we work towards cultivating heartier biofuel crops, interactome data will lead to uncovering crop-specific defense and development networks. However, the collection of protein interaction data has been limited to expensive, time-consuming, hard-to-scale assays that mostly require cloned ORF collections. For these reasons, we have successfully developed a highly scalable, economical, and sensitive yeast two-hybrid assay, ProCREate, that can be universally applied to generate proteome-wide primary interactome data. ProCREate enables en masse pooling and massively paralleled sequencing for the identification of interacting proteins by exploiting Cre-lox recombination. ProCREate can be used to screen ORF/cDNA libraries from feedstock plant tissues. The interactome data generated will yield deeper insight into many molecular processes and pathways that can be used to guide improvement of feedstock productivity and sustainability.

  2. Expression of DISC1-interactome members correlates with cognitive phenotypes related to schizophrenia.

    Science.gov (United States)

    Rampino, Antonio; Walker, Rosie May; Torrance, Helen Scott; Anderson, Susan Maguire; Fazio, Leonardo; Di Giorgio, Annabella; Taurisano, Paolo; Gelao, Barbara; Romano, Raffaella; Masellis, Rita; Ursini, Gianluca; Caforio, Grazia; Blasi, Giuseppe; Millar, J Kirsty; Porteous, David John; Thomson, Pippa Ann; Bertolino, Alessandro; Evans, Kathryn Louise

    2014-01-01

    Cognitive dysfunction is central to the schizophrenia phenotype. Genetic and functional studies have implicated Disrupted-in-Schizophrenia 1 (DISC1), a leading candidate gene for schizophrenia and related psychiatric conditions, in cognitive function. Altered expression of DISC1 and DISC1-interactors has been identified in schizophrenia. Dysregulated expression of DISC1-interactome genes might, therefore, contribute to schizophrenia susceptibility via disruption of molecular systems required for normal cognitive function. Here, the blood RNA expression levels of DISC1 and DISC1-interacting proteins were measured in 63 control subjects. Cognitive function was assessed using neuropsychiatric tests and functional magnetic resonance imaging was used to assess the activity of prefrontal cortical regions during the N-back working memory task, which is abnormal in schizophrenia. Pairwise correlations between gene expression levels and the relationship between gene expression levels and cognitive function and N-back-elicited brain activity were assessed. Finally, the expression levels of DISC1, AKAP9, FEZ1, NDEL1 and PCM1 were compared between 63 controls and 69 schizophrenic subjects. We found that DISC1-interactome genes showed correlated expression in the blood of healthy individuals. The expression levels of several interactome members were correlated with cognitive performance and N-back-elicited activity in the prefrontal cortex. In addition, DISC1 and NDEL1 showed decreased expression in schizophrenic subjects compared to healthy controls. Our findings highlight the importance of the coordinated expression of DISC1-interactome genes for normal cognitive function and suggest that dysregulated DISC1 and NDEL1 expression might, in part, contribute to susceptibility for schizophrenia via disruption of prefrontal cortex-dependent cognitive functions.

  3. Expression of DISC1-interactome members correlates with cognitive phenotypes related to schizophrenia.

    Directory of Open Access Journals (Sweden)

    Antonio Rampino

    Full Text Available Cognitive dysfunction is central to the schizophrenia phenotype. Genetic and functional studies have implicated Disrupted-in-Schizophrenia 1 (DISC1, a leading candidate gene for schizophrenia and related psychiatric conditions, in cognitive function. Altered expression of DISC1 and DISC1-interactors has been identified in schizophrenia. Dysregulated expression of DISC1-interactome genes might, therefore, contribute to schizophrenia susceptibility via disruption of molecular systems required for normal cognitive function. Here, the blood RNA expression levels of DISC1 and DISC1-interacting proteins were measured in 63 control subjects. Cognitive function was assessed using neuropsychiatric tests and functional magnetic resonance imaging was used to assess the activity of prefrontal cortical regions during the N-back working memory task, which is abnormal in schizophrenia. Pairwise correlations between gene expression levels and the relationship between gene expression levels and cognitive function and N-back-elicited brain activity were assessed. Finally, the expression levels of DISC1, AKAP9, FEZ1, NDEL1 and PCM1 were compared between 63 controls and 69 schizophrenic subjects. We found that DISC1-interactome genes showed correlated expression in the blood of healthy individuals. The expression levels of several interactome members were correlated with cognitive performance and N-back-elicited activity in the prefrontal cortex. In addition, DISC1 and NDEL1 showed decreased expression in schizophrenic subjects compared to healthy controls. Our findings highlight the importance of the coordinated expression of DISC1-interactome genes for normal cognitive function and suggest that dysregulated DISC1 and NDEL1 expression might, in part, contribute to susceptibility for schizophrenia via disruption of prefrontal cortex-dependent cognitive functions.

  4. Spatiotemporal Modeling of Community Risk

    Science.gov (United States)

    2016-03-01

    Ertugay, and Sebnem Duzgun, “Exploratory and Inferential Methods for Spatio-Temporal Analysis of Residential Fire Clustering in Urban Areas,” Fire ...response in communities.”26 In “Exploratory and Inferential Methods for Spatio-temporal Analysis of Residential Fire Clustering in Urban Areas,” Ceyhan...of fire resources spread across the community. Spatiotemporal modeling shows that actualized risk is dynamic and relatively patterned. Though

  5. Compounded effects of heat waves and droughts over the Western Electricity Grid: spatio-temporal scales of impacts and predictability toward mitigation and adaptation.

    Science.gov (United States)

    Voisin, N.; Kintner-Meyer, M.; Skaggs, R.; Xie, Y.; Wu, D.; Nguyen, T. B.; Fu, T.; Zhou, T.

    2016-12-01

    Heat waves and droughts are projected to be more frequent and intense. We have seen in the past the effects of each of those extreme climate events on electricity demand and constrained electricity generation, challenging power system operations. Our aim here is to understand the compounding effects under historical conditions. We present a benchmark of Western US grid performance under 55 years of historical climate, and including droughts, using 2010-level of water demand and water management infrastructure, and 2010-level of electricity grid infrastructure and operations. We leverage CMIP5 historical hydrology simulations and force a large scale river routing- reservoir model with 2010-level sectoral water demands. The regulated flow at each water-dependent generating plants is processed to adjust water-dependent electricity generation parameterization in a production cost model, that represents 2010-level power system operations with hourly energy demand of 2010. The resulting benchmark includes a risk distribution of several grid performance metrics (unserved energy, production cost, carbon emission) as a function of inter-annual variability in regional water availability and predictability using large scale climate oscillations. In the second part of the presentation, we describe an approach to map historical heat waves onto this benchmark grid performance using a building energy demand model. The impact of the heat waves, combined with the impact of droughts, is explored at multiple scales to understand the compounding effects. Vulnerabilities of the power generation and transmission systems are highlighted to guide future adaptation.

  6. Atmospheric emissions of Cu and Zn from coal combustion in China: Spatio-temporal distribution, human health effects, and short-term prediction.

    Science.gov (United States)

    Li, Rui; Li, Junlin; Cui, Lulu; Wu, Yu; Fu, Hongbo; Chen, Jianmin; Chen, Mindong

    2017-10-01

    China has become the largest coal consumer and important emitter of trace metals in the world. A multiple-year inventory of atmospheric copper (Cu) and zinc (Zn) emissions from coal combustion in 30 provinces of China and 4 economic sectors (power plant, industry sector, residential sector, and others) for the period of 1995-2014 has been calculated. The results indicated that the total emissions of Cu and Zn increased from 5137.70 t and 11484.16 t in 1995-7099.24 t and 14536.61 t in 2014, at an annual average growth rate of 1.90% and 1.33%, respectively. The industrial sector ranked as the leading source, followed by power plants, the residential use, and other sectors. The emissions of Cu and Zn were predominantly concentrated in the northern and eastern regions of China due to the enormous consumption of coal by the industrial and the power sectors. The emissions of Cu and Zn were closely associated with mortality and life expectancy (LE) on the basis of multiple regression analysis. Spatial econometric models suggested that Cu and Zn emissions displayed significantly positive relevance with mortality, while they exhibited negative correlation with LE. The influence of the Cu emission peaked in the north of China for both mortality and LE, while the impacts of the Zn emission on mortality and LE reached a maximum value in Xinjiang Province. The results of the grey prediction model suggested that the Cu emission would decrease to 5424.73 t, whereas the Zn emissions could reach 17402.13 t in 2020. Analysis of more specific data are imperative in order to estimate the emissions of both metals, to assess their human health effects, and then to adopt effective measures to prevent environmental pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Coexistence of collapse and stable spatiotemporal solitons in multimode fibers

    Science.gov (United States)

    Shtyrina, Olga V.; Fedoruk, Mikhail P.; Kivshar, Yuri S.; Turitsyn, Sergei K.

    2018-01-01

    We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.

  8. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking

    NARCIS (Netherlands)

    Zijlstra, W; Hof, AL

    2003-01-01

    This paper studies the feasibility of an analysis of spatio-temporal gait parameters based upon accelerometry. To this purpose, acceleration patterns of the trunk and their relationships with spatio-temporal gait parameters were analysed in healthy subjects. Based on model predictions of the body's

  9. Protein Inference from the Integration of Tandem MS Data and Interactome Networks.

    Science.gov (United States)

    Zhong, Jiancheng; Wang, Jianxing; Ding, Xiaojun; Zhang, Zhen; Li, Min; Wu, Fang-Xiang; Pan, Yi

    2017-01-01

    Since proteins are digested into a mixture of peptides in the preprocessing step of tandem mass spectrometry (MS), it is difficult to determine which specific protein a shared peptide belongs to. In recent studies, besides tandem MS data and peptide identification information, some other information is exploited to infer proteins. Different from the methods which first use only tandem MS data to infer proteins and then use network information to refine them, this study proposes a protein inference method named TMSIN, which uses interactome networks directly. As two interacting proteins should co-exist, it is reasonable to assume that if one of the interacting proteins is confidently inferred in a sample, its interacting partners should have a high probability in the same sample, too. Therefore, we can use the neighborhood information of a protein in an interactome network to adjust the probability that the shared peptide belongs to the protein. In TMSIN, a multi-weighted graph is constructed by incorporating the bipartite graph with interactome network information, where the bipartite graph is built with the peptide identification information. Based on multi-weighted graphs, TMSIN adopts an iterative workflow to infer proteins. At each iterative step, the probability that a shared peptide belongs to a specific protein is calculated by using the Bayes' law based on the neighbor protein support scores of each protein which are mapped by the shared peptides. We carried out experiments on yeast data and human data to evaluate the performance of TMSIN in terms of ROC, q-value, and accuracy. The experimental results show that AUC scores yielded by TMSIN are 0.742 and 0.874 in yeast dataset and human dataset, respectively, and TMSIN yields the maximum number of true positives when q-value less than or equal to 0.05. The overlap analysis shows that TMSIN is an effective complementary approach for protein inference.

  10. Bcl2-associated Athanogene 3 Interactome Analysis Reveals a New Role in Modulating Proteasome Activity*

    Science.gov (United States)

    Chen, Ying; Yang, Li-Na; Cheng, Li; Tu, Shun; Guo, Shu-Juan; Le, Huang-Ying; Xiong, Qian; Mo, Ran; Li, Chong-Yang; Jeong, Jun-Seop; Jiang, Lizhi; Blackshaw, Seth; Bi, Li-Jun; Zhu, Heng; Tao, Sheng-Ce; Ge, Feng

    2013-01-01

    Bcl2-associated athanogene 3 (BAG3), a member of the BAG family of co-chaperones, plays a critical role in regulating apoptosis, development, cell motility, autophagy, and tumor metastasis and in mediating cell adaptive responses to stressful stimuli. BAG3 carries a BAG domain, a WW domain, and a proline-rich repeat (PXXP), all of which mediate binding to different partners. To elucidate BAG3's interaction network at the molecular level, we employed quantitative immunoprecipitation combined with knockdown and human proteome microarrays to comprehensively profile the BAG3 interactome in humans. We identified a total of 382 BAG3-interacting proteins with diverse functions, including transferase activity, nucleic acid binding, transcription factors, proteases, and chaperones, suggesting that BAG3 is a critical regulator of diverse cellular functions. In addition, we characterized interactions between BAG3 and some of its newly identified partners in greater detail. In particular, bioinformatic analysis revealed that the BAG3 interactome is strongly enriched in proteins functioning within the proteasome-ubiquitination process and that compose the proteasome complex itself, suggesting that a critical biological function of BAG3 is associated with the proteasome. Functional studies demonstrated that BAG3 indeed interacts with the proteasome and modulates its activity, sustaining cell survival and underlying resistance to therapy through the down-modulation of apoptosis. Taken as a whole, this study expands our knowledge of the BAG3 interactome, provides a valuable resource for understanding how BAG3 affects different cellular functions, and demonstrates that biologically relevant data can be harvested using this kind of integrated approach. PMID:23824909

  11. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry

    Directory of Open Access Journals (Sweden)

    Isabelle Maxim

    2010-04-01

    Full Text Available Abstract Background Poly(ADP-ribose polymerases (PARPs catalyze the formation of poly(ADP-ribose (pADPr, a post-translational modification involved in several important biological processes, namely surveillance of genome integrity, cell cycle progression, initiation of the DNA damage response, apoptosis, and regulation of transcription. Poly(ADP-ribose glycohydrolase (PARG, on the other hand, catabolizes pADPr and thereby accounts for the transient nature of poly(ADP-ribosylation. Our investigation of the interactomes of PARP-1, PARP-2, and PARG by affinity-purification mass spectrometry (AP-MS aimed, on the one hand, to confirm current knowledge on these interactomes and, on the other hand, to discover new protein partners which could offer insights into PARPs and PARG functions. Results PARP-1, PARP-2, and PARG were immunoprecipitated from human cells, and pulled-down proteins were separated by gel electrophoresis prior to in-gel trypsin digestion. Peptides were identified by tandem mass spectrometry. Our AP-MS experiments resulted in the identifications of 179 interactions, 139 of which are novel interactions. Gene Ontology analysis of the identified protein interactors points to five biological processes in which PARP-1, PARP-2 and PARG may be involved: RNA metabolism for PARP-1, PARP-2 and PARG; DNA repair and apoptosis for PARP-1 and PARP-2; and glycolysis and cell cycle for PARP-1. Conclusions This study reveals several novel protein partners for PARP-1, PARP-2 and PARG. It provides a global view of the interactomes of these proteins as well as a roadmap to establish the systems biology of poly(ADP-ribose metabolism.

  12. The chicken B-cell line DT40 proteome, beadome and interactomes

    Directory of Open Access Journals (Sweden)

    Johanna S. Rees

    2015-06-01

    Full Text Available In developing a new quantitative AP-MS method for exploring interactomes in the chicken B-cell line DT40, we also surveyed the most abundant proteins in this organism and explored the likely contaminants that bind to a variety of affinity resins that would later be confirmed quantitatively [1]. We present the ‘Top 150 abundant DT40 proteins list’, the DT40 beadomes as well as protein interaction lists for the Phosphatidyl inositol 5-phosphate 4-kinase 2β and Fanconi anaemia protein complexes.

  13. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation

    DEFF Research Database (Denmark)

    Kieffer-Kwon, Kyong-Rim; Tang, Zhonghui; Mathe, Ewy

    2013-01-01

    IA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes. We confirm that enhancer usage varies widely across tissues. Unexpectedly, we find that this feature extends to broadly transcribed genes, including Myc and Pim1 cell-cycle regulators, which...... associate with an entirely different set of enhancers in ES and B cells. By means of high-resolution CpG methylomes, genome editing, and digital footprinting, we show that these enhancers recruit lineage-determining factors. Furthermore, we demonstrate that the turning on and off of enhancers during...

  14. Protein function prediction involved on radio-resistant bacteria

    International Nuclear Information System (INIS)

    Mezhoud, Karim; Mankai, Houda; Sghaier, Haitham; Barkallah, Insaf

    2009-01-01

    Previously, we identified 58 proteins under positive selection in ionizing-radiation-resistant bacteria (IRRB) but absent in all ionizing-radiation-sensitive bacteria (IRSB). These are good reasons to believe these 58 proteins with their interactions with other proteins (interactomes) are a part of the answer to the question as to how IRRB resist to radiation, because our knowledge of interactomes of positively selected orphan proteins in IRRB might allow us to define cellular pathways important to ionizing-radiation resistance. Using the Database of Interacting Proteins and the PSIbase, we have predicted interactions of orthologs of the 58 proteins under positive selection in IRRB but absent in all IRSB. We used integrate experimental data sets with molecular interaction networks and protein structure prediction from databases. Among these, 18 proteins with their interactomes were identified in Deinococcus radiodurans R1. DNA checkpoint and repair, kinases pathways, energetic and nucleotide metabolisms were the important biological process that found. We predicted the interactomes of 58 proteins under positive selection in IRRB. It is hoped our data will provide new clues as to the cellular pathways that are important for ionizing-radiation resistance. We have identified news proteins involved on DNA management which were not previously mentioned. It is an important input in addition to protein that studied. It does still work to deepen our study on these new proteins

  15. Spatiotemporal Data Organization and Application Research

    Science.gov (United States)

    Tan, C.; Yan, S.

    2017-09-01

    Organization and management of spatiotemporal data is a key support technology for intelligence in all fields of the smart city. The construction of a smart city cannot be realized without spatiotemporal data. Oriented to support intelligent applications this paper proposes an organizational model for spatiotemporal data, and details the construction of a spatiotemporal big data calculation, analysis, and service framework for highly efficient management and intelligent application of spatiotemporal data for the entire data life cycle.

  16. MitProNet: A knowledgebase and analysis platform of proteome, interactome and diseases for mammalian mitochondria.

    Directory of Open Access Journals (Sweden)

    Jiabin Wang

    Full Text Available Mitochondrion plays a central role in diverse biological processes in most eukaryotes, and its dysfunctions are critically involved in a large number of diseases and the aging process. A systematic identification of mitochondrial proteomes and characterization of functional linkages among mitochondrial proteins are fundamental in understanding the mechanisms underlying biological functions and human diseases associated with mitochondria. Here we present a database MitProNet which provides a comprehensive knowledgebase for mitochondrial proteome, interactome and human diseases. First an inventory of mammalian mitochondrial proteins was compiled by widely collecting proteomic datasets, and the proteins were classified by machine learning to achieve a high-confidence list of mitochondrial proteins. The current version of MitProNet covers 1124 high-confidence proteins, and the remainders were further classified as middle- or low-confidence. An organelle-specific network of functional linkages among mitochondrial proteins was then generated by integrating genomic features encoded by a wide range of datasets including genomic context, gene expression profiles, protein-protein interactions, functional similarity and metabolic pathways. The functional-linkage network should be a valuable resource for the study of biological functions of mitochondrial proteins and human mitochondrial diseases. Furthermore, we utilized the network to predict candidate genes for mitochondrial diseases using prioritization algorithms. All proteins, functional linkages and disease candidate genes in MitProNet were annotated according to the information collected from their original sources including GO, GEO, OMIM, KEGG, MIPS, HPRD and so on. MitProNet features a user-friendly graphic visualization interface to present functional analysis of linkage networks. As an up-to-date database and analysis platform, MitProNet should be particularly helpful in comprehensive studies of

  17. Spatiotemporal chaos from bursting dynamics

    International Nuclear Information System (INIS)

    Berenstein, Igal; De Decker, Yannick

    2015-01-01

    In this paper, we study the emergence of spatiotemporal chaos from mixed-mode oscillations, by using an extended Oregonator model. We show that bursting dynamics consisting of fast/slow mixed mode oscillations along a single attractor can lead to spatiotemporal chaotic dynamics, although the spatially homogeneous solution is itself non-chaotic. This behavior is observed far from the Hopf bifurcation and takes the form of a spatiotemporal intermittency where the system locally alternates between the fast and the slow phases of the mixed mode oscillations. We expect this form of spatiotemporal chaos to be generic for models in which one or several slow variables are coupled to activator-inhibitor type of oscillators

  18. Embryonic stem cell interactomics: the beginning of a long road to biological function.

    Science.gov (United States)

    Yousefi, Maram; Hajihoseini, Vahid; Jung, Woojin; Hosseinpour, Batol; Rassouli, Hassan; Lee, Bonghee; Baharvand, Hossein; Lee, KiYoung; Salekdeh, Ghasem Hosseini

    2012-12-01

    Embryonic stem cells (ESCs) are capable of unlimited self-renewal while maintaining pluripotency. They are of great interest in regenerative medicine due to their ability to differentiate into all cell types of the three embryonic germ layers. Recently, induced pluripotent stem cells (iPSCs) have shown similarities to ESCs and thus promise great therapeutic potential in regenerative medicine. Despite progress in stem cell biology, our understanding of the exact mechanisms by which pluripotency and self-renewal are established and maintained is largely unknown. A better understanding of these processes may lead to discovery of alternative ways for reprogramming, differentiation and more reliable applications of stem cells in therapies. It has become evident that proteins generally function as members of large complexes that are part of a more complex network. Therefore, the identification of protein-protein interactions (PPI) is an efficient strategy for understanding protein function and regulation. Systematic genome-wide and pathway-specific PPI analysis of ESCs has generated a network of ESC proteins, including major transcription factors. These PPI networks of ESCs may contribute to a mechanistic understanding of self-renewal and pluripotency. In this review we describe different experimental approaches for the identification of PPIs along with various databases. We discuss biological findings and technical challenges encountered with interactome studies of pluripotent stem cells, and provide insight into how interactomics is likely to develop.

  19. Interactomes, manufacturomes and relational biology: analogies between systems biology and manufacturing systems

    Science.gov (United States)

    2011-01-01

    Background We review and extend the work of Rosen and Casti who discuss category theory with regards to systems biology and manufacturing systems, respectively. Results We describe anticipatory systems, or long-range feed-forward chemical reaction chains, and compare them to open-loop manufacturing processes. We then close the loop by discussing metabolism-repair systems and describe the rationality of the self-referential equation f = f (f). This relationship is derived from some boundary conditions that, in molecular systems biology, can be stated as the cardinality of the following molecular sets must be about equal: metabolome, genome, proteome. We show that this conjecture is not likely correct so the problem of self-referential mappings for describing the boundary between living and nonliving systems remains an open question. We calculate a lower and upper bound for the number of edges in the molecular interaction network (the interactome) for two cellular organisms and for two manufacturomes for CMOS integrated circuit manufacturing. Conclusions We show that the relevant mapping relations may not be Abelian, and that these problems cannot yet be resolved because the interactomes and manufacturomes are incomplete. PMID:21689427

  20. Interactomic approach for evaluating nucleophosmin-binding proteins as biomarkers for Ewing's sarcoma.

    Science.gov (United States)

    Haga, Ayako; Ogawara, Yoko; Kubota, Daisuke; Kitabayashi, Issay; Murakami, Yasufumi; Kondo, Tadashi

    2013-06-01

    Nucleophosmin (NPM) is a novel prognostic biomarker for Ewing's sarcoma. To evaluate the prognostic utility of NPM, we conducted an interactomic approach to characterize the NPM protein complex in Ewing's sarcoma cells. A gene suppression assay revealed that NPM promoted cell proliferation and the invasive properties of Ewing's sarcoma cells. FLAG-tag-based affinity purification coupled with liquid chromatography-tandem mass spectrometry identified 106 proteins in the NPM protein complex. The functional classification suggested that the NPM complex participates in critical biological events, including ribosome biogenesis, regulation of transcription and translation, and protein folding, that are mediated by these proteins. In addition to JAK1, a candidate prognostic biomarker for Ewing's sarcoma, the NPM complex, includes 11 proteins known as prognostic biomarkers for other malignancies. Meta-analysis of gene expression profiles of 32 patients with Ewing's sarcoma revealed that 6 of 106 were significantly and independently associated with survival period. These observations suggest a functional role as well as prognostic value of these NPM complex proteins in Ewing's sarcoma. Further, our study suggests the potential applications of interactomics in conjunction with meta-analysis for biomarker discovery. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Grouping annotations on the subcellular layered interactome demonstrates enhanced autophagy activity in a recurrent experimental autoimmune uveitis T cell line.

    Directory of Open Access Journals (Sweden)

    Xiuzhi Jia

    Full Text Available Human uveitis is a type of T cell-mediated autoimmune disease that often shows relapse-remitting courses affecting multiple biological processes. As a cytoplasmic process, autophagy has been seen as an adaptive response to cell death and survival, yet the link between autophagy and T cell-mediated autoimmunity is not certain. In this study, based on the differentially expressed genes (GSE19652 between the recurrent versus monophasic T cell lines, whose adoptive transfer to susceptible animals may result in respective recurrent or monophasic uveitis, we proposed grouping annotations on a subcellular layered interactome framework to analyze the specific bioprocesses that are linked to the recurrence of T cell autoimmunity. That is, the subcellular layered interactome was established by the Cytoscape and Cerebral plugin based on differential expression, global interactome, and subcellular localization information. Then, the layered interactomes were grouping annotated by the ClueGO plugin based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. The analysis showed that significant bioprocesses with autophagy were orchestrated in the cytoplasmic layered interactome and that mTOR may have a regulatory role in it. Furthermore, by setting up recurrent and monophasic uveitis in Lewis rats, we confirmed by transmission electron microscopy that, in comparison to the monophasic disease, recurrent uveitis in vivo showed significantly increased autophagy activity and extended lymphocyte infiltration to the affected retina. In summary, our framework methodology is a useful tool to disclose specific bioprocesses and molecular targets that can be attributed to a certain disease. Our results indicated that targeted inhibition of autophagy pathways may perturb the recurrence of uveitis.

  2. Feature Selection, Flaring Size and Time-to-Flare Prediction Using Support Vector Regression, and Automated Prediction of Flaring Behavior Based on Spatio-Temporal Measures Using Hidden Markov Models

    Science.gov (United States)

    Al-Ghraibah, Amani

    Solar flares release stored magnetic energy in the form of radiation and can have significant detrimental effects on earth including damage to technological infrastructure. Recent work has considered methods to predict future flare activity on the basis of quantitative measures of the solar magnetic field. Accurate advanced warning of solar flare occurrence is an area of increasing concern and much research is ongoing in this area. Our previous work 111] utilized standard pattern recognition and classification techniques to determine (classify) whether a region is expected to flare within a predictive time window, using a Relevance Vector Machine (RVM) classification method. We extracted 38 features which describing the complexity of the photospheric magnetic field, the result classification metrics will provide the baseline against which we compare our new work. We find a true positive rate (TPR) of 0.8, true negative rate (TNR) of 0.7, and true skill score (TSS) of 0.49. This dissertation proposes three basic topics; the first topic is an extension to our previous work [111, where we consider a feature selection method to determine an appropriate feature subset with cross validation classification based on a histogram analysis of selected features. Classification using the top five features resulting from this analysis yield better classification accuracies across a large unbalanced dataset. In particular, the feature subsets provide better discrimination of the many regions that flare where we find a TPR of 0.85, a TNR of 0.65 sightly lower than our previous work, and a TSS of 0.5 which has an improvement comparing with our previous work. In the second topic, we study the prediction of solar flare size and time-to-flare using support vector regression (SVR). When we consider flaring regions only, we find an average error in estimating flare size of approximately half a GOES class. When we additionally consider non-flaring regions, we find an increased average

  3. Spatiotemporal exploratory models for broad-scale survey data.

    Science.gov (United States)

    Fink, Daniel; Hochachka, Wesley M; Zuckerberg, Benjamin; Winkler, David W; Shaby, Ben; Munson, M Arthur; Hooker, Giles; Riedewald, Mirek; Sheldon, Daniel; Kelling, Steve

    2010-12-01

    The distributions of animal populations change and evolve through time. Migratory species exploit different habitats at different times of the year. Biotic and abiotic features that determine where a species lives vary due to natural and anthropogenic factors. This spatiotemporal variation needs to be accounted for in any modeling of species' distributions. In this paper we introduce a semiparametric model that provides a flexible framework for analyzing dynamic patterns of species occurrence and abundance from broad-scale survey data. The spatiotemporal exploratory model (STEM) adds essential spatiotemporal structure to existing techniques for developing species distribution models through a simple parametric structure without requiring a detailed understanding of the underlying dynamic processes. STEMs use a multi-scale strategy to differentiate between local and global-scale spatiotemporal structure. A user-specified species distribution model accounts for spatial and temporal patterning at the local level. These local patterns are then allowed to "scale up" via ensemble averaging to larger scales. This makes STEMs especially well suited for exploring distributional dynamics arising from a variety of processes. Using data from eBird, an online citizen science bird-monitoring project, we demonstrate that monthly changes in distribution of a migratory species, the Tree Swallow (Tachycineta bicolor), can be more accurately described with a STEM than a conventional bagged decision tree model in which spatiotemporal structure has not been imposed. We also demonstrate that there is no loss of model predictive power when a STEM is used to describe a spatiotemporal distribution with very little spatiotemporal variation; the distribution of a nonmigratory species, the Northern Cardinal (Cardinalis cardinalis).

  4. A hybrid spatiotemporal drought forecasting model for operational use

    Science.gov (United States)

    Vasiliades, L.; Loukas, A.

    2010-09-01

    Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. This study develops a hybrid spatiotemporal scheme for integrated spatial and temporal forecasting. Temporal forecasting is achieved using feed-forward neural networks and the temporal forecasts are extended to the spatial dimension using a spatial recurrent neural network model. The methodology is demonstrated for an operational meteorological drought index the Standardized Precipitation Index (SPI) calculated at multiple timescales. 48 precipitation stations and 18 independent precipitation stations, located at Pinios river basin in Thessaly region, Greece, were used for the development and spatiotemporal validation of the hybrid spatiotemporal scheme. Several quantitative temporal and spatial statistical indices were considered for the performance evaluation of the models. Furthermore, qualitative statistical criteria based on contingency tables between observed and forecasted drought episodes were calculated. The results show that the lead time of forecasting for operational use depends on the SPI timescale. The hybrid spatiotemporal drought forecasting model could be operationally used for forecasting up to three months ahead for SPI short timescales (e.g. 3-6 months) up to six months ahead for large SPI timescales (e.g. 24 months). The above findings could be useful in developing a drought preparedness plan in the region.

  5. Full-Scale Approximations of Spatio-Temporal Covariance Models for Large Datasets

    KAUST Repository

    Zhang, Bohai

    2014-01-01

    Various continuously-indexed spatio-temporal process models have been constructed to characterize spatio-temporal dependence structures, but the computational complexity for model fitting and predictions grows in a cubic order with the size of dataset and application of such models is not feasible for large datasets. This article extends the full-scale approximation (FSA) approach by Sang and Huang (2012) to the spatio-temporal context to reduce computational complexity. A reversible jump Markov chain Monte Carlo (RJMCMC) algorithm is proposed to select knots automatically from a discrete set of spatio-temporal points. Our approach is applicable to nonseparable and nonstationary spatio-temporal covariance models. We illustrate the effectiveness of our method through simulation experiments and application to an ozone measurement dataset.

  6. Lukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamic Models

    CERN Document Server

    Baianu, I C

    2004-01-01

    A categorical and Lukasiewicz-Topos framework for Lukasiewicz Algebraic Logic models of nonlinear dynamics in complex functional systems such as neural networks, genomes and cell interactomes is proposed. Lukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable 'next-state functions' is extended to a Lukasiewicz Topos with an n-valued Lukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis.

  7. The L1TD1 Protein Interactome Reveals the Importance of Post-transcriptional Regulation in Human Pluripotency

    Directory of Open Access Journals (Sweden)

    Maheswara Reddy Emani

    2015-03-01

    Full Text Available The RNA-binding protein L1TD1 is one of the most specific and abundant proteins in pluripotent stem cells and is essential for the maintenance of pluripotency in human cells. Here, we identify the protein interaction network of L1TD1 in human embryonic stem cells (hESCs and provide insights into the interactome network constructed in human pluripotent cells. Our data reveal that L1TD1 has an important role in RNA splicing, translation, protein traffic, and degradation. L1TD1 interacts with multiple stem-cell-specific proteins, many of which are still uncharacterized in the context of development. Further, we show that L1TD1 is a part of the pluripotency interactome network of OCT4, SOX2, and NANOG, bridging nuclear and cytoplasmic regulation and highlighting the importance of RNA biology in pluripotency.

  8. Sequential Elution Interactome Analysis of the Mind Bomb 1 Ubiquitin Ligase Reveals a Novel Role in Dendritic Spine Outgrowth*

    Science.gov (United States)

    Mertz, Joseph; Tan, Haiyan; Pagala, Vishwajeeth; Bai, Bing; Chen, Ping-Chung; Li, Yuxin; Cho, Ji-Hoon; Shaw, Timothy; Wang, Xusheng; Peng, Junmin

    2015-01-01

    The mind bomb 1 (Mib1) ubiquitin ligase is essential for controlling metazoan development by Notch signaling and possibly the Wnt pathway. It is also expressed in postmitotic neurons and regulates neuronal morphogenesis and synaptic activity by mechanisms that are largely unknown. We sought to comprehensively characterize the Mib1 interactome and study its potential function in neuron development utilizing a novel sequential elution strategy for affinity purification, in which Mib1 binding proteins were eluted under different stringency and then quantified by the isobaric labeling method. The strategy identified the Mib1 interactome with both deep coverage and the ability to distinguish high-affinity partners from low-affinity partners. A total of 817 proteins were identified during the Mib1 affinity purification, including 56 high-affinity partners and 335 low-affinity partners, whereas the remaining 426 proteins are likely copurified contaminants or extremely weak binding proteins. The analysis detected all previously known Mib1-interacting proteins and revealed a large number of novel components involved in Notch and Wnt pathways, endocytosis and vesicle transport, the ubiquitin-proteasome system, cellular morphogenesis, and synaptic activities. Immunofluorescence studies further showed colocalization of Mib1 with five selected proteins: the Usp9x (FAM) deubiquitinating enzyme, alpha-, beta-, and delta-catenins, and CDKL5. Mutations of CDKL5 are associated with early infantile epileptic encephalopathy-2 (EIEE2), a severe form of mental retardation. We found that the expression of Mib1 down-regulated the protein level of CDKL5 by ubiquitination, and antagonized CDKL5 function during the formation of dendritic spines. Thus, the sequential elution strategy enables biochemical characterization of protein interactomes; and Mib1 analysis provides a comprehensive interactome for investigating its role in signaling networks and neuronal development. PMID:25931508

  9. Spatiotemporal Wave Patterns: Information Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail Rabinovich; Lev Tsimring

    2006-01-20

    Pattern formation has traditionally been studied in non-equilibrium physics from the viewpoint of describing the basic structures and their interactions. While this is still an important area of research, the emphasis in the last few years has shifted towards analysis of specific properties of patterns in various complex media. For example, diverse and unexpected phenomena occur in neuro-like media that are characterized by highly non-trivial local dynamics. We carried out an active research program on analysis of spatio-temporal patterns in various physical systems (convection, oscillating fluid layer, soap film), as well as in neuro-like media, with an emphasis on informational aspects of the dynamics. Nonlinear nonequilibrium media and their discrete analogs have a unique ability to represent, memorize, and process the information contained in spatio-temporal patterns. Recent neurophysiological experiments demonstrated a certain universality of spatio-temporal representation of information by neural ensembles. Information processing is also revealed in the spatio-temporal dynamics of cellular patterns in nonequilibrium media. It is extremely important for many applications to study the informational aspects of these dynamics, including the origins and mechanisms of information generation, propagation and storage. Some of our results are: the discovery of self-organization of periodically oscillatory patterns in chaotic heterogeneous media; the analysis of the propagation of the information along a chaotic media as function of the entropy of the signal; the analysis of wave propagation in discrete non-equilibrium media with autocatalytic properties, which simulates the calcium dynamics in cellular membranes. Based on biological experiments we suggest the mechanism by which the spatial sensory information is transferred into the spatio-temporal code in the neural media. We also found a new mechanism of self-pinning in cellular structures and the related phenomenon

  10. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    International Nuclear Information System (INIS)

    Park, Sung-Dong; Cheon, So Yeong; Park, Tae-Yoon; Shin, Bo-Young; Oh, Hyunju; Ghosh, Sankar; Koo, Bon-Nyeo; Lee, Sang-Kyou

    2015-01-01

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model

  11. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Dong [Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Cheon, So Yeong [Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Park, Tae-Yoon; Shin, Bo-Young [Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Oh, Hyunju; Ghosh, Sankar [Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Koo, Bon-Nyeo, E-mail: koobn@yuhs.ac [Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Lee, Sang-Kyou, E-mail: sjrlee@yonsei.ac.kr [Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-08-28

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model.

  12. Spatio-Temporal Data Construction

    Directory of Open Access Journals (Sweden)

    Hai Ha Le

    2013-08-01

    Full Text Available On the route to a spatio-temporal geoscience information system, an appropriate data model for geo-objects in space and time has been developed. In this model, geo-objects are represented as sequences of geometries and properties with continuous evolution in each time interval. Because geomodeling software systems usually model objects at specific time instances, we want to interpolate the geometry and properties from two models of an object with only geometrical constraints (no physical or mechanical constraints. This process is called spatio-temporal data construction or morphological interpolation of intermediate geometries. This paper is strictly related to shape morphing, shape deformation, cross-parameterization and compatible remeshing and is only concerned with geological surfaces. In this study, two main sub-solutions construct compatible meshes and find trajectories in which vertices of the mesh evolve. This research aims to find an algorithm to construct spatio-temporal data with some constraints from the geosciences, such as cutting surfaces by faulting or fracturing phenomena and evolving boundaries attached to other surfaces. Another goal of this research is the implementation of the algorithm in a software product, namely a gOcad plug-in. The four main procedures of the algorithm are cutting the surfaces, setting up constraints, partitioning and calculating the parameterizations and trajectories. The software has been tested to construct data for a salt dome and other surfaces in regard to the geological processes of faulting, deposition and erosion. The result of this research is an algorithm and software for the construction of spatio-temporal data.

  13. Dynamic characterizers of spatiotemporal intermittency

    OpenAIRE

    Gupte, Neelima; Jabeen, Zahera

    2006-01-01

    Systems of coupled sine circle maps show regimes of spatiotemporally intermittent behaviour with associated scaling exponents which belong to the DP class, as well as regimes of spatially intermittent behaviour (with associated regular dynamical behaviour) which do not belong to the DP class. Both types of behaviour are seen along the bifurcation boundaries of the synchronized solutions, and contribute distinct signatures to the dynamical characterizers of the system, viz. the distribution of...

  14. Compressing spatio-temporal trajectories

    DEFF Research Database (Denmark)

    Gudmundsson, Joachim; Katajainen, Jyrki; Merrick, Damian

    2009-01-01

    such that the most common spatio-temporal queries can still be answered approximately after the compression has taken place. In the process, we develop an implementation of the Douglas–Peucker path-simplification algorithm which works efficiently even in the case where the polygonal path given as input is allowed...... to self-intersect. For a polygonal path of size n, the processing time is O(nlogkn) for k=2 or k=3 depending on the type of simplification....

  15. Visual representation of spatiotemporal structure

    Science.gov (United States)

    Schill, Kerstin; Zetzsche, Christoph; Brauer, Wilfried; Eisenkolb, A.; Musto, A.

    1998-07-01

    The processing and representation of motion information is addressed from an integrated perspective comprising low- level signal processing properties as well as higher-level cognitive aspects. For the low-level processing of motion information we argue that a fundamental requirement is the existence of a spatio-temporal memory. Its key feature, the provision of an orthogonal relation between external time and its internal representation, is achieved by a mapping of temporal structure into a locally distributed activity distribution accessible in parallel by higher-level processing stages. This leads to a reinterpretation of the classical concept of `iconic memory' and resolves inconsistencies on ultra-short-time processing and visual masking. The spatial-temporal memory is further investigated by experiments on the perception of spatio-temporal patterns. Results on the direction discrimination of motion paths provide evidence that information about direction and location are not processed and represented independent of each other. This suggests a unified representation on an early level, in the sense that motion information is internally available in form of a spatio-temporal compound. For the higher-level representation we have developed a formal framework for the qualitative description of courses of motion that may occur with moving objects.

  16. Comprehensive RNA Polymerase II Interactomes Reveal Distinct and Varied Roles for Each Phospho-CTD Residue

    Directory of Open Access Journals (Sweden)

    Kevin M. Harlen

    2016-06-01

    Full Text Available Transcription controls splicing and other gene regulatory processes, yet mechanisms remain obscure due to our fragmented knowledge of the molecular connections between the dynamically phosphorylated RNA polymerase II (Pol II C-terminal domain (CTD and regulatory factors. By systematically isolating phosphorylation states of the CTD heptapeptide repeat (Y1S2P3T4S5P6S7, we identify hundreds of protein factors that are differentially enriched, revealing unappreciated connections between the Pol II CTD and co-transcriptional processes. These data uncover a role for threonine-4 in 3′ end processing through control of the transition between cleavage and termination. Furthermore, serine-5 phosphorylation seeds spliceosomal assembly immediately downstream of 3′ splice sites through a direct interaction with spliceosomal subcomplex U1. Strikingly, threonine-4 phosphorylation also impacts splicing by serving as a mark of co-transcriptional spliceosome release and ensuring efficient post-transcriptional splicing genome-wide. Thus, comprehensive Pol II interactomes identify the complex and functional connections between transcription machinery and other gene regulatory complexes.

  17. Mapping the Interactome of a Major Mammalian Endoplasmic Reticulum Heat Shock Protein 90.

    Directory of Open Access Journals (Sweden)

    Feng Hong

    Full Text Available Up to 10% of cytosolic proteins are dependent on the mammalian heat shock protein 90 (HSP90 for folding. However, the interactors of its endoplasmic reticulum (ER paralogue (gp96, Grp94 and HSP90b1 has not been systematically identified. By combining genetic and biochemical approaches, we have comprehensively mapped the interactome of gp96 in macrophages and B cells. A total of 511 proteins were reduced in gp96 knockdown cells, compared to levels observed in wild type cells. By immunoprecipitation, we found that 201 proteins associated with gp96. Gene Ontology analysis indicated that these proteins are involved in metabolism, transport, translation, protein folding, development, localization, response to stress and cellular component biogenesis. While known gp96 clients such as integrins, Toll-like receptors (TLRs and Wnt co-receptor LRP6, were confirmed, cell surface HSP receptor CD91, TLR4 pathway protein CD180, WDR1, GANAB and CAPZB were identified as potentially novel substrates of gp96. Taken together, our study establishes gp96 as a critical chaperone to integrate innate immunity, Wnt signaling and organ development.

  18. Characterization of hampin/MSL1 as a node in the nuclear interactome

    International Nuclear Information System (INIS)

    Dmitriev, Ruslan I.; Korneenko, Tatyana V.; Bessonov, Alexander A.; Shakhparonov, Mikhail I.; Modyanov, Nikolai N.; Pestov, Nikolay B.

    2007-01-01

    Hampin, homolog of Drosophila MSL1, is a partner of histone acetyltransferase MYST1/MOF. Functions of these proteins remain poorly understood beyond their participation in chromatin remodeling complex MSL. In order to identify new proteins interacting with hampin, we screened a mouse cDNA library in yeast two-hybrid system with mouse hampin as bait and found five high-confidence interactors: MYST1, TPR proteins TTC4 and KIAA0103, NOP17 (homolog of a yeast nucleolar protein), and transcription factor GC BP. Subsequently, all these proteins were used as baits in library screenings and more new interactions were found: tumor suppressor RASSF1C and spliceosome component PRP3 for KIAA0103, ring finger RNF10 for RASSF1C, and RNA polymerase II regulator NELF-C for MYST1. The majority of the observed interactions was confirmed in vitro by pull-down of bacterially expressed proteins. Reconstruction of a fragment of mammalian interactome suggests that hampin may be linked to diverse regulatory processes in the nucleus

  19. Making connections for life: an in vivo map of the yeast interactome.

    Science.gov (United States)

    Kast, Juergen

    2008-10-01

    Proteins are the true workhorses of any cell. To carry out specific tasks, they frequently bind other molecules in their surroundings. Due to their structural complexity and flexibility, the most diverse array of interactions is seen with other proteins. The different geometries and affinities available for such interactions typically bestow specific functions on proteins. Having available a map of protein-protein interactions is therefore of enormous importance for any researcher interested in gaining insight into biological systems at the level of cells and organisms. In a recent report, a novel approach has been employed that relies on the spontaneous folding of complementary enzyme fragments fused to two different proteins to test whether these interact in their actual cellular context [Tarassov et al., Science 320, 1465-1470 (2008)]. Genome-wide application of this protein-fragment complementation assay has resulted in the first map of the in vivo interactome of Saccharomyces cerevisiae. The current data show striking similarities but also significant differences to those obtained using other large-scale approaches for the same task. This warrants a general discussion of the current state of affairs of protein-protein interaction studies and foreseeable future trends, highlighting their significance for a variety of applications and their potential to revolutionize our understanding of the architecture and dynamics of biological systems.

  20. Tensor-based spatiotemporal saliency detection

    Science.gov (United States)

    Dou, Hao; Li, Bin; Deng, Qianqian; Zhang, LiRui; Pan, Zhihong; Tian, Jinwen

    2018-03-01

    This paper proposes an effective tensor-based spatiotemporal saliency computation model for saliency detection in videos. First, we construct the tensor representation of video frames. Then, the spatiotemporal saliency can be directly computed by the tensor distance between different tensors, which can preserve the complete temporal and spatial structure information of object in the spatiotemporal domain. Experimental results demonstrate that our method can achieve encouraging performance in comparison with the state-of-the-art methods.

  1. Bayesian spatio-temporal modeling of particulate matter concentrations in Peninsular Malaysia

    Science.gov (United States)

    Manga, Edna; Awang, Norhashidah

    2016-06-01

    This article presents an application of a Bayesian spatio-temporal Gaussian process (GP) model on particulate matter concentrations from Peninsular Malaysia. We analyze daily PM10 concentration levels from 35 monitoring sites in June and July 2011. The spatiotemporal model set in a Bayesian hierarchical framework allows for inclusion of informative covariates, meteorological variables and spatiotemporal interactions. Posterior density estimates of the model parameters are obtained by Markov chain Monte Carlo methods. Preliminary data analysis indicate information on PM10 levels at sites classified as industrial locations could explain part of the space time variations. We include the site-type indicator in our modeling efforts. Results of the parameter estimates for the fitted GP model show significant spatio-temporal structure and positive effect of the location-type explanatory variable. We also compute some validation criteria for the out of sample sites that show the adequacy of the model for predicting PM10 at unmonitored sites.

  2. Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution

    NARCIS (Netherlands)

    Kilibarda, M.; Hengl, T.; Heuvelink, G.B.M.; Graler, B.; Pebesma, E.; Tadic, M.P.; Bajat, B.

    2014-01-01

    Combined Global Surface Summary of Day and European Climate Assessment and Dataset daily meteorological data sets (around 9000 stations) were used to build spatio-temporal geostatistical models and predict daily air temperature at ground resolution of 1km for the global land mass. Predictions in

  3. Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D + T

    NARCIS (Netherlands)

    Gasch, C.K.; Hengl, Tom; Gräler, Benedikt; Meyer, Hanna; Magney, T.S.; Brown, D.J.

    2015-01-01

    The paper describes a framework for modeling dynamic soil properties in 3-dimensions and time (3D + T) using soil data collected with automated sensor networks as a case study. Two approaches to geostatistical modeling and spatio-temporal predictions are described: (1) 3D + T predictive modeling

  4. Against Laplacian Reduction of Newtonian Mass to Spatiotemporal Quantities

    Science.gov (United States)

    Martens, Niels C. M.

    2018-03-01

    Laplace wondered about the minimal choice of initial variables and parameters corresponding to a well-posed initial value problem. Discussions of Laplace's problem in the literature have focused on choosing between spatiotemporal variables relative to absolute space (i.e. substantivalism) or merely relative to other material bodies (i.e. relationalism) and between absolute masses (i.e. absolutism) or merely mass ratios (i.e. comparativism). This paper extends these discussions of Laplace's problem, in the context of Newtonian Gravity, by asking whether mass needs to be included in the initial state at all, or whether a purely spatiotemporal initial state suffices. It is argued that mass indeed needs to be included; removing mass from the initial state drastically reduces the predictive and explanatory power of Newtonian Gravity.

  5. Precursor of transition to turbulence: spatiotemporal wave front.

    Science.gov (United States)

    Bhaumik, S; Sengupta, T K

    2014-04-01

    To understand transition to turbulence via 3D disturbance growth, we report here results obtained from the solution of Navier-Stokes equation (NSE) to reproduce experimental results obtained by minimizing background disturbances and imposing deterministic excitation inside the shear layer. A similar approach was adopted in Sengupta and Bhaumik [Phys. Rev. Lett. 107, 154501 (2011)], where a route of transition from receptivity to fully developed turbulent stage was explained for 2D flow in terms of the spatio-temporal wave-front (STWF). The STWF was identified as the unit process of 2D turbulence creation for low amplitude wall excitation. Theoretical prediction of STWF for boundary layer was established earlier in Sengupta, Rao, and Venkatasubbaiah [Phys. Rev. Lett. 96, 224504 (2006)] from the Orr-Sommerfeld equation as due to spatiotemporal instability. Here, the same unit process of the STWF during transition is shown to be present for 3D disturbance field from the solution of governing NSE.

  6. Spatiotemporal chaos involving wave instability.

    Science.gov (United States)

    Berenstein, Igal; Carballido-Landeira, Jorge

    2017-01-01

    In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.

  7. Noise tolerant spatiotemporal chaos computing.

    Science.gov (United States)

    Kia, Behnam; Kia, Sarvenaz; Lindner, John F; Sinha, Sudeshna; Ditto, William L

    2014-12-01

    We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.

  8. Interactomes to Biological Phase Space: a call to begin thinking at a new level in computational biology.

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, George S.; Brown, William Michael

    2007-09-01

    Techniques for high throughput determinations of interactomes, together with high resolution protein collocalizations maps within organelles and through membranes will soon create a vast resource. With these data, biological descriptions, akin to the high dimensional phase spaces familiar to physicists, will become possible. These descriptions will capture sufficient information to make possible realistic, system-level models of cells. The descriptions and the computational models they enable will require powerful computing techniques. This report is offered as a call to the computational biology community to begin thinking at this scale and as a challenge to develop the required algorithms and codes to make use of the new data.3

  9. SPATIOTEMPORAL CONTRAST SENSITIVITY OF EARLY VISION

    NARCIS (Netherlands)

    Hateren, J.H. van

    Based on the spatial and temporal statistics of natural images, a theory is developed that specifies spatiotemporal filters that maximize the flow of information through noisy channels of limited dynamic range. Sensitivities resulting from these spatiotemporal filters are very similar to the human

  10. Spatiotemporal Thinking in the Geosciences

    Science.gov (United States)

    Shipley, T. F.; Manduca, C. A.; Ormand, C. J.; Tikoff, B.

    2011-12-01

    Reasoning about spatial relations is a critical skill for geoscientists. Within the geosciences different disciplines may reason about different sorts of relationships. These relationships may span vastly different spatial and temporal scales (from the spatial alignment in atoms in crystals to the changes in the shape of plates). As part of work in a research center on spatial thinking in STEM education, we have been working to classify the spatial skills required in geology, develop tests for each spatial skill, and develop the cognitive science tools to promote the critical spatial reasoning skills. Research in psychology, neurology and linguistics supports a broad classification of spatial skills along two dimensions: one versus many objects (which roughly translates to object- focused and navigation focused skills) and static versus dynamic spatial relations. The talk will focus on the interaction of space and time in spatial cognition in the geosciences. We are working to develop measures of skill in visualizing spatiotemporal changes. A new test developed to measure visualization of brittle deformations will be presented. This is a skill that has not been clearly recognized in the cognitive science research domain and thus illustrates the value of interdisciplinary work that combines geosciences with cognitive sciences. Teaching spatiotemporal concepts can be challenging. Recent theoretical work suggests analogical reasoning can be a powerful tool to aid student learning to reason about temporal relations using spatial skills. Recent work in our lab has found that progressive alignment of spatial and temporal scales promotes accurate reasoning about temporal relations at geological time scales.

  11. Integration of multiple biological features yields high confidence human protein interactome.

    Science.gov (United States)

    Karagoz, Kubra; Sevimoglu, Tuba; Arga, Kazim Yalcin

    2016-08-21

    The biological function of a protein is usually determined by its physical interaction with other proteins. Protein-protein interactions (PPIs) are identified through various experimental methods and are stored in curated databases. The noisiness of the existing PPI data is evident, and it is essential that a more reliable data is generated. Furthermore, the selection of a set of PPIs at different confidence levels might be necessary for many studies. Although different methodologies were introduced to evaluate the confidence scores for binary interactions, a highly reliable, almost complete PPI network of Homo sapiens is not proposed yet. The quality and coverage of human protein interactome need to be improved to be used in various disciplines, especially in biomedicine. In the present work, we propose an unsupervised statistical approach to assign confidence scores to PPIs of H. sapiens. To achieve this goal PPI data from six different databases were collected and a total of 295,288 non-redundant interactions between 15,950 proteins were acquired. The present scoring system included the context information that was assigned to PPIs derived from eight biological attributes. A high confidence network, which included 147,923 binary interactions between 13,213 proteins, had scores greater than the cutoff value of 0.80, for which sensitivity, specificity, and coverage were 94.5%, 80.9%, and 82.8%, respectively. We compared the present scoring method with others for evaluation. Reducing the noise inherent in experimental PPIs via our scoring scheme increased the accuracy significantly. As it was demonstrated through the assessment of process and cancer subnetworks, this study allows researchers to construct and analyze context-specific networks via valid PPI sets and one can easily achieve subnetworks around proteins of interest at a specified confidence level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. An affinity pull-down approach to identify the plant cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth; Meier, Stuart Kurt

    2013-01-01

    Cyclic nucleotides (CNs) are intracellular second messengers that play an important role in mediating physiological responses to environmental and developmental signals, in species ranging from bacteria to humans. In response to these signals, CNs are synthesized by nucleotidyl cyclases and then act by binding to and altering the activity of downstream target proteins known as cyclic nucleotide-binding proteins (CNBPs). A number of CNBPs have been identified across kingdoms including transcription factors, protein kinases, phosphodiesterases, and channels, all of which harbor conserved CN-binding domains. In plants however, few CNBPs have been identified as homology searches fail to return plant sequences with significant matches to known CNBPs. Recently, affinity pull-down techniques have been successfully used to identify CNBPs in animals and have provided new insights into CN signaling. The application of these techniques to plants has not yet been extensively explored and offers an alternative approach toward the unbiased discovery of novel CNBP candidates in plants. Here, an affinity pull-down technique for the identification of the plant CN interactome is presented. In summary, the method involves an extraction of plant proteins which is incubated with a CN-bait, followed by a series of increasingly stringent elutions that eliminates proteins in a sequential manner according to their affinity to the bait. The eluted and bait-bound proteins are separated by one-dimensional gel electrophoresis, excised, and digested with trypsin after which the resultant peptides are identified by mass spectrometry - techniques that are commonplace in proteomics experiments. The discovery of plant CNBPs promises to provide valuable insight into the mechanism of CN signal transduction in plants. © Springer Science+Business Media New York 2013.

  13. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Koning, Anne; Kuhnle, Gunter G C; Nagy, Peter; Bianco, Christopher L; Pasch, Andreas; Wink, David A; Fukuto, Jon M; Jackson, Alan A; van Goor, Harry; Olson, Kenneth R; Feelisch, Martin

    2017-10-01

    Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 00, 000-000.

  14. The Interactomic Analysis Reveals Pathogenic Protein Networks in Phomopsis longicolla Underlying Seed Decay of Soybean

    Directory of Open Access Journals (Sweden)

    Shuxian Li

    2018-04-01

    Full Text Available Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla is the primary cause of Phomopsis seed decay (PSD in soybean, Glycine max (L. Merrill. This disease results in poor seed quality and is one of the most economically important seed diseases in soybean. The objectives of this study were to infer protein–protein interactions (PPI and to identify conserved global networks and pathogenicity subnetworks in P. longicolla including orthologous pathways for cell signaling and pathogenesis. The interlog method used in the study identified 215,255 unique PPIs among 3,868 proteins. There were 1,414 pathogenicity related genes in P. longicolla identified using the pathogen host interaction (PHI database. Additionally, 149 plant cell wall degrading enzymes (PCWDE were detected. The network captured five different classes of carbohydrate degrading enzymes, including the auxiliary activities, carbohydrate esterases, glycoside hydrolases, glycosyl transferases, and carbohydrate binding molecules. From the PPI analysis, novel interacting partners were determined for each of the PCWDE classes. The most predominant class of PCWDE was a group of 60 glycoside hydrolases proteins. The glycoside hydrolase subnetwork was found to be interacting with 1,442 proteins within the network and was among the largest clusters. The orthologous proteins FUS3, HOG, CYP1, SGE1, and the g5566t.1 gene identified in this study could play an important role in pathogenicity. Therefore, the P. longicolla protein interactome (PiPhom generated in this study can lead to a better understanding of PPIs in soybean pathogens. Furthermore, the PPI may aid in targeting of genes and proteins for further studies of the pathogenicity mechanisms.

  15. An affinity pull-down approach to identify the plant cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth

    2013-09-03

    Cyclic nucleotides (CNs) are intracellular second messengers that play an important role in mediating physiological responses to environmental and developmental signals, in species ranging from bacteria to humans. In response to these signals, CNs are synthesized by nucleotidyl cyclases and then act by binding to and altering the activity of downstream target proteins known as cyclic nucleotide-binding proteins (CNBPs). A number of CNBPs have been identified across kingdoms including transcription factors, protein kinases, phosphodiesterases, and channels, all of which harbor conserved CN-binding domains. In plants however, few CNBPs have been identified as homology searches fail to return plant sequences with significant matches to known CNBPs. Recently, affinity pull-down techniques have been successfully used to identify CNBPs in animals and have provided new insights into CN signaling. The application of these techniques to plants has not yet been extensively explored and offers an alternative approach toward the unbiased discovery of novel CNBP candidates in plants. Here, an affinity pull-down technique for the identification of the plant CN interactome is presented. In summary, the method involves an extraction of plant proteins which is incubated with a CN-bait, followed by a series of increasingly stringent elutions that eliminates proteins in a sequential manner according to their affinity to the bait. The eluted and bait-bound proteins are separated by one-dimensional gel electrophoresis, excised, and digested with trypsin after which the resultant peptides are identified by mass spectrometry - techniques that are commonplace in proteomics experiments. The discovery of plant CNBPs promises to provide valuable insight into the mechanism of CN signal transduction in plants. © Springer Science+Business Media New York 2013.

  16. Comprehensively Characterizing the Thioredoxin Interactome In Vivo Highlights the Central Role Played by This Ubiquitous Oxidoreductase in Redox Control*

    Science.gov (United States)

    Arts, Isabelle S.; Vertommen, Didier; Baldin, Francesca; Laloux, Géraldine; Collet, Jean-François

    2016-01-01

    Thioredoxin (Trx) is a ubiquitous oxidoreductase maintaining protein-bound cysteine residues in the reduced thiol state. Here, we combined a well-established method to trap Trx substrates with the power of bacterial genetics to comprehensively characterize the in vivo Trx redox interactome in the model bacterium Escherichia coli. Using strains engineered to optimize trapping, we report the identification of a total 268 Trx substrates, including 201 that had never been reported to depend on Trx for reduction. The newly identified Trx substrates are involved in a variety of cellular processes, ranging from energy metabolism to amino acid synthesis and transcription. The interaction between Trx and two of its newly identified substrates, a protein required for the import of most carbohydrates, PtsI, and the bacterial actin homolog MreB was studied in detail. We provide direct evidence that PtsI and MreB contain cysteine residues that are susceptible to oxidation and that participate in the formation of an intermolecular disulfide with Trx. By considerably expanding the number of Trx targets, our work highlights the role played by this major oxidoreductase in a variety of cellular processes. Moreover, as the dependence on Trx for reduction is often conserved across species, it also provides insightful information on the interactome of Trx in organisms other than E. coli. PMID:27081212

  17. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders

    Directory of Open Access Journals (Sweden)

    C. J. Carter

    2013-01-01

    Full Text Available Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (multiple sclerosis, and autism (, but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD to 33% (MS of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as to the disease itself.

  18. Spatiotemporal behavior and nonlinear dynamics in a phase conjugate resonator

    Science.gov (United States)

    Liu, Siuying Raymond

    1993-01-01

    The work described can be divided into two parts. The first part is an investigation of the transient behavior and stability property of a phase conjugate resonator (PCR) below threshold. The second part is an experimental and theoretical study of the PCR's spatiotemporal dynamics above threshold. The time-dependent coupled wave equations for four-wave mixing (FWM) in a photorefractive crystal, with two distinct interaction regions caused by feedback from an ordinary mirror, was used to model the transient dynamics of a PCR below threshold. The conditions for self-oscillation were determined and the solutions were used to define the PCR's transfer function and analyze its stability. Experimental results for the buildup and decay times confirmed qualitatively the predicted behavior. Experiments were carried out above threshold to study the spatiotemporal dynamics of the PCR as a function of Pragg detuning and the resonator's Fresnel number. The existence of optical vortices in the wavefront were identified by optical interferometry. It was possible to describe the transverse dynamics and the spatiotemporal instabilities by modeling the three-dimensional-coupled wave equations in photorefractive FWM using a truncated modal expansion approach.

  19. Spatio-temporal dynamics of growth and survival of Lesser Sandeel early life-stages in the North Sea: Predictions from a coupled individual-based and hydrodynamic-biogeochemical model

    DEFF Research Database (Denmark)

    Gurkan, Zeren; Christensen, Asbjørn; Maar, Marie

    2013-01-01

    Accounting for the individual variability and regional variations are important when predicting recruitment in fish species. Spatially explicit descriptions for recruitment in sandeels are necessary and sandeel growth and survival depend locally on zooplankton prey. We investigate the responses o...

  20. Frontotemporal dysregulation of the SNARE protein interactome is associated with faster cognitive decline in old age.

    Science.gov (United States)

    Ramos-Miguel, Alfredo; Jones, Andrea A; Sawada, Ken; Barr, Alasdair M; Bayer, Thomas A; Falkai, Peter; Leurgans, Sue E; Schneider, Julie A; Bennett, David A; Honer, William G

    2018-06-01

    The molecular underpinnings associated with cognitive reserve remain poorly understood. Because animal models fail to fully recapitulate the complexity of human brain aging, postmortem studies from well-designed cohorts are crucial to unmask mechanisms conferring cognitive resistance against cumulative neuropathologies. We tested the hypothesis that functionality of the SNARE protein interactome might be an important resilience factor preserving cognitive abilities in old age. Cognition was assessed annually in participants from the Rush "Memory and Aging Project" (MAP), a community-dwelling cohort representative of the overall aging population. Associations between cognition and postmortem neurochemical data were evaluated in functional assays quantifying various species of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) machinery in samples from the inferior temporal (IT, n = 154) and middle-frontal (MF, n = 174) gyri. Using blue-native gel electrophoresis, we isolated and quantified several types of complexes containing the three SNARE proteins (syntaxin-1, SNAP25, VAMP), as well as the GABAergic/glutamatergic selectively expressed complexins-I/II (CPLX1/2), in brain tissue homogenates and reconstitution assays with recombinant proteins. Multivariate analyses revealed significant associations between IT and MF neurochemical data (SNARE proteins and/or complexes), and multiple age-related neuropathologies, as well as with multiple cognitive domains of MAP participants. Controlling for demographic variables, neuropathologic indices and total synapse density, we found that temporal 150-kDa SNARE species (representative of pan-synaptic functionality) and frontal CPLX1/CPLX2 ratio of 500-kDa heteromeric species (representative of inhibitory/excitatory input functionality) were, among all the immunocharacterized complexes, the strongest predictors of cognitive function nearest death. Interestingly, these two neurochemical

  1. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins

    Directory of Open Access Journals (Sweden)

    Rebecca Bish

    2015-07-01

    Full Text Available DDX6 (p54/RCK is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins. The screen is highly specific, maximizing the number of true positives, as demonstrated by the validation of 81% (47/58 of the RNA-independent interactors through known functions and interactions. Importantly, we minimize the number of indirect interaction partners through use of a nuclease-based digestion to eliminate RNA. We describe eleven new interactors, including proteins involved in splicing which is an as-yet unknown role for DDX6. We validated and characterized in more detail the interaction of DDX6 with Nuclear fragile X mental retardation-interacting protein 2 (NUFIP2 and with two previously uncharacterized proteins, FAM195A and FAM195B (here referred to as granulin-1 and granulin-2, or GRAN1 and GRAN2. We show that NUFIP2, GRAN1, and GRAN2 are not P-body components, but re-localize to stress granules upon exposure to stress, suggesting a function in translation repression in the cellular stress response. Using a complementary analysis that resolved DDX6’s multiple complex memberships, we further validated these interaction partners and the presence of splicing factors. As DDX6 also interacts with the E3 SUMO ligase TIF1β, we tested for and observed a significant enrichment of sumoylation amongst DDX6’s interaction partners. Our results represent the most comprehensive screen for direct interaction partners of a key regulator of RNA life cycle and localization, highlighting new stress granule components and possible DDX6 functions

  2. Systematic differences in signal emitting and receiving revealed by PageRank analysis of a human protein interactome.

    Directory of Open Access Journals (Sweden)

    Donglei Du

    Full Text Available Most protein PageRank studies do not use signal flow direction information in protein interactions because this information was not readily available in large protein databases until recently. Therefore, four questions have yet to be answered: A What is the general difference between signal emitting and receiving in a protein interactome? B Which proteins are among the top ranked in directional ranking? C Are high ranked proteins more evolutionarily conserved than low ranked ones? D Do proteins with similar ranking tend to have similar subcellular locations? In this study, we address these questions using the forward, reverse, and non-directional PageRank approaches to rank an information-directional network of human proteins and study their evolutionary conservation. The forward ranking gives credit to information receivers, reverse ranking to information emitters, and non-directional ranking mainly to the number of interactions. The protein lists generated by the forward and non-directional rankings are highly correlated, but those by the reverse and non-directional rankings are not. The results suggest that the signal emitting/receiving system is characterized by key-emittings and relatively even receivings in the human protein interactome. Signaling pathway proteins are frequent in top ranked ones. Eight proteins are both informational top emitters and top receivers. Top ranked proteins, except a few species-related novel-function ones, are evolutionarily well conserved. Protein-subunit ranking position reflects subunit function. These results demonstrate the usefulness of different PageRank approaches in characterizing protein networks and provide insights to protein interaction in the cell.

  3. Systematic differences in signal emitting and receiving revealed by PageRank analysis of a human protein interactome.

    Science.gov (United States)

    Du, Donglei; Lee, Connie F; Li, Xiu-Qing

    2012-01-01

    Most protein PageRank studies do not use signal flow direction information in protein interactions because this information was not readily available in large protein databases until recently. Therefore, four questions have yet to be answered: A) What is the general difference between signal emitting and receiving in a protein interactome? B) Which proteins are among the top ranked in directional ranking? C) Are high ranked proteins more evolutionarily conserved than low ranked ones? D) Do proteins with similar ranking tend to have similar subcellular locations? In this study, we address these questions using the forward, reverse, and non-directional PageRank approaches to rank an information-directional network of human proteins and study their evolutionary conservation. The forward ranking gives credit to information receivers, reverse ranking to information emitters, and non-directional ranking mainly to the number of interactions. The protein lists generated by the forward and non-directional rankings are highly correlated, but those by the reverse and non-directional rankings are not. The results suggest that the signal emitting/receiving system is characterized by key-emittings and relatively even receivings in the human protein interactome. Signaling pathway proteins are frequent in top ranked ones. Eight proteins are both informational top emitters and top receivers. Top ranked proteins, except a few species-related novel-function ones, are evolutionarily well conserved. Protein-subunit ranking position reflects subunit function. These results demonstrate the usefulness of different PageRank approaches in characterizing protein networks and provide insights to protein interaction in the cell.

  4. Synaptic Interactome Mining Reveals p140Cap as a New Hub for PSD Proteins Involved in Psychiatric and Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Annalisa Alfieri

    2017-06-01

    Full Text Available Altered synaptic function has been associated with neurological and psychiatric conditions including intellectual disability, schizophrenia and autism spectrum disorder (ASD. Amongst the recently discovered synaptic proteins is p140Cap, an adaptor that localizes at dendritic spines and regulates their maturation and physiology. We recently showed that p140Cap knockout mice have cognitive deficits, impaired long-term potentiation (LTP and long-term depression (LTD, and immature, filopodia-like dendritic spines. Only a few p140Cap interacting proteins have been identified in the brain and the molecular complexes and pathways underlying p140Cap synaptic function are largely unknown. Here, we isolated and characterized the p140Cap synaptic interactome by co-immunoprecipitation from crude mouse synaptosomes, followed by mass spectrometry-based proteomics. We identified 351 p140Cap interactors and found that they cluster to sub complexes mostly located in the postsynaptic density (PSD. p140Cap interactors converge on key synaptic processes, including transmission across chemical synapses, actin cytoskeleton remodeling and cell-cell junction organization. Gene co-expression data further support convergent functions: the p140Cap interactors are tightly co-expressed with each other and with p140Cap. Importantly, the p140Cap interactome and its co-expression network show strong enrichment in genes associated with schizophrenia, autism, bipolar disorder, intellectual disability and epilepsy, supporting synaptic dysfunction as a shared biological feature in brain diseases. Overall, our data provide novel insights into the molecular organization of the synapse and indicate that p140Cap acts as a hub for postsynaptic complexes relevant to psychiatric and neurological disorders.

  5. Elimination of spiral waves and spatiotemporal chaos by the pulse with a specific spatiotemporal configuration

    International Nuclear Information System (INIS)

    Yuan Guoyong; Yang Shiping; Wang Guangrui; Chen Shigang

    2008-01-01

    Spiral waves and spatiotemporal chaos are sometimes harmful and should be controlled. In this paper spiral waves and spatiotemporal chaos are successfully eliminated by the pulse with a very specific spatiotemporal configuration. The excited position D of spiral waves or spatiotemporal chaos is first recorded at an arbitrary time (t 0 ). When the system at the domain D enters a recovering state, the external pulse is injected into the domain. If the intensity and the working time of the pulse are appropriate, spiral waves and spatiotemporal chaos can finally be eliminated because counter-directional waves can be generated by the pulse. There are two advantages in the method. One is that the tip can be quickly eliminated together with the body of spiral wave, and the other is that the injected pulse may be weak and the duration can be very short so that the original system is nearly not affected, which is important for practical applications

  6. Using nonlinearity and spatiotemporal property modulation to control effective structural properties: dynamic rods

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Blekhman, Iliya I.

    2007-01-01

    What are the effective properties of a generally nonlinear material or structure, whose local properties are modulated in both space and time? It has been suggested to use spatiotemporal modulation of structural properties to create materials and structures with adjustable effective properties......, and to call these dynamic materials or spatiotemporal composites. Also, according to theoretical predictions, structural nonlinearity enhances the possibilities of achieving specific effective properties. For example, with an elastic rod having cubical elastic nonlinearities, it seems possible to control......, and exemplified. Then simple approximate analytical expressions are derived for the effective wave speed and natural frequencies for one-dimensional wave propagation in a nonlinear elastic rod, where the spatiotemporal modulation is imposed as a high-frequency standing wave, supposed to be given. Finally the more...

  7. Bayesian spatio-temporal analysis and geospatial risk factors of human monocytic ehrlichiosis.

    Directory of Open Access Journals (Sweden)

    Ram K Raghavan

    Full Text Available Variations in spatio-temporal patterns of Human Monocytic Ehrlichiosis (HME infection in the state of Kansas, USA were examined and the relationship between HME relative risk and various environmental, climatic and socio-economic variables were evaluated. HME data used in the study was reported to the Kansas Department of Health and Environment between years 2005-2012, and geospatial variables representing the physical environment [National Land cover/Land use, NASA Moderate Resolution Imaging Spectroradiometer (MODIS], climate [NASA MODIS, Prediction of Worldwide Renewable Energy (POWER], and socio-economic conditions (US Census Bureau were derived from publicly available sources. Following univariate screening of candidate variables using logistic regressions, two Bayesian hierarchical models were fit; a partial spatio-temporal model with random effects and a spatio-temporal interaction term, and a second model that included additional covariate terms. The best fitting model revealed that spatio-temporal autocorrelation in Kansas increased steadily from 2005-2012, and identified poverty status, relative humidity, and an interactive factor, 'diurnal temperature range x mixed forest area' as significant county-level risk factors for HME. The identification of significant spatio-temporal pattern and new risk factors are important in the context of HME prevention, for future research in the areas of ecology and evolution of HME, and as well as climate change impacts on tick-borne diseases.

  8. Spatiotemporal Features for Asynchronous Event-based Data

    Directory of Open Access Journals (Sweden)

    Xavier eLagorce

    2015-02-01

    Full Text Available Bio-inspired asynchronous event-based vision sensors are currently introducing a paradigm shift in visual information processing. These new sensors rely on a stimulus-driven principle of light acquisition similar to biological retinas. They are event-driven and fully asynchronous, thereby reducing redundancy and encoding exact times of input signal changes, leading to a very precise temporal resolution. Approaches for higher-level computer vision often rely on the realiable detection of features in visual frames, but similar definitions of features for the novel dynamic and event-based visual input representation of silicon retinas have so far been lacking. This article addresses the problem of learning and recognizing features for event-based vision sensors, which capture properties of truly spatiotemporal volumes of sparse visual event information. A novel computational architecture for learning and encoding spatiotemporal features is introduced based on a set of predictive recurrent reservoir networks, competing via winner-take-all selection. Features are learned in an unsupervised manner from real-world input recorded with event-based vision sensors. It is shown that the networks in the architecture learn distinct and task-specific dynamic visual features, and can predict their trajectories over time.

  9. Mercury Toolset for Spatiotemporal Metadata

    Science.gov (United States)

    Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce; Rhyne, B. Timothy; Lindsley, Chris

    2010-06-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily)harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  10. Mercury Toolset for Spatiotemporal Metadata

    Science.gov (United States)

    Wilson, Bruce E.; Palanisamy, Giri; Devarakonda, Ranjeet; Rhyne, B. Timothy; Lindsley, Chris; Green, James

    2010-01-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily) harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  11. Dynamic decomposition of spatiotemporal neural signals.

    Directory of Open Access Journals (Sweden)

    Luca Ambrogioni

    2017-05-01

    Full Text Available Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals.

  12. Optimization of Spatiotemporal Apertures in Channel Sounding

    DEFF Research Database (Denmark)

    Pedersen, Troels; Pedersen, Claus; Yin, Xuefeng

    2008-01-01

    a spatiotemporal model which can describe parallel as well as switched sounding systems. The proposed model is applicable for arbitrary layouts of the spatial arrays. To simplify the derivations we investigate the special case of linear spatial arrays. However, the results obtained for linear arrays can......In this paper we investigate the impact of the spatio-temporal aperture of a channel sounding system equipped with antenna arrays at the transmitter and receiver on the accuracy of joint estimation of Doppler frequency and bi-direction. The contribution of this work is three-fold. Firstly, we state...... be generalized to arbitrary arrays. Secondly, we give the necessary and sufficient conditions for a spatio-temporal array to yield the minimum Cramér-Rao lower bound in the single-path case and Bayesian Cramér-Rao Lower Bound in the multipath case. The obtained conditions amount to an orthogonality condition...

  13. Spatio-Temporal Data Exchange Standards

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Schmidt, Albrecht

    2003-01-01

    We believe that research that concerns aspects of spatio-temporal data management may benefit from taking into account the various standards for spatio-temporal data formats. For example, this may contribute to rendering prototype software “open” and more readily useful. This paper thus identifies...... and briefly surveys standardization in relation to primarily the exchange and integration of spatio-temporal data. An overview of several data exchange languages is offered, along with reviews their potential for facilitating the collection of test data and the leveraging of prototypes. The standards, most...... of which are XML-based, lend themselves to the integration of prototypes into middleware architectures, e.g., as Web services....

  14. RNA/DNA Hybrid Interactome Identifies DXH9 as a Molecular Player in Transcriptional Termination and R-Loop-Associated DNA Damage.

    Science.gov (United States)

    Cristini, Agnese; Groh, Matthias; Kristiansen, Maiken S; Gromak, Natalia

    2018-05-08

    R-loops comprise an RNA/DNA hybrid and displaced single-stranded DNA. They play important biological roles and are implicated in pathology. Even so, proteins recognizing these structures are largely undefined. Using affinity purification with the S9.6 antibody coupled to mass spectrometry, we defined the RNA/DNA hybrid interactome in HeLa cells. This consists of known R-loop-associated factors SRSF1, FACT, and Top1, and yet uncharacterized interactors, including helicases, RNA processing, DNA repair, and chromatin factors. We validate specific examples of these interactors and characterize their involvement in R-loop biology. A top candidate DHX9 helicase promotes R-loop suppression and transcriptional termination. DHX9 interacts with PARP1, and both proteins prevent R-loop-associated DNA damage. DHX9 and other interactome helicases are overexpressed in cancer, linking R-loop-mediated DNA damage and disease. Our RNA/DNA hybrid interactome provides a powerful resource to study R-loop biology in health and disease. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks.

    KAUST Repository

    Cannistraci, C.V.; Alanis-Lobato, G.; Ravasi, Timothy

    2013-01-01

    for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems

  16. Spatiotemporal representation of cardiac vectorcardiogram (VCG signals

    Directory of Open Access Journals (Sweden)

    Yang Hui

    2012-03-01

    Full Text Available Abstract Background Vectorcardiogram (VCG signals monitor both spatial and temporal cardiac electrical activities along three orthogonal planes of the body. However, the absence of spatiotemporal resolution in conventional VCG representations is a major impediment for medical interpretation and clinical usage of VCG. This is especially so because time-domain features of 12-lead ECG, instead of both spatial and temporal characteristics of VCG, are widely used for the automatic assessment of cardiac pathological patterns. Materials and methods We present a novel representation approach that captures critical spatiotemporal heart dynamics by displaying the real time motion of VCG cardiac vectors in a 3D space. Such a dynamic display can also be realized with only one lead ECG signal (e.g., ambulatory ECG through an alternative lag-reconstructed ECG representation from nonlinear dynamics principles. Furthermore, the trajectories are color coded with additional dynamical properties of space-time VCG signals, e.g., the curvature, speed, octant and phase angles to enhance the information visibility. Results In this investigation, spatiotemporal VCG signal representation is used to characterize various spatiotemporal pathological patterns for healthy control (HC, myocardial infarction (MI, atrial fibrillation (AF and bundle branch block (BBB. The proposed color coding scheme revealed that the spatial locations of the peak of T waves are in the Octant 6 for the majority (i.e., 74 out of 80 of healthy recordings in the PhysioNet PTB database. In contrast, the peak of T waves from 31.79% (117/368 of MI subjects are found to remain in Octant 6 and the rest (68.21% spread over all other octants. The spatiotemporal VCG signal representation is shown to capture the same important heart characteristics as the 12-lead ECG plots and more. Conclusions Spatiotemporal VCG signal representation is shown to facilitate the characterization of space-time cardiac

  17. Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Zhang Jinggui; Wen Shuangchun; Xiang Yuanjiang; Wang Youwen; Luo Hailu

    2010-01-01

    We present a systematic investigation of ultrashort electromagnetic pulse propagation in metamaterials (MMs) with simultaneous cubic electric and magnetic nonlinearity. We predict that spatiotemporal electromagnetic solitons may exist in the positive-index region of a MM with focusing nonlinearity and anomalous group velocity dispersion (GVD), as well as in the negative-index region of the MM with defocusing nonlinearity and normal GVD. The experimental circumstances for generating and manipulating spatiotemporal electromagnetic solitons can be created by elaborating appropriate MMs. In addition, we find that, in the negative-index region of a MM, a spatial ring may be formed as the electromagnetic pulse propagates for focusing nonlinearity and anomalous GVD; while the phenomenon of temporal splitting of the electromagnetic pulse may appear for the same case except for the defocusing nonlinearity. Finally, we demonstrate that the nonlinear magnetization makes the sign of effective electric nonlinear effect switchable due to the combined action of electric and magnetic nonlinearity, exerting a significant influence on the propagation of electromagnetic pulses.

  18. A modified consumer inkjet for spatiotemporal control of gene expression.

    Directory of Open Access Journals (Sweden)

    Daniel J Cohen

    Full Text Available This paper presents a low-cost inkjet dosing system capable of continuous, two-dimensional spatiotemporal regulation of gene expression via delivery of diffusible regulators to a custom-mounted gel culture of E. coli. A consumer-grade, inkjet printer was adapted for chemical printing; E. coli cultures were grown on 750 microm thick agar embedded in micro-wells machined into commercial compact discs. Spatio-temporal regulation of the lac operon was demonstrated via the printing of patterns of lactose and glucose directly into the cultures; X-Gal blue patterns were used for visual feedback. We demonstrate how the bistable nature of the lac operon's feedback, when perturbed by patterning lactose (inducer and glucose (inhibitor, can lead to coordination of cell expression patterns across a field in ways that mimic motifs seen in developmental biology. Examples of this include sharp boundaries and the generation of traveling waves of mRNA expression. To our knowledge, this is the first demonstration of reaction-diffusion effects in the well-studied lac operon. A finite element reaction-diffusion model of the lac operon is also presented which predicts pattern formation with good fidelity.

  19. Spatio-temporal statistical models with applications to atmospheric processes

    International Nuclear Information System (INIS)

    Wikle, C.K.

    1996-01-01

    This doctoral dissertation is presented as three self-contained papers. An introductory chapter considers traditional spatio-temporal statistical methods used in the atmospheric sciences from a statistical perspective. Although this section is primarily a review, many of the statistical issues considered have not been considered in the context of these methods and several open questions are posed. The first paper attempts to determine a means of characterizing the semiannual oscillation (SAO) spatial variation in the northern hemisphere extratropical height field. It was discovered that the midlatitude SAO in 500hPa geopotential height could be explained almost entirely as a result of spatial and temporal asymmetries in the annual variation of stationary eddies. It was concluded that the mechanism for the SAO in the northern hemisphere is a result of land-sea contrasts. The second paper examines the seasonal variability of mixed Rossby-gravity waves (MRGW) in lower stratospheric over the equatorial Pacific. Advanced cyclostationary time series techniques were used for analysis. It was found that there are significant twice-yearly peaks in MRGW activity. Analyses also suggested a convergence of horizontal momentum flux associated with these waves. In the third paper, a new spatio-temporal statistical model is proposed that attempts to consider the influence of both temporal and spatial variability. This method is mainly concerned with prediction in space and time, and provides a spatially descriptive and temporally dynamic model

  20. Analyzing Spatiotemporal Anomalies through Interactive Visualization

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2014-06-01

    Full Text Available As we move into the big data era, data grows not just in size, but also in complexity, containing a rich set of attributes, including location and time information, such as data from mobile devices (e.g., smart phones, natural disasters (e.g., earthquake and hurricane, epidemic spread, etc. We are motivated by the rising challenge and build a visualization tool for exploring generic spatiotemporal data, i.e., records containing time location information and numeric attribute values. Since the values often evolve over time and across geographic regions, we are particularly interested in detecting and analyzing the anomalous changes over time/space. Our analytic tool is based on geographic information system and is combined with spatiotemporal data mining algorithms, as well as various data visualization techniques, such as anomaly grids and anomaly bars superimposed on the map. We study how effective the tool may guide users to find potential anomalies through demonstrating and evaluating over publicly available spatiotemporal datasets. The tool for spatiotemporal anomaly analysis and visualization is useful in many domains, such as security investigation and monitoring, situation awareness, etc.

  1. Spatiotemporal complexity in coupled map lattices

    International Nuclear Information System (INIS)

    Kaneko, Kunihiko

    1986-01-01

    Some spatiotemporal patterns of couple map lattices are presented. The chaotic kink-like motions are shown for the phase motion of the coupled circle lattices. An extension of the couple map lattice approach to Hamiltonian dynamics is briefly reported. An attempt to characterize the high-dimensional attractor by the extension of the correlation dimension is discussed. (author)

  2. The Voronoi spatio-temporal data structure

    Science.gov (United States)

    Mioc, Darka

    2002-04-01

    Current GIS models cannot integrate the temporal dimension of spatial data easily. Indeed, current GISs do not support incremental (local) addition and deletion of spatial objects, and they can not support the temporal evolution of spatial data. Spatio-temporal facilities would be very useful in many GIS applications: harvesting and forest planning, cadastre, urban and regional planning, and emergency planning. The spatio-temporal model that can overcome these problems is based on a topological model---the Voronoi data structure. Voronoi diagrams are irregular tessellations of space, that adapt to spatial objects and therefore they are a synthesis of raster and vector spatial data models. The main advantage of the Voronoi data structure is its local and sequential map updates, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define the complex operations. This resulted in a new formal model for spatio-temporal change representation, where each update is uniquely characterized by the numbers of newly created and inactivated Voronoi regions. This is used for the extension of the model towards the hierarchical Voronoi data structure. In this model, spatio-temporal changes induced by map updates are preserved in a hierarchical data structure that combines events and corresponding changes in topology. This hierarchical Voronoi data structure has an implicit time ordering of events visible through changes in topology, and it is equivalent to an event structure that can support temporal data without precise temporal

  3. Annotating spatio-temporal datasets for meaningful analysis in the Web

    Science.gov (United States)

    Stasch, Christoph; Pebesma, Edzer; Scheider, Simon

    2014-05-01

    More and more environmental datasets that vary in space and time are available in the Web. This comes along with an advantage of using the data for other purposes than originally foreseen, but also with the danger that users may apply inappropriate analysis procedures due to lack of important assumptions made during the data collection process. In order to guide towards a meaningful (statistical) analysis of spatio-temporal datasets available in the Web, we have developed a Higher-Order-Logic formalism that captures some relevant assumptions in our previous work [1]. It allows to proof on meaningful spatial prediction and aggregation in a semi-automated fashion. In this poster presentation, we will present a concept for annotating spatio-temporal datasets available in the Web with concepts defined in our formalism. Therefore, we have defined a subset of the formalism as a Web Ontology Language (OWL) pattern. It allows capturing the distinction between the different spatio-temporal variable types, i.e. point patterns, fields, lattices and trajectories, that in turn determine whether a particular dataset can be interpolated or aggregated in a meaningful way using a certain procedure. The actual annotations that link spatio-temporal datasets with the concepts in the ontology pattern are provided as Linked Data. In order to allow data producers to add the annotations to their datasets, we have implemented a Web portal that uses a triple store at the backend to store the annotations and to make them available in the Linked Data cloud. Furthermore, we have implemented functions in the statistical environment R to retrieve the RDF annotations and, based on these annotations, to support a stronger typing of spatio-temporal datatypes guiding towards a meaningful analysis in R. [1] Stasch, C., Scheider, S., Pebesma, E., Kuhn, W. (2014): "Meaningful spatial prediction and aggregation", Environmental Modelling & Software, 51, 149-165.

  4. Spatio-Temporal Ensemble Prediction on Mobile Broadband Network Data

    DEFF Research Database (Denmark)

    Samulevicius, Saulius; Pitarch, Yoann; Pedersen, Torben Bach

    2013-01-01

    Facing the huge success of mobile devices, network providers ceaselessly deploy new nodes (cells) to always guarantee a high quality of service. Nevertheless, keeping turned on all the nodes when traffic is low is energy inefficient. This has led to investigations on the possibility to turn off...

  5. A Global Interactome Map of the Dengue Virus NS1 Identifies Virus Restriction and Dependency Host Factors

    Directory of Open Access Journals (Sweden)

    Mohamed Lamine Hafirassou

    2017-12-01

    Full Text Available Dengue virus (DENV infections cause the most prevalent mosquito-borne viral disease worldwide, for which no therapies are available. DENV encodes seven non-structural (NS proteins that co-assemble and recruit poorly characterized host factors to form the DENV replication complex essential for viral infection. Here, we provide a global proteomic analysis of the human host factors that interact with the DENV NS1 protein. Combined with a functional RNAi screen, this study reveals a comprehensive network of host cellular processes involved in DENV infection and identifies DENV host restriction and dependency factors. We highlight an important role of RACK1 and the chaperonin TRiC (CCT and oligosaccharyltransferase (OST complexes during DENV replication. We further show that the OST complex mediates NS1 and NS4B glycosylation, and pharmacological inhibition of its N-glycosylation function strongly impairs DENV infection. In conclusion, our study provides a global interactome of the DENV NS1 and identifies host factors targetable for antiviral therapies.

  6. Factor copula models for data with spatio-temporal dependence

    KAUST Repository

    Krupskii, Pavel

    2017-10-13

    We propose a new copula model for spatial data that are observed repeatedly in time. The model is based on the assumption that there exists a common factor that affects the measurements of a process in space and in time. Unlike models based on multivariate normality, our model can handle data with tail dependence and asymmetry. The likelihood for the proposed model can be obtained in a simple form and therefore parameter estimation is quite fast. Simulation from this model is straightforward and data can be predicted at any spatial location and time point. We use simulation studies to show different types of dependencies, both in space and in time, that can be generated by this model. We apply the proposed copula model to hourly wind data and compare its performance with some classical models for spatio-temporal data.

  7. Factor copula models for data with spatio-temporal dependence

    KAUST Repository

    Krupskii, Pavel; Genton, Marc G.

    2017-01-01

    We propose a new copula model for spatial data that are observed repeatedly in time. The model is based on the assumption that there exists a common factor that affects the measurements of a process in space and in time. Unlike models based on multivariate normality, our model can handle data with tail dependence and asymmetry. The likelihood for the proposed model can be obtained in a simple form and therefore parameter estimation is quite fast. Simulation from this model is straightforward and data can be predicted at any spatial location and time point. We use simulation studies to show different types of dependencies, both in space and in time, that can be generated by this model. We apply the proposed copula model to hourly wind data and compare its performance with some classical models for spatio-temporal data.

  8. a Comparative Analysis of Spatiotemporal Data Fusion Models for Landsat and Modis Data

    Science.gov (United States)

    Hazaymeh, K.; Almagbile, A.

    2018-04-01

    In this study, three documented spatiotemporal data fusion models were applied to Landsat-7 and MODIS surface reflectance, and NDVI. The algorithms included the spatial and temporal adaptive reflectance fusion model (STARFM), sparse representation based on a spatiotemporal reflectance fusion model (SPSTFM), and spatiotemporal image-fusion model (STI-FM). The objectives of this study were to (i) compare the performance of these three fusion models using a one Landsat-MODIS spectral reflectance image pairs using time-series datasets from the Coleambally irrigation area in Australia, and (ii) quantitatively evaluate the accuracy of the synthetic images generated from each fusion model using statistical measurements. Results showed that the three fusion models predicted the synthetic Landsat-7 image with adequate agreements. The STI-FM produced more accurate reconstructions of both Landsat-7 spectral bands and NDVI. Furthermore, it produced surface reflectance images having the highest correlation with the actual Landsat-7 images. This study indicated that STI-FM would be more suitable for spatiotemporal data fusion applications such as vegetation monitoring, drought monitoring, and evapotranspiration.

  9. Travel Cost Inference from Sparse, Spatio-Temporally Correlated Time Series Using Markov Models

    DEFF Research Database (Denmark)

    Yang, Bin; Guo, Chenjuan; Jensen, Christian S.

    2013-01-01

    of such time series offers insight into the underlying system and enables prediction of system behavior. While the techniques presented in the paper apply more generally, we consider the case of transportation systems and aim to predict travel cost from GPS tracking data from probe vehicles. Specifically, each...... road segment has an associated travel-cost time series, which is derived from GPS data. We use spatio-temporal hidden Markov models (STHMM) to model correlations among different traffic time series. We provide algorithms that are able to learn the parameters of an STHMM while contending...... with the sparsity, spatio-temporal correlation, and heterogeneity of the time series. Using the resulting STHMM, near future travel costs in the transportation network, e.g., travel time or greenhouse gas emissions, can be inferred, enabling a variety of routing services, e.g., eco-routing. Empirical studies...

  10. POINeT: protein interactome with sub-network analysis and hub prioritization

    Directory of Open Access Journals (Sweden)

    Lai Jin-Mei

    2009-04-01

    Full Text Available Abstract Background Protein-protein interactions (PPIs are critical to every aspect of biological processes. Expansion of all PPIs from a set of given queries often results in a complex PPI network lacking spatiotemporal consideration. Moreover, the reliability of available PPI resources, which consist of low- and high-throughput data, for network construction remains a significant challenge. Even though a number of software tools are available to facilitate PPI network analysis, an integrated tool is crucial to alleviate the burden on querying across multiple web servers and software tools. Results We have constructed an integrated web service, POINeT, to simplify the process of PPI searching, analysis, and visualization. POINeT merges PPI and tissue-specific expression data from multiple resources. The tissue-specific PPIs and the numbers of research papers supporting the PPIs can be filtered with user-adjustable threshold values and are dynamically updated in the viewer. The network constructed in POINeT can be readily analyzed with, for example, the built-in centrality calculation module and an integrated network viewer. Nodes in global networks can also be ranked and filtered using various network analysis formulas, i.e., centralities. To prioritize the sub-network, we developed a ranking filtered method (S3 to uncover potential novel mediators in the midbody network. Several examples are provided to illustrate the functionality of POINeT. The network constructed from four schizophrenia risk markers suggests that EXOC4 might be a novel marker for this disease. Finally, a liver-specific PPI network has been filtered with adult and fetal liver expression profiles. Conclusion The functionalities provided by POINeT are highly improved compared to previous version of POINT. POINeT enables the identification and ranking of potential novel genes involved in a sub-network. Combining with tissue-specific gene expression profiles, PPIs specific to

  11. Systems biology approaches and tools for analysis of interactomes and multi-target drugs.

    Science.gov (United States)

    Schrattenholz, André; Groebe, Karlfried; Soskic, Vukic

    2010-01-01

    Systems biology is essentially a proteomic and epigenetic exercise because the relatively condensed information of genomes unfolds on the level of proteins. The flexibility of cellular architectures is not only mediated by a dazzling number of proteinaceous species but moreover by the kinetics of their molecular changes: The time scales of posttranslational modifications range from milliseconds to years. The genetic framework of an organism only provides the blue print of protein embodiments which are constantly shaped by external input. Indeed, posttranslational modifications of proteins represent the scope and velocity of these inputs and fulfil the requirements of integration of external spatiotemporal signal transduction inside an organism. The optimization of biochemical networks for this type of information processing and storage results in chemically extremely fine tuned molecular entities. The huge dynamic range of concentrations, the chemical diversity and the necessity of synchronisation of complex protein expression patterns pose the major challenge of systemic analysis of biological models. One further message is that many of the key reactions in living systems are essentially based on interactions of moderate affinities and moderate selectivities. This principle is responsible for the enormous flexibility and redundancy of cellular circuitries. In complex disorders such as cancer or neurodegenerative diseases, which initially appear to be rooted in relatively subtle dysfunctions of multimodal physiologic pathways, drug discovery programs based on the concept of high affinity/high specificity compounds ("one-target, one-disease"), which has been dominating the pharmaceutical industry for a long time, increasingly turn out to be unsuccessful. Despite improvements in rational drug design and high throughput screening methods, the number of novel, single-target drugs fell much behind expectations during the past decade, and the treatment of "complex

  12. A hierarchical Bayesian spatio-temporal model for extreme precipitation events

    KAUST Repository

    Ghosh, Souparno; Mallick, Bani K.

    2011-01-01

    We propose a new approach to model a sequence of spatially distributed time series of extreme values. Unlike common practice, we incorporate spatial dependence directly in the likelihood and allow the temporal component to be captured at the second level of hierarchy. Inferences about the parameters and spatio-temporal predictions are obtained via MCMC technique. The model is fitted to a gridded precipitation data set collected over 99 years across the continental U.S. © 2010 John Wiley & Sons, Ltd..

  13. Measurement of stress in vocal folds during phonation using spatiotemporal synchronization

    International Nuclear Information System (INIS)

    Tao, Chao; Jiang, Jack J.; Zhang, Yu

    2007-01-01

    A method based on spatiotemporal synchronization is proposed to measure stress distribution in the vocal folds. It is theoretically proved that a measurement system can be synchronized with a vocal fold vibration system by coupling their surface dynamic variables. Therefore, the stress in the vocal folds is predicted by the synchronized continuous model. Numerical experiments are employed to verify this method. The influences of the different coupling variables and the parameter mismatches on stress measurement are also investigated

  14. A hierarchical Bayesian spatio-temporal model for extreme precipitation events

    KAUST Repository

    Ghosh, Souparno

    2011-03-01

    We propose a new approach to model a sequence of spatially distributed time series of extreme values. Unlike common practice, we incorporate spatial dependence directly in the likelihood and allow the temporal component to be captured at the second level of hierarchy. Inferences about the parameters and spatio-temporal predictions are obtained via MCMC technique. The model is fitted to a gridded precipitation data set collected over 99 years across the continental U.S. © 2010 John Wiley & Sons, Ltd..

  15. Measurement of stress in vocal folds during phonation using spatiotemporal synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Chao [Department of Surgery, Division of Otolaryngology Head and Neck Surgery, University of Wisconsin Medical School, Madison, WI 53792-7375 (United States); Jiang, Jack J. [Department of Surgery, Division of Otolaryngology Head and Neck Surgery, University of Wisconsin Medical School, Madison, WI 53792-7375 (United States)]. E-mail: jiang@surgery.wisc.edu; Zhang, Yu [Department of Surgery, Division of Otolaryngology Head and Neck Surgery, University of Wisconsin Medical School, Madison, WI 53792-7375 (United States)

    2007-02-19

    A method based on spatiotemporal synchronization is proposed to measure stress distribution in the vocal folds. It is theoretically proved that a measurement system can be synchronized with a vocal fold vibration system by coupling their surface dynamic variables. Therefore, the stress in the vocal folds is predicted by the synchronized continuous model. Numerical experiments are employed to verify this method. The influences of the different coupling variables and the parameter mismatches on stress measurement are also investigated.

  16. What Is Spatio-Temporal Data Warehousing?

    Science.gov (United States)

    Vaisman, Alejandro; Zimányi, Esteban

    In the last years, extending OLAP (On-Line Analytical Processing) systems with spatial and temporal features has attracted the attention of the GIS (Geographic Information Systems) and database communities. However, there is no a commonly agreed definition of what is a spatio-temporal data warehouse and what functionality such a data warehouse should support. Further, the solutions proposed in the literature vary considerably in the kind of data that can be represented as well as the kind of queries that can be expressed. In this paper we present a conceptual framework for defining spatio-temporal data warehouses using an extensible data type system. We also define a taxonomy of different classes of queries of increasing expressive power, and show how to express such queries using an extension of the tuple relational calculus with aggregated functions.

  17. Statistical methods for spatio-temporal systems

    CERN Document Server

    Finkenstadt, Barbel

    2006-01-01

    Statistical Methods for Spatio-Temporal Systems presents current statistical research issues on spatio-temporal data modeling and will promote advances in research and a greater understanding between the mechanistic and the statistical modeling communities.Contributed by leading researchers in the field, each self-contained chapter starts with an introduction of the topic and progresses to recent research results. Presenting specific examples of epidemic data of bovine tuberculosis, gastroenteric disease, and the U.K. foot-and-mouth outbreak, the first chapter uses stochastic models, such as point process models, to provide the probabilistic backbone that facilitates statistical inference from data. The next chapter discusses the critical issue of modeling random growth objects in diverse biological systems, such as bacteria colonies, tumors, and plant populations. The subsequent chapter examines data transformation tools using examples from ecology and air quality data, followed by a chapter on space-time co...

  18. System-level insights into the cellular interactome of a non-model organism: inferring, modelling and analysing functional gene network of soybean (Glycine max.

    Directory of Open Access Journals (Sweden)

    Yungang Xu

    Full Text Available Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN, a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max, due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs, in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional

  19. Spatiotemporal Propagation of the Cortical Atrophy: Population and Individual Patterns

    Directory of Open Access Journals (Sweden)

    Igor Koval

    2018-05-01

    Full Text Available Repeated failures in clinical trials for Alzheimer’s disease (AD have raised a strong interest for the prodromal phase of the disease. A better understanding of the brain alterations during this early phase is crucial to diagnose patients sooner, to estimate an accurate disease stage, and to give a reliable prognosis. According to recent evidence, structural alterations in the brain are likely to be sensitive markers of the disease progression. Neuronal loss translates in specific spatiotemporal patterns of cortical atrophy, starting in the enthorinal cortex and spreading over other cortical regions according to specific propagation pathways. We developed a digital model of the cortical atrophy in the left hemisphere from prodromal to diseased phases, which is built on the temporal alignment and combination of several short-term observation data to reconstruct the long-term history of the disease. The model not only provides a description of the spatiotemporal patterns of cortical atrophy at the group level but also shows the variability of these patterns at the individual level in terms of difference in propagation pathways, speed of propagation, and age at propagation onset. Longitudinal MRI datasets of patients with mild cognitive impairments who converted to AD are used to reconstruct the cortical atrophy propagation across all disease stages. Each observation is considered as a signal spatially distributed on a network, such as the cortical mesh, each cortex location being associated to a node. We consider how the temporal profile of the signal varies across the network nodes. We introduce a statistical mixed-effect model to describe the evolution of the cortex alterations. To ensure a spatiotemporal smooth propagation of the alterations, we introduce a constrain on the propagation signal in the model such that neighboring nodes have similar profiles of the signal changes. Our generative model enables the reconstruction of personalized

  20. Rainfall spatiotemporal variability relation to wetlands hydroperiods

    Science.gov (United States)

    Serrano-Hidalgo, Carmen; Guardiola-Albert, Carolina; Fernandez-Naranjo, Nuria

    2017-04-01

    Doñana natural space (Southwestern Spain) is one of the largest protected wetlands in Europe. The wide marshes present in this natural space have such ecological value that this wetland has been declared a Ramsar reserve in 1982. Apart from the extensive marsh, there are also small lagoons and seasonally flooded areas which are likewise essential to maintain a wide variety of valuable habitats. Hydroperiod, the length of time each point remains flooded along an annual cycle, is a critical ecological parameter that shapes aquatic plants and animals distribution and determines available habitat for many of the living organisms in the marshes. Recently, there have been published two different works estimating the hydroperiod of Doñana lagoons with Landsat Time Series images (Cifuentes et al., 2015; Díaz-Delgado et al., 2016). In both works the flooding cycle hydroperiod in Doñana marshes reveals a flooding regime mainly driven by rainfall, evapotranspiration, topography and local hydrological management actions. The correlation found between rainfall and hydroperiod is studied differently in both works. While in one the rainfall is taken from one raingauge (Cifuentes et al., 2015), the one performed by Díaz-Delgado (2016) uses annual rainfall maps interpolated with the inverse of the distance method. The rainfall spatiotemporal variability in this area can be highly significant; however the amount of this importance has not been quantified at the moment. In the present work the geostatistical tool known as spatiotemporal variogram is used to study the rainfall spatiotemporal variability. The spacetime package implemented in R (Pebesma, 2012) facilities its computation from a high rainfall data base of more than 100 raingauges from 1950 to 2016. With the aid of these variograms the rainfall spatiotemporal variability is quantified. The principal aim of the present work is the study of the relation between the rainfall spatiotemporal variability and the

  1. An Interactome-Centered Protein Discovery Approach Reveals Novel Components Involved in Mitosome Function and Homeostasis in Giardia lamblia.

    Directory of Open Access Journals (Sweden)

    Samuel Rout

    2016-12-01

    Full Text Available Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide range of vertebrate hosts including humans, with proliferation and pathology restricted to the small intestine. This narrow ecological specialization entailed extensive structural and functional adaptations during host-parasite co-evolution. An example is the streamlined mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway clearly associated with this organelle. Here, we applied techniques in microscopy and protein biochemistry to investigate the mitosomal membrane proteome in association to mitosome homeostasis. Live cell imaging revealed a highly immobilized array of 30-40 physically distinct mitosome organelles in trophozoites. We provide direct evidence for the single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and homeostasis. To overcome inherent limitations that have hitherto severely hampered the characterization of these unique organelles we applied a novel interaction-based proteome discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed generation of organelle proteome data strictly in a protein-protein interaction context. We built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation experiments, identifying small GTPases, factors with dual mitosome and endoplasmic reticulum (ER distribution, as well as novel matrix proteins. Through iterative expansion of this protein-protein interaction network, we were able to i significantly extend this interaction-based mitosomal proteome to include other membrane-associated proteins with possible roles in mitosome morphogenesis and connection to other subcellular compartments, and ii identify novel matrix proteins which may shed light on mitosome-associated metabolic functions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual conservation of protein

  2. Spatio-temporal observations of the tertiary ozone maximum

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2009-07-01

    Full Text Available We present spatio-temporal distributions of the tertiary ozone maximum (TOM, based on GOMOS (Global Ozone Monitoring by Occultation of Stars ozone measurements in 2002–2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at an altitude of ~72 km. Although the explanation for this phenomenon has been found recently – low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses – models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time to obtain spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere.

    The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory, TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of the tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model and found that the specific features are reproduced satisfactorily by the model.

    Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.

  3. Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems

    Science.gov (United States)

    Krause, Andrew L.; Klika, Václav; Woolley, Thomas E.; Gaffney, Eamonn A.

    2018-05-01

    We report on an instability arising in activator-inhibitor reaction-diffusion (RD) systems with a simple spatial heterogeneity. This instability gives rise to periodic creation, translation, and destruction of spike solutions that are commonly formed due to Turing instabilities. While this behavior is oscillatory in nature, it occurs purely within the Turing space such that no region of the domain would give rise to a Hopf bifurcation for the homogeneous equilibrium. We use the shadow limit of the Gierer-Meinhardt system to show that the speed of spike movement can be predicted from well-known asymptotic theory, but that this theory is unable to explain the emergence of these spatiotemporal oscillations. Instead, we numerically explore this system and show that the oscillatory behavior is caused by the destabilization of a steady spike pattern due to the creation of a new spike arising from endogeneous activator production. We demonstrate that on the edge of this instability, the period of the oscillations goes to infinity, although it does not fit the profile of any well-known bifurcation of a limit cycle. We show that nearby stationary states are either Turing unstable or undergo saddle-node bifurcations near the onset of the oscillatory instability, suggesting that the periodic motion does not emerge from a local equilibrium. We demonstrate the robustness of this spatiotemporal oscillation by exploring small localized heterogeneity and showing that this behavior also occurs in the Schnakenberg RD model. Our results suggest that this phenomenon is ubiquitous in spatially heterogeneous RD systems, but that current tools, such as stability of spike solutions and shadow-limit asymptotics, do not elucidate understanding. This opens several avenues for further mathematical analysis and highlights difficulties in explaining how robust patterning emerges from Turing's mechanism in the presence of even small spatial heterogeneity.

  4. UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS

    Data.gov (United States)

    National Aeronautics and Space Administration — UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS AMY MCGOVERN, TIMOTHY SUPINIE, DAVID JOHN GAGNE II, NATHANIEL TROUTMAN,...

  5. Benefits of spatiotemporal modeling for short-term wind power forecasting at both individual and aggregated levels

    DEFF Research Database (Denmark)

    Lenzi, Amanda; Steinsland, Ingelin; Pinson, Pierre

    2018-01-01

    The share of wind energy in total installed power capacity has grown rapidly in recent years. Producing accurate and reliable forecasts of wind power production, together with a quantification of the uncertainty, is essential to optimally integrate wind energy into power systems. We build...... spatiotemporal models for wind power generation and obtain full probabilistic forecasts from 15 min to 5 h ahead. Detailed analyses of forecast performances on individual wind farms and aggregated wind power are provided. The predictions from our models are evaluated on a data set from wind farms in western...... Denmark using a sliding window approach, for which estimation is performed using only the last available measurements. The case study shows that it is important to have a spatiotemporal model instead of a temporal one to achieve calibrated aggregated forecasts. Furthermore, spatiotemporal models have...

  6. Control of spatio-temporal on-off intermittency in random driving diffusively coupled map lattices

    International Nuclear Information System (INIS)

    Ziabakhsh Deilami, M.; Rahmani Cherati, Z.; Jahed Motlagh, M.R.

    2009-01-01

    In this paper, we propose feedback methods for controlling spatio-temporal on-off intermittency which is an aperiodic switching between an 'off' state and an 'on' state. Diffusively coupled map lattice with spatially non-uniform random driving is used for showing spatio-temporal on-off intermittency. For this purpose, we apply three different feedbacks. First, we use a linear feedback which is a simple method but has a long transient time. To overcome this problem, two nonlinear feedbacks based on prediction strategy are proposed. An important advantage of the methods is that the feedback signal is vanished when control is realized. Simulation results show that all methods have suppressed the chaotic behavior.

  7. Evaluation of spatio-temporal Bayesian models for the spread of infectious diseases in oil palm.

    Science.gov (United States)

    Denis, Marie; Cochard, Benoît; Syahputra, Indra; de Franqueville, Hubert; Tisné, Sébastien

    2018-02-01

    In the field of epidemiology, studies are often focused on mapping diseases in relation to time and space. Hierarchical modeling is a common flexible and effective tool for modeling problems related to disease spread. In the context of oil palm plantations infected by the fungal pathogen Ganoderma boninense, we propose and compare two spatio-temporal hierarchical Bayesian models addressing the lack of information on propagation modes and transmission vectors. We investigate two alternative process models to study the unobserved mechanism driving the infection process. The models help gain insight into the spatio-temporal dynamic of the infection by identifying a genetic component in the disease spread and by highlighting a spatial component acting at the end of the experiment. In this challenging context, we propose models that provide assumptions on the unobserved mechanism driving the infection process while making short-term predictions using ready-to-use software. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Spatiotemporal dynamics of random stimuli account for trial-to-trial variability in perceptual decision making

    Science.gov (United States)

    Park, Hame; Lueckmann, Jan-Matthis; von Kriegstein, Katharina; Bitzer, Sebastian; Kiebel, Stefan J.

    2016-01-01

    Decisions in everyday life are prone to error. Standard models typically assume that errors during perceptual decisions are due to noise. However, it is unclear how noise in the sensory input affects the decision. Here we show that there are experimental tasks for which one can analyse the exact spatio-temporal details of a dynamic sensory noise and better understand variability in human perceptual decisions. Using a new experimental visual tracking task and a novel Bayesian decision making model, we found that the spatio-temporal noise fluctuations in the input of single trials explain a significant part of the observed responses. Our results show that modelling the precise internal representations of human participants helps predict when perceptual decisions go wrong. Furthermore, by modelling precisely the stimuli at the single-trial level, we were able to identify the underlying mechanism of perceptual decision making in more detail than standard models. PMID:26752272

  9. Quantification of annual wildfire risk; A spatio-temporal point process approach.

    Directory of Open Access Journals (Sweden)

    Paula Pereira

    2013-10-01

    Full Text Available Policy responses for local and global firemanagement depend heavily on the proper understanding of the fire extent as well as its spatio-temporal variation across any given study area. Annual fire risk maps are important tools for such policy responses, supporting strategic decisions such as location-allocation of equipment and human resources. Here, we define risk of fire in the narrow sense as the probability of its occurrence without addressing the loss component. In this paper, we study the spatio-temporal point patterns of wildfires and model them by a log Gaussian Cox processes. Themean of predictive distribution of randomintensity function is used in the narrow sense, as the annual fire risk map for next year.

  10. Spatio-temporal intermittency on the sandpile

    International Nuclear Information System (INIS)

    Erzan, A.; Sinha, S.

    1990-08-01

    The self-organized critical state exhibited by a sandpile model is shown to correspond to motion on an attractor characterized by an invariant distribution of the height variable. The largest Lyapunov exponent is equal to zero. The model nonetheless displays intermittent chaos, with a multifractal distribution of local expansion coefficients in history space. Laminar spatio-temporal regions are interrupted by chaotic bursts caused by avalanches. We introduce the concept of local histories in configuration space and show that their expansion parameters also exhibit a multifractal distribution in time and space. (author). 22 refs, 5 figs

  11. Fly-DPI: database of protein interactomes for D. melanogaster in the approach of systems biology

    Directory of Open Access Journals (Sweden)

    Lin Chieh-Hua

    2006-12-01

    Full Text Available Abstract Background Proteins control and mediate many biological activities of cells by interacting with other protein partners. This work presents a statistical model to predict protein interaction networks of Drosophila melanogaster based on insight into domain interactions. Results Three high-throughput yeast two-hybrid experiments and the collection in FlyBase were used as our starting datasets. The co-occurrences of domains in these interactive events are converted into a probability score of domain-domain interaction. These scores are used to infer putative interaction among all available open reading frames (ORFs of fruit fly. Additionally, the likelihood function is used to estimate all potential protein-protein interactions. All parameters are successfully iterated and MLE is obtained for each pair of domains. Additionally, the maximized likelihood reaches its converged criteria and maintains the probability stable. The hybrid model achieves a high specificity with a loss of sensitivity, suggesting that the model may possess major features of protein-protein interactions. Several putative interactions predicted by the proposed hybrid model are supported by literatures, while experimental data with a low probability score indicate an uncertain reliability and require further proof of interaction. Fly-DPI is the online database used to present this work. It is an integrated proteomics tool with comprehensive protein annotation information from major databases as well as an effective means of predicting protein-protein interactions. As a novel search strategy, the ping-pong search is a naïve path map between two chosen proteins based on pre-computed shortest paths. Adopting effective filtering strategies will facilitate researchers in depicting the bird's eye view of the network of interest. Fly-DPI can be accessed at http://flydpi.nhri.org.tw. Conclusion This work provides two reference systems, statistical and biological, to evaluate

  12. New Targets for Zika Virus Determined by Human-Viral Interactomic: A Bioinformatics Approach

    Directory of Open Access Journals (Sweden)

    Eduardo Esteves

    2017-01-01

    Full Text Available Identifying ZIKV factors interfering with human host pathways represents a major challenge in understanding ZIKV tropism and pathogenesis. The integration of proteomic, gene expression and Protein-Protein Interactions (PPIs established between ZIKV and human host proteins predicted by the OralInt algorithm identified 1898 interactions with medium or high score (≥0.7. Targets implicated in vesicular traffic and docking were identified. New receptors involved in endocytosis pathways as ZIKV entry targets, using both clathrin-dependent (17 receptors and independent (10 receptors pathways, are described. New targets used by the ZIKV to undermine the host’s antiviral immune response are proposed based on predicted interactions established between the virus and host cell receptors and/or proteins with an effector or signaling role in the immune response such as IFN receptors and TLR. Complement and cytokines are proposed as extracellular potential interacting partners of the secreted form of NS1 ZIKV protein. Altogether, in this article, 18 new human targets for structural and nonstructural ZIKV proteins are proposed. These results are of great relevance for the understanding of viral pathogenesis and consequently the development of preventive (vaccines and therapeutic targets for ZIKV infection management.

  13. Spatio-temporal scaling of channels in braided streams.

    Science.gov (United States)

    A.G. Hunt; G.E. Grant; V.K. Gupta

    2006-01-01

    The spatio-temporal scaling relationship for individual channels in braided streams is shown to be identical to the spatio-temporal scaling associated with constant Froude number, e.g., Fr = l. A means to derive this relationship is developed from a new theory of sediment transport. The mechanism by which the Fr = l condition apparently governs the scaling seems to...

  14. Spatiotemporal Data Mining, Analysis, and Visualization of Human Activity Data

    Science.gov (United States)

    Li, Xun

    2012-01-01

    This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze three types of such spatiotemporal activity data in a methodological framework that integrates spatial analysis, data…

  15. Simultaneous spatio-temporal focusing for tissue manipulation

    Directory of Open Access Journals (Sweden)

    Squier J.

    2013-11-01

    Full Text Available Simultaneous spatiotemporal focusing (SSTF is applied to lens tissue and compared directly with standard femtosecond micromachining of the tissue at the same numerical aperture. Third harmonic generation imaging is used for spatio-temporal characterization of the processing conditions obtained with both a standard and SSTF focus.

  16. Spatiotemporal Interpolation Methods for Solar Event Trajectories

    Science.gov (United States)

    Filali Boubrahimi, Soukaina; Aydin, Berkay; Schuh, Michael A.; Kempton, Dustin; Angryk, Rafal A.; Ma, Ruizhe

    2018-05-01

    This paper introduces four spatiotemporal interpolation methods that enrich complex, evolving region trajectories that are reported from a variety of ground-based and space-based solar observatories every day. Our interpolation module takes an existing solar event trajectory as its input and generates an enriched trajectory with any number of additional time–geometry pairs created by the most appropriate method. To this end, we designed four different interpolation techniques: MBR-Interpolation (Minimum Bounding Rectangle Interpolation), CP-Interpolation (Complex Polygon Interpolation), FI-Interpolation (Filament Polygon Interpolation), and Areal-Interpolation, which are presented here in detail. These techniques leverage k-means clustering, centroid shape signature representation, dynamic time warping, linear interpolation, and shape buffering to generate the additional polygons of an enriched trajectory. Using ground-truth objects, interpolation effectiveness is evaluated through a variety of measures based on several important characteristics that include spatial distance, area overlap, and shape (boundary) similarity. To our knowledge, this is the first research effort of this kind that attempts to address the broad problem of spatiotemporal interpolation of solar event trajectories. We conclude with a brief outline of future research directions and opportunities for related work in this area.

  17. Spatiotemporal chaos in coupled logistic maps

    International Nuclear Information System (INIS)

    Varella Guedes, Andre; Amorim Savi, Marcelo

    2010-01-01

    The objective of this work is to investigate the spatiotemporal dynamics of coupled logistic maps. These maps are prototypes of high-dimensional dynamical systems and have been used to describe the evolution and pattern formation in different systems. Here, the logistic map lattice is coupled by a power law and, therefore, each map is influenced by other maps in its neighborhood. The Kolmogorov-Sinai entropy density is employed to quantify the complexity of system behavior, permitting a general qualitative understanding of different aspects of system dynamics. Three kinds of boundary conditions are treated and the influence of initial conditions is also of concern. Non-homogeneous maps are investigated, showing interesting aspects of spatiotemporal dynamics. The idea is to analyze the spatial interaction between two qualitative different types of behavior from a grid that is split into two parts. Numerical simulations show what types of conditions present a greater tendency to develop chaotic, periodic and synchronized responses. It should be highlighted that non-homogeneous grids have situations where a chaotic pattern can emerge from two periodic responses and also situations where a periodic pattern can emerge from chaos.

  18. Designing Dietary Recommendations Using System Level Interactomics Analysis and Network-Based Inference

    Directory of Open Access Journals (Sweden)

    Tingting Zheng

    2017-09-01

    Full Text Available Background: A range of computational methods that rely on the analysis of genome-wide expression datasets have been developed and successfully used for drug repositioning. The success of these methods is based on the hypothesis that introducing a factor (in this case, a drug molecule that could reverse the disease gene expression signature will lead to a therapeutic effect. However, it has also been shown that globally reversing the disease expression signature is not a prerequisite for drug activity. On the other hand, the basic idea of significant anti-correlation in expression profiles could have great value for establishing diet-disease associations and could provide new insights into the role of dietary interventions in disease.Methods: We performed an integrated analysis of publicly available gene expression profiles for foods, diseases and drugs, by calculating pairwise similarity scores for diet and disease gene expression signatures and characterizing their topological features in protein-protein interaction networks.Results: We identified 485 diet-disease pairs where diet could positively influence disease development and 472 pairs where specific diets should be avoided in a disease state. Multiple evidence suggests that orange, whey and coconut fat could be beneficial for psoriasis, lung adenocarcinoma and macular degeneration, respectively. On the other hand, fructose-rich diet should be restricted in patients with chronic intermittent hypoxia and ovarian cancer. Since humans normally do not consume foods in isolation, we also applied different algorithms to predict synergism; as a result, 58 food pairs were predicted. Interestingly, the diets identified as anti-correlated with diseases showed a topological proximity to the disease proteins similar to that of the corresponding drugs.Conclusions: In conclusion, we provide a computational framework for establishing diet-disease associations and additional information on the role of

  19. Spatiotemporal Stochastic Resonance:Theory and Experiment

    Science.gov (United States)

    Peter, Jung

    1996-03-01

    The amplification of weak periodic signals in bistable or excitable systems via stochastic resonance has been studied intensively over the last years. We are going one step further and ask: Can noise enhance spatiotemporal patterns in excitable media and can this effect be observed in nature? To this end, we are looking at large, two dimensional arrays of coupled excitable elements. Due to the coupling, excitation can propagate through the array in form of nonlinear waves. We observe target waves, rotating spiral waves and other wave forms. If the coupling between the elements is below a critical threshold, any excitational pattern will die out in the absence of noise. Below this threshold, large scale rotating spiral waves - as they are observed above threshold - can be maintained by a proper level of the noise[1]. Furthermore, their geometric features, such as the curvature can be controlled by the homogeneous noise level[2]. If the noise level is too large, break up of spiral waves and collisions with spontaneously nucleated waves yields spiral turbulence. Driving our array with a spatiotemporal pattern, e.g. a rotating spiral wave, we show that for weak coupling the excitational response of the array shows stochastic resonance - an effect we have termed spatiotemporal stochastic resonance. In the last part of the talk I'll make contact with calcium waves, observed in astrocyte cultures and hippocampus slices[3]. A. Cornell-Bell and collaborators[3] have pointed out the role of calcium waves for long-range glial signaling. We demonstrate the similarity of calcium waves with nonlinear waves in noisy excitable media. The noise level in the tissue is characterized by spontaneous activity and can be controlled by applying neuro-transmitter substances[3]. Noise effects in our model are compared with the effect of neuro-transmitters on calcium waves. [1]P. Jung and G. Mayer-Kress, CHAOS 5, 458 (1995). [2]P. Jung and G. Mayer-Kress, Phys. Rev. Lett.62, 2682 (1995). [3

  20. Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data.

    Science.gov (United States)

    Kolovos, Alexander; Skupin, André; Jerrett, Michael; Christakos, George

    2010-09-01

    Space-time data analysis and assimilation techniques in atmospheric sciences typically consider input from monitoring measurements. The input is often processed in a manner that acknowledges characteristics of the measurements (e.g., underlying patterns, fluctuation features) under conditions of uncertainty; it also leads to the derivation of secondary information that serves study-oriented goals, and provides input to space-time prediction techniques. We present a novel approach that blends a rigorous space-time prediction model (Bayesian maximum entropy, BME) with a cognitively informed visualization of high-dimensional data (spatialization). The combined BME and spatialization approach (BME-S) is used to study monthly averaged NO2 and mean annual SO4 measurements in California over the 15-year period 1988-2002. Using the original scattered measurements of these two pollutants BME generates spatiotemporal predictions on a regular grid across the state. Subsequently, the prediction network undergoes the spatialization transformation into a lower-dimensional geometric representation, aimed at revealing patterns and relationships that exist within the input data. The proposed BME-S provides a powerful spatiotemporal framework to study a variety of air pollution data sources.

  1. Cryptanalysis of a spatiotemporal chaotic cryptosystem

    International Nuclear Information System (INIS)

    Rhouma, Rhouma; Belghith, Safya

    2009-01-01

    This paper proposes three different attacks on a recently proposed chaotic cryptosystem in [Li P, Li Z, Halang WA, Chen G. A stream cipher based on a spatiotemporal chaotic system. Chaos, Solitons and Fractals 2007;32:1867-76]. The cryptosystem under study displays weakness in the generation of the keystream. The encryption is made by generating a keystream mixed with blocks generated from the plaintext. The so obtained keystream remains unchanged for every encryption procedure. Moreover, its generation does neither depend on the plaintext nor on the ciphertext, that's to say, the keystream remains unchangeable for every plaintext with the same length. Guessing the keystream leads to guessing the key. This paper presents three possible attacks able to break the whole cryptosystem based on this drawback in generating the keystream.

  2. The Spatiotemporal Dynamics of Digital News Audiences

    DEFF Research Database (Denmark)

    Peters, Chris

    2016-01-01

    of changing the socially-situated affordances of news use. Having sketched these contours, the chapter then highlights analytical challenges for understanding and conceptualizing the new interrelations between digital news content, production, and consumption, grounding this analysis with theoretical insights...... that emphasize the significance of spatiotemporal dynamics. The emphasis here is on the interrelations and mobilities of digital news audiences, based on a recognition of the productive impacts of media use while being careful to note the limitations of a paradigm shift that points solely to the possibilities...... generated by the ubiquitous presence of media in our everyday lives. Aspects of interaction and personalization beget by new media technologies certainly shape the possibilities, practices and power audiences have to choose news wherever, whenever, and however they want. However, this simultaneously...

  3. Spatiotemporal aspects of flood exposure in Switzerland

    Directory of Open Access Journals (Sweden)

    Röthlisberger Veronika

    2016-01-01

    Full Text Available While flood hazard mapping in Switzerland is close to completion, only a limited number of studies have been specifically conducted on exposure and vulnerability. We fill this knowledge gap by conducting a nation-wide study of flood exposure of buildings in Switzerland. Therefore, we generate a country-wide comprehensive and homogenous data set of polygons of residential buildings and their period of construction and overlay these building polygons with compiled and harmonized flood hazard maps provided by the Swiss cantons. In this paper we present first results of spatiotemporal analyses, namely the evolution of exposure from 1919 to 2012. Surprising is the increase in the share of exposure of new constructed buildings since the 1980s which contradicts the indented effects of the Swiss flood risk management strategies and calls for further investigations.

  4. Nonreciprocal Thermal Material by Spatiotemporal Modulation

    Science.gov (United States)

    Torrent, Daniel; Poncelet, Olivier; Batsale, Jean-Chirstophe

    2018-03-01

    The thermal properties of a material with a spatiotemporal modulation, in the form of a traveling wave, in both the thermal conductivity and the specific heat capacity are studied. It is found that these materials behave as materials with an internal convectionlike term that provides them with nonreciprocal properties, in the sense that the heat flux has different properties when it propagates in the same direction or in the opposite one to the modulation of the parameters. An effective medium description is presented which accurately describes the modulated material, and numerical simulations support this description and verify the nonreciprocal properties of the material. It is found that these materials are promising candidates for the design of thermal diodes and other advanced devices for the control of the heat flow at all scales.

  5. Inositol trisphosphate receptor mediated spatiotemporal calcium signalling.

    Science.gov (United States)

    Miyazaki, S

    1995-04-01

    Spatiotemporal Ca2+ signalling in the cytoplasm is currently understood as an excitation phenomenon by analogy with electrical excitation in the plasma membrane. In many cell types, Ca2+ waves and Ca2+ oscillations are mediated by inositol 1,4,5-trisphosphate (IP3) receptor/Ca2+ channels in the endoplasmic reticulum membrane, with positive feedback between cytosolic Ca2+ and IP3-induced Ca2+ release creating a regenerative process. Remarkable advances have been made in the past year in the analysis of subcellular Ca2+ microdomains using confocal microscopy and of Ca2+ influx pathways that are functionally coupled to IP3-induced Ca2+ release. Ca2+ signals can be conveyed into the nucleus and mitochondria. Ca2+ entry from outside the cell allows repetitive Ca2+ release by providing Ca2+ to refill the endoplasmic reticulum stores, thus giving rise to frequency-encoded Ca2+ signals.

  6. Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images.

    Science.gov (United States)

    Kwan, Chiman; Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Perez, Daniel; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni

    2018-03-31

    Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images.

  7. A stream cipher based on a spatiotemporal chaotic system

    International Nuclear Information System (INIS)

    Li Ping; Li Zhong; Halang, Wolfgang A.; Chen Guanrong

    2007-01-01

    A stream cipher based on a spatiotemporal chaotic system is proposed. A one-way coupled map lattice consisting of logistic maps is served as the spatiotemporal chaotic system. Multiple keystreams are generated from the coupled map lattice by using simple algebraic computations, and then are used to encrypt plaintext via bitwise XOR. These make the cipher rather simple and efficient. Numerical investigation shows that the cryptographic properties of the generated keystream are satisfactory. The cipher seems to have higher security, higher efficiency and lower computation expense than the stream cipher based on a spatiotemporal chaotic system proposed recently

  8. Searching for cellular partners of hantaviral nonstructural protein NSs: Y2H screening of mouse cDNA library and analysis of cellular interactome.

    Science.gov (United States)

    Rönnberg, Tuomas; Jääskeläinen, Kirsi; Blot, Guillaume; Parviainen, Ville; Vaheri, Antti; Renkonen, Risto; Bouloy, Michele; Plyusnin, Alexander

    2012-01-01

    Hantaviruses (Bunyaviridae) are negative-strand RNA viruses with a tripartite genome. The small (S) segment encodes the nucleocapsid protein and, in some hantaviruses, also the nonstructural protein (NSs). The aim of this study was to find potential cellular partners for the hantaviral NSs protein. Toward this aim, yeast two-hybrid (Y2H) screening of mouse cDNA library was performed followed by a search for potential NSs protein counterparts via analyzing a cellular interactome. The resulting interaction network was shown to form logical, clustered structures. Furthermore, several potential binding partners for the NSs protein, for instance ACBD3, were identified and, to prove the principle, interaction between NSs and ACBD3 proteins was demonstrated biochemically.

  9. Structures and short linear motif of disordered transcription factor regions provide clues to the interactome of the cellular hub radical-induced cell death1

    DEFF Research Database (Denmark)

    O'Shea, Charlotte; Staby, Lasse; Bendsen, Sidsel Krogh

    2017-01-01

    Intrinsically disordered protein regions (IDRs) lack a well-defined three-dimensional structure, but often facilitate key protein functions. Some interactions between IDRs and folded protein domains rely on short linear motifs (SLiMs). These motifs are challenging to identify, but once found can...... point to larger networks of interactions, such as with proteins that serve as hubs for essential cellular functions. The stress-associated plant protein Radical-Induced Cell Death1 (RCD1) is one such hub, interacting with many transcription factors via their flexible IDRs. To identify the SLiM bound......046 formed different structures or were fuzzy in the complexes. These findings allow us to present a model of the stress-associated RCD1-transcription factor interactome and to contribute to the emerging understanding of the interactions between folded hubs and their intrinsically disordered partners....

  10. Initial spatio-temporal domain expansion of the Modelfest database

    Science.gov (United States)

    Carney, Thom; Mozaffari, Sahar; Sun, Sean; Johnson, Ryan; Shirvastava, Sharona; Shen, Priscilla; Ly, Emma

    2013-03-01

    The first Modelfest group publication appeared in the SPIE Human Vision and Electronic Imaging conference proceedings in 1999. "One of the group's goals is to develop a public database of test images with threshold data from multiple laboratories for designing and testing HVS (Human Vision Models)." After extended discussions the group selected a set of 45 static images thought to best meet that goal and collected psychophysical detection data which is available on the WEB and presented in the 2000 SPIE conference proceedings. Several groups have used these datasets to test spatial modeling ideas. Further discussions led to the preliminary stimulus specification for extending the database into the temporal domain which was published in the 2002 conference proceeding. After a hiatus of 12 years, some of us have collected spatio-temporal thresholds on an expanded stimulus set of 41 video clips; the original specification included 35 clips. The principal change involved adding one additional spatial pattern beyond the three originally specified. The stimuli consisted of 4 spatial patterns, Gaussian Blob, 4 c/d Gabor patch, 11.3 c/d Gabor patch and a 2D white noise patch. Across conditions the patterns were temporally modulated over a range of approximately 0-25 Hz as well as temporal edge and pulse modulation conditions. The display and data collection specifications were as specified by the Modelfest groups in the 2002 conference proceedings. To date seven subjects have participated in this phase of the data collection effort, one of which also participated in the first phase of Modelfest. Three of the spatio-temporal stimuli were identical to conditions in the original static dataset. Small differences in the thresholds were evident and may point to a stimulus limitation. The temporal CSF peaked between 4 and 8 Hz for the 0 c/d (Gaussian blob) and 4 c/d patterns. The 4 c/d and 11.3 c/d Gabor temporal CSF was low pass while the 0 c/d pattern was band pass. This

  11. A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1.

    Science.gov (United States)

    DeMille, Desiree; Bikman, Benjamin T; Mathis, Andrew D; Prince, John T; Mackay, Jordan T; Sowa, Steven W; Hall, Tacie D; Grose, Julianne H

    2014-07-15

    Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein-protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase-deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis. © 2014 DeMille et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Spatio-temporal evolution of forest fires in Portugal

    Science.gov (United States)

    Tonini, Marj; Pereira, Mário G.; Parente, Joana

    2017-04-01

    A key issue in fire management is the ability to explore and try to predict where and when fires are more likely to occur. This information can be useful to understand the triggering factors of ignitions and for planning strategies to reduce forest fires, to manage the sources of ignition and to identify areas and frame period at risk. Therefore, producing maps displaying forest fires location and their occurrence in time can be of great help for accurately forecasting these hazardous events. In a fire prone country as Portugal, where thousands of events occurs each year, it is involved to drive information about fires over densities and recurrences just by looking at the original arrangement of the mapped ignition points or burnt areas. In this respect, statistical methods originally developed for spatio-temporal stochastic point processes can be employed to find a structure within these large datasets. In the present study, the authors propose an approach to analyze and visualize the evolution in space and in time of forest fires occurred in Portugal during a long frame period (1990 - 2013). Data came from the Portuguese mapped burnt areas official geodatabase (by the Institute for the Conservation of Nature and Forests), which is the result of interpreted satellite measurements. The following statistical analyses were performed: the geographically-weighted summary statistics, to analyze the local variability of the average burned area; the space-time Kernel density, to elaborate smoothed density surfaces representing over densities of fires classed by size and on North vs South region. Finally, we emploied the volume rendering thecnique to visualize the spatio-temporal evolution of these events into a unique map: this representation allows visually inspecting areas and time-step more affected from a high aggregation of forest fires. It results that during the whole investigated period over densities are mainly located in the northern regions, while in the

  13. Controlling spatiotemporal chaos in one- and two-dimensional coupled logistic map lattices

    International Nuclear Information System (INIS)

    Astakhov, V.V.; Anishchenko, V.S.; Strelkova, G.I.; Shabunin, A.V.

    1996-01-01

    A method of control of spatiotemporal chaos in lattices of coupled maps is proposed in this work. Forms of spatiotemporal perturbations of a system parameter are analytically determined for one- and two-dimensional logistic map lattices with different kinds of coupling to stabilize chosen spatiotemporal states previously unstable. The results are illustrated by numerical simulation. Controlled transition from the regime of spatiotemporal chaos to the previously chosen regular spatiotemporal patterns is demonstrated. copyright 1996 American Institute of Physics

  14. The use of spatio-temporal correlation to forecast critical transitions

    Science.gov (United States)

    Karssenberg, Derek; Bierkens, Marc F. P.

    2010-05-01

    Complex dynamical systems may have critical thresholds at which the system shifts abruptly from one state to another. Such critical transitions have been observed in systems ranging from the human body system to financial markets and the Earth system. Forecasting the timing of critical transitions before they are reached is of paramount importance because critical transitions are associated with a large shift in dynamical regime of the system under consideration. However, it is hard to forecast critical transitions, because the state of the system shows relatively little change before the threshold is reached. Recently, it was shown that increased spatio-temporal autocorrelation and variance can serve as alternative early warning signal for critical transitions. However, thus far these second order statistics have not been used for forecasting in a data assimilation framework. Here we show that the use of spatio-temporal autocorrelation and variance in the state of the system reduces the uncertainty in the predicted timing of critical transitions compared to classical approaches that use the value of the system state only. This is shown by assimilating observed spatio-temporal autocorrelation and variance into a dynamical system model using a Particle Filter. We adapt a well-studied distributed model of a logistically growing resource with a fixed grazing rate. The model describes the transition from an underexploited system with high resource biomass to overexploitation as grazing pressure crosses the critical threshold, which is a fold bifurcation. To represent limited prior information, we use a large variance in the prior probability distributions of model parameters and the system driver (grazing rate). First, we show that the rate of increase in spatio-temporal autocorrelation and variance prior to reaching the critical threshold is relatively consistent across the uncertainty range of the driver and parameter values used. This indicates that an increase in

  15. BIPS: BIANA Interolog Prediction Server. A tool for protein-protein interaction inference.

    Science.gov (United States)

    Garcia-Garcia, Javier; Schleker, Sylvia; Klein-Seetharaman, Judith; Oliva, Baldo

    2012-07-01

    Protein-protein interactions (PPIs) play a crucial role in biology, and high-throughput experiments have greatly increased the coverage of known interactions. Still, identification of complete inter- and intraspecies interactomes is far from being complete. Experimental data can be complemented by the prediction of PPIs within an organism or between two organisms based on the known interactions of the orthologous genes of other organisms (interologs). Here, we present the BIANA (Biologic Interactions and Network Analysis) Interolog Prediction Server (BIPS), which offers a web-based interface to facilitate PPI predictions based on interolog information. BIPS benefits from the capabilities of the framework BIANA to integrate the several PPI-related databases. Additional metadata can be used to improve the reliability of the predicted interactions. Sensitivity and specificity of the server have been calculated using known PPIs from different interactomes using a leave-one-out approach. The specificity is between 72 and 98%, whereas sensitivity varies between 1 and 59%, depending on the sequence identity cut-off used to calculate similarities between sequences. BIPS is freely accessible at http://sbi.imim.es/BIPS.php.

  16. Spatiotemporal Simulation of Tourist Town Growth Based on the Cellular Automata Model: The Case of Sanpo Town in Hebei Province

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2013-01-01

    Full Text Available Spatiotemporal simulation of tourist town growth is important for research on land use/cover change under the influence of urbanization. Many scholars have shown great interest in the unique pattern of driving urban development with tourism development. Based on the cellular automata (CA model, we simulated and predicted the spatiotemporal growth of Sanpo town in Hebei Province, using the tourism urbanization growth model. Results showed that (1 average annual growth rate of the entire region was 1.5 Ha2 per year from 2005 to 2010, 4 Ha2 per year from 2010 to 2015, and 2.5 Ha2 per year from 2015 to 2020; (2 urban growth rate increased yearly, with regional differences, and had a high degree of correlation with the Euclidean distance of town center, traffic route, attractions, and other factors; (3 Gougezhuang, an important village center in the west of the town, demonstrated traffic advantages and increased growth rate since 2010; (4 Magezhuang village has the largest population in the region, so economic advantages have driven the development of rural urbanization. It showed that CA had high reliability in simulating the spatiotemporal evolution of tourist town, which assists the study of spatiotemporal growth under urbanization and rational protection of tourism resources.

  17. Reshaping-induced spatiotemporal chaos in driven, damped sine-Gordon systems

    International Nuclear Information System (INIS)

    Chacon, R.

    2007-01-01

    Spatiotemporal chaos arising from the competition between sine-Gordon-breather and kink-antikink-pair solitons by reshaping an ac force is demonstrated. After introducing soliton collective coordinates, Melnikov's method is applied to the resulting effective equation of motion to estimate the parameter-space regions of the ac force where homoclinic bifurcations are induced. The analysis reveals that the chaos-order threshold exhibits sensitivity to small changes in the force shape. Computer simulations of the sine-Gordon system show good agreement with these theoretical predictions

  18. Reshaping-induced spatiotemporal chaos in driven, damped sine-Gordon systems

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, R. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, E-06071 Badajoz (Spain)]. E-mail: rchacon@unex.es

    2007-03-15

    Spatiotemporal chaos arising from the competition between sine-Gordon-breather and kink-antikink-pair solitons by reshaping an ac force is demonstrated. After introducing soliton collective coordinates, Melnikov's method is applied to the resulting effective equation of motion to estimate the parameter-space regions of the ac force where homoclinic bifurcations are induced. The analysis reveals that the chaos-order threshold exhibits sensitivity to small changes in the force shape. Computer simulations of the sine-Gordon system show good agreement with these theoretical predictions.

  19. A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. II. Spatio-temporal dynamics

    Science.gov (United States)

    Böhringer, Klaus; Hess, Ortwin

    The spatio-temporal dynamics of novel semiconductor lasers is discussed on the basis of a space- and momentum-dependent full time-domain approach. To this means the space-, time-, and momentum-dependent Full-Time Domain Maxwell Semiconductor Bloch equations, derived and discussed in our preceding paper I [K. Böhringer, O. Hess, A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation], are solved by direct numerical integration. Focussing on the device physics of novel semiconductor lasers that profit, in particular, from recent advances in nanoscience and nanotechnology, we discuss the examples of photonic band edge surface emitting lasers (PBE-SEL) and semiconductor disc lasers (SDLs). It is demonstrated that photonic crystal effects can be obtained for finite crystal structures, and leading to a significant improvement in laser performance such as reduced lasing thresholds. In SDLs, a modern device concept designed to increase the power output of surface-emitters in combination with near-diffraction-limited beam quality, we explore the complex interplay between the intracavity optical fields and the quantum well gain material in SDL structures. Our simulations reveal the dynamical balance between carrier generation due to pumping into high energy states, momentum relaxation of carriers, and stimulated recombination from states near the band edge. Our full time-domain approach is shown to also be an excellent framework for the modelling of the interaction of high-intensity femtosecond and picosecond pulses with semiconductor nanostructures. It is demonstrated that group velocity dispersion, dynamical gain saturation and fast self-phase modulation (SPM) are the main causes for the induced changes and asymmetries in the amplified pulse shape and spectrum of an ultrashort high-intensity pulse. We attest that the time constants of the intraband scattering processes are critical to gain recovery. Moreover, we present

  20. Spatio-temporal patterns of coral recruitment at Vamizi Island ...

    African Journals Online (AJOL)

    Spatio-temporal patterns of coral recruitment at Vamizi Island, Quirimbas Archipelago, Mozambique. ... Spatial and temporal patterns of recruitment of reef corals were assessed for the first time in Mozambique ... AJOL African Journals Online.

  1. Transition to turbulence via spatiotemporal intermittency in stimulated Raman backscattering

    International Nuclear Information System (INIS)

    Skoric, M.M.; Jovanovic, M.S.; Rajkovic, M.R.

    1996-01-01

    The spatiotemporal evolution of stimulated Raman backscattering in a bounded, uniform, weakly dissipative plasma is studied. The nonlinear model of a three-wave interaction involves a quadratic coupling of slowly varying complex amplitudes of the laser pump, the backscattered and the electron plasma wave. The corresponding set of coupled partial differential equations with nonlinear phase detuning that is taken into account is solved numerically in space time with fixed nonzero source boundary conditions. The study of the above open, convective, weakly confined system reveals a quasiperiodic transition to spatiotemporal chaos via spatiotemporal intermittency. In the analysis of transitions a dual scheme borrowed from fields of nonlinear dynamics and statistical physics is applied. An introduction of a nonlinear three-wave interaction to a growing family of paradigmatic equations which exhibit a route to turbulence via spatiotemporal intermittency is outlined in this work. copyright 1996 The American Physical Society

  2. The application of a hierarchical Bayesian spatiotemporal model for ...

    Indian Academy of Sciences (India)

    Process (GP) model by using the Gibbs sampling method. The result for ... good indicator of the HBST method. The statistical ... summary and discussion of future works are given .... spatiotemporal package in R language (R core team. 2013).

  3. Annual spatiotemporal migration schedules in three larger insectivorous birds

    DEFF Research Database (Denmark)

    Jacobsen, Lars Bo; Jensen, Niels Odder; Willemoes, Mikkel

    2017-01-01

    Background: Knowledge of spatiotemporal migration patterns is important for our understanding of migration ecology and ultimately conservation of migratory species. We studied the annual migration schedules of European nightjar, a large nocturnal insectivore and compared it with two other larger ...

  4. Spatiotemporal patterns formed by deformed adhesive in peeling

    International Nuclear Information System (INIS)

    Yamazaki, Yoshihiro; Toda, Akihiko

    2007-01-01

    Dynamical properties of peeling an adhesive tape are investigated experimentally as an analogy of sliding friction. An adhesive tape is peeled by pulling an elastic spring connected to the tape. Controlling its spring constant k and pulling speed V, peel force is measured and spatiotemporal patterns formed on the peeled tape by deformed adhesive are observed. It is found that there exist two kinds of adhesive state in peeling front. The emergence of multiple states is caused by the stability of a characteristic structure (tunnel structure) formed by deformed adhesive. Tunnel structures are distributed spatiotemporally on adhesive tape after peeling. Based on the spatiotemporal distribution, a morphology-dynamical phase diagram is constructed on k-V space and is divided into the four regions: (A) uniform pattern with tunnel structure, (B) uniform pattern without tunnel structure, (C) striped pattern with oscillatory peeling, and (D) spatiotemporally coexistent pattern

  5. Spatiotemporal modeling of WNV in mosquitoes in Suffolk County

    Data.gov (United States)

    U.S. Environmental Protection Agency — R code and dataset to produce spatial models. This dataset is associated with the following publication: Meyer, M., S. Campbell, and J. Johnston. Spatiotemporal...

  6. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation

    Science.gov (United States)

    Ballard, Christopher C.; Esty, C. Clark; Egolf, David A.

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  7. Non-reciprocal elastic wave propagation in 2D phononic membranes with spatiotemporally varying material properties

    Science.gov (United States)

    Attarzadeh, M. A.; Nouh, M.

    2018-05-01

    One-dimensional phononic materials with material fields traveling simultaneously in space and time have been shown to break elastodynamic reciprocity resulting in unique wave propagation features. In the present work, a comprehensive mathematical analysis is presented to characterize and fully predict the non-reciprocal wave dispersion in two-dimensional space. The analytical dispersion relations, in the presence of the spatiotemporal material variations, are validated numerically using finite 2D membranes with a prescribed number of cells. Using omnidirectional excitations at the membrane's center, wave propagations are shown to exhibit directional asymmetry that increases drastically in the direction of the material travel and vanishes in the direction perpendicular to it. The topological nature of the predicted dispersion in different propagation directions are evaluated using the computed Chern numbers. Finally, the degree of the 2D non-reciprocity is quantified using a non-reciprocity index (NRI) which confirms the theoretical dispersion predictions as well as the finite simulations. The presented framework can be extended to plate-type structures as well as 3D spatiotemporally modulated phononic crystals.

  8. Markovian Limit of a Spatio-Temporal Correlated Open Systems

    Science.gov (United States)

    Monnai, T.

    Large fluctuation of Brownian particles is affected by the finiteness of the correlation length of the background noise field. Indeed a Fokker—Planck equation is derived in a Markovian limit of a spatio-temporal short correlated noise. Corresponding kinetic quantities are renormalized due to the spatio-temporal memory. We also investigate the case of open system by connecting a thermostat to the system.

  9. Sex & vision I: Spatio-temporal resolution

    Directory of Open Access Journals (Sweden)

    Abramov Israel

    2012-09-01

    Full Text Available Abstract Background Cerebral cortex has a very large number of testosterone receptors, which could be a basis for sex differences in sensory functions. For example, audition has clear sex differences, which are related to serum testosterone levels. Of all major sensory systems only vision has not been examined for sex differences, which is surprising because occipital lobe (primary visual projection area may have the highest density of testosterone receptors in the cortex. We have examined a basic visual function: spatial and temporal pattern resolution and acuity. Methods We tested large groups of young adults with normal vision. They were screened with a battery of standard tests that examined acuity, color vision, and stereopsis. We sampled the visual system’s contrast-sensitivity function (CSF across the entire spatio-temporal space: 6 spatial frequencies at each of 5 temporal rates. Stimuli were gratings with sinusoidal luminance profiles generated on a special-purpose computer screen; their contrast was also sinusoidally modulated in time. We measured threshold contrasts using a criterion-free (forced-choice, adaptive psychophysical method (QUEST algorithm. Also, each individual’s acuity limit was estimated by fitting his or her data with a model and extrapolating to find the spatial frequency corresponding to 100% contrast. Results At a very low temporal rate, the spatial CSF was the canonical inverted-U; but for higher temporal rates, the maxima of the spatial CSFs shifted: Observers lost sensitivity at high spatial frequencies and gained sensitivity at low frequencies; also, all the maxima of the CSFs shifted by about the same amount in spatial frequency. Main effect: there was a significant (ANOVA sex difference. Across the entire spatio-temporal domain, males were more sensitive, especially at higher spatial frequencies; similarly males had significantly better acuity at all temporal rates. Conclusion As with other sensory systems

  10. Visualization and assessment of spatio-temporal covariance properties

    KAUST Repository

    Huang, Huang

    2017-11-23

    Spatio-temporal covariances are important for describing the spatio-temporal variability of underlying random fields in geostatistical data. For second-order stationary random fields, there exist subclasses of covariance functions that assume a simpler spatio-temporal dependence structure with separability and full symmetry. However, it is challenging to visualize and assess separability and full symmetry from spatio-temporal observations. In this work, we propose a functional data analysis approach that constructs test functions using the cross-covariances from time series observed at each pair of spatial locations. These test functions of temporal lags summarize the properties of separability or symmetry for the given spatial pairs. We use functional boxplots to visualize the functional median and the variability of the test functions, where the extent of departure from zero at all temporal lags indicates the degree of non-separability or asymmetry. We also develop a rank-based nonparametric testing procedure for assessing the significance of the non-separability or asymmetry. Essentially, the proposed methods only require the analysis of temporal covariance functions. Thus, a major advantage over existing approaches is that there is no need to estimate any covariance matrix for selected spatio-temporal lags. The performances of the proposed methods are examined by simulations with various commonly used spatio-temporal covariance models. To illustrate our methods in practical applications, we apply it to real datasets, including weather station data and climate model outputs.

  11. Deep sequencing of small RNA libraries from human prostate epithelial and stromal cells reveal distinct pattern of microRNAs primarily predicted to target growth factors.

    Science.gov (United States)

    Singh, Savita; Zheng, Yun; Jagadeeswaran, Guru; Ebron, Jey Sabith; Sikand, Kavleen; Gupta, Sanjay; Sunker, Ramanjulu; Shukla, Girish C

    2016-02-28

    Complex epithelial and stromal cell interactions are required during the development and progression of prostate cancer. Regulatory small non-coding microRNAs (miRNAs) participate in the spatiotemporal regulation of messenger RNA (mRNA) and regulation of translation affecting a large number of genes involved in prostate carcinogenesis. In this study, through deep-sequencing of size fractionated small RNA libraries we profiled the miRNAs of prostate epithelial (PrEC) and stromal (PrSC) cells. Over 50 million reads were obtained for PrEC in which 860,468 were unique sequences. Similarly, nearly 76 million reads for PrSC were obtained in which over 1 million were unique reads. Expression of many miRNAs of broadly conserved and poorly conserved miRNA families were identified. Sixteen highly expressed miRNAs with significant change in expression in PrSC than PrEC were further analyzed in silico. ConsensusPathDB showed the target genes of these miRNAs were significantly involved in adherence junction, cell adhesion, EGRF, TGF-β and androgen signaling. Let-7 family of tumor-suppressor miRNAs expression was highly pervasive in both, PrEC and PrSC cells. In addition, we have also identified several miRNAs that are unique to PrEC or PrSC cells and their predicted putative targets are a group of transcription factors. This study provides perspective on the miRNA expression in PrEC and PrSC, and reveals a global trend in miRNA interactome. We conclude that the most abundant miRNAs are potential regulators of development and differentiation of the prostate gland by targeting a set of growth factors. Additionally, high level expression of the most members of let-7 family miRNAs suggests their role in the fine tuning of the growth and proliferation of prostate epithelial and stromal cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Spatiotemporal video deinterlacing using control grid interpolation

    Science.gov (United States)

    Venkatesan, Ragav; Zwart, Christine M.; Frakes, David H.; Li, Baoxin

    2015-03-01

    With the advent of progressive format display and broadcast technologies, video deinterlacing has become an important video-processing technique. Numerous approaches exist in the literature to accomplish deinterlacing. While most earlier methods were simple linear filtering-based approaches, the emergence of faster computing technologies and even dedicated video-processing hardware in display units has allowed higher quality but also more computationally intense deinterlacing algorithms to become practical. Most modern approaches analyze motion and content in video to select different deinterlacing methods for various spatiotemporal regions. We introduce a family of deinterlacers that employs spectral residue to choose between and weight control grid interpolation based spatial and temporal deinterlacing methods. The proposed approaches perform better than the prior state-of-the-art based on peak signal-to-noise ratio, other visual quality metrics, and simple perception-based subjective evaluations conducted by human viewers. We further study the advantages of using soft and hard decision thresholds on the visual performance.

  13. Spatio-temporal problems of locomotion control

    International Nuclear Information System (INIS)

    Smolyaninov, Vladimir V

    2000-01-01

    The problem of the spatio-temporal construction of legged movements involves structural freedoms due to the multi-link structure of the extremities, kinematic freedoms of the stepping cycle, and interextremity coordination freedoms, whose purposive organization is established by means of appropriate synergies, i.e. additional functional links the brain's control system forms. The main focus of attention in this work is on the kinematic and coordination synergies of the legged movements of humans and animals. The comparative historical analysis of experimental data and modelling metaphors concentrates on obtaining a unified description, whereas the ultimate mathematical metaphor reduces to space-time geometry, with base step synergies as its invariants. Thus, the concept of a synergetic organization for biomechanical movement freedoms is transformed to the geochronometry concept, actually a modification of Minkowskian geometry. To determine the spectrum of possible geochronometries, the consequences of a generalized 'postulate of a constant speed of light' are studied and different models of wave chronometers compared. (reviews of topical problems)

  14. Semi-supervised tracking of extreme weather events in global spatio-temporal climate datasets

    Science.gov (United States)

    Kim, S. K.; Prabhat, M.; Williams, D. N.

    2017-12-01

    Deep neural networks have been successfully applied to solve problem to detect extreme weather events in large scale climate datasets and attend superior performance that overshadows all previous hand-crafted methods. Recent work has shown that multichannel spatiotemporal encoder-decoder CNN architecture is able to localize events in semi-supervised bounding box. Motivated by this work, we propose new learning metric based on Variational Auto-Encoders (VAE) and Long-Short-Term-Memory (LSTM) to track extreme weather events in spatio-temporal dataset. We consider spatio-temporal object tracking problems as learning probabilistic distribution of continuous latent features of auto-encoder using stochastic variational inference. For this, we assume that our datasets are i.i.d and latent features is able to be modeled by Gaussian distribution. In proposed metric, we first train VAE to generate approximate posterior given multichannel climate input with an extreme climate event at fixed time. Then, we predict bounding box, location and class of extreme climate events using convolutional layers given input concatenating three features including embedding, sampled mean and standard deviation. Lastly, we train LSTM with concatenated input to learn timely information of dataset by recurrently feeding output back to next time-step's input of VAE. Our contribution is two-fold. First, we show the first semi-supervised end-to-end architecture based on VAE to track extreme weather events which can apply to massive scaled unlabeled climate datasets. Second, the information of timely movement of events is considered for bounding box prediction using LSTM which can improve accuracy of localization. To our knowledge, this technique has not been explored neither in climate community or in Machine Learning community.

  15. Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain

    Directory of Open Access Journals (Sweden)

    P. Cowpertwait

    2013-02-01

    Full Text Available A spatiotemporal point process model of rainfall is fitted to data taken from three homogeneous regions in the Basque Country, Spain. The model is the superposition of two spatiotemporal Neyman–Scott processes, in which rain cells are modelled as discs with radii that follow exponential distributions. In addition, the model includes a parameter for the radius of storm discs, so that rain only occurs when both a cell and a storm disc overlap a point. The model is fitted to data for each month, taken from each of the three homogeneous regions, using a modified method of moments procedure that ensures a smooth seasonal variation in the parameter estimates.

    Daily temperature data from 23 sites are used to fit a stochastic temperature model. A principal component analysis of the maximum daily temperatures across the sites indicates that 92% of the variance is explained by the first component, implying that this component can be used to account for spatial variation. A harmonic equation with autoregressive error terms is fitted to the first principal component. The temperature model is obtained by regressing the maximum daily temperature on the first principal component, an indicator variable for the region, and altitude. This, together with scaling and a regression model of temperature range, enables hourly temperatures to be predicted. Rainfall is included as an explanatory variable but has only a marginal influence when predicting temperatures.

    A distributed model (TETIS; Francés et al., 2007 is calibrated for a selected catchment. Five hundred years of data are simulated using the rainfall and temperature models and used as input to the calibrated TETIS model to obtain simulated discharges to compare with observed discharges. Kolmogorov–Smirnov tests indicate that there is no significant difference in the distributions of observed and simulated maximum flows at the same sites, thus supporting the use of the spatiotemporal

  16. Aspects of second-order analysis of structured inhomogeneous spatio-temporal processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Ghorbani, Mohammad

    2012-01-01

    Statistical methodology for spatio-temporal point processes is in its infancy. We consider second-order analysis based on pair correlation functions and K-functions for general inhomogeneous spatio-temporal point processes and for inhomogeneous spatio-temporal Cox processes. Assuming spatio......-temporal separability of the intensity function, we clarify different meanings of second-order spatio-temporal separability. One is second-order spatio-temporal independence and relates to log-Gaussian Cox processes with an additive covariance structure of the underlying spatio-temporal Gaussian process. Another...... concerns shot-noise Cox processes with a separable spatio-temporal covariance density. We propose diagnostic procedures for checking hypotheses of second-order spatio-temporal separability, which we apply on simulated and real data....

  17. Second-order analysis of structured inhomogeneous spatio-temporal point processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Ghorbani, Mohammad

    Statistical methodology for spatio-temporal point processes is in its infancy. We consider second-order analysis based on pair correlation functions and K-functions for first general inhomogeneous spatio-temporal point processes and second inhomogeneous spatio-temporal Cox processes. Assuming...... spatio-temporal separability of the intensity function, we clarify different meanings of second-order spatio-temporal separability. One is second-order spatio-temporal independence and relates e.g. to log-Gaussian Cox processes with an additive covariance structure of the underlying spatio......-temporal Gaussian process. Another concerns shot-noise Cox processes with a separable spatio-temporal covariance density. We propose diagnostic procedures for checking hypotheses of second-order spatio-temporal separability, which we apply on simulated and real data (the UK 2001 epidemic foot and mouth disease data)....

  18. Use of Poisson spatiotemporal regression models for the Brazilian Amazon Forest: malaria count data

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Achcar

    2011-12-01

    Full Text Available INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts.

  19. Use of Poisson spatiotemporal regression models for the Brazilian Amazon Forest: malaria count data.

    Science.gov (United States)

    Achcar, Jorge Alberto; Martinez, Edson Zangiacomi; Souza, Aparecida Doniseti Pires de; Tachibana, Vilma Mayumi; Flores, Edilson Ferreira

    2011-01-01

    Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using bayesian spatiotemporal methods. We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the bayesian paradigm is a good strategy for modeling malaria counts.

  20. Spatiotemporal Variation in Mangrove Chlorophyll Concentration Using Landsat 8

    Directory of Open Access Journals (Sweden)

    Julio Pastor-Guzman

    2015-11-01

    Full Text Available There is a need to develop indicators of mangrove condition using remotely sensed data. However, remote estimation of leaf and canopy biochemical properties and vegetation condition remains challenging. In this paper, we (i tested the performance of selected hyperspectral and broad band indices to predict chlorophyll concentration (CC on mangrove leaves and (ii showed the potential of Landsat 8 for estimation of mangrove CC at the landscape level. Relative leaf CC and leaf spectral response were measured at 12 Elementary Sampling Units (ESU distributed along the northwest coast of the Yucatan Peninsula, Mexico. Linear regression models and coefficients of determination were computed to measure the association between CC and spectral response. At leaf level, the narrow band indices with the largest correlation with CC were Vogelmann indices and the MTCI (R2 > 0.5. Indices with spectral bands around the red edge (705–753 nm were more sensitive to mangrove leaf CC. At the ESU level Landsat 8 NDVI green, which uses the green band in its formulation explained most of the variation in CC (R2 > 0.8. Accuracy assessment between estimated CC and observed CC using the leave-one-out cross-validation (LOOCV method yielded a root mean squared error (RMSE = 15 mg·cm−2, and R2 = 0.703. CC maps showing the spatiotemporal variation of CC at landscape scale were created using the linear model. Our results indicate that Landsat 8 NDVI green can be employed to estimate CC in large mangrove areas where ground networks cannot be applied, and mapping techniques based on satellite data, are necessary. Furthermore, using upcoming technologies that will include two bands around the red edge such as Sentinel 2 will improve mangrove monitoring at higher spatial and temporal resolutions.

  1. Spatiotemporal Analysis of Corn Phenoregions in the Continental United States

    Science.gov (United States)

    Konduri, V. S.; Kumar, J.; Hoffman, F. M.; Ganguly, A. R.; Hargrove, W. W.

    2017-12-01

    The delineation of regions exhibiting similar crop performance has potential benefits for agricultural planning and management, policymaking and natural resource conservation. Studies of natural ecosystems have used multivariate clustering algorithms based on environmental characteristics to identify ecoregions for species range prediction and habitat conservation. However, few studies have used clustering to delineate regions based on crop phenology. The aim of this study was to perform a spatiotemporal analysis of phenologically self-similar clusters, or phenoregions, for the major corn growing areas in the Continental United States (CONUS) for the period 2008-2016. Annual trajectories of remotely sensed normalized difference vegetation index (NDVI), a useful proxy for land surface phenology, derived from Moderate Resolution Spectroradiometer (MODIS) instruments at 8-day intervals and 250 m resolution was used as the phenological metric. Because of the large data volumes involved, the phenoregion delineation was performed using a highly scalable, unsupervised clustering technique with the help of high performance computing. These phenoregions capture the spatial variability in the timing of important crop phenological stages (like emergence and maturity dates) and thus could be used to develop more accurate parameterizations for crop models applied at regional to global scales. Moreover, historical crop performance from phenoregions, in combination with climate and soils data, could be used to improve production forecasts. The temporal variability in NDVI at each location could also be used to develop an early warning system to identify locations where the crop deviates from its expected phenological behavior. Such deviations may indicate a need for irrigation or fertilization or suggest where pest outbreaks or other disturbances have occurred.

  2. Spatio-temporal coupling of EEG signals in epilepsy

    Science.gov (United States)

    Senger, Vanessa; Müller, Jens; Tetzlaff, Ronald

    2011-05-01

    Approximately 1% of the world's population suffer from epileptic seizures throughout their lives that mostly come without sign or warning. Thus, epilepsy is the most common chronical disorder of the neurological system. In the past decades, the problem of detecting a pre-seizure state in epilepsy using EEG signals has been addressed in many contributions by various authors over the past two decades. Up to now, the goal of identifying an impending epileptic seizure with sufficient specificity and reliability has not yet been achieved. Cellular Nonlinear Networks (CNN) are characterized by local couplings of dynamical systems of comparably low complexity. Thus, they are well suited for an implementation as highly parallel analogue processors. Programmable sensor-processor realizations of CNN combine high computational power comparable to tera ops of digital processors with low power consumption. An algorithm allowing an automated and reliable detection of epileptic seizure precursors would be a"huge step" towards the vision of an implantable seizure warning device that could provide information to patients and for a time/event specific treatment directly in the brain. Recent contributions have shown that modeling of brain electrical activity by solutions of Reaction-Diffusion-CNN as well as the application of a CNN predictor taking into account values of neighboring electrodes may contribute to the realization of a seizure warning device. In this paper, a CNN based predictor corresponding to a spatio-temporal filter is applied to multi channel EEG data in order to identify mutual couplings for different channels which lead to a enhanced prediction quality. Long term EEG recordings of different patients are considered. Results calculated for these recordings with inter-ictal phases as well as phases with seizures will be discussed in detail.

  3. An evaluation of space time cube representation of spatiotemporal patterns.

    Science.gov (United States)

    Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine

    2009-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.

  4. Spatio-temporal networks: reachability, centrality and robustness.

    Science.gov (United States)

    Williams, Matthew J; Musolesi, Mirco

    2016-06-01

    Recent advances in spatial and temporal networks have enabled researchers to more-accurately describe many real-world systems such as urban transport networks. In this paper, we study the response of real-world spatio-temporal networks to random error and systematic attack, taking a unified view of their spatial and temporal performance. We propose a model of spatio-temporal paths in time-varying spatially embedded networks which captures the property that, as in many real-world systems, interaction between nodes is non-instantaneous and governed by the space in which they are embedded. Through numerical experiments on three real-world urban transport systems, we study the effect of node failure on a network's topological, temporal and spatial structure. We also demonstrate the broader applicability of this framework to three other classes of network. To identify weaknesses specific to the behaviour of a spatio-temporal system, we introduce centrality measures that evaluate the importance of a node as a structural bridge and its role in supporting spatio-temporally efficient flows through the network. This exposes the complex nature of fragility in a spatio-temporal system, showing that there is a variety of failure modes when a network is subject to systematic attacks.

  5. Striatal Transcriptome and Interactome Analysis of Shank3-overexpressing Mice Reveals the Connectivity between Shank3 and mTORC1 Signaling

    Directory of Open Access Journals (Sweden)

    Yeunkum Lee

    2017-06-01

    Full Text Available Mania causes symptoms of hyperactivity, impulsivity, elevated mood, reduced anxiety and decreased need for sleep, which suggests that the dysfunction of the striatum, a critical component of the brain motor and reward system, can be causally associated with mania. However, detailed molecular pathophysiology underlying the striatal dysfunction in mania remains largely unknown. In this study, we aimed to identify the molecular pathways showing alterations in the striatum of SH3 and multiple ankyrin repeat domains 3 (Shank3-overexpressing transgenic (TG mice that display manic-like behaviors. The results of transcriptome analysis suggested that mammalian target of rapamycin complex 1 (mTORC1 signaling may be the primary molecular signature altered in the Shank3 TG striatum. Indeed, we found that striatal mTORC1 activity, as measured by mTOR S2448 phosphorylation, was significantly decreased in the Shank3 TG mice compared to wild-type (WT mice. To elucidate the potential underlying mechanism, we re-analyzed previously reported protein interactomes, and detected a high connectivity between Shank3 and several upstream regulators of mTORC1, such as tuberous sclerosis 1 (TSC1, TSC2 and Ras homolog enriched in striatum (Rhes, via 94 common interactors that we denominated “Shank3-mTORC1 interactome”. We noticed that, among the 94 common interactors, 11 proteins were related to actin filaments, the level of which was increased in the dorsal striatum of Shank3 TG mice. Furthermore, we could co-immunoprecipitate Shank3, Rhes and Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1 proteins from the striatal lysate of Shank3 TG mice. By comparing with the gene sets of psychiatric disorders, we also observed that the 94 proteins of Shank3-mTORC1 interactome were significantly associated with bipolar disorder (BD. Altogether, our results suggest a protein interaction-mediated connectivity between Shank3 and certain upstream

  6. Comparative proteomic analysis of normal and collagen IX null mouse cartilage reveals altered extracellular matrix composition and novel components of the collagen IX interactome.

    Science.gov (United States)

    Brachvogel, Bent; Zaucke, Frank; Dave, Keyur; Norris, Emma L; Stermann, Jacek; Dayakli, Münire; Koch, Manuel; Gorman, Jeffrey J; Bateman, John F; Wilson, Richard

    2013-05-10

    Collagen IX is an integral cartilage extracellular matrix component important in skeletal development and joint function. Proteomic analysis and validation studies revealed novel alterations in collagen IX null cartilage. Matrilin-4, collagen XII, thrombospondin-4, fibronectin, βig-h3, and epiphycan are components of the in vivo collagen IX interactome. We applied a proteomics approach to advance our understanding of collagen IX ablation in cartilage. The cartilage extracellular matrix is essential for endochondral bone development and joint function. In addition to the major aggrecan/collagen II framework, the interacting complex of collagen IX, matrilin-3, and cartilage oligomeric matrix protein (COMP) is essential for cartilage matrix stability, as mutations in Col9a1, Col9a2, Col9a3, Comp, and Matn3 genes cause multiple epiphyseal dysplasia, in which patients develop early onset osteoarthritis. In mice, collagen IX ablation results in severely disturbed growth plate organization, hypocellular regions, and abnormal chondrocyte shape. This abnormal differentiation is likely to involve altered cell-matrix interactions but the mechanism is not known. To investigate the molecular basis of the collagen IX null phenotype we analyzed global differences in protein abundance between wild-type and knock-out femoral head cartilage by capillary HPLC tandem mass spectrometry. We identified 297 proteins in 3-day cartilage and 397 proteins in 21-day cartilage. Components that were differentially abundant between wild-type and collagen IX-deficient cartilage included 15 extracellular matrix proteins. Collagen IX ablation was associated with dramatically reduced COMP and matrilin-3, consistent with known interactions. Matrilin-1, matrilin-4, epiphycan, and thrombospondin-4 levels were reduced in collagen IX null cartilage, providing the first in vivo evidence for these proteins belonging to the collagen IX interactome. Thrombospondin-4 expression was reduced at the mRNA level

  7. The Role of the Beetle Hypocryphalus mangiferae (Coleoptera: Curculionidae) in the Spatiotemporal Dynamics of Mango Wilt.

    Science.gov (United States)

    Galdino, Tarcísio Visintin da Silva; Ferreira, Dalton de Oliveira; Santana Júnior, Paulo Antônio; Arcanjo, Lucas de Paulo; Queiroz, Elenir Aparecida; Sarmento, Renato Almeida; Picanço, Marcelo Coutinho

    2017-06-01

    The knowledge of the spatiotemporal dynamics of pathogens and their vectors is an important step in determining the pathogen dispersion pattern and the role of vectors in disease dynamics. However, in the case of mango wilt little is known about its spatiotemporal dynamics and the relationship of its vector [the beetle Hypocryphalus mangiferae (Stebbing 1914)] to these dynamics. The aim of this work was to determine the spatial-seasonal dynamic of H. mangiferae attacks and mango wilt in mango orchards and to verify the importance of H. mangiferae in the spatiotemporal dynamics of the disease. Two mango orchards were monitored during a period of 3 yr. The plants in these orchards were georeferenced and inspected monthly to quantify the number of plants attacked by beetles and the fungus. In these orchards, the percentage of mango trees attacked by beetles was always higher than the percentage infected by the fungus. The colonization of mango trees by beetles and the fungus occurred by colonization of trees both distant and proximal to previously attacked trees. The new plants attacked by the fungus emerged in places where the beetles had previously begun their attack. This phenomenon led to a large overlap in sites of beetle and fungal occurrence, indicating that establishment by the beetle was followed by establishment by the fungus. This information can be used by farmers to predict disease infection, and to control bark beetle infestation in mango orchards. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Spatio-temporal Eigenvector Filtering: Application on Bioenergy Crop Impacts

    Science.gov (United States)

    Wang, M.; Kamarianakis, Y.; Georgescu, M.

    2017-12-01

    A suite of 10-year ensemble-based simulations was conducted to investigate the hydroclimatic impacts due to large-scale deployment of perennial bioenergy crops across the continental United States. Given the large size of the simulated dataset (about 60Tb), traditional hierarchical spatio-temporal statistical modelling cannot be implemented for the evaluation of physics parameterizations and biofuel impacts. In this work, we propose a filtering algorithm that takes into account the spatio-temporal autocorrelation structure of the data while avoiding spatial confounding. This method is used to quantify the robustness of simulated hydroclimatic impacts associated with bioenergy crops to alternative physics parameterizations and observational datasets. Results are evaluated against those obtained from three alternative Bayesian spatio-temporal specifications.

  9. Spiking neural network for recognizing spatiotemporal sequences of spikes

    International Nuclear Information System (INIS)

    Jin, Dezhe Z.

    2004-01-01

    Sensory neurons in many brain areas spike with precise timing to stimuli with temporal structures, and encode temporally complex stimuli into spatiotemporal spikes. How the downstream neurons read out such neural code is an important unsolved problem. In this paper, we describe a decoding scheme using a spiking recurrent neural network. The network consists of excitatory neurons that form a synfire chain, and two globally inhibitory interneurons of different types that provide delayed feedforward and fast feedback inhibition, respectively. The network signals recognition of a specific spatiotemporal sequence when the last excitatory neuron down the synfire chain spikes, which happens if and only if that sequence was present in the input spike stream. The recognition scheme is invariant to variations in the intervals between input spikes within some range. The computation of the network can be mapped into that of a finite state machine. Our network provides a simple way to decode spatiotemporal spikes with diverse types of neurons

  10. Dynamical topology and statistical properties of spatiotemporal chaos.

    Science.gov (United States)

    Zhuang, Quntao; Gao, Xun; Ouyang, Qi; Wang, Hongli

    2012-12-01

    For spatiotemporal chaos described by partial differential equations, there are generally locations where the dynamical variable achieves its local extremum or where the time partial derivative of the variable vanishes instantaneously. To a large extent, the location and movement of these topologically special points determine the qualitative structure of the disordered states. We analyze numerically statistical properties of the topologically special points in one-dimensional spatiotemporal chaos. The probability distribution functions for the number of point, the lifespan, and the distance covered during their lifetime are obtained from numerical simulations. Mathematically, we establish a probabilistic model to describe the dynamics of these topologically special points. In spite of the different definitions in different spatiotemporal chaos, the dynamics of these special points can be described in a uniform approach.

  11. Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland.

    Science.gov (United States)

    de Hoogh, Kees; Héritier, Harris; Stafoggia, Massimo; Künzli, Nino; Kloog, Itai

    2018-02-01

    Spatiotemporal resolved models were developed predicting daily fine particulate matter (PM 2.5 ) concentrations across Switzerland from 2003 to 2013. Relatively sparse PM 2.5 monitoring data was supplemented by imputing PM 2.5 concentrations at PM 10 sites, using PM 2.5 /PM 10 ratios at co-located sites. Daily PM 2.5 concentrations were first estimated at a 1 × 1km resolution across Switzerland, using Multiangle Implementation of Atmospheric Correction (MAIAC) spectral aerosol optical depth (AOD) data in combination with spatiotemporal predictor data in a four stage approach. Mixed effect models (1) were used to predict PM 2.5 in cells with AOD but without PM 2.5 measurements (2). A generalized additive mixed model with spatial smoothing was applied to generate grid cell predictions for those grid cells where AOD was missing (3). Finally, local PM 2.5 predictions were estimated at each monitoring site by regressing the residuals from the 1 × 1km estimate against local spatial and temporal variables using machine learning techniques (4) and adding them to the stage 3 global estimates. The global (1 km) and local (100 m) models explained on average 73% of the total,71% of the spatial and 75% of the temporal variation (all cross validated) globally and on average 89% (total) 95% (spatial) and 88% (temporal) of the variation locally in measured PM 2.5 concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Stochastic resonance based on modulation instability in spatiotemporal chaos.

    Science.gov (United States)

    Han, Jing; Liu, Hongjun; Huang, Nan; Wang, Zhaolu

    2017-04-03

    A novel dynamic of stochastic resonance in spatiotemporal chaos is presented, which is based on modulation instability of perturbed partially coherent wave. The noise immunity of chaos can be reinforced through this effect and used to restore the coherent signal information buried in chaotic perturbation. A theoretical model with fluctuations term is derived from the complex Ginzburg-Landau equation via Wigner transform. It shows that through weakening the nonlinear threshold and triggering energy redistribution, the coherent component dominates the instability damped by incoherent component. The spatiotemporal output showing the properties of stochastic resonance may provide a potential application of signal encryption and restoration.

  13. Spatio-temporal data analytics for wind energy integration

    CERN Document Server

    Yang, Lei; Zhang, Junshan

    2014-01-01

    This SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are carefully examined. A spatio-temporal analysis approach enables the authors to develop Markov-chain-based short-term forecasts of wind farm power generation. To deal with the wind ramp dynamics, a support vector machine enhanced Markov model is introduced. The stochastic optimization of economic di

  14. Replication Strategy for Spatiotemporal Data Based on Distributed Caching System.

    Science.gov (United States)

    Xiong, Lian; Yang, Liu; Tao, Yang; Xu, Juan; Zhao, Lun

    2018-01-14

    The replica strategy in distributed cache can effectively reduce user access delay and improve system performance. However, developing a replica strategy suitable for varied application scenarios is still quite challenging, owing to differences in user access behavior and preferences. In this paper, a replication strategy for spatiotemporal data (RSSD) based on a distributed caching system is proposed. By taking advantage of the spatiotemporal locality and correlation of user access, RSSD mines high popularity and associated files from historical user access information, and then generates replicas and selects appropriate cache node for placement. Experimental results show that the RSSD algorithm is simple and efficient, and succeeds in significantly reducing user access delay.

  15. Artificial neural network does better spatiotemporal compressive sampling

    Science.gov (United States)

    Lee, Soo-Young; Hsu, Charles; Szu, Harold

    2012-06-01

    Spatiotemporal sparseness is generated naturally by human visual system based on artificial neural network modeling of associative memory. Sparseness means nothing more and nothing less than the compressive sensing achieves merely the information concentration. To concentrate the information, one uses the spatial correlation or spatial FFT or DWT or the best of all adaptive wavelet transform (cf. NUS, Shen Shawei). However, higher dimensional spatiotemporal information concentration, the mathematics can not do as flexible as a living human sensory system. The reason is obviously for survival reasons. The rest of the story is given in the paper.

  16. Tensor analysis methods for activity characterization in spatiotemporal data

    Energy Technology Data Exchange (ETDEWEB)

    Haass, Michael Joseph; Van Benthem, Mark Hilary; Ochoa, Edward M

    2014-03-01

    Tensor (multiway array) factorization and decomposition offers unique advantages for activity characterization in spatio-temporal datasets because these methods are compatible with sparse matrices and maintain multiway structure that is otherwise lost in collapsing for regular matrix factorization. This report describes our research as part of the PANTHER LDRD Grand Challenge to develop a foundational basis of mathematical techniques and visualizations that enable unsophisticated users (e.g. users who are not steeped in the mathematical details of matrix algebra and mulitway computations) to discover hidden patterns in large spatiotemporal data sets.

  17. Secondary Instabilities and Spatiotemporal Chaos in Parametric Surface Waves

    International Nuclear Information System (INIS)

    Zhang, W.; Vinals, J.

    1995-01-01

    A 2D model is introduced to study the onset of parametric surface waves, their secondary instabilities, and the transition to spatiotemporal chaos. We obtain the stability boundary of a periodic standing wave above onset against Eckhaus, zigzag, and transverse amplitude modulations (TAM), as a function of the control parameter var-epsilon and the wavelength of the pattern. The Eckhaus and TAM boundaries cross at a finite value of var-epsilon, thus explaining the finite threshold for the TAM observed experimentally. At larger values of var-epsilon, a numerical solution reveals a transition to spatiotemporal chaotic states mediated by the TAM instability

  18. Pattern control and suppression of spatiotemporal chaos using geometrical resonance

    International Nuclear Information System (INIS)

    Gonzalez, J.A.; Bellorin, A.; Reyes, L.I.; Vasquez, C.; Guerrero, L.E.

    2004-01-01

    We generalize the concept of geometrical resonance to perturbed sine-Gordon, Nonlinear Schroedinger, phi (cursive,open) Greek 4 , and Complex Ginzburg-Landau equations. Using this theory we can control different dynamical patterns. For instance, we can stabilize breathers and oscillatory patterns of large amplitudes successfully avoiding chaos. On the other hand, this method can be used to suppress spatiotemporal chaos and turbulence in systems where these phenomena are already present. This method can be generalized to even more general spatiotemporal systems. A short report of some of our results has been published in [Europhys. Lett. 64 (2003) 743

  19. Replication Strategy for Spatiotemporal Data Based on Distributed Caching System

    Science.gov (United States)

    Xiong, Lian; Tao, Yang; Xu, Juan; Zhao, Lun

    2018-01-01

    The replica strategy in distributed cache can effectively reduce user access delay and improve system performance. However, developing a replica strategy suitable for varied application scenarios is still quite challenging, owing to differences in user access behavior and preferences. In this paper, a replication strategy for spatiotemporal data (RSSD) based on a distributed caching system is proposed. By taking advantage of the spatiotemporal locality and correlation of user access, RSSD mines high popularity and associated files from historical user access information, and then generates replicas and selects appropriate cache node for placement. Experimental results show that the RSSD algorithm is simple and efficient, and succeeds in significantly reducing user access delay. PMID:29342897

  20. Spatio-Temporal Data Mining for Location-Based Services

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo

    . The objectives of the presented thesis are three-fold. First, to extend popular data mining methods to the spatio-temporal domain. Second, to demonstrate the usefulness of the extended methods and the derived knowledge in promising LBS examples. Finally, to eliminate privacy concerns in connection with spatio......-temporal data mining by devising systems for privacy-preserving location data collection and mining.......Location-Based Services (LBS) are continuously gaining popularity. Innovative LBSes integrate knowledge about the users into the service. Such knowledge can be derived by analyzing the location data of users. Such data contain two unique dimensions, space and time, which need to be analyzed...

  1. Spatio-temporal databases complex motion pattern queries

    CERN Document Server

    Vieira, Marcos R

    2013-01-01

    This brief presents several new query processing techniques, called complex motion pattern queries, specifically designed for very large spatio-temporal databases of moving objects. The brief begins with the definition of flexible pattern queries, which are powerful because of the integration of variables and motion patterns. This is followed by a summary of the expressive power of patterns and flexibility of pattern queries. The brief then present the Spatio-Temporal Pattern System (STPS) and density-based pattern queries. STPS databases contain millions of records with information about mobi

  2. Routes to spatiotemporal chaos in Kerr optical frequency combs.

    Science.gov (United States)

    Coillet, Aurélien; Chembo, Yanne K

    2014-03-01

    We investigate the various routes to spatiotemporal chaos in Kerr optical frequency combs, obtained through pumping an ultra-high Q-factor whispering-gallery mode resonator with a continuous-wave laser. The Lugiato-Lefever model is used to build bifurcation diagrams with regards to the parameters that are externally controllable, namely, the frequency and the power of the pumping laser. We show that the spatiotemporal chaos emerging from Turing patterns and solitons display distinctive dynamical features. Experimental spectra of chaotic Kerr combs are also presented for both cases, in excellent agreement with theoretical spectra.

  3. Size-dependent diffusion promotes the emergence of spatiotemporal patterns

    DEFF Research Database (Denmark)

    Zhang, Lai; Thygesen, Uffe Høgsbro; Banerjee, Malay

    2014-01-01

    intraspecific physiological variations at the individual level. Here we explore the impacts of size variation within species resulting from individual ontogeny, on the emergence of spatiotemporal patterns in a fully size-structured population model. We found that size dependency of animal's diffusivity greatly......, we found that the single-generation cycle is more likely to drive spatiotemporal patterns compared to predator-prey cycles, meaning that the mechanism of Hopf bifurcation might be more common than hitherto appreciated since the former cycle is more widespread than the latter in case of interacting...

  4. Spatiotemporal variability in carbon exchange fluxes across the Sahel

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Fensholt, Rasmus; Cappelaere, Bernard

    2016-01-01

    for semi-arid ecosystems. We have synthesized data on the land-atmosphere exchange of CO2 measured with the eddy covariance technique from the six existing sites across the Sahel, one of the largest semi-arid regions in the world. The overall aim of the study is to analyse and quantify the spatiotemporal...... variability in these fluxes and to analyse to which degree spatiotemporal variation can be explained by hydrological, climatic, edaphic and vegetation variables. All ecosystems were C sinks (average ± total error -162 ± 48 g C m-2 y-1), but were smaller when strongly impacted by anthropogenic influences...

  5. Spatio-temporal modeling of nonlinear distributed parameter systems

    CERN Document Server

    Li, Han-Xiong

    2011-01-01

    The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s

  6. Mobile technologies and the spatiotemporal configurations of institutional practice

    DEFF Research Database (Denmark)

    Shklovski, Irina; Troshynski, Emily; Dourish, Paul

    2015-01-01

    are specifically concerned with what happens to institutional roles, power relationships, and decision-making processes when a particular type of information—that of spatiotemporal location of people—is made into a technologically tradable object through the use of location-based systems. We examine...... in which broad adoption of location-based and mobile technologies has the capacity to radically reconfigure the spatiotemporal arrangement of institutional processes. The presence of digital location traces creates new forms of institutional accountability, facilitates a shift in the understood relation...... between location and action, and necessitates new models of interpretation and sense making in practice....

  7. Estimating the state of large spatio-temporally chaotic systems

    International Nuclear Information System (INIS)

    Ott, E.; Hunt, B.R.; Szunyogh, I.; Zimin, A.V.; Kostelich, E.J.; Corazza, M.; Kalnay, E.; Patil, D.J.; Yorke, J.A.

    2004-01-01

    We consider the estimation of the state of a large spatio-temporally chaotic system from noisy observations and knowledge of a system model. Standard state estimation techniques using the Kalman filter approach are not computationally feasible for systems with very many effective degrees of freedom. We present and test a new technique (called a Local Ensemble Kalman Filter), generally applicable to large spatio-temporally chaotic systems for which correlations between system variables evaluated at different points become small at large separation between the points

  8. Interactome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperones.

    Directory of Open Access Journals (Sweden)

    Joel C Watts

    2009-10-01

    Full Text Available The physiological environment which hosts the conformational conversion of the cellular prion protein (PrP(C to disease-associated isoforms has remained enigmatic. A quantitative investigation of the PrP(C interactome was conducted in a cell culture model permissive to prion replication. To facilitate recognition of relevant interactors, the study was extended to Doppel (Prnd and Shadoo (Sprn, two mammalian PrP(C paralogs. Interestingly, this work not only established a similar physiological environment for the three prion protein family members in neuroblastoma cells, but also suggested direct interactions amongst them. Furthermore, multiple interactions between PrP(C and the neural cell adhesion molecule, the laminin receptor precursor, Na/K ATPases and protein disulfide isomerases (PDI were confirmed, thereby reconciling previously separate findings. Subsequent validation experiments established that interactions of PrP(C with PDIs may extend beyond the endoplasmic reticulum and may play a hitherto unrecognized role in the accumulation of PrP(Sc. A simple hypothesis is presented which accounts for the majority of interactions observed in uninfected cells and suggests that PrP(C organizes its molecular environment on account of its ability to bind to adhesion molecules harboring immunoglobulin-like domains, which in turn recognize oligomannose-bearing membrane proteins.

  9. Interactome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperones.

    Science.gov (United States)

    Watts, Joel C; Huo, Hairu; Bai, Yu; Ehsani, Sepehr; Jeon, Amy Hye Won; Won, Amy Hye; Shi, Tujin; Daude, Nathalie; Lau, Agnes; Young, Rebecca; Xu, Lei; Carlson, George A; Williams, David; Westaway, David; Schmitt-Ulms, Gerold

    2009-10-01

    The physiological environment which hosts the conformational conversion of the cellular prion protein (PrP(C)) to disease-associated isoforms has remained enigmatic. A quantitative investigation of the PrP(C) interactome was conducted in a cell culture model permissive to prion replication. To facilitate recognition of relevant interactors, the study was extended to Doppel (Prnd) and Shadoo (Sprn), two mammalian PrP(C) paralogs. Interestingly, this work not only established a similar physiological environment for the three prion protein family members in neuroblastoma cells, but also suggested direct interactions amongst them. Furthermore, multiple interactions between PrP(C) and the neural cell adhesion molecule, the laminin receptor precursor, Na/K ATPases and protein disulfide isomerases (PDI) were confirmed, thereby reconciling previously separate findings. Subsequent validation experiments established that interactions of PrP(C) with PDIs may extend beyond the endoplasmic reticulum and may play a hitherto unrecognized role in the accumulation of PrP(Sc). A simple hypothesis is presented which accounts for the majority of interactions observed in uninfected cells and suggests that PrP(C) organizes its molecular environment on account of its ability to bind to adhesion molecules harboring immunoglobulin-like domains, which in turn recognize oligomannose-bearing membrane proteins.

  10. Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α.

    Science.gov (United States)

    Sepulveda, Denisse; Rojas-Rivera, Diego; Rodríguez, Diego A; Groenendyk, Jody; Köhler, Andres; Lebeaupin, Cynthia; Ito, Shinya; Urra, Hery; Carreras-Sureda, Amado; Hazari, Younis; Vasseur-Cognet, Mireille; Ali, Maruf M U; Chevet, Eric; Campos, Gisela; Godoy, Patricio; Vaisar, Tomas; Bailly-Maitre, Béatrice; Nagata, Kazuhiro; Michalak, Marek; Sierralta, Jimena; Hetz, Claudio

    2018-01-18

    Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Exploring off-targets and off-systems for adverse drug reactions via chemical-protein interactome--clozapine-induced agranulocytosis as a case study.

    Directory of Open Access Journals (Sweden)

    Lun Yang

    2011-03-01

    Full Text Available In the era of personalized medical practice, understanding the genetic basis of patient-specific adverse drug reaction (ADR is a major challenge. Clozapine provides effective treatments for schizophrenia but its usage is limited because of life-threatening agranulocytosis. A recent high impact study showed the necessity of moving clozapine to a first line drug, thus identifying the biomarkers for drug-induced agranulocytosis has become important. Here we report a methodology termed as antithesis chemical-protein interactome (CPI, which utilizes the docking method to mimic the differences in the drug-protein interactions across a panel of human proteins. Using this method, we identified HSPA1A, a known susceptibility gene for CIA, to be the off-target of clozapine. Furthermore, the mRNA expression of HSPA1A-related genes (off-target associated systems was also found to be differentially expressed in clozapine treated leukemia cell line. Apart from identifying the CIA causal genes we identified several novel candidate genes which could be responsible for agranulocytosis. Proteins related to reactive oxygen clearance system, such as oxidoreductases and glutathione metabolite enzymes, were significantly enriched in the antithesis CPI. This methodology conducted a multi-dimensional analysis of drugs' perturbation to the biological system, investigating both the off-targets and the associated off-systems to explore the molecular basis of an adverse event or the new uses for old drugs.

  12. A general science-based framework for dynamical spatio-temporal models

    Science.gov (United States)

    Wikle, C.K.; Hooten, M.B.

    2010-01-01

    Spatio-temporal statistical models are increasingly being used across a wide variety of scientific disciplines to describe and predict spatially-explicit processes that evolve over time. Correspondingly, in recent years there has been a significant amount of research on new statistical methodology for such models. Although descriptive models that approach the problem from the second-order (covariance) perspective are important, and innovative work is being done in this regard, many real-world processes are dynamic, and it can be more efficient in some cases to characterize the associated spatio-temporal dependence by the use of dynamical models. The chief challenge with the specification of such dynamical models has been related to the curse of dimensionality. Even in fairly simple linear, first-order Markovian, Gaussian error settings, statistical models are often over parameterized. Hierarchical models have proven invaluable in their ability to deal to some extent with this issue by allowing dependency among groups of parameters. In addition, this framework has allowed for the specification of science based parameterizations (and associated prior distributions) in which classes of deterministic dynamical models (e. g., partial differential equations (PDEs), integro-difference equations (IDEs), matrix models, and agent-based models) are used to guide specific parameterizations. Most of the focus for the application of such models in statistics has been in the linear case. The problems mentioned above with linear dynamic models are compounded in the case of nonlinear models. In this sense, the need for coherent and sensible model parameterizations is not only helpful, it is essential. Here, we present an overview of a framework for incorporating scientific information to motivate dynamical spatio-temporal models. First, we illustrate the methodology with the linear case. We then develop a general nonlinear spatio-temporal framework that we call general quadratic

  13. The human interactome knowledge base (hint-kb): An integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique

    KAUST Repository

    Theofilatos, Konstantinos A.; Dimitrakopoulos, Christos M.; Likothanassis, Spiridon D.; Kleftogiannis, Dimitrios A.; Moschopoulos, Charalampos N.; Alexakos, Christos; Papadimitriou, Stergios; Mavroudi, Seferina P.

    2013-01-01

    Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about

  14. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Laureline Logiaco

    2015-08-01

    Full Text Available The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  15. The role of climate and socioeconomic factors on the spatiotemporal variability of cholera in Nigeria

    Science.gov (United States)

    Abdussalam, Auwal; Thornes, John; Leckebusch, Gregor

    2015-04-01

    Nigeria has a number of climate-sensitive infectious diseases; one of the most important of these diseases that remains a threat to public health is cholera. This study investigates the influences of both meteorological and socioeconomic factors on the spatiotemporal variability of cholera in Nigeria. A stepwise multiple regression models are used to estimate the influence of the year-to-year variations of cholera cases and deaths for individual states in the country and as well for three groups of states that are classified based on annual rainfall amount. Specifically, seasonal mean maximum and minimum temperatures and annual rainfall totals were analysed with annual aggregate count of cholera cases and deaths, taking into account of the socioeconomic factors that are potentially enhancing vulnerability such as: absolute poverty, adult literacy, access to pipe borne water and population density. Result reveals that the most important explanatory meteorological and socioeconomic variables in explaining the spatiotemporal variability of the disease are rainfall totals, seasonal mean maximum temperature, absolute poverty, and accessibility to pipe borne water. The influences of socioeconomic factors appeared to be more pronounced in the northern part of the country, and vice-versa in the case of meteorological factors. Also, cross validated models output suggests a strong possibility of disease prediction, which will help authorities to put effective control measures in place which depend on prevention, and or efficient response.

  16. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade.

    Science.gov (United States)

    Ouzounova, Maria; Lee, Eunmi; Piranlioglu, Raziye; El Andaloussi, Abdeljabar; Kolhe, Ravindra; Demirci, Mehmet F; Marasco, Daniela; Asm, Iskander; Chadli, Ahmed; Hassan, Khaled A; Thangaraju, Muthusamy; Zhou, Gang; Arbab, Ali S; Cowell, John K; Korkaya, Hasan

    2017-04-06

    It is widely accepted that dynamic and reversible tumour cell plasticity is required for metastasis, however, in vivo steps and molecular mechanisms are poorly elucidated. We demonstrate here that monocytic (mMDSC) and granulocytic (gMDSC) subsets of myeloid-derived suppressor cells infiltrate in the primary tumour and distant organs with different time kinetics and regulate spatiotemporal tumour plasticity. Using co-culture experiments and mouse transcriptome analyses in syngeneic mouse models, we provide evidence that tumour-infiltrated mMDSCs facilitate tumour cell dissemination from the primary site by inducing EMT/CSC phenotype. In contrast, pulmonary gMDSC infiltrates support the metastatic growth by reverting EMT/CSC phenotype and promoting tumour cell proliferation. Furthermore, lung-derived gMDSCs isolated from tumour-bearing animals enhance metastatic growth of already disseminated tumour cells. MDSC-induced 'metastatic gene signature' derived from murine syngeneic model predicts poor patient survival in the majority of human solid tumours. Thus spatiotemporal MDSC infiltration may have clinical implications in tumour progression.

  17. Robust seismicity forecasting based on Bayesian parameter estimation for epidemiological spatio-temporal aftershock clustering models.

    Science.gov (United States)

    Ebrahimian, Hossein; Jalayer, Fatemeh

    2017-08-29

    In the immediate aftermath of a strong earthquake and in the presence of an ongoing aftershock sequence, scientific advisories in terms of seismicity forecasts play quite a crucial role in emergency decision-making and risk mitigation. Epidemic Type Aftershock Sequence (ETAS) models are frequently used for forecasting the spatio-temporal evolution of seismicity in the short-term. We propose robust forecasting of seismicity based on ETAS model, by exploiting the link between Bayesian inference and Markov Chain Monte Carlo Simulation. The methodology considers the uncertainty not only in the model parameters, conditioned on the available catalogue of events occurred before the forecasting interval, but also the uncertainty in the sequence of events that are going to happen during the forecasting interval. We demonstrate the methodology by retrospective early forecasting of seismicity associated with the 2016 Amatrice seismic sequence activities in central Italy. We provide robust spatio-temporal short-term seismicity forecasts with various time intervals in the first few days elapsed after each of the three main events within the sequence, which can predict the seismicity within plus/minus two standard deviations from the mean estimate within the few hours elapsed after the main event.

  18. Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques.

    Science.gov (United States)

    Chang, Fi-John; Chen, Pin-An; Chang, Li-Chiu; Tsai, Yu-Hsuan

    2016-08-15

    This study attempts to model the spatio-temporal dynamics of total phosphate (TP) concentrations along a river for effective hydro-environmental management. We propose a systematical modeling scheme (SMS), which is an ingenious modeling process equipped with a dynamic neural network and three refined statistical methods, for reliably predicting the TP concentrations along a river simultaneously. Two different types of artificial neural network (BPNN-static neural network; NARX network-dynamic neural network) are constructed in modeling the dynamic system. The Dahan River in Taiwan is used as a study case, where ten-year seasonal water quality data collected at seven monitoring stations along the river are used for model training and validation. Results demonstrate that the NARX network can suitably capture the important dynamic features and remarkably outperforms the BPNN model, and the SMS can effectively identify key input factors, suitably overcome data scarcity, significantly increase model reliability, satisfactorily estimate site-specific TP concentration at seven monitoring stations simultaneously, and adequately reconstruct seasonal TP data into a monthly scale. The proposed SMS can reliably model the dynamic spatio-temporal water pollution variation in a river system for missing, hazardous or costly data of interest. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Science.gov (United States)

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-08-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  20. State estimation of spatio-temporal phenomena

    Science.gov (United States)

    Yu, Dan

    This dissertation addresses the state estimation problem of spatio-temporal phenomena which can be modeled by partial differential equations (PDEs), such as pollutant dispersion in the atmosphere. After discretizing the PDE, the dynamical system has a large number of degrees of freedom (DOF). State estimation using Kalman Filter (KF) is computationally intractable, and hence, a reduced order model (ROM) needs to be constructed first. Moreover, the nonlinear terms, external disturbances or unknown boundary conditions can be modeled as unknown inputs, which leads to an unknown input filtering problem. Furthermore, the performance of KF could be improved by placing sensors at feasible locations. Therefore, the sensor scheduling problem to place multiple mobile sensors is of interest. The first part of the dissertation focuses on model reduction for large scale systems with a large number of inputs/outputs. A commonly used model reduction algorithm, the balanced proper orthogonal decomposition (BPOD) algorithm, is not computationally tractable for large systems with a large number of inputs/outputs. Inspired by the BPOD and randomized algorithms, we propose a randomized proper orthogonal decomposition (RPOD) algorithm and a computationally optimal RPOD (RPOD*) algorithm, which construct an ROM to capture the input-output behaviour of the full order model, while reducing the computational cost of BPOD by orders of magnitude. It is demonstrated that the proposed RPOD* algorithm could construct the ROM in real-time, and the performance of the proposed algorithms on different advection-diffusion equations. Next, we consider the state estimation problem of linear discrete-time systems with unknown inputs which can be treated as a wide-sense stationary process with rational power spectral density, while no other prior information needs to be known. We propose an autoregressive (AR) model based unknown input realization technique which allows us to recover the input

  1. Spatiotemporal variability of marine renewable energy resources in Norway

    NARCIS (Netherlands)

    Varlas, George; Christakos, Konstantinos; Cheliotis, Ioannis; Papadopoulos, A.; Steeneveld, G.J.

    2017-01-01

    Marine Renewable Energy (MRE) resources such as wind and wave energy depend on the complex behaviour of weather and climatic conditions which determine the development of MRE technologies, energy grid, supply and prices. This study investigates the spatiotemporal variability of MRE resources along

  2. Spatiotemporal distribution patterns of forest fires in northern Mexico

    Science.gov (United States)

    Gustavo Pérez-Verdin; M. A. Márquez-Linares; A. Cortes-Ortiz; M. Salmerón-Macias

    2013-01-01

    Using the 2000-2011 CONAFOR databases, a spatiotemporal analysis of the occurrence of forest fires in Durango, one of the most affected States in Mexico, was conducted. The Moran's index was used to determine a spatial distribution pattern; also, an analysis of seasonal and temporal autocorrelation of the data collected was completed. The geographically weighted...

  3. Large scale stochastic spatio-temporal modelling with PCRaster

    NARCIS (Netherlands)

    Karssenberg, D.J.; Drost, N.; Schmitz, O.; Jong, K. de; Bierkens, M.F.P.

    2013-01-01

    PCRaster is a software framework for building spatio-temporal models of land surface processes (http://www.pcraster.eu). Building blocks of models are spatial operations on raster maps, including a large suite of operations for water and sediment routing. These operations are available to model

  4. Spatiotemporal dynamics of cortical representations during and after stimulus presentation

    NARCIS (Netherlands)

    Nieuwenhuijzen, M.E. van de; Borne, E.W.P. van den; Jensen, O.; Gerven, M.A.J. van

    2016-01-01

    Visual perception is a spatiotemporally complex process. In this study, we investigated cortical dynamics during and after stimulus presentation. We observed that visual category information related to the difference between faces and objects became apparent in the occipital lobe after 63 ms. Within

  5. ELASTIC CLOUD COMPUTING ARCHITECTURE AND SYSTEM FOR HETEROGENEOUS SPATIOTEMPORAL COMPUTING

    Directory of Open Access Journals (Sweden)

    X. Shi

    2017-10-01

    Full Text Available Spatiotemporal computation implements a variety of different algorithms. When big data are involved, desktop computer or standalone application may not be able to complete the computation task due to limited memory and computing power. Now that a variety of hardware accelerators and computing platforms are available to improve the performance of geocomputation, different algorithms may have different behavior on different computing infrastructure and platforms. Some are perfect for implementation on a cluster of graphics processing units (GPUs, while GPUs may not be useful on certain kind of spatiotemporal computation. This is the same situation in utilizing a cluster of Intel's many-integrated-core (MIC or Xeon Phi, as well as Hadoop or Spark platforms, to handle big spatiotemporal data. Furthermore, considering the energy efficiency requirement in general computation, Field Programmable Gate Array (FPGA may be a better solution for better energy efficiency when the performance of computation could be similar or better than GPUs and MICs. It is expected that an elastic cloud computing architecture and system that integrates all of GPUs, MICs, and FPGAs could be developed and deployed to support spatiotemporal computing over heterogeneous data types and computational problems.

  6. Elastic Cloud Computing Architecture and System for Heterogeneous Spatiotemporal Computing

    Science.gov (United States)

    Shi, X.

    2017-10-01

    Spatiotemporal computation implements a variety of different algorithms. When big data are involved, desktop computer or standalone application may not be able to complete the computation task due to limited memory and computing power. Now that a variety of hardware accelerators and computing platforms are available to improve the performance of geocomputation, different algorithms may have different behavior on different computing infrastructure and platforms. Some are perfect for implementation on a cluster of graphics processing units (GPUs), while GPUs may not be useful on certain kind of spatiotemporal computation. This is the same situation in utilizing a cluster of Intel's many-integrated-core (MIC) or Xeon Phi, as well as Hadoop or Spark platforms, to handle big spatiotemporal data. Furthermore, considering the energy efficiency requirement in general computation, Field Programmable Gate Array (FPGA) may be a better solution for better energy efficiency when the performance of computation could be similar or better than GPUs and MICs. It is expected that an elastic cloud computing architecture and system that integrates all of GPUs, MICs, and FPGAs could be developed and deployed to support spatiotemporal computing over heterogeneous data types and computational problems.

  7. Spatiotemporal radiotherapy planning using a global optimization approach

    Science.gov (United States)

    Adibi, Ali; Salari, Ehsan

    2018-02-01

    This paper aims at quantifying the extent of potential therapeutic gain, measured using biologically effective dose (BED), that can be achieved by altering the radiation dose distribution over treatment sessions in fractionated radiotherapy. To that end, a spatiotemporally integrated planning approach is developed, where the spatial and temporal dose modulations are optimized simultaneously. The concept of equivalent uniform BED (EUBED) is used to quantify and compare the clinical quality of spatiotemporally heterogeneous dose distributions in target and critical structures. This gives rise to a large-scale non-convex treatment-plan optimization problem, which is solved using global optimization techniques. The proposed spatiotemporal planning approach is tested on two stylized cancer cases resembling two different tumor sites and sensitivity analysis is performed for radio-biological and EUBED parameters. Numerical results validate that spatiotemporal plans are capable of delivering a larger BED to the target volume without increasing the BED in critical structures compared to conventional time-invariant plans. In particular, this additional gain is attributed to the irradiation of different regions of the target volume at different treatment sessions. Additionally, the trade-off between the potential therapeutic gain and the number of distinct dose distributions is quantified, which suggests a diminishing marginal gain as the number of dose distributions increases.

  8. Gaze control during interceptive actions with different spatiotemporal demands.

    NARCIS (Netherlands)

    Navia, J.A.; Dicks, M.S.; van der Kamp, J; Ruiz, L.

    It is widely accepted that the sources of information used to guide interceptive actions depend on conflicting spatiotemporal task demands. However, there is a paucity of evidence that shows how information pick-up during interceptive actions is adapted to such conflicting constraints. The present

  9. Pain Recognition using Spatiotemporal Oriented Energy of Facial Muscles

    DEFF Research Database (Denmark)

    Irani, Ramin; Nasrollahi, Kamal; Moeslund, Thomas B.

    2015-01-01

    Pain is a critical sign in many medical situations and its automatic detection and recognition using computer vision techniques is of great importance. Utilizes this fact that pain is a spatiotemporal process, the proposed system in this paper employs steerable and separable filters to measures e...

  10. Spatio-temporal point process filtering methods with an application

    Czech Academy of Sciences Publication Activity Database

    Frcalová, B.; Beneš, V.; Klement, Daniel

    2010-01-01

    Roč. 21, 3-4 (2010), s. 240-252 ISSN 1180-4009 R&D Projects: GA AV ČR(CZ) IAA101120604 Institutional research plan: CEZ:AV0Z50110509 Keywords : cox point process * filtering * spatio-temporal modelling * spike Subject RIV: BA - General Mathematics Impact factor: 0.750, year: 2010

  11. Spatio-temporal analysis of Salmonella surveillance data in Thailand

    DEFF Research Database (Denmark)

    Coutinho Calado Domingues, Ana Rita; Vieira, Antonio; Hendriksen, Rene S.

    2014-01-01

    This study evaluates the usefulness of spatio-temporal statistical tools to detect outbreaks using routine surveillance data where limited epidemiological information is available. A dataset from 2002 to 2007 containing information regarding date, origin, source and serotype of 29 586 Salmonella ...

  12. On spatio-temporal Lévy based Cox processes

    DEFF Research Database (Denmark)

    Prokesova, Michaela; Hellmund, Gunnar; Jensen, Eva Bjørn Vedel

    2006-01-01

    The paper discusses a new class of models for spatio-temporal Cox point processes. In these models, the driving field is defined by means of an integral of a weight function with respect to a Lévy basis. The relations to other Cox process models studied previously are discussed and formulas for t...

  13. Spatiotemporal Coupling of the Tongue in Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Kuruvilla, Mili S.; Green, Jordan R.; Yunusova, Yana; Hanford, Kathy

    2012-01-01

    Purpose: The primary aim of the investigation was to identify deficits in spatiotemporal coupling between tongue regions in amyotrophic lateral sclerosis (ALS). The relations between disease-related changes in tongue movement patterns and speech intelligibility were also determined. Methods: The authors recorded word productions from 11…

  14. Spatio-Temporal Saliency Perception via Hypercomplex Frequency Spectral Contrast

    Directory of Open Access Journals (Sweden)

    Zhiqiang Tian

    2013-03-01

    Full Text Available Salient object perception is the process of sensing the salient information from the spatio-temporal visual scenes, which is a rapid pre-attention mechanism for the target location in a visual smart sensor. In recent decades, many successful models of visual saliency perception have been proposed to simulate the pre-attention behavior. Since most of the methods usually need some ad hoc parameters or high-cost preprocessing, they are difficult to rapidly detect salient object or be implemented by computing parallelism in a smart sensor. In this paper, we propose a novel spatio-temporal saliency perception method based on spatio-temporal hypercomplex spectral contrast (HSC. Firstly, the proposed HSC algorithm represent the features in the HSV (hue, saturation and value color space and features of motion by a hypercomplex number. Secondly, the spatio-temporal salient objects are efficiently detected by hypercomplex Fourier spectral contrast in parallel. Finally, our saliency perception model also incorporates with the non-uniform sampling, which is a common phenomenon of human vision that directs visual attention to the logarithmic center of the image/video in natural scenes. The experimental results on the public saliency perception datasets demonstrate the effectiveness of the proposed approach compared to eleven state-of-the-art approaches. In addition, we extend the proposed model to moving object extraction in dynamic scenes, and the proposed algorithm is superior to the traditional algorithms.

  15. Spatio-temporal joins on symbolic indoor tracking data

    DEFF Research Database (Denmark)

    Lu, Hua; Yang, Bin; Jensen, Christian S.

    2011-01-01

    and studies probabilistic, spatio-temporal joins on historical indoor tracking data. Two meaningful types of join are defined. They return object pairs that satisfy spatial join predicates either at a time point or during a time interval. The predicates considered include “same X,” where X is a semantic...

  16. Mode locking and spatiotemporal chaos in periodically driven Gunn diodes

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Feldberg, Rasmus; Knudsen, Carsten

    1990-01-01

    oscillation entrains with the external signal. This produces a devil’s staircase of frequency-locked solutions. At higher microwave amplitudes, period doubling and other forms of mode-converting bifurcations can be seen. In this interval the diode also exhibits spatiotemporal chaos. At still higher microwave...

  17. Spatiotemporal Diffusive Evolution and Fractal Structure of Ground Motion

    Science.gov (United States)

    Suwada, Tsuyoshi

    2018-02-01

    The spatiotemporal diffusive evolution and fractal structure of ground motion have been investigated at the in-ground tunnel of the KEK B-Factory (KEKB) injector linear accelerator (linac). The slow dynamic fluctuating displacements of the tunnel floor are measured in real time with a new remote-controllable sensing system based on a laser-based alignment system. Based on spatiotemporal analyses with linear-regression models, which were applied in both the time and frequency domains to time-series data recorded over a period of approximately 8 months, both coherent and stochastic components in the displacements of the tunnel floor were clearly observed along the entire length of the linac. In particular, it was clearly observed that the stochastic components exhibited characteristic spatiotemporal diffusive evolution with the fractal structure and fractional dimension. This report describes in detail the experimental techniques and analyses of the spatiotemporal diffusive evolution of ground motion observed at the in-ground tunnel of the injector linac using a real-time remote-controllable sensing system.

  18. Spatiotemporal resonances in mixing of open viscous fluids

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Tabeling, Patrick

    2004-01-01

    In this Letter, we reveal a new dynamical phenomenon, called "spatiotemporal resonance," which is expected to take place in a broad range of viscous, periodically forced, open systems. The observation originates from a numerical and theoretical analysis of a micromixer, and is supported...

  19. Synchronization of spatiotemporal chaotic systems by feedback control

    International Nuclear Information System (INIS)

    Lai, Y.; Grebogi, C.

    1994-01-01

    We demonstrate that two identical spatiotemporal chaotic systems can be synchronized by (1) linking one or a few of their dynamical variables, and (2) applying a small feedback control to one of the systems. Numerical examples using the diffusively coupled logistic map lattice are given. The effect of noise and the limitation of the technique are discussed

  20. Control and characterization of spatio-temporal disorder in ...

    Indian Academy of Sciences (India)

    characterizing the type of spatio-temporal disorder that is embodied in this disordered ... The results from this experiment will shed light on the more general questions ... sponds to only odd or even multiples of the common frequency, ω0. Thus ...

  1. Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma

    Czech Academy of Sciences Publication Activity Database

    Martines, E.; Zuin, M.; Cavazzana, R.; Adámek, Jiří; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N.

    2014-01-01

    Roč. 21, č. 10 (2014), s. 102309-102309 ISSN 1070-664X Institutional support: RVO:61389021 Keywords : Drift waves * Magnetron sputtering plasma * Spatiotemporal synchronization Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.142, year: 2014 http://dx.doi.org/10.1063/1.4898693

  2. GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data

    Science.gov (United States)

    Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.

    2016-12-01

    Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We

  3. A Mixed Land Cover Spatio-temporal Data Model Based on Object-oriented and Snapshot

    Directory of Open Access Journals (Sweden)

    LI Yinchao

    2016-07-01

    Full Text Available Spatio-temporal data model (STDM is one of the hot topics in the domains of spatio-temporal database and data analysis. There is a common view that a universal STDM is always of high complexity due to the various situation of spatio-temporal data. In this article, a mixed STDM is proposed based on object-oriented and snapshot models for modelling and analyzing landcover change (LCC. This model uses the object-oriented STDM to describe the spatio-temporal processes of land cover patches and organize their spatial and attributive properties. In the meantime, it uses the snapshot STDM to present the spatio-temporal distribution of LCC on the whole via snapshot images. The two types of models are spatially and temporally combined into a mixed version. In addition to presenting the spatio-temporal events themselves, this model could express the transformation events between different classes of spatio-temporal objects. It can be used to create database for historical data of LCC, do spatio-temporal statistics, simulation and data mining with the data. In this article, the LCC data in Heilongjiang province is used for case study to validate spatio-temporal data management and analysis abilities of mixed STDM, including creating database, spatio-temporal query, global evolution analysis and patches spatio-temporal process expression.

  4. Spatiotemporal psychopathology I: No rest for the brain's resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms.

    Science.gov (United States)

    Northoff, Georg

    2016-01-15

    Despite intense neurobiological investigation in psychiatric disorders like major depressive disorder (MDD), the basic disturbance that underlies the psychopathological symptoms of MDD remains, nevertheless, unclear. Neuroimaging has focused mainly on the brain's extrinsic activity, specifically task-evoked or stimulus-induced activity, as related to the various sensorimotor, affective, cognitive, and social functions. Recently, the focus has shifted to the brain's intrinsic activity, otherwise known as its resting state activity. While various abnormalities have been observed during this activity, their meaning and significance for depression, along with its various psychopathological symptoms, are yet to be defined. Based on findings in healthy brain resting state activity and its particular spatial and temporal structure - defined in a functional and physiological sense rather than anatomical and structural - I claim that the various depressive symptoms are spatiotemporal disturbances of the resting state activity and its spatiotemporal structure. This is supported by recent findings that link ruminations and increased self-focus in depression to abnormal spatial organization of resting state activity. Analogously, affective and cognitive symptoms like anhedonia, suicidal ideation, and thought disorder can be traced to an increased focus on the past, increased past-focus as basic temporal disturbance o the resting state. Based on these findings, I conclude that the various depressive symptoms must be conceived as spatiotemporal disturbances of the brain's resting state's activity and its spatiotemporal structure. Importantly, this entails a new form of psychopathology, "Spatiotemporal Psychopathology" that directly links the brain and psyche, therefore having major diagnostic and therapeutic implications for clinical practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Spatio-temporal modelling of rainfall in the Murray-Darling Basin

    Science.gov (United States)

    Nowak, Gen; Welsh, A. H.; O'Neill, T. J.; Feng, Lingbing

    2018-02-01

    The Murray-Darling Basin (MDB) is a large geographical region in southeastern Australia that contains many rivers and creeks, including Australia's three longest rivers, the Murray, the Murrumbidgee and the Darling. Understanding rainfall patterns in the MDB is very important due to the significant impact major events such as droughts and floods have on agricultural and resource productivity. We propose a model for modelling a set of monthly rainfall data obtained from stations in the MDB and for producing predictions in both the spatial and temporal dimensions. The model is a hierarchical spatio-temporal model fitted to geographical data that utilises both deterministic and data-derived components. Specifically, rainfall data at a given location are modelled as a linear combination of these deterministic and data-derived components. A key advantage of the model is that it is fitted in a step-by-step fashion, enabling appropriate empirical choices to be made at each step.

  6. Estimating Activity Patterns Using Spatio-temporal Data of Cellphone Networks

    Directory of Open Access Journals (Sweden)

    Zahedi Seyedmostafa

    2016-01-01

    Full Text Available The tendency towards using activity-based models to predict trip demand has increased dramatically over recent years, but these models have suffered insufficient data for calibration. This paper discusses ways to process the cellphone spatio-temporal data in a manner that makes it comprehensible for traffic interpretations and proposes methods on how to infer urban mobility and activity patterns from the aforementioned data. Movements of each subscriber is described by a sequence of stays and trips and each stay is labeled by an activity. The type of activities are estimated using features such as land use, duration of stay, frequency of visit, arrival time to that activity and its distance from home. Finally, the chains of trips are identified and different patterns that citizens follow to participate in activities are determined. The data comprises 144 million records of the location of 300,000 citizens of Shiraz at five-minute intervals.

  7. MVL spatiotemporal analysis for model intercomparison in EPS: application to the DEMETER multi-model ensemble

    Science.gov (United States)

    Fernández, J.; Primo, C.; Cofiño, A. S.; Gutiérrez, J. M.; Rodríguez, M. A.

    2009-08-01

    In a recent paper, Gutiérrez et al. (Nonlinear Process Geophys 15(1):109-114, 2008) introduced a new characterization of spatiotemporal error growth—the so called mean-variance logarithmic (MVL) diagram—and applied it to study ensemble prediction systems (EPS); in particular, they analyzed single-model ensembles obtained by perturbing the initial conditions. In the present work, the MVL diagram is applied to multi-model ensembles analyzing also the effect of model formulation differences. To this aim, the MVL diagram is systematically applied to the multi-model ensemble produced in the EU-funded DEMETER project. It is shown that the shared building blocks (atmospheric and ocean components) impose similar dynamics among different models and, thus, contribute to poorly sampling the model formulation uncertainty. This dynamical similarity should be taken into account, at least as a pre-screening process, before applying any objective weighting method.

  8. Predictability of Conversation Partners

    Science.gov (United States)

    Takaguchi, Taro; Nakamura, Mitsuhiro; Sato, Nobuo; Yano, Kazuo; Masuda, Naoki

    2011-08-01

    Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song , ScienceSCIEAS0036-8075 327, 1018 (2010)] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  9. Predictability of Conversation Partners

    Directory of Open Access Journals (Sweden)

    Taro Takaguchi

    2011-09-01

    Full Text Available Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song et al., Science 327, 1018 (2010SCIEAS0036-8075] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  10. Challenges for modelling spatio-temporal variations of malaria risk in Malawi

    Science.gov (United States)

    Lowe, R.; Chirombo, J.; Tompkins, A. M.

    2012-04-01

    the unobserved confounding factors that influence malaria, which are not accounted for using measured covariates, a negative binomial generalised linear mixed model (GLMM) is adopted, which includes structured and unstructured spatial and temporal random effects. The parameters in this spatio-temporal Bayesian hierarchical model are estimated using Markov Chain Monte Carlo (MCMC). This allows posterior predictive distributions for disease risk to be derived for each spatial location and time period. A novel visualisation technique is then used to display seasonal probabilistic forecasts of malaria risk, derived from the developed model using pre-defined risk category thresholds, on a map. This technique allows decision makers to identify areas where the model predicts with certainty a particular malaria risk category (high, medium or low); in order to effectively target limited resources to those districts most at risk for a given season.

  11. Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes.

    Directory of Open Access Journals (Sweden)

    Emre Guney

    Full Text Available Complex biological systems usually pose a trade-off between robustness and fragility where a small number of perturbations can substantially disrupt the system. Although biological systems are robust against changes in many external and internal conditions, even a single mutation can perturb the system substantially, giving rise to a pathophenotype. Recent advances in identifying and analyzing the sequential variations beneath human disorders help to comprehend a systemic view of the mechanisms underlying various disease phenotypes. Network-based disease-gene prioritization methods rank the relevance of genes in a disease under the hypothesis that genes whose proteins interact with each other tend to exhibit similar phenotypes. In this study, we have tested the robustness of several network-based disease-gene prioritization methods with respect to the perturbations of the system using various disease phenotypes from the Online Mendelian Inheritance in Man database. These perturbations have been introduced either in the protein-protein interaction network or in the set of known disease-gene associations. As the network-based disease-gene prioritization methods are based on the connectivity between known disease-gene associations, we have further used these methods to categorize the pathophenotypes with respect to the recoverability of hidden disease-genes. Our results have suggested that, in general, disease-genes are connected through multiple paths in the human interactome. Moreover, even when these paths are disturbed, network-based prioritization can reveal hidden disease-gene associations in some pathophenotypes such as breast cancer, cardiomyopathy, diabetes, leukemia, parkinson disease and obesity to a greater extend compared to the rest of the pathophenotypes tested in this study. Gene Ontology (GO analysis highlighted the role of functional diversity for such diseases.

  12. sCLIP-an integrated platform to study RNA-protein interactomes in biomedical research: identification of CSTF2tau in alternative processing of small nuclear RNAs.

    Science.gov (United States)

    Kargapolova, Yulia; Levin, Michal; Lackner, Karl; Danckwardt, Sven

    2017-06-02

    RNA-binding proteins (RBPs) are central for gene expression by controlling the RNA fate from birth to decay. Various disorders arising from perturbations of RNA-protein interactions document their critical function. However, deciphering their function is complex, limiting the general functional elucidation of this growing class of proteins and their contribution to (patho)physiology. Here, we present sCLIP, a simplified and robust platform for genome-wide interrogation of RNA-protein interactomes based on crosslinking-immunoprecipitation and high-throughput sequencing. sCLIP exploits linear amplification of the immunoprecipitated RNA improving the complexity of the sequencing-library despite significantly reducing the amount of input material and omitting several purification steps. Additionally, it permits a radiolabel-free visualization of immunoprecipitated RNA. In a proof of concept, we identify that CSTF2tau binds many previously not recognized RNAs including histone, snoRNA and snRNAs. CSTF2tau-binding is associated with internal oligoadenylation resulting in shortened snRNA isoforms subjected to rapid degradation. We provide evidence for a new mechanism whereby CSTF2tau controls the abundance of snRNAs resulting in alternative splicing of several RNAs including ANK2 with critical roles in tumorigenesis and cardiac function. Combined with a bioinformatic pipeline sCLIP thus uncovers new functions for established RBPs and fosters the illumination of RBP-protein interaction landscapes in health and disease. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Effective and efficient analysis of spatio-temporal data

    Science.gov (United States)

    Zhang, Zhongnan

    Spatio-temporal data mining, i.e., mining knowledge from large amount of spatio-temporal data, is a highly demanding field because huge amounts of spatio-temporal data have been collected in various applications, ranging from remote sensing, to geographical information systems (GIS), computer cartography, environmental assessment and planning, etc. The collection data far exceeded human's ability to analyze which make it crucial to develop analysis tools. Recent studies on data mining have extended to the scope of data mining from relational and transactional datasets to spatial and temporal datasets. Among the various forms of spatio-temporal data, remote sensing images play an important role, due to the growing wide-spreading of outer space satellites. In this dissertation, we proposed two approaches to analyze the remote sensing data. The first one is about applying association rules mining onto images processing. Each image was divided into a number of image blocks. We built a spatial relationship for these blocks during the dividing process. This made a large number of images into a spatio-temporal dataset since each image was shot in time-series. The second one implemented co-occurrence patterns discovery from these images. The generated patterns represent subsets of spatial features that are located together in space and time. A weather analysis is composed of individual analysis of several meteorological variables. These variables include temperature, pressure, dew point, wind, clouds, visibility and so on. Local-scale models provide detailed analysis and forecasts of meteorological phenomena ranging from a few kilometers to about 100 kilometers in size. When some of above meteorological variables have some special change tendency, some kind of severe weather will happen in most cases. Using the discovery of association rules, we found that some special meteorological variables' changing has tight relation with some severe weather situation that will happen

  14. Geophysical Factor Resolving of Rainfall Mechanism for Super Typhoons by Using Multiple Spatiotemporal Components Analysis

    Science.gov (United States)

    Huang, Chien-Lin; Hsu, Nien-Sheng

    2016-04-01

    This study develops a novel methodology to resolve the geophysical cause of typhoon-induced rainfall considering diverse dynamic co-evolution at multiple spatiotemporal components. The multi-order hidden patterns of complex hydrological process in chaos are detected to understand the fundamental laws of rainfall mechanism. The discovered spatiotemporal features are utilized to develop a state-of-the-art descriptive statistical model for mechanism validation, modeling and further prediction during typhoons. The time series of hourly typhoon precipitation from different types of moving track, atmospheric field and landforms are respectively precede the signal analytical process to qualify each type of rainfall cause and to quantify the corresponding affected degree based on the measured geophysical atmospheric-hydrological variables. This study applies the developed methodology in Taiwan Island which is constituted by complex diverse landform formation. The identified driving-causes include: (1) cloud height to ground surface; (2) co-movement effect induced by typhoon wind field with monsoon; (3) stem capacity; (4) interaction between typhoon rain band and terrain; (5) structural intensity variance of typhoon; and (6) integrated cloudy density of rain band. Results show that: (1) for the central maximum wind speed exceeding 51 m/sec, Causes (1) and (3) are the primary ones to generate rainfall; (2) for the typhoon moving toward the direction of 155° to 175°, Cause (2) is the primary one; (3) for the direction of 90° to 155°, Cause (4) is the primary one; (4) for the typhoon passing through mountain chain which above 3500 m, Cause (5) is the primary one; and (5) for the moving speed lower than 18 km/hr, Cause (6) is the primary one. Besides, the multiple geophysical component-based precipitation modeling can achieve 81% of average accuracy and 0.732 of average correlation coefficient (CC) within average 46 hours of duration, that improve their predictability.

  15. Prediction model of potential hepatocarcinogenicity of rat hepatocarcinogens using a large-scale toxicogenomics database

    International Nuclear Information System (INIS)

    Uehara, Takeki; Minowa, Yohsuke; Morikawa, Yuji; Kondo, Chiaki; Maruyama, Toshiyuki; Kato, Ikuo; Nakatsu, Noriyuki; Igarashi, Yoshinobu; Ono, Atsushi; Hayashi, Hitomi; Mitsumori, Kunitoshi; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2011-01-01

    The present study was performed to develop a robust gene-based prediction model for early assessment of potential hepatocarcinogenicity of chemicals in rats by using our toxicogenomics database, TG-GATEs (Genomics-Assisted Toxicity Evaluation System developed by the Toxicogenomics Project in Japan). The positive training set consisted of high- or middle-dose groups that received 6 different non-genotoxic hepatocarcinogens during a 28-day period. The negative training set consisted of high- or middle-dose groups of 54 non-carcinogens. Support vector machine combined with wrapper-type gene selection algorithms was used for modeling. Consequently, our best classifier yielded prediction accuracies for hepatocarcinogenicity of 99% sensitivity and 97% specificity in the training data set, and false positive prediction was almost completely eliminated. Pathway analysis of feature genes revealed that the mitogen-activated protein kinase p38- and phosphatidylinositol-3-kinase-centered interactome and the v-myc myelocytomatosis viral oncogene homolog-centered interactome were the 2 most significant networks. The usefulness and robustness of our predictor were further confirmed in an independent validation data set obtained from the public database. Interestingly, similar positive predictions were obtained in several genotoxic hepatocarcinogens as well as non-genotoxic hepatocarcinogens. These results indicate that the expression profiles of our newly selected candidate biomarker genes might be common characteristics in the early stage of carcinogenesis for both genotoxic and non-genotoxic carcinogens in the rat liver. Our toxicogenomic model might be useful for the prospective screening of hepatocarcinogenicity of compounds and prioritization of compounds for carcinogenicity testing. - Highlights: →We developed a toxicogenomic model to predict hepatocarcinogenicity of chemicals. →The optimized model consisting of 9 probes had 99% sensitivity and 97% specificity.

  16. Forecasting Hotspots-A Predictive Analytics Approach.

    Science.gov (United States)

    Maciejewski, R; Hafen, R; Rudolph, S; Larew, S G; Mitchell, M A; Cleveland, W S; Ebert, D S

    2011-04-01

    Current visual analytics systems provide users with the means to explore trends in their data. Linked views and interactive displays provide insight into correlations among people, events, and places in space and time. Analysts search for events of interest through statistical tools linked to visual displays, drill down into the data, and form hypotheses based upon the available information. However, current systems stop short of predicting events. In spatiotemporal data, analysts are searching for regions of space and time with unusually high incidences of events (hotspots). In the cases where hotspots are found, analysts would like to predict how these regions may grow in order to plan resource allocation and preventative measures. Furthermore, analysts would also like to predict where future hotspots may occur. To facilitate such forecasting, we have created a predictive visual analytics toolkit that provides analysts with linked spatiotemporal and statistical analytic views. Our system models spatiotemporal events through the combination of kernel density estimation for event distribution and seasonal trend decomposition by loess smoothing for temporal predictions. We provide analysts with estimates of error in our modeling, along with spatial and temporal alerts to indicate the occurrence of statistically significant hotspots. Spatial data are distributed based on a modeling of previous event locations, thereby maintaining a temporal coherence with past events. Such tools allow analysts to perform real-time hypothesis testing, plan intervention strategies, and allocate resources to correspond to perceived threats.

  17. Approximate spatio-temporal top-k publish/subscribe

    KAUST Repository

    Chen, Lisi; Shang, Shuo

    2018-01-01

    Location-based publish/subscribe plays a significant role in mobile information disseminations. In this light, we propose and study a novel problem of processing location-based top-k subscriptions over spatio-temporal data streams. We define a new type of approximate location-based top-k subscription, Approximate Temporal Spatial-Keyword Top-k (ATSK) Subscription, that continuously feeds users with relevant spatio-temporal messages by considering textual similarity, spatial proximity, and information freshness. Different from existing location-based top-k subscriptions, Approximate Temporal Spatial-Keyword Top-k (ATSK) Subscription can automatically adjust the triggering condition by taking the triggering score of other subscriptions into account. The group filtering efficacy can be substantially improved by sacrificing the publishing result quality with a bounded guarantee. We conduct extensive experiments on two real datasets to demonstrate the performance of the developed solutions.

  18. Spatiotemporal Characteristics for the Depth from Luminance Contrast

    Directory of Open Access Journals (Sweden)

    Kazuya Matsubara

    2011-05-01

    Full Text Available Images with higher luminance contrast tend to be perceived closer in depth. To investigate a spatiotemporal characteristic of this effect, we evaluated subjective depth of a test stimulus with various spatial and temporal frequencies. For the purpose, the depth of a reference stimulus was matched to that of the test stimulus by changing the binocular disparity. The results showed that the test stimulus was perceived closer with higher luminance contrast for all conditions. Contrast efficiency was obtained from the contrast that provided the subjective depth for each spatiotemporal frequency. The shape of the contrast efficiency function was spatially low-pass and temporally band-pass. This characteristic is different from the one measure for a detection task. This suggests that only subset of contrast signals are used for depth from contrast.

  19. Spatial and spatio-temporal bayesian models with R - INLA

    CERN Document Server

    Blangiardo, Marta

    2015-01-01

    Dedication iiiPreface ix1 Introduction 11.1 Why spatial and spatio-temporal statistics? 11.2 Why do we use Bayesian methods for modelling spatial and spatio-temporal structures? 21.3 Why INLA? 31.4 Datasets 32 Introduction to 212.1 The language 212.2 objects 222.3 Data and session management 342.4 Packages 352.5 Programming in 362.6 Basic statistical analysis with 393 Introduction to Bayesian Methods 533.1 Bayesian Philosophy 533.2 Basic Probability Elements 573.3 Bayes Theorem 623.4 Prior and Posterior Distributions 643.5 Working with the Posterior Distribution 663.6 Choosing the Prior Distr

  20. Approximate spatio-temporal top-k publish/subscribe

    KAUST Repository

    Chen, Lisi

    2018-04-26

    Location-based publish/subscribe plays a significant role in mobile information disseminations. In this light, we propose and study a novel problem of processing location-based top-k subscriptions over spatio-temporal data streams. We define a new type of approximate location-based top-k subscription, Approximate Temporal Spatial-Keyword Top-k (ATSK) Subscription, that continuously feeds users with relevant spatio-temporal messages by considering textual similarity, spatial proximity, and information freshness. Different from existing location-based top-k subscriptions, Approximate Temporal Spatial-Keyword Top-k (ATSK) Subscription can automatically adjust the triggering condition by taking the triggering score of other subscriptions into account. The group filtering efficacy can be substantially improved by sacrificing the publishing result quality with a bounded guarantee. We conduct extensive experiments on two real datasets to demonstrate the performance of the developed solutions.

  1. Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors

    Science.gov (United States)

    Schöll, Eckehard

    2005-08-01

    Nonlinear transport phenomena are an increasingly important aspect of modern semiconductor research. This volume deals with complex nonlinear dynamics, pattern formation, and chaotic behavior in such systems. It bridges the gap between two well-established fields: the theory of dynamic systems and nonlinear charge transport in semiconductors. This unified approach helps reveal important electronic transport instabilities. The initial chapters lay a general framework for the theoretical description of nonlinear self-organized spatio-temporal patterns, such as current filaments, field domains, fronts, and analysis of their stability. Later chapters consider important model systems in detail: impact ionization induced impurity breakdown, Hall instabilities, superlattices, and low-dimensional structures. State-of-the-art results include chaos control, spatio-temporal chaos, multistability, pattern selection, activator-inhibitor kinetics, and global coupling, linking fundamental issues to electronic device applications. This book will be of great value to semiconductor physicists and nonlinear scientists alike.

  2. Using Covariant Lyapunov Vectors to Understand Spatiotemporal Chaos in Fluids

    Science.gov (United States)

    Paul, Mark; Xu, Mu; Barbish, Johnathon; Mukherjee, Saikat

    2017-11-01

    The spatiotemporal chaos of fluids present many difficult and fascinating challenges. Recent progress in computing covariant Lyapunov vectors for a variety of model systems has made it possible to probe fundamental ideas from dynamical systems theory including the degree of hyperbolicity, the fractal dimension, the dimension of the inertial manifold, and the decomposition of the dynamics into a finite number of physical modes and spurious modes. We are interested in building upon insights such as these for fluid systems. We first demonstrate the power of covariant Lyapunov vectors using a system of maps on a lattice with a nonlinear coupling. We then compute the covariant Lyapunov vectors for chaotic Rayleigh-Bénard convection for experimentally accessible conditions. We show that chaotic convection is non-hyperbolic and we quantify the spatiotemporal features of the spectrum of covariant Lyapunov vectors. NSF DMS-1622299 and DARPA/DSO Models, Dynamics, and Learning (MoDyL).

  3. Spatiotemporal Scaling Effect on Rainfall Network Design Using Entropy

    Directory of Open Access Journals (Sweden)

    Chiang Wei

    2014-08-01

    Full Text Available Because of high variation in mountainous areas, rainfall data at different spatiotemporal scales may yield potential uncertainty for network design. However, few studies focus on the scaling effect on both the spatial and the temporal scale. By calculating the maximum joint entropy of hourly typhoon events, monthly, six dry and wet months and annual rainfall between 1992 and 2012 for 1-, 3-, and 5-km grids, the relocated candidate rain gauges in the National Taiwan University Experimental Forest of Central Taiwan are prioritized. The results show: (1 the network exhibits different locations for first prioritized candidate rain gauges for different spatiotemporal scales; (2 the effect of spatial scales is insignificant compared to temporal scales; and (3 a smaller number and a lower percentage of required stations (PRS reach stable joint entropy for a long duration at finer spatial scale. Prioritized candidate rain gauges provide key reference points for adjusting the network to capture more accurate information and minimize redundancy.

  4. A Spatio-Temporal Analysis of Mitochondrial DNA Haplogroup I

    Directory of Open Access Journals (Sweden)

    Revesz Peter Z.

    2016-01-01

    Full Text Available The recent recovery of ancient DNA from a growing number of human samples shows that mitochondrial DNA haplogroup I was introduced to Europe after the end of the Last Glacial Maximum. This paper provides a spatio-temporal analysis of the various subhaplogroups of mitochondrial DNA I. The study suggests that haplogroup I diversified into haplogroups I1, I2’3, I4 and I5 at specific regions in Eurasia and then spread southward to Crete and Egypt.

  5. Spatio-temporal reasoning and decision support tools

    OpenAIRE

    Renso, Chiara; Wachowicz, Monica

    2014-01-01

    Currently, mobility data is revolutionizing the traditional fields of spatio-temporal reasoning and decision making analysis, not only to scale-up to the large and growing data volumes, but also to address complex questions related to change, trends, duration, and evolution. In mobility data, space and time are inextricably linked, since humans, robots and systems that dynamically act, and interact within social networks, are embedded in space, and any change is often the result of actions an...

  6. Characteristics and Applications of Spatiotemporally Focused Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Chenrui Jing

    2016-12-01

    Full Text Available Simultaneous spatial and temporal focusing (SSTF of femtosecond laser pulses gives rise to strong suppression of nonlinear self-focusing during the propagation of the femtosecond laser beam. In this paper, we begin with an introduction of the principle of SSTF, followed by a review of our recent experimental results on the characterization and application of the spatiotemporally focused pulses for femtosecond laser micromachining. Finally, we summarize all of the results and give a future perspective of this technique.

  7. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks

    Science.gov (United States)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-01

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  8. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks.

    Science.gov (United States)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-06

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  9. A simple spatiotemporal chaotic Lotka-Volterra model

    International Nuclear Information System (INIS)

    Sprott, J.C.; Wildenberg, J.C.; Azizi, Yousef

    2005-01-01

    A mathematically simple example of a high-dimensional (many-species) Lotka-Volterra model that exhibits spatiotemporal chaos in one spatial dimension is described. The model consists of a closed ring of identical agents, each competing for fixed finite resources with two of its four nearest neighbors. The model is prototypical of more complicated models in its quasiperiodic route to chaos (including attracting 3-tori), bifurcations, spontaneous symmetry breaking, and spatial pattern formation

  10. Prediction-based Audiovisual Fusion for Classification of Non-Linguistic Vocalisations

    NARCIS (Netherlands)

    Petridis, Stavros; Pantic, Maja

    Prediction plays a key role in recent computational models of the brain and it has been suggested that the brain constantly makes multisensory spatiotemporal predictions. Inspired by these findings we tackle the problem of audiovisual fusion from a new perspective based on prediction. We train

  11. Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons.

    Science.gov (United States)

    Oddo, Calogero M; Mazzoni, Alberto; Spanne, Anton; Enander, Jonas M D; Mogensen, Hannes; Bengtsson, Fredrik; Camboni, Domenico; Micera, Silvestro; Jörntell, Henrik

    2017-04-04

    Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models.

  12. Reliable Collaborative Filtering on Spatio-Temporal Privacy Data

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2017-01-01

    Full Text Available Lots of multilayer information, such as the spatio-temporal privacy check-in data, is accumulated in the location-based social network (LBSN. When using the collaborative filtering algorithm for LBSN location recommendation, one of the core issues is how to improve recommendation performance by combining the traditional algorithm with the multilayer information. The existing approaches of collaborative filtering use only the sparse user-item rating matrix. It entails high computational complexity and inaccurate results. A novel collaborative filtering-based location recommendation algorithm called LGP-CF, which takes spatio-temporal privacy information into account, is proposed in this paper. By mining the users check-in behavior pattern, the dataset is segmented semantically to reduce the data size that needs to be computed. Then the clustering algorithm is used to obtain and narrow the set of similar users. User-location bipartite graph is modeled using the filtered similar user set. Then LGP-CF can quickly locate the location and trajectory of users through message propagation and aggregation over the graph. Through calculating users similarity by spatio-temporal privacy data on the graph, we can finally calculate the rating of recommendable locations. Experiments results on the physical clusters indicate that compared with the existing algorithms, the proposed LGP-CF algorithm can make recommendations more accurately.

  13. Visual memory performance for color depends on spatiotemporal context.

    Science.gov (United States)

    Olivers, Christian N L; Schreij, Daniel

    2014-10-01

    Performance on visual short-term memory for features has been known to depend on stimulus complexity, spatial layout, and feature context. However, with few exceptions, memory capacity has been measured for abruptly appearing, single-instance displays. In everyday life, objects often have a spatiotemporal history as they or the observer move around. In three experiments, we investigated the effect of spatiotemporal history on explicit memory for color. Observers saw a memory display emerge from behind a wall, after which it disappeared again. The test display then emerged from either the same side as the memory display or the opposite side. In the first two experiments, memory improved for intermediate set sizes when the test display emerged in the same way as the memory display. A third experiment then showed that the benefit was tied to the original motion trajectory and not to the display object per se. The results indicate that memory for color is embedded in a richer episodic context that includes the spatiotemporal history of the display.

  14. Spatio-temporal patterns in simple models of marine systems

    Science.gov (United States)

    Feudel, U.; Baurmann, M.; Gross, T.

    2009-04-01

    Spatio-temporal patterns in marine systems are a result of the interaction of population dynamics with physical transport processes. These physical transport processes can be either diffusion processes in marine sediments or in the water column. We study the dynamics of one population of bacteria and its nutrient in in a simplified model of a marine sediments, taking into account that the considered bacteria possess an active as well as an inactive state, where activation is processed by signal molecules. Furthermore the nutrients are transported actively by bioirrigation and passively by diffusion. It is shown that under certain conditions Turing patterns can occur which yield heterogeneous spatial patterns of the species. The influence of bioirrigation on Turing patterns leads to the emergence of ''hot spots``, i.e. localized regions of enhanced bacterial activity. All obtained patterns fit quite well to observed patterns in laboratory experiments. Spatio-temporal patterns appear in a predator-prey model, used to describe plankton dynamics. These patterns appear due to the simultaneous emergence of Turing patterns and oscillations in the species abundance in the neighborhood of a Turing-Hopf bifurcation. We observe a large variety of different patterns where i) stationary heterogeneous patterns (e.g. hot and cold spots) compete with spatio-temporal patterns ii) slowly moving patterns are embedded in an oscillatory background iii) moving fronts and spiral waves appear.

  15. Spatiotemporal alignment of in utero BOLD-MRI series.

    Science.gov (United States)

    Turk, Esra Abaci; Luo, Jie; Gagoski, Borjan; Pascau, Javier; Bibbo, Carolina; Robinson, Julian N; Grant, P Ellen; Adalsteinsson, Elfar; Golland, Polina; Malpica, Norberto

    2017-08-01

    To present a method for spatiotemporal alignment of in-utero magnetic resonance imaging (MRI) time series acquired during maternal hyperoxia for enabling improved quantitative tracking of blood oxygen level-dependent (BOLD) signal changes that characterize oxygen transport through the placenta to fetal organs. The proposed pipeline for spatiotemporal alignment of images acquired with a single-shot gradient echo echo-planar imaging includes 1) signal nonuniformity correction, 2) intravolume motion correction based on nonrigid registration, 3) correction of motion and nonrigid deformations across volumes, and 4) detection of the outlier volumes to be discarded from subsequent analysis. BOLD MRI time series collected from 10 pregnant women during 3T scans were analyzed using this pipeline. To assess pipeline performance, signal fluctuations between consecutive timepoints were examined. In addition, volume overlap and distance between manual region of interest (ROI) delineations in a subset of frames and the delineations obtained through propagation of the ROIs from the reference frame were used to quantify alignment accuracy. A previously demonstrated rigid registration approach was used for comparison. The proposed pipeline improved anatomical alignment of placenta and fetal organs over the state-of-the-art rigid motion correction methods. In particular, unexpected temporal signal fluctuations during the first normoxia period were significantly decreased (P quantitative studies of placental function by improving spatiotemporal alignment across placenta and fetal organs. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:403-412. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment.

    Science.gov (United States)

    Eltoukhy, Moataz; Oh, Jeonghoon; Kuenze, Christopher; Signorile, Joseph

    2017-01-01

    A cost-effective, clinician friendly gait assessment tool that can automatically track patients' anatomical landmarks can provide practitioners with important information that is useful in prescribing rehabilitative and preventive therapies. This study investigated the validity and reliability of the Microsoft Kinect v2 as a potential inexpensive gait analysis tool. Ten healthy subjects walked on a treadmill at 1.3 and 1.6m·s -1 , as spatiotemporal parameters and kinematics were extracted concurrently using the Kinect and three-dimensional motion analysis. Spatiotemporal measures included step length and width, step and stride times, vertical and mediolateral pelvis motion, and foot swing velocity. Kinematic outcomes included hip, knee, and ankle joint angles in the sagittal plane. The absolute agreement and relative consistency between the two systems were assessed using interclass correlations coefficients (ICC2,1), while reproducibility between systems was established using Lin's Concordance Correlation Coefficient (rc). Comparison of ensemble curves and associated 90% confidence intervals (CI90) of the hip, knee, and ankle joint angles were performed to investigate if the Kinect sensor could consistently and accurately assess lower extremity joint motion throughout the gait cycle. Results showed that the Kinect v2 sensor has the potential to be an effective clinical assessment tool for sagittal plane knee and hip joint kinematics, as well as some spatiotemporal temporal variables including pelvis displacement and step characteristics during the gait cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Selecting salient frames for spatiotemporal video modeling and segmentation.

    Science.gov (United States)

    Song, Xiaomu; Fan, Guoliang

    2007-12-01

    We propose a new statistical generative model for spatiotemporal video segmentation. The objective is to partition a video sequence into homogeneous segments that can be used as "building blocks" for semantic video segmentation. The baseline framework is a Gaussian mixture model (GMM)-based video modeling approach that involves a six-dimensional spatiotemporal feature space. Specifically, we introduce the concept of frame saliency to quantify the relevancy of a video frame to the GMM-based spatiotemporal video modeling. This helps us use a small set of salient frames to facilitate the model training by reducing data redundancy and irrelevance. A modified expectation maximization algorithm is developed for simultaneous GMM training and frame saliency estimation, and the frames with the highest saliency values are extracted to refine the GMM estimation for video segmentation. Moreover, it is interesting to find that frame saliency can imply some object behaviors. This makes the proposed method also applicable to other frame-related video analysis tasks, such as key-frame extraction, video skimming, etc. Experiments on real videos demonstrate the effectiveness and efficiency of the proposed method.

  18. Spatiotemporal Patterns of Urban Human Mobility

    Science.gov (United States)

    Hasan, Samiul; Schneider, Christian M.; Ukkusuri, Satish V.; González, Marta C.

    2013-04-01

    The modeling of human mobility is adopting new directions due to the increasing availability of big data sources from human activity. These sources enclose digital information about daily visited locations of a large number of individuals. Examples of these data include: mobile phone calls, credit card transactions, bank notes dispersal, check-ins in internet applications, among several others. In this study, we consider the data obtained from smart subway fare card transactions to characterize and model urban mobility patterns. We present a simple mobility model for predicting peoples' visited locations using the popularity of places in the city as an interaction parameter between different individuals. This ingredient is sufficient to reproduce several characteristics of the observed travel behavior such as: the number of trips between different locations in the city, the exploration of new places and the frequency of individual visits of a particular location. Moreover, we indicate the limitations of the proposed model and discuss open questions in the current state of the art statistical models of human mobility.

  19. The World Spatiotemporal Analytics and Mapping Project (WSTAMP): Discovering, Exploring, and Mapping Spatiotemporal Patterns Across Heterogenous Space-Time Data

    Science.gov (United States)

    Morton, A.; Stewart, R.; Held, E.; Piburn, J.; Allen, M. R.; McManamay, R.; Sanyal, J.; Sorokine, A.; Bhaduri, B. L.

    2017-12-01

    Spatiotemporal (ST) analytics applied to major spatio-temporal data sources from major vendors such as USGS, NOAA, World Bank and World Health Organization have tremendous value in shedding light on the evolution of physical, cultural, and geopolitical landscapes on a local and global level. Especially powerful is the integration of these physical and cultural datasets across multiple and disparate formats, facilitating new interdisciplinary analytics and insights. Realizing this potential first requires an ST data model that addresses challenges in properly merging data from multiple authors, with evolving ontological perspectives, semantical differences, changing attributes, and content that is textual, numeric, categorical, and hierarchical. Equally challenging is the development of analytical and visualization approaches that provide a serious exploration of this integrated data while remaining accessible to practitioners with varied backgrounds. The WSTAMP project at the Oak Ridge National Laboratory has yielded two major results in addressing these challenges: 1) development of the WSTAMP database, a significant advance in ST data modeling that integrates 16000+ attributes covering 200+ countries for over 50 years from over 30 major sources and 2) a novel online ST exploratory and analysis tool providing an array of modern statistical and visualization techniques for analyzing these data temporally, spatially, and spatiotemporally under a standard analytic workflow. We report on these advances, provide an illustrative case study, and inform how others may freely access the tool.

  20. Spatiotemporal variability and modeling of the solar irradiance transmissivity through a boreal forest

    Science.gov (United States)

    Nadeau, D.; Isabelle, P. E.; Asselin, M. H.; Parent, A. C.; Jutras, S.; Anctil, F.

    2017-12-01

    Solar irradiance is the largest driver of land-surface exchanges of energy, water and trace gases. Its absorption by a forest canopy generates considerable sensible and latent heat fluxes as well as tree temperature changes. A fraction of the irradiance gets transmitted through the canopy and powers another layer of energy fluxes, which can reach substantial values. Transmitted radiation is also of particular relevance to understory vegetation photosynthesis, snowpack energetics and soil temperature dynamics. Boreal forest canopy transmissivity needs to be quantified to properly reproduce land-atmosphere interactions in the circumpolar boreal biome, but its high spatiotemporal variability makes it a challenging task. The objective of this study is to characterize the spatiotemporal variability in under-canopy radiation and to evaluate the performance of various models in representing plot-scale observations. The study site is located in Montmorency Forest (47°N, 71°W), in southern Quebec, Canada. The vegetation includes mostly juvenile balsam firs, up to 6 to 8 m tall. Since January 2016, a 15-m flux tower measures the four components of radiation, as well as other relevant fluxes and meteorological variables, on a ≈10° northeast-facing slope. In summer 2016, 20 portable weather stations were mounted in a 150 m x 200 m grid around the flux tower. These stations were equipped with silicon-cell pyranometers and provided measurements of downwelling irradiance at a height of 2 m. This setup allowed us to compute irradiance transmissivity and to assess its spatiotemporal variability at the site. First, we show that the average of daily incoming energy varies tremendously across the sites, from 1 MJ/m2 to nearly 9 MJ/m2, due to large variations in canopy structure over short distances. Using a regression tree analysis, we show that transmissivity mostly depends on sun elevation, diffuse fraction of radiation, sky and sun view fraction and wind speed above canopy. We

  1. INVESTIGATION OF ROADWAY GEOMETRIC AND TRAFFIC FLOW FACTORS FOR VEHICLE CRASHES USING SPATIOTEMPORAL INTERACTION

    Directory of Open Access Journals (Sweden)

    G. Gill

    2017-09-01

    Full Text Available Traffic safety is a major concern in the transportation industry due to immense monetary and emotional burden caused by crashes of various severity levels, especially the injury and fatality ones. To reduce such crashes on all public roads, the safety management processes are commonly implemented which include network screening, problem diagnosis, countermeasure identification, and project prioritization. The selection of countermeasures for potential mitigation of crashes is governed by the influential factors which impact roadway crashes. Crash prediction model is the tool widely adopted by safety practitioners or researchers to link various influential factors to crash occurrences. Many different approaches have been used in the past studies to develop better fitting models which also exhibit prediction accuracy. In this study, a crash prediction model is developed to investigate the vehicular crashes occurring at roadway segments. The spatial and temporal nature of crash data is exploited to form a spatiotemporal model which accounts for the different types of heterogeneities among crash data and geometric or traffic flow variables. This study utilizes the Poisson lognormal model with random effects, which can accommodate the yearly variations in explanatory variables and the spatial correlations among segments. The dependency of different factors linked with roadway geometric, traffic flow, and road surface type on vehicular crashes occurring at segments was established as the width of lanes, posted speed limit, nature of pavement, and AADT were found to be correlated with vehicle crashes.

  2. Model-driven development of covariances for spatiotemporal environmental health assessment.

    Science.gov (United States)

    Kolovos, Alexander; Angulo, José Miguel; Modis, Konstantinos; Papantonopoulos, George; Wang, Jin-Feng; Christakos, George

    2013-01-01

    Known conceptual and technical limitations of mainstream environmental health data analysis have directed research to new avenues. The goal is to deal more efficiently with the inherent uncertainty and composite space-time heterogeneity of key attributes, account for multi-sourced knowledge bases (health models, survey data, empirical relationships etc.), and generate more accurate predictions across space-time. Based on a versatile, knowledge synthesis methodological framework, we introduce new space-time covariance functions built by integrating epidemic propagation models and we apply them in the analysis of existing flu datasets. Within the knowledge synthesis framework, the Bayesian maximum entropy theory is our method of choice for the spatiotemporal prediction of the ratio of new infectives (RNI) for a case study of flu in France. The space-time analysis is based on observations during a period of 15 weeks in 1998-1999. We present general features of the proposed covariance functions, and use these functions to explore the composite space-time RNI dependency. We then implement the findings to generate sufficiently detailed and informative maps of the RNI patterns across space and time. The predicted distributions of RNI suggest substantive relationships in accordance with the typical physiographic and climatologic features of the country.

  3. Investigation of Roadway Geometric and Traffic Flow Factors for Vehicle Crashes Using Spatiotemporal Interaction

    Science.gov (United States)

    Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.

    2017-09-01

    Traffic safety is a major concern in the transportation industry due to immense monetary and emotional burden caused by crashes of various severity levels, especially the injury and fatality ones. To reduce such crashes on all public roads, the safety management processes are commonly implemented which include network screening, problem diagnosis, countermeasure identification, and project prioritization. The selection of countermeasures for potential mitigation of crashes is governed by the influential factors which impact roadway crashes. Crash prediction model is the tool widely adopted by safety practitioners or researchers to link various influential factors to crash occurrences. Many different approaches have been used in the past studies to develop better fitting models which also exhibit prediction accuracy. In this study, a crash prediction model is developed to investigate the vehicular crashes occurring at roadway segments. The spatial and temporal nature of crash data is exploited to form a spatiotemporal model which accounts for the different types of heterogeneities among crash data and geometric or traffic flow variables. This study utilizes the Poisson lognormal model with random effects, which can accommodate the yearly variations in explanatory variables and the spatial correlations among segments. The dependency of different factors linked with roadway geometric, traffic flow, and road surface type on vehicular crashes occurring at segments was established as the width of lanes, posted speed limit, nature of pavement, and AADT were found to be correlated with vehicle crashes.

  4. Bayesian spatio-temporal discard model in a demersal trawl fishery

    Science.gov (United States)

    Grazia Pennino, M.; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José M.

    2014-07-01

    Spatial management of discards has recently been proposed as a useful tool for the protection of juveniles, by reducing discard rates and can be used as a buffer against management errors and recruitment failure. In this study Bayesian hierarchical spatial models have been used to analyze about 440 trawl fishing operations of two different metiers, sampled between 2009 and 2012, in order to improve our understanding of factors that influence the quantity of discards and to identify their spatio-temporal distribution in the study area. Our analysis showed that the relative importance of each variable was different for each metier, with a few similarities. In particular, the random vessel effect and seasonal variability were identified as main driving variables for both metiers. Predictive maps of the abundance of discards and maps of the posterior mean of the spatial component show several hot spots with high discard concentration for each metier. We argue how the seasonal/spatial effects, and the knowledge about the factors influential to discarding, could potentially be exploited as potential mitigation measures for future fisheries management strategies. However, misidentification of hotspots and uncertain predictions can culminate in inappropriate mitigation practices which can sometimes be irreversible. The proposed Bayesian spatial method overcomes these issues, since it offers a unified approach which allows the incorporation of spatial random-effect terms, spatial correlation of the variables and the uncertainty of the parameters in the modeling process, resulting in a better quantification of the uncertainty and accurate predictions.

  5. Unravelling spatio-temporal evapotranspiration patterns in topographically complex landscapes

    Science.gov (United States)

    Metzen, Daniel; Sheridan, Gary; Nyman, Petter; Lane, Patrick

    2016-04-01

    Vegetation co-evolves with soils and topography under a given long-term climatic forcing. Previous studies demonstrated a strong eco-hydrologic feedback between topography, vegetation and energy and water fluxes. Slope orientation (aspect and gradient) alter the magnitude of incoming solar radiation resulting in larger evaporative losses and less water availability on equator-facing slopes. Furthermore, non-local water inputs from upslope areas potentially contribute to available water at downslope positions. The combined effect of slope orientation and drainage position creates complex spatial patterns in biological productivity and pedogenesis, which in turn alter the local hydrology. In complex upland landscapes, topographic alteration of incoming radiation can cause substantial aridity index (ratio of potential evapotranspiration to precipitation) variations over small spatial extents. Most of the upland forests in south-east Australia are located in an aridity index (AI) range of 1-2, around the energy limited to water limited boundary, where forested systems are expected to be most sensitive to AI changes. In this research we aim to improve the fundamental understanding of spatio-temporal evolution of evapotranspiration (ET) patterns in complex terrain, accounting for local topographic effects on system properties (e.g. soil depth, sapwood area, leaf area) and variation in energy and water exchange processes due to slope orientation and drainage position. Six measurement plots were set-up in a mixed species eucalypt forest on a polar and equatorial-facing hillslope (AI ˜1.3 vs. 1.8) at varying drainage position (ridge, mid-slope, gully), while minimizing variations in other factors, e.g. geology and weather patterns. Sap flow, soil water content, incoming solar radiation and throughfall were continuously monitored at field sites spanning a wide range of soil depth (0.5 - >3m), maximum tree heights (17 - 51m) and LAI (1.2 - 4.6). Site-specific response curves

  6. A spatiotemporal analysis of hydrological patterns based on a wireless sensor network system

    Science.gov (United States)

    Plaza, F.; Slater, T. A.; Zhong, X.; Li, Y.; Liang, Y.; Liang, X.

    2017-12-01

    Understanding complicated spatiotemporal patterns of eco-hydrological variables at a small scale plays a profound role in improving predictability of high resolution distributed hydrological models. However, accurate and continuous monitoring of these complex patterns has become one of the main challenges in the environmental sciences. Wireless sensor networks (WSNs) have emerged as one of the most widespread potential solutions to achieve this. This study presents a spatiotemporal analysis of hydrological patterns (e.g., soil moisture, soil water potential, soil temperature and transpiration) based on observational data collected from a dense multi-hop wireless sensor network (WSN) in a steep-forested testbed located in Southwestern Pennsylvania, USA. At this WSN testbed with an approximate area of 3000 m2, environmental variables are collected from over 240 sensors that are connected to more than 100 heterogeneous motes. The sensors include the soil moisture of EC-5, soil temperature and soil water potential of MPS-1 and MPS-2, and sap flow sensors constructed in house. The motes consist of MICAz, IRIS and TelosB. In addition, several data loggers have been installed along the site to provide a comparative reference to the WSN measurements for the purpose of checking the WSN data quality. The edaphic properties monitored by the WSN sensors show strong agreement with the data logger measurements. Moreover, sap flow measurements, scaled to tree stand transpiration, are found to be reasonable. This study also investigates the feasibility and roles that these sensor measurements play in improving the performance of high-resolution distributed hydrological models. In particular, we explore this using a modified version of the Distributed Hydrological Soil Vegetation Model (DHSVM).

  7. Spatio-temporal variability of the North Sea cod recruitment in relation to temperature and zooplankton.

    Directory of Open Access Journals (Sweden)

    Delphine Nicolas

    Full Text Available The North Sea cod (Gadus morhua, L. stock has continuously declined over the past four decades linked with overfishing and climate change. Changes in stock structure due to overfishing have made the stock largely dependent on its recruitment success, which greatly relies on environmental conditions. Here we focus on the spatio-temporal variability of cod recruitment in an effort to detect changes during the critical early life stages. Using International Bottom Trawl Survey (IBTS data from 1974 to 2011, a major spatio-temporal change in the distribution of cod recruits was identified in the late 1990s, characterized by a pronounced decrease in the central and southeastern North Sea stock. Other minor spatial changes were also recorded in the mid-1980s and early 1990s. We tested whether the observed changes in recruits distribution could be related with direct (i.e. temperature and/or indirect (i.e. changes in the quantity and quality of zooplankton prey effects of climate variability. The analyses were based on spatially-resolved time series, i.e. sea surface temperature (SST from the Hadley Center and zooplankton records from the Continuous Plankton Recorder Survey. We showed that spring SST increase was the main driver for the most recent decrease in cod recruitment. The late 1990s were also characterized by relatively low total zooplankton biomass, particularly of energy-rich zooplankton such as the copepod Calanus finmarchicus, which have further contributed to the decline of North Sea cod recruitment. Long-term spatially-resolved observations were used to produce regional distribution models that could further be used to predict the abundance of North Sea cod recruits based on temperature and zooplankton food availability.

  8. Spatio-temporal analysis of sub-hourly rainfall over Mumbai, India: Is statistical forecasting futile?

    Science.gov (United States)

    Singh, Jitendra; Sekharan, Sheeba; Karmakar, Subhankar; Ghosh, Subimal; Zope, P. E.; Eldho, T. I.

    2017-04-01

    Mumbai, the commercial and financial capital of India, experiences incessant annual rain episodes, mainly attributable to erratic rainfall pattern during monsoons and urban heat-island effect due to escalating urbanization, leading to increasing vulnerability to frequent flooding. After the infamous episode of 2005 Mumbai torrential rains when only two rain gauging stations existed, the governing civic body, the Municipal Corporation of Greater Mumbai (MCGM) came forward with an initiative to install 26 automatic weather stations (AWS) in June 2006 (MCGM 2007), which later increased to 60 AWS. A comprehensive statistical analysis to understand the spatio-temporal pattern of rainfall over Mumbai or any other coastal city in India has never been attempted earlier. In the current study, a thorough analysis of available rainfall data for 2006-2014 from these stations was performed; the 2013-2014 sub-hourly data from 26 AWS was found useful for further analyses due to their consistency and continuity. Correlogram cloud indicated no pattern of significant correlation when we considered the closest to the farthest gauging station from the base station; this impression was also supported by the semivariogram plots. Gini index values, a statistical measure of temporal non-uniformity, were found above 0.8 in visible majority showing an increasing trend in most gauging stations; this sufficiently led us to conclude that inconsistency in daily rainfall was gradually increasing with progress in monsoon. Interestingly, night rainfall was lesser compared to daytime rainfall. The pattern-less high spatio-temporal variation observed in Mumbai rainfall data signifies the futility of independently applying advanced statistical techniques, and thus calls for simultaneous inclusion of physics-centred models such as different meso-scale numerical weather prediction systems, particularly the Weather Research and Forecasting (WRF) model.

  9. Spatio-Temporal Simulation and Analysis of Regional Ecological Security Based on Lstm

    Science.gov (United States)

    Gong, C.; Qi, L.; Heming, L.; Karimian, H.; Yuqin, M.

    2017-10-01

    Region is a complicated system, where human, nature and society interact and influence. Quantitative modeling and simulation of ecology in the region are the key to realize the strategy of regional sustainable development. Traditional machine learning methods have made some achievements in the modeling of regional ecosystems, but it is difficult to determine the learning characteristics and to realize spatio-temporal simulation. Deep learning does not need prior identification of training characteristics, have excellent feature learning ability, can improve the accuracy of model prediction, so the use of deep learning model has a significant advantage. Therefore, we use net primary productivity (NPP), atmospheric optical depth (AOD), moderate-resolution imaging spectrometer (MODIS), Normalized Difference Vegetation Index (NDVI), landcover and population data, and use LSTM to do spatio-temporal simulation. We conduct spatial analysis and driving force analysis. The conclusions are as follows: the ecological deficit of northwestern Henan and urban communities such as Zhengzhou is higher. The reason of former lies in the weak land productivity of the Loess Plateau, the irrational crop cultivation mode. The latter lies in the high consumption of resources in the large urban agglomeration; The positive trend of Henan ecological development from 2013 is mainly due to the effective environmental protection policy in the 12th five-year plan; The main driver of the sustained ecological deficit growth of Henan in 2004-2013 is high-speed urbanization, increasing population and goods consumption. This article provides relevant basic scientific support and reference for the regional ecological scientific management and construction.

  10. SPATIO-TEMPORAL SIMULATION AND ANALYSIS OF REGIONAL ECOLOGICAL SECURITY BASED ON LSTM

    Directory of Open Access Journals (Sweden)

    C. Gong

    2017-10-01

    Full Text Available Region is a complicated system, where human, nature and society interact and influence. Quantitative modeling and simulation of ecology in the region are the key to realize the strategy of regional sustainable development. Traditional machine learning methods have made some achievements in the modeling of regional ecosystems, but it is difficult to determine the learning characteristics and to realize spatio-temporal simulation. Deep learning does not need prior identification of training characteristics, have excellent feature learning ability, can improve the accuracy of model prediction, so the use of deep learning model has a significant advantage. Therefore, we use net primary productivity (NPP, atmospheric optical depth (AOD, moderate-resolution imaging spectrometer (MODIS, Normalized Difference Vegetation Index (NDVI, landcover and population data, and use LSTM to do spatio-temporal simulation. We conduct spatial analysis and driving force analysis. The conclusions are as follows: the ecological deficit of northwestern Henan and urban communities such as Zhengzhou is higher. The reason of former lies in the weak land productivity of the Loess Plateau, the irrational crop cultivation mode. The latter lies in the high consumption of resources in the large urban agglomeration; The positive trend of Henan ecological development from 2013 is mainly due to the effective environmental protection policy in the 12th five-year plan; The main driver of the sustained ecological deficit growth of Henan in 2004-2013 is high-speed urbanization, increasing population and goods consumption. This article provides relevant basic scientific support and reference for the regional ecological scientific management and construction.

  11. Targeting EphA2-Sam and Its Interactome: Design and Evaluation of Helical Peptides Enriched in Charged Residues.

    Science.gov (United States)

    Mercurio, Flavia A; Marasco, Daniela; Di Natale, Concetta; Pirone, Luciano; Costantini, Susan; Pedone, Emilia M; Leone, Marilisa

    2016-11-17

    The EphA2 receptor controls diverse physiological and pathological conditions and its levels are often upregulated in cancer. Targeting receptor overexpression, through modulation of endocytosis and consequent degradation, appears to be an appealing strategy for attacking tumor malignancy. In this scenario, the Sam domain of EphA2 plays a pivotal role because it is the site where protein regulators of endocytosis and stability are recruited by means of heterotypic Sam-Sam interactions. Because EphA2-Sam heterotypic complexes are largely based on electrostatic contacts, we have investigated the possibility of attacking these interactions with helical peptides enriched in charged residues. Several peptide sequences with high predicted helical propensities were designed, and detailed conformational analyses were conducted by diverse techniques including NMR, CD, and molecular dynamics (MD) simulations. Interaction studies were also performed by NMR, surface plasmon resonance (SPR), and microscale thermophoresis (MST) and led to the identification of two peptides capable of binding to the first Sam domain of Odin. These molecules represent early candidates for the generation of efficient Sam domain binders and antagonists of Sam-Sam interactions involving EphA2. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Role of Bacterioferritin & Ferritin in M. tuberculosis Pathogenesis and Drug Resistance: A Future Perspective by Interactomic Approach

    Directory of Open Access Journals (Sweden)

    Divakar Sharma

    2017-06-01

    Full Text Available Tuberculosis is caused by Mycobacterium tuberculosis, one of the most successful and deadliest human pathogen. Aminoglycosides resistance leads to emergence of extremely drug resistant strains of M. tuberculosis. Iron is crucial for the biological functions of the cells. Iron assimilation, storage and their utilization is not only involved in pathogenesis but also in emergence of drug resistance strains. We previously reported that iron storing proteins (bacterioferritin and ferritin were found to be overexpressed in aminoglycosides resistant isolates. In this study we performed the STRING analysis of bacterioferritin & ferritin proteins and predicted their interactive partners [ferrochelatase (hemH, Rv1877 (hypothetical protein/probable conserved integral membrane protein, uroporphyrinogen decarboxylase (hemE trigger factor (tig, transcriptional regulatory protein (MT3948, hypothetical protein (MT1928, glnA3 (glutamine synthetase, molecular chaperone GroEL (groEL1 & hsp65, and hypothetical protein (MT3947]. We suggested that interactive partners of bacterioferritin and ferritin are directly or indirectly involved in M. tuberculosis growth, homeostasis, iron assimilation, virulence, resistance, and stresses.

  13. Spatio-temporal modelling of atmospheric pollution based on observations provided by an air quality monitoring network at a regional scale

    International Nuclear Information System (INIS)

    Coman, A.

    2008-01-01

    This study is devoted to the spatio-temporal modelling of air pollution at a regional scale using a set of statistical methods in order to treat the measurements of pollutant concentrations (NO 2 , O 3 ) provided by an air quality monitoring network (AIRPARIF). The main objective is the improvement of the pollutant fields mapping using either interpolation methods based on the spatial or spatio-temporal structure of the data (spatial or spatio-temporal kriging) or some algorithms taking into account the observations, in order to correct the concentrations simulated by a deterministic model (Ensemble Kalman Filter). The results show that nitrogen dioxide mapping based only on spatial interpolation (kriging) gives the best results, while the spatial repartition of the monitoring sites is good. For the ozone mapping it is the sequential data assimilation that leads us to a better reconstruction of the plume's form and position for the analyzed cases. Complementary to the pollutant mapping, another objective was to perform a local prediction of ozone concentrations on a 24-hour horizon; this task was performed using Artificial Neural Networks. The performance indices obtained using two types of neural architectures indicate a fair accuracy especially for the first 8 hours of prediction horizon. (author)

  14. Dengue-2 Structural Proteins Associate with Human Proteins to Produce a Coagulation and Innate Immune Response Biased Interactome

    Directory of Open Access Journals (Sweden)

    Soares Luis RB

    2011-01-01

    -viral response processes, and predicts that the interaction of dengue proteins with a proposed human protein interaction network produces a modified biological outcome that may be behind the hallmark pathologies of dengue infection.

  15. Video Scene Parsing with Predictive Feature Learning

    OpenAIRE

    Jin, Xiaojie; Li, Xin; Xiao, Huaxin; Shen, Xiaohui; Lin, Zhe; Yang, Jimei; Chen, Yunpeng; Dong, Jian; Liu, Luoqi; Jie, Zequn; Feng, Jiashi; Yan, Shuicheng

    2016-01-01

    In this work, we address the challenging video scene parsing problem by developing effective representation learning methods given limited parsing annotations. In particular, we contribute two novel methods that constitute a unified parsing framework. (1) \\textbf{Predictive feature learning}} from nearly unlimited unlabeled video data. Different from existing methods learning features from single frame parsing, we learn spatiotemporal discriminative features by enforcing a parsing network to ...

  16. 4D cone beam CT via spatiotemporal tensor framelet

    International Nuclear Information System (INIS)

    Gao, Hao; Li, Ruijiang; Xing, Lei; Lin, Yuting

    2012-01-01

    Purpose: On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imaging, and improves the accuracy of target localization in image guided radiation therapy. However, the clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative 4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced imaging dose. Methods: The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans were acquired within 30 s, with a gantry rotation of 200°; STF is also compared with a state-of-art reconstruction method via spatiotemporal total variation regularization. Results: Both the simulation and experimental results demonstrate that STF-based reconstruction achieved superior image quality. The reconstruction of 20 respiratory phases took less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at https://sites.google.com/site/spatiotemporaltensorframelet . Conclusions: By effectively utilizing the spatiotemporal coherence of the patient anatomy among different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the proposed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.

  17. 4D cone beam CT via spatiotemporal tensor framelet

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hao, E-mail: hao.gao@emory.edu [Departments of Mathematics and Computer Science, and Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322 (United States); Li, Ruijiang; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Lin, Yuting [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2012-11-15

    Purpose: On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imaging, and improves the accuracy of target localization in image guided radiation therapy. However, the clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative 4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced imaging dose. Methods: The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans were acquired within 30 s, with a gantry rotation of 200°; STF is also compared with a state-of-art reconstruction method via spatiotemporal total variation regularization. Results: Both the simulation and experimental results demonstrate that STF-based reconstruction achieved superior image quality. The reconstruction of 20 respiratory phases took less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at https://sites.google.com/site/spatiotemporaltensorframelet . Conclusions: By effectively utilizing the spatiotemporal coherence of the patient anatomy among different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the proposed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.

  18. Visual search of cyclic spatio-temporal events

    Science.gov (United States)

    Gautier, Jacques; Davoine, Paule-Annick; Cunty, Claire

    2018-05-01

    The analysis of spatio-temporal events, and especially of relationships between their different dimensions (space-time-thematic attributes), can be done with geovisualization interfaces. But few geovisualization tools integrate the cyclic dimension of spatio-temporal event series (natural events or social events). Time Coil and Time Wave diagrams represent both the linear time and the cyclic time. By introducing a cyclic temporal scale, these diagrams may highlight the cyclic characteristics of spatio-temporal events. However, the settable cyclic temporal scales are limited to usual durations like days or months. Because of that, these diagrams cannot be used to visualize cyclic events, which reappear with an unusual period, and don't allow to make a visual search of cyclic events. Also, they don't give the possibility to identify the relationships between the cyclic behavior of the events and their spatial features, and more especially to identify localised cyclic events. The lack of possibilities to represent the cyclic time, outside of the temporal diagram of multi-view geovisualization interfaces, limits the analysis of relationships between the cyclic reappearance of events and their other dimensions. In this paper, we propose a method and a geovisualization tool, based on the extension of Time Coil and Time Wave, to provide a visual search of cyclic events, by allowing to set any possible duration to the diagram's cyclic temporal scale. We also propose a symbology approach to push the representation of the cyclic time into the map, in order to improve the analysis of relationships between space and the cyclic behavior of events.

  19. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    Science.gov (United States)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio-temporal

  20. Evolution of predator dispersal in relation to spatio-temporal prey dynamics: how not to get stuck in the wrong place!

    Directory of Open Access Journals (Sweden)

    Justin M J Travis

    Full Text Available The eco-evolutionary dynamics of dispersal are recognised as key in determining the responses of populations to environmental changes. Here, by developing a novel modelling approach, we show that predators are likely to have evolved to emigrate more often and become more selective over their destination patch when their prey species exhibit spatio-temporally complex dynamics. We additionally demonstrate that the cost of dispersal can vary substantially across space and time. Perhaps as a consequence of current environmental change, many key prey species are currently exhibiting major shifts in their spatio-temporal dynamics. By exploring similar shifts in silico, we predict that predator populations will be most vulnerable when prey dynamics shift from stable to complex. The more sophisticated dispersal rules, and greater variance therein, that evolve under complex dynamics will enable persistence across a broader range of prey dynamics than the rules which evolve under relatively stable prey conditions.

  1. Spatiotemporal Signal Analysis via the Phase Velocity Transform

    International Nuclear Information System (INIS)

    Mattor, Nathan

    2000-01-01

    The phase velocity transform (PVT) is an integral transform that divides a function of space and time into components that propagate at uniform phase velocities without distortion. This paper examines the PVT as a method to analyze spatiotemporal fluctuation data. The transform is extended to systems with discretely sampled data on a periodic domain, and applied to data from eight azimuthally distributed probes on the Sustained Spheromak Physics Experiment (SSPX). This reveals features not shown by Fourier analysis, particularly regarding nonsinusoidal mode structure. (c) 2000 The American Physical Society

  2. Spatio-Temporal Encoding in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik

    2005-01-01

    In this dissertation two methods for spatio-temporal encoding in medical ultrasound imaging are investigated. The first technique is based on a frequency division approach. Here, the available spectrum of the transducer is divided into a set of narrow bands. A waveform is designed for each band...... the signal to noise ratio and simultaneously the penetration depth so that the medical doctor can image deeper lying structures. The method is tested both experimentally and in simulation and has also evaluated for the purpose of blood flow estimation. The work presented is based on four papers which...

  3. PARALLEL SPATIOTEMPORAL SPECTRAL CLUSTERING WITH MASSIVE TRAJECTORY DATA

    Directory of Open Access Journals (Sweden)

    Y. Z. Gu

    2017-09-01

    Full Text Available Massive trajectory data contains wealth useful information and knowledge. Spectral clustering, which has been shown to be effective in finding clusters, becomes an important clustering approaches in the trajectory data mining. However, the traditional spectral clustering lacks the temporal expansion on the algorithm and limited in its applicability to large-scale problems due to its high computational complexity. This paper presents a parallel spatiotemporal spectral clustering based on multiple acceleration solutions to make the algorithm more effective and efficient, the performance is proved due to the experiment carried out on the massive taxi trajectory dataset in Wuhan city, China.

  4. Scalable Top-k Spatio-Temporal Term Querying

    DEFF Research Database (Denmark)

    Skovsgaard, Anders; Sidlauskas, Darius; Jensen, Christian Søndergaard

    2014-01-01

    With the rapidly increasing deployment of Internet-connected, location-aware mobile devices, very large and increasing amounts of geo-tagged and timestamped user-generated content, such as microblog posts, are being generated. We present indexing, update, and query processing techniques...... that are capable of providing the top-k terms seen in posts in a user-specified spatio-temporal range. The techniques enable interactive response times in the millisecond range in a realistic setting where the arrival rate of posts exceeds today's average tweet arrival rate by a factor of 4-10. The techniques...

  5. Image sequence analysis using spatio-temporal texture

    International Nuclear Information System (INIS)

    Sengupta, S.K.; Clark, G.A.; Barnes, F.L.; Schaich, P.C.

    1994-01-01

    The authors have developed and coded an algorithm for motion pattern classification based on spatio-temporal texture. The algorithm has been implemented and tested for the detection of wakes in simulated data with a relatively low signal-to-noise ratio (0.7 dB). Using a open-quote hold one out close-quote method, a detection probability of 100% with a 0% false alarm rate has been achieved on the limited number of samples (47 in each category) tested. The actual detection can be displayed in the form of a movie that can effectively show the submarine tracks based on the detected wake locations

  6. Spatiotemporal Dynamics of Dendritic Spines in the Living Brain

    Directory of Open Access Journals (Sweden)

    Chia-Chien eChen

    2014-05-01

    Full Text Available Dendritic spines are ubiquitous postsynaptic sites of most excitatory synapses in the mammalian brain, and thus may serve as structural indicators of functional synapses. Recent works have suggested that neuronal coding of memories may be associated with rapid alterations in spine formation and elimination. Technological advances have enabled researchers to study spine dynamics in vivo during development as well as under various physiological and pathological conditions. We believe that better understanding of the spatiotemporal patterns of spine dynamics will help elucidate the principles of experience-dependent circuit modification and information processing in the living brain.

  7. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    Science.gov (United States)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support

  8. Estimating spatio-temporal dynamics of size-structured populations

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Thygesen, Uffe Høgsbro; Andersen, Ken Haste

    2014-01-01

    with simple stock dynamics, to estimate simultaneously how size distributions and spatial distributions develop in time. We demonstrate the method for a cod population sampled by trawl surveys. Particular attention is paid to correlation between size classes within each trawl haul due to clustering...... of individuals with similar size. The model estimates growth, mortality and reproduction, after which any aspect of size-structure, spatio-temporal population dynamics, as well as the sampling process can be probed. This is illustrated by two applications: 1) tracking the spatial movements of a single cohort...

  9. Spatiotemporal patterns, annual baseline and movement-related incidence of Streptococcus agalactiae infection in Danish dairy herds: 2000-2009.

    Science.gov (United States)

    Mweu, Marshal M; Nielsen, Søren S; Halasa, Tariq; Toft, Nils

    2014-02-01

    Several decades after the inception of the five-point plan for the control of contagious mastitis pathogens, Streptococcus agalactiae (S. agalactiae) persists as a fundamental threat to the dairy industry in many countries. A better understanding of the relative importance of within- and between-herd sources of new herd infections coupled with the spatiotemporal distribution of the infection, may aid in effective targeting of control efforts. Thus, the objectives of this study were: (1) to describe the spatiotemporal patterns of infection with S. agalactiae in the population of Danish dairy herds from 2000 to 2009 and (2) to estimate the annual herd-level baseline and movement-related incidence risks of S. agalactiae infection over the 10-year period. The analysis involved registry data on bacteriological culture of all bulk tank milk samples collected as part of the mandatory Danish S. agalactiae surveillance scheme as well as live cattle movements into dairy herds during the specified 10-year period. The results indicated that the predicted risk of a herd becoming infected with S. agalactiae varied spatiotemporally; the risk being more homogeneous and higher in the period after 2005. Additionally, the annual baseline risks yielded significant yet distinctive patterns before and after 2005 - the risk of infection being higher in the latter phase. On the contrary, the annual movement-related risks revealed a non-significant pattern over the 10-year period. There was neither evidence for spatial clustering of cases relative to the population of herds at risk nor spatial dependency between herds. Nevertheless, the results signal a need to beef up within-herd biosecurity in order to reduce the risk of new herd infections. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Spatiotemporal Fusion of Remote Sensing Images with Structural Sparsity and Semi-Coupled Dictionary Learning

    Directory of Open Access Journals (Sweden)

    Jingbo Wei

    2016-12-01

    Full Text Available Fusion of remote sensing images with different spatial and temporal resolutions is highly needed by diverse earth observation applications. A small number of spatiotemporal fusion methods using sparse representation appear to be more promising than traditional linear mixture methods in reflecting abruptly changing terrestrial content. However, one of the main difficulties is that the results of sparse representation have reduced expressional accuracy; this is due in part to insufficient prior knowledge. For remote sensing images, the cluster and joint structural sparsity of the sparse coefficients could be employed as a priori knowledge. In this paper, a new optimization model is constructed with the semi-coupled dictionary learning and structural sparsity to predict the unknown high-resolution image from known images. Specifically, the intra-block correlation and cluster-structured sparsity are considered for single-channel reconstruction, and the inter-band similarity of joint-structured sparsity is considered for multichannel reconstruction, and both are implemented with block sparse Bayesian learning. The detailed optimization steps are given iteratively. In the experimental procedure, the red, green, and near-infrared bands of Landsat-7 and Moderate Resolution Imaging Spectrometer (MODIS satellites are put to fusion with root mean square errors to check the prediction accuracy. It can be concluded from the experiment that the proposed methods can produce higher quality than state-of-the-art methods.

  11. Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil

    Science.gov (United States)

    Lowe, Rachel; Bailey, Trevor C.; Stephenson, David B.; Graham, Richard J.; Coelho, Caio A. S.; Sá Carvalho, Marilia; Barcellos, Christovam

    2011-03-01

    This paper considers the potential for using seasonal climate forecasts in developing an early warning system for dengue fever epidemics in Brazil. In the first instance, a generalised linear model (GLM) is used to select climate and other covariates which are both readily available and prove significant in prediction of confirmed monthly dengue cases based on data collected across the whole of Brazil for the period January 2001 to December 2008 at the microregion level (typically consisting of one large city and several smaller municipalities). The covariates explored include temperature and precipitation data on a 2.5°×2.5° longitude-latitude grid with time lags relevant to dengue transmission, an El Niño Southern Oscillation index and other relevant socio-economic and environmental variables. A negative binomial model formulation is adopted in this model selection to allow for extra-Poisson variation (overdispersion) in the observed dengue counts caused by unknown/unobserved confounding factors and possible correlations in these effects in both time and space. Subsequently, the selected global model is refined in the context of the South East region of Brazil, where dengue predominates, by reverting to a Poisson framework and explicitly modelling the overdispersion through a combination of unstructured and spatio-temporal structured random effects. The resulting spatio-temporal hierarchical model (or GLMM—generalised linear mixed model) is implemented via a Bayesian framework using Markov Chain Monte Carlo (MCMC). Dengue predictions are found to be enhanced both spatially and temporally when using the GLMM and the Bayesian framework allows posterior predictive distributions for dengue cases to be derived, which can be useful for developing a dengue alert system. Using this model, we conclude that seasonal climate forecasts could have potential value in helping to predict dengue incidence months in advance of an epidemic in South East Brazil.

  12. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Bin; Chu Wei; Li Guihua; Zhang Haisu; Ni Jielei [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Sciences, Beijing 100080 (China); Gao Hui; Liu Weiwei [Institute of Modern Optics, Nankai University, Tianjin, 300071 (China); Yao Jinping; Cheng Ya; Xu Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Chin, See Leang [Center for Optics, Photonics and Laser (COPL) and Department of Physics, Engineering Physics and Optics, Universite Laval, Quebec City, QC, G1V 0A6 (Canada)

    2011-12-15

    We demonstrate that the peak intensity in the filament core, which is inherently limited by the intensity clamping effect during femtosecond laser filamentation, can be significantly enhanced using spatiotemporally focused femtosecond laser pulses. In addition, the filament length obtained by spatiotemporally focused femtosecond laser pulses is {approx}25 times shorter than that obtained by a conventional focusing scheme, resulting in improved high spatial resolution.

  13. Building spatio-temporal database model based on ontological approach using relational database environment

    International Nuclear Information System (INIS)

    Mahmood, N.; Burney, S.M.A.

    2017-01-01

    Everything in this world is encapsulated by space and time fence. Our daily life activities are utterly linked and related with other objects in vicinity. Therefore, a strong relationship exist with our current location, time (including past, present and future) and event through with we are moving as an object also affect our activities in life. Ontology development and its integration with database are vital for the true understanding of the complex systems involving both spatial and temporal dimensions. In this paper we propose a conceptual framework for building spatio-temporal database model based on ontological approach. We have used relational data model for modelling spatio-temporal data content and present our methodology with spatio-temporal ontological accepts and its transformation into spatio-temporal database model. We illustrate the implementation of our conceptual model through a case study related to cultivated land parcel used for agriculture to exhibit the spatio-temporal behaviour of agricultural land and related entities. Moreover, it provides a generic approach for designing spatiotemporal databases based on ontology. The proposed model is capable to understand the ontological and somehow epistemological commitments and to build spatio-temporal ontology and transform it into a spatio-temporal data model. Finally, we highlight the existing and future research challenges. (author)

  14. Spatio-temporal resolved diagnostics of the single filament barrier discharge in air

    International Nuclear Information System (INIS)

    Wagner, H.E.; Brandenburg, R.; Michel, P.; Kozlov, K.V.

    2001-01-01

    First experimental results on the spatio-temporal development of single filaments of DBDs in dry air at atmospheric pressure are presented. The measurements allow a detailed visualisation and interpretation of the streamer development. In combination with the kinetic model they are used to get information on the spatiotemporal development of the reduced field-strength E/n, too

  15. An implicit spatiotemporal shape model for human activity localization and recognition

    NARCIS (Netherlands)

    Oikonomopoulos, A.; Patras, I.; Pantic, Maja

    2009-01-01

    In this paper we address the problem of localisation and recognition of human activities in unsegmented image sequences. The main contribution of the proposed method is the use of an implicit representation of the spatiotemporal shape of the activity which relies on the spatiotemporal localization

  16. A flexible spatiotemporal method for fusing satellite images with different resolutions

    Science.gov (United States)

    Xiaolin Zhu; Eileen H. Helmer; Feng Gao; Desheng Liu; Jin Chen; Michael A. Lefsky

    2016-01-01

    Studies of land surface dynamics in heterogeneous landscapes often require remote sensing datawith high acquisition frequency and high spatial resolution. However, no single sensor meets this requirement. This study presents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta Fusion (FSDAF) method, to generate synthesized frequent high spatial...

  17. Application of Deep Learning and Supervised Learning Methods to Recognize Nonlinear Hidden Pattern in Water Stress Levels from Spatiotemporal Datasets across Rural and Urban US Counties

    Science.gov (United States)

    Eisenhart, T.; Josset, L.; Rising, J. A.; Devineni, N.; Lall, U.

    2017-12-01

    In the wake of recent water crises, the need to understand and predict the risk of water stress in urban and rural areas has grown. This understanding has the potential to improve decision making in public resource management, policy making, risk management and investment decisions. Assuming an underlying relationship between urban and rural water stress and observable features, we apply Deep Learning and Supervised Learning models to uncover hidden nonlinear patterns from spatiotemporal datasets. Results of interest includes prediction accuracy on extreme categories (i.e. urban areas highly prone to water stress) and not solely the average risk for urban or rural area, which adds complexity to the tuning of model parameters. We first label urban water stressed counties using annual water quality violations and compile a comprehensive spatiotemporal dataset that captures the yearly evolution of climatic, demographic and economic factors of more than 3,000 US counties over the 1980-2010 period. As county-level data reporting is not done on a yearly basis, we test multiple imputation methods to get around the issue of missing data. Using Python libraries, TensorFlow and scikit-learn, we apply and compare the ability of, amongst other methods, Recurrent Neural Networks (testing both LSTM and GRU cells), Convolutional Neural Networks and Support Vector Machines to predict urban water stress. We evaluate the performance of those models over multiple time spans and combine methods to diminish the risk of overfitting and increase prediction power on test sets. This methodology seeks to identify hidden nonlinear patterns to assess the predominant data features that influence urban and rural water stress. Results from this application at the national scale will assess the performance of deep learning models to predict water stress risk areas across all US counties and will highlight a predominant Machine Learning method for modeling water stress risk using spatiotemporal

  18. Active sensing via movement shapes spatiotemporal patterns of sensory feedback.

    Science.gov (United States)

    Stamper, Sarah A; Roth, Eatai; Cowan, Noah J; Fortune, Eric S

    2012-05-01

    Previous work has shown that animals alter their locomotor behavior to increase sensing volumes. However, an animal's own movement also determines the spatial and temporal dynamics of sensory feedback. Because each sensory modality has unique spatiotemporal properties, movement has differential and potentially independent effects on each sensory system. Here we show that weakly electric fish dramatically adjust their locomotor behavior in relation to changes of modality-specific information in a task in which increasing sensory volume is irrelevant. We varied sensory information during a refuge-tracking task by changing illumination (vision) and conductivity (electroreception). The gain between refuge movement stimuli and fish tracking responses was functionally identical across all sensory conditions. However, there was a significant increase in the tracking error in the dark (no visual cues). This was a result of spontaneous whole-body oscillations (0.1 to 1 Hz) produced by the fish. These movements were costly: in the dark, fish swam over three times further when tracking and produced more net positive mechanical work. The magnitudes of these oscillations increased as electrosensory salience was degraded via increases in conductivity. In addition, tail bending (1.5 to 2.35 Hz), which has been reported to enhance electrosensory perception, occurred only during trials in the dark. These data show that both categories of movements - whole-body oscillations and tail bends - actively shape the spatiotemporal dynamics of electrosensory feedback.

  19. Electrophysiological evidence for spatiotemporal flexibility in the ventrolateral attention network.

    Directory of Open Access Journals (Sweden)

    Jelena Ristic

    Full Text Available Successful completion of many everyday tasks depends on interactions between voluntary attention, which acts to maintain current goals, and reflexive attention, which enables responding to unexpected events by interrupting the current focus of attention. Past studies, which have mostly examined each attentional mechanism in isolation, indicate that volitional and reflexive orienting depend on two functionally specialized cortical networks in the human brain. Here we investigated how the interplay between these two cortical networks affects sensory processing and the resulting overt behavior. By combining measurements of human performance and electrocortical recordings with a novel analytical technique for estimating spatiotemporal activity in the human cortex, we found that the subregions that comprise the reflexive ventrolateral attention network dissociate both spatially and temporally as a function of the nature of the sensory information and current task demands. Moreover, we found that together with the magnitude of the early sensory gain, the spatiotemporal neural dynamics accounted for the high amount of the variance in the behavioral data. Collectively these data support the conclusion that the ventrolateral attention network is recruited flexibly to support complex behaviors.

  20. Spatiotemporal Visualization of Tsunami Waves Using Kml on Google Earth

    Science.gov (United States)

    Mohammadi, H.; Delavar, M. R.; Sharifi, M. A.; Pirooz, M. D.

    2017-09-01

    Disaster risk is a function of hazard and vulnerability. Risk is defined as the expected losses, including lives, personal injuries, property damages, and economic disruptions, due to a particular hazard for a given area and time period. Risk assessment is one of the key elements of a natural disaster management strategy as it allows for better disaster mitigation and preparation. It provides input for informed decision making, and increases risk awareness among decision makers and other stakeholders. Virtual globes such as Google Earth can be used as a visualization tool. Proper spatiotemporal graphical representations of the concerned risk significantly reduces the amount of effort to visualize the impact of the risk and improves the efficiency of the decision-making process to mitigate the impact of the risk. The spatiotemporal visualization of tsunami waves for disaster management process is an attractive topic in geosciences to assist investigation of areas at tsunami risk. In this paper, a method for coupling virtual globes with tsunami wave arrival time models is presented. In this process we have shown 2D+Time of tsunami waves for propagation and inundation of tsunami waves, both coastal line deformation, and the flooded areas. In addition, the worst case scenario of tsunami on Chabahar port derived from tsunami modelling is also presented using KML on google earth.

  1. Interpolation of daily rainfall using spatiotemporal models and clustering

    KAUST Repository

    Militino, A. F.

    2014-06-11

    Accumulated daily rainfall in non-observed locations on a particular day is frequently required as input to decision-making tools in precision agriculture or for hydrological or meteorological studies. Various solutions and estimation procedures have been proposed in the literature depending on the auxiliary information and the availability of data, but most such solutions are oriented to interpolating spatial data without incorporating temporal dependence. When data are available in space and time, spatiotemporal models usually provide better solutions. Here, we analyse the performance of three spatiotemporal models fitted to the whole sampled set and to clusters within the sampled set. The data consists of daily observations collected from 87 manual rainfall gauges from 1990 to 2010 in Navarre, Spain. The accuracy and precision of the interpolated data are compared with real data from 33 automated rainfall gauges in the same region, but placed in different locations than the manual rainfall gauges. Root mean squared error by months and by year are also provided. To illustrate these models, we also map interpolated daily precipitations and standard errors on a 1km2 grid in the whole region. © 2014 Royal Meteorological Society.

  2. Multiscale recurrence analysis of spatio-temporal data

    Science.gov (United States)

    Riedl, M.; Marwan, N.; Kurths, J.

    2015-12-01

    The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.

  3. Synthesizing spatiotemporally sparse smartphone sensor data for bridge modal identification

    Science.gov (United States)

    Ozer, Ekin; Feng, Maria Q.

    2016-08-01

    Smartphones as vibration measurement instruments form a large-scale, citizen-induced, and mobile wireless sensor network (WSN) for system identification and structural health monitoring (SHM) applications. Crowdsourcing-based SHM is possible with a decentralized system granting citizens with operational responsibility and control. Yet, citizen initiatives introduce device mobility, drastically changing SHM results due to uncertainties in the time and the space domains. This paper proposes a modal identification strategy that fuses spatiotemporally sparse SHM data collected by smartphone-based WSNs. Multichannel data sampled with the time and the space independence is used to compose the modal identification parameters such as frequencies and mode shapes. Structural response time history can be gathered by smartphone accelerometers and converted into Fourier spectra by the processor units. Timestamp, data length, energy to power conversion address temporal variation, whereas spatial uncertainties are reduced by geolocation services or determining node identity via QR code labels. Then, parameters collected from each distributed network component can be extended to global behavior to deduce modal parameters without the need of a centralized and synchronous data acquisition system. The proposed method is tested on a pedestrian bridge and compared with a conventional reference monitoring system. The results show that the spatiotemporally sparse mobile WSN data can be used to infer modal parameters despite non-overlapping sensor operation schedule.

  4. Interpolation of daily rainfall using spatiotemporal models and clustering

    KAUST Repository

    Militino, A. F.; Ugarte, M. D.; Goicoa, T.; Genton, Marc G.

    2014-01-01

    Accumulated daily rainfall in non-observed locations on a particular day is frequently required as input to decision-making tools in precision agriculture or for hydrological or meteorological studies. Various solutions and estimation procedures have been proposed in the literature depending on the auxiliary information and the availability of data, but most such solutions are oriented to interpolating spatial data without incorporating temporal dependence. When data are available in space and time, spatiotemporal models usually provide better solutions. Here, we analyse the performance of three spatiotemporal models fitted to the whole sampled set and to clusters within the sampled set. The data consists of daily observations collected from 87 manual rainfall gauges from 1990 to 2010 in Navarre, Spain. The accuracy and precision of the interpolated data are compared with real data from 33 automated rainfall gauges in the same region, but placed in different locations than the manual rainfall gauges. Root mean squared error by months and by year are also provided. To illustrate these models, we also map interpolated daily precipitations and standard errors on a 1km2 grid in the whole region. © 2014 Royal Meteorological Society.

  5. Spatiotemporal throughfall patterns beneath an urban tree row

    Science.gov (United States)

    Bogeholz, P.; Van Stan, J. T., II; Hildebrandt, A.; Friesen, J.; Dibble, M.; Norman, Z.

    2016-12-01

    Much recent research has focused on throughfall patterns in natural forests as they can influence the heterogeneity of surface ecohydrological and biogeochemical processes. However, to the knowledge of the authors, no work has assessed how urban forest structures affect the spatiotemporal variability of throughfall water flux. Urbanization greatly alters not only a significant portion of the land surface, but canopy structure, with the most typical urban forest configuration being landscaped tree rows along streets, swales, parking lot medians, etc. This study examines throughfall spatiotemporal patterns for a landscaped tree row of Pinus elliottii (Engelm., slash pine) on Georgia Southern University's campus (southeastern, USA) using 150 individual observations per storm. Throughfall correlation lengths beneath this tree row were similar to, but appeared to be more stable across storm size than, observations in past studies on natural forests. Individual tree overlap and the planting interval also may more strongly drive throughfall patterns in tree rows. Meteorological influences beyond storm magnitude (intensity, intermittency, wind conditions, and atmospheric moisture demand) are also examined.

  6. Spatiotemporal optical pulse transformation by a resonant diffraction grating

    Energy Technology Data Exchange (ETDEWEB)

    Golovastikov, N. V.; Bykov, D. A., E-mail: bykovd@gmail.com; Doskolovich, L. L., E-mail: leonid@smr.ru; Soifer, V. A. [Russian Academy of Sciences, Image Processing Systems Institute (Russian Federation)

    2015-11-15

    The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has been obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.

  7. Adaptive changes in spatiotemporal gait characteristics in women during pregnancy.

    Science.gov (United States)

    Błaszczyk, Janusz W; Opala-Berdzik, Agnieszka; Plewa, Michał

    2016-01-01

    Spatiotemporal gait cycle characteristics were assessed at early (P1), and late (P2) pregnancy, as well as at 2 months (PP1) and 6 months (PP2) postpartum. A substantial decrease in walking speed was observed throughout the pregnancy, with the slowest speed (1±0.2m/s) being during the third trimester. Walking at slower velocity resulted in complex adaptive adjustments to their spatiotemporal gait pattern, including a shorter step length and an increased duration of both their stance and double-support phases. Duration of the swing phase remained the least susceptible to changes. Habitual walking velocity (1.13±0.2m/s) and the optimal gait pattern were fully recovered 6 months after childbirth. Documented here adaptive changes in the preferred gait pattern seem to result mainly from the altered body anthropometry leading to temporary balance impairments. All the observed changes within stride cycle aimed to improve gait safety by focusing on its dynamic stability. The pregnant women preferred to walk at a slower velocity which allowed them to spend more time in double-support compared with their habitual pattern. Such changes provided pregnant women with a safer and more tentative ambulation that reduced the single-support period and, hence, the possibility of instability. As pregnancy progressed a significant increase in stance width and a decrease in step length was observed. Both factors allow also for gait stability improvement. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Spatiotemporal matrix image formation for programmable ultrasound scanners

    Science.gov (United States)

    Berthon, Beatrice; Morichau-Beauchant, Pierre; Porée, Jonathan; Garofalakis, Anikitos; Tavitian, Bertrand; Tanter, Mickael; Provost, Jean

    2018-02-01

    As programmable ultrasound scanners become more common in research laboratories, it is increasingly important to develop robust software-based image formation algorithms that can be obtained in a straightforward fashion for different types of probes and sequences with a small risk of error during implementation. In this work, we argue that as the computational power keeps increasing, it is becoming practical to directly implement an approximation to the matrix operator linking reflector point targets to the corresponding radiofrequency signals via thoroughly validated and widely available simulations software. Once such a spatiotemporal forward-problem matrix is constructed, standard and thus highly optimized inversion procedures can be leveraged to achieve very high quality images in real time. Specifically, we show that spatiotemporal matrix image formation produces images of similar or enhanced quality when compared against standard delay-and-sum approaches in phantoms and in vivo, and show that this approach can be used to form images even when using non-conventional probe designs for which adapted image formation algorithms are not readily available.

  9. Spatio-temporal analysis of blood perfusion by imaging photoplethysmography

    Science.gov (United States)

    Zaunseder, Sebastian; Trumpp, Alexander; Ernst, Hannes; Förster, Michael; Malberg, Hagen

    2018-02-01

    Imaging photoplethysmography (iPPG) has attracted much attention over the last years. The vast majority of works focuses on methods to reliably extract the heart rate from videos. Only a few works addressed iPPGs ability to exploit spatio-temporal perfusion pattern to derive further diagnostic statements. This work directs at the spatio-temporal analysis of blood perfusion from videos. We present a novel algorithm that bases on the two-dimensional representation of the blood pulsation (perfusion map). The basic idea behind the proposed algorithm consists of a pairwise estimation of time delays between photoplethysmographic signals of spatially separated regions. The probabilistic approach yields a parameter denoted as perfusion speed. We compare the perfusion speed versus two parameters, which assess the strength of blood pulsation (perfusion strength and signal to noise ratio). Preliminary results using video data with different physiological stimuli (cold pressure test, cold face test) show that all measures are influenced by those stimuli (some of them with statistical certainty). The perfusion speed turned out to be more sensitive than the other measures in some cases. However, our results also show that the intraindividual stability and interindividual comparability of all used measures remain critical points. This work proves the general feasibility of employing the perfusion speed as novel iPPG quantity. Future studies will address open points like the handling of ballistocardiographic effects and will try to deepen the understanding of the predominant physiological mechanisms and their relation to the algorithmic performance.

  10. Integrating GIS and ABM to Explore Spatiotemporal Dynamics

    Science.gov (United States)

    Sun, M.; Jiang, Y.; Yang, C.

    2013-12-01

    Agent-based modeling as a methodology for the bottom-up exploration with the account of adaptive behavior and heterogeneity of system components can help discover the development and pattern of the complex social and environmental system. However, ABM is a computationally intensive process especially when the number of system components becomes large and the agent-agent/agent-environmental interaction is modeled very complex. Most of traditional ABM frameworks developed based on CPU do not have a satisfying computing capacity. To address the problem and as the emergence of advanced techniques, GPU computing with CUDA can provide powerful parallel structure to enable the complex simulation of spatiotemporal dynamics. In this study, we first develop a GPU-based ABM system. Secondly, in order to visualize the dynamics generated from the movement of agent and the change of agent/environmental attributes during the simulation, we integrate GIS into the ABM system. Advanced geovisualization technologies can be utilized for representing the spatiotemporal change events, such as proper 2D/3D maps with state-of-the-art symbols, space-time cube and multiple layers each of which presents pattern in one time-stamp, etc. Thirdly, visual analytics which include interactive tools (e.g. grouping, filtering, linking, etc.) is included in our ABM-GIS system to help users conduct real-time data exploration during the progress of simulation. Analysis like flow analysis and spatial cluster analysis can be integrated according to the geographical problem we want to explore.

  11. Mining Spatiotemporal Patterns of the Elder's Daily Movement

    Science.gov (United States)

    Chen, C. R.; Chen, C. F.; Liu, M. E.; Tsai, S. J.; Son, N. T.; Kinh, L. V.

    2016-06-01

    With rapid developments in wearable device technology, a vast amount of spatiotemporal data, such as people's movement and physical activities, are generated. Information derived from the data reveals important knowledge that can contribute a long-term care and psychological assessment of the elders' living condition especially in long-term care institutions. This study aims to develop a method to investigate the spatial-temporal movement patterns of the elders with their outdoor trajectory information. To achieve the goal, GPS based location data of the elderly subjects from long-term care institutions are collected and analysed with geographic information system (GIS). A GIS statistical model is developed to mine the elderly subjects' spatiotemporal patterns with the location data and represent their daily movement pattern at particular time. The proposed method first finds the meaningful trajectory and extracts the frequent patterns from the time-stamp location data. Then, a density-based clustering method is used to identify the major moving range and the gather/stay hotspot in both spatial and temporal dimensions. The preliminary results indicate that the major moving area of the elderly people encompasses their dorm and has a short moving distance who often stay in the same site. Subjects' outdoor appearance are corresponded to their life routine. The results can be useful for understanding elders' social network construction, risky area identification and medical care monitoring.

  12. Spatiotemporal Variations of Reference Crop Evapotranspiration in Northern Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2014-01-01

    Full Text Available To set up a reasonable crop irrigation system in the context of global climate change in Northern Xinjiang, China, reference crop evapotranspiration (ET0 was analyzed by means of spatiotemporal variations. The ET0 values from 1962 to 2010 were calculated by Penman-Monteith formula, based on meteorological data of 22 meteorological observation stations in the study area. The spatiotemporal variations of ET0 were analyzed by Mann-Kendall test, Morlet wavelet analysis, and ArcGIS spatial analysis. The results showed that regional average ET0 had a decreasing trend and there was an abrupt change around 1983. The trend of regional average ET0 had a primary period about 28 years, in which there were five alternating stages (high-low-high-low-high. From the standpoint of spatial scale, ET0 gradually increased from the northeast and southwest toward the middle; the southeast and west had slightly greater variation, with significant regional differences. From April to October, the ET0 distribution significantly influenced the distribution characteristic of annual ET0. Among them sunshine hours and wind speed were two of principal climate factors affecting ET0.

  13. Placing invasive species management in a spatiotemporal context.

    Science.gov (United States)

    Baker, Christopher M; Bode, Michael

    2016-04-01

    Invasive species are a worldwide issue, both ecologically and economically. A large body of work focuses on various aspects of invasive species control, including how to allocate control efforts to eradicate an invasive population as cost effectively as possible: There are a diverse range of invasive species management problems, and past mathematical analyses generally focus on isolated examples, making it hard to identify and understand parallels between the different contexts. In this study, we use a single spatiotemporal model to tackle the problem of allocating control effort for invasive species when suppressing an island invasive species, and for long-term spatial suppression projects. Using feral cat suppression as an illustrative example, we identify the optimal resource allocation for island and mainland suppression projects. Our results demonstrate how using a single model to solve different problems reveals similar characteristics of the solutions in different scenarios. As well as illustrating the insights offered by linking problems through a spatiotemporal model, we also derive novel and practically applicable results for our case studies. For temporal suppression projects on islands, we find that lengthy projects are more cost effective and that rapid control projects are only economically cost effective when population growth rates are high or diminishing returns on control effort are low. When suppressing invasive species around conservation assets (e.g., national parks or exclusion fences), we find that the size of buffer zones should depend on the ratio of the species growth and spread rate.

  14. Research on Process-oriented Spatio-temporal Data Model

    Directory of Open Access Journals (Sweden)

    XUE Cunjin

    2016-02-01

    Full Text Available According to the analysis of the present status and existing problems of spatio-temporal data models developed in last 20 years,this paper proposes a process-oriented spatio-temporal data model (POSTDM,aiming at representing,organizing and storing continuity and gradual geographical entities. The dynamic geographical entities are graded and abstracted into process objects series from their intrinsic characteristics,which are process objects,process stage objects,process sequence objects and process state objects. The logical relationships among process entities are further studied and the structure of UML models and storage are also designed. In addition,through the mechanisms of continuity and gradual changes impliedly recorded by process objects,and the modes of their procedure interfaces offered by the customized ObjcetStorageTable,the POSTDM can carry out process representation,storage and dynamic analysis of continuity and gradual geographic entities. Taking a process organization and storage of marine data as an example,a prototype system (consisting of an object-relational database and a functional analysis platform is developed for validating and evaluating the model's practicability.

  15. Collaborative simulation method with spatiotemporal synchronization process control

    Science.gov (United States)

    Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian

    2016-10-01

    When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.

  16. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities.

    Science.gov (United States)

    Lapek, John D; Greninger, Patricia; Morris, Robert; Amzallag, Arnaud; Pruteanu-Malinici, Iulian; Benes, Cyril H; Haas, Wilhelm

    2017-10-01

    The formation of protein complexes and the co-regulation of the cellular concentrations of proteins are essential mechanisms for cellular signaling and for maintaining homeostasis. Here we use isobaric-labeling multiplexed proteomics to analyze protein co-regulation and show that this allows the identification of protein-protein associations with high accuracy. We apply this 'interactome mapping by high-throughput quantitative proteome analysis' (IMAHP) method to a panel of 41 breast cancer cell lines and show that deviations of the observed protein co-regulations in specific cell lines from the consensus network affects cellular fitness. Furthermore, these aberrant interactions serve as biomarkers that predict the drug sensitivity of cell lines in screens across 195 drugs. We expect that IMAHP can be broadly used to gain insight into how changing landscapes of protein-protein associations affect the phenotype of biological systems.

  17. Oscillations, complex spatiotemporal behavior, and information transport in networks of excitatory and inhibitory neurons

    International Nuclear Information System (INIS)

    Destexhe, A.

    1994-01-01

    Various types of spatiotemporal behavior are described for two-dimensional networks of excitatory and inhibitory neurons with time delayed interactions. It is described how the network behaves as several structural parameters are varied, such as the number of neurons, the connectivity, and the values of synaptic weights. A transition from spatially uniform oscillations to spatiotemporal chaos via intermittentlike behavior is observed. The properties of spatiotemporally chaotic solutions are investigated by evaluating the largest positive Lyapunov exponent and the loss of correlation with distance. Finally, properties of information transport are evaluated during uniform oscillations and spatiotemporal chaos. It is shown that the diffusion coefficient increases significantly in the spatiotemporal phase similar to the increase of transport coefficients at the onset of fluid turbulence. It is proposed that such a property should be seen in other media, such as chemical turbulence or networks of oscillators. The possibility of measuring information transport from appropriate experiments is also discussed

  18. IIS--Integrated Interactome System: a web-based platform for the annotation, analysis and visualization of protein-metabolite-gene-drug interactions by integrating a variety of data sources and tools.

    Science.gov (United States)

    Carazzolle, Marcelo Falsarella; de Carvalho, Lucas Miguel; Slepicka, Hugo Henrique; Vidal, Ramon Oliveira; Pereira, Gonçalo Amarante Guimarães; Kobarg, Jörg; Meirelles, Gabriela Vaz

    2014-01-01

    High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two

  19. Modeling a Spatio-Temporal Individual Travel Behavior Using Geotagged Social Network Data: a Case Study of Greater Cincinnati

    Science.gov (United States)

    Saeedimoghaddam, M.; Kim, C.

    2017-10-01

    Understanding individual travel behavior is vital in travel demand management as well as in urban and transportation planning. New data sources including mobile phone data and location-based social media (LBSM) data allow us to understand mobility behavior on an unprecedented level of details. Recent studies of trip purpose prediction tend to use machine learning (ML) methods, since they generally produce high levels of predictive accuracy. Few studies used LSBM as a large data source to extend its potential in predicting individual travel destination using ML techniques. In the presented research, we created a spatio-temporal probabilistic model based on an ensemble ML framework named "Random Forests" utilizing the travel extracted from geotagged Tweets in 419 census tracts of Greater Cincinnati area for predicting the tract ID of an individual's travel destination at any time using the information of its origin. We evaluated the model accuracy using the travels extracted from the Tweets themselves as well as the travels from household travel survey. The Tweets and survey based travels that start from same tract in the south western parts of the study area is more likely to select same destination compare to the other parts. Also, both Tweets and survey based travels were affected by the attraction points in the downtown of Cincinnati and the tracts in the north eastern part of the area. Finally, both evaluations show that the model predictions are acceptable, but it cannot predict destination using inputs from other data sources as precise as the Tweets based data.

  20. Spatio-temporal distribution of soil-transmitted helminth infections in Brazil.

    Science.gov (United States)

    Chammartin, Frédérique; Guimarães, Luiz H; Scholte, Ronaldo Gc; Bavia, Mara E; Utzinger, Jürg; Vounatsou, Penelope

    2014-09-18

    In Brazil, preventive chemotherapy targeting soil-transmitted helminthiasis is being scaled-up. Hence, spatially explicit estimates of infection risks providing information about the current situation are needed to guide interventions. Available high-resolution national model-based estimates either rely on analyses of data restricted to a given period of time, or on historical data collected over a longer period. While efforts have been made to take into account the spatial structure of the data in the modelling approach, little emphasis has been placed on the temporal dimension. We extracted georeferenced survey data on the prevalence of infection with soil-transmitted helminths (i.e. Ascaris lumbricoides, hookworm and Trichuris trichiura) in Brazil from the Global Neglected Tropical Diseases (GNTD) database. Selection of the most important predictors of infection risk was carried out using a Bayesian geostatistical approach and temporal models that address non-linearity and correlation of the explanatory variables. The spatial process was estimated through a predictive process approximation. Spatio-temporal models were built on the selected predictors with integrated nested Laplace approximation using stochastic partial differential equations. Our models revealed that, over the past 20 years, the risk of soil-transmitted helminth infection has decreased in Brazil, mainly because of the reduction of A. lumbricoides and hookworm infections. From 2010 onwards, we estimate that the infection prevalences with A. lumbricoides, hookworm and T. trichiura are 3.6%, 1.7% and 1.4%, respectively. We also provide a map highlighting municipalities in need of preventive chemotherapy, based on a predicted soil-transmitted helminth infection risk in excess of 20%. The need for treatments in the school-aged population at the municipality level was estimated at 1.8 million doses of anthelminthic tablets per year. The analysis of the spatio-temporal aspect of the risk of infection

  1. Variational assimilation of streamflow into operational distributed hydrologic models: effect of spatiotemporal adjustment scale

    Science.gov (United States)

    Lee, H.; Seo, D.-J.; Liu, Y.; Koren, V.; McKee, P.; Corby, R.

    2012-01-01

    State updating of distributed rainfall-runoff models via streamflow assimilation is subject to overfitting because large dimensionality of the state space of the model may render the assimilation problem seriously under-determined. To examine the issue in the context of operational hydrology, we carry out a set of real-world experiments in which streamflow data is assimilated into gridded Sacramento Soil Moisture Accounting (SAC-SMA) and kinematic-wave routing models of the US National Weather Service (NWS) Research Distributed Hydrologic Model (RDHM) with the variational data assimilation technique. Study basins include four basins in Oklahoma and five basins in Texas. To assess the sensitivity of data assimilation performance to dimensionality reduction in the control vector, we used nine different spatiotemporal adjustment scales, where state variables are adjusted in a lumped, semi-distributed, or distributed fashion and biases in precipitation and potential evaporation (PE) are adjusted hourly, 6-hourly, or kept time-invariant. For each adjustment scale, three different streamflow assimilation scenarios are explored, where streamflow observations at basin interior points, at the basin outlet, or at both interior points and the outlet are assimilated. The streamflow assimilation experiments with nine different basins show that the optimum spatiotemporal adjustment scale varies from one basin to another and may be different for streamflow analysis and prediction in all of the three streamflow assimilation scenarios. The most preferred adjustment scale for seven out of nine basins is found to be the distributed, hourly scale, despite the fact that several independent validation results at this adjustment scale indicated the occurrence of overfitting. Basins with highly correlated interior and outlet flows tend to be less sensitive to the adjustment scale and could benefit more from streamflow assimilation. In comparison to outlet flow assimilation, interior flow

  2. Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics.

    Science.gov (United States)

    Börlin, Christoph S; Lang, Verena; Hamacher-Brady, Anne; Brady, Nathan R

    2014-09-10

    Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3

  3. Using Deep Learning Model for Meteorological Satellite Cloud Image Prediction

    Science.gov (United States)

    Su, X.

    2017-12-01

    A satellite cloud image contains much weather information such as precipitation information. Short-time cloud movement forecast is important for precipitation forecast and is the primary means for typhoon monitoring. The traditional methods are mostly using the cloud feature matching and linear extrapolation to predict the cloud movement, which makes that the nonstationary process such as inversion and deformation during the movement of the cloud is basically not considered. It is still a hard task to predict cloud movement timely and correctly. As deep learning model could perform well in learning spatiotemporal features, to meet this challenge, we could regard cloud image prediction as a spatiotemporal sequence forecasting problem and introduce deep learning model to solve this problem. In this research, we use a variant of Gated-Recurrent-Unit(GRU) that has convolutional structures to deal with spatiotemporal features and build an end-to-end model to solve this forecast problem. In this model, both the input and output are spatiotemporal sequences. Compared to Convolutional LSTM(ConvLSTM) model, this model has lower amount of parameters. We imply this model on GOES satellite data and the model perform well.

  4. Tracking and mapping of spatiotemporal quantities using unicellular swarm intelligence visualisation of invisible hazardous substances using unicellular swarm intelligence

    CERN Document Server

    Oyekan, John Oluwagbemiga

    2016-01-01

    The book discusses new algorithms capable of searching for, tracking, mapping and providing a visualization of invisible substances. It reports on the realization of a bacterium-inspired robotic controller that can be used by an agent to search for any environmental spatial function such as temperature or pollution. Using the parameters of a mathematical model, the book shows that it is possible to control the exploration, exploitation and sensitivity of the agent. This feature sets the work apart from the usual method of applying the bacterium behavior to robotic agents. The book also discusses how a computationally tractable multi-agent robotic controller was developed and used to track as well as provide a visual map of a spatio-temporal distribution of a substance. On the one hand, this book provides biologists and ecologists with a basis to perform simulations related to how individual organisms respond to spatio-temporal factors in their environment as well as predict and analyze the behavior of organis...

  5. Climate-driven changes to the spatio-temporal distribution of the parasitic nematode, Haemonchus contortus, in sheep in Europe.

    Science.gov (United States)

    Rose, Hannah; Caminade, Cyril; Bolajoko, Muhammad Bashir; Phelan, Paul; van Dijk, Jan; Baylis, Matthew; Williams, Diana; Morgan, Eric R

    2016-03-01

    Recent climate change has resulted in changes to the phenology and distribution of invertebrates worldwide. Where invertebrates are associated with disease, climate variability and changes in climate may also affect the spatio-temporal dynamics of disease. Due to its significant impact on sheep production and welfare, the recent increase in diagnoses of ovine haemonchosis caused by the nematode Haemonchus contortus in some temperate regions is particularly concerning. This study is the first to evaluate the impact of climate change on H. contortus at a continental scale. A model of the basic reproductive quotient of macroparasites, Q0 , adapted to H. contortus and extended to incorporate environmental stochasticity and parasite behaviour, was used to simulate Pan-European spatio-temporal changes in H. contortus infection pressure under scenarios of climate change. Baseline Q0 simulations, using historic climate observations, reflected the current distribution of H. contortus in Europe. In northern Europe, the distribution of H. contortus is currently limited by temperatures falling below the development threshold during the winter months and within-host arrested development is necessary for population persistence over winter. In southern Europe, H. contortus infection pressure is limited during the summer months by increased temperature and decreased moisture. Compared with this baseline, Q0 simulations driven by a climate model ensemble predicted an increase in H. contortus infection pressure by the 2080s. In northern Europe, a temporal range expansion was predicted as the mean period of transmission increased by 2-3 months. A bimodal seasonal pattern of infection pressure, similar to that currently observed in southern Europe, emerges in northern Europe due to increasing summer temperatures and decreasing moisture. The predicted patterns of change could alter the epidemiology of H. contortus in Europe, affect the future sustainability of contemporary

  6. A spatio-temporal analysis of suicide in El Salvador.

    Science.gov (United States)

    Carcach, Carlos

    2017-04-20

    In 2012, international statistics showed El Salvador's suicide rate as 40th in the world and the highest in Latin America. Over the last 15 years, national statistics show the suicide death rate declining as opposed to an increasing rate of homicide. Though completed suicide is an important social and health issue, little is known about its prevalence, incidence, etiology and spatio-temporal behavior. The primary objective of this study was to examine completed suicide and homicide using the stream analogy to lethal violence within a spatio-temporal framework. A Bayesian model was applied to examine the spatio-temporal evolution of the tendency of completed suicide over homicide in El Salvador. Data on numbers of suicides and homicides at the municipal level were obtained from the Instituto de Medicina Legal (IML) and population counts, from the Dirección General de Estadística y Censos (DIGESTYC), for the period of 2002 to 2012. Data on migration were derived from the 2007 Population Census, and inequality data were obtained from a study by Damianović, Valenzuela and Vera. The data reveal a stable standardized rate of total lethal violence (completed suicide plus homicide) across municipalities over time; a decline in suicide; and a standardized suicide rate decreasing with income inequality but increasing with social isolation. Municipalities clustered in terms of both total lethal violence and suicide standardized rates. Spatial effects for suicide were stronger among municipalities located in the north-east and center-south sides of the country. New clusters of municipalities with large suicide standardized rates were detected in the north-west, south-west and center-south regions, all of which are part of time-stable clusters of homicide. Prevention efforts to reduce income inequality and mitigate the negative effects of weak relational systems should focus upon municipalities forming time-persistent clusters with a large rate of death by suicide. In

  7. Cartography in the Age of Spatio-temporal Big Data

    Directory of Open Access Journals (Sweden)

    WANG Jiayao

    2017-10-01

    Full Text Available Cartography is an ancient science with almost the same long history as the world's oldest culture.Since ancient times,the movement and change of anything and any phenomena,including human activities,have been carried out in a certain time and space.The development of science and technology and the progress of social civilization have made social management and governance more and more dependent on time and space.The information source,theme,content,carrier,form,production methods and application methods of map are different in different historical periods,so that its all-round value is different. With the arrival of the big data age,the scientific paradigm has now entered the era of "data-intensive" paradigm,so is the cartography,with obvious characteristics of big data science.All big data are caused by movement and change of all things and phenomena in the geographic world,so they have space and time characteristics and thus cannot be separated from the spatial reference and time reference.Therefore,big data is big spatio-temporal data essentially.Since the late 1950s and early 1960s,modern cartography,that is,the cartography in the information age,takes spatio-temporal data as the object,and focuses on the processing and expression of spatio-temporal data,but not in the face of the large scale multi-source heterogeneous and multi-dimensional dynamic data flow(or flow datafrom sky to the sea.The real-time dynamic nature,the theme pertinence,the content complexity,the carrier diversification,the expression form personalization,the production method modernization,the application ubiquity of the map,is incomparable in the past period,which leads to the great changes of the theory,technology and application system of cartography.And all these changes happen to occur in the 60 years since the late 1950s and early 1960s,so this article was written to commemorate the 60th anniversary of the "Acta Geodaetica et Cartographica Sinica".

  8. Spatiotemporal noise covariance estimation from limited empirical magnetoencephalographic data

    International Nuclear Information System (INIS)

    Jun, Sung C; Plis, Sergey M; Ranken, Doug M; Schmidt, David M

    2006-01-01

    The performance of parametric magnetoencephalography (MEG) and electroencephalography (EEG) source localization approaches can be degraded by the use of poor background noise covariance estimates. In general, estimation of the noise covariance for spatiotemporal analysis is difficult mainly due to the limited noise information available. Furthermore, its estimation requires a large amount of storage and a one-time but very large (and sometimes intractable) calculation or its inverse. To overcome these difficulties, noise covariance models consisting of one pair or a sum of multi-pairs of Kronecker products of spatial covariance and temporal covariance have been proposed. However, these approaches cannot be applied when the noise information is very limited, i.e., the amount of noise information is less than the degrees of freedom of the noise covariance models. A common example of this is when only averaged noise data are available for a limited prestimulus region (typically at most a few hundred milliseconds duration). For such cases, a diagonal spatiotemporal noise covariance model consisting of sensor variances with no spatial or temporal correlation has been the common choice for spatiotemporal analysis. In this work, we propose a different noise covariance model which consists of diagonal spatial noise covariance and Toeplitz temporal noise covariance. It can easily be estimated from limited noise information, and no time-consuming optimization and data-processing are required. Thus, it can be used as an alternative choice when one-pair or multi-pair noise covariance models cannot be estimated due to lack of noise information. To verify its capability we used Bayesian inference dipole analysis and a number of simulated and empirical datasets. We compared this covariance model with other existing covariance models such as conventional diagonal covariance, one-pair and multi-pair noise covariance models, when noise information is sufficient to estimate them. We

  9. A spatio-temporal analysis of suicide in El Salvador

    Directory of Open Access Journals (Sweden)

    Carlos Carcach

    2017-04-01

    Full Text Available Abstract Background In 2012, international statistics showed El Salvador’s suicide rate as 40th in the world and the highest in Latin America. Over the last 15 years, national statistics show the suicide death rate declining as opposed to an increasing rate of homicide. Though completed suicide is an important social and health issue, little is known about its prevalence, incidence, etiology and spatio-temporal behavior. The primary objective of this study was to examine completed suicide and homicide using the stream analogy to lethal violence within a spatio-temporal framework. Methods A Bayesian model was applied to examine the spatio-temporal evolution of the tendency of completed suicide over homicide in El Salvador. Data on numbers of suicides and homicides at the municipal level were obtained from the Instituto de Medicina Legal (IML and population counts, from the Dirección General de Estadística y Censos (DIGESTYC, for the period of 2002 to 2012. Data on migration were derived from the 2007 Population Census, and inequality data were obtained from a study by Damianović, Valenzuela and Vera. Results The data reveal a stable standardized rate of total lethal violence (completed suicide plus homicide across municipalities over time; a decline in suicide; and a standardized suicide rate decreasing with income inequality but increasing with social isolation. Municipalities clustered in terms of both total lethal violence and suicide standardized rates. Conclusions Spatial effects for suicide were stronger among municipalities located in the north-east and center-south sides of the country. New clusters of municipalities with large suicide standardized rates were detected in the north-west, south-west and center-south regions, all of which are part of time-stable clusters of homicide. Prevention efforts to reduce income inequality and mitigate the negative effects of weak relational systems should focus upon municipalities forming time

  10. Curating the innate immunity interactome.

    LENUS (Irish Health Repository)

    Lynn, David J

    2010-01-01

    The innate immune response is the first line of defence against invading pathogens and is regulated by complex signalling and transcriptional networks. Systems biology approaches promise to shed new light on the regulation of innate immunity through the analysis and modelling of these networks. A key initial step in this process is the contextual cataloguing of the components of this system and the molecular interactions that comprise these networks. InnateDB (http:\\/\\/www.innatedb.com) is a molecular interaction and pathway database developed to facilitate systems-level analyses of innate immunity.

  11. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  12. The Breast Cancer DNA Interactome

    Science.gov (United States)

    2014-12-01

    an antisense orientation compared with the IGF1R gene, and it is expressed exclusively from the paternal allele, with the maternal allele being...orientation compared with the IGF1R gene, and it is expressed exclusively from the paternal allele, with the maternal allele being silenced...progression and metastasis is not yet fully understood. Our major goal has been to characterize physical interactions among selected breast cancer gene loci

  13. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth; Meier, Stuart Kurt; Gehring, Christoph A

    2016-01-01

    Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms

  14. Poplar Interactome: Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Pankaj [Oregon State Univ., Corvallis, OR (United States)

    2018-03-21

    The feedstock plant Poplar has many advantages over traditional crop plants. Not only Poplar needs low energy input and off season storage as compared to feedstocks such as corn, in the winter season Poplar biomass is stored on the stem/trunk, and Poplar plantations serve as large carbon sink. A key constraint to the expansion of cellulosic bioenergy sources such as in Poplar however, is the negative consequence of converting land use from food crops to energy crops. Therefore in order for Poplar to become a viable energy crop it needs to be grown mostly on marginal land unsuitable agricultural crops. For this we need a better understanding of abiotic stress and adaptation response in poplar. In the process we expected to find new and existing poplar genes and their function that respond to sustain abiotic stress. We carried out an extensive gene expression study on the control untreated and stress (drought, salinity, cold and heat) treated poplar plants. The samples were collected from the stem, leaf and root tissues. The RNA of protein coding genes and regulatory smallRNA genes were sequenced generating more than a billion reads. This is the first such known study in Poplar plants. These were used for quantification and genomic analysis to identify stress responsive genes in poplar. Based on the quantification and genomic analysis, a select set of genes were studied for gene-gene interactions to find their association to stress response. The data was also used to find novel stress responsive genes in poplar that were previously not identified in the Poplar reference genome. The data is made available to the public through the national and international genomic data archives.

  15. A hybrid spatio-temporal data indexing method for trajectory databases.

    Science.gov (United States)

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-07-21

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type.

  16. A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases

    Directory of Open Access Journals (Sweden)

    Shengnan Ke

    2014-07-01

    Full Text Available In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type.

  17. A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases

    Science.gov (United States)

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-01-01

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type. PMID:25051028

  18. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Tanmoy, E-mail: tbanerjee@phys.buruniv.ac.in; Paul, Bishwajit; Sarkar, B. C. [Department of Physics, University of Burdwan, Burdwan, West Bengal 713 104 (India)

    2014-03-15

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.

  19. Patterning biomaterials for the spatiotemporal delivery of bioactive molecules

    Directory of Open Access Journals (Sweden)

    Silvia eMinardi

    2016-06-01

    Full Text Available The aim of tissue engineering is to promote the repair of functional tissues. For decades, the combined use of biomaterials, growth factors, and stem cells has been at the base of several regeneration strategies. Among these, biomimicry emerged as a robust strategy to efficiently address this clinical challenge. Biomimetic materials, able to recapitulate the composition and architecture of the extracellular matrix, are the materials of choice, for their biocompatibility and higher rate of efficacy. In addition, it has become increasingly clear that restoring the complex biochemical environment of the target tissue is crucial for its regeneration. Towards this aim, the combination of scaffolds and growth factors is required. The advent of nanotechnology significantly impacted the field of tissue engineering by providing new ways to reproduce the complex spatial and temporal biochemical patterns of tissues. This review will present the most recent approaches to finely control the spatiotemporal release of bioactive molecules for various tissue engineering applications.

  20. Spatiotemporal reconstruction of list-mode PET data

    CERN Document Server

    Nichols, T E; Asma, E; Leahy, R M

    2002-01-01

    We describe a method for computing a continuous time estimate of tracer density using list-mode positron emission tomography data. The rate function in each voxel is modeled as an inhomogeneous Poisson process whose rate function can be represented using a cubic B-spline basis. The rate functions are estimated by maximizing the likelihood of the arrival times of detected photon pairs over the control vertices of the spline, modified by quadratic spatial and temporal smoothness penalties and a penalty term to enforce non-negativity. Randoms rate functions are estimated by assuming independence between the spatial and temporal randoms distributions. Similarly, scatter rate functions are estimated by assuming spatiotemporal independence and that the temporal distribution of the scatter is proportional to the temporal distribution of the trues. A quantitative evaluation was performed using simulated data and the method is also demonstrated in a human study using 11C-raclopride.

  1. Databases spatiotemporal taxonomy with moving objects. Theme review

    Directory of Open Access Journals (Sweden)

    Sergio Alejandro Rojas Barbosa

    2018-01-01

    Full Text Available Context: In the last decade, databases have evolved so much that we no longer speak only of spatial databases, but also of spatial and temporal databases. This means that the event or record has a spatial or localization variable and a temporality variable, which allows updating the previously stored record. Method: This paper presents a bibliographic review about concepts, spatio-temporal data models, specifically the models of data in movement. Results: Taxonomic considerations of the queries are presented in the models of data in movement, according to the persistence of the query (time, location, movement, object and patterns, as well as the different proposals of indexes and structures. Conclusions: The implementation of model proposals, such as indexes and structures, can lead to standardization problems. This is why it should be standardized under the standards and standards of the OGC (Open Geospatial Consortium.

  2. ESIPT-Based Photoactivatable Fluorescent Probe for Ratiometric Spatiotemporal Bioimaging

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    2016-10-01

    Full Text Available Photoactivatable fluorophores have become an important technique for the high spatiotemporal resolution of biological imaging. Here, we developed a novel photoactivatable probe (PHBT, which is based on 2-(2-hydroxyphenylbenzothiazole (HBT, a small organic fluorophore known for its classic luminescence mechanism through excited-state intramolecular proton transfer (ESIPT with the keto form and the enol form. After photocleavage, PHBT released a ratiometric fluorophore HBT, which showed dual emission bands with more than 73-fold fluorescence enhancement at 512 nm in buffer and more than 69-fold enhancement at 452 nm in bovine serum. The probe displayed a high ratiometric imaging resolution and is believed to have a wide application in biological imaging.

  3. Spread-spectrum communication using binary spatiotemporal chaotic codes

    International Nuclear Information System (INIS)

    Wang Xingang; Zhan Meng; Gong Xiaofeng; Lai, C.H.; Lai, Y.-C.

    2005-01-01

    We propose a scheme to generate binary code for baseband spread-spectrum communication by using a chain of coupled chaotic maps. We compare the performances of this type of spatiotemporal chaotic code with those of a conventional code used frequently in digital communication, the Gold code, and demonstrate that our code is comparable or even superior to the Gold code in several key aspects: security, bit error rate, code generation speed, and the number of possible code sequences. As the field of communicating with chaos faces doubts in terms of performance comparison with conventional digital communication schemes, our work gives a clear message that communicating with chaos can be advantageous and it deserves further attention from the nonlinear science community

  4. Spatiotemporal reconstruction of list-mode PET data

    International Nuclear Information System (INIS)

    Nichols, Thomas E.; Qi, Jinyi; Asma, Evren; Leahy, Richard M.

    2002-01-01

    We describe a method for computing a continuous time estimate of tracer density using list-mode positron emission tomography data. The rate function in each voxel is modeled as an inhomogeneous Poisson process whose rate function can be represented using a cubic B-spline basis. The rate functions are estimated by maximizing the likelihood of the arrival times of detected photon pairs over the control vertices of the spline, modified by quadratic spatial and temporal smoothness penalties and a penalty term to enforce non-negativity. Randoms rate functions are estimated by assuming independence between the spatial and temporal randoms distributions. Similarly, scatter rate functions are estimated by assuming spatiotemporal independence and that the temporal distribution of the scatter is proportional to the temporal distribution of the trues. A quantitative evaluation was performed using simulated data and the method is also demonstrated in a human study using 11C-raclopride

  5. Distillation and Visualization of Spatiotemporal Structures in Turbulent Flow Fields

    International Nuclear Information System (INIS)

    Hege, Hans-Christian; Hotz, Ingrid; Kasten, Jens

    2011-01-01

    Although turbulence suggests randomness and disorder, organized motions that cause spatiotemporal 'coherent structures' are of particular interest. Revealing such structures in numerically given turbulent or semi-turbulent flows is of interest both for practically working engineers and theoretically oriented physicists. However, as long as there is no common agreement about the mathematical definition of coherent structures, extracting such structures is a vaguely defined task. Instead of searching for a general definition, the data visualization community takes a pragmatic approach and provides various tool chains implemented in flexible software frameworks that allow the user to extract distinct flow field structures. Thus physicists or engineers can select those flow structures which might advance their insight best. We present different approaches to distill important features from turbulent flows and discuss the necessary steps to be taken on the example of Lagrangian coherent structures.

  6. Task-relevant information is prioritized in spatiotemporal contextual cueing.

    Science.gov (United States)

    Higuchi, Yoko; Ueda, Yoshiyuki; Ogawa, Hirokazu; Saiki, Jun

    2016-11-01

    Implicit learning of visual contexts facilitates search performance-a phenomenon known as contextual cueing; however, little is known about contextual cueing under situations in which multidimensional regularities exist simultaneously. In everyday vision, different information, such as object identity and location, appears simultaneously and interacts with each other. We tested the hypothesis that, in contextual cueing, when multiple regularities are present, the regularities that are most relevant to our behavioral goals would be prioritized. Previous studies of contextual cueing have commonly used the visual search paradigm. However, this paradigm is not suitable for directing participants' attention to a particular regularity. Therefore, we developed a new paradigm, the "spatiotemporal contextual cueing paradigm," and manipulated task-relevant and task-irrelevant regularities. In four experiments, we demonstrated that task-relevant regularities were more responsible for search facilitation than task-irrelevant regularities. This finding suggests our visual behavior is focused on regularities that are relevant to our current goal.

  7. Spatiotemporal Fluctuations and Triggers of Ebola Virus Spillover.

    Science.gov (United States)

    Schmidt, John Paul; Park, Andrew W; Kramer, Andrew M; Han, Barbara A; Alexander, Laura W; Drake, John M

    2017-03-01

    Because the natural reservoir of Ebola virus remains unclear and disease outbreaks in humans have occurred only sporadically over a large region, forecasting when and where Ebola spillovers are most likely to occur constitutes a continuing and urgent public health challenge. We developed a statistical modeling approach that associates 37 human or great ape Ebola spillovers since 1982 with spatiotemporally dynamic covariates including vegetative cover, human population size, and absolute and relative rainfall over 3 decades across sub-Saharan Africa. Our model (area under the curve 0.80 on test data) shows that spillover intensity is highest during transitions between wet and dry seasons; overall, high seasonal intensity occurs over much of tropical Africa; and spillover intensity is greatest at high (>1,000/km 2 ) and very low (Ebola spillover from wild reservoirs and indicate particular times and regions for targeted surveillance.

  8. Multivariate spatiotemporal visualizations for mobile devices in Flyover Country

    Science.gov (United States)

    Loeffler, S.; Thorn, R.; Myrbo, A.; Roth, R.; Goring, S. J.; Williams, J.

    2017-12-01

    Visualizing and interacting with complex multivariate and spatiotemporal datasets on mobile devices is challenging due to their smaller screens, reduced processing power, and limited data connectivity. Pollen data require visualizing pollen assemblages spatially, temporally, and across multiple taxa to understand plant community dynamics through time. Drawing from cartography, information visualization, and paleoecology, we have created new mobile-first visualization techniques that represent multiple taxa across many sites and enable user interaction. Using pollen datasets from the Neotoma Paleoecology Database as a case study, the visualization techniques allow ecological patterns and trends to be quickly understood on a mobile device compared to traditional pollen diagrams and maps. This flexible visualization system can be used for datasets beyond pollen, with the only requirements being point-based localities and multiple variables changing through time or depth.

  9. Parametric spatiotemporal oscillation in reaction-diffusion systems.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  10. More than a Tad: spatiotemporal control of Caulobacter pili.

    Science.gov (United States)

    Mignolet, Johann; Panis, Gaël; Viollier, Patrick H

    2018-04-01

    The Type IV pilus (T4P) is a powerful and sophisticated bacterial nanomachine involved in numerous cellular processes, including adhesion, DNA uptake and motility. Aside from the well-described subtype T4aP of the Gram-negative genera, including Myxococcus, Pseudomonas and Neisseria, the Tad (tight adherence) pilus secretion system re-shuffles homologous parts from other secretion systems along with uncharacterized components into a new type of protein translocation apparatus. A representative of the Tad apparatus, the Caulobacter crescentus pilus assembly (Cpa) machine is built exclusively at the newborn cell pole once per cell cycle. Recent comprehensive genetic analyses unearthed a myriad of spatiotemporal determinants acting on the Tad/Cpa system, many of which are conserved in other α-proteobacteria, including obligate intracellular pathogens and symbionts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Spatio-temporal light shaping for parallel nano-biophotonics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    followed separate tracks. Width-shaping, or spatial techniques, have mostly ignored light’s thickness (using continuous-wave lasers), while thickness-shaping, or temporal techniques, typically ignored the beam width. This disconnected spatial and temporal track also shows in our own research where we....... Another step is to vary light’s pulsewidth (thickness) as it propagates to get maximum compression (and highest energy density) at a chosen target plane. This temporal focusing can selectively look at a defined crosssection within a sample with only minimal disturbance from other regions. It can also do...... plane-byplane micromachining for faster laser processing compared to scanning a focused laser spot. Our previous work on spatial light shaping, together with the interplay between spatial and temporal modulation, invariably provides a strong position to pursue application-oriented spatiotemporal...

  12. Efficient image or video encryption based on spatiotemporal chaos system

    International Nuclear Information System (INIS)

    Lian Shiguo

    2009-01-01

    In this paper, an efficient image/video encryption scheme is constructed based on spatiotemporal chaos system. The chaotic lattices are used to generate pseudorandom sequences and then encrypt image blocks one by one. By iterating chaotic maps for certain times, the generated pseudorandom sequences obtain high initial-value sensitivity and good randomness. The pseudorandom-bits in each lattice are used to encrypt the Direct Current coefficient (DC) and the signs of the Alternating Current coefficients (ACs). Theoretical analysis and experimental results show that the scheme has good cryptographic security and perceptual security, and it does not affect the compression efficiency apparently. These properties make the scheme a suitable choice for practical applications.

  13. A spatio-temporal extension to the map cube operator

    Science.gov (United States)

    Alzate, Juan C.; Moreno, Francisco J.; Echeverri, Jaime

    2012-09-01

    OLAP (On Line Analytical Processing) is a set of techniques and operators to facilitate the data analysis usually stored in a data warehouse. In this paper, we extend the functionality of an OLAP operator known as Map Cube with the definition and incorporation of a function that allows the formulation of spatio-temporal queries. For example, consider a data warehouse about crimes that includes data about the places where the crimes were committed. Suppose we want to find and visualize the trajectory (a trajectory is just the path that an object follows through space as a function of time) of the crimes of a suspect beginning with his oldest crime and ending with his most recent one. In order to meet this requirement, we extend the Map Cube operator.

  14. Spatio-temporal behaviour of medium-range ensemble forecasts

    Science.gov (United States)

    Kipling, Zak; Primo, Cristina; Charlton-Perez, Andrew

    2010-05-01

    Using the recently-developed mean-variance of logarithms (MVL) diagram, together with the TIGGE archive of medium-range ensemble forecasts from nine different centres, we present an analysis of the spatio-temporal dynamics of their perturbations, and show how the differences between models and perturbation techniques can explain the shape of their characteristic MVL curves. We also consider the use of the MVL diagram to compare the growth of perturbations within the ensemble with the growth of the forecast error, showing that there is a much closer correspondence for some models than others. We conclude by looking at how the MVL technique might assist in selecting models for inclusion in a multi-model ensemble, and suggest an experiment to test its potential in this context.

  15. Spatiotemporal Analysis of the 2014 Ebola Epidemic in West Africa.

    Directory of Open Access Journals (Sweden)

    Jantien A Backer

    2016-12-01

    Full Text Available In 2014-2016, Guinea, Sierra Leone and Liberia in West Africa experienced the largest and longest Ebola epidemic since the discovery of the virus in 1976. During the epidemic, incidence data were collected and published at increasing resolution. To monitor the epidemic as it spread within and between districts, we develop an analysis method that exploits the full spatiotemporal resolution of the data by combining a local model for time-varying effective reproduction numbers with a gravity-type model for spatial dispersion of the infection. We test this method in simulations and apply it to the weekly incidences of confirmed and probable cases per district up to June 2015, as reported by the World Health Organization. Our results indicate that, of the newly infected cases, only a small percentage, between 4% and 10%, migrates to another district, and a minority of these migrants, between 0% and 23%, leave their country. The epidemics in the three countries are found to be similar in estimated effective reproduction numbers, and in the probability of importing infection into a district. The countries might have played different roles in cross-border transmissions, although a sensitivity analysis suggests that this could also be related to underreporting. The spatiotemporal analysis method can exploit available longitudinal incidence data at different geographical locations to monitor local epidemics, determine the extent of spatial spread, reveal the contribution of local and imported cases, and identify sources of introductions in uninfected areas. With good quality data on incidence, this data-driven method can help to effectively control emerging infections.

  16. Hand, foot and mouth disease: spatiotemporal transmission and climate.

    Science.gov (United States)

    Wang, Jin-feng; Guo, Yan-Sha; Christakos, George; Yang, Wei-Zhong; Liao, Yi-Lan; Li, Zhong-Jie; Li, Xiao-Zhou; Lai, Sheng-Jie; Chen, Hong-Yan

    2011-04-05

    The Hand-Foot-Mouth Disease (HFMD) is the most common infectious disease in China, its total incidence being around 500,000~1,000,000 cases per year. The composite space-time disease variation is the result of underlining attribute mechanisms that could provide clues about the physiologic and demographic determinants of disease transmission and also guide the appropriate allocation of medical resources to control the disease. HFMD cases were aggregated into 1456 counties and during a period of 11 months. Suspected climate attributes to HFMD were recorded monthly at 674 stations throughout the country and subsequently interpolated within 1456 × 11 cells across space-time (same as the number of HFMD cases) using the Bayesian Maximum Entropy (BME) method while taking into consideration the relevant uncertainty sources. The dimensionalities of the two datasets together with the integrated dataset combining the two previous ones are very high when the topologies of the space-time relationships between cells are taken into account. Using a self-organizing map (SOM) algorithm the dataset dimensionality was effectively reduced into 2 dimensions, while the spatiotemporal attribute structure was maintained. 16 types of spatiotemporal HFMD transmission were identified, and 3-4 high spatial incidence clusters of the HFMD types were found throughout China, which are basically within the scope of the monthly climate (precipitation) types. HFMD propagates in a composite space-time domain rather than showing a purely spatial and purely temporal variation. There is a clear relationship between HFMD occurrence and climate. HFMD cases are geographically clustered and closely linked to the monthly precipitation types of the region. The occurrence of the former depends on the later.

  17. Patterns of urban violent injury: a spatio-temporal analysis.

    Directory of Open Access Journals (Sweden)

    Michael Cusimano

    2010-01-01

    Full Text Available Injury related to violent acts is a problem in every society. Although some authors have examined the geography of violent crime, few have focused on the spatio-temporal patterns of violent injury and none have used an ambulance dataset to explore the spatial characteristics of injury. The purpose of this study was to describe the combined spatial and temporal characteristics of violent injury in a large urban centre.Using a geomatics framework and geographic information systems software, we studied 4,587 ambulance dispatches and 10,693 emergency room admissions for violent injury occurrences among adults (aged 18-64 in Toronto, Canada, during 2002 and 2004, using population-based datasets. We created kernel density and choropleth maps for 24-hour periods and four-hour daily time periods and compared location of ambulance dispatches and patient residences with local land use and socioeconomic characteristics. We used multivariate regressions to control for confounding factors. We found the locations of violent injury and the residence locations of those injured were both closely related to each other and clearly clustered in certain parts of the city characterised by high numbers of bars, social housing units, and homeless shelters, as well as lower household incomes. The night and early morning showed a distinctive peak in injuries and a shift in the location of injuries to a "nightlife" district. The locational pattern of patient residences remained unchanged during those times.Our results demonstrate that there is a distinctive spatio-temporal pattern in violent injury reflected in the ambulance data. People injured in this urban centre more commonly live in areas of social deprivation. During the day, locations of injury and locations of residences are similar. However, later at night, the injury location of highest density shifts to a "nightlife" district, whereas the residence locations of those most at risk of injury do not change.

  18. Hand, foot and mouth disease: spatiotemporal transmission and climate

    Directory of Open Access Journals (Sweden)

    Li Xiao-Zhou

    2011-04-01

    Full Text Available Abstract Background The Hand-Foot-Mouth Disease (HFMD is the most common infectious disease in China, its total incidence being around 500,000 ~1,000,000 cases per year. The composite space-time disease variation is the result of underlining attribute mechanisms that could provide clues about the physiologic and demographic determinants of disease transmission and also guide the appropriate allocation of medical resources to control the disease. Methods and Findings HFMD cases were aggregated into 1456 counties and during a period of 11 months. Suspected climate attributes to HFMD were recorded monthly at 674 stations throughout the country and subsequently interpolated within 1456 × 11 cells across space-time (same as the number of HFMD cases using the Bayesian Maximum Entropy (BME method while taking into consideration the relevant uncertainty sources. The dimensionalities of the two datasets together with the integrated dataset combining the two previous ones are very high when the topologies of the space-time relationships between cells are taken into account. Using a self-organizing map (SOM algorithm the dataset dimensionality was effectively reduced into 2 dimensions, while the spatiotemporal attribute structure was maintained. 16 types of spatiotemporal HFMD transmission were identified, and 3-4 high spatial incidence clusters of the HFMD types were found throughout China, which are basically within the scope of the monthly climate (precipitation types. Conclusions HFMD propagates in a composite space-time domain rather than showing a purely spatial and purely temporal variation. There is a clear relationship between HFMD occurrence and climate. HFMD cases are geographically clustered and closely linked to the monthly precipitation types of the region. The occurrence of the former depends on the later.

  19. Spatio-temporal clustering of wildfires in Portugal

    Science.gov (United States)

    Costa, R.; Pereira, M. G.; Caramelo, L.; Vega Orozco, C.; Kanevski, M.

    2012-04-01

    Several studies have shown that wildfires in Portugal presenthigh temporal as well as high spatial variability (Pereira et al., 2005, 2011). The identification and characterization of spatio-temporal clusters contributes to a comprehensivecharacterization of the fire regime and to improve the efficiency of fire prevention and combat activities. The main goalsin this studyare: (i) to detect the spatio-temporal clusters of burned area; and, (ii) to characterize these clusters along with the role of human and environmental factors. The data were supplied by the National Forest Authority(AFN, 2011) and comprises: (a)the Portuguese Rural Fire Database, PRFD, (Pereira et al., 2011) for the 1980-2007period; and, (b) the national mapping burned areas between 1990 and 2009. In this work, in order to complement the more common cluster analysis algorithms, an alternative approach based onscan statistics and on the permutation modelwas used. This statistical methodallows the detection of local excess events and to test if such an excess can reasonably have occurred by chance.Results obtained for different simulations performed for different spatial and temporal windows are presented, compared and interpreted.The influence of several fire factors such as (climate, vegetation type, etc.) is also assessed. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005:"Synoptic patterns associated with large summer forest fires in Portugal".Agricultural and Forest Meteorology. 129, 11-25. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 AFN, 2011: AutoridadeFlorestalNacional (National Forest Authority). Available at http://www.afn.min-agricultura.pt/portal.

  20. BioenergyKDF: Enabling Spatiotemporal Data Synthesis and Research Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Aaron T [ORNL; Movva, Sunil [ORNL; Karthik, Rajasekar [ORNL; Bhaduri, Budhendra L [ORNL; White, Devin A [ORNL; Thomas, Neil [ORNL; Chase, Adrian S Z [ORNL

    2014-01-01

    The Bioenergy Knowledge Discovery Framework (BioenergyKDF) is a scalable, web-based collaborative environment for scientists working on bioenergy related research in which the connections between data, literature, and models can be explored and more clearly understood. The fully-operational and deployed system, built on multiple open source libraries and architectures, stores contributions from the community of practice and makes them easy to find, but that is just its base functionality. The BioenergyKDF provides a national spatiotemporal decision support capability that enables data sharing, analysis, modeling, and visualization as well as fosters the development and management of the U.S. bioenergy infrastructure, which is an essential component of the national energy infrastructure. The BioenergyKDF is built on a flexible, customizable platform that can be extended to support the requirements of any user community especially those that work with spatiotemporal data. While there are several community data-sharing software platforms available, some developed and distributed by national governments, none of them have the full suite of capabilities available in BioenergyKDF. For example, this component-based platform and database independent architecture allows it to be quickly deployed to existing infrastructure and to connect to existing data repositories (spatial or otherwise). As new data, analysis, and features are added; the BioenergyKDF will help lead research and support decisions concerning bioenergy into the future, but will also enable the development and growth of additional communities of practice both inside and outside of the Department of Energy. These communities will be able to leverage the substantial investment the agency has made in the KDF platform to quickly stand up systems that are customized to their data and research needs.

  1. Spatiotemporal conceptual platform for querying archaeological information systems

    Science.gov (United States)

    Partsinevelos, Panagiotis; Sartzetaki, Mary; Sarris, Apostolos

    2015-04-01

    Spatial and temporal distribution of archaeological sites has been shown to associate with several attributes including marine, water, mineral and food resources, climate conditions, geomorphological features, etc. In this study, archeological settlement attributes are evaluated under various associations in order to provide a specialized query platform in a geographic information system (GIS). Towards this end, a spatial database is designed to include a series of archaeological findings for a secluded geographic area of Crete in Greece. The key categories of the geodatabase include the archaeological type (palace, burial site, village, etc.), temporal information of the habitation/usage period (pre Minoan, Minoan, Byzantine, etc.), and the extracted geographical attributes of the sites (distance to sea, altitude, resources, etc.). Most of the related spatial attributes are extracted with readily available GIS tools. Additionally, a series of conceptual data attributes are estimated, including: Temporal relation of an era to a future one in terms of alteration of the archaeological type, topologic relations of various types and attributes, spatial proximity relations between various types. These complex spatiotemporal relational measures reveal new attributes towards better understanding of site selection for prehistoric and/or historic cultures, yet their potential combinations can become numerous. Therefore, after the quantification of the above mentioned attributes, they are classified as of their importance for archaeological site location modeling. Under this new classification scheme, the user may select a geographic area of interest and extract only the important attributes for a specific archaeological type. These extracted attributes may then be queried against the entire spatial database and provide a location map of possible new archaeological sites. This novel type of querying is robust since the user does not have to type a standard SQL query but

  2. High Spatio-Temporal Resolution Bathymetry Estimation and Morphology

    Science.gov (United States)

    Bergsma, E. W. J.; Conley, D. C.; Davidson, M. A.; O'Hare, T. J.

    2015-12-01

    In recent years, bathymetry estimates using video images have become increasingly accurate. With the cBathy code (Holman et al., 2013) fully operational, bathymetry results with 0.5 metres accuracy have been regularly obtained at Duck, USA. cBathy is based on observations of the dominant frequencies and wavelengths of surface wave motions and estimates the depth (and hence allows inference of bathymetry profiles) based on linear wave theory. Despite the good performance at Duck, large discrepancies were found related to tidal elevation and camera height (Bergsma et al., 2014) and on the camera boundaries. A tide dependent floating pixel and camera boundary solution have been proposed to overcome these issues (Bergsma et al., under review). The video-data collection is set estimate depths hourly on a grid with resolution in the order of 10x25 meters. Here, the application of the cBathy at Porthtowan in the South-West of England is presented. Hourly depth estimates are combined and analysed over a period of 1.5 years (2013-2014). In this work the focus is on the sub-tidal region, where the best cBathy results are achieved. The morphology of the sub-tidal bar is tracked with high spatio-temporal resolution on short and longer time scales. Furthermore, the impact of the storm and reset (sudden and large changes in bathymetry) of the sub-tidal area is clearly captured with the depth estimations. This application shows that the high spatio-temporal resolution of cBathy makes it a powerful tool for coastal research and coastal zone management.

  3. Spatiotemporal Analysis of AIDS Incidence Among Adults in Brazil.

    Science.gov (United States)

    da Silva Lizzi, Elisangela Aparecida; Nunes, Altacilio Aparecido; Martinez, Edson Zangiacomi

    2016-01-01

    AIDS is the fourth leading cause of death worldwide and, currently, the overall prevalence rate of HIV infection in Brazil is 0.5% among men and 0.3% among women. To evaluate the spatiotemporal trend of AIDS in Brazil from 2006 to 2012 and its relationship with human development index (HDI) and their components income, education and life expectancy. This ecological study evaluate the spatiotemporal trend of standardized incidence ratio of AIDS among adults in Brazil from 2006 to 2012 and its relationship with HDI by using a Bayesian analysis, considering the Brazilian Federal Units as units of analysis. The proposed statistical model allows obtaining a standardized incidence ratio (SIR, adjusted by gender and age). Among the men, our results show higher incidence rates in the States of the Southern regions as well as in the state of Amazonas (Northern Brazil). In females, we found other patterns for SIR, with higher incidence rates in the states of Rio de Janeiro (Southeast region), Rio Grande do Sul and Santa Catarina (both in Southern region). Among men it was observed as an expressive association between the SIR values and the overall HDI and income and education components, but it was observed to have an inverse association with the life expectancy component. Among women, it is noted that the SIR values are associated with the overall HDI and the education components only at the beginning of the studied period. AIDS remains a major public health problem in Brazil, mainly in the southern and southeastern regions of the country. Considering its association with HDI, it is noted that the disease still remains related to the pattern observed in the early years of the studied period, at least in the more developed regions of Brazil. This certainly happened because of the chronicity of the disease, thus affecting people with good socioeconomic status.

  4. Very short-term spatio-temporal wind power prediction using a censored Gaussian field

    DEFF Research Database (Denmark)

    Baxevani, Anastassia; Lenzi, Amanda

    2018-01-01

    Wind power is a renewable energy resource, that has relatively cheap installation costs and it is highly possible that will become the main energy resource in the near future. Wind power needs to be integrated efficiently into electricity grids, and to optimize the power dispatch, techniques...

  5. Afrika Statistika ISSN 2316-090X Spatio-temporal Predictions using ...

    African Journals Online (AJOL)

    Selected Papers presented at the East African Conference of Statistical ... Copyright c 2018, Afrika Statistika and The Statistics and Probability African Society (SPAS). All rights ... MSSA analysis leads to improved quality of statistical inference.

  6. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    NARCIS (Netherlands)

    Hengl, T.; Heuvelink, G.B.M.; Percec Tadic, M.; Pebesma, E.J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations

  7. Spatiotemporal predictions of soil properties and states in variably saturated landscapes

    Science.gov (United States)

    Franz, Trenton E.; Loecke, Terrance D.; Burgin, Amy J.; Zhou, Yuzhen; Le, Tri; Moscicki, David

    2017-07-01

    Understanding greenhouse gas (GHG) fluxes from landscapes with variably saturated soil conditions is challenging given the highly dynamic nature of GHG fluxes in both space and time, dubbed hot spots, and hot moments. On one hand, our ability to directly monitor these processes is limited by sparse in situ and surface chamber observational networks. On the other hand, remote sensing approaches provide spatial data sets but are limited by infrequent imaging over time. We use a robust statistical framework to merge sparse sensor network observations with reconnaissance style hydrogeophysical mapping at a well-characterized site in Ohio. We find that combining time-lapse electromagnetic induction surveys with empirical orthogonal functions provides additional environmental covariates related to soil properties and states at high spatial resolutions ( 5 m). A cross-validation experiment using eight different spatial interpolation methods versus 120 in situ soil cores indicated an 30% reduction in root-mean-square error for soil properties (clay weight percent and total soil carbon weight percent) using hydrogeophysical derived environmental covariates with regression kriging. In addition, the hydrogeophysical derived environmental covariates were found to be good predictors of soil states (soil temperature, soil water content, and soil oxygen). The presented framework allows for temporal gap filling of individual sensor data sets as well as provides flexible geometric interpolation to complex areas/volumes. We anticipate that the framework, with its flexible temporal and spatial monitoring options, will be useful in designing future monitoring networks as well as support the next generation of hyper-resolution hydrologic and biogeochemical models.

  8. Motion-Dependent Filling-In of Spatiotemporal Information at the Blind Spot.

    Science.gov (United States)

    Maus, Gerrit W; Whitney, David

    2016-01-01

    We usually do not notice the blind spot, a receptor-free region on the retina. Stimuli extending through the blind spot appear filled in. However, if an object does not reach through but ends in the blind spot, it is perceived as "cut off" at the boundary. Here we show that even when there is no corresponding stimulation at opposing edges of the blind spot, well known motion-induced position shifts also extend into the blind spot and elicit a dynamic filling-in process that allows spatial structure to be extrapolated into the blind spot. We presented observers with sinusoidal gratings that drifted into or out of the blind spot, or flickered in counterphase. Gratings moving into the blind spot were perceived to be longer than those moving out of the blind spot or flickering, revealing motion-dependent filling-in. Further, observers could perceive more of a grating's spatial structure inside the blind spot than would be predicted from simple filling-in of luminance information from the blind spot edge. This is evidence for a dynamic filling-in process that uses spatiotemporal information from the motion system to extrapolate visual percepts into the scotoma of the blind spot. Our findings also provide further support for the notion that an explicit spatial shift of topographic representations contributes to motion-induced position illusions.

  9. Understanding Spatiotemporal Patterns of Human Convergence and Divergence Using Mobile Phone Location Data

    Directory of Open Access Journals (Sweden)

    Xiping Yang

    2016-09-01

    Full Text Available Investigating human mobility patterns can help researchers and agencies understand the driving forces of human movement, with potential benefits for urban planning and traffic management. Recent advances in location-aware technologies have provided many new data sources (e.g., mobile phone and social media data for studying human space-time behavioral regularity. Although existing studies have utilized these new datasets to characterize human mobility patterns from various aspects, such as predicting human mobility and monitoring urban dynamics, few studies have focused on human convergence and divergence patterns within a city. This study aims to explore human spatial convergence and divergence and their evolutions over time using large-scale mobile phone location data. Using a dataset from Shenzhen, China, we developed a method to identify spatiotemporal patterns of human convergence and divergence. Eight distinct patterns were extracted, and the spatial distributions of these patterns are discussed in the context of urban functional regions. Thus, this study investigates urban human convergence and divergence patterns and their relationships with the urban functional environment, which is helpful for urban policy development, urban planning and traffic management.

  10. Two spatiotemporally distinct value systems shape reward-based learning in the human brain.

    Science.gov (United States)

    Fouragnan, Elsa; Retzler, Chris; Mullinger, Karen; Philiastides, Marios G

    2015-09-08

    Avoiding repeated mistakes and learning to reinforce rewarding decisions is critical for human survival and adaptive actions. Yet, the neural underpinnings of the value systems that encode different decision-outcomes remain elusive. Here coupling single-trial electroencephalography with simultaneously acquired functional magnetic resonance imaging, we uncover the spatiotemporal dynamics of two separate but interacting value systems encoding decision-outcomes. Consistent with a role in regulating alertness and switching behaviours, an early system is activated only by negative outcomes and engages arousal-related and motor-preparatory brain structures. Consistent with a role in reward-based learning, a later system differentially suppresses or activates regions of the human reward network in response to negative and positive outcomes, respectively. Following negative outcomes, the early system interacts and downregulates the late system, through a thalamic interaction with the ventral striatum. Critically, the strength of this coupling predicts participants' switching behaviour and avoidance learning, directly implicating the thalamostriatal pathway in reward-based learning.

  11. Spatio-temporal cerebral blood flow perfusion patterns in cortical spreading depression

    Science.gov (United States)

    Verisokin, Andrey Yu.; Verveyko, Darya V.; Postnov, Dmitry E.

    2017-04-01

    Cortical spreading depression (CSD) is an example of one of the most common abnormalities in biophysical brain functioning. Despite the fact that there are many mathematical models describing the cortical spreading depression (CSD), most of them do not take into consideration the role of redistribution of cerebral blood flow (CBF), that results in the formation of spatio-temporal patterns. The paper presents a mathematical model, which successfully explains the CBD role in the CSD process. Numerical study of this model has revealed the formation of stationary dissipative structures, visually analogous to Turing structures. However, the mechanism of their formation is not diffusion. We show these structures occur due to another type of spatial coupling, that is related to tissue perfusion rate. The proposed model predicts that at similar state of neurons the distribution of blood flow and oxygenation may by different. Currently, this effect is not taken into account when the Blood oxygen-level dependent (BOLD) contrast imaging used in functional magnetic resonance imaging (fMRI). Thus, the diagnosis on the BOLD signal can be ambiguous. We believe that our results can be used in the future for a more correct interpretation of the data obtained with fMRI, NIRS and other similar methods for research of the brain activity.

  12. Analysis of Spatiotemporal Statistical Properties of Rainfall in the Phoenix Metropolitan Area

    Science.gov (United States)

    Mascaro, G.

    2016-12-01

    The analysis of the rainfall statistical properties at multiple spatiotemporal scales is a necessary preliminary step to support modeling of urban hydrology, including flood prediction and simulation of impacts of land use changes. In this contribution, the rainfall statistical properties are analyzed in the Phoenix Metropolitan area and its surroundings ( 29600 km2) in Arizona using observations from 310 gauges of the Flood Control District of the Maricopa County network. Different techniques are applied to investigate the rainfall properties at temporal scales from 1 min to years and to quantify the associated spatial variability. Results reveal the following. The rainfall regime is characterized by high interannual variability, which is partially explained by teleconnections with El Niño Southern Oscillation, and marked seasonality, with two maxima in the monsoon season from July to September and in winter from November to March. Elevation has a significant control on seasonal rainfall accumulation, strength of thermal convective activity during the monsoon, and peak occurrence of the rainfall diurnal cycle present in summer. The spatial correlation of wintertime rainfall is high even at short aggregation times (cells).

  13. Spatiotemporal Dynamics and Spatial Determinants of Urban Growth in Suzhou, China

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2017-03-01

    Full Text Available This paper analyzes the spatiotemporal dynamics of urban growth and models its spatial determinants in China through a case study of Suzhou, a rapidly industrializing and globalizing city. We conducted spatial analysis on land use data derived from multi-temporal remote sensing images of Suzhou from 1986 to 2008. Three urban growth types, namely infilling, edge-expansion, and leapfrog, were identified. We used landscape metrics to quantify the temporal trend of urban growth in Suzhou. During these 22 years, Suzhou’s urbanization changed from bottom-up rural urbanization to city-based top-down urban expansion. The underlying mechanism changed from TVE (town village enterprise driven rural industrialization to FDI (foreign direct investment driven development zone fever. Furthermore, we employed both global and local logistic regressions to model the probability of urban land conversion against a set of spatial variables. The global logistic regression model found the significance of proximity, neighborhood conditions, and socioeconomic factors. The logistic geographically weighted regression (GWR model improved the global regression model with better model goodness-of-fit and higher prediction accuracy. More importantly, the local parameter estimates of variables enabled us to exam spatial variations of the influences of variables on urban growth in Suzhou.

  14. Stable isotope analysis of precipitation samples obtained via crowdsourcing reveals the spatiotemporal evolution of Superstorm Sandy.

    Directory of Open Access Journals (Sweden)

    Stephen P Good

    Full Text Available Extra-tropical cyclones, such as 2012 Superstorm Sandy, pose a significant climatic threat to the northeastern United Sates, yet prediction of hydrologic and thermodynamic processes within such systems is complicated by their interaction with mid-latitude water patterns as they move poleward. Fortunately, the evolution of these systems is also recorded in the stable isotope ratios of storm-associated precipitation and water vapor, and isotopic analysis provides constraints on difficult-to-observe cyclone dynamics. During Superstorm Sandy, a unique crowdsourced approach enabled 685 precipitation samples to be obtained for oxygen and hydrogen isotopic analysis, constituting the largest isotopic sampling of a synoptic-scale system to date. Isotopically, these waters span an enormous range of values (> 21‰ for δ(18O, > 160‰ for δ(2H and exhibit strong spatiotemporal structure. Low isotope ratios occurred predominantly in the west and south quadrants of the storm, indicating robust isotopic distillation that tracked the intensity of the storm's warm core. Elevated values of deuterium-excess (> 25‰ were found primarily in the New England region after Sandy made landfall. Isotope mass balance calculations and Lagrangian back-trajectory analysis suggest that these samples reflect the moistening of dry continental air entrained from a mid-latitude trough. These results demonstrate the power of rapid-response isotope monitoring to elucidate the structure and dynamics of water cycling within synoptic-scale systems and improve our understanding of storm evolution, hydroclimatological impacts, and paleo-storm proxies.

  15. Stable isotope analysis of precipitation samples obtained via crowdsourcing reveals the spatiotemporal evolution of Superstorm Sandy.

    Science.gov (United States)

    Good, Stephen P; Mallia, Derek V; Lin, John C; Bowen, Gabriel J

    2014-01-01

    Extra-tropical cyclones, such as 2012 Superstorm Sandy, pose a significant climatic threat to the northeastern United Sates, yet prediction of hydrologic and thermodynamic processes within such systems is complicated by their interaction with mid-latitude water patterns as they move poleward. Fortunately, the evolution of these systems is also recorded in the stable isotope ratios of storm-associated precipitation and water vapor, and isotopic analysis provides constraints on difficult-to-observe cyclone dynamics. During Superstorm Sandy, a unique crowdsourced approach enabled 685 precipitation samples to be obtained for oxygen and hydrogen isotopic analysis, constituting the largest isotopic sampling of a synoptic-scale system to date. Isotopically, these waters span an enormous range of values (> 21‰ for δ(18)O, > 160‰ for δ(2)H) and exhibit strong spatiotemporal structure. Low isotope ratios occurred predominantly in the west and south quadrants of the storm, indicating robust isotopic distillation that tracked the intensity of the storm's warm core. Elevated values of deuterium-excess (> 25‰) were found primarily in the New England region after Sandy made landfall. Isotope mass balance calculations and Lagrangian back-trajectory analysis suggest that these samples reflect the moistening of dry continental air entrained from a mid-latitude trough. These results demonstrate the power of rapid-response isotope monitoring to elucidate the structure and dynamics of water cycling within synoptic-scale systems and improve our understanding of storm evolution, hydroclimatological impacts, and paleo-storm proxies.

  16. Controlling spatio-temporal extreme events by decreasing the localized energy

    International Nuclear Information System (INIS)

    Du Lin; Xu Wei; Li Zhanguo; Zhou Bingchang

    2011-01-01

    The problem of controlling extreme events in spatially extended dynamical systems is investigated in this Letter. Based on observations of the system state, the control technique we proposed locally decreases the spatial energy of the amplitude in the vicinity of the highest burst, without needs of any knowledge or prediction of the system model. Considering the specific Complex Ginzburg-Landau equation, we provide theoretical analysis for designing the localized state feedback controller. More exactly, a simple control law by varying a damping parameter at control region is chose to achieve the control. Numerical simulations and statistic analysis demonstrate that extreme events can be efficiently suppressed by our strategy. In particular, the cost of the control and the tolerant time delay in applying the control is considered in detail. - Highlights: → We propose a local control scheme to suppress spatio-temporal extreme events. → The control is address by decreasing the spatial energy of the system locally. → The detail control law is to apply localized state feedback based on observations. → The cost of the control increases with the size of the control region exponentially. → The tolerant delay of the control is about 5-6 times of lifetime of extreme events.

  17. Spatiotemporal evolution of cavitation dynamics exhibited by flowing microbubbles during ultrasound exposure.

    Science.gov (United States)

    Choi, James J; Coussios, Constantin-C

    2012-11-01

    Ultrasound and microbubble-based therapies utilize cavitation to generate bioeffects, yet cavitation dynamics during individual pulses and across consecutive pulses remain poorly understood under physiologically relevant flow conditions. SonoVue(®) microbubbles were made to flow (fluid velocity: 10-40 mm/s) through a vessel in a tissue-mimicking material and were exposed to ultrasound [frequency: 0.5 MHz, peak-rarefactional pressure (PRP): 150-1200 kPa, pulse length: 1-100,000 cycles, pulse repetition frequency (PRF): 1-50 Hz, number of pulses: 10-250]. Radiated emissions were captured on a linear array, and passive acoustic mapping was used to spatiotemporally resolve cavitation events. At low PRPs, stable cavitation was maintained throughout several pulses, thus generating a steady rise in energy with low upstream spatial bias within the focal volume. At high PRPs, inertial cavitation was concentrated in the first 6.3 ± 1.3 ms of a pulse, followed by an energy reduction and high upstream bias. Multiple pulses at PRFs below a flow-dependent critical rate (PRF(crit)) produced predictable and consistent cavitation dynamics. Above the PRF(crit), energy generated was unpredictable and spatially biased. In conclusion, key parameters in microbubble-seeded flow conditions were matched with specific types, magnitudes, distributions, and durations of cavitation; this may help in understanding empirically observed in vivo phenomena and guide future pulse sequence designs.

  18. A novel spatiotemporal muscle activity imaging approach based on the Extended Kalman Filter.

    Science.gov (United States)

    Wang, Jing; Zhang, Yingchun; Zhu, Xiangjun; Zhou, Ping; Liu, Chenguang; Rymer, William Z

    2012-01-01

    A novel spatiotemporal muscle activity imaging (sMAI) approach has been developed using the Extended Kalman Filter (EKF) to reconstruct internal muscle activities from non-invasive multi-channel surface electromyogram (sEMG) recordings. A distributed bioelectric dipole source model is employed to describe the internal muscle activity space, and a linear relationship between the muscle activity space and the sEMG measurement space is then established. The EKF is employed to recursively solve the ill-posed inverse problem in the sMAI approach, in which the weighted minimum norm (WMN) method is utilized to calculate the initial state and a new nonlinear method is developed based on the propagating features of muscle activities to predict the recursive state. A series of computer simulations was conducted to test the performance of the proposed sMAI approach. Results show that the localization error rapidly decreases over 35% and the overlap ratio rapidly increases over 45% compared to the results achieved using the WMN method only. The present promising results demonstrate the feasibility of utilizing the proposed EKF-based sMAI approach to accurately reconstruct internal muscle activities from non-invasive sEMG recordings.

  19. Wave fronts and spatiotemporal chaos in an array of coupled Lorenz oscillators

    International Nuclear Information System (INIS)

    Pazo, Diego; Montejo, Noelia; Perez-Munuzuri, Vicente

    2001-01-01

    The effects of coupling strength and single-cell dynamics (SCD) on spatiotemporal pattern formation are studied in an array of Lorenz oscillators. Different spatiotemporal structures (stationary patterns, propagating wave fronts, short wavelength bifurcation) arise for bistable SCD, and two well differentiated types of spatiotemporal chaos for chaotic SCD (in correspondence with the transition from stationary patterns to propagating fronts). Wave-front propagation in the bistable regime is studied in terms of global bifurcation theory, while a short wavelength pattern region emerges through a pitchfork bifurcation