Use of the finite element displacement method to solve solid-fluid interaction vibration problems
International Nuclear Information System (INIS)
Brown, S.J.; Hsu, K.H.
1978-01-01
It is shown through comparison to experimental, theoretical, and other finite element formulations that the finite element displacement method can solve accurately and economically a certain class of solid-fluid eigenvalue problems. The problems considered are small displacements in the absence of viscous damping and are 2-D and 3-D in nature. In this study the advantages of the finite element method (in particular the displacement formulation) is apparent in that a large structure consisting of the cylinders, support flanges, fluid, and other experimental boundaries could be modeled to yield good correlation to experimental data. The ability to handle large problems with standard structural programs is the key advantage of the displacement fluid method. The greatest obstacle is the inability of the analyst to inhibit those rotational degrees of freedom that are unnecessary to his fluid-structure vibration problem. With judicious use of element formulation, boundary conditions and modeling, the displacement finite element method can be successfully used to predict solid-fluid response to vibration and seismic loading
Vibrations and Stability: Solved Problems
DEFF Research Database (Denmark)
Thomsen, Jon Juel
Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....
González Cornejo, Felipe A.; Cruchaga, Marcela A.; Celentano, Diego J.
2017-11-01
The present work reports a fluid-rigid solid interaction formulation described within the framework of a fixed-mesh technique. The numerical analysis is focussed on the study of a vortex-induced vibration (VIV) of a circular cylinder at low Reynolds number. The proposed numerical scheme encompasses the fluid dynamics computation in an Eulerian domain where the body is embedded using a collection of markers to describe its shape, and the rigid solid's motion is obtained with the well-known Newton's law. The body's velocity is imposed on the fluid domain through a penalty technique on the embedded fluid-solid interface. The fluid tractions acting on the solid are computed from the fluid dynamic solution of the flow around the body. The resulting forces are considered to solve the solid motion. The numerical code is validated by contrasting the obtained results with those reported in the literature using different approaches for simulating the flow past a fixed circular cylinder as a benchmark problem. Moreover, a mesh convergence analysis is also done providing a satisfactory response. In particular, a VIV problem is analyzed, emphasizing the description of the synchronization phenomenon.
Application of eigenfunction orthogonalities to vibration problems
CSIR Research Space (South Africa)
Fedotov, I
2009-07-01
Full Text Available The modelling of vibration problems is of great importance in engineering. A popular method of analysing such problems is the variational method. The simplest vibration model is represented using the example of a long rod. Two kinds...
Directory of Open Access Journals (Sweden)
Tunna Baruah
2012-04-01
Full Text Available Calculating electron-vibration (vibronic interaction constants is computationally expensive. For molecules containing N nuclei it involves solving the Schrödinger equation for Ο(3N nuclear configurations in addition to the cost of determining the vibrational modes. We show that quantum vibronic interactions are proportional to the classical atomic forces induced when the total charge of the system is varied. This enables the calculation of vibronic interaction constants from O(1 solutions of the Schrödinger equation. We demonstrate that the O(1 approach produces numerically accurate results by calculating the vibronic interaction constants for several molecules. We investigate the role of molecular vibrations in the Mott transition in κ-(BEDT-TTF2Cu[N(CN2]Br.
10th International Conference on Vibration Problems
Horáček, Jaromír; Okrouhlík, Miloslav; Marvalová, Bohdana; Verhulst, Ferdinand; Sawicki, Jerzy; Vibration Problems ICOVP 2011
2011-01-01
This volume presents the Proceedings of the 10th International Conference on Vibration Problems, September 5-8, 2011, Prague, Czech Republic. Since they started in 1990 the ICOVP conferences have matured into a reference platform reflecting the state-of-the-art of dynamics in the broadest sense, bringing together scientists from different backgrounds who are actively working on vibration-related problems in theoretical, experimental and applied dynamics, thus facilitating a lively exchange of ideas, methods and results. Dynamics as a scientific discipline draws inspiration from a large variety of engineering areas, such as Mechanical and Civil Engineering, Aero and Space Technology, Wind and Earthquake Engineering and Transport and Building Machinery. Moreover, the basic research in dynamics nowadays includes many fields of theoretical physics and various interdisciplinary subject areas. ICOVP 2011 covers all branches of dynamics and offers the most up-to-date results and developments in a high-quality select...
Vibration problems in nuclear power plants - challenges and opportunities
International Nuclear Information System (INIS)
Kakodkar, A.; Moorthy, R.I.K.
1993-01-01
Through specific examples like the Dhruva fuel vibration problems, it is shown that in different stages of a plant construction and operation that the vibration problems provide many challenging opportunities for innovative solutions to be applied. These examples also show that in-depth understanding of the dynamics of structures and equipment and general engineering skill could be used profitably to solve the different vibration problems and also to use the vibration signals effectively to monitor the health of the equipment and structures. Considering the safety and economic implications it can be concluded that the scope for application of these techniques is rather limitless. (author). 7 refs., 10 figs
Kubo, M; Odai, K; Sugimoto, T; Ito, E
2001-06-01
To understand the mechanism of activation of a receptor by its agonist, the excitation and relaxation processes of the vibrational states of the receptor should be examined. As a first approach to this problem, we calculated the normal vibrational modes of agonists (glutamate and kainate) and an antagonist (6-cyano-7-nitroquinoxaline-2,3-dione: CNQX) of the glutamate receptor, and then investigated the vibrational interactions between kainate and the binding site of glutamate receptor subunit GluR2 by use of a semiempirical molecular orbital method (MOPAC2000-PM3). We found that two local vibrational modes of kainate, which were also observed in glutamate but not in CNQX, interacted through hydrogen bonds with the vibrational modes of GluR2: (i) the bending vibration of the amine group of kainate, interacting with the stretching vibration of the carboxyl group of Glu705 of GluR2, and (ii) the symmetric stretching vibration of the carboxyl group of kainate, interacting with the bending vibration of the guanidinium group of Arg485. We also found collective modes with low frequency at the binding site of GluR2 in the kainate-bound state. The vibrational energy supplied by an agonist may flow from the high-frequency local modes to the low-frequency collective modes in a receptor, resulting in receptor activation.
Fluid Structure Interaction for Hydraulic Problems
International Nuclear Information System (INIS)
Souli, Mhamed; Aquelet, Nicolas
2011-01-01
Fluid Structure interaction plays an important role in engineering applications. Physical phenomena such as flow induced vibration in nuclear industry, fuel sloshing tank in automotive industry or rotor stator interaction in turbo machinery, can lead to structure deformation and sometimes to failure. In order to solve fluid structure interaction problems, the majority of numerical tests consists in using two different codes to separately solve pressure of the fluid and structural displacements. In this paper, a unique code with an ALE formulation approach is used to implicitly calculate the pressure of an incompressible fluid applied to the structure. The development of the ALE method as well as the coupling in a computational structural dynamic code, allows to solve more large industrial problems related to fluid structure coupling. (authors)
Topology optimization of vibration and wave propagation problems
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2007-01-01
The method of topology optimization is a versatile method to determine optimal material layouts in mechanical structures. The method relies on, in principle, unlimited design freedom that can be used to design materials, structures and devices with significantly improved performance and sometimes...... novel functionality. This paper addresses basic issues in simulation and topology design of vibration and wave propagation problems. Steady-state and transient wave propagation problems are addressed and application examples for both cases are presented....
PREFACE: International Conference on Vibration Problems (ICOVP-2015)
2015-12-01
Vibrations produced by operating machine cause deleterious effect including excessive stresses in mechanical components and reduce the machine performance. Hence, it is important to minimize the vibrations to improve the machine performance. Machines need the materials wherein vibration characteristics such as frequency and amplitude are lower. The vibration characteristics depend on strength and other elastic constants. Therefore, study of the relation between vibration characteristics and the elastic constants of the material is very much important. In the domain of seismology, the knowledge of vibrations associated with an earthquake is needed for the mitigation plans. With the increased use of strong and light weight structures especially in defence and aero-space engineering applications, wherein, precision is very important, problems of vibrations arise. The knowledge of quality (mechanical properties) of bones comes from the study of vibrations in it. This knowledge may, for exmple, help to answer bone tissue remodelling problems. Unfortunately, vibrations mostly deal with destructive areas such as manufacturing industry, seismology, and bonemechanics. These days, mathematics has become a very important tool for Non- Destructive Evaluation (NDE) in the destructive areas. A very common issue in the said domains is that the pertinent problems result in non-linear coupled differential equations which are not easily solvable. Keeping the above facts in mind, the Department of Mathematics, Kakatiya University has organized the International Conference on Vibration Problems (ICOVP-2015) from February, 18-20, 2015 in collaboration with the Department of Mechanical Engineering, Kakatiya University, and Von-Karman Society, West Bengal. This association has already succeeded in organizing the Wave Mechanics and Vibration Conference (WMVC) in the year 2010. In the Conference, new research results were presented by the experts from eight countries. There were more than
Variational structure of inverse problems in wave propagation and vibration
Energy Technology Data Exchange (ETDEWEB)
Berryman, J.G.
1995-03-01
Practical algorithms for solving realistic inverse problems may often be viewed as problems in nonlinear programming with the data serving as constraints. Such problems are most easily analyzed when it is possible to segment the solution space into regions that are feasible (satisfying all the known constraints) and infeasible (violating some of the constraints). Then, if the feasible set is convex or at least compact, the solution to the problem will normally lie on the boundary of the feasible set. A nonlinear program may seek the solution by systematically exploring the boundary while satisfying progressively more constraints. Examples of inverse problems in wave propagation (traveltime tomography) and vibration (modal analysis) will be presented to illustrate how the variational structure of these problems may be used to create nonlinear programs using implicit variational constraints.
Interactive problem solving using LOGO
Boecker, Heinz-Dieter; Fischer, Gerhard
2014-01-01
This book is unique in that its stress is not on the mastery of a programming language, but on the importance and value of interactive problem solving. The authors focus on several specific interest worlds: mathematics, computer science, artificial intelligence, linguistics, and games; however, their approach can serve as a model that may be applied easily to other fields as well. Those who are interested in symbolic computing will find that Interactive Problem Solving Using LOGO provides a gentle introduction from which one may move on to other, more advanced computational frameworks or more
Vibrational spectroscopy on intermolecular interactions in solutions and at interfaces
Nissink, Johannes Wilhelmus Maria
1999-01-01
In recent years, considerable progress has been made in the areas of molecular recognition and surface analysis. These fields meet in the field of sensor development, where the interaction between molecules and a suitably modified surface is of utmost importance. Vibrational spectroscopy is quite
Directory of Open Access Journals (Sweden)
Zhou Danfeng
2017-01-01
Full Text Available The maglev vehicle-girder coupled vibration problem has been encountered in many maglev test or commercial lines, which significantly degrade the performance of the maglev train. In previous research on the principle of the coupled vibration problem, it has been discovered that the fundamental model of the maglev girder can be simplified as a series of mass-spring resonators of different but related resonance frequencies, and that the stability of the vehicle-girder coupled system can be investigated by separately examining the stability of each mass-spring resonator – electromagnet coupled system. Based on this conclusion, a maglev test platform, which includes a single electromagnetic suspension control system, is built for experimental study of the coupled vibration problem. The guideway of the test platform is supported by a number of springs so as to change its flexibility. The mass of the guideway can also be changed by adjusting extra weights attached to it. By changing the flexibility and mass of the guideway, the rules of the maglev vehicle-girder coupled vibration problem are to be examined through experiments, and related theory on the vehicle-girder self-excited vibration proposed in previous research is also testified.
Energy Technology Data Exchange (ETDEWEB)
Balci, Murat [Dept. of Mechanical Engineering, Bayburt University, Bayburt (Turkmenistan); Gundogdu, Omer [Dept. of Mechanical Engineering, Ataturk University, Erzurum (Turkmenistan)
2017-01-15
In this study, estimation of some physical properties of a laminated composite plate was conducted via the inverse vibration problem. Laminated composite plate was modelled and simulated to obtain vibration responses for different length-to-thickness ratio in ANSYS. Furthermore, a numerical finite element model was developed for the laminated composite utilizing the Kirchhoff plate theory and programmed in MATLAB for simulations. Optimizing the difference between these two vibration responses, inverse vibration problem was solved to obtain some of the physical properties of the laminated composite using genetic algorithms. The estimated parameters are compared with the theoretical results, and a very good correspondence was observed.
International Nuclear Information System (INIS)
Balci, Murat; Gundogdu, Omer
2017-01-01
In this study, estimation of some physical properties of a laminated composite plate was conducted via the inverse vibration problem. Laminated composite plate was modelled and simulated to obtain vibration responses for different length-to-thickness ratio in ANSYS. Furthermore, a numerical finite element model was developed for the laminated composite utilizing the Kirchhoff plate theory and programmed in MATLAB for simulations. Optimizing the difference between these two vibration responses, inverse vibration problem was solved to obtain some of the physical properties of the laminated composite using genetic algorithms. The estimated parameters are compared with the theoretical results, and a very good correspondence was observed
Scharton, Terry D.
1995-01-01
The intent of this paper is to make a case for developing and conducting vibration tests which are both realistic and practical (a question of tailoring versus standards). Tests are essential for finding things overlooked in the analyses. The best test is often the most realistic test which can be conducted within the cost and budget constraints. Some standards are essential, but the author believes more in the individual's ingenuity to solve a specific problem than in the application of standards which reduce problems (and technology) to their lowest common denominator. Force limited vibration tests and base-drive modal tests are two examples of realistic, but practical testing approaches. Since both of these approaches are relatively new, a number of interesting research problems exist, and these are emphasized herein.
Current problems in the weak interactions
International Nuclear Information System (INIS)
Pais, A.
1977-01-01
Some reasons are discussed showing why the recent SU(2) x U(1) gauge theory of weak and electromagnetic interactions is not a complete theory of these interactions, Lepton theory, charm, and the CP problem are considered. 60 references
Interactive Problem-Solving Interventions
African Journals Online (AJOL)
Frew Demeke Alemu
concerted efforts of unofficial actors to establish unofficial communication ... Frew Demeke Alemu (LLB, LLM in International Human Rights Law from Lund ..... 24 Tamra Pearson d'Estrée (2009), “Problem-Solving Approaches”, (in The SAGE ...
Wearable Vibration Based Computer Interaction and Communication System for Deaf
Directory of Open Access Journals (Sweden)
Mete Yağanoğlu
2017-12-01
Full Text Available In individuals with impaired hearing, determining the direction of sound is a significant problem. The direction of sound was determined in this study, which allowed hearing impaired individuals to perceive where sounds originated. This study also determined whether something was being spoken loudly near the hearing impaired individual. In this manner, it was intended that they should be able to recognize panic conditions more quickly. The developed wearable system has four microphone inlets, two vibration motor outlets, and four Light Emitting Diode (LED outlets. The vibration of motors placed on the right and left fingertips permits the indication of the direction of sound through specific vibration frequencies. This study applies the ReliefF feature selection method to evaluate every feature in comparison to other features and determine which features are more effective in the classification phase. This study primarily selects the best feature extraction and classification methods. Then, the prototype device has been tested using these selected methods on themselves. ReliefF feature selection methods are used in the studies; the success of K nearest neighborhood (Knn classification had a 93% success rate and classification with Support Vector Machine (SVM had a 94% success rate. At close range, SVM and two of the best feature methods were used and returned a 98% success rate. When testing our wearable devices on users in real time, we used a classification technique to detect the direction and our wearable devices responded in 0.68 s; this saves power in comparison to traditional direction detection methods. Meanwhile, if there was an echo in an indoor environment, the success rate increased; the echo canceller was disabled in environments without an echo to save power. We also compared our system with the localization algorithm based on the microphone array; the wearable device that we developed had a high success rate and it produced faster
Some problems of control of dynamical conditions of technological vibrating machines
Kuznetsov, N. K.; Lapshin, V. L.; Eliseev, A. V.
2017-10-01
The possibility of control of dynamical condition of the shakers that are designed for vibration treatment of parts interacting with granular media is discussed. The aim of this article is to develop the methodological basis of technology of creation of mathematical models of shake tables and the development of principles of formation of vibrational fields, estimation of their parameters and control of the structure vibration fields. Approaches to build mathematical models that take into account unilateral constraints, the relationships between elements, with the vibrating surface are developed. Methods intended to construct mathematical model of linear mechanical oscillation systems are used. Small oscillations about the position of static equilibrium are performed. The original method of correction of vibration fields by introduction of the oscillating system additional ties to the structure are proposed. Additional ties are implemented in the form of a mass-inertial device for changing the inertial parameters of the working body of the vibration table by moving the mass-inertial elements. The concept of monitoring the dynamic state of the vibration table based on the original measuring devices is proposed. Estimation for possible changes in dynamic properties is produced. The article is of interest for specialists in the field of creation of vibration technology machines and equipment.
Directory of Open Access Journals (Sweden)
Jinhui Li
2015-01-01
Full Text Available This paper addresses the self-excited vibration problems of maglev vehicle-bridge interaction system which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, two levitation models with different complexity are developed, and the comparison of the energy curves associated with the two models is carried out. We conclude that the interaction model with a single levitation control unit is sufficient for the study of the self-excited vibration. Then, the principle underlying the self-excited vibration is explored from the standpoint of work acting on the bridge done by the levitation system. Furthermore, the influences of the parameters, including the modal frequency and modal damping of bridge, the gain of the controller, the sprung mass, and the unsprung mass, on the stability of the interaction system are carried out. The study provides a theoretical guidance for solving the self-excited vibration problems of the vehicle-bridge interaction systems.
Petrenko, Taras; Rauhut, Guntram
2017-03-01
Vibrational configuration interaction theory is a common method for calculating vibrational levels and associated IR and Raman spectra of small and medium-sized molecules. When combined with appropriate configuration selection procedures, the method allows the treatment of configuration spaces with up to 1010 configurations. In general, this approach pursues the construction of the eigenstates with significant contributions of physically relevant configurations. The corresponding eigenfunctions are evaluated in the subspace of selected configurations. However, it can easily reach the dimension which is not tractable for conventional eigenvalue solvers. Although Davidson and Lanczos methods are the methods of choice for calculating exterior eigenvalues, they usually fall into stagnation when applied to interior states. The latter are commonly treated by the Jacobi-Davidson method. This approach in conjunction with matrix factorization for solving the correction equation (CE) is prohibitive for larger problems, and it has limited efficiency if the solution of the CE is based on Krylov's subspace algorithms. We propose an iterative subspace method that targets the eigenvectors with significant contributions to a given reference vector and is based on the optimality condition for the residual norm corresponding to the error in the solution vector. The subspace extraction and expansion are modified according to these principles which allow very efficient calculation of interior vibrational states with a strong multireference character in different vibrational structure problems. The convergence behavior of the method and its performance in comparison with the aforementioned algorithms are investigated in a set of benchmark calculations.
Czech Academy of Sciences Publication Activity Database
Gorman, D. G.; Trendafilova, I.; Mulholland, F.; Horáček, Jaromír
5-6, - (2006), s. 323-330 ISSN 1660-9336 R&D Projects: GA AV ČR(CZ) IAA2076101 Institutional research plan: CEZ:AV0Z20760514 Keywords : vibrations * vibro-acoustic interaction * structural/acoustic Subject RIV: BI - Acoustics
Recursive-operator method in vibration problems for rod systems
Rozhkova, E. V.
2009-12-01
Using linear differential equations with constant coefficients describing one-dimensional dynamical processes as an example, we show that the solutions of these equations and systems are related to the solution of the corresponding numerical recursion relations and one does not have to compute the roots of the corresponding characteristic equations. The arbitrary functions occurring in the general solution of the homogeneous equations are determined by the initial and boundary conditions or are chosen from various classes of analytic functions. The solutions of the inhomogeneous equations are constructed in the form of integro-differential series acting on the right-hand side of the equation, and the coefficients of the series are determined from the same recursion relations. The convergence of formal solutions as series of a more general recursive-operator construction was proved in [1]. In the special case where the solutions of the equation can be represented in separated variables, the power series can be effectively summed, i.e., expressed in terms of elementary functions, and coincide with the known solutions. In this case, to determine the natural vibration frequencies, one obtains algebraic rather than transcendental equations, which permits exactly determining the imaginary and complex roots of these equations without using the graphic method [2, pp. 448-449]. The correctness of the obtained formulas (differentiation formulas, explicit expressions for the series coefficients, etc.) can be verified directly by appropriate substitutions; therefore, we do not prove them here.
Problem solving environment for distributed interactive applications
Rycerz, K.; Bubak, M.; Sloot, P.; Getov, V.; Gorlatch, S.; Bubak, M.; Priol, T.
2008-01-01
Interactive Problem Solving Environments (PSEs) offer an integrated approach for constructing and running complex systems, such as distributed simulation systems. To achieve efficient execution of High Level Architecture (HLA)-based distributed interactive simulations on the Grid, we introduce a PSE
Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine
DEFF Research Database (Denmark)
Rodriguez, Cristian; Egusquiza, Eduard; Santos, Ilmar
2007-01-01
The highest vibration levels in large pump turbines are, in general, originated in the rotor stator interaction (RSI). This vibration has specific characteristics that can be clearly observed in the frequency domain: harmonics of the moving blade passing frequency and a particular relationship am...
On a Non-Symmetric Eigenvalue Problem Governing Interior Structural–Acoustic Vibrations
Directory of Open Access Journals (Sweden)
Heinrich Voss
2016-06-01
Full Text Available Small amplitude vibrations of a structure completely filled with a fluid are considered. Describing the structure by displacements and the fluid by its pressure field, the free vibrations are governed by a non-self-adjoint eigenvalue problem. This survey reports on a framework for taking advantage of the structure of the non-symmetric eigenvalue problem allowing for a variational characterization of its eigenvalues. Structure-preserving iterative projection methods of the the Arnoldi and of the Jacobi–Davidson type and an automated multi-level sub-structuring method are reviewed. The reliability and efficiency of the methods are demonstrated by a numerical example.
DEFF Research Database (Denmark)
Pawlowski, F; Jorgensen, P; Olsen, Jeppe
2002-01-01
A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...
Application of HPEM to investigate the response and stability of nonlinear problems in vibration
DEFF Research Database (Denmark)
Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.
2010-01-01
In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved...
METHOD OF COMPENSATING LOADS FOR SHALLOW SHELLS. VIBRATION AND STABILITY PROBLEMS
Tran Duc Chinh
2015-01-01
Based on the integral representation of the displacements functions through Green's functions, the author proposed a method to solve the system of differential equations of the given problem. The equations were solved approximately by reducing to algebraic equations by finite difference techniques in Samarsky scheme. Some examples are given for calculation of eigenvalues of shallow shell vibration problem, which are compared with results received by Onyashvili using Galerkin method.
METHOD OF COMPENSATING LOADS FOR SHALLOW SHELLS. VIBRATION AND STABILITY PROBLEMS
Directory of Open Access Journals (Sweden)
Tran Duc Chinh
2015-12-01
Full Text Available Based on the integral representation of the displacements functions through Green's functions, the author proposed a method to solve the system of differential equations of the given problem. The equations were solved approximately by reducing to algebraic equations by finite difference techniques in Samarsky scheme. Some examples are given for calculation of eigenvalues of shallow shell vibration problem, which are compared with results received by Onyashvili using Galerkin method.
Directory of Open Access Journals (Sweden)
Jiménez-Alonso, J. F.
2014-12-01
Full Text Available Although the scientific community had knowledge of the human induced vibration problems in structures since the end of the 19th century, it was not until the occurrence of the vibration phenomenon happened in the Millennium Bridge (London, 2000 that the importance of the problem revealed and a higher level of attention devoted. Despite the large advances achieved in the determination of the human-structure interaction force, one of the main deficiencies of the existing models is the exclusion of the effect of changes in the footbridge dynamic properties due to the presence of pedestrians. In this paper, the formulation of a human-structure interaction model, addresses these limitations, is carried out and its reliability is verified from previously published experimental results.Aunque la comunidad científica tenía conocimiento de los problemas vibratorios inducidos por peatones en estructuras desde finales del siglo xix, no fue hasta la ocurrencia de los eventos vibratorios acontecidos en la pasarela del Milenio (Londres, 2000, cuando la importancia del problema se puso de manifiesto y se le comenzó a dedicar un mayor nivel de atención. A pesar de los grandes avances alcanzados en la caracterización de la fuerza de interacción peatón-estructura una de las principales deficiencias de los modelos existentes es la exclusión del cambio en las propiedades dinámicas de la pasarela por la presencia de peatones. En este artículo, se presenta la formulación de un modelo de interacción peatón-estructura que intenta dar respuesta a dichas limitaciones, y su validación a partir de resultados experimentales previamente publicados por otros autores.
Di Marco, J; Schlabach, P; Sylvester, C D; Tompkins, J C; Krzywinski, J
2000-01-01
The high gradient quadrupole magnets being developed by the US-LHC Accelerator Project for the LHC Interaction Regions have stringent field quality requirements. The field quality of these magnets will be measured using a rotating coil system presently under development. Mechanical vibrations of the coil during field quality measurements are of concern because such vibrations can introduce systematic errors in measurement results. This paper presents calculations of the expected influence of vibrations on field quality measurements and a technique to measure vibrations present in data acquired with standard "tangential-style" probes. Measured vibrations are reported and compared to simulations. Limits on systematic errors in multipole measurements are discussed along with implications for probe and measurement system design. (3 refs).
Ohannessian, Christine McCauley
2015-11-01
This study examined the effects of both paternal problem drinking and maternal problem drinking on adolescent internalizing problems (depression and anxiety symptomatology). Surveys were administered to 566 10th and 11th grade students from the Mid-Atlantic region of the U.S. in the spring of 2007 and again in the spring of 2008. Although significant main effects were not observed, significant interactions were found between paternal problem drinking and maternal problem drinking for internalizing problems, especially for boys. In general, these interactions indicated that when paternal problem drinking was high, depression symptomatology and anxiety symptomatology were lower if maternal problem drinking was low. Findings from this study highlight the need to consider both paternal and maternal problem drinking when examining the effects that parental problem drinking may have on adolescent adjustment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy Dissipation from Vibrating Floor Slabs due to Human-Structure Interaction
Directory of Open Access Journals (Sweden)
James M.W. Brownjohn
2001-01-01
Full Text Available Lightweight pre-cast flooring systems using post-tensioning to increase strength but not stiffness are increasingly popular, and vibration serviceability problems tend to govern design of such floors where human occupants are increasingly concerned with vibrations. At the same time as inducing response, stationary human observers can also participate in the response as mitigating influence and it is clear that a human behaves as a highly effective damper, even when seated.
International Nuclear Information System (INIS)
Katayama, I.; Niwa, A.; Kubo, Y.; Penzien, J.
1987-01-01
In connection with the previous paper under the same subject, which describes the results obtained by the field vibration tests of five different models, this paper describes the outline of the hybrid analysis code of soil-structure interaction (HASSI) and the results of numerical simulation of the responses obtained at the model 2C in both cases of the forced vibration test and the natural earthquake excitation
Synchrotron radiation in the Far-Infrared: Adsorbate-substrate vibrations and resonant interactions
International Nuclear Information System (INIS)
Hoffmann, F.M.; Williams, G.P.; Hirschmugl, C.J.; Chabal, Y.J.
1991-01-01
Synchrotron radiation in the Far Infrared offers the potential for a broadband source of high brightness and intensity. Recent development of a Far-Infrared Beamline at the NSLS in Brookhaven provides an unique high intensity source in the FIR spectral range (800-10 cm -1 ). This talk reviews its application to surface vibrational spectroscopy of low frequency adsorbate-substrate vibrations and resonant interactions on metal surfaces
Directory of Open Access Journals (Sweden)
Khomenko Andrei P.
2018-01-01
Full Text Available The article deals with the development of mathematical models and evaluation criteria of the vibration field in the dynamic interactions of the elements of the vibrational technological machines for the processes of vibrational strengthening of long-length parts with help of a steel balls working medium. The study forms a theoretical understanding of the modes of motions of material particles in interaction with a vibrating surface of the working body of the vibration machine. The generalized approach to the assessment of the dynamic quality of the work of vibrating machines in multiple modes of tossing, when the period of free flight of particles is a multiple of the period of the surface oscillations of the working body, is developed in the article. For the correction of vibration field of the working body, the characteristics of dynamic interactions of granular elements of the medium are taken into account using original sensors. The sensors that can detect different particularities of interaction of the granular medium elements at different points of the working body are proposed to evaluate the deviation from a homogeneous and one-dimensional mode of vibration field. Specially developed sensors are able to register interactions between a single granule, a system of granules in filamentous structures, and multipoint interactions of the elements in a close-spaced cylindrical structure. The system of regularization of the structure of vibration fields based on the introduction of motion translation devices is proposed using the multi-point sensor locations on the working body. The article refers to analytical approaches of the theory of vibration displacements. For the experimental data assessment, the methods of statistical analysis are applied. It is shown that the peculiar features of the motion of granular medium registered by the sensors can be used to build active control systems of field vibration.
PFEM application in fluid structure interaction problems
Celigueta Jordana, Miguel Ángel; Larese De Tetto, Antonia; Latorre, Salvador
2008-01-01
In the current paper the Particle Finite Element Method (PFEM), an innovative numerical method for solving a wide spectrum of problems involving the interaction of fluid and structures, is briefly presented. Many examples of the use of the PFEM with GiD support are shown. GiD framework provides a useful pre and post processor for the specific features of the method. Its advantages and shortcomings are pointed out in the present work. Peer Reviewed
Rotation-vibrational spectra of diatomic molecules and nuclei with Davidson interactions
Rowe, D J
1998-01-01
Complete rotation-vibrational spectra and electromagnetic transition rates are obtained for Hamiltonians of diatomic molecules and nuclei with Davidson interactions. Analytical results are derived by dynamical symmetry methods for diatomic molecules and a liquid-drop model of the nucleus. Numerical solutions are obtained for a many-particle nucleus with quadrupole Davidson interactions within the framework of the microscopic symplectic model. (author)
Scribano, Yohann; Lauvergnat, David M; Benoit, David M
2010-09-07
In this paper, we couple a numerical kinetic-energy operator approach to the direct-vibrational self-consistent field (VSCF)/vibrational configuration interaction (VCI) method for the calculation of vibrational anharmonic frequencies. By combining this with fast-VSCF, an efficient direct evaluation of the ab initio potential-energy surface (PES), we introduce a general formalism for the computation of vibrational bound states of molecular systems exhibiting large-amplitude motion such as methyl-group torsion. We validate our approach on an analytical two-dimensional model and apply it to the methanol molecule. We show that curvilinear coordinates lead to a significant improvement in the VSCF/VCI description of the torsional frequency in methanol, even for a simple two-mode coupling expansion of the PES. Moreover, we demonstrate that a curvilinear formulation of the fast-VSCF/VCI scheme improves its speed by a factor of two and its accuracy by a factor of 3.
Inverse problem of the vibrational band gap of periodically supported beam
Shi, Xiaona; Shu, Haisheng; Dong, Fuzhen; Zhao, Lei
2017-04-01
The researches of periodic structures have a long history with the main contents confined in the field of forward problem. In this paper, the inverse problem is considered and an overall frame is proposed which includes two main stages, i.e., the band gap criterion and its optimization. As a preliminary investigation, the inverse problem of the flexural vibrational band gap of a periodically supported beam is analyzed. According to existing knowledge of its forward problem, the band gap criterion is given in implicit form. Then, two cases with three independent parameters, namely the double supported case and the triple one, are studied in detail and the explicit expressions of the feasible domain are constructed by numerical fitting. Finally, the parameter optimization of the double supported case with three variables is conducted using genetic algorithm aiming for the best mean attenuation within specified frequency band.
International Nuclear Information System (INIS)
Katayama, I.; Niwa, A.; Kubo, Y.; Penzien, J.
1987-01-01
The paper describes the outline of the hybrid analysis code for soil-structure interaction (HASSI) and the results of numerical simulation of the responses obtained at the model 2C in both cases of the forced vibration test and the natural earthquake excitation. (orig./HP)
Staking solutions to tube vibration problems (developed by Technos et Compagnie - FRANCE)
International Nuclear Information System (INIS)
Hewitt, E.W.; Bizard, A.; Horn, M.J.
1989-01-01
Electric generating plant steam surface condensers have been prone to vibration induced tube failures. One common and effective method for stopping this vibration has been to insert stakes into the bundle to provide additional support. Stakes have been fabricated of a variety of rigid and semi-rigid materials of fixed dimensions. Installation difficulties and problems of incomplete tube support have been associated with this approach. New developments in the application of plastic technology has offered another approach. Stakes made of plastic tubes which are flattened, by evacuation, at the time of manufacture may now be easily inserted into the tube bundle. After insertion, the vacuum is released and the memory of the plastic causes the stakes to expand and assume their original form. The spring force of the plastic cradles the adjacent condenser tubes and stops the vibration. Developed for Electricite de France (EDF), the stakes are currently installed in 19 units of the French utility system, and two units in the United States
Storti, Mario A.; Nigro, Norberto M.; Paz, Rodrigo R.; Dalcín, Lisandro D.
2009-03-01
In this paper some results on the convergence of the Gauss-Seidel iteration when solving fluid/structure interaction problems with strong coupling via fixed point iteration are presented. The flow-induced vibration of a flat plate aligned with the flow direction at supersonic Mach number is studied. The precision of different predictor schemes and the influence of the partitioned strong coupling on stability is discussed.
Oshmarin, D.; Sevodina, N.; Iurlov, M.; Iurlova, N.
2017-06-01
In this paper, with the aim of providing passive control of structure vibrations a new approach has been proposed for selecting optimal parameters of external electric shunt circuits connected to piezoelectric elements located on the surface of the structure. The approach is based on the mathematical formulation of the natural vibration problem. The results of solution of this problem are the complex eigenfrequencies, the real part of which represents the vibration frequency and the imaginary part corresponds to the damping ratio, characterizing the rate of damping. A criterion of search for optimal parameters of the external passive shunt circuits, which can provide the system with desired dissipative properties, has been derived based on the analysis of responses of the real and imaginary parts of different complex eigenfrequencies to changes in the values of the parameters of the electric circuit. The efficiency of this approach has been verified in the context of natural vibration problem of rigidly clamped plate and semi-cylindrical shell, which is solved for series-connected and parallel -connected external resonance (consisting of resistive and inductive elements) R-L circuits. It has been shown that at lower (more energy-intensive) frequencies, a series-connected external circuit has the advantage of providing lower values of the circuit parameters, which renders it more attractive in terms of practical applications.
Muravyov, Alexander A.
1999-01-01
In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.
Effect of electron-vibration interactions on the thermoelectric efficiency of molecular junctions.
Hsu, Bailey C; Chiang, Chi-Wei; Chen, Yu-Chang
2012-07-11
From first-principles approaches, we investigate the thermoelectric efficiency of a molecular junction where a benzene molecule is connected directly to the platinum electrodes. We calculate the thermoelectric figure of merit ZT in the presence of electron-vibration interactions with and without local heating under two scenarios: linear response and finite bias regimes. In the linear response regime, ZT saturates around the electrode temperature T(e) = 25 K in the elastic case, while in the inelastic case we observe a non-saturated and a much larger ZT beyond T(e) = 25 K attributed to the tail of the Fermi-Dirac distribution. In the finite bias regime, the inelastic effects reveal the signatures of the molecular vibrations in the low-temperature regime. The normal modes exhibiting structures in the inelastic profile are characterized by large components of atomic vibrations along the current density direction on top of each individual atom. In all cases, the inclusion of local heating leads to a higher wire temperature T(w) and thus magnifies further the influence of the electron-vibration interactions due to the increased number of local phonons.
Measurement of dynamic interaction between a vibrating fuel element and its support
Energy Technology Data Exchange (ETDEWEB)
Fisher, N.J.; Tromp, J.H.; Smith, B.A.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada). Chalk River Labs.
1996-12-01
Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.
Vibrational Interaction of Two Rotors with Friction Coupling
Directory of Open Access Journals (Sweden)
H. Larsson
2016-01-01
Full Text Available A lumped parameter model is presented for studying the dynamic interaction between two disks in relative rotational motion and in friction contact. The contact elastic and dissipative characteristics are represented by equivalent stiffness and damping coefficient in the axial as well as torsional direction. The formulation accounts for the coupling between the axial and angular motions by viewing the contact normal force a result of axial behavior of the system. The model is used to investigate stick-slip behavior of a two-disk friction system. In this effort the friction coefficient is represented as an exponentially decaying function of relative angular velocity, varying from its static value at zero relative velocity to its kinetic value at very high velocities. This investigation results in the establishment of critical curve defining two-parameter regions: one in which stick-slip occurs and that in which stick-slip does not occur. Moreover, the onset and termination of stick-slip, when it occurs, are related to the highest component frequency in the system. It is found that stick-slip starts at a period nearly equal to that of the highest component frequency and terminates at a period almost three times that of the highest component frequency.
International Nuclear Information System (INIS)
Fedotovskii, V.S.
1988-02-01
The vibration of tanks with liquid and non deformed cylindrical or spherical inclusions are considered. It is shown that for calculating dynamic characteristics of such systems it is advisable to use continual approach i.e. consider-heterogeneous media formed by liquid and weighted inclusions in it as homogeneous media with effective or vibroreological properties. On the base of the problem on vibrations of the tank, containing liquid and localized inclusions, rod assemblies vibrations are considered and relationships for the added mass and resistance coefficient determining dynamic characteristics of such systems are obtained. Considered are also liquid tank vibrations containing spherical inclusions. The results obtained are used for calculating dynamic characteristics of two-phase flow pipelines at bubble and annular flow mode. The theoretical relationships are compared with available experimental data [fr
Analysis of bit-rock interaction during stick-slip vibrations using PDC cutting force model
Energy Technology Data Exchange (ETDEWEB)
Patil, P.A.; Teodoriu, C. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE
2013-08-01
Drillstring vibration is one of the limiting factors maximizing the drilling performance and also causes premature failure of drillstring components. Polycrystalline diamond compact (PDC) bit enhances the overall drilling performance giving the best rate of penetrations with less cost per foot but the PDC bits are more susceptible to the stick slip phenomena which results in high fluctuations of bit rotational speed. Based on the torsional drillstring model developed using Matlab/Simulink for analyzing the parametric influence on stick-slip vibrations due to drilling parameters and drillstring properties, the study of relations between weight on bit, torque on bit, bit speed, rate of penetration and friction coefficient have been analyzed. While drilling with the PDC bits, the bit-rock interaction has been characterized by cutting forces and the frictional forces. The torque on bit and the weight on bit have both the cutting component and the frictional component when resolved in horizontal and vertical direction. The paper considers that the bit is undergoing stick-slip vibrations while analyzing the bit-rock interaction of the PDC bit. The Matlab/Simulink bit-rock interaction model has been developed which gives the average cutting torque, T{sub c}, and friction torque, T{sub f}, values on cutters as well as corresponding average weight transferred by the cutting face, W{sub c}, and the wear flat face, W{sub f}, of the cutters value due to friction.
Grolet, Aurelien; Thouverez, Fabrice
2015-02-01
This paper is devoted to the study of vibration of mechanical systems with geometric nonlinearities. The harmonic balance method is used to derive systems of polynomial equations whose solutions give the frequency component of the possible steady states. Groebner basis methods are used for computing all solutions of polynomial systems. This approach allows to reduce the complete system to an unique polynomial equation in one variable driving all solutions of the problem. In addition, in order to decrease the number of variables, we propose to first work on the undamped system, and recover solution of the damped system using a continuation on the damping parameter. The search for multiple solutions is illustrated on a simple system, where the influence of the retained number of harmonic is studied. Finally, the procedure is applied on a simple cyclic system and we give a representation of the multiple states versus frequency.
Computation of impact-friction interaction between a vibrating tube and its loose supports
International Nuclear Information System (INIS)
Jacquart, G.; Gay, N.
1993-01-01
Maintaining PWR components in reliable operating condition requires complex design to prevent various damaging processes including flow-induced vibration and wear mechanisms. To improve prediction of tube/support interaction and wear in PWR components, EDF has undertaken a comprehensive program involving both calculations and experiments. This paper describes EDF numerical development with the Aster mechanics computer code to calculate the non-linear dynamics of tubular structures with loose supports. Both numerical and experimental validations of this computer code are given. The numerical technique for dynamic simulation is based on a Ritz decomposition method, including the modal superposition method as used in some other computer codes. The explicit expression of impact and friction forces allows a fast, explicit integration scheme to be used. Different projection bases are compared. Some can improve significantly the resolution of the dynamic problem. The code numerical validations consist in simulations of some mechanical configurations (analytical or computed) provided in the literature. The comparison of the Aster calculation results with the available data of the literature shows the high accuracy of the computer code. A validation on some experimental data is also provided. The experiment used for this validation consists in a multi-supported U-tube, with four loose supports in the U-bend and submitted to harmonic and broad band excitation forces. Three of them correspond to a small gap G s , and the fourth one to a large gap G 1 (G 1 = 15 G s ). In this experiment, the excitation forces are varied. For each configuration, the tube response is computed and compared to the experimental results. The analysis of the parameters governing wear concludes to a good accordance between the calculated and measured values. (authors). 13 figs., 4 tabs., 10 refs
Substantiation of vibration strength of nuclear reactor and steam generator internals. Main problems
International Nuclear Information System (INIS)
Fyodorov, V.G.; Sinyavasky, V.F.
1977-01-01
The report details the scope and priority of studies necessary for substantiation of vibration strength of steam generator tube bundles and reactor fuel assemblies, and design modifications helping to reduce flow-induced vibration of the internals specified. Steam generator tube bundles are studied on the basis of a standard establishing vibration requirements at various stages of design, manufacture and operation of a steam generator at a nuclear power station. The main vibration characteristics of tubes obtained through model and full-scale tests are compared with calculation results. Results are provided concerning test-stand vibration tests of fuel elements and fuel assemblies. (author)
Learning and interactivity in solving a transformation problem.
Guthrie, Lisa G; Vallée-Tourangeau, Frédéric; Vallée-Tourangeau, Gaëlle; Howard, Chelsea
2015-07-01
Outside the psychologist's laboratory, thinking proceeds on the basis of a great deal of interaction with artefacts that are recruited to augment problem-solving skills. The role of interactivity in problem solving was investigated using a river-crossing problem. In Experiment 1A, participants completed the same problem twice, once in a low interactivity condition, and once in a high interactivity condition (with order counterbalanced across participants). Learning, as gauged in terms of latency to completion, was much more pronounced when the high interactivity condition was experienced second. When participants first completed the task in the high interactivity condition, transfer to the low interactivity condition during the second attempt was limited; Experiment 1B replicated this pattern of results. Participants thus showed greater facility to transfer their experience of completing the problem from a low to a high interactivity condition. Experiment 2 was designed to determine the amount of learning in a low and high interactivity condition; in this experiment participants completed the problem twice, but level of interactivity was manipulated between subjects. Learning was evident in both the low and high interactivity groups, but latency per move was significantly faster in the high interactivity group, in both presentations. So-called problem isomorphs instantiated in different task ecologies draw upon different skills and abilities; a distributed cognition analysis may provide a fruitful perspective on learning and transfer.
Rovibrational Interaction and Vibrational Constants of the Symmetric Top Molecule 14NF3
Directory of Open Access Journals (Sweden)
Hamid Najib
2013-01-01
Full Text Available Several accurate experimental values of the and rotation-vibration interaction parameters and , , and vibrational constants have been extracted from the most recent high-resolution Fourier transform infrared, millimeter wave, and centimeter wave investigations in the spectra of the oblate symmetric top molecule 14NF3. The band-centres used are those of the four fundamental, the overtones, the combination, and hot bands identified in the region between 400 cm−1 and 2000 cm−1. Comparison of our constants with the ones measured previously, by infrared spectroscopy at low resolution, reveals orders of magnitude higher accuracy of the new values. The agreement between our values and those determined by ab initio calculations employing the TZ2Pf basis is excellent.
Ecological interactions and the Netflix problem
Directory of Open Access Journals (Sweden)
Philippe Desjardins-Proulx
2017-08-01
Full Text Available Species interactions are a key component of ecosystems but we generally have an incomplete picture of who-eats-who in a given community. Different techniques have been devised to predict species interactions using theoretical models or abundances. Here, we explore the K nearest neighbour approach, with a special emphasis on recommendation, along with a supervised machine learning technique. Recommenders are algorithms developed for companies like Netflix to predict whether a customer will like a product given the preferences of similar customers. These machine learning techniques are well-suited to study binary ecological interactions since they focus on positive-only data. By removing a prey from a predator, we find that recommenders can guess the missing prey around 50% of the times on the first try, with up to 881 possibilities. Traits do not improve significantly the results for the K nearest neighbour, although a simple test with a supervised learning approach (random forests show we can predict interactions with high accuracy using only three traits per species. This result shows that binary interactions can be predicted without regard to the ecological community given only three variables: body mass and two variables for the species’ phylogeny. These techniques are complementary, as recommenders can predict interactions in the absence of traits, using only information about other species’ interactions, while supervised learning algorithms such as random forests base their predictions on traits only but do not exploit other species’ interactions. Further work should focus on developing custom similarity measures specialized for ecology to improve the KNN algorithms and using richer data to capture indirect relationships between species.
Ecological interactions and the Netflix problem.
Desjardins-Proulx, Philippe; Laigle, Idaline; Poisot, Timothée; Gravel, Dominique
2017-01-01
Species interactions are a key component of ecosystems but we generally have an incomplete picture of who-eats-who in a given community. Different techniques have been devised to predict species interactions using theoretical models or abundances. Here, we explore the K nearest neighbour approach, with a special emphasis on recommendation, along with a supervised machine learning technique. Recommenders are algorithms developed for companies like Netflix to predict whether a customer will like a product given the preferences of similar customers. These machine learning techniques are well-suited to study binary ecological interactions since they focus on positive-only data. By removing a prey from a predator, we find that recommenders can guess the missing prey around 50% of the times on the first try, with up to 881 possibilities. Traits do not improve significantly the results for the K nearest neighbour, although a simple test with a supervised learning approach (random forests) show we can predict interactions with high accuracy using only three traits per species. This result shows that binary interactions can be predicted without regard to the ecological community given only three variables: body mass and two variables for the species' phylogeny. These techniques are complementary, as recommenders can predict interactions in the absence of traits, using only information about other species' interactions, while supervised learning algorithms such as random forests base their predictions on traits only but do not exploit other species' interactions. Further work should focus on developing custom similarity measures specialized for ecology to improve the KNN algorithms and using richer data to capture indirect relationships between species.
Necklaces with interacting beads isoperimetric problem
Exner, P
2005-01-01
We discuss a pair of isoperimetric problems which at a glance seem to be unrelated. The first one is classical: one places $N$identical point charges at a closed curve $\\Gamma$ at the samearc-length distances and asks about the energy minimum, i.e. whichshape does the loop take if left by itself. The second problemcomes from quantum mechanics: we take a Schr\\"odinger operator in$L^2(\\mathbb{R}^d),\\; d=2,3,$ with $N$ identical point interactionplaced at a loop in the described way, and ask about theconfiguration which \\emph{maximizes} the ground state energy. Wereduce both of them to geometric inequalities which involve chordsof $\\Gamma$; it will be shown that a sharp local extremum is inboth cases reached by $\\Gamma$ in the form of a regular (planar)polygon and that such a $\\Gamma$ solves the two problems alsoglobally.
On some structure-turbulence interaction problems
Maekawa, S.; Lin, Y. K.
1976-01-01
The interactions between a turbulent flow structure; responding to its excitation were studied. The turbulence was typical of those associated with a boundary layer, having a cross-spectral density indicative of convection and statistical decay. A number of structural models were considered. Among the one-dimensional models were an unsupported infinite beam and a periodically supported infinite beam. The fuselage construction of an aircraft was then considered. For the two-dimensional case a simple membrane was used to illustrate the type of formulation applicable to most two-dimensional structures. Both the one-dimensional and two-dimensional structures studied were backed by a cavity filled with an initially quiescent fluid to simulate the acoustic environment when the structure forms one side of a cabin of a sea vessel or aircraft.
Three-body interactions in liquid and solid hydrogen: Evidence from vibrational spectroscopy
Hinde, Robert
2008-03-01
In the cryogenic low-density liquid and solid phases of H2 and D2, the H2 and D2 molecules retain good rotational and vibrational quantum numbers that characterize their internal degrees of freedom. High-resolution infrared and Raman spectroscopic experiments provide extremely sensitive probes of these degrees of freedom. We present here fully-first-principles calculations of the infrared and Raman spectra of liquid and solid H2 and D2, calculations that employ a high-quality six-dimensional coupled-cluster H2-H2 potential energy surface and quantum Monte Carlo treatments of the single-molecule translational degrees of freedom. The computed spectra agree very well with experimental results once we include three-body interactions among the molecules, interactions which we also compute using coupled-cluster quantum chemical methods. We predict the vibrational spectra of liquid and solid H2 at several temperatures and densities to provide a framework for interpreting recent experiments designed to search for superfluid behavior in small H2 droplets. We also present preliminary calculations of the spectra of mixed H2/D2 solids that show how positional disorder affects the spectral line shapes in these systems.
Possible interaction between thermal electrons and vibrationally excited N2 in the lower E-region
Directory of Open Access Journals (Sweden)
K.-I. Oyama
2011-03-01
Full Text Available As one of the tasks to find the energy source(s of thermal electrons, which elevate(s electron temperature higher than neutral temperature in the lower ionosphere E-region, energy distribution function of thermal electron was measured with a sounding rocket at the heights of 93–131 km by the applying second harmonic method. The energy distribution function showed a clear hump at the energy of ~0.4 eV. In order to find the reason of the hump, we conducted laboratory experiment. We studied difference of the energy distribution functions of electrons in thermal energy range, which were measured with and without EUV radiation to plasma of N2/Ar and N2/O2 gas mixture respectively. For N2/Ar gas mixture plasma, the hump is not clearly identified in the energy distribution of thermal electrons. On the other hand for N2/O2 gas mixture, which contains vibrationally excited N2, a clear hump is found when irradiated by EUV. The laboratory experiment seems to suggest that the hump is produced as a result of interaction between vibrationally excited N2 and thermal electrons, and this interaction is the most probable heating source for the electrons of thermal energy range in the lower E-region. It is also suggested that energy distribution of the electrons in high energy part may not be Maxwellian, and DC probe measures the electrons which are non Maxwellian, and therefore "electron temperature" is calculated higher.
Topology optimization for acoustic-structure interaction problems
DEFF Research Database (Denmark)
Yoon, Gil Ho; Jensen, Jakob Søndergaard; Sigmund, Ole
2006-01-01
We propose a gradient based topology optimization algorithm for acoustic-structure (vibro-acoustic) interaction problems without an explicit interfacing boundary representation. In acoustic-structure interaction problems, the pressure field and the displacement field are governed by the Helmholtz...... to subdomain interfaces evolving during the optimization process. In this paper, we propose to use a mixed finite element formulation with displacements and pressure as primary variables (u/p formulation) which eliminates the need for explicit boundary representation. In order to describe the Helmholtz......-dimensional acoustic-structure interaction problems are optimized to show the validity of the proposed method....
Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun
2018-01-01
In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.
Ojalehto, Vesa; Podkopaev, Dmitry; Miettinen, Kaisa
2015-01-01
We generalize the applicability of interactive methods for solving computationally demanding, that is, time-consuming, multiobjective optimization problems. For this purpose we propose a new agent assisted interactive algorithm. It employs a computationally inexpensive surrogate problem and four different agents that intelligently update the surrogate based on the preferences specified by a decision maker. In this way, we decrease the waiting times imposed on the decision maker du...
Hussan, Mosaruf; Sharmin, Faria; Kim, Dookie
2017-08-01
The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.
Study of electron vibrational interaction parameters in chlorophosphate activated with Eu2+ ion
International Nuclear Information System (INIS)
Bhoyar, Priyanka D.; Dhoble, S.J.
2014-01-01
We present the results of theoretical study of photoluminescence of Eu 2+ ions activated chlorophosphate M 5.17 (PO 4 ) 3 Cl 5 :Eu 2+ with M = Ca, Sr and Ba estimating electron-vibrational interaction (EVI) parameters such as Huang–Rhys factor, effective phonon energy, Stokes shift and zero phonon line position. Validity of the calculated result was established by modeling the emission line which was found to be in good agreement with the measured photoluminescence spectrum of Eu 2+ doped chorophosphates. - Highlights: • The EVI parameters such as Huang–Rhys factor, effective phonon energy and zero phonon line position were estimated. • Eu 2+ ion emission observed in chlorophosphate. • Material analyzed in this work have intermediate Huang–Rhys factor, high Stokes shift and low effective phonon energy
Vibrational and electronic collisional-radiative model in air for Earth entry problems
Energy Technology Data Exchange (ETDEWEB)
Annaloro, Julien, E-mail: Julien.Annaloro@cnes.fr [CNES, 18 Avenue Edouard Belin, 31401 Toulouse Cedex 9 (France); CORIA - UMR 6614, Normandie Université, CNRS - Université et INSA de Rouen, Campus Universitaire du Madrillet, 76800 Saint-Etienne du Rouvray Cedex (France); Bultel, Arnaud, E-mail: Arnaud.Bultel@coria.fr [CORIA - UMR 6614, Normandie Université, CNRS - Université et INSA de Rouen, Campus Universitaire du Madrillet, 76800 Saint-Etienne du Rouvray Cedex (France)
2014-12-15
The two-temperature collisional-radiative model CoRaM-AIR, working over a wide range for pressure and temperatures, has been developed for the flow conditions around a space vehicle entering the Earth's atmosphere. The species N{sub 2}, O{sub 2}, NO, N, O, Ar, N{sub 2}{sup +}, O{sub 2}{sup +}, NO{sup +}, N{sup +}, O{sup +}, Ar{sup +}, and free electrons are taken into account. The model is vibrationally specific on the ground electronic state of N{sub 2}, O{sub 2}, and NO, and electronically specific for all species, with a total of 169 vibrational states and 829 electronic states, respectively. A wide set of elementary processes is considered under electron and heavy particle impact given the temperatures involved (up to 30 000 K). This set corresponds to almost 700 000 forward and backward elementary processes. The relaxation from initial thermal or chemical nonequilibrium is studied for dissociation-ionization situations in conditions related to the FIRE II flight experiment. Boltzmann plots clearly prove that the vibrational and electronic excitation distributions are far from being Boltzmanian. In particular, high-lying vibrational levels remain underpopulated for most of the duration of the relaxation. This relaxation can be separated in a first phase characterized by the dissociation and the excitation of the molecular species, and a second phase leading to the excitation and the ionization of the dissociation products. Owing to the vibrational relaxation, the time scales are slightly higher than the ones predicted by former kinetic mechanisms usually used in flow simulations. In the present FIRE II conditions, radiation does not play a significant role.
International Nuclear Information System (INIS)
Arnal, R.S.; Martin, G.V.; Gonzalez, J.L.M.-C.
1988-01-01
This paper studies the local vibrations of reactor components driven by Gaussian coloured and white forces, when nonlinear vibrations arise. We study also the important problem of noise sources, modelization and the noise propagation through the neutron field using the discrete ordinates transport theory. Finally, we study the effect of the neutron field upon the PSD (power spectral density) of the noise source and we analyse the problem of fitting neutron noise experimental data to perform pattern recognition analysis. (author)
Geometric Programming Approach to an Interactive Fuzzy Inventory Problem
Directory of Open Access Journals (Sweden)
Nirmal Kumar Mandal
2011-01-01
Full Text Available An interactive multiobjective fuzzy inventory problem with two resource constraints is presented in this paper. The cost parameters and index parameters, the storage space, the budgetary cost, and the objective and constraint goals are imprecise in nature. These parameters and objective goals are quantified by linear/nonlinear membership functions. A compromise solution is obtained by geometric programming method. If the decision maker is not satisfied with this result, he/she may try to update the current solution to his/her satisfactory solution. In this way we implement man-machine interactive procedure to solve the problem through geometric programming method.
International Nuclear Information System (INIS)
Kwak, Mun Gyu; Na, Sung Su; Baek, Gwang Hyeon; Song, Chul Gi; Han, Sang Bo
2001-09-01
This book deals with vibration of machine which gives descriptions of free vibration using SDOF system, forced vibration using SDOF system, vibration of multi-degree of freedom system like introduction and normal form, distribution system such as introduction, free vibration of bar and practice problem, approximate solution like lumped approximations and Raleigh's quotient, engineering by intuition and experience, real problem and experimental method such as technology of signal, fourier transform analysis, frequency analysis and sensor and actuator.
Directory of Open Access Journals (Sweden)
Mahmoud Bayat
Full Text Available This review features a survey of some recent developments in asymptotic techniques and new developments, which are valid not only for weakly nonlinear equations, but also for strongly ones. Further, the achieved approximate analytical solutions are valid for the whole solution domain. The limitations of traditional perturbation methods are illustrated, various modified perturbation techniques are proposed, and some mathematical tools such as variational theory, homotopy technology, and iteration technique are introduced to over-come the shortcomings.In this review we have applied different powerful analytical methods to solve high nonlinear problems in engineering vibrations. Some patterns are given to illustrate the effectiveness and convenience of the methodologies.
Interaction of spin and vibrations in transport through single-molecule magnets
Directory of Open Access Journals (Sweden)
Falk May
2011-10-01
Full Text Available We study electron transport through a single-molecule magnet (SMM and the interplay of its anisotropic spin with quantized vibrational distortions of the molecule. Based on numerical renormalization group calculations we show that, despite the longitudinal anisotropy barrier and small transverse anisotropy, vibrational fluctuations can induce quantum spin-tunneling (QST and a QST-Kondo effect. The interplay of spin scattering, QST and molecular vibrations can strongly enhance the Kondo effect and induce an anomalous magnetic field dependence of vibrational Kondo side-bands.
Interaction of spin and vibrations in transport through single-molecule magnets.
May, Falk; Wegewijs, Maarten R; Hofstetter, Walter
2011-01-01
We study electron transport through a single-molecule magnet (SMM) and the interplay of its anisotropic spin with quantized vibrational distortions of the molecule. Based on numerical renormalization group calculations we show that, despite the longitudinal anisotropy barrier and small transverse anisotropy, vibrational fluctuations can induce quantum spin-tunneling (QST) and a QST-Kondo effect. The interplay of spin scattering, QST and molecular vibrations can strongly enhance the Kondo effect and induce an anomalous magnetic field dependence of vibrational Kondo side-bands.
Exploring classical Greek construction problems with interactive geometry software
Meskens, Ad
2017-01-01
In this book the classical Greek construction problems are explored in a didactical, enquiry based fashion using Interactive Geometry Software. The book traces the history of these problems, stating them in modern terminology. By focusing on constructions and the use of GeoGebra the reader is confronted with the same problems that ancient mathematicians once faced. The reader can step into the footsteps of Euclid, Viète and Cusanus amongst others and then by experimenting and discovering geometric relationships far exceed their accomplishments. Exploring these problems with the neusis-method lets him discover a class of interesting curves. By experimenting he will gain a deeper understanding of how mathematics is created. More than 100 exercises guide him through methods which were developed to try and solve the problems. The exercises are at the level of undergraduate students and only require knowledge of elementary Euclidean geometry and pre-calculus algebra. It is especially well-suited for those student...
Interactive Drawing Therapy and Chinese Migrants with Gambling Problems
Zhang, Wenli; Everts, Hans
2012-01-01
Ethnic Chinese migrants in a country like New Zealand face a range of well-documented challenges. A proportion of such migrants find that recreational gambling turns into a pernicious gambling problem. This issue is addressed through illustrated case studies of Interactive Drawing Therapy, a drawing-based modality of therapy that facilitates…
Problems of the π meson-nucleus interaction theory
International Nuclear Information System (INIS)
Kopaleishvili, T.I.
1984-01-01
The theory of multiple scattering as applied to PI-meson scattering on nuclei is outlined on the base of optical potential method: first in neglecting the real absorption of a pion by a nucleus and then for the case when this effect is taken into account. The pion interaction with a deuteron is considered both neglecting the pion absorption channel (the relativisitic problem of three bodies) and with account of the absorption channels and pion emission (in this case the problem is solved within the frames of the channel coupling theory for the pion-two nucleus system and the system of two nucleons). Approximate or model solutions to the problem of elastic pion-nuclear scattering primarily in the range of (3.3)-resonance are presented. The formulated theory permits to uniquely describe the observed processes caused by the strong pion interaction with a two-nucleon system
Standard problems to evaluate soil structure interaction computer codes
International Nuclear Information System (INIS)
Miller, C.A.; Costantino, C.J.; Philippacopoulos, A.J.
1979-01-01
The seismic response of nuclear power plant structures is often calculated using lumped parameter methods. A finite element model of the structure is coupled to the soil with a spring-dashpot system used to represent the interaction process. The parameters of the interaction model are based on analytic solutions to simple problems which are idealizations of the actual problems of interest. The objective of the work reported in this paper is to compare predicted responses using the standard lumped parameter models with experimental data. These comparisons are shown to be good for a fairly uniform soil system and for loadings which do not result in nonlinear interaction effects such as liftoff. 7 references, 7 figures
Energy Technology Data Exchange (ETDEWEB)
Tachikawa, Masanori [Quantum Chemistry Division, Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027 (Japan)
2015-12-31
To theoretically demonstrate the binding of a positron to small polarized molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential.
Directory of Open Access Journals (Sweden)
Jianfeng Wang
2015-01-01
Full Text Available The contact mechanics for a rigid wheel and deformable terrain are complicated owing to the rigid flexible coupling characteristics. Bekker’s equations are used as the basis to establish the equations of the sinking rolling wheel, to vertical load pressure relationship. Since vehicle movement on the Moon is a complex and on-going problem, the researcher is poised to simplify this problem of vertical loading of the wheel. In this paper, the quarter kinetic models of a manned lunar rover, which are both based on the rigid road and deformable lunar terrain, are used as the simulation models. With these kinetic models, the vibration simulations were conducted. The simulation results indicate that the quarter kinetic model based on the deformable lunar terrain accurately reflects the deformable terrain’s influence on the vibration characteristics of a manned lunar rover. Additionally, with the quarter kinetic model of the deformable terrain, the vibration simulations of a manned lunar rover were conducted, which include a parametric analysis of the wheel parameters, vehicle speed, and suspension parameters. The results show that a manned lunar rover requires a lower damping value and stiffness to achieve better vibration performance.
THE MULTIPLE CHOICE PROBLEM WITH INTERACTIONS BETWEEN CRITERIA
Directory of Open Access Journals (Sweden)
Luiz Flavio Autran Monteiro Gomes
2015-12-01
Full Text Available ABSTRACT An important problem in Multi-Criteria Decision Analysis arises when one must select at least two alternatives at the same time. This can be denoted as a multiple choice problem. In other words, instead of evaluating each of the alternatives separately, they must be combined into groups of n alternatives, where n = 2. When the multiple choice problem must be solved under multiple criteria, the result is a multi-criteria, multiple choice problem. In this paper, it is shown through examples how this problemcan be tackled on a bipolar scale. The Choquet integral is used in this paper to take care of interactions between criteria. A numerical application example is conducted using data from SEBRAE-RJ, a non-profit private organization that has the mission of promoting competitiveness, sustainable developmentand entrepreneurship in the state of Rio de Janeiro, Brazil. The paper closes with suggestions for future research.
On the strong crack-microcrack interaction problem
Gorelik, M.; Chudnovsky, A.
1992-07-01
The problem of the crack-microcrack interaction is examined with special attention given to the iterative procedure described by Chudnovsky and Kachanov (1983), Chudnovsky et al. (1984), and Horii and Nemat-Nasser (1983), which yields erroneous results as the crack tips become closer (i.e., for strong crack interaction). To understand the source of error, the traction distributions along the microcrack line on the n-th step of iteration representing the exact and asymptotic stress fields are compared. It is shown that the asymptotic solution gives a gross overestimation of the actual traction.
Electroreflectance and the problem of studying plasma-surface interactions
International Nuclear Information System (INIS)
Preppernau, B.L.
1995-01-01
A long standing problem in low-temperature plasma discharge physics is to understand in detail the mutual interaction of real exposed surfaces (electrodes) with the reactive plasma environment. In particular, one wishes to discern the influence of these surfaces on the plasma parameters given their contributions from secondary electrons and ions. This paper briefly reviews the known surface interaction processes as well as currently available diagnostics to study the interface between plasmas and surfaces. Next comes a discussion describing the application of plasma-modulated electroreflectance to this research and some potential experimental techniques
Two-body problem for Weber-like interactions
International Nuclear Information System (INIS)
Clemente, R.A.; Assis, A.K.T.
1991-01-01
The problem of two moving bodies interacting through a Weber-like force is presented. Trajectories are obtained analytically once relativistic and quantic considerations are neglected. The main results are that in the case of limited trajectories, in general, they are not closed and in the case of open trajectories, the deflection angles are not the same for similar particles with given energies and angular momenta but opposite potentials. This last feature suggests the possibility of a direct verification of the validity of Weber's law of force for electromagnetic interactions
Theory of vibration protection
Karnovsky, Igor A
2016-01-01
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...
Directory of Open Access Journals (Sweden)
VLADIMIR M. PETRUSEVSKI
2000-06-01
Full Text Available Hofmann type clatharates are host-guest compounds with the general formula M(NH32M'(CN4·2G, in which M(NH32M'(CN4 is the host lattice and G is benzene, the guest molecule. In previous studies, host-guest interactions have been investigated by analyzing the RT and LNT vibrational (infrared, far infrared and Raman spectra of these clathrates. All the observed changes in the vibrational spectra of these clathrates are referred to a host-guest interaction originating from weak hydrogen bonding between the ammonia hydrogen atoms from the host lattice and the p electron cloud of the guest (benzene molecules. In order to obtain an insight into the relative importance of the local crystalline field vs. the anharmonicity effects on the spectroscopic properties of the guest species upon enclathration, as well as to explain the observed band shifts and splittings, several quantum theoretical approaches are proposed.
Topology optimization of fluid-structure-interaction problems in poroelasticity
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe; Sigmund, Ole
2013-01-01
This paper presents a method for applying topology optimization to fluid-structure interaction problems in saturated poroelastic media. The method relies on a multiple-scale method applied to periodic media. The resulting model couples the Stokes flow in the pores of the structure with the deform...... by topology optimization in order to optimize the performance of a shock absorber and test the pressure loading capabilities and optimization of an internally pressurized lid. © 2013 Published by Elsevier B.V....
Directory of Open Access Journals (Sweden)
Zhi-ping Zeng
2014-01-01
Full Text Available The paper describes the numerical simulation of the vertical random vibration of train-slab track-bridge interaction system by means of finite element method and pseudoexcitation method. Each vehicle is modeled as four-wheelset mass-spring-damper system with two-layer suspension systems. The rail, slab, and bridge girder are modeled by three-layer elastic Bernoulli-Euler beams connected with each other by spring and damper elements. The equations of motion for the entire system are derived according to energy principle. By regarding rail irregularity as a series of multipoint, different-phase random excitations, the random load vectors of the equations of motion are obtained by pseudoexcitation method. Taking a nine-span simply supported beam bridge traveled by a train consisting of 8 vehicles as an example, the vertical random vibration responses of the system are investigated. Firstly, the suitable number of discrete frequencies of rail irregularity is obtained by numerical experimentations. Secondly, the reliability and efficiency of pseudoexcitation method are verified through comparison with Monte Carlo method. Thirdly, the random vibration characteristics of train-slab track-bridge interaction system are analyzed by pseudoexcitation method. Finally, applying the 3σ rule for Gaussian stochastic process, the maximum responses of train-slab track-bridge interaction system with respect to various train speeds are studied.
Analytical calculation of the vibrator-rotor transition in the sdg interacting boson model
International Nuclear Information System (INIS)
Wang Baolin
1992-01-01
Analytical calculation of the vibrator-rotor transition is given by utilizing the 1/N expansion technique in the sdg IBM. The phase transition of low-lying energy spectrum and E2 transition for Sm isotopes are calculated
Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.
Marsh, M C David
2017-01-06
Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.
Effect of the adiabatic vibrational coupling on the fusion of the 16O-238U interaction
International Nuclear Information System (INIS)
Ismail, M.; Osman, M.; Ramadan, Kh.A.; Seif, W.
2003-01-01
The effect of both rotation and vibration of a deformed target nucleus on the fusion cross-section and barrier distributions was studied. This was done in the framework of the microscopically derived heavy-ion (HI) potential. Moreover, the effect of target deformation up to β 6 and the density dependence of the NN force on the fusion process was studied in the presence of vibrational excitations of the target. The results obtained were compared with experimental data. (author)
Directory of Open Access Journals (Sweden)
M Pomarède
2016-09-01
Full Text Available Numerical simulation of Vortex-Induced-Vibrations (VIV of a rigid circular elastically-mounted cylinder submitted to a fluid cross-flow has been extensively studied over the past decades, both experimentally and numerically, because of its theoretical and practical interest for understanding Flow-Induced-Vibrations (FIV problems. In this context, the present article aims to expose a numerical study based on fully-coupled fluid-solid computations compared to previously published work [34], [36]. The computational procedure relies on a partitioned method ensuring the coupling between fluid and structure solvers. The fluid solver involves a moving mesh formulation for simulation of the fluid structure interface motion. Energy exchanges between fluid and solid models are ensured through convenient numerical schemes. The present study is devoted to a low Reynolds number configuration. Cylinder motion magnitude, hydrodynamic forces, oscillation frequency and fluid vortex shedding modes are investigated and the “lock-in” phenomenon is reproduced numerically. These numerical results are proposed for code validation purposes before investigating larger industrial applications such as configurations involving tube arrays under cross-flows [4].
An Inverse Eigenvalue Problem for a Vibrating String with Two Dirichlet Spectra
Rundell, William; Sacks, Paul
2013-01-01
A classical inverse problem is "can you hear the density of a string clamped at both ends?" The mathematical model gives rise to an inverse Sturm-Liouville problem for the unknown density ñ, and it is well known that the answer is negative
Enhanced vibration diagnostics using vibration signature analysis
International Nuclear Information System (INIS)
Ahmed, S.; Shehzad, K.; Zahoor, Y.; Mahmood, A.; Bibi, A.
2001-01-01
Symptoms will appear in equipment, as well as in human beings. when 'suffering from sickness. Symptoms of abnormality in equipment are vibration, noise, deformation, temperature, pressure, electric current, crack, wearing, leakage etc. these are called modes of failure. If the mode of failure is vibration then the vibration signature analysis can be effectively used in order to diagnose the machinery problems. Much valuable information is contained within these vibration 'Spectra' or 'Signatures' but is only of use if the analyst can unlock its 'Secrets'. This paper documents a vibration problem in the motor of a centrifugal pump (Type ETA). It focuses mainly on the roll of modern vibration monitoring system in problem analysis. The problem experienced was the motor unstability and noise due to high vibration. Using enhanced vibration signature data, the problem was analyzed. which suggested that the rotor eccentricity was the cause of excessive noise and vibration in the motor. In conclusion, advanced electronic monitoring and diagnostic systems provide powerful information for machine's condition assessment and problem analysis. Appropriate interpretation and use of this information is important for accurate and effective vibration analysis. (author)
An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem
International Nuclear Information System (INIS)
Milazzo, A; Orlando, C; Alaimo, A
2009-01-01
Based on the Timoshenko beam theory and on the assumption that the electric and magnetic fields can be treated as steady, since elastic waves propagate very slowly with respect to electromagnetic ones, a general analytical solution for the transient analysis of a magneto-electro-elastic bimorph beam is obtained. General magneto-electric boundary conditions can be applied on the top and bottom surfaces of the beam, allowing us to study the response of the bilayer structure to electromagnetic stimuli. The model reveals that the magneto-electric loads enter the solution as an equivalent external bending moment per unit length and as time-dependent mechanical boundary conditions through the definition of the bending moment. Moreover, the influences of the electro-mechanic, magneto-mechanic and electromagnetic coupling on the stiffness of the bimorph stem from the computation of the beam equivalent stiffness constants. Free and forced vibration analyses of both multiphase and laminated magneto-electro-elastic composite beams are carried out to check the effectiveness and reliability of the proposed analytic solution
DEFF Research Database (Denmark)
Bucinskas, Paulius; Andersen, Lars Vabbersgaard; Persson, Kent
2016-01-01
Construction of high speed railway lines has been an increasing trend in recent years. Countries like Denmark and Sweden plan to expand and upgrade their railways to accommodate high-speed traffic. To benefit from the full potential of the reduced commuting times, these lines must pass through...... densely populated urban areas with the collateral effect of increased noise and vibrations levels. This paper aims to quantify the vibrations levels in the area surrounding an elevated railway line built as a multi-span bridge structure. The proposed model employs finite-element analysis to model......-space. The paper analyses the effects of structure-soil-structure interaction on the dynamic behaviour of the surrounding soil surface. The effects of different soil stratification and material properties as well as different train speeds are assessed. Finally, the drawbacks of simplifying the numerical model...
Problems in the links between scattering data and interaction potentials
International Nuclear Information System (INIS)
Amos, K.
1995-01-01
The scattering function is of paramount importance in any approaches by which quantitative information on the interaction between colliding quantal systems of nuclear, atomic or molecular type, may be sought from measured, elastic scattering data. Therein there are two possible spectral parameters, the energy and the angular momentum. Most experimental results suggest use of fixed energy and variable angular momentum schemes. Such fixed energy data and their analyses are the subject of this report, with particular emphasis placed upon the problems of the link between data and the scattering function. 18 figs
Problems in the links between scattering data and interaction potentials
Energy Technology Data Exchange (ETDEWEB)
Amos, K.
1995-10-01
The scattering function is of paramount importance in any approaches by which quantitative information on the interaction between colliding quantal systems of nuclear, atomic or molecular type, may be sought from measured, elastic scattering data. Therein there are two possible spectral parameters, the energy and the angular momentum. Most experimental results suggest use of fixed energy and variable angular momentum schemes. Such fixed energy data and their analyses are the subject of this report, with particular emphasis placed upon the problems of the link between data and the scattering function. 18 figs.
A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems
Liu, X.; Banerjee, J. R.
2017-03-01
A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.
Energy Technology Data Exchange (ETDEWEB)
Versteijlen, W.G; Metrikine, A.; Hoving, J.S.; Smidt, E.H.; De Vries, W.E. [Department Hydraulic Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology TUD, Delft (Netherlands)
2012-01-15
In today's cutting costs environment in the offshore wind industry, significant achievements can be made with a better assessment of dynamic soil-pile interaction. Of the main damping mechanisms active at an OWT (offshore wind turbine), least is known about soil damping. The values for this contribution used in the industry today - mostly calculated analogously to a study performed in 1980 - are expected to be on the low side. More research on the topic is recommended. Presence of more damping than currently assumed, would signify that the (often) design driving fatigue damage accumulation is lower than assumed. This would justify designing more light-weight structures using less construction steel, or allowing for longer (insured) OWT lifetimes then the now applied 20 years. Both these measures significantly decrease costs of offshore wind. This paper evaluates measured signals of twelve 'rotorstop' - test on an OWT at Dong Energy owned - Burbo Banks windfarm. The vibration decay was measured with an accelerometer and strain gauges along the tower. A simplistic analytical model has been developed enabling analyses of the measured signals. Two main modal shapes were identified with similar shape, but deviating amplitudes in the soil profile. The large difference in damping that exists between the vibrations of these modes is attributed to the difference in influence that the soil can have on these vibrations. The found effect of soil on the damping of this particular OWT is significantly larger than the order of magnitude used in the industry today.
Martens, William L.; Woszczyk, Wieslaw
2005-09-01
For multimodal display systems in which realistic reproduction of impact events is desired, presenting structure-borne vibration along with multichannel audio recordings has been observed to create a greater sense of immersion in a virtual acoustic environment. Furthermore, there is an increased proportion of reports that the impact event took place within the observer's local area (this is termed ``presence with'' the event, in contrast to ``presence in'' the environment in which the event occurred). While holding the audio reproduction constant, varying the intermodal arrival time and level of mechanically displayed, synthetic whole-body vibration revealed a number of other subjective attributes that depend upon multimodal interaction in the perception of a representative impact event. For example, when the structure-borne component of the displayed impact event arrived 10 to 20 ms later than the airborne component, the intermodal delay was not only tolerated, but gave rise to an increase in the proportion of reports that the impact event had greater power. These results have enabled the refinement of a multimodal simulation in which the manipulation of synthetic whole-body vibration can be used to control perceptual attributes of impact events heard within an acoustic environment reproduced via a multichannel loudspeaker array.
Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Gunasekaran, S.; Rajakumar, P. R.; Anbalagan, G.
2015-06-01
Single crystals of melaminium benzoate dihydrate (MBDH) have been grown from aqueous solution by the slow solvent evaporation method at room temperature. Crystalline nature of the grown crystal has been confirmed by X-ray powder diffraction studies. The optimized geometry, frequency and intensity of the vibrational bands of MBDH were obtained by the Hartree-Fock and density functional theory using B3LYP/cam-B3LYP with 6-311++G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with the experimental FT-IR and FT-Raman spectral values. The obtained vibrational wavenumbers and optimized geometric parameters are found to be in good agreement with the experimental data. UV-Visible spectrum was recorded in the region 200-400 nm and the electronic properties, HOMO-LUMO energies and other related electronic parameters are calculated. The isotropic chemical shifts computed by 1H and 13C NMR analysis also show good agreement with experimental observation. Natural bond orbital (NBO) analysis has been performed on MBDH compound to analyze the stability of the molecule arising from hyperconjugative interactions and charge delocalization. Molecular electrostatic potential surface (MEP) has also been performed by DFT/cam-B3LYP method with 6-311++G(d,p) basis set. Differential scanning calorimetric measurements performed on the powder sample indicate the phase transition point approximately at 368 and 358 K for heating and cooling, respectively.
Lyashko, A. D.
2017-11-01
A new analytical presentation of the solution for steady-state oscillations of orthotopic rectangular prism is found. The corresponding infinite system of linear algebraic equations has been deduced by the superposition method. A countable set of precise eigenfrequencies and elementary eigenforms is found. The identities are found which make it possible to improve the convergence of all the infinite series in the solution of the problem. All the infinite series in presentation of solution are analytically summed up. Numerical calculations of stresses in the rectangular orthotropic prism with a uniform along the border and harmonic in time load on two opposite faces have been performed.
An Inverse Eigenvalue Problem for a Vibrating String with Two Dirichlet Spectra
Rundell, William
2013-04-23
A classical inverse problem is "can you hear the density of a string clamped at both ends?" The mathematical model gives rise to an inverse Sturm-Liouville problem for the unknown density ñ, and it is well known that the answer is negative: the Dirichlet spectrum from the clamped end-point conditions is insufficient. There are many known ways to add additional information to gain a positive answer, and these include changing one of the boundary conditions and recomputing the spectrum or giving the energy in each eigenmode-the so-called norming constants. We make the assumption that neither of these changes are possible. Instead we will add known mass-densities to the string in a way we can prescribe and remeasure the Dirichlet spectrum. We will not be able to answer the uniqueness question in its most general form, but will give some insight to what "added masses" should be chosen and how this can lead to a reconstruction of the original string density. © 2013 Society for Industrial and Applied Mathematics.
Díaz, Humberto González; de Armas, Ronal Ramos; Molina, Reinaldo
2003-11-01
The design of novel anti-HIV compounds has now become a crucial area for scientists working in numerous interrelated fields of science such as molecular biology, medicinal chemistry, mathematical biology, molecular modelling and bioinformatics. In this context, the development of simple but physically meaningful mathematical models to represent the interaction between anti-HIV drugs and their biological targets is of major interest. One such area currently under investigation involves the targets in the HIV-RNA-packaging region. In the work described here, we applied Markov chain theory in an attempt to describe the interaction between the antibiotic paromomycin and the packaging region of the RNA in Type-1 HIV. In this model, a nucleic acid squeezed graph is used. The vertices of the graph represent the nucleotides while the edges are the phosphodiester bonds. A stochastic (Markovian) matrix was subsequently defined on this graph, an operation that codifies the probabilities of interaction between specific nucleotides of HIV-RNA and the antibiotic. The strength of these local interactions can be calculated through an inelastic vibrational model. The successive power of this matrix codifies the probabilities with which the vibrations after drug-RNA interactions vanish along the polynucleotide main chain. The sums of self-return probabilities in the k-vicinity of each nucleotide represent physically meaningful descriptors. A linear discriminant function was developed and gave rise to excellent discrimination in 80.8% of interacting and footprinted nucleotides. The Jackknife method was employed to assess the stability and predictability of the model. On the other hand, a linear regression model predicted the local binding affinity constants between a specific nucleotide and the antibiotic (R(2)=0.91, Q(2)=0.86). These kinds of models could play an important role either in the discovery of new anti-HIV compounds or the study of their mode of action.
Espinal, Daniel
The objective of this research is to investigate and confirm the periodicity of the Non-Synchronous Vibration (NSV) mechanism of a GE axial compressor with a full-annulus simulation. A second objective is to develop a high fidelity single-passage tool with time-accurate unsteady capabilities able to capture rotor-stator interactions and NSV excitation response. A high fidelity methodology for axial turbomachinery simulation is developed using the low diffusion shock-capturing Riemann solver with high order schemes, the Spalart-Allmaras turbulence closure model, the fully conservative unsteady sliding BC for rotor-stator interaction with extension to full-annulus and single-passage configurations, and the phase lag boundary conditions applied to rotor-stator interface and circumferential BC. A URANS solver is used and captures the NSV flow excitation frequency of 2439 Hz, which agrees reasonably well with the measured NSV frequency of 2600 Hz from strain gage test data. It is observed that the circumferentially traveling vortex formed in the vicinity of the rotor tip propagates at the speed of a non-engine order frequency and causes the NSV. The vortex travels along the suction surface of the blade and crosses the passage outlet near blade trailing edge. Such a vortex motion trajectory repeats in each blade passage and generates two low pressure regions due to the vortex core positions, one at the leading edge and one at the trailing edge, both are oscillating due to the vortex coming and leaving. These two low pressure regions create a pair of coupling forces that generates a torsion moment causing NSV. The full-annulus simulation shows that the circumferentially traveling vortex has fairly periodical behavior and is a full annulus structure. Also, frequencies below the NSV excitation frequency of 2439 Hz with large amplitudes in response to flow-separation related phenomena are present. This behavior is consistent with experimental measurements. For
Kiefer, Johannes; Wagenfeld, Sabine; Kerlé, Daniela
2018-01-01
Alkyl alcohols are widely used in academia, industry, and our everyday lives, e.g. as cleaning agents and solvents. Vibrational spectroscopy is commonly used to identify and quantify these compounds, but also to study their structure and behavior. However, a comprehensive investigation and comparison of all normal alkanols that are liquid at room temperature has not been performed, surprisingly. This study aims at bridging this gap with a combined experimental and computational effort. For this purpose, the alkyl alcohols from methanol to undecan-1-ol have been analyzed using infrared and Raman spectroscopy. A detailed assignment of the individual peaks is presented and the influence of the alkyl chain length on the hydrogen bonding network is discussed. A 2D vibrational mapping allows a straightforward visualization of the effects. The conclusions drawn from the experimental data are backed up with results from Monte Carlo simulations using the simulation package Cassandra.
Visualization of protein interaction networks: problems and solutions
Directory of Open Access Journals (Sweden)
Agapito Giuseppe
2013-01-01
Full Text Available Abstract Background Visualization concerns the representation of data visually and is an important task in scientific research. Protein-protein interactions (PPI are discovered using either wet lab techniques, such mass spectrometry, or in silico predictions tools, resulting in large collections of interactions stored in specialized databases. The set of all interactions of an organism forms a protein-protein interaction network (PIN and is an important tool for studying the behaviour of the cell machinery. Since graphic representation of PINs may highlight important substructures, e.g. protein complexes, visualization is more and more used to study the underlying graph structure of PINs. Although graphs are well known data structures, there are different open problems regarding PINs visualization: the high number of nodes and connections, the heterogeneity of nodes (proteins and edges (interactions, the possibility to annotate proteins and interactions with biological information extracted by ontologies (e.g. Gene Ontology that enriches the PINs with semantic information, but complicates their visualization. Methods In these last years many software tools for the visualization of PINs have been developed. Initially thought for visualization only, some of them have been successively enriched with new functions for PPI data management and PIN analysis. The paper analyzes the main software tools for PINs visualization considering four main criteria: (i technology, i.e. availability/license of the software and supported OS (Operating System platforms; (ii interoperability, i.e. ability to import/export networks in various formats, ability to export data in a graphic format, extensibility of the system, e.g. through plug-ins; (iii visualization, i.e. supported layout and rendering algorithms and availability of parallel implementation; (iv analysis, i.e. availability of network analysis functions, such as clustering or mining of the graph, and the
2017-04-04
comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE...µm in order to facilitate the flow diagnostics. The center jet flow issues through a CNC- machined stainless nozzle, which can be replaced to provide...the mixing in the shear layer, which will be used to compare with the relaxation time of the vibrational energy, was defined as the eddy turnover time
Modal interaction and vibration suppression in industrial turbines using adjustable journal bearings
Chasalevris, Athanasios; Dohnal, Fadi
2016-09-01
The vibration suppression by deliberately introducing a parametric excitation in the fluid-film bearings is investigated for an industrial turbine rotor system. A journal bearing with variable adjustable geometry is operated in such a way that the effective stiffness and damping properties vary periodically in time. The proposed bearing is designed for having the ability of changing the bearing fluid film thickness in a semi-active manner. Such an adjustment of the journal bearing properties introduces in the system a time-periodic variation of the effective stiffness and damping properties of the fluid-film. If the time-periodicity is tuned properly to match a parametric anti-resonance, vibration suppression is achieved in the overall system. The paper presents the principle of operation of the recently developed bearings. The simulation of an industrial turbine rotor-bearing shaft line at induced parametric excitation motivates the further development and application of such bearings since the vibration amplitudes are considerably decreased in critical speeds.
Nuclear many-body problem with repulsive hard core interactions
Energy Technology Data Exchange (ETDEWEB)
Haddad, L M
1965-07-01
The nuclear many-body problem is considered using the perturbation-theoretic approach of Brueckner and collaborators. This approach is outlined with particular attention paid to the graphical representation of the terms in the perturbation expansion. The problem is transformed to centre-of-mass coordinates in configuration space and difficulties involved in ordinary methods of solution of the resulting equation are discussed. A new technique, the 'reference spectrum method', devised by Bethe, Brandow and Petschek in an attempt to simplify the numerical work in presented. The basic equations are derived in this approximation and considering the repulsive hard core part of the interaction only, the effective mass is calculated at high momentum (using the same energy spectrum for both 'particle' and 'hole' states). The result of 0.87m is in agreement with that of Bethe et al. A more complete treatment using the reference spectrum method in introduced and a self-consistent set of equations is established for the reference spectrum parameters again for the case of hard core repulsions. (author)
Garnier, Romain; Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier
2016-05-01
A new variational algorithm called adaptive vibrational configuration interaction (A-VCI) intended for the resolution of the vibrational Schrödinger equation was developed. The main advantage of this approach is to efficiently reduce the dimension of the active space generated into the configuration interaction (CI) process. Here, we assume that the Hamiltonian writes as a sum of products of operators. This adaptive algorithm was developed with the use of three correlated conditions, i.e., a suitable starting space, a criterion for convergence, and a procedure to expand the approximate space. The velocity of the algorithm was increased with the use of a posteriori error estimator (residue) to select the most relevant direction to increase the space. Two examples have been selected for benchmark. In the case of H2CO, we mainly study the performance of A-VCI algorithm: comparison with the variation-perturbation method, choice of the initial space, and residual contributions. For CH3CN, we compare the A-VCI results with a computed reference spectrum using the same potential energy surface and for an active space reduced by about 90%.
Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan
1991-01-01
The development of control of large flexible structures technology must include practical demonstrations to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility has been developed to study practical implementation of new control technologies under realistic conditions. The paper discusses the design of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. Experimental results in the presence of these factors are presented and discussed. The robustness of this design under model uncertainty is demonstrated.
Directory of Open Access Journals (Sweden)
Cristian G. Rodriguez
2014-01-01
Full Text Available Current trends in design of pump-turbines have led into higher rotor-stator interaction (RSI loads over impeller-runner. These dynamic loads are of special interest having produced catastrophic failures in pump-turbines. Determining RSI characteristics facilitates the proposal of actions that will prevent these failures. Pressure measurements all around the perimeter of the impeller-runner are appropriate to monitor and detect RSI characteristics. Unfortunately most installed pump-turbines are not manufactured with in-built pressure sensors in appropriate positions to monitor RSI. For this reason, vibration measurements are the preferred method to monitor RSI in industry. Usually vibrations are measured in two perpendicular radial directions in bearings where valuable information could be lost due to bearing response. In this work, in order to avoid the effect of bearing response on measurement, two vibration sensors are installed rotating with the shaft. The RSI characteristics obtained with pressure measurements were compared to those determined using vibration measurements. The RSI characteristics obtained with pressure measurements were also determined using vibrations measured rotating with shaft. These RSI characteristics were not possible to be determined using the vibrations measured in guide bearing. Finally, it is recommended to measure vibrations rotating with shaft to detect RSI characteristics in installed pump-turbines as a more practical and reliable method to monitor RSI characteristics.
Baranović, Goran; Šegota, Suzana
2018-03-01
Detailed vibrational assignments for twelve flavonoids (seven flavones (flavone, 3- and 5-hydroxyflavone, chrysin, apigenin, fisetin and luteolin) and five flavonols (galangin, kaempferol, quercetin, morin and myricetin)) have been made based on own and reported experimental data and calculations at the B3LYP/6-31 + G(d,p) level of theory. All the molecules are treated in a uniform way by using the same set of redundancy-free set of internal coordinates. A generalized harmonic mode mixing is used to corroborate the vibrational characteristics of this important class of molecules. Each flavonoid molecule can be treated from the vibrational point of view as made of relatively weakly coupled chromone and phenyl part. It has been shown that the strongest band around 1600 cm- 1 need not be attributable to the Cdbnd O stretching. The way the vibrations of any of the hydroxyl groups are mixed with ring vibrations and vibrations of other neighboring hydroxyl groups is rather involved. This imposes severe limitations on any attempt to describe normal modes of a flavonol in terms of hydroxyl or carbonyl group vibrations. The role of water molecules in the appearance of flavonoid IR spectra is emphasized. Knowing for the great affinity of phosphate groups in lipids towards water, the immediate consequence is a reasonable assumption that flavonoid lipid interactions is mediated by water.
Directory of Open Access Journals (Sweden)
Malika Boumaiza
2018-01-01
Full Text Available The present study concerns the analysis of the dynamic response of earth dam, in free and forced vibration (under the effect of earthquake using the finite element method. The analysis is carried out at the end of dam construction without filling. The behavior of the dam materials and the foundation is linear elastic. In free vibration, to better understand the effect of the dam foundation interaction, we will take into account different site conditions and see their influence on the free vibration characteristics of the dam. In forced vibration, to study the seismic response of the dam, the system is subjected to the acceleration of the Boumerdes earthquake of May 21, 2003 recorded at the station n ° 2 of the dam of Kaddara in the base, with a parametric study taking into account the influence of the main parameters such as the mechanical properties of the soil: rigidity, density.
Vibration of hydraulic machinery
Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong
2013-01-01
Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...
Interaction of low energy electrons with surface lattice vibrations. Final report
International Nuclear Information System (INIS)
Tong, S.Y.
1984-01-01
In carrying out the DOE contract, we have succeeded in constructing a new microscopic theory, with multiple scattering, for the inelastic scattering of electrons by surface vibrations. We have applied the theory to detailed studies of angle and energy variations of the inelastic cross-section for two important systems in surface physics: carbon monoxide molecules adsorbed on the (100) surface of a nickel crystal, and hydrogen atoms adsorbed on a reconstructed tungsten (100) surface. These calculations have outlined general trends that we expect to apply to a wide variety of systems. Also, we have discovered a series of new selection rules that apply to off-specular scattering. Particularly interesting are pseudo-selection rules which are not group theoretical in origin, but approximate statements that hold well when the electron scattering amplitude exhibits a slow energy variation. We have found and defined conditions for which these selection rules would hold and break down
Interactive operational decision making : Purchasing situations & mutual liability problems
Groote Schaarsberg, M.
2014-01-01
Three chapters of this dissertation deal with three different types of interactive purchasing situations, in which multiple buying organizations interact with similar (or possibly the same) suppliers for the procurement of the same commodity. Decisions to be made in interactive purchasing concern if
Marcondes, Michel L.; Wentzcovitch, Renata M.; Assali, Lucy V. C.
2018-05-01
Thermal equations of state (EOS) are essential in several scientific domains. However, experimental determination of EOS parameters may be limited at extreme conditions, therefore, ab initio calculations have become an important method to obtain them. Density functional theory (DFT) and its extensions with various degrees of approximations for the exchange and correlation (XC) energy is the method of choice, but large errors in the EOS parameters are still common. The alkali halides have been problematic from the onset of this field and the quest for appropriate DFT functionals for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate vibrational properties, thermal EOS, thermodynamic properties, and the B1 to B2 phase boundary of NaCl with high precision. Our results reveal a remarkable improvement over the performance of standard local density approximation and generalized gradient approximation functionals for all these properties and phase transition boundary, as well as great sensitivity of anharmonic effects on the choice of XC functional.
Energy Technology Data Exchange (ETDEWEB)
Padhi, S.N. [DGMS, Bhubaneswar (India)
1994-12-31
Blast vibrations may be felt in intensities as small as 1/100 of that required to cause any damage to structures. Therefore, the public response and thus complaints regarding damages are often imaginary. The paper deals with three case studies, involving alleged damage from blasting in surface and underground coal mines where public litigations and agitations resulted due to such apprehensions. The paper is written in simple technical language as the situations warranted that the blast vibration studies should be understood by the general public. 7 tabs.
Mandal, A. K.; Wahi, P.
2015-03-01
We study the vibration characteristics of a string with a smooth unilateral obstacle placed at one of the ends similar to the strings in musical instruments like sitar and veena. In particular, we explore the correlation between the string vibrations and some unique sound characteristics of these instruments like less inharmonicity in the frequencies, a large number of overtones and the presence of both frequency and amplitude modulations. At the obstacle, we have a moving boundary due to the wrapping of the string and an appropriate scaling of the spatial variable leads to a fixed boundary at the cost of introducing nonlinearity in the governing equation. Reduced order system of equations has been obtained by assuming a functional form for the string displacement which satisfies all the boundary conditions and gives the free length of the string in terms of the modal coordinates. To study the natural frequencies and mode-shapes, the nonlinear governing equation is linearized about the static configuration. The natural frequencies have been found to be harmonic and they depend on the shape of the obstacle through the effective free length of the string. Expressions have been obtained for the time-varying mode-shapes as well as the variation of the nodal points. Modal interactions due to coupling have been studied which show the appearance of higher overtones as well as amplitude modulations in our theoretical model akin to the experimental observations. All the obtained results have been verified with an alternate formulation based on the assumed mode method with polynomial shape functions.
Structural priority approach to fluid-structure interaction problems
International Nuclear Information System (INIS)
Au-Yang, M.K.; Galford, J.E.
1981-01-01
In a large class of dynamic problems occurring in nuclear reactor safety analysis, the forcing function is derived from the fluid enclosed within the structure itself. Since the structural displacement depends on the fluid pressure, which in turn depends on the structural boundaries, a rigorous approach to this class of problems involves simultaneous solution of the coupled fluid mechanics and structural dynamics equations with the structural response and the fluid pressure as unknowns. This paper offers an alternate approach to the foregoing problems. 8 refs
Solutions to the Problem of Diminished Social Interaction
Peter K. Jonason; Gregory D. Webster; A. Elizabeth Lindsey
2008-01-01
Social animals, like humans, need to interact with others, but this is not always possible. When genuine social interaction is lacking, individuals may seek out or use sources of interaction that co-opt agency detection mechanisms vis-à-vis the human voice and images of people, called social snacking. Study 1 (N = 240) found that ratings of how alone participants felt were correlated with frequency of talking to themselves and using the TV for company. Study 2 (N = 66) was a daily diary study...
Seal, Kala Chand; Przasnyski, Zbigniew H.; Leon, Linda A.
2010-01-01
Do students learn to model OR/MS problems better by using computer-based interactive tutorials and, if so, does increased interactivity in the tutorials lead to better learning? In order to determine the effect of different levels of interactivity on student learning, we used screen capture technology to design interactive support materials for…
International Nuclear Information System (INIS)
Tang, H.T.; Nakamura, N.
1995-01-01
A 1/4-scale cylindrical reactor containment model was constructed in Hualien, Taiwan for foil-structure interaction (SSI) effect evaluation and SSI analysis procedure verification. Forced vibration tests were executed before backfill (FVT-1) and after backfill (FVT-2) to characterize soil-structure system characteristics under low excitations. A number of organizations participated in the pre-test blind prediction and post-test correlation analyses of the forced vibration test using various industry familiar methods. In the current study, correlation analyses were performed using a three-dimensional flexible volume substructuring method. The results are reported and soil property sensitivities are evaluated in the paper. (J.P.N.)
Albert Einstein and the problem of unification of fundamental interactions
International Nuclear Information System (INIS)
Arodz, H.
1986-01-01
Albert Einstein's attempts to construct a unified field theory of electromagnetic and gravitational interactions are presented and commented from the standpoint of the present day physics. 16 refs. (author)
Yang, Deheng; Li, Yadong; Liu, Xinyi; Cao, Yue; Gao, Yi; Shen, Y Ron; Liu, Wei-Tao
2018-04-24
The facet-specific interaction between molecules and crystalline catalysts, such as titanium dioxides (TiO 2 ), has attracted much attention due to possible facet-dependent reactivity. Using surface-sensitive sum-frequency vibrational spectroscopy, we have studied how methanol interacts with different common facets of crystalline TiO 2 , including rutile(110), (001), (100), and anatase(101), under ambient temperature and pressure. We found that methanol adsorbs predominantly in the molecular form on all of the four surfaces, while spontaneous dissociation into methoxy occurs preferentially when these surfaces become defective. Extraction of Fermi resonance coupling between stretch and bending modes of the methyl group in analyzing adsorbed methanol spectra allows determination of the methanol adsorption isotherm. The isotherms obtained for the four surfaces are nearly the same, yielding two adsorbed Gibbs free energies associated with two different adsorption configurations singled out by ab initio calculations. They are ( i ) ∼-20 kJ/mol for methanol with its oxygen attached to a low-coordinated surface titanium, and ( ii ) ∼-5 kJ/mol for methanol hydrogen-bonded to a surface oxygen and a neighboring methanol molecule. Despite similar adsorption energetics, the Fermi resonance coupling strength for adsorbed methanol appears to depend sensitively on the surface facet and coverage.
Interaction range perturbation theory for three-particle problem
International Nuclear Information System (INIS)
Simenog, I.V.; Shapoval, D.V.
1988-01-01
The limit of zero interaction range is correctly defined for a system of three spinless particles and three particles in a doublet state. The scattering amplitude is expanded with respect to the interaction range r, and the corrections of order r ln r, r, and r 2 ln2 r are found. An explicit model-independent asymptotic expression is obtained for the scattering amplitude in terms of the scattering length, and its accuracy is established
Transfer vibration through spine
Benyovszky, Adam
2012-01-01
Transfer Vibration through Spine Abstract In the bachelor project we deal with the topic of Transfer Vibration through Spine. The problem of TVS is trying to be solved by the critical review method. We analyse some diagnostic methods and methods of treatment based on this principle. Close attention is paid to the method of Transfer Vibration through Spine that is being currently solved by The Research Institute of Thermomechanics in The Czech Academy of Sciences in cooperation with Faculty of...
Molenaar, Dylan; Middeldorp, Christel; van Beijsterveldt, Toos; Boomsma, Dorret I
2015-01-01
This study tested for Genotype × Environment (G × E) interaction on behavioral and emotional problems in children using new methods that do not require identification of candidate genes or environments, can distinguish between interaction with shared and unique environment, and are insensitive to scale effects. Parental ratings of problem behavior from 14,755 twin pairs (5.3 years, SD = 0.22) indicated G × E interaction on emotional liability, social isolation, aggression, attention problems, dependency, anxiety, and physical coordination. Environmental influences increased in children who were genetically more predisposed to problem behavior, with ~20% of the variance due to G × E interaction (8% for anxiety to 37% for attention problems). Ignoring G × E interaction does not greatly bias heritability estimates, but it does offer a comprehensive model of the etiology for childhood problems. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.
International Nuclear Information System (INIS)
Maherani, Behnoush; Arab-Tehrany, Elmira; Rogalska, Ewa; Korchowiec, Beata; Kheirolomoom, Azadeh; Linder, Michel
2013-01-01
Nanoliposomes are commonly used as a carrier in controlled release drug delivery systems. Controlled release formulations can be used to reduce the amount of drug necessary to cause the same therapeutic effect in patients. One of the most noticeable factors in release profiles is the strength of the drug-carrier interaction. To adjust the pharmacokinetic and pharmacodynamic properties of therapeutic agents, it is necessary to optimize the drug-carrier interaction. To get a better understanding of this interaction, large unilamellar liposomes containing calcein were prepared using 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1,2-palmitoyl-sn-glycero-3-phosphocholine, and a mixture of them; calcein was chosen as a model polar molecule of biological interest. The thermodynamic changes induced by calcein and its location in lipid bilayers were determined by differential scanning calorimetry and Raman spectroscopy, respectively. The results reveal that calcein has no significant influence on thermotropic properties of the lipid membrane, but causing the abolition of pre-transition. The decreasing of the pre-transition can be ascribed to the presence of calcein near the hydrophilic cooperative zone of the bilayer. The change in intensity of the Raman peaks represents the interaction of calcein with choline head groups. Moreover, the impact of calcein on phosphoglyceride Langmuir layers spread at the air–water interface was studied using surface pressure-area and surface potential-area isotherms, as well as polarization-modulation infrared reflection–absorption spectroscopy and Brewster angle microscopy. The results obtained indicate that calcein introduce no major modification on the systems prepared with pure lipids
Two-center Coulomb problem with Calogero interaction
Energy Technology Data Exchange (ETDEWEB)
Hakobyan, T., E-mail: tigran.hakobyan@ysu.am; Nersessian, A., E-mail: arnerses@ysu.am [Armenia Tomsk Polytechnic University, Yerevan State University (Russian Federation)
2017-03-15
We show that the Calogero-type perturbation preserves the integrability and partial separation of variables for the Stark–Coulomb and two-center Coulomb problems, and present the explicit expressions of their constants of motion. We reveal that this perturbation preserves the spectra of initial systems, but leads to the change of degree of degeneracy.
Vortex induced vibrations in gapped restrainted pipes
International Nuclear Information System (INIS)
Veloso, P. de A.A.; Loula, A.F.D.
1984-01-01
The vortex induced vibration problem of gapped restrained piping is solved numerically. The model proposed by Skop-Griffin is used to describe the pipe-fluid interaction. The variational formulation is obtained modeling the gapped restraints as non-linear elastic springs. The regularized problem is solved using a finite element discretization for the spatial domain. In the time domain a finite difference discretization is used for the lift coefficient equatin and a Newmark discretization for the equation of motion. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Bhoyar, Priyanka D. [Department of Physics, R.T.M. Nagpur University, Nagpur, 440033 (India); Brik, M.G., E-mail: brik@ut.ee [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu, 50411 (Estonia); Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668, Warsaw (Poland); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200, Czestochowa (Poland); Dhoble, S.J., E-mail: sjdhoble@rediffmail.com [Department of Physics, R.T.M. Nagpur University, Nagpur, 440033 (India)
2016-08-15
Electron-vibrational interaction (EVI) in interconfigurational 5d-4f transition of Ce{sup 3+}-doped alkaline-earth chlorophosphates, also known as apatites, is studied for the first time in this work. Using the configurational coordinate model, the main EVI parameters such as Huang-Rhys factor, effective phonon energy and the zero-phonon line (ZPL) position are determined for all samples studied. Photoluminescence characteristics of these compounds are utilized to estimate EVI parameters. As a reliable test validating the obtained results, the emission band shape of was modeled to yield good agreement with experimental emission spectra. The values of EVI parameters were systematically compared for all studied materials as well as with similar systems with halide ions. - Highlights: • EVI in Ce{sup 3+}-doped alkaline-earth halochlorophosphates is studied for the first time in this work. • The EVI parameters are estimated using the configurational coordinate model. • Estimated EVI parameters are validated by modeling emission spectra. • Parameters are systematically compared.
Flow-Induced Vibration of Circular Cylindrical Structures
Energy Technology Data Exchange (ETDEWEB)
Chen, Shoei-Sheng [Argonne National Lab. (ANL), Argonne, IL (United States). Components Technology Division
1985-06-01
Flow-induced vibration is a term to denote those phenomena associated with the response of structures placed in or conveying fluid flow. More specifically, the terra covers those cases in which an interaction develops between fluid-dynamic forces and the inertia, damping or elastic forces in the structures. The study of these phenomena draws on three disciplines: (1) structural mechanics, (2) mechanical vibration, and (3) fluid dynamics. The vibration of circular cylinders subject to flow has been known to man since ancient times; the vibration of a wire at its natural frequency in response to vortex shedding was known in ancient Greece as aeolian tones. But systematic studies of the problem were not made until a century ago when Strouhal established the relationship between vortex shedding frequency and flow velocity for a given cylinder diameter. The early research in this area has beer summarized by Zdravkovich (1985) and Goldstein (1965). Flow-induced structural vibration has been experienced in numerous fields, including the aerospace industry, power generation/transmission (turbine blades, heat exchanger tubes, nuclear reactor components), civil engineering (bridges, building, smoke stacks), and undersea technology. The problems have usually been encountered or created accidentally through improper design. In most cases, a structural or mechanical component, designed to meet specific objectives, develops problems when the undesired effects of flow field have not been accounted for in the design. When a flow-induced vibration problem is noted in the design stage, the engineer has different options to eliminate the detrimental vibration. Unfortunately, in many situations, the problems occur after the components are already in operation; the "fix" usually is very costly. Flow-induced vibration comprises complex and diverse phenomena; subcritical vibration of nuclear fuel assemblies, galloping of transmission lines, flutter of pipes conveying fluid, and whirling
Tubino, Federica
2018-03-01
The effect of human-structure interaction in the vertical direction for footbridges is studied based on a probabilistic approach. The bridge is modeled as a continuous dynamic system, while pedestrians are schematized as moving single-degree-of-freedom systems with random dynamic properties. The non-dimensional form of the equations of motion allows us to obtain results that can be applied in a very wide set of cases. An extensive Monte Carlo simulation campaign is performed, varying the main non-dimensional parameters identified, and the mean values and coefficients of variation of the damping ratio and of the non-dimensional natural frequency of the coupled system are reported. The results obtained can be interpreted from two different points of view. If the characterization of pedestrians' equivalent dynamic parameters is assumed as uncertain, as revealed from a current literature review, then the paper provides a range of possible variations of the coupled system damping ratio and natural frequency as a function of pedestrians' parameters. Assuming that a reliable characterization of pedestrians' dynamic parameters is available (which is not the case at present, but could be in the future), the results presented can be adopted to estimate the damping ratio and natural frequency of the coupled footbridge-pedestrian system for a very wide range of real structures.
International Nuclear Information System (INIS)
Saini, G S S; Singh, Sukhwinder; Kumar, Ranjan; Tripathi, S K; Kaur, Sarvpreet; Sathe, Vasant
2009-01-01
Thin films of zinc phthalocyanine have been deposited on KBr and glass substrates by the thermal evaporation method and characterized by the x-ray diffraction, optical, infrared and Raman techniques. The observed x-ray diffraction and infrared absorption spectra of as-deposited thin films suggest the presence of an α crystalline phase. Infrared and Raman spectra of thin films after exposure to vapours of ammonia and methanol have also been recorded. Shifts in the position of some IR and Raman bands in the spectra of exposed films have been observed. Some bands also show changes in their intensity on exposure. Increased charge on the phthalocyanine ring and out-of-plane distortion of the core due to interaction between zinc phthalocyanine and vapour molecules involving the fifth coordination site of the central metal ion may be responsible for the band shifts. Changes in the intensity of bands are interpreted in terms of the lowering of molecular symmetry from D 4h to C 4v due to doming of the core. Molecular parameters and Mulliken atomic charges of zinc phthalocyanine and its complexes with methanol and ammonia have been calculated from density functional theory. The binding energy of the complexes have also been calculated. Calculated values of the energy for different complexes suggest that axially coordinated vapour molecules form the most stable complex. Calculated Mulliken atomic charges show net charge transfer from vapour molecules to the phthalocyanine ring for the most stable complex.
Use of Lanczos vectors in fluid/structure interaction problems
International Nuclear Information System (INIS)
Jeans, R.; Mathews, I.C.
1992-01-01
The goals of any numerical computational technique used for the solution of structural acoustics problems in the exterior infinite domain should be of accuracy with rapid convergence, robustness, and computational efficiency. A computer program has been developed to achieve each of these three goals. Accuracy and robustness in the numerical representation of the integral equations used to represent the infinite fluid was attained through the use of boundary element implementations of the surface Helmholtz integral equations. The computational efficiency was resolved through the use of Lanczos vectors to model the deformation characteristics of the structure. The authors have developed collocation and variational techniques to overcome the difficulties previously encountered in the numerical implementation of the hypersingular integral operator. The Cauchy singularity present in the integral formulation is made numerically amenable through the use of tangential derivatives in both the collocation and variational techniques. The variational approach has the advantage that the resulting added fluid mass term is symmetric and combines efficiently with a finite element approximation of the structural elastic response. Several different strategies making use of the Lanczos vectors have been investigated. The first involved the use of Lanczos vectors solely to characterize the structural response. This reduced form of the structural dynamical matrix was then substituted back into a Burton and Miller formulation of the acoustic problem. The second strategy investigated involved forming the complex Lanzcos vectors of the dynamical matrix formed from the addition of a symmetrical added fluid matrix to the structural mass matrix. The size of resultant matrix equation set solved at each frequency for this strategy is determined by the number of Lanczos vectors used. 19 refs., 10 figs., 2 tabs
Directory of Open Access Journals (Sweden)
M.S. Osman
2018-03-01
Full Text Available In this paper, an interactive approach for solving multi-level multi-objective fractional programming (ML-MOFP problems with fuzzy parameters is presented. The proposed interactive approach makes an extended work of Shi and Xia (1997. In the first phase, the numerical crisp model of the ML-MOFP problem has been developed at a confidence level without changing the fuzzy gist of the problem. Then, the linear model for the ML-MOFP problem is formulated. In the second phase, the interactive approach simplifies the linear multi-level multi-objective model by converting it into separate multi-objective programming problems. Also, each separate multi-objective programming problem of the linear model is solved by the ∊-constraint method and the concept of satisfactoriness. Finally, illustrative examples and comparisons with the previous approaches are utilized to evince the feasibility of the proposed approach.
Czech Academy of Sciences Publication Activity Database
Hreha, P.; Radvanská, A.; Knapčíková, L.; Krolczyk, G.; Legutko, S.; Królczyk, J. B.; Hloch, Sergej; Monka, P.
2015-01-01
Roč. 22, č. 2 (2015), s. 315-326 ISSN 0860-8229 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive water jet * surface topography * material vibration * vibration measurement Subject RIV: JQ - Machines ; Tools Impact factor: 1.140, year: 2015 http://www.metrology.pg.gda.pl/archives.html
Lee, Chwee Beng
2010-01-01
This study examines the interactions between problem solving and conceptual change in an elementary science class where students build system dynamic models as a form of problem representations. Through mostly qualitative findings, we illustrate the interplay of three emerging intervening conditions (epistemological belief, structural knowledge…
Berge, Maria; Danielsson, Anna T.
2013-01-01
The purpose of this article is to explore how a group of four university physics students addressed mechanics problems, in terms of student direction of attention, problem solving strategies and their establishment of and ways of interacting. Adapted from positioning theory, the concepts "positioning" and "storyline" are used to describe and to…
Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel
2016-01-01
In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…
Molenaar, D.; Middeldorp, C.; van Beijsterveldt, T.; Boomsma, D.I.
2015-01-01
This study tested for Genotype × Environment (G × E) interaction on behavioral and emotional problems in children using new methods that do not require identification of candidate genes or environments, can distinguish between interaction with shared and unique environment, and are insensitive to
Vendlinski, Matthew K.; Lemery-Chalfant, Kathryn; Essex, Marilyn J.; Goldsmith, H. Hill
2011-01-01
Background: Identifying how genetic risk interacts with experience to predict psychopathology is an important step toward understanding the etiology of mental health problems. Few studies have examined genetic risk by experience interaction (GxE) in the development of childhood psychopathology. Methods: We used both co-twin and parent mental…
Tee, Abi; Reed, Phil
2017-01-01
Pupils with autism spectrum disorder (ASD) received 6 months of intensive interaction or treatment as usual. They were assessed for behaviour problems at the start and end of the period, and changes were related to child and parent factors. Intensive interaction did not offer any greater advantages to child behaviour than treatment as usual.…
Molenaar, D.; Middeldorp, C.M.; van Beijsterveldt, C.E.M.; Boomsma, D.I.
2015-01-01
This study tested for Genotype × Environment (G × E) interaction on behavioral and emotional problems in children using new methods that do not require identification of candidate genes or environments, can distinguish between interaction with shared and unique environment, and are insensitive to
Interacting dark sector and the coincidence problem within the scope of LRS Bianchi type I model
Muharlyamov, Ruslan K.; Pankratyeva, Tatiana N.
2018-05-01
It is shown that a suitable interaction between dark energy and dark matter in locally rotationally symmetric (LRS) Bianchi-I space-time can solve the coincidence problem and not contradict the accelerated expansion of present Universe. The interaction parameters are estimated from observational data.
Hartley, Sigan L.; Papp, Lauren M.; Blumenstock, Shari; Floyd, Frank; Goetz, Greta L.
2016-01-01
The vulnerability-stress-adaptation model guided this examination of the impact of daily fluctuations in the symptoms and co-occurring behavior problems of children with autism spectrum disorder (ASD) on parents’ couple problem-solving interactions in natural settings and as these interactions spontaneously occur. A 14-day daily diary was completed by mothers and fathers in 176 families who had a child with ASD. On each day of the diary, parents separately reported on the child with ASD's daily level of symptoms and co-occurring behavior problems and the topic and level of negative affect in their most meaningful or important daily couple problem-solving interaction. Multilevel modeling was used to account for the within-person, within-couple nested structure of the data. Results indicated that many parents are resilient to experiencing a day with a high level of child ASD symptoms and co-occurring behavior problems and do not report more negative couple problem-solving interactions. However, household income, level of parental broader autism phenotype, and presence of multiple children with special care needs served as vulnerability factors in that they were related to a higher overall rating of negative affect in couple interactions and moderated the impact of reporting a day with a high level of child ASD symptoms and co-occurring behavior problems on next-day ratings of negative couple problem-solving interactions. The magnitude of these effects was small. Understanding mechanisms that support adaptive couple interactions in parents of children with ASD is critical for promoting best outcomes. PMID:27336179
Review of vibration effect during piling installation to adjacent structure
Rahman, Nurul Aishah Abd; Musir, Adhilla Ainun; Dahalan, Nurol Huda; Ghani, Abdul Naser Abdul; Khalil, Muhamad Kasimi Abd
2017-12-01
Basically, many major structures across the world such as towers, high rise building, houses and bridges utilize pile as a support material. The use of pile is important to strengthen the structures. However, this has led to another problem to the nearest surrounding structures resulted from pile driving. As part of a construction work, unavoidable pile driving activity generates a vibration towards the surrounding structures if uncontrolled may cause damage to the adjacent structure. As the current construction works are frequently located in urban areas where the distance between the nearest building structures is not far, vibration may cause damage to nearby structures. Knowing which part of the building that is mostly affected by various vibration patterns from the impact of pile driving is crucial. Thus, it is very important to predict the impact of vibration during piling installation work. This paper reviews the vibrations generated by piling activity toward surrounding structures in terms sources of vibration, impact of piling installation, pile-soil interaction, and factors affecting the vibration impact of building as well as to study the parameters involved in vibration generation during piling works.
De Kruijf, J.
2007-01-01
Water management issues are often complex, unstructured problems. They are complex, because they are part of a natural and human system wich consists of many diverse, interdependent elements, e.g. upstream events influence the water system downstream, different interdependent goverment layers,
Structural Stability and Vibration
DEFF Research Database (Denmark)
Wiggers, Sine Leergaard; Pedersen, Pauli
This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....
Energy Technology Data Exchange (ETDEWEB)
Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.
1983-01-01
The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.
Energy Technology Data Exchange (ETDEWEB)
Kirszenbaum, Marek
1976-06-14
Luteoskyrin and rugulosin are two naturally occurring yellow pigments with hydroxylated bis-anthraquinonic structures. They cause serious liver disorders in man due to the formation of complexes of the type pigment-Mg{sup 2+}-DNA. In order to elucidate the structure of these complexes we have studied the vibrational spectra of some model systems, namely 1-hydroxy- and 1,4-dihydroxyanthraquinone, their magnesium chelate complexes, and a series of simpler complexes as the acetylacetonates of some divalent metals. Complete vibrational assignment are proposed for anthraquinone-9,10, the two hydroxylated and deureroxylated derivatives and their magnesium complexes. The substitution of {sup 26}Mg in place of {sup 24}Mg in these complexes enabled us to assign the Mg-O vibrations; their number corresponds to a hexa-coordinated metal in the acetylacetonate case and to a tetra-coordinated structure in the anthraquinone-olates complexes. The position of the ν C=0 and ν C-0 vibrations bands in the complexes shows that the bonds in the chelated ring of Mg(1-O-AQ){sub 2} retains their single and double bond characteristic whereas in the CMg(1,4-O{sub 2},-AQ){sub n} a resonating structure appears in the ring. The study of the IR and R spectra of the complexes enabled a tetrahedral structure to be proposed for the oxygens around the magnesium. Finally it was noted that the Mg-O bonds possessed a high degree of covalent character. (author) [French] La luteoskyrine et la rugulosine, deux pigments jaunes de structure de bis-anthraquinones hydroxylees, provoquent des troubles hepatiques graves par la formation des complexes pigment-Mg{sup 2+}-ADN. Dans le but d'eclaircir la structure de ces complexes nous avons etudie, par spectrometrie de vibrations, les systemes-modeles suivants: la 1-hydroxy- et la 1,4-dihydroxyanthraquinones, leurs complexes magnesies et une serie des complexes plus simples, tels que les acetylacetonates. de metaux divalents. Nous avons propose une attribution
Czech Academy of Sciences Publication Activity Database
Ferfecki, P.; Zapoměl, Jaroslav; Kozánek, Jan
2017-01-01
Roč. 104, February (2017), s. 1-11 ISSN 0965-9978 R&D Projects: GA ČR GA15-06621S Institutional support: RVO:61388998 Keywords : magnetorheological squeeze film dampers * magnetorheological oils * closed form formulas * multiphysical problem Subject RIV: JR - Other Machinery OBOR OECD: Mechanical engineering Impact factor: 3.000, year: 2016
Directory of Open Access Journals (Sweden)
Der-you Kao
2017-10-01
Full Text Available Without self-interaction corrections or the use of hybrid functionals, approximations to the density-functional theory (DFT often favor intermediate spin systems over high-spin systems. In this paper, we apply the recently proposed Fermi–Löwdin-orbital self-interaction corrected density functional formalism to a simple tetra-coordinated Fe(II-porphyrin molecule and show that the energetic orderings of the S = 1 and S = 2 spin states are changed qualitatively relative to the results of Generalized Gradient Approximation (developed by Perdew, Burke, and Ernzerhof, PBE-GGA and Local Density Approximation (developed by Perdew and Wang, PW92-LDA. Because the energetics, associated with changes in total spin, are small, we have also calculated the second-order spin–orbit energies and the zero-point vibrational energies to determine whether such corrections could be important in metal-substituted porphins. Our results find that the size of the spin–orbit and vibrational corrections to the energy orderings are small compared to the changes due to the self-interaction correction. Spin dependencies in the Infrared (IR/Raman spectra and the zero-field splittings are provided as a possible means for identifying the spin in porphyrins containing Fe(II.
Indian Academy of Sciences (India)
The vibrating string problem is the source of much mathe- matics and physics. ... ing this science [mechanics],and the art of solving the problems pertaining to it, to .... used tools for finding maxima and minima of functions of several variables.
A Boundary Element Solution to the Problem of Interacting AC Fields in Parallel Conductors
Directory of Open Access Journals (Sweden)
Einar M. Rønquist
1984-04-01
Full Text Available The ac fields in electrically insulated conductors will interact through the surrounding electromagnetic fields. The pertinent field equations reduce to the Helmholtz equation inside each conductor (interior problem, and to the Laplace equation outside the conductors (exterior problem. These equations are transformed to integral equations, with the magnetic vector potential and its normal derivative on the boundaries as unknowns. The integral equations are then approximated by sets of algebraic equations. The interior problem involves only unknowns on the boundary of each conductor, while the exterior problem couples unknowns from several conductors. The interior and the exterior problem are coupled through the field continuity conditions. The full set of equations is solved by standard Gaussian elimination. We also show how the total current and the dissipated power within each conductor can be expressed as boundary integrals. Finally, computational results for a sample problem are compared with a finite difference solution.
International Nuclear Information System (INIS)
Pirali, O.; Gruet, S.; Kisiel, Z.; Goubet, M.; Martin-Drumel, M. A.; Cuisset, A.; Hindle, F.; Mouret, G.
2015-01-01
Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C 9 H 7 N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν 45 and ν 44 vibrational modes (located at about 168 cm −1 and 178 cm −1 , respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations
Pirali, O.; Kisiel, Z.; Goubet, M.; Gruet, S.; Martin-Drumel, M. A.; Cuisset, A.; Hindle, F.; Mouret, G.
2015-03-01
Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C9H7N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν45 and ν44 vibrational modes (located at about 168 cm-1 and 178 cm-1, respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations.
Directory of Open Access Journals (Sweden)
A. S. Koval
2010-01-01
Full Text Available The paper considers problems concerning electromechanical interaction in elevators with an adjustable asynchronous electric drive equipped with the vector control systems under direct torque control and direct torque control with pulse-width modulator. A mathematical description of electromechanical elevator system with due account of nonlinearity of the worm gear is given in the paper. The paper presents a simplified circuit design of a control system with a fuzzy speed controller. It has been established that the factor of electromechanical interaction in electromechanical system with the adjustable asynchronous electric drive and an fuzzy speed controller is within the range which corresponds to existence of the essential electromechanical interaction.
[Theraplay--interactive therapy between parent and child in juvenile mental problems].
Mäkelä, Jukka; Salo, Saara
2011-01-01
Parent-child interaction therapy is an effective means to prevent and correct children's mental problems. Interactive interventions shown to be effective share common features: the focus is on the support of the parent's sensitivity, positive guiding ability and reflective capability. Simultaneous participation of both parents in the therapy, application of video observation and affirmation of positive collaborative relationship with the parents seem to increase the efficacy of the intervention. The above-mentioned elements are utilized in an interactive therapy method called Theraplay.
Energy Technology Data Exchange (ETDEWEB)
Alekhin, S.A.; Denisenko, V.V.; Dzhalalov, M.G.; Kirichek, F.P.; Pitatel, Yu.A.; Prokopov, L.I.; Tikhonov, Yu.P.
1982-01-01
A vibration sieve is proposed which includes a vibration drive, a body and a screen installed on shock absorbers, a device for washing out the screen, and a subassembly for loading the material. To increase the operational reliability and effectiveness of the vibration sieve by improving the cleaning of the screen, the loading subassembly is equipped with a baffle with a lever which is hinged to it. The device for washing out the screen is made in the form of an electromagnet with a connecting rod, a switch and an eccentric, a friction ratchet mechanism and sprinkling systems. Here, the latter are interconnected, using a connecting rod, while the sprinkling system is installed on rollers under the screen. The electromagnetic switch is installed under the lever. The body is made with grooves for installing the sprinkling system. The vibration sieve is equipped with a switch which interacts with the connecting rod. The friction ratchet mechanism is equipped with a lug.
International Nuclear Information System (INIS)
Pardhi, Shilpa A.; Nair, Govind B.; Sharma, Ravi; Dhoble, S.J.
2017-01-01
Combustion synthesis method was employed for the synthesis of green-emitting monoclinic SrAl 2 O 4 :Eu 2+ , Dy 3+ phosphors. The phase-purity of the prepared phosphors were examined using X-ray diffraction (XRD). The prepared phosphors exhibited green light emission with the peak centred at 510 nm, under 350 nm UV excitation. The excitation and emission spectra were analysed and the parameters of electron-vibrational interaction (EVI), such as the Huang–Rhys factor, effective phonon energy and zero-phonon line position were estimated using the spectrum fitting method. Thermoluminescence (TL) behaviour of the as-prepared phosphors were analysed for UV and 137 Cs γ-ray source irradiation. TL glow curves for UV-irradiated SrAl 2 O 4 :Eu 2+ , Dy 3+ phosphors were analysed. - Highlights: • Photoluminescence and thermoluminescence properties of SrAl 2 O 4 :Eu 2+ ,Dy 3+ phosphors were analysed. • Electron-vibrational interaction (EVI) parameters of SrAl 2 O 4 :Eu 2+ ,Dy 3+ phosphors were determined. • The phosphors are found to exhibit green light emission.
Singh, Chandralekha
2016-01-01
We discuss the development of interactive video tutorial-based problems to help introductory physics students learn effective problem solving heuristics. The video tutorials present problem solving strategies using concrete examples in an interactive environment. They force students to follow a systematic approach to problem solving and students are required to solve sub-problems (research-guided multiple choice questions) to show their level of understanding at every stage of prob lem solvin...
Endendijk, J. J.; de Bruijn, A.; van Bakel, H.J.A.; Wijnen, H.; Pop, V.J.M.; van Baar, A.L.
2017-01-01
The role of mother-infant interaction quality is studied in the relation between prenatal maternal emotional symptoms and child behavioral problems. Healthy pregnant, Dutch women (N = 96, M = 31.6, SD = 3.3) were allocated to the "exposed group" (n = 46), consisting of mothers with high levels of
Preschool Interactive Peer Play Mediates Problem Behavior and Learning for Low-Income Children
Bulotsky-Shearer, Rebecca J.; Bell, Elizabeth R.; Romero, Sandy L.; Carter, Tracy M.
2012-01-01
The study employed a developmental, ecological, and resiliency framework to examine whether interactive peer play competencies mediated associations between teacher reported problem behavior and learning outcomes for a representative sample of urban low-income children (N = 507 across 46 Head Start classrooms). Structural equation models provided…
A Quintessence Problem in Self-interacting Brans-Dicke Theory
Chakraborty, Subenoy; Chakraborty, N. C.; Debnath, Ujjal
2003-01-01
A quintessence scalar field in self-interacting Brans-Dicke theory is shown to give rise to a non-decelerated expansion of the present universe for open, flat and closed models. Along with providing a non-decelerating solution, it can potentially solve the flatness problem too.
Schmidt, Jonathan D.; Bednar, Mary K.; Willse, Lena V.; Goetzel, Amanda L.; Concepcion, Anthony; Pincus, Shari M.; Hardesty, Samantha L.; Bowman, Lynn G.
2017-01-01
A primary goal of behavioral interventions is to reduce dangerous or inappropriate behavior and to generalize treatment effects across various settings. However, there is a lack of research evaluating generalization of treatment effects while individuals with functionally equivalent problem behavior interact with each other. For the current study,…
Radiation interaction with substance and simulation of the nuclear geophysical problems
International Nuclear Information System (INIS)
Pshenichnyj, G.A.
1982-01-01
Main processes of interaction of various types of nuclear radiation (NR) with substance, NR transport theory and physical- mathematical simulation of basic problems of nuclear geophysics (NG) are considered. General classification of NG methods according to the type of the detected radiation with a more detailed division according to the physical essence of the interaction process employed is given. Direct NG problems are related to the study of space- energy radiation distribution in substance under certain cross sections of elementary interaction processes, substance properties and specified geometric conditions. The theoretical solution of the direct problems is based on using mathematical models of radiation transport in specified media. The NG inverse problems consist in determining element composition and other medium properties by data of integral or spectral characteristics of NR fields measurements. The NR in the course of its transport in substance can experience dozens of elementary interaction processes, the predominance of this or that process depending on NR energy, medium properties and geometric measurement conditions. This explains a wide NG method diversity. The Monte Carlo method application in the NR transport theory and various methods of decreasing calculations labour input are considered [ru
EZLP: An Interactive Computer Program for Solving Linear Programming Problems. Final Report.
Jarvis, John J.; And Others
Designed for student use in solving linear programming problems, the interactive computer program described (EZLP) permits the student to input the linear programming model in exactly the same manner in which it would be written on paper. This report includes a brief review of the development of EZLP; narrative descriptions of program features,…
An interactive problem-solving approach to teach traumatology for medical students.
Abu-Zidan, Fikri M; Elzubeir, Margaret A
2010-08-13
We aimed to evaluate an interactive problem-solving approach for teaching traumatology from perspectives of students and consider its implications on Faculty development. A two hour problem-solving, interactive tutorial on traumatology was structured to cover main topics in trauma management. The tutorial was based on real cases covering specific topics and objectives. Seven tutorials (5-9 students in each) were given by the same tutor with the same format for fourth and fifth year medical students in Auckland and UAE Universities (n = 50). A 16 item questionnaire, on a 7 point Likert-type scale, focusing on educational tools, tutor-based skills, and student-centered skills were answered by the students followed by open ended comments. The tutorials were highly ranked by the students. The mean values of educational tools was the highest followed by tutor-centered skills and finally student-centered skills. There was a significant increase of the rating of studied attributes over time (F = 3.9, p = 0.004, ANOVA). Students' open ended comments were highly supportive of the interactive problem-solving approach for teaching traumatology. The interactive problem-solving approach for tutorials can be an effective enjoyable alternative or supplement to traditional instruction for teaching traumatology to medical students. Training for this approach should be encouraged for Faculty development.
Kaliski, S
2013-01-01
This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth
Zhao, Z.; van Albada, G.D.; Tirado-Ramos, A.; Zajac, K.; Sloot, P.M.A.
2003-01-01
In Problem Solving Environments (PSE), Interactive Simulation Systems (ISS) are an important interactive mode for studying complex scientific problems. But efficient and user-friendly tools for designing interactive experiments lack in many PSEs. Mechanisms, such as data flow and control flow
Directory of Open Access Journals (Sweden)
Mark A. McDaniel
2016-11-01
Full Text Available The existing literature indicates that interactive-engagement (IE based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present study included both pre- and post-course conceptual-learning assessments and a new quantitative physics problem-solving assessment that included three representative conservation of energy problems from a first-semester calculus-based college physics course. Scores for problem translation, plan coherence, solution execution, and evaluation of solution plausibility were extracted for each problem. Over 450 students in three IE-based sections and two traditional lecture sections taught at the same university during the same semester participated. As expected, the IE-based course produced more robust gains on a Force Concept Inventory than did the lecture course. By contrast, when the full sample was considered, gains in quantitative problem solving were significantly greater for lecture than IE-based physics; when students were matched on pre-test scores, there was still no advantage for IE-based physics on gains in quantitative problem solving. Further, the association between performance on the concept inventory and quantitative problem solving was minimal. These results highlight that improved conceptual understanding does not necessarily support improved quantitative physics problem solving, and that the instructional method appears to have less bearing on gains in quantitative problem solving than does the kinds of problems emphasized in the courses and homework and the overlap of these problems to those on the assessment.
Energy Technology Data Exchange (ETDEWEB)
Pirali, O.; Gruet, S. [AILES Beamline, Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette cedex (France); Institut des Sciences Moléculaires d’Orsay, UMR8214 CNRS – Université Paris-Sud, Bât. 210, 91405 Orsay cedex (France); Kisiel, Z. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Goubet, M. [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR 8523 CNRS - Université Lille 1, Bâtiment P5, F-59655 Villeneuve d’Ascq Cedex (France); Martin-Drumel, M. A.; Cuisset, A.; Hindle, F.; Mouret, G. [Laboratoire de Physico-Chimie de l’Atmosphère, EA-4493, Université du Littoral – Côte d’Opale, 59140 Dunkerque (France)
2015-03-14
Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C{sub 9}H{sub 7}N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν{sub 45} and ν{sub 44} vibrational modes (located at about 168 cm{sup −1} and 178 cm{sup −1}, respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations.
Childhood problem behavior and parental divorce: evidence for gene-environment interaction.
Robbers, Sylvana; van Oort, Floor; Huizink, Anja; Verhulst, Frank; van Beijsterveldt, Catharina; Boomsma, Dorret; Bartels, Meike
2012-10-01
The importance of genetic and environmental influences on children's behavioral and emotional problems may vary as a function of environmental exposure. We previously reported that 12-year-olds with divorced parents showed more internalizing and externalizing problems than children with married parents, and that externalizing problems in girls precede and predict later parental divorce. The aim of the current study was to investigate as to whether genetic and environmental influences on internalizing and externalizing problems were different for children from divorced versus non-divorced families. Maternal ratings on internalizing and externalizing problems were collected with the Child Behavior Checklist in 4,592 twin pairs at ages 3 and 12 years, of whom 367 pairs had experienced a parental divorce between these ages. Variance in internalizing and externalizing problems at ages 3 and 12 was analyzed with biometric models in which additive genetic and environmental effects were allowed to depend on parental divorce and sex. A difference in the contribution of genetic and environmental influences between divorced and non-divorced groups would constitute evidence for gene-environment interaction. For both pre- and post-divorce internalizing and externalizing problems, the total variances were larger for children from divorced families, which was mainly due to higher environmental variances. As a consequence, heritabilities were lower for children from divorced families, and the relative contributions of environmental influences were higher. Environmental influences become more important in explaining variation in children's problem behaviors in the context of parental divorce.
Reformulation of the covering and quantizer problems as ground states of interacting particles
Torquato, S.
2010-11-01
It is known that the sphere-packing problem and the number-variance problem (closely related to an optimization problem in number theory) can be posed as energy minimizations associated with an infinite number of point particles in d -dimensional Euclidean space Rd interacting via certain repulsive pair potentials. We reformulate the covering and quantizer problems as the determination of the ground states of interacting particles in Rd that generally involve single-body, two-body, three-body, and higher-body interactions. This is done by linking the covering and quantizer problems to certain optimization problems involving the “void” nearest-neighbor functions that arise in the theory of random media and statistical mechanics. These reformulations, which again exemplify the deep interplay between geometry and physics, allow one now to employ theoretical and numerical optimization techniques to analyze and solve these energy minimization problems. The covering and quantizer problems have relevance in numerous applications, including wireless communication network layouts, the search of high-dimensional data parameter spaces, stereotactic radiation therapy, data compression, digital communications, meshing of space for numerical analysis, and coding and cryptography, among other examples. In the first three space dimensions, the best known solutions of the sphere-packing and number-variance problems (or their “dual” solutions) are directly related to those of the covering and quantizer problems, but such relationships may or may not exist for d≥4 , depending on the peculiarities of the dimensions involved. Our reformulation sheds light on the reasons for these similarities and differences. We also show that disordered saturated sphere packings provide relatively thin (economical) coverings and may yield thinner coverings than the best known lattice coverings in sufficiently large dimensions. In the case of the quantizer problem, we derive improved upper
DEFF Research Database (Denmark)
Sørensen, Herman
1997-01-01
Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board......Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board...
Structural impact response for assessing railway vibration induced on buildings
Kouroussis, Georges; Mouzakis, Harris P.; Vogiatzis, Konstantinos E.
2018-03-01
Over the syears, the rapid growth in railway infrastructure has led to numerous environmental challenges. One such significant issue, particularly in urban areas, is ground-borne vibration. A common source of ground-borne vibration is caused by local defects (e.g. rail joints, switches, turnouts, etc.) that generate large amplitude excitations at isolated locations. Modelling these excitation sources is particularly challenging and requires the use of complex and extensive computational efforts. For some situations, the use of experiments and measured data offers a rapid way to estimate the effect of such defects and to evaluate the railway vibration levels using a scoping approach. In this paper, the problem of railway-induced ground vibrations is presented along with experimental studies to assess the ground vibration and ground borne noise levels, with a particular focus on the structural response of sensitive buildings. The behaviour of particular building foundations is evaluated through experimental data collected in Brussels Region, by presenting the expected frequency responses for various types of buildings, taking into account both the soil-structure interaction and the tramway track response. A second study is dedicated to the Athens metro, where transmissibility functions are used to analyse the effect of various Athenian building face to metro network trough comprehensive measurement campaigns. This allows the verification of appropriate vibration mitigation measures. These benchmark applications based on experimental results have been proved to be efficient to treat a complex problem encountered in practice in urban areas, where the urban rail network interacts with important local defects and where the rise of railway ground vibration problems has clearly been identified.
Directory of Open Access Journals (Sweden)
Ana-Raluca Chiriac
2006-01-01
Full Text Available Between structure, infrastructure (foundation and soil there is an effective interaction, which has to be taken into account as correctly as possible every time we do the calculation. This effective interaction can be analysed in a global form, considering on one hand the entire building, and on the other hand the soil -- establishment surface, or in an analytical form: we consider first the soil -- infrastructure (foundation interaction and then the structure -- infrastructure one. Without considering the interaction, we cannot make neither the calculation (for the soil according to the limiting deformation state which has to be compatible with the structure’s resistance system, nor calculation for the limiting resistance state, because the correct distribution of efforts along the contact surface between the soil and the structure is unknown, so we cannot determine the zones of plastical equilibrium in the soil massive and the conditions of limited equilibrium. Also, without considering the infrastructure, we cannot correctly calculate the efforts and the deformations which may occur in all resistance elements of the building. Therefore, we cannot talk about limiting state calculation without considering the interaction between the soil and the structure itself. The problem of interaction between building, on one hand and soil foundation, on the other hand, is not approached very much in the specialized literature, because of the big difficulties raised by summarizing all the factors that describe the structure and the environment, which would be more accessible to a practical calculation. A lot of buildings or elements of buildings standing on the soil or on another environment with finite rigidity can be taken into account as beams supported on a straining environment, (continuous foundations, resistance walls, longitudinal and transversal membranes of civil and industrial buildings, hydrotechnic works. Therefore, in the present paper we
Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel
2016-08-01
In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.
Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems
Zuchowski, Loïc; Brun, Michael; De Martin, Florent
2018-05-01
The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.
Mayasari, Ruth; Mawengkang, Herman; Gomar Purba, Ronal
2018-02-01
Land revitalization refers to comprehensive renovation of farmland, waterways, roads, forest or villages to improve the quality of plantation, raise the productivity of the plantation area and improve agricultural production conditions and the environment. The objective of sustainable land revitalization planning is to facilitate environmentally, socially, and economically viable land use. Therefore it is reasonable to use participatory approach to fullfil the plan. This paper addresses a multicriteria decision aid to model such planning problem, then we develop an interactive approach for solving the problem.
VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS
Directory of Open Access Journals (Sweden)
Smirnov Vladimir Alexandrovich
2012-10-01
Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.
International Nuclear Information System (INIS)
Bouzon Capelo, Silvia; Baranowska-Laczkowska, Angelika; Fernandez, Berta
2011-01-01
Graphical abstract: CO-Ne IPES. Highlights: → From the LPol, MLPol, and aug-pc-2 bases we obtained new bases for the evaluation of CO-Ne interaction energies. → We checked the bases on the evaluation of the rovibrational spectrum. → The results were satisfactory, being the new bases more efficient than those previously available. - Abstract: Recently we have derived new efficient basis sets for the evaluation of interaction energies in the X-Y (X, Y = He, Ne, Ar) van der Waals complexes. Here we extend the study to the CO-Ne complex. For this, we start with a systematic basis set study, where the LPol, MLPol and Jensen's aug-pc-2 basis sets are considered as starting point (for the Ne atom LPol bases are developed). As reference we take interaction energy results obtained with Dunning's augmented correlation consistent polarized valence basis sets. In all cases we test extensions with different sets of midbond functions. With the selected bases we evaluate CCSD(T) interaction potentials, and to check the potentials further, we obtain the ro-vibrational spectrum of the complex. The results are compared to the available experimental data.
Energy Technology Data Exchange (ETDEWEB)
Clabo, D.A. Jr.
1987-04-01
Inclusion of the anharmonicity normal mode vibrations (i.e., the third and fourth (and higher) derivatives of a molecular Born-Oppenheimer potential energy surface) is necessary in order to theoretically reproduce experimental fundamental vibrational frequencies of a molecule. Although ab initio determinations of harmonic vibrational frequencies may give errors of only a few percent by the inclusion of electron correlation within a large basis set for small molecules, in general, molecular fundamental vibrational frequencies are more often available from high resolution vibration-rotation spectra. Recently developed analytic third derivatives methods for self-consistent-field (SCF) wavefunctions have made it possible to examine with previously unavailable accuracy and computational efficiency the anharmonic force fields of small molecules.
International Nuclear Information System (INIS)
Clabo, D.A. Jr.
1987-04-01
Inclusion of the anharmonicity normal mode vibrations [i.e., the third and fourth (and higher) derivatives of a molecular Born-Oppenheimer potential energy surface] is necessary in order to theoretically reproduce experimental fundamental vibrational frequencies of a molecule. Although ab initio determinations of harmonic vibrational frequencies may give errors of only a few percent by the inclusion of electron correlation within a large basis set for small molecules, in general, molecular fundamental vibrational frequencies are more often available from high resolution vibration-rotation spectra. Recently developed analytic third derivatives methods for self-consistent-field (SCF) wavefunctions have made it possible to examine with previously unavailable accuracy and computational efficiency the anharmonic force fields of small molecules
Discrete and continuum links to a nonlinear coupled transport problem of interacting populations
Duong, M. H.; Muntean, A.; Richardson, O. M.
2017-07-01
We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.
Structural Stability and Vibration
DEFF Research Database (Denmark)
Wiggers, Sine Leergaard; Pedersen, Pauli
at the University of Southern Denmark, it reports on fundamental formulas and makes uses of graphical representation to promote understanding. Thanks to the emphasis put on analytical methods and numerical results, the book is meant to make students and engineers familiar with all fundamental equations...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....
Marmorstein, Naomi R
2017-09-01
Background: Energy drink consumption and sleep problems are both associated with alcohol use among adolescents. In addition, caffeine consumption (including energy drinks) is associated with sleep problems. However, information about how these three constructs may interact is limited. The goal of this study was to examine potential interactions between energy drink consumption and sleep problems in the concurrent prediction of alcohol use among young adolescents. Coffee and soda consumption were also examined for comparison. Methods: Participants from the Camden Youth Development Study were included ( n = 127; mean age = 13.1; 68% Hispanic, 29% African American) and questionnaire measures of frequency of caffeinated beverage consumption (energy drinks, coffee, and soda), sleep (initial insomnia, sleep disturbances, daytime fatigue, and sleep duration), and alcohol consumption were used. Regression analyses were conducted to examine interactions between caffeinated beverage consumption and sleep in the concurrent prediction of alcohol use. Results: Energy drink consumption interacted with initial insomnia and daytime fatigue to concurrently predict particularly frequent alcohol use among those with either of these sleep-related problems and energy drink consumption. The pattern of results for coffee consumption was similar for insomnia but reached only a trend level of significance. Results of analyses examining soda consumption were nonsignificant. Conclusions: Young adolescents who both consume energy drinks and experience initial insomnia and/or daytime fatigue are at particularly high risk for alcohol use. Coffee consumption appears to be associated with similar patterns. Longitudinal research is needed to explain the developmental pathways by which these associations emerge, as well as mediators and moderators of these associations.
Balta, Nuri; Awedh, Mohammad Hamza
2016-01-01
Advanced technology helps educational institutes to improve student learning performance and outcomes. In this study, our aim is to measure and assess student engagement and collaborative learning in engineering classes when using online technology in solving physics problems. The interactive response system used in this study is a collaborative learning tool that allows teachers to monitor their students’ response and progress in real time. Our results indicated that students have highly pos...
TPLOT: An interactive data management system for transient problems 3. Edition
International Nuclear Information System (INIS)
Doron, R.
1988-01-01
This report describes the use of an interactive data management system suitable for post-processing of transient structural problems. The system is designed for IBM compatible environment (TSO command procedures) and makes use of PLOT-10 (TEKTRONIX) for graphical output (time plots). Interfaces are provided for experimental data and for various programs used in fast reactor safety analysis (EURDYN, SEURBNUK, ASTARTE, FRAP-T5, RODSWELL, SIMMER, TRACRUF, PHEAT, JOULE). Some examples are given to illustrate the system
Muhtadie, Luma; Zhou, Qing; Eisenberg, Nancy; Wang, Yun
2013-01-01
The additive and interactive relations of parenting styles (authoritative and authoritarian parenting) and child temperament (anger/frustration, sadness, and effortful control) to children’s internalizing problems were examined in a 3.8-year longitudinal study of 425 Chinese children (6 – 9 years) from Beijing. At Wave 1, parents self-reported on their parenting styles, and parents and teachers rated child temperament. At Wave 2, parents, teachers, and children rated children’s internalizing ...
Directory of Open Access Journals (Sweden)
Wang Yong
2011-10-01
Full Text Available Abstract Background With the development of genome-sequencing technologies, protein sequences are readily obtained by translating the measured mRNAs. Therefore predicting protein-protein interactions from the sequences is of great demand. The reason lies in the fact that identifying protein-protein interactions is becoming a bottleneck for eventually understanding the functions of proteins, especially for those organisms barely characterized. Although a few methods have been proposed, the converse problem, if the features used extract sufficient and unbiased information from protein sequences, is almost untouched. Results In this study, we interrogate this problem theoretically by an optimization scheme. Motivated by the theoretical investigation, we find novel encoding methods for both protein sequences and protein pairs. Our new methods exploit sufficiently the information of protein sequences and reduce artificial bias and computational cost. Thus, it significantly outperforms the available methods regarding sensitivity, specificity, precision, and recall with cross-validation evaluation and reaches ~80% and ~90% accuracy in Escherichia coli and Saccharomyces cerevisiae respectively. Our findings here hold important implication for other sequence-based prediction tasks because representation of biological sequence is always the first step in computational biology. Conclusions By considering the converse problem, we propose new representation methods for both protein sequences and protein pairs. The results show that our method significantly improves the accuracy of protein-protein interaction predictions.
International Nuclear Information System (INIS)
Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu
2002-01-01
Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region
Muhtadie, Luma; Zhou, Qing; Eisenberg, Nancy; Wang, Yun
2012-01-01
The additive and interactive relations of parenting styles (authoritative and authoritarian parenting) and child temperament (anger/frustration, sadness, and effortful control) to children’s internalizing problems were examined in a 3.8-year longitudinal study of 425 Chinese children (6 – 9 years) from Beijing. At Wave 1, parents self-reported on their parenting styles, and parents and teachers rated child temperament. At Wave 2, parents, teachers, and children rated children’s internalizing problems. Structural equation modeling indicated that the main effect of authoritative parenting, and the interactions of authoritarian parenting × effortful control and authoritative parenting × anger/frustration (parents’ reports only) prospectively and uniquely predicted internalizing problems. The above results did not vary by child sex and remained significant after controlling for co-occurring externalizing problems. These findings suggest that: a) children with low effortful control may be particularly susceptible to the adverse effect of authoritarian parenting, and b) the benefit of authoritative parenting may be especially important for children with high anger/frustration. PMID:23880383
Muhtadie, Luma; Zhou, Qing; Eisenberg, Nancy; Wang, Yun
2013-08-01
The additive and interactive relations of parenting styles (authoritative and authoritarian parenting) and child temperament (anger/frustration, sadness, and effortful control) to children's internalizing problems were examined in a 3.8-year longitudinal study of 425 Chinese children (aged 6-9 years) from Beijing. At Wave 1, parents self-reported on their parenting styles, and parents and teachers rated child temperament. At Wave 2, parents, teachers, and children rated children's internalizing problems. Structural equation modeling indicated that the main effect of authoritative parenting and the interactions of Authoritarian Parenting × Effortful Control and Authoritative Parenting × Anger/Frustration (parents' reports only) prospectively and uniquely predicted internalizing problems. The above results did not vary by child sex and remained significant after controlling for co-occurring externalizing problems. These findings suggest that (a) children with low effortful control may be particularly susceptible to the adverse effect of authoritarian parenting and (b) the benefit of authoritative parenting may be especially important for children with high anger/frustration.
Endendijk, Joyce J; De Bruijn, Anouk T C E; Van Bakel, Hedwig J A; Wijnen, Hennie A A; Pop, Victor J M; Van Baar, Anneloes L
2017-09-01
The role of mother-infant interaction quality is studied in the relation between prenatal maternal emotional symptoms and child behavioral problems. Healthy pregnant, Dutch women (N = 96, M = 31.6, SD = 3.3) were allocated to the "exposed group" (n = 46), consisting of mothers with high levels of prenatal feelings of anxiety and depression, or the "low-exposed group" (n = 50), consisting of mothers with normal levels of depressive or anxious symptoms during pregnancy. When the children (49 girls, 47 boys) were 23 to 60 months of age (M = 39.0, SD = 9.6), parents completed the Child Behavior Checklist (T.M. Achenbach & L.A. Rescorla, ), and mother-child interaction quality during a home visit was rated using the Emotional Availability Scales. There were no differences in mother-child interaction quality between the prenatally exposed and low-exposed groups. Girls exposed to high prenatal emotional symptoms showed more internalizing problems, if maternal interaction quality was less optimal. No significant effects were found for boys. © 2017 Michigan Association for Infant Mental Health.
The interaction problems between large and small business in modern conditions
Directory of Open Access Journals (Sweden)
Belyaev Mikhail
2017-01-01
Full Text Available The development of market relations, changes of the conditions in the business environment encourage the enterprises to look for new management methods and to improve forms of interaction. In this regard, the identification of the interaction of large and small businesses, as well as the evaluation of their relation development seems important and urgent problem in modern conditions. The purpose of the survey – the study of the interaction of large and small businesses, as well as the evaluation of the relations between them. The study was conducted on the basis of a comprehensive and systematic approach in which methods of comparative, retrospective, statistical, mathematical analysis are used. In accordance with the purpose there are identified the prerequisites for the development of large and small businesses, features and their functioning problems, and the links between them. The most common form of interaction of large and small enterprises were identified - outsourcing, franchising, leasing, subcontracting, venture financing, the establishment of regional cooperation forms of large and small businesses. However, the cooperative processes of large and small business in Russia developed are not enough today.The authors identified factors that impede the growth of Russian production, offered recommendations for the development of large and small businesses, justified the state's role in this process. In addition, they described the mechanism of state support of small business, including organizational, financial, information and consulting components.
DEFF Research Database (Denmark)
Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen
2012-01-01
In this paper we describe a field study conducted with a wearable vibration belt where we test to determine the vibration intensity sensitivity ranges on a large diverse group of participants with evenly distributed ages and...
Ochi, Manami; Fujiwara, Takeo
2016-08-01
Research in parental social support has chiefly examined received social support. Studies have suggested that provided social support may also be protective for child mental health problems. We aim to investigate the association between parental social interaction (both received and provided social support) and offspring behavior problems. We analyzed the data of 982 households, including 1538 children aged 4 to 16 years, from the Japanese Study of Stratification, Health, Income, and Neighborhood (J-SHINE) survey conducted over 2010-2011. We used a 5-point Likert scale to assess social interaction including parental emotional and instrumental support received from and provided to the spouse, other co-residing family members, non-co-residing family members or relatives, neighbors, and friends. Behavior problems in offspring were assessed using parental responses to the Strengths and Difficulties Questionnaire. Associations between parental social interaction and behavior problems were analyzed using ordered logistic regression. We found that higher maternal social interaction is significantly associated with lower odds of both difficult and prosocial behavior problems, while the same associations were not found for paternal social interaction. Further, maternal provided social support showed an independent negative association with prosocial behavior problems in offspring, even when adjusted for received maternal social support and paternal social interaction. This study showed that maternal social interaction, but not paternal social interaction, might have a protective effect on offspring behavior problems. Further study is required to investigate the effect of the intervention to increase social participation among mothers whose children have behavior problems.
Interactive and Indirect Effects of Anxiety and Negative Urgency on Alcohol-Related Problems
Menary, Kyle R.; Corbin, William R.; Leeman, Robert F.; Fucito, Lisa M.; Toll, Benjamin A.; DeMartini, Kelly; O’Malley, Stephanie S.
2015-01-01
Background Although drinking for tension reduction has long been posited as a risk factor for alcohol-related problems, studies investigating anxiety in relation to risk for alcohol problems have returned inconsistent results, leading researchers to search for potential moderators. Negative urgency (the tendency to become behaviorally dysregulated when experiencing negative affect) is a potential moderator of theoretical interest because it may increase risk for alcohol problems among those high in negative affect. The present study tested a cross-sectional mediated moderation hypothesis whereby an interactive effect of anxiety and negative urgency on alcohol problems is mediated through coping-related drinking motives. Method The study utilized baseline data from a hazardously drinking sample of young adults (N = 193) evaluated for participation in a randomized controlled trial of naltrexone and motivational interviewing for drinking reduction. Results The direct effect of anxiety on physiological dependence symptoms was moderated by negative urgency such that the positive association between anxiety and physiological dependence symptoms became stronger as negative urgency increased. Indirect effects of anxiety and negative urgency on alcohol problems (operating through coping motives) were also observed. Conclusions Although results of the current cross-sectional study require replication using longitudinal data, the findings suggest that the simultaneous presence of anxiety and negative urgency may be an important indicator of risk for AUDs via both direct interactive effects and indirect additive effects operating through coping motives. These findings have potentially important implications for prevention/intervention efforts for individuals who become disinhibited in the context of negative emotional states. PMID:26031346
Interactions of relativistic heavy ions in thick heavy element targets and some unresolved problems
International Nuclear Information System (INIS)
Brandt, R.; Ditlov, V.A.; Pozharova, E.A.; Smirnitskij, V.A.
2005-01-01
Interactions of relativistic heavy ions with total energies above 30 GeV in thick Cu and Pb targets (≥2 cm) have been studied with various techniques. Radiochemical irradiation experiments using thick Cu targets, both in a compact form or as diluted '2π-Cu targets' have been carried out with several relativistic heavy ions, such as 44 GeV 12 C (JINR, Dubna) and 72 GeV 40 Ar (LBL, Berkeley, USA). Neutron measuring experiments using thick targets irradiated with various relativistic heavy ions up to 44 GeV 12 C have been performed at JINR. In addition, the number of 'black prongs' in nuclear interactions (due to protons with energies less than 30 MeV and emitted from the target-like interaction partner at rest) produced with 72 GeV 22 Ne ions in nuclear emulsion plates has been measured in the first nuclear interaction of the primary 22 Ne ion and in the following second nuclear interaction of the secondary heavy (Z>1) ion. Some essential results have been obtained. 1) Spallation products produced by relativistic secondary fragments in interactions ([44 GeV 12 C or 72 GeV 40 Ar]+Cu) within thick copper yield less products close to the target and much more products far away from the target as compared to primary beam interactions. This applies also to secondary particles emitted into large angles (Θ>10deg). 2) The neutron production of 44 GeV 12 C within thick Cu and Pb targets is beyond the estimated yield as based on experiments with 12 GeV 12 C. These rather independent experimental results cannot be understood with well-accepted nuclear reaction models. They appear to present unresolved problems
Hydrodynamics induced vibration to trash-racks
International Nuclear Information System (INIS)
Sadrnejad, A.
2002-01-01
In conventional power plants trash-racks are provided at the intakes to protect the turbines. In pumped storage plants, the draft tube or tailrace must also have trash-racks to protect the units while pumping. Because the loads believed to cause many failures of trash-racks are dynamic in nature, it is important to understand the dynamic characteristics of trash-racks structures in general and a single rack in particular. The classical added-mass solution structure-fluid dynamic interaction is known as an approximate solution procedure. An accurate added-mass approach mixed with implementation in finite element framework is proposed. In this proposal, experimental conclusions, supported by theory, led to presentation of more accurate results in vibration of trash-racks. This numerical solution as a powerful method to solve such a complex problem can be employed to carry out dynamic characteristics of these structures while vibrating in water
Theoretical and experimental study of vibration, generated by monorail trains
Rybak, Samuil A.; Makhortykh, Sergey A.; Kostarev, Stanislav A.
2002-11-01
Monorail transport as all other city transport vehicles is the source of high noise and vibration levels. It is less widespread than cars or underground transport but its influence in modern cities enhances. Now in Moscow the first monorail road with trains on tires is designed, therefore the problem of vibration and noise assessments and prediction of its impact on the residential region appears. To assess the levels of generated vibration a physical model of interaction in the system wagon-tire-road coating-viaduct-soil has been proposed and then numerically analyzed. The model is based on the known from publications facts of automobile transport vibration and our own practice concerning underground trains vibration generation. To verify computer simulation results and adjust model parameters the series of measurements of noise and vibration near experimental monorail road was carried out. In the report the results of calculations and measurements will be presented and some outcomes of possible acoustical ecologic situation near monorail roads will be proposed.
On the Validation of a Numerical Model for the Analysis of Soil-Structure Interaction Problems
Directory of Open Access Journals (Sweden)
Jorge Luis Palomino Tamayo
Full Text Available Abstract Modeling and simulation of mechanical response of structures, relies on the use of computational models. Therefore, verification and validation procedures are the primary means of assessing accuracy, confidence and credibility in modeling. This paper is concerned with the validation of a three dimensional numerical model based on the finite element method suitable for the dynamic analysis of soil-structure interaction problems. The soil mass, structure, structure's foundation and the appropriate boundary conditions can be represented altogether in a single model by using a direct approach. The theory of porous media of Biot is used to represent the soil mass as a two-phase material which is considered to be fully saturated with water; meanwhile other parts of the system are treated as one-phase materials. Plasticity of the soil mass is the main source of non-linearity in the problem and therefore an iterative-incremental algorithm based on the Newton-Raphson procedure is used to solve the nonlinear equilibrium equations. For discretization in time, the Generalized Newmark-β method is used. The soil is represented by a plasticity-based, effective-stress constitutive model suitable for liquefaction. Validation of the present numerical model is done by comparing analytical and centrifuge test results of soil and soil-pile systems with those results obtained with the present numerical model. A soil-pile-structure interaction problem is also presented in order to shown the potentiality of the numerical tool.
Self-interacting inelastic dark matter: a viable solution to the small scale structure problems
Energy Technology Data Exchange (ETDEWEB)
Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juan.herrero-garcia@adelaide.edu.au [Department of Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm (Sweden)
2017-03-01
Self-interacting dark matter has been proposed as a solution to the small-scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution to reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schrödinger equation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded.
Perturbation theory of intermolecular interactions: What is the problem, are there solutions?
International Nuclear Information System (INIS)
Adams, W.H.
1990-01-01
We review the nature of the problem in the framework of Rayleigh-Schroedinger perturbation theory (the polarization approximation) considering explicitly two examples: the interaction of two hydrogen atoms and the interaction of Li with H. We show, in agreement with the work of Claverie and of Morgan and Simon, that the LiH problem is dramatically different from the H 2 problem. In particular, the physical states of LiH are higher in energy than an infinite number of discrete, unphysical states and they are buried in a continuum of unbound, unphysical states, which starts well below the lowest physical state. Clavrie has shown that the perturbation expansion, under these circumstances, is likely to converge to an unphysical state of lower energy than the physical ground state, if it converges at all. We review, also, the application of two classes of exchange perturbation theory to LiH and larger systems. We show that the spectra of three Eisenschitz-London (EL) class, exchange perturbation theories have no continuum of unphysical states overlaying the physical states and no discrete, unphysical states below the lowest physical state. In contrast, the spectra of two Hirschfelder-Silbey class theories differ hardly at all from that found with the polarization approximation. Not one of the EL class of perturbation theories, however, eliminates all of the discrete unphysical states
Miyauchi, Suguru; Takeuchi, Shintaro; Kajishima, Takeo
2017-09-01
We develop a numerical method for fluid-membrane interaction accounting for permeation of the fluid using a non-conforming mesh to the membrane shape. To represent the permeation flux correctly, the proposed finite element discretization incorporates the discontinuities in the velocity gradient and pressure on the membrane surface with specially selected base functions. The discontinuities are represented with independent variables and determined to satisfy the governing equations including the interfacial condition on the permeation. The motions of the fluid, membrane and permeation flux are coupled monolithically and time-advanced fully-implicitly. The validity and effectiveness of the proposed method are demonstrated by several two-dimensional fluid-membrane interaction problems of Stokes flows by comparing with the analytical models and numerical results obtained by other methods. The reproduced sharp discontinuities are found to be essential to suppress the non-physical permeation flux. Further, combined with the numerical treatment for the solute concentration across the membrane, the proposed method is applied to a fluid-structure interaction problem including the osmotic pressure difference.
Using Interactive Case Studies to Support Students Understandings of Local Environmental Problems
Directory of Open Access Journals (Sweden)
Z. Kostova
2012-12-01
Full Text Available The article presents designed and refined an interactive-enhanced curriculum module for 9th grade secondary school students in Bulgaria, based on environmental case studies. In the module activities students from two schools studied the local environments, performed observations and experiments, collected and analyzed data, prepared and presented posters and role plays, made connections between scientific processes and socio-scientific issues and drew conclusions about the global effects of locally created environmental problems. The students’ critical observations of the quality of their surroundings helped them to make a list of local environmental problems, to apply interactive strategies in studying them and to propose rational scientifically based solutions. In the study the attention was directed to the advantages and disadvantages of poster presentations and role playing and to the specific learning difficulties that students had to overcome. Students’ achievements from the two experimental schools were assessed independently in order to give us insights into the details of learning using different interactive strategies and into the acquired performance skills, dependant on students’ interests and personal abilities. The three versions of the module (traditional, dominated by teacher presentation; poster preparation and presentation in which students imitate scientific team research; and role playing in which students not only study the local environmental problems but assume social roles to cope with them demonstrate three levels of students learning independence. Specific assessment tests and check lists were developed for analyzing, evaluating and comparing students’ achievements in each version of the module and in each school. Ecological knowledge assessment tests were based on Bloom’s taxonomy of educational objectives. Poster and role playing preparations and presentations were assessed by specific criteria, shown in the
Gulland, E.-K.; Veenendaal, B.; Schut, A. G. T.
2012-07-01
Problem-solving knowledge and skills are an important attribute of spatial sciences graduates. The challenge of higher education is to build a teaching and learning environment that enables students to acquire these skills in relevant and authentic applications. This study investigates the effectiveness of traditional face-to-face teaching and online learning technologies in supporting the student learning of problem-solving and computer programming skills, techniques and solutions. The student cohort considered for this study involves students in the surveying as well as geographic information science (GISc) disciplines. Also, students studying across a range of learning modes including on-campus, distance and blended, are considered in this study. Student feedback and past studies reveal a lack of student interest and engagement in problem solving and computer programming. Many students do not see such skills as directly relevant and applicable to their perceptions of what future spatial careers hold. A range of teaching and learning methods for both face-to-face teaching and distance learning were introduced to address some of the perceived weaknesses of the learning environment. These included initiating greater student interaction in lectures, modifying assessments to provide greater feedback and student accountability, and the provision of more interactive and engaging online learning resources. The paper presents and evaluates the teaching methods used to support the student learning environment. Responses of students in relation to their learning experiences were collected via two anonymous, online surveys and these results were analysed with respect to student pass and retention rates. The study found a clear distinction between expectations and engagement of surveying students in comparison to GISc students. A further outcome revealed that students who were already engaged in their learning benefited the most from the interactive learning resources and
Directory of Open Access Journals (Sweden)
E.-K. Gulland
2012-07-01
Full Text Available Problem-solving knowledge and skills are an important attribute of spatial sciences graduates. The challenge of higher education is to build a teaching and learning environment that enables students to acquire these skills in relevant and authentic applications. This study investigates the effectiveness of traditional face-to-face teaching and online learning technologies in supporting the student learning of problem-solving and computer programming skills, techniques and solutions. The student cohort considered for this study involves students in the surveying as well as geographic information science (GISc disciplines. Also, students studying across a range of learning modes including on-campus, distance and blended, are considered in this study. Student feedback and past studies reveal a lack of student interest and engagement in problem solving and computer programming. Many students do not see such skills as directly relevant and applicable to their perceptions of what future spatial careers hold. A range of teaching and learning methods for both face-to-face teaching and distance learning were introduced to address some of the perceived weaknesses of the learning environment. These included initiating greater student interaction in lectures, modifying assessments to provide greater feedback and student accountability, and the provision of more interactive and engaging online learning resources. The paper presents and evaluates the teaching methods used to support the student learning environment. Responses of students in relation to their learning experiences were collected via two anonymous, online surveys and these results were analysed with respect to student pass and retention rates. The study found a clear distinction between expectations and engagement of surveying students in comparison to GISc students. A further outcome revealed that students who were already engaged in their learning benefited the most from the interactive
Zemore, Sarah E.; Karriker-Jaffe, Katherine J.; Keithly, Sarah; Mulia, Nina
2011-01-01
Objective: Although racial and ethnic minorities are often disadvantaged in multiple ways, little research has examined the interactive effects of multiple forms of disadvantage in these populations. The current study describes the independent and interactive effects of perceived prejudice, perceived unfair treatment, poverty, and foreign nativity on problem drinking outcomes among Black and Latino adults. Method: The data source was Black (n = 504) and Latino (n = 766) drinkers from the nationally representative, weighted 2005 National Alcohol Survey. Perceived prejudice was assessed using a composite measure of racial stigma consciousness; perceived unfair treatment was assessed using a single item. Respondents whose per capita household income was below the 2004 poverty guidelines were coded as “poor”; nativity status was assessed among Latinos. Outcomes included past-year drinking to drunkenness, any drinking-related consequences, and two or more dependence symptoms. Results: In bivariate tests, higher levels of unfair treatment were significantly associated with all three outcomes among Blacks (marginally so for drunkenness) and dependence symptoms among Latinos. Further, higher racial stigma was significantly associated with higher rates of any drinking consequences among Latinos. In multivariate logistic regressions, six significant or marginally significant interactions emerged. For each, the pattern of results suggested stronger associations between perceived prejudice/unfair treatment and problem drinking given either poverty or foreign nativity. Conclusions: Although findings were somewhat mixed, the pattern of results tentatively supports the hypothesis that associations between problem drinking and both prejudice and unfair treatment can be exacerbated given the presence of other stressors, particularly among Latinos. Results extend the literature on the health consequences of prejudice and discrimination, highlighting important effects of
A parallel graded-mesh FDTD algorithm for human-antenna interaction problems.
Catarinucci, Luca; Tarricone, Luciano
2009-01-01
The finite difference time domain method (FDTD) is frequently used for the numerical solution of a wide variety of electromagnetic (EM) problems and, among them, those concerning human exposure to EM fields. In many practical cases related to the assessment of occupational EM exposure, large simulation domains are modeled and high space resolution adopted, so that strong memory and central processing unit power requirements have to be satisfied. To better afford the computational effort, the use of parallel computing is a winning approach; alternatively, subgridding techniques are often implemented. However, the simultaneous use of subgridding schemes and parallel algorithms is very new. In this paper, an easy-to-implement and highly-efficient parallel graded-mesh (GM) FDTD scheme is proposed and applied to human-antenna interaction problems, demonstrating its appropriateness in dealing with complex occupational tasks and showing its capability to guarantee the advantages of a traditional subgridding technique without affecting the parallel FDTD performance.
Adaptive solution of some steady-state fluid-structure interaction problems
International Nuclear Information System (INIS)
Etienne, S.; Pelletier, D.
2003-01-01
This paper presents a general integrated and coupled formulation for modeling the steady-state interaction of a viscous incompressible flow with an elastic structure undergoing large displacements (geometric non-linearities). This constitutes an initial step towards developing a sensitivity analysis formulation for this class of problems. The formulation uses velocity and pressures as unknowns in a flow domain and displacements in the structural components. An interface formulation is presented that leads to clear and simple finite element implementation of the equilibrium conditions at the fluid-solid interface. Issues of error estimation and mesh adaptation are discussed. The adaptive formulation is verified on a problem with a closed form solution. It is then applied to a sample case for which the structure undergoes large displacements induced by the flow. (author)
A method for solving a three-body problem with energy-dependent interactions
International Nuclear Information System (INIS)
Safronov, A.N.
1994-01-01
A method is proposed for solving a three-body problem with energy-dependent interactions. This method is based on introducing the dependence of scattering operators and state vectors on an additional external parameter. Effects caused by the energy dependence of the interaction operator are investigated by using the unitary condition for the amplitude of the 2 → 2 and 2 → 3 transitions. It is shown, in particular, that taking this dependence into account leads to a change in the relation between the asymptotic normalization factor of the wave function of the three-body bound state and the vertex constant of virtual dissociation (synthesis) of the system into two fragments. 15 refs
Lamont, L. A.; Chaar, L.; Toms, C.
2010-03-01
Interactive learning is beneficial to students in that it allows the continual development and testing of many skills. An interactive approach enables students to improve their technical capabilities, as well as developing both verbal and written communicative ability. Problem solving and communication skills are vital for engineering students; in the workplace they will be required to communicate with people of varying technical abilities and from different linguistic and engineering backgrounds. In this paper, a case study is presented that discusses how the traditional method of teaching control systems can be improved. 'Control systems' is a complex engineering topic requiring students to process an extended amount of mathematical formulae. MATLAB software, which enables students to interactively compare a range of possible combinations and analyse the optimal solution, is used to this end. It was found that students became more enthusiastic and interested when given ownership of their learning objectives. As well as improving the students' technical knowledge, other important engineering skills are also improved by introducing an interactive method of teaching.
Experimental problems of search for quark-gluon plasma in nucleus-nucleus interactions
International Nuclear Information System (INIS)
Okonov, Eh.O.
1987-01-01
Experimental problems for searching for quark-gluon (quagma) plasma in nucleus-nucleus interactions (NbNb,CaCa, ArPb, CnE, ONe) in the energy range E=0.4-1 GeV/A and 3.67 GeV/A and 200 GeV/A energies are discussed. Peculiarities of performing experiments on Dubna synchrophasotron and SPS Bevalac are discussed. The first results prove hadron matter thermalization sufficient for quagma manifestation. It is found that such characteristics of studied interactions as relative λ-hyperon yield, spectral (temperature) characteristics of λ k -hyperons (with higher values of transferred transverse momenta) and associatively produced peons are of greatest interest. The necessity of precise establishment of λ-hyperon group as excessive and differing in its origin from the other particles of the hadron phase is noted. It is shown that experimental approach used in Dubna research proved efficient and requires further development. It includes : selection of rare events (fluctuations) in central interactions of nuclei with high local excitation; search and research of peculiarities in the production of strange particles and in associative pion production; use of streamer spectrometer with a trigger system of rigid selection of central interactions
Directory of Open Access Journals (Sweden)
Claudia M. Colciago
2018-06-01
Full Text Available This paper deals with fast simulations of the hemodynamics in large arteries by considering a reduced model of the associated fluid-structure interaction problem, which in turn allows an additional reduction in terms of the numerical discretisation. The resulting method is both accurate and computationally cheap. This goal is achieved by means of two levels of reduction: first, we describe the model equations with a reduced mathematical formulation which allows to write the fluid-structure interaction problem as a Navier-Stokes system with non-standard boundary conditions; second, we employ numerical reduction techniques to further and drastically lower the computational costs. The non standard boundary condition is of a generalized Robin type, with a boundary mass and boundary stiffness terms accounting for the arterial wall compliance. The numerical reduction is obtained coupling two well-known techniques: the proper orthogonal decomposition and the reduced basis method, in particular the greedy algorithm. We start by reducing the numerical dimension of the problem at hand with a proper orthogonal decomposition and we measure the system energy with specific norms; this allows to take into account the different orders of magnitude of the state variables, the velocity and the pressure. Then, we introduce a strategy based on a greedy procedure which aims at enriching the reduced discretization space with low offline computational costs. As application, we consider a realistic hemodynamics problem with a perturbation in the boundary conditions and we show the good performances of the reduction techniques presented in the paper. The results obtained with the numerical reduction algorithm are compared with the one obtained by a standard finite element method. The gains obtained in term of CPU time are of three orders of magnitude.
Steffen, T; Tanimura, Y
The quantum Fokker-Planck equation is derived for a system nonlinearly coupled to a harmonic oscillator bath. The system-bath interaction is assumed to be linear in the bath coordinates but quadratic in the system coordinate. The relaxation induced dynamics of a harmonic system are investigated by
International Nuclear Information System (INIS)
Eslami, Sohrab; Jalili, Nader
2012-01-01
Precise and accurate representation of an Atomic Force Microscopy (AFM) system is essential in studying the effects of boundary interaction forces present between the probe's tip and the sample. In this paper, a comprehensive analytical model for the AFM system utilizing a distributed-parameters based approach is proposed. More specifically, we consider two important attributes of these systems; namely the rotary inertia and shear deformation when compared with the Euler–Bernoulli beam theory. Moreover, a comprehensive nonlinear interaction force is assumed between probe's and sample in order to reveal the response of the system more realistically. This nanoscale interaction force is based on a general form consisting of both attractive and repulsive components as well as a function of the tip-sample distance and the microcantilever's base and sample oscillations. Mechanical properties of the sample could interact with the nanomechanical coupling field between the probe' tip and sample and be implemented in studying the composition information of the sample and the ultra-small features inside it. Therefore, by modulating the dynamics of the AFM system such as the driving amplitude of the microcantilever the procedure for the subsurface imaging is described. The presented approach here could be implemented for designing the AFM probes by examining the tip-sample interaction forces dominant by the van der Waals forces. Several numerical case studies are presented and the force–distance diagram reveals that the proposed nonlinear nanomechanical force along with the distributed-parameters model for the microcantilever is able to fulfill the mechanics of the Lennard–Jones potential. -- Highlights: ► We present a comprehensive distributed-parameters model for AFM microcantilever. ► Assuming a nonlinear and implicit interaction force between tip and sample. ► Timoshenko beam is compared with the Euler–Bernoulli having the same force model. ► Frequency
Exact results for the many-body problem in one dimension with repulsive delta-function interaction
International Nuclear Information System (INIS)
Yang, C.N.
1983-01-01
The repulsive δ interaction problem in one dimension for N particles is reduced, through the use of Bethe's hypothesis, to an eigenvalue problem of matrices of the same sizes as the irreducible representations R of the permutation group S/sub N/. For some R's this eigenvalue problem itself is solved by a second use of Bethe's hypothesis, in a generalized form. In particular, the ground-state problem of spin-1/2 fermions is reduced to a generalized Fredholm equation
Interacting dark energy models as an approach for solving Cosmic Coincidence Problem
Shojaei, Hamed
Understanding the dark side of the Universe is one of the main tasks of physicists. As there is no thorough understanding of nature of the dark energy, this area is full of new ideas and there may be several discoveries, theoretical or experimental, in the near future. We know that dark energy, though not detected directly, exists and it is not just an exotic idea. The presence of dark energy is required by the observation of the acceleration of the universe. There are several questions regarding dark energy. What is the nature of dark energy? How does it interact with matter, baryonic or dark? Why is the density of dark energy so tiny, i.e. why rhoΛ ≈ 10--120 M4Pl ? And finally why does its density have the same order of magnitude as the density of matter does at the present time? The last question is one form of what is known as the "Cosmic Coincidence Problem" and in this work, I have been investigating one way to resolve this issue. Observations of Type Ia supernovae indicate that we are in an accelerating universe. A matter-dominated universe cannot be accelerating. A good fit is obtained if we assume that energy density parameters are O Λ = 0.7 and Om = 0.3. Here O Λ is related to dark energy, or cosmological constant in ΛCDM model. At the same time data from Wilkinson Microwave Anisotropy Probe (WMAP) satellite and supernova surveys have placed a constraint on w, the equation of state for dark energy, which is actually the ratio of pressure and energy density. Any good theory needs to explain this coincidence problem and yields a value for w between -1.1 and -0.9. I have employed an interesting approach to solve this problem by assuming that there exists an interaction between dark energy and matter in the context of holographic dark energy. This interaction converts dark energy to matter or vice versa without violating the local conservation of energy in the universe. Holographic dark energy by itself indicates that the value of dark energy is related
Local vibrations and lift performance of low Reynolds number airfoil
Directory of Open Access Journals (Sweden)
TariqAmin Khan
2017-06-01
Full Text Available The 2D incompressible Navier-Stokes equations are solved based on the finite volume method and dynamic mesh technique is used to carry out partial fluid structure interaction. The local flexible structure (hereinafter termed as flexible structure vibrates in a single mode located on the upper surface of the airfoil. The Influence of vibration frequency and amplitude are examined and the corresponding fluid flow characteristics are investigated which add complexity to the inherent problem in unsteady flow. The study is conducted for flow over NACA0012 airfoil at 600≤Re≤3000 at a low angle of attack. Vibration of flexible structure induces a secondary vortex which modifies the pressure distribution and lift performance of the airfoil. At some moderate vibration amplitude, frequency synchronization or lock-in phenomenon occurs when the vibration frequency is close to the characteristic frequency of rigid airfoil. Evolution and shedding of vortices corresponding to the deformation of flexible structure depends on the Reynolds number. In the case of Re≤1000, the deformation of flexible structure is considered in-phase with the vortex shedding i.e., increasing maximum lift is linked with the positive deformation of flexible structure. At Re=1500 a phase shift of about 1/π exists while they are out-of-phase at Re>1500. Moreover, the oscillation amplitude of lift coefficient increases with increasing vibration amplitude for Re≤1500 while it decreases with increasing vibration amplitude for Re>1500. As a result of frequency lock-in, the average lift coefficient is increased with increasing vibration amplitude for all investigated Reynolds numbers (Re. The maximum increase in the average lift coefficient is 19.72% within the range of investigated parameters.
Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.
2015-12-01
The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.
Abrahamse, Mariëlle E; Junger, Marianne; Chavannes, E Lidewei; Coelman, Frederique J G; Boer, Frits; Lindauer, Ramón J L
2012-06-13
Persistent high levels of aggressive, oppositional and impulsive behaviours, in the early lives of children, are significant risk factors for adolescent and adult antisocial behaviour and criminal activity. If the disruptive behavioural problems of young children could be prevented or significantly reduced at an early age, the trajectory of these behavioural problems leading to adolescent delinquency and adult antisocial behaviour could be corrected. Parent-Child Interaction Therapy (PCIT) is a short-term, evidence-based, training intervention for parents dealing with preschool children, who exhibit behavioural problems. Recently, PCIT was implemented in a Dutch community mental health setting. This present study aims to examine the short-term effects of PCIT on reducing the frequency of disruptive behaviour in young children. This study is based on the data of 37 referred families. Whereby the results of which are derived from an analysis of parent reports of the Eyberg Child Behavior Inventory (ECBI), obtained during each therapeutic session. Furthermore, demographic information, extracted from client files, was also utilized. However, it must be noted that eleven families (27.5%) dropped out of treatment before the treatment protocol was completed. To investigate the development of disruptive behaviour, a non-clinical comparison group was recruited from primary schools (N = 59). The results of this study indicate that PCIT significantly reduces disruptive behaviour in children. Large effect sizes were found for both fathers and mothers reported problems (d = 1.88, d = 1.99, respectively), which is similar to American outcome studies. At post treatment, no differences were found concerning the frequency of behavioural problems of children who completed treatment and those who participated in the non-clinical comparison group. The findings of this study suggest that PCIT is potentially an effective intervention strategy for young children and their
Directory of Open Access Journals (Sweden)
Abrahamse Mariëlle E
2012-06-01
Full Text Available Abstract Background Persistent high levels of aggressive, oppositional and impulsive behaviours, in the early lives of children, are significant risk factors for adolescent and adult antisocial behaviour and criminal activity. If the disruptive behavioural problems of young children could be prevented or significantly reduced at an early age, the trajectory of these behavioural problems leading to adolescent delinquency and adult antisocial behaviour could be corrected. Parent–Child Interaction Therapy (PCIT is a short-term, evidence-based, training intervention for parents dealing with preschool children, who exhibit behavioural problems. Recently, PCIT was implemented in a Dutch community mental health setting. This present study aims to examine the short-term effects of PCIT on reducing the frequency of disruptive behaviour in young children. Methods This study is based on the data of 37 referred families. Whereby the results of which are derived from an analysis of parent reports of the Eyberg Child Behavior Inventory (ECBI, obtained during each therapeutic session. Furthermore, demographic information, extracted from client files, was also utilized. However, it must be noted that eleven families (27.5% dropped out of treatment before the treatment protocol was completed. To investigate the development of disruptive behaviour, a non-clinical comparison group was recruited from primary schools (N = 59. Results The results of this study indicate that PCIT significantly reduces disruptive behaviour in children. Large effect sizes were found for both fathers and mothers reported problems (d = 1.88, d = 1.99, respectively, which is similar to American outcome studies. At post treatment, no differences were found concerning the frequency of behavioural problems of children who completed treatment and those who participated in the non-clinical comparison group. Conclusion The findings of this study suggest that PCIT is potentially an
Mericle, Amy A; Kaskutas, Lee A; Polcin, Doug L; Karriker-Jaffe, Katherine J
2018-01-01
Socioecological approaches to public health problems like addiction emphasize the importance of person-environment interactions. Neighborhood and social network characteristics may influence the likelihood of relapse among individuals in recovery, but these factors have been understudied, particularly with respect to conceptualizing social network characteristics as moderators of neighborhood disadvantage. Drawing from a larger prospective study of individuals recruited from outpatient treatment (N=451) and interviewed 1, 3, 5, and 7 years later, the aim of this study was to examine the independent and interactive effects of neighborhood and social network characteristics on continued problem drinking after treatment. Models using generalized estimating equations controlling for demographic and other risk factors found the number of heavy drinkers in one's network increases risk of relapse, with the effects being significantly stronger among those living in disadvantaged neighborhoods than among those in non-disadvantaged neighborhoods. No independent effects were found for neighborhood disadvantage or for the number of network members supporting reduced drinking. Future research is needed to examine potential protective factors in neighborhoods which may offset socioeconomic disadvantage as well as to investigate the functions that network members serve in helping to improve long-term treatment outcomes.
Anizelli, Pedro R; Baú, João P T; Nabeshima, Henrique S; da Costa, Marcello F; de Santana, Henrique; Zaia, Dimas A M
2014-05-21
Nucleic acid bases play important roles in living beings. Thus, their interaction with salts the prebiotic Earth could be an important issue for the understanding of origin of life. In this study, the effect of pH and artificial seawaters on the structure of adenine and thymine was studied via parallel determinations using FT-IR, Raman spectroscopy and theoretical calculations. Thymine and adenine lyophilized in solutions at basic and acidic conditions showed characteristic bands of the enol-imino tautomer due to the deprotonation and the hydrochloride form due to protonation, respectively. The interaction of thymine and adenine with different seawaters representative of different geological periods on Earth was also studied. In the case of thymine a strong interaction with Sr(2+) promoted changes in the Raman and infrared spectra. For adenine changes in infrared and Raman spectra were observed in the presence of salts from all seawaters tested. The experimental results were compared to theoretical calculations, which showed structural changes due to the presence of ions Na(+), Mg(2+), Ca(2+) and Sr(2+) of artificial seawaters. For thymine the bands arising from C4=C5 and C6=O stretching were shifted to lower values, and for adenine, a new band at 1310cm(-1) was observed. The reactivity of adenine and thymine was studied by comparing changes in nucleophilicity and energy of the HOMO orbital. Copyright © 2014 Elsevier B.V. All rights reserved.
Cartreine, James Albert; Locke, Steven E; Buckey, Jay C; Sandoval, Luis; Hegel, Mark T
2012-09-25
Computer-automated depression interventions rely heavily on users reading text to receive the intervention. However, text-delivered interventions place a burden on persons with depression and convey only verbal content. The primary aim of this project was to develop a computer-automated treatment for depression that is delivered via interactive media technology. By using branching video and audio, the program simulates the experience of being in therapy with a master clinician who provides six sessions of problem-solving therapy. A secondary objective was to conduct a pilot study of the program's usability, acceptability, and credibility, and to obtain an initial estimate of its efficacy. The program was produced in a professional multimedia production facility and incorporates video, audio, graphics, animation, and text. Failure analyses of patient data are conducted across sessions and across problems to identify ways to help the user improve his or her problem solving. A pilot study was conducted with persons who had minor depression. An experimental group (n = 7) used the program while a waitlist control group (n = 7) was provided with no treatment for 6 weeks. All of the experimental group participants completed the trial, whereas 1 from the control was lost to follow-up. Experimental group participants rated the program high on usability, acceptability, and credibility. The study was not powered to detect clinical improvement, although these pilot data are encouraging. Although the study was not powered to detect treatment effects, participants did find the program highly usable, acceptable, and credible. This suggests that the highly interactive and immersive nature of the program is beneficial. Further clinical trials are warranted. ClinicalTrials.gov NCT00906581; http://clinicaltrials.gov/ct2/show/NCT00906581 (Archived by WebCite at http://www.webcitation.org/6A5Ni5HUp).
Possibilities of the particle finite element method for fluid-soil-structure interaction problems
Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín
2011-09-01
We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.
2009-01-01
Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.
Umesh P. Agarwal; Rajai Atalla
2010-01-01
Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...
Study of the proton-neutron interaction around $^{68}$Ni : Vibrational structure of $^{72,74}$Zn
Hass, M; Blazhev, A A; Kruecken, R; Muecher, D; Kumar, V; Srebrny, J; Albers, M; Gernhaeuser, R A; Hadynska-klek, K; Eberth, J H; Lo bianco, G; Napiorkowski, P J; Bettermann, L; Das gupta, S; Kroell, T; Leske, J; Iwanicki, J S
We propose to study the $^{72}$Zn nucleus, 2 protons and 2 neutrons away from the possible double-magic $^{68}$Ni nucleus, by means of Coulomb Excitation in inverse kinematics. Current data suggest almost degenerated 2$^{+}$ states of 2-phonon and mixed-symmetric character, respectively. The identification of the 2$^+_{ms}$ state in $^{72}$Zn will be a direct measure of the interaction between valence protons and neutrons, which is the key to understand the nature of $^{68}$Ni. We furthermore propose to study the unusual behavior of the first excited 0$^{+}$ state in this region using the t($^{72}$Zn,p)$\\,^{74}$Zn reaction.
Maslowsky, Julie; Schulenberg, John E
2013-11-01
Substance use is a major contributor to morbidity and mortality among American adolescents. Conduct problems and depressive symptoms have each been found to be associated with adolescent substance use. Although they are highly comorbid, the role of the interaction of conduct problems and depressive symptoms in substance use is not clear. In national samples of 8th-, 10th-, and 12th-grade students from the Monitoring the Future study, latent moderated structural equation modeling was used to estimate the association of conduct problems, depressive symptoms, and their interaction to the use of alcohol (including binge drinking), cigarettes, and marijuana. Moderation by age and sex was tested. The interaction of conduct problems with depressive symptoms was a strong predictor of substance use, particularly among younger adolescents. With few exceptions, adolescents with high levels of both conduct problems and depressive symptoms used substances most frequently. Conduct problems were a strong positive predictor of substance use, and depressive symptoms were a weak positive predictor. Whereas conduct problems are often thought to be a primary predictor of substance use, this study revealed that depressive symptoms potentiate the relation of conduct problems to substance use. Therefore, substance use prevention efforts should target both depressive symptoms and conduct problems.
Rentscher, Kelly E.; Rohrbaugh, Michael J.; Shoham, Varda; Mehl, Matthias R.
2014-01-01
Recent research links first-person plural pronoun use (we-talk) by individual romantic partners to adaptive relationship functioning and individual health outcomes. To examine a possible boundary condition of adaptive we-talk in couples coping with health problems, we correlated asymmetric couple-level we/I-ratios (more we-talk relative to I-talk by the spouse than the patient) with a concurrent pattern of directional demand-withdraw (D-W) interaction in which the spouse demands change while the patient withdraws. Couples in which a partner who abused alcohol (n = 65), smoked cigarettes despite having heart or lung disease (n = 24), or had congestive heart failure (n = 58) discussed a health-related disagreement during a video-recorded interaction task. Transcripts of these conversations provided measures of pronoun use for each partner, and trained observers coded D-W patterns from the recordings. As expected, partner asymmetry in we/I-ratio scores predicted directional demand-withdraw, such that spouses who used more we-talk (relative to I-talk) than patients tended to assume the demand role in concurrent D-W interaction. Asymmetric I-talk rather than we-talk accounted for this association, and asymmetric you-talk contributed independently as well. In contrast to previous studies of we-talk by individual partners, the present results identify dyad-level pronoun patterns that clearly do not mark beneficent processes: asymmetric partner we/I-ratios and you-talk reflect problematic demand-withdraw interaction. PMID:24098961
Kausteklis, Jonas; Aleksa, Valdemaras; Iramain, Maximiliano A.; Brandán, Silvia Antonia
2018-07-01
The cation-anion interactions present in the 1-butyl-3-methylimidazolium nitrate ionic liquid [BMIm][NO3] were studied by using density functional theory (DFT) calculations and the experimental FT-Raman spectrum in liquid phase and its available FT-IR spectrum. For the three most stable conformers found in the potential energy surface and their 1-butyl-3-methylimidazolium [BMIm] cation, the atomic charges, molecular electrostatic potentials, stabilization energies, bond orders and topological properties were computed by using NBO and AIM calculations and the hybrid B3LYP level of theory with the 6-31G* and 6-311++G** basis sets. The force fields, force constants and complete vibrational assignments were also reported for those species by using their internal coordinates and the scaled quantum mechanical force field (SQMFF) approach. The dimeric species of [BMIm][NO3] were also considered because their presence could probably explain the most intense bands observed at 1344 and 1042 cm-1 in both experimental FT-IR and FT-Raman spectra, respectively. The geometrical parameters suggest monodentate cation-anion coordination while the studies by charges, NBO and AIM calculations support bidentate coordinations between those two species. Additionally several quantum chemical descriptors were also calculated in order to interpret various molecular properties such as electronic structure, reactivity of those species and predict their gas phase behaviours.
Vibrational Spectroscopy and Astrobiology
Chaban, Galina M.; Kwak, D. (Technical Monitor)
2001-01-01
Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.
International Nuclear Information System (INIS)
Richards, D.J.W.
1977-01-01
The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration
Energy Technology Data Exchange (ETDEWEB)
Richards, D J.W. [CERL, CEGB, Leatherhead, Surrey (United Kingdom)
1977-12-01
The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration.
A vorticity based approach to handle the fluid-structure interaction problems
Energy Technology Data Exchange (ETDEWEB)
Farahbakhsh, Iman; Ghassemi, Hassan [Department of Ocean Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sabetghadam, Fereidoun, E-mail: i.farahbakhsh@aut.ac.ir [Mechanical and Aerospace Engineering Department, Science and Research Branch, Islamic Azad University (IAU), Tehran (Iran, Islamic Republic of)
2016-02-15
A vorticity based approach for the numerical solution of the fluid-structure interaction problems is introduced in which the fluid and structure(s) can be viewed as a continuum. Retrieving the vorticity field and recalculating a solenoidal velocity field, specially at the fluid-structure interface, are the kernel of the proposed algorithm. In the suggested method, a variety of constitutive equations as a function of left Cauchy–Green deformation tensor can be applied for modeling the structure domain. A nonlinear Mooney–Rivlin and Saint Venant–Kirchhoff model are expressed in terms of the left Cauchy–Green deformation tensor and the presented method is able to model the behavior of a visco-hyperelastic structure in the incompressible flow. Some numerical experiments, with considering the neo-Hookean model for structure domain, are executed and the results are validated via the available results from literature. (paper)
Directory of Open Access Journals (Sweden)
Chernova, N.A.
2018-03-01
Full Text Available The article deals with the concept of a continuum of regulation being also important to understanding Vygotsky’s view of cognitive development which clearly suggests that communicative collaboration with adults or more skilled peers contributes to the development of self-regulation, that is, the capacity for independent problem solving and self-directed activity. Attention is drawn to the fact that in the language classroom, using sociocultural theory and its tenets as a framework, we would see a highly interactive classroom, where the students’ zone of proximal development is identified through strategies such as portfolios, and dialogue journals. Necessity of compiling a textbook based on the above-mentioned principles is stressed.
Lunkenheimer, Erika S.; Albrecht, Erin C.; Kemp, Christine J.
2013-01-01
Lower levels of parent-child affective flexibility indicate risk for children's problem outcomes. This short-term longitudinal study examined whether maternal depressive symptoms were related to lower levels of dyadic affective flexibility and positive affective content in mother-child problem-solving interactions at age 3.5?years…
Leckman-Westin, Emily; Cohen, Patricia R.; Stueve, Ann
2009-01-01
Objective: Increased behavior problems have been reported in offspring of mothers with depression. In-home observations link maternal depressive symptoms (MDS) and mother-child interaction patterns with toddler behavior problems and examine their persistence into late childhood. Method: Maternal characteristics (N = 153) and behaviors of…
Spoth, Richard; Neppl, Tricia; Goldberg-Lillehoj, Catherine; Jung, Tony; Ramisetty-Mikler, Suhasini
2006-01-01
This article reports two exploratory studies testing a model guided by a social interactional perspective, positing an inverse relation between the quality of parent-child interactions and adolescent problem behaviors. It addresses mixed findings in the literature related to gender differences. Study 1 uses cross-sectional survey data from…
Kuijpers, R.C.W.M.; Otten, R.; Krol, N.P.C.M.; Vermulst, A.A.; Engels, R.C.M.E.
2013-01-01
Children and youths' self-report of mental health problems is considered essential but complicated. This study examines the psychometric properties of the Dominic Interactive, a computerized DSM-IV based self-report questionnaire and explores informant correspondence. The Dominic Interactive was
PREFACE: Vibrations at surfaces Vibrations at surfaces
Rahman, Talat S.
2011-12-01
This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of
Rhodes, Jessica D; Colder, Craig R; Trucco, Elisa M; Speidel, Carolyn; Hawk, Larry W; Lengua, Liliana J; Das Eiden, Rina; Wieczorek, William
2013-01-01
A large literature suggests associations between self-regulation and motivation and adolescent problem behavior; however, this research has mostly pitted these constructs against one another or tested them in isolation. Following recent neural-systems based theories (e.g., Ernst & Fudge, 2009 ), the present study investigated the interactions between self-regulation and approach and avoidance motivation prospectively predicting delinquency and depressive symptoms in early adolescence. The community sample included 387 adolescents aged 11 to 13 years old (55% female; 17% minority). Laboratory tasks were used to assess self-regulation and approach and avoidance motivation, and adolescent self-reports were used to measure depressive symptoms and delinquency. Analyses suggested that low levels of approach motivation were associated with high levels of depressive symptoms, but only at high levels of self-regulation (p = .01). High levels of approach were associated with high levels of rule breaking, but only at low levels of self-regulation (p theories that posit integration of motivational and self-regulatory individual differences via moderational models to understand adolescent problem behavior.
Directory of Open Access Journals (Sweden)
ADA ZHENG
2011-10-01
Full Text Available We have developed an innovative hybrid problem-based learning (PBL methodology. The methodology has the following distinctive features: i Each complex question was decomposed into a set of coherent finer subquestions by following the carefully designed criteria to maintain a delicate balance between guiding the students and inspiring them to think independently. This learning methodology enabled the students to solve the complex questions progressively in an inductive context. ii Facilitated by the utilization of our web-based learning systems, the teacher was able to interact with the students intensively and could allocate more teaching time to provide tailor-made feedback for individual student. The students were actively engaged in the learning activities, stimulated by the intensive interaction. iii The answers submitted by the students could be automatically consolidated in the report of the Moodle system in real-time. The teacher could adjust the teaching schedule and focus of the class to adapt to the learning progress of the students by analysing the automatically generated report and log files of the web-based learning system. As a result, the attendance rate of the students increased from about 50% to more than 90%, and the students’ learning motivation have been significantly enhanced.
Interactive dualism as a partial solution to the mind-brain problem for psychiatry.
McLaren, N
2006-01-01
With the collapse of the psychoanalytic and the behaviorist models, and the failure of reductive biologism to account for mental life, psychiatry has been searching for a broad, integrative theory on which to base daily practice. The most recent attempt at such a model, Engel's 'biopsychosocial model', has been shown to be devoid of any scientific content, meaning that psychiatry, alone among the medical disciplines, has no recognised scientific basis. It is no coincidence that psychiatry is constantly under attack from all quarters. In order to develop, the discipline requires an integrative and interactive model which can take account of both the mental and the physical dimensions of human life, yet still remain within the materialist scientific ethos. This paper proposes an entirely new model of mind based in Chalmers' 'interactive dualism' which satisfies those needs. It attributes the causation of all behaviour to mental life, but proposes a split in the nature of mentality such that mind becomes a composite function with two, profoundly different aspects. Causation is assigned to a fast, inaccessible cognitive realm operating within the brain machinery while conscious experience is seen as the outcome of a higher order level of brain processing. The particular value of this model is that it immediately offers a practical solution to the mind-brain problem in that, while all information-processing takes place in the mental realm, it is not in the same order of abstraction as perception. This leads to a model of rational interaction which acknowledges both psyche and soma. It can fill the gap left by the demise of Engel's empty 'biopsychosocial model'.
Vibrationally coupled electron transport through single-molecule junctions
Energy Technology Data Exchange (ETDEWEB)
Haertle, Rainer
2012-04-26
Single-molecule junctions are among the smallest electric circuits. They consist of a molecule that is bound to a left and a right electrode. With such a molecular nanocontact, the flow of electrical currents through a single molecule can be studied and controlled. Experiments on single-molecule junctions show that a single molecule carries electrical currents that can even be in the microampere regime. Thereby, a number of transport phenomena have been observed, such as, for example, diode- or transistor-like behavior, negative differential resistance and conductance switching. An objective of this field, which is commonly referred to as molecular electronics, is to relate these transport phenomena to the properties of the molecule in the contact. To this end, theoretical model calculations are employed, which facilitate an understanding of the underlying transport processes and mechanisms. Thereby, one has to take into account that molecules are flexible structures, which respond to a change of their charge state by a profound reorganization of their geometrical structure or may even dissociate. It is thus important to understand the interrelation between the vibrational degrees of freedom of a singlemolecule junction and the electrical current flowing through the contact. In this thesis, we investigate vibrational effects in electron transport through singlemolecule junctions. For these studies, we calculate and analyze transport characteristics of both generic and first-principles based model systems of a molecular contact. To this end, we employ a master equation and a nonequilibrium Green's function approach. Both methods are suitable to describe this nonequilibrium transport problem and treat the interactions of the tunneling electrons on the molecular bridge non-perturbatively. This is particularly important with respect to the vibrational degrees of freedom, which may strongly interact with the tunneling electrons. We show in detail that the resulting
Kim, C.
2012-01-01
Over the last decade consumer electronic product industries have been confronted with an increase in consumer complaints. Interestingly about half of the reasons for product return are based on so called ‘soft problems’, consumer complaints that cannot be traced back to technical problems. Probably
Vibrational Spectroscopy of Ionic Liquids.
Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C
2017-05-24
Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.
Problems in differential equations
Brenner, J L
2013-01-01
More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.
Najmi, Sadia; Bureau, Jean-Francois; Chen, Diyu; Lyons-Ruth, Karlen
2009-12-01
: The Personal Attitude Scale (PAS; Hooley, 2000) is a method that is under development for identifying individuals high in Expressed Emotion based on personality traits of inflexibility, intolerance, and norm-forming. In the current study, the goal was to measure the association between this maternal attitudinal inflexibility, early hostile or disrupted mother-infant interactions, and hostile-aggressive behavior problems in the child. In a prospective longitudinal study of 76 low-income mothers and their infants, it was predicted that maternal PAS scores, assessed at child age 20, would be related to difficulties in early observed mother-infant interaction and to hostile-aggressive behavioral difficulties in the child. Results indicated that maternal difficulties in interacting with the infant in the laboratory were associated with maternal PAS scores assessed 20 years later. Hostile-aggressive behavior problems in the child at age five were also predictive of PAS scores of mothers. However, contrary to prediction, these behavior problems did not mediate the association between mother-infant interaction difficulties and maternal PAS scores, indicating that the child's hostile-aggressive behavior problems did not produce the link between quality of early interaction and later maternal attitudinal inflexibility. The current results validate the PAS against observable mother-child interactions and child hostile-aggressive behavior problems and indicate the importance of future work investigating the maternal attitudes that are associated with, and may potentially precede, parent-infant interactive difficulties. These findings regarding the inflexible attitudes of mothers whose interactions with their infants are also disrupted have important clinical implications. First, once the stability of the PAS has been established, this measure may offer a valuable screening tool for the prenatal identification of parents at risk for difficult interactions with their children
Lengua, L J; Wolchik, S A; Sandler, I N; West, S G
2000-06-01
Investigated the interaction between parenting and temperament in predicting adjustment problems in children of divorce. The study utilized a sample of 231 mothers and children, 9 to 12 years old, who had experienced divorce within the previous 2 years. Both mothers' and children's reports on parenting, temperament, and adjustment variables were obtained and combined to create cross-reporter measures of the variables. Parenting and temperament were directly and independently related to outcomes consistent with an additive model of their effects. Significant interactions indicated that parental rejection was more strongly related to adjustment problems for children low in positive emotionality, and inconsistent discipline was more strongly related to adjustment problems for children high in impulsivity. These findings suggest that children who are high in impulsivity may be at greater risk for developing problems, whereas positive emotionality may operate as a protective factor, decreasing the risk of adjustment problems in response to negative parenting.
Ngamkhanong, Chayut; Kaewunruen, Sakdirat
2018-06-15
At present, railway infrastructure experiences harsh environments and aggressive loading conditions from increased traffic and load demands. Ground borne vibration has become one of these environmental challenges. Overhead line equipment (OHLE) provides electric power to the train and is, for one or two tracks, normally supported by cantilever masts. A cantilever mast, which is made of H-section steel, is slender and has a poor dynamic behaviour by nature. It can be seen from the literature that ground borne vibrations cause annoyance to people in surrounding areas especially in buildings. Nonetheless, mast structures, which are located nearest and alongside the railway track, have not been fully studied in terms of their dynamic behaviour. This paper presents the effects of ground borne vibrations generated by high speed trains on cantilever masts and contact wire located alongside railway tracks. Ground borne vibration velocities at various train speeds, from 100 km/h to 300 km/h, are considered based on the consideration of semi-empirical models for predicting low frequency vibration on ground. A three-dimensional mast structure with varying soil stiffness is made using a finite element model. The displacement measured is located at the end of cantilever mast which is the position of contact wire. The construction tolerance of contact stagger is used as an allowable movement of contact wire in transverse direction. The results show that the effect of vibration velocity from train on the transverse direction of mast structure is greater than that on the longitudinal direction. Moreover, the results obtained indicate that the ground bourn vibrations caused by high speed train are not strong enough to cause damage to the contact wire. The outcome of this study will help engineers improve the design standard of cantilever mast considering the effect of ground borne vibration as preliminary parameter for construction tolerances. Copyright © 2018 Elsevier B
International Nuclear Information System (INIS)
Chen, S.S.
1975-06-01
Several mathematical models have been proposed for calculating fuel rod responses in axial flows based on a single rod consideration. The spacing between fuel rods in liquid metal fast breeder reactors is small; hence fuel rods will interact with one another due to fluid coupling. The objective of this paper is to study the coupled vibration of fuel bundles. To account for the fluid coupling, a computer code, AMASS, is developed to calculate added mass coefficients for a group of circular cylinders based on the potential flow theory. The equations of motion for rod bundles are then derived including hydrodynamic forces, drag forces, fluid pressure, gravity effect, axial tension, and damping. Based on the equations, a method of analysis is presented to study the free and forced vibrations of rod bundles. Finally, the method is applied to a typical LMFBR fuel bundle consisting of seven rods
International Nuclear Information System (INIS)
Supasorn, Saksri; Vibuljun, Sunantha; Panijpan, Bhinyo; Rajviroongit, Shuleewan
2005-10-01
An Interactive Web-Based Learning NMR Spectroscopy course is developed to improve and facilitate student ' s learning as well as achievement of learning objectives in the concepts of multiplicity, chemical shift, and problem solving. This web-based learning course is emphasized on NMR problem solving, therefore, the concepts of multiplicity and chemical shift, basic concepts for practice problem solving, are also emphasized. Most of animations and pictures in this web-based learning are new created and simplified to explain processes and principles in NMR spectroscopy. With meaningful animations and pictures, simplified English language used, step-by-step problem solving, and interactive test, it can be self-learning web site and best on the student ' s convenience
International Nuclear Information System (INIS)
Costa, Pedro Alvares; Cardoso Silva, Antonio; Calçada, Rui; Lopes, Patricia; Fernandez, Jesus
2016-01-01
n this communication, a numerical approach for the prediction of vibrations induced in buildings due to railway traffic in tunnels is presented. The numerical model is based on the concept of dynamic sub structuring, being composed by three autonomous models to simulate the following main parts of the problem: i) generation of vibrations (train-track interaction); ii) propagation of vibrations (track - tunnel-ground system); iii) reception of vibrations (building coupled to the ground). The methodology proposed allows dealing with the three-dimensional characteristics of the problem with a reasonable computational effort [ 1 , 2 ] . After the brief description of the model, its experimental validation is performed. For that, a case study about vibrations inside of a building close to a shallow railway tunnel in Madrid are simulated and the experimental data [ 3 ] is compared with the predicted results [ 4 ]. Finally, the communication finishes with some insights about the potentialities and challenges of this numerical modelling approach on the prediction of the behavior of ancient structures subjected to vibrations induced by human sources (railway and road traffic, pile driving, etc)
Experimental evaluation of vibrations in heat exchangers
International Nuclear Information System (INIS)
Martin Ghiselli, A.
1997-01-01
Flow induced vibrations may produce damage of heat exchangers, condensers and steam generators tubes. To evaluate this problem a set of tests were developed to know the real support state of the tubes, which have great influence on the vibration response. This paper include a description of the tests and the results obtained applying them on a heat exchanger equipment. (author) [es
Vibrations in pipelines of nuclear power plants
International Nuclear Information System (INIS)
Leal, M.R.L.V.; Bevilacqua, L.
1984-01-01
It is presented the main causes of vibrations in nuclear power plants pipelines to allow the identification of critical areas and correct the errors during the specification design. The methods of vibration analysis to give subsidies in the determination of the corrective providences when the problem appears during the commissioning or the generation energy, are also presented. (M.C.K.) [pt
External vibrations measurement of reactor components
Energy Technology Data Exchange (ETDEWEB)
Rogers, S A [Nuclear Electric plc, Barnwood (United Kingdom); Sugden, J [Magnox Electric, Berkeley (United Kingdom)
1997-12-31
The paper outlines the use of External Vibration Monitoring for remote vibration assessment of internal reactor components. The main features of the technique are illustrated by a detailed examination of the specific application to the problem of Heysham 2 Fuel Plug Unit monitoring. (author). 6 figs.
Super-multiplex vibrational imaging
Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei
2017-04-01
The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the
International Nuclear Information System (INIS)
Chang, Y.W.; Chu, H.Y.; Gvildys, J.; Wang, C.Y.
1979-01-01
The analysis of fluid-structure interaction involves the calculation of both fluid transient and structure dynamics. In the structural analysis, Lagrangian meshes have been used exclusively, whereas for the fluid transient, Lagrangian, Eulerian, and arbitrary Lagrangian-Eulerian (quasi-Eulerian) meshes have been used. This paper performs an evaluation on these three types of meshes. The emphasis is placed on the applicability of the method in analyzing fluid-structure interaction problems in HCDA analysis
National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...
Quantum Monte Carlo simulations of the Fermi-polaron problem and bosons with Gaussian interactions
Energy Technology Data Exchange (ETDEWEB)
Kroiss, Peter Michael
2017-02-01
This thesis deals with the application of current Quantum Monte Carlo algorithms to many-body systems of fermionic and bosonic species. The first part applies the diagrammatic Monte Carlo method to the Fermi polaron problem, a system of an impurity interacting resonantly with a homogeneous Fermi bath. It is numerically shown that the three particle-hole diagrams do not contribute significantly to the final answer in a quasi-two-dimensional setup, thus demonstrating a nearly perfect destructive interference of contributions in subspaces with higher-order particle-hole lines. Consequently, for strong-enough confinement in the third direction, the transition between the polaron and the molecule ground state is found to be in good agreement with the pure two-dimensional case and agrees very well with the one found by the wave-function approach in the two-particle-hole subspace. In three-dimensional Fermi-polaron systems with mass imbalance of impurity and bath atoms, polaron energy and quasiparticle residue can be accurately determined over a broad range of impurity masses. Furthermore, the spectral function of an imbalanced polaron demonstrates the stability of the quasiparticle and also allows us to locate the repulsive polaron as an excited state. The quantitative exactness of two-particle-hole wave functions is investigated, resulting in a relative lowering of polaronic energies in the mass-imbalance phase diagram. Tan's contact coefficient for the mass-balanced polaron system is found to be in good agreement with variational methods. Mass-imbalanced systems can be studied experimentally by ultracold atom mixtures such as {sup 6}Li-{sup 40}K. In the second part of the thesis, the ground state of a two-dimensional system of Bose particles of spin zero, interacting via a repulsive Gaussian-Core potential, is investigated by means of path integral Monte Carlo simulations. The quantum phase diagram is qualitatively identical to that of two-dimensional Yukawa
Energy Technology Data Exchange (ETDEWEB)
Golibrzuch, Kai; Shirhatti, Pranav R.; Kandratsenka, Alexander; Wodtke, Alec M.; Bartels, Christof [Institute for Physical Chemistry, Georg August University of Göttingen, Göttingen 37077 (Germany); Max Planck Institute for Biophysical Chemistry, Göttingen 37077 (Germany); Rahinov, Igor [Department of Natural Sciences, The Open University of Israel, Ra' anana 4353701 (Israel); Auerbach, Daniel J. [Institute for Physical Chemistry, Georg August University of Göttingen, Göttingen 37077 (Germany); Max Planck Institute for Biophysical Chemistry, Göttingen 37077 (Germany); Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106 (United States)
2014-01-28
We present a combined experimental and theoretical study of NO(v = 3 → 3, 2, 1) scattering from a Au(111) surface at incidence translational energies ranging from 0.1 to 1.2 eV. Experimentally, molecular beam–surface scattering is combined with vibrational overtone pumping and quantum-state selective detection of the recoiling molecules. Theoretically, we employ a recently developed first-principles approach, which employs an Independent Electron Surface Hopping (IESH) algorithm to model the nonadiabatic dynamics on a Newns-Anderson Hamiltonian derived from density functional theory. This approach has been successful when compared to previously reported NO/Au scattering data. The experiments presented here show that vibrational relaxation probabilities increase with incidence energy of translation. The theoretical simulations incorrectly predict high relaxation probabilities at low incidence translational energy. We show that this behavior originates from trajectories exhibiting multiple bounces at the surface, associated with deeper penetration and favored (N-down) molecular orientation, resulting in a higher average number of electronic hops and thus stronger vibrational relaxation. The experimentally observed narrow angular distributions suggest that mainly single-bounce collisions are important. Restricting the simulations by selecting only single-bounce trajectories improves agreement with experiment. The multiple bounce artifacts discovered in this work are also present in simulations employing electronic friction and even for electronically adiabatic simulations, meaning they are not a direct result of the IESH algorithm. This work demonstrates how even subtle errors in the adiabatic interaction potential, especially those that influence the interaction time of the molecule with the surface, can lead to an incorrect description of electronically nonadiabatic vibrational energy transfer in molecule-surface collisions.
Mkhitaryan, S. M.
2018-04-01
A class of mixed boundary-value problems of mathematical theory of elasticity dealing with interaction between stress concentrators of different types (such as cracks, absolutely rigid thin inclusions, punches, and stringers) and an elastic semi-infinite plate is considered. The method of Mellin integral transformation is used to reduce solving these problems to solving singular integral equations (SIE). After the governing SIE are solved, the following characteristics of the problem are determined: tangential contact stresses under stringers, dislocation density on the crack edges, breaking stresses outside the cracks on their line of location, the stress intensity factor (SIF), crack openings, jumps of contact stresses on the edges of inclusions.
Lattice Vibrations in Chlorobenzenes:
DEFF Research Database (Denmark)
Reynolds, P. A.; Kjems, Jørgen; White, J. W.
1974-01-01
Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...
Dubois-Comtois, Karine; Moss, Ellen; Cyr, Chantal; Pascuzzo, Katherine
2013-11-01
The objective of the study was to examine the longitudinal relation between early school-age measures of maternal psychosocial distress, quality of mother-child interactions, and child attachment behavior, and behavior problem profiles in middle childhood using a multi-informant design. Participants were 243 French-speaking mother-child dyads (122 girls) who were part of an ongoing longitudinal project. Maternal psychosocial distress was assessed when children were between 4 and 6 years of age. Mother-child interactive quality and attachment patterns were observed at age 6 during a laboratory visit. At age 8.5, externalizing and internalizing problems were assessed using mother and child reports. Results show that maternal psychosocial distress predicted later social adaptation reported by the child through the mediation of mother-child interactions. Analyses also revealed that higher maternal psychosocial distress and controlling attachment patterns, either of the punitive or caregiving type, significantly predicted membership in both child internalizing and externalizing clinical problem groups. Lower mother-child interactive quality, male gender, and child ambivalent attachment were also predictors of externalizing clinical problems.
CSIR Research Space (South Africa)
Suliman, Ridhwaan
2015-01-01
Full Text Available . The solver is parallelised for distributed-memory systems using METIS for domaindecomposition and MPI for inter-domain communication. The developed technology is evaluated by application to benchmark problems for strongly-coupled fluid-structure interaction...
Kumar, David Devraj
2017-01-01
This paper reports an analysis of an interactive technology-supported, problem-based learning (PBL) project in science, technology, engineering and mathematics (STEM) from a Learning Sciences perspective using the Selected Learning Sciences Interest Areas (SLSIA). The SLSIA was adapted from the "What kinds of topics do ISLS [International…
DOE/ANL/HTRI heat exchanger tube vibration data bank
Energy Technology Data Exchange (ETDEWEB)
Halle, H.; Chenoweth, J.M.; Wambsganss, M.W.
1981-01-01
This addendum to the DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Bank includes 16 new case histories of field experiences. The cases include several exchangers that did not experience vibration problems and several for which acoustic vibration was reported.
International Nuclear Information System (INIS)
Amini, Y; Emdad, H; Farid, M
2014-01-01
Piezoelectric energy harvesting (PEH) from ambient energy sources, particularly vibrations, has attracted considerable interest throughout the last decade. Since fluid flow has a high energy density, it is one of the best candidates for PEH. Indeed, a piezoelectric energy harvesting process from the fluid flow takes the form of natural three-way coupling of the turbulent fluid flow, the electromechanical effect of the piezoelectric material and the electrical circuit. There are some experimental and numerical studies about piezoelectric energy harvesting from fluid flow in literatures. Nevertheless, accurate modeling for predicting characteristics of this three-way coupling has not yet been developed. In the present study, accurate modeling for this triple coupling is developed and validated by experimental results. A new code based on this modeling in an openFOAM platform is developed. (paper)
DEFF Research Database (Denmark)
Silcowitz, Morten; Niebe, Sarah Maria; Erleben, Kenny
2009-01-01
contact response. In this paper, we present a new approach to contact force determination. We reformulate the contact force problem as a nonlinear root search problem, using a Fischer function. We solve this problem using a generalized Newton method. Our new Fischer - Newton method shows improved...... qualities for specific configurations where the most widespread alternative, the Projected Gauss-Seidel method, fails. Experiments show superior convergence properties of the exact Fischer - Newton method....
Nonlinear localized excitations in magnets with a weak exchange interaction as a soliton problem
International Nuclear Information System (INIS)
Gvozdikova, M.V.; Kovalev, A.S.
1998-01-01
The spin dynamics of soliton-like localized excitations in a discrete ferromagnet chain with an easy axis anisotropy and a weak exchange interaction is studied. The connection of these excitations with longwave magnetic solitons is discussed. The localized excitation frequency dependence on exchange interaction is found for a fixed number of spin deviation. It is shown that this dependence modifies essentially when the exchange interaction becomes comparable with an anisotropy value
Directory of Open Access Journals (Sweden)
Jaime S. Ide
2017-01-01
Full Text Available Alcohol expectancy and impulsivity are implicated in alcohol misuse. However, how these two risk factors interact to determine problem drinking and whether men and women differ in these risk processes remain unclear. In 158 social drinkers (86 women assessed for Alcohol Use Disorder Identification Test (AUDIT, positive alcohol expectancy, and Barratt impulsivity, we examined sex differences in these risk processes. Further, with structural brain imaging, we examined the neural bases underlying the relationship between these risk factors and problem drinking. The results of general linear modeling showed that alcohol expectancy best predicted problem drinking in women, whereas in men as well as in the combined group alcohol expectancy and impulsivity interacted to best predict problem drinking. Alcohol expectancy was associated with decreased gray matter volume (GMV of the right posterior insula in women and the interaction of alcohol expectancy and impulsivity was associated with decreased GMV of the left thalamus in women and men combined and in men alone, albeit less significantly. These risk factors mediated the correlation between GMV and problem drinking. Conversely, models where GMV resulted from problem drinking were not supported. These new findings reveal distinct psychological factors that dispose men and women to problem drinking. Although mediation analyses did not determine a causal link, GMV reduction in the insula and thalamus may represent neural phenotype of these risk processes rather than the consequence of alcohol consumption in non-dependent social drinkers. The results add to the alcohol imaging literature which has largely focused on dependent individuals and help elucidate alterations in brain structures that may contribute to the transition from social to habitual drinking.
Ide, Jaime S; Zhornitsky, Simon; Hu, Sien; Zhang, Sheng; Krystal, John H; Li, Chiang-Shan R
2017-01-01
Alcohol expectancy and impulsivity are implicated in alcohol misuse. However, how these two risk factors interact to determine problem drinking and whether men and women differ in these risk processes remain unclear. In 158 social drinkers (86 women) assessed for Alcohol Use Disorder Identification Test (AUDIT), positive alcohol expectancy, and Barratt impulsivity, we examined sex differences in these risk processes. Further, with structural brain imaging, we examined the neural bases underlying the relationship between these risk factors and problem drinking. The results of general linear modeling showed that alcohol expectancy best predicted problem drinking in women, whereas in men as well as in the combined group alcohol expectancy and impulsivity interacted to best predict problem drinking. Alcohol expectancy was associated with decreased gray matter volume (GMV) of the right posterior insula in women and the interaction of alcohol expectancy and impulsivity was associated with decreased GMV of the left thalamus in women and men combined and in men alone, albeit less significantly. These risk factors mediated the correlation between GMV and problem drinking. Conversely, models where GMV resulted from problem drinking were not supported. These new findings reveal distinct psychological factors that dispose men and women to problem drinking. Although mediation analyses did not determine a causal link, GMV reduction in the insula and thalamus may represent neural phenotype of these risk processes rather than the consequence of alcohol consumption in non-dependent social drinkers. The results add to the alcohol imaging literature which has largely focused on dependent individuals and help elucidate alterations in brain structures that may contribute to the transition from social to habitual drinking.
Siqveland, Torill S; Haabrekke, Kristin; Wentzel-Larsen, Tore; Moe, Vibeke
2014-11-01
The aim of this study was to investigate the development of mother-infant interaction patterns from 3 to 12 months among three groups of mother-baby pairs recruited during pregnancy: one group from residential substance abuse treatment (n=28), a second group from psychiatric outpatient treatment (n=22), and a third group from well-baby clinics (n=30). The mother-infant interaction at 3 and 12 months was assessed by the Parent-Child Early Relational Assessment (PCERA), which consists of maternal, child and dyadic subscales (Clark, 2006). Linear mixed effects models were used to analyze group differences and the changes in mother-infant interaction from 3 to 12 months. At 3 months, pairwise comparisons showed that the group with psychiatric problems had significantly more difficulties in the mother-infant interaction than the two other groups. The group with substance abuse problems was not significantly different from the two other groups. At 12 months, the mother-infant pairs in the substance abuse group showed significantly more relational disturbances than the non-clinical pairs, as well as a poorer affective quality of interaction than the dyads in the group with psychiatric problems. Analysis of change from 3 to 12 months showed that difficulties in the interaction increased among the mother-baby pairs in the substance abuse group, while improvements were displayed in the two other groups. These results underline that mother-infant pairs at double risk due to maternal substance abuse and other non-optimal factors, are in need for long-term follow up in order to prevent the development of negative interactional patterns. Copyright © 2014 Elsevier Inc. All rights reserved.
Childhood problem behavior and parental divorce: evidence for gene–environment interaction
Robbers, S.C.C.; van Oort, F.V.; Huizink, A.C.; Verhulst, F.C.; van Beijsterveldt, C.E.M.; Boomsma, D.I.; Bartels, M.
2012-01-01
Objective: The importance of genetic and environmental influences on children's behavioral and emotional problems may vary as a function of environmental exposure. We previously reported that 12-year-olds with divorced parents showed more internalizing and externalizing problems than children with
Childhood problem behavior and parental divorce: evidence for gene-environment interaction
S.C.C. Robbers (Sylvana); F.V.A. van Oort (Floor); A.C. Huizink (Anja); F.C. Verhulst (Frank); C.E.M. van Beijsterveldt (Toos); D.I. Boomsma (Dorret); M. Bartels (Meike)
2012-01-01
textabstractObjective: The importance of genetic and environmental influences on children's behavioral and emotional problems may vary as a function of environmental exposure. We previously reported that 12-year-olds with divorced parents showed more internalizing and externalizing problems than
A Real-Life Case Study of Audit Interactions--Resolving Messy, Complex Problems
Beattie, Vivien; Fearnley, Stella; Hines, Tony
2012-01-01
Real-life accounting and auditing problems are often complex and messy, requiring the synthesis of technical knowledge in addition to the application of generic skills. To help students acquire the necessary skills to deal with these problems effectively, educators have called for the use of case-based methods. Cases based on real situations (such…
Thai, Khanh-Phuong; Son, Ji Y.; Hoffman, Jessica; Devers, Christopher; Kellman, Philip J.
2014-01-01
Mathematics is the study of structure but students think of math as solving problems according to rules. Students can learn procedures, but they often have trouble knowing when to apply learned procedures, especially to problems unlike those they trained with. In this study, the authors rely on the psychological mechanism of perceptual learning…
Energy Technology Data Exchange (ETDEWEB)
Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; Johnson, Mark A., E-mail: mark.johnson@yale.edu, E-mail: mccoy@chemistry.ohio-state.edu [Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520 (United States); McCoy, Anne B., E-mail: mark.johnson@yale.edu, E-mail: mccoy@chemistry.ohio-state.edu [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States)
2015-02-14
We clarify the role of the critical imidazolium C{sub (2)}H position (the central C between N atoms in the heterocycle) in the assembly motif of the [EMIM][BF{sub 4}] ionic liquid by analyzing the vibrational spectra of the bare EMIM{sup +} ion as well as that of the cationic [EMIM]{sub 2}[BF{sub 4}]{sup +} (EMIM{sup +} = 1-ethyl-3-methylimidazolium, C{sub 6}H{sub 11}N{sub 2}{sup +}) cluster. Vibrational spectra of the cold, mass-selected ions are obtained using cryogenic ion vibrational predissociation of weakly bound D{sub 2} molecules formed in a 10 K ion trap. The C{sub (2)}H behavior is isolated by following the evolution of key vibrational features when the C{sub (2)} hydrogen, the proposed binding location of the anion to the imidazolium ring, is replaced by either deuterium or a methyl group (i.e., in the EMMIM{sup +} analogue). Strong features in the ring CH stretching region of the bare ion are traced to Fermi resonances with overtones of lower frequency modes. Upon incorporation into the EMIM{sup +} ⋅ ⋅ ⋅ BF{sub 4}{sup −} ⋅ ⋅ ⋅ EMIM{sup +} ternary complex, the C{sub (2)}H oscillator strength is dramatically increased, accounting for the much more complicated patterns derived from the EMIM{sup +} ring CH stretches in the light isotopomer, which are strongly suppressed in the deuterated analogue. Further changes in the spectra that occur when the C{sub (2)}H is replaced by a methyl group are consistent with BF{sub 4}{sup −} attachment directly to the imidazolium ring in an arrangement that maximizes the electrostatic interaction between the molecular ions.
Numerical approximations of flow induced vibrations of vocal folds
Directory of Open Access Journals (Sweden)
Sváček Petr
2017-01-01
Full Text Available The paper focus on mathematical modelling of incompressible fluid flow interacting with vibrations of an elastic vocal fold. The flow in moving domain is modelled by the incompressible Navier-Stokes equations written in the Arbitrary Lagrangian-Eulerian (ALE form. The channel geometry is an approximation of the human glottal region. The flow model is coupled with a simplified structure model. The problem is mathematically described and the resulting fluid-structure interaction problem is discretized by a stabilized finite element method. A strong coupling algorithm is applied for solution of the coupled fluid-structure problem. The choice of boundary conditions is discussed, particularly the choice of different artificial inlet/outlet boundary conditions is described in details. The numerical results are shown.
Numerical approximations of flow induced vibrations of vocal folds
Sváček, Petr
The paper focus on mathematical modelling of incompressible fluid flow interacting with vibrations of an elastic vocal fold. The flow in moving domain is modelled by the incompressible Navier-Stokes equations written in the Arbitrary Lagrangian-Eulerian (ALE) form. The channel geometry is an approximation of the human glottal region. The flow model is coupled with a simplified structure model. The problem is mathematically described and the resulting fluid-structure interaction problem is discretized by a stabilized finite element method. A strong coupling algorithm is applied for solution of the coupled fluid-structure problem. The choice of boundary conditions is discussed, particularly the choice of different artificial inlet/outlet boundary conditions is described in details. The numerical results are shown.
Directory of Open Access Journals (Sweden)
Marisa ePrzyrembel
2012-06-01
Full Text Available Successful human social interaction depends on our capacity to understand other people’s mental states and to anticipate how they will react to our actions. Despites its importance to the human condition, there are still quite a few debates about how we actually solve the problem of understanding other peoples’ actions, feelings and thoughts. Here we consider this problem from philosophical, psychological, and neuroscientific perspectives. In a critical review we show that attempts to draw parallels across these complementary levels of analysis are premature: The second-person perspective does not map directly to simulation theories, online social cognition or shared neural networks underlying action observation or empathy. Nor does the third-person perspective map onto theory-theory accounts of other agents mental states, offline social cognition or the neural networks that support Theory of Mind. We further propose that important qualities of social interaction emerge through the reciprocal interaction of two independent agents whose unpredictable behaviour requires a continual updating of models of their partner internal state. This analysis draws attention to the need for paradigms that allow two individuals to interact in a spontaneous and natural manner and to adapt their behaviour and cognitions in a response contingent fashion due to the unpredictability of their partners behaviour. Even if such paradigms were implemented, it is possible that the specific neural correlates supporting such reciprocal interaction would not reflect the processes unique to social interaction because much real social behaviour may reflect the use of basic cognitive and emotional process in a novel and unique manner. Given the role of social interaction in human evolution, ontogeny and every-day social life, a more theoretically and methodologically nuanced approach to the study of social interaction will help to shed new light on the dark matter of social
Abrahamse, Mariëlle E.; Junger, Marianne; Chavannes, E. Lidewei; Coelman, Frederique J. G.; Boer, Frits; Lindauer, Ramón J. L.
2012-01-01
ABSTRACT: BACKGROUND: Persistent high levels of aggressive, oppositional and impulsive behaviours, in the early lives of children, are significant risk factors for adolescent and adult antisocial behaviour and criminal activity. If the disruptive behavioural problems of young children could be
Archambeault, Betty
1993-01-01
Holistic math focuses on problem solving with numbers and concepts. Whole math activities for adults include shopping for groceries, eating in restaurants, buying gas, taking medicine, measuring a room, estimating servings, and compiling a family cookbook. (SK)
A nonsmooth nonlinear conjugate gradient method for interactive contact force problems
DEFF Research Database (Denmark)
Silcowitz, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny
2010-01-01
of a nonlinear complementarity problem (NCP), which can be solved using an iterative splitting method, such as the projected Gauss–Seidel (PGS) method. We present a novel method for solving the NCP problem by applying a Fletcher–Reeves type nonlinear nonsmooth conjugate gradient (NNCG) type method. We analyze...... and present experimental convergence behavior and properties of the new method. Our results show that the NNCG method has at least the same convergence rate as PGS, and in many cases better....
International Nuclear Information System (INIS)
Matthees, W.; Magiera, G.
1982-01-01
A sensitivity study for the interaction effects of adjacent structures of nuclear power plants caused by horizontal seismic excitation has been performed. The key structural and soil parameters for linear and for nonlinear behaviour were varied within their applicable bandwidth. It has been shown that the interaction phenomena can contribute to the response of structures to such a large extent that it cannot be disregarded. (orig.)
Dowell, E. H.; Au-Yang, M. K.
1985-09-01
The response of a two-layer elastic coating to pressure disturbances from a turbulent boundary layer is considered along with the application of the finite element method in the calculation of transmission loss of flat and curved panels, the application of various solution techniques to the calculation of transonic flutter boundaries, and noise transmission of double wall composite shells. Other topics explored are related to chaotic behavior of a simple single-degree-of-freedom system, the entrainment of self-sustained flow oscillations, the effects of strong shock loading on coupled bending-torssion flutter of tuned and mistuned cascades, and turbulent buffeting of a multispan tube bundle. Attention is given to the dynamics of heat exchangers U-bend tubes with flat bar supports, a review of flow induced vibration of two circular cylinders in crossflow, the avoidance of leakage flow-induced vibration by a tube-in-tube slip joint, random load from multiple sources and its assessment, and wake-induced vibration of a conductor in the wake of another via a 3-D finite element method.
Tsai, Alexander C; Burns, Bridget F O
2015-08-01
In the theory of syndemics, diseases co-occur in particular temporal or geographical contexts due to harmful social conditions (disease concentration) and interact at the level of populations and individuals, with mutually enhancing deleterious consequences for health (disease interaction). This theory has widespread adherents in the field, but the extent to which there is empirical support for the concept of disease interaction remains unclear. In January 2015 we systematically searched 7 bibliographic databases and tracked citations to highly cited publications associated with the theory of syndemics. Of the 783 records, we ultimately included 34 published journal articles, 5 dissertations, and 1 conference abstract. Most studies were based on a cross-sectional design (32 [80%]), were conducted in the U.S. (32 [80%]), and focused on men who have sex with men (21 [53%]). The most frequently studied psychosocial problems were related to mental health (33 [83%]), substance abuse (36 [90%]), and violence (27 [68%]); while the most frequently studied outcome variables were HIV transmission risk behaviors (29 [73%]) or HIV infection (9 [23%]). To test the disease interaction concept, 11 (28%) studies used some variation of a product term, with less than half of these (5/11 [45%]) providing sufficient information to interpret interaction both on an additive and on a multiplicative scale. The most frequently used specification (31 [78%]) to test the disease interaction concept was the sum score corresponding to the total count of psychosocial problems. Although the count variable approach does not test hypotheses about interactions between psychosocial problems, these studies were much more likely than others (14/31 [45%] vs. 0/9 [0%]; χ2 = 6.25, P = 0.01) to incorporate language about "synergy" or "interaction" that was inconsistent with the statistical models used. Therefore, more evidence is needed to assess the extent to which diseases interact, either at the
Neilson, Peter D; Neilson, Megan D
2005-09-01
Adaptive model theory (AMT) is a computational theory that addresses the difficult control problem posed by the musculoskeletal system in interaction with the environment. It proposes that the nervous system creates motor maps and task-dependent synergies to solve the problems of redundancy and limited central resources. These lead to the adaptive formation of task-dependent feedback/feedforward controllers able to generate stable, noninteractive control and render nonlinear interactions unobservable in sensory-motor relationships. AMT offers a unified account of how the nervous system might achieve these solutions by forming internal models. This is presented as the design of a simulator consisting of neural adaptive filters based on cerebellar circuitry. It incorporates a new network module that adaptively models (in real time) nonlinear relationships between inputs with changing and uncertain spectral and amplitude probability density functions as is the case for sensory and motor signals.
Przyrembel, Marisa; Smallwood, Jonathan; Pauen, Michael; Singer, Tania
2012-01-01
Successful human social interaction depends on our capacity to understand other people's mental states and to anticipate how they will react to our actions. Despite its importance to the human condition, the exact mechanisms underlying our ability to understand another's actions, feelings, and thoughts are still a matter of conjecture. Here, we consider this problem from philosophical, psychological, and neuroscientific perspectives. In a critical review, we demonstrate that attempts to draw ...
[Occupational standing vibration rate and vibrational diseases].
Karnaukh, N G; Vyshchipan, V F; Haumenko, B S
2003-12-01
Occupational standing vibration rate is proposed in evaluating a degree of impairment of an organism activity. It will allow more widely to introduce specification of quality and quantity in assessment of the development of vibrational disease. According out-patient and inpatient obtained data we have established criterial values of functional changes in accordance with accumulated occupational standing vibration rate. The nomogram was worked out for defining a risk of the development of vibrational disease in mine workers. This nomogram more objectively can help in diagnostics of the disease.
Niec, Larissa N; Barnett, Miya L; Prewett, Matthew S; Shanley Chatham, Jenelle R
2016-08-01
Although efficacious interventions exist for childhood conduct problems, a majority of families in need of services do not receive them. To address problems of treatment access and adherence, innovative adaptations of current interventions are needed. This randomized control trial investigated the relative efficacy of a novel format of parent-child interaction therapy (PCIT), a treatment for young children with conduct problems. Eighty-one families with 3- to 6-year-old children (71.6% boys, 85.2% White) with diagnoses of oppositional defiant or conduct disorder were randomized to individual PCIT (n = 42) or the novel format, Group PCIT. Parents completed standardized measures of children's conduct problems, parenting stress, and social support at intake, posttreatment, and 6-month follow-up. Therapist ratings, parent attendance, and homework completion provided measures of treatment adherence. Throughout treatment, parenting skills were assessed using the Dyadic Parent-Child Interaction Coding System. Parents in both group and individual PCIT reported significant improvements from intake to posttreatment and follow-up in their children's conduct problems and adaptive functioning, as well as significant decreases in parenting stress. Parents in both treatment conditions also showed significant improvements in their parenting skills. There were no interactions between time and treatment format. Contrary to expectation, parents in Group PCIT did not experience greater social support or treatment adherence. Group PCIT was not inferior to individual PCIT and may be a valuable format to reach more families in need of services. Future work should explore the efficiency and sustainability of Group PCIT in community settings. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Niec, Larissa N.; Barnett, Miya L.; Prewett, Matthew S.; Shanley, Jenelle
2016-01-01
Objective Although efficacious interventions exist for childhood conduct problems, a majority of families in need of services do not receive them. To address problems of treatment access and adherence, innovative adaptations of current interventions are needed. This randomized control trial investigated the relative efficacy of a novel format of parent-child interaction therapy (PCIT), a treatment for young children with conduct problems. Methods Eighty-one families with three- to six-year-old children (71.6% male; 85.2% Caucasian) with diagnoses of oppositional defiant or conduct disorder were randomized to individual PCIT (n = 42) or the novel format, group PCIT. Parents completed standardized measures of children’s conduct problems, parenting stress, and social support at intake, posttreatment, and six-month follow-up. Therapist ratings, parent attendance, and homework completion provided measures of treatment adherence. Throughout treatment, parenting skills were assessed using the Dyadic Parent-Child Interaction Coding System. Results Parents in both group and individual PCIT reported significant improvements from intake to posttreatment and follow-up in their children’s conduct problems and adaptive functioning, as well as significant decreases in parenting stress. Parents in both treatment conditions also showed significant improvements in their parenting skills. There were no interactions between time and treatment format. Contrary to expectation, parents in group PCIT did not experience greater social support or treatment adherence. Conclusions Group PCIT was not inferior to individual PCIT and may be a valuable format to reach more families in need of services. Future work should explore the efficiency and sustainability of group PCIT in community settings. PMID:27018531
Reader, Arran T; Holmes, Nicholas P
2016-01-01
Social interaction is an essential part of the human experience, and much work has been done to study it. However, several common approaches to examining social interactions in psychological research may inadvertently either unnaturally constrain the observed behaviour by causing it to deviate from naturalistic performance, or introduce unwanted sources of variance. In particular, these sources are the differences between naturalistic and experimental behaviour that occur from changes in visual fidelity (quality of the observed stimuli), gaze (whether it is controlled for in the stimuli), and social potential (potential for the stimuli to provide actual interaction). We expand on these possible sources of extraneous variance and why they may be important. We review the ways in which experimenters have developed novel designs to remove these sources of extraneous variance. New experimental designs using a 'two-person' approach are argued to be one of the most effective ways to develop more ecologically valid measures of social interaction, and we suggest that future work on social interaction should use these designs wherever possible.
DEFF Research Database (Denmark)
Yoon, Gil Ho; Jensen, Jens Stissing; Sigmund, Ole
2007-01-01
given during the optimization process. In this paper we circumvent the explicit boundary representation by using a mixed finite element formulation with displacements and pressure as primary variables (a u/p-formulation). The Helmholtz equation is obtained as a special case of the mixed formulation...... for the elastic shear modulus equating to zero. Hence, by spatial variation of the mass density, shear and bulk moduli we are able to solve the coupled problem by the mixed formulation. Using this modelling approach, the topology optimization procedure is simply implemented as a standard density approach. Several...... two-dimensional acoustic-structure problems are optimized in order to verify the proposed method....
Zhu, Zheng; Andresen, Juan Carlos; Moore, M. A.; Katzgraber, Helmut G.
2014-02-01
We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free networks in an external bias (magnetic field). Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First, we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show that the system has a spin-glass phase in a field, i.e., exhibits a de Almeida-Thouless line. Furthermore, we study avalanche distributions when the system is driven by a field at zero temperature to test if the system displays self-organized criticality. Numerical results suggest that avalanches (damage) can spread across the whole system with nonzero probability when the decay exponent of the interaction degree is less than or equal to 2, i.e., that Boolean decision problems on scale-free networks with competing interactions can be fragile when not in thermal equilibrium.
Vibration tests and analyses of the reactor building model on a small scale
International Nuclear Information System (INIS)
Tsuchiya, Hideo; Tanaka, Mitsuru; Ogihara, Yukio; Moriyama, Ken-ichi; Nakayama, Masaaki
1985-01-01
The purpose of this paper is to describe the vibration tests and the simulation analyses of the reactor building model on a small scale. The model vibration tests were performed to investigate the vibrational characteristics of the combined super-structure and to verify the computor code based on Dr. H. Tajimi's Thin Layered Element Theory, using the uniaxial shaking table (60 cm x 60 cm). The specimens consist of ground model, three structural model (prestressed concrete containment vessel, inner concrete structure, and enclosure building), a combined structural model and a combined structure-soil interaction model. These models are made of silicon-rubber, and they have a scale of 1:600. Harmonic step by step excitation of 40 gals was performed to investigate the vibrational characteristics for each structural model. The responses of the specimen to harmonic excitation were measured by optical displacement meters, and analyzed by a real time spectrum analyzer. The resonance and phase lag curves of the specimens to the shaking table were obtained respectively. As for the tests of a combined structure-soil interaction model, three predominant frequencies were observed in the resonance curves. These values were in good agreement with the analytical transfer function curves on the computer code. From the vibration tests and the simulation analyses, the silicon-rubber model test is useful for the fundamental study of structural problems. The computer code based on the Thin Element Theory can simulate well the test results. (Kobozono, M.)
High Energy Vibration for Gas Piping
Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang
2017-07-01
In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.
Puliafico, Anthony C.; Kurtz, Steven M. S.; Pincus, Donna B.; Comer, Jonathan S.
2014-01-01
Although efficacious psychological treatments for internalizing disorders are now well established for school-aged children, until recently there have regrettably been limited empirical efforts to clarify indicated psychological intervention methods for the treatment of mood and anxiety disorders presenting in early childhood. Young children lack many of the developmental capacities required to effectively participate in established treatments for mood and anxiety problems presenting in older children, making simple downward extensions of these treatments for the management of preschool internalizing problems misguided. In recent years, a number of research groups have successfully adapted and modified parent–child interaction therapy (PCIT), originally developed to treat externalizing problems in young children, to treat various early internalizing problems with a set of neighboring protocols. As in traditional PCIT, these extensions target child symptoms by directly reshaping parent–child interaction patterns associated with the maintenance of symptoms. The present review outlines this emerging set of novel PCIT adaptations and modifications for mood and anxiety problems in young children and reviews preliminary evidence supporting their use. Specifically, we cover (a) PCIT for early separation anxiety disorder; (b) the PCIT-CALM (Coaching Approach behavior and Leading by Modeling) Program for the full range of early anxiety disorders; (c) the group Turtle Program for behavioral inhibition; and (d) the PCIT-ED (Emotional Development) Program for preschool depression. In addition, emerging PCIT-related protocols in need of empirical attention—such as the PCIT-SM (selective mutism) Program for young children with SM—are also considered. Implications of these protocols are discussed with regard to their unique potential to address the clinical needs of young children with internalizing problems. Obstacles to broad dissemination are addressed, and we consider
Carpenter, Aubrey L; Puliafico, Anthony C; Kurtz, Steven M S; Pincus, Donna B; Comer, Jonathan S
2014-12-01
Although efficacious psychological treatments for internalizing disorders are now well established for school-aged children, until recently there have regrettably been limited empirical efforts to clarify indicated psychological intervention methods for the treatment of mood and anxiety disorders presenting in early childhood. Young children lack many of the developmental capacities required to effectively participate in established treatments for mood and anxiety problems presenting in older children, making simple downward extensions of these treatments for the management of preschool internalizing problems misguided. In recent years, a number of research groups have successfully adapted and modified parent-child interaction therapy (PCIT), originally developed to treat externalizing problems in young children, to treat various early internalizing problems with a set of neighboring protocols. As in traditional PCIT, these extensions target child symptoms by directly reshaping parent-child interaction patterns associated with the maintenance of symptoms. The present review outlines this emerging set of novel PCIT adaptations and modifications for mood and anxiety problems in young children and reviews preliminary evidence supporting their use. Specifically, we cover (a) PCIT for early separation anxiety disorder; (b) the PCIT-CALM (Coaching Approach behavior and Leading by Modeling) Program for the full range of early anxiety disorders; (c) the group Turtle Program for behavioral inhibition; and (d) the PCIT-ED (Emotional Development) Program for preschool depression. In addition, emerging PCIT-related protocols in need of empirical attention--such as the PCIT-SM (selective mutism) Program for young children with SM--are also considered. Implications of these protocols are discussed with regard to their unique potential to address the clinical needs of young children with internalizing problems. Obstacles to broad dissemination are addressed, and we consider
Burt, Keith B.; Paysnick, Amy A.
2014-01-01
The present study examined sense of identity (assessed using the Identity subscale of the Psychosocial Maturity Inventory) as a moderator of associations between stressful life events, behavioral/emotional problems, and substance abuse in a sample of 187 college undergraduates (67% female). Correlations showed evidence for positive associations…
Abrahamse, Mariëlle; Junger, Marianne; Chavannes, E.L.; Coelman, F.J.G.; de Boer, F.; Lindauer, R.J.
2012-01-01
Background Persistent high levels of aggressive, oppositional and impulsive behaviours, in the early lives of children, are significant risk factors for adolescent and adult antisocial behaviour and criminal activity. If the disruptive behavioural problems of young children could be prevented or
Directory of Open Access Journals (Sweden)
Boris A. Arbuzov
2017-11-01
Full Text Available Wouldbe consequences of the existence of effective interactions in quantum gravitation theory are considered. In the framework of the approach, the example of a running gravitational coupling is presented, corresponding to an adequate description of effects, which nowadays are usually prescribed to dark matter and dark energy.
Seven-step problem-based learning in an interaction design course
DEFF Research Database (Denmark)
Schultz, Nette; Christensen, Hans Peter
2004-01-01
The objective in this paper is the implementation of the highly structured seven-step PBL procedure as part of the learning process in a human-computer interaction design course at the Technical University of Denmark, taking into account the common learning processes in PBL and the interaction de...... others in a single course. The evaluation results showed that the students definitely took a deep approach to learning, and indicated clearly that the students had obtained competences not only within the traditional HCI curriculum but also in terms of team-work skills.......The objective in this paper is the implementation of the highly structured seven-step PBL procedure as part of the learning process in a human-computer interaction design course at the Technical University of Denmark, taking into account the common learning processes in PBL and the interaction...... individual reports after each case in the PBL-process in order to explore the students’ inter- and intra-personal team skills development in the learning process. Different qualitative and quantitative evaluation methods have been used to obtain a thorough evaluation of PBL used as a learning method among...
Matzat, U.
2010-01-01
Social network researchers have claimed that relations offline affect relations online; however, it is unclear which characteristics of online interaction are affected by the existence of offline relations. This article examines whether a mixture of virtual and real-life interaction—in contrast to
Lie symmetries for the electric charge-magnetic monopole interaction problem
International Nuclear Information System (INIS)
Moreira, I.C.; Ritter, O.M.; Santos, F.C.
1985-01-01
The symmetries of the equation of motion for an electric charge interacting with a magnetic monopole are analyzed. Two methods, starting from the knowledge of the Lie symmetries, are discussed and employed in this case. This procedure is also compared with the hamiltonians methods. (ltonians methods. (Author) [pt
Endendijk, Joyce; De Bruijn, Anouk T.c.e.; van Bakel, Hedwig J.A.; Wijnen, Hennie A.a.; Pop, Victor J.m.; van Baar, Anneloes
2017-01-01
The role of mother–infant interaction quality is studied in the relation between prenatal maternal emotional symptoms and child behavioralproblems. Healthy pregnant, Dutch women (N = 96, M = 31.6, SD = 3.3) were allocated to the “exposed group” (n = 46), consisting of mothers withhigh levels of
Solvability of an unsaturated porous media flow problem with thermomechanical interaction
Czech Academy of Sciences Publication Activity Database
Detmann, B.; Krejčí, Pavel; Rocca, E.
2016-01-01
Roč. 48, č. 6 (2016), s. 4175-4201 ISSN 0036-1410 R&D Projects: GA ČR(CZ) GA15-12227S Institutional support: RVO:67985840 Keywords : porous media * hysteresis * thermomechanical interactions Subject RIV: BA - General Mathematics Impact factor: 1.648, year: 2016 http://epubs.siam.org/doi/abs/10.1137/16M1056365
Przyrembel, Marisa; Smallwood, Jonathan; Pauen, Michael; Singer, Tania
2012-01-01
Successful human social interaction depends on our capacity to understand other people's mental states and to anticipate how they will react to our actions. Despite its importance to the human condition, the exact mechanisms underlying our ability to understand another's actions, feelings, and thoughts are still a matter of conjecture. Here, we consider this problem from philosophical, psychological, and neuroscientific perspectives. In a critical review, we demonstrate that attempts to draw parallels across these complementary disciplines is premature: The second-person perspective does not map directly to Interaction or Simulation theories, online social cognition, or shared neural network accounts underlying action observation or empathy. Nor does the third-person perspective map onto Theory-Theory (TT), offline social cognition, or the neural networks that support Theory of Mind (ToM). Moreover, we argue that important qualities of social interaction emerge through the reciprocal interplay of two independent agents whose unpredictable behavior requires that models of their partner's internal state be continually updated. This analysis draws attention to the need for paradigms in social neuroscience that allow two individuals to interact in a spontaneous and natural manner and to adapt their behavior and cognitions in a response contingent fashion due to the inherent unpredictability in another person's behavior. Even if such paradigms were implemented, it is possible that the specific neural correlates supporting such reciprocal interaction would not reflect computation unique to social interaction but rather the use of basic cognitive and emotional processes combined in a unique manner. Finally, we argue that given the crucial role of social interaction in human evolution, ontogeny, and every-day social life, a more theoretically and methodologically nuanced approach to the study of real social interaction will nevertheless help the field of social cognition
Przyrembel, Marisa; Smallwood, Jonathan; Pauen, Michael; Singer, Tania
2012-01-01
Successful human social interaction depends on our capacity to understand other people's mental states and to anticipate how they will react to our actions. Despite its importance to the human condition, the exact mechanisms underlying our ability to understand another's actions, feelings, and thoughts are still a matter of conjecture. Here, we consider this problem from philosophical, psychological, and neuroscientific perspectives. In a critical review, we demonstrate that attempts to draw parallels across these complementary disciplines is premature: The second-person perspective does not map directly to Interaction or Simulation theories, online social cognition, or shared neural network accounts underlying action observation or empathy. Nor does the third-person perspective map onto Theory-Theory (TT), offline social cognition, or the neural networks that support Theory of Mind (ToM). Moreover, we argue that important qualities of social interaction emerge through the reciprocal interplay of two independent agents whose unpredictable behavior requires that models of their partner's internal state be continually updated. This analysis draws attention to the need for paradigms in social neuroscience that allow two individuals to interact in a spontaneous and natural manner and to adapt their behavior and cognitions in a response contingent fashion due to the inherent unpredictability in another person's behavior. Even if such paradigms were implemented, it is possible that the specific neural correlates supporting such reciprocal interaction would not reflect computation unique to social interaction but rather the use of basic cognitive and emotional processes combined in a unique manner. Finally, we argue that given the crucial role of social interaction in human evolution, ontogeny, and every-day social life, a more theoretically and methodologically nuanced approach to the study of real social interaction will nevertheless help the field of social cognition
International Nuclear Information System (INIS)
Conn, R.W.; Gauster, W.B.; Heifetz, D.; Marmar, E.; Wilson, K.L.
1984-01-01
A technical assessment of the critical issues and problem areas in the field of plasma materials interactions (PMI) in magnetic fusion devices shows these problems to be central for near-term experiments, for intermediate-range reactor devices including D-T burning physics experiments, and for long-term reactor machines. Critical technical issues are ones central to understanding and successful operation of existing and near-term experiments/reactors or devices of great importance for the long run, i.e., ones which will require an extensive, long-term development effort and thus should receive attention now. Four subgroups were formed to assess the critical PMI issues along four major lines: (1) PMI and plasma confinement physics experiments; (2) plasma-edge modelling and theory; (3) surface physics; and (4) materials technology for in-vessel components and the first wall. The report which follows is divided into four major sections, one for each of these topics
Beecher, L. C.; Williams, F. T.
1970-01-01
Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.
Morgan, Judith K; Shaw, Daniel S; Olino, Thomas M
2012-08-01
Whereas socialization influences in early childhood have been linked to children's emerging internalizing problems and prosocial behavior, relatively few studies have examined how NE might moderate such associations in both advantageous and maladaptive ways. Furthermore, more research is needed to evaluate the impact of sibling relationships as an influential socialization influence on these child outcomes. In the current study we examined how NE might differentially moderate the associations between quality of relationships with siblings and both internalizing problems and social skills at school entry. NE moderated the effects of positive and destructive sibling relationship quality on child internalizing problems. Specifically, for boys high on NE, more positive sibling relationship quality predicted fewer internalizing problems, but more destructive sibling conflict predicted more internalizing problems. NE also moderated the effects of destructive sibling conflict on child social skills. For boys high on NE, destructive sibling conflict predicted fewer social skills. Boys high on NE appear to show greater susceptibility to the effects of sibling socialization on child outcomes, relative to boys low on NE. The implications of these interactions are discussed with respect to differential susceptibility theory.
Directory of Open Access Journals (Sweden)
Richard L. Einsporn
2014-01-01
Full Text Available A randomized clinical experiment to compare two types of endotracheal tubes utilized a block design where each of the six participating anesthesiologists performed tube insertions for an equal number of patients for each type of tube. Five anesthesiologists intubated at least three patients with each tube type, but one anesthesiologist intubated only one patient per tube type. Overall, one type of tube outperformed the other on all three effectiveness measures. However, analysis of the data using an interaction model gave conflicting and misleading results, making the tube with the better performance appear to perform worse. This surprising result was caused by the undue influence of the data for the anesthesiologist who intubated only two patients. We therefore urge caution in interpreting results from interaction models with designs containing small blocks.
Site response - a critical problem in soil-structure interaction analyses for embedded structures
International Nuclear Information System (INIS)
Seed, H.B.; Lysmer, J.
1986-01-01
Soil-structure interaction analyses for embedded structures must necessarily be based on a knowledge of the manner in which the soil would behave in the absence of any structure - that is on a knowledge and understanding of the spatial distribution of motions in the ground within the depth of embedment of the structure. The nature of these spatial variations is discussed and illustrated by examples of recorded motions. It is shown that both the amplitude of peak acceleration and the form of the acceleration response spectrum for earthquake motions will necessarily vary with depth and failure to take these variations into account may introduce an unwarranted degree of conservatism into the soil-structure interaction analysis procedure
Interacting with Users in Social Networks: The Follow-back Problem
2016-05-02
These functions are known as network centrali- ties. They quantify how central a vertex is to the problem at hand, with the definition of centrality ...56 4.2.2 Twitter networks . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2.3 Network centrality policies...tool can hinder the free movement of alternative ideas and information and thus can be analyzed through the A2/AD paradigm. Non-state adversaries have
Cognition-emotion interactions: patterns of change and implications for math problem solving
Trezise, Kelly; Reeve, Robert A.
2014-01-01
Surprisingly little is known about whether relationships between cognitive and emotional states remain stable or change over time, or how different patterns of stability and/or change in the relationships affect problem solving abilities. Nevertheless, cross-sectional studies show that anxiety/worry may reduce working memory (WM) resources, and the ability to minimize the effects anxiety/worry is higher in individuals with greater WM capacity. To investigate the patterns of stability and/or change in cognition-emotion relations over time and their implications for problem solving, 126 14-year-olds’ algebraic WM and worry levels were assessed twice in a single day before completing an algebraic math problem solving test. We used latent transition analysis to identify stability/change in cognition-emotion relations, which yielded a six subgroup solution. Subgroups varied in WM capacity, worry, and stability/change relationships. Among the subgroups, we identified a high WM/low worry subgroup that remained stable over time and a high WM/high worry, and a moderate WM/low worry subgroup that changed to low WM subgroups over time. Patterns of stability/change in subgroup membership predicted algebraic test results. The stable high WM/low worry subgroup performed best and the low WM capacity-high worry “unstable across time” subgroup performed worst. The findings highlight the importance of assessing variations in cognition-emotion relationships over time (rather than assessing cognition or emotion states alone) to account for differences in problem solving abilities. PMID:25132830
Problem solving - an interactive active method for teaching the thermokinetic concept
Directory of Open Access Journals (Sweden)
Odochian Lucia
2014-07-01
Full Text Available The paper describes a strategy that uses problem solving to teach the thermokinetic concept, based on student’s previously established proficiency in thermochemistry and kinetics. Chemistry teachers often use this method because it ensures easy achievement of both formative and informative science skills. This teaching strategy is tailored for students that prove special intellectual resources, Olympiad participants and to those who find chemistry a potential professional route
Cognition-emotion interactions: Patterns of change and implications for math problem solving
Directory of Open Access Journals (Sweden)
Kelly eTrezise
2014-07-01
Full Text Available Surprisingly little is known about whether relationships between cognitive and emotional states remain stable or change over time, or how different patterns of stability and/or change in the relationships affect problem solving abilities. Nevertheless, cross-sectional studies show that anxiety/worry may reduce working memory resources, and the ability to minimize the effects anxiety/worry is higher in individuals with greater WM capacity. To investigate the patterns of stability and/or change in cognition-emotion relations over time and their implications for problem solving, 126 14-year-olds’ algebraic WM and worry levels were assessed twice in a single day before completing an algebraic math problem solving test. We used latent transition analysis to identify stability/change in cognition-emotion relations, which yielded a six subgroup solution. Subgroups varied in WM capacity, worry, and stability/change relationships. Among the subgroups, we identified a high WM/low worry subgroup that remained stable over time and a high WM/high worry, and a moderate WM/low worry subgroup that changed to low WM subgroups over time. Patterns of stability/change in subgroup membership predicted algebraic test results. The stable high WM/low worry subgroup performed best and the low WM capacity-high worry unstable across time subgroup performed worst. The findings highlight the importance of assessing variations in cognition-emotion relationships over time (rather than assessing cognition or emotion states alone to account for differences in problem solving abilities.
Energy Technology Data Exchange (ETDEWEB)
Korneev, Boris [Moscow Institute of Physics and Technology, 9 Institutsky lane, Dolgoprudny 141700 (Russian Federation); Levchenko, Vadim, E-mail: boris.korneev@phystech.edu [Keldysh Institute of Applied Mathematics, 4 Miusskaya square, Moscow 125047 (Russian Federation)
2016-12-15
A set of numerical experiments on the interaction between a planar shock wave and a spherical bubble with a slightly perturbed surface is considered. Spectral analysis of the instability growth is carried out and three-dimensional Euler equations of fluid dynamics are chosen as the mathematical model for the process. The equations are solved via the Runge–Kutta discontinuous Galerkin method and the special DiamondTorre algorithm for multi-GPU implementation is used. (paper)
Recent advances in micro-vibration isolation
Liu, Chunchuan; Jing, Xingjian; Daley, Steve; Li, Fengming
2015-05-01
Micro-vibration caused by disturbance sources onboard spacecraft can severely degrade the working environment of sensitive payloads. Some notable vibration control methods have been developed particularly for the suppression or isolation of micro-vibration over recent decades. Usually, passive isolation techniques are deployed in aerospace engineering. Active isolators, however, are often proposed to deal with the low frequency vibration that is common in spacecraft. Active/passive hybrid isolation has also been effectively used in some spacecraft structures for a number of years. In semi-active isolation systems, the inherent structural performance can be adjusted to deal with variation in the aerospace environment. This latter approach is potentially one of the most practical isolation techniques for micro-vibration isolation tasks. Some emerging advanced vibration isolation methods that exploit the benefits of nonlinearity have also been reported in the literature. This represents an interesting and highly promising approach for solving some challenging problems in the area. This paper serves as a state-of-the-art review of the vibration isolation theory and/or methods which were developed, mainly over the last decade, specifically for or potentially could be used for, micro-vibration control.
Axisymmetric vibrations of thin shells of revolution
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kikuchi, Norio; Kosawada, Tadashi; Takahashi, Shin
1983-01-01
The problem of free vibration of axisymmetric shells of revolution is important in connection with the design of pressure vessels, chemical equipment, aircrafts, structures and so on. In this study, the axisymmetrical vibration of a thin shell of revolution having a constant curvature in meridian direction was analyzed by thin shell theory. First, the Lagrangian during one period of the vibration of a shell of revolution was determined by the primary approximate theory of Love, and the vibration equations and boundary conditions were derived from its stopping condition. The vibration equations were strictly analyzed by using the series solution. The basic equations for the strain and strain energy of a shell were based on those of Novozhilov. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. The theory and the numerical calculation ore described. Especially in the frequency curves, the waving phenomena were observed frequently, which were not seen in non-axisymmetric vibration, accordingly also the vibration mode changed in complex state on the frequency curves of same order. The numerical calculation was carried out in the large computer center in Tohoku University. (Kako, I.)
Mpofu, D J; Lanphear, J; Stewart, T; Das, M; Ridding, P; Dunn, E
1998-09-01
The Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates (UAE) University is in a unique position to explore issues related to English language proficiency and medical student performance. All students entering the FMHS have English as a second language. This study focused on the issues of students' proficiency in English as measured by the TOEFL test, student background factors and interaction in problem-based learning (PBL) groups. Using a modification of Bales Interaction Process Analysis, four problem-based learning groups were observed over four thematic units, to measure the degree of student interaction within PBL groups and to compare this to individual TOEFL scores and key background variables. The students' contributions correlated highly with TOEFL test results in the giving of information (range r = 0.67-0.74). The female students adhered to interacting in English during group sessions, whereas the male students were more likely to revert to using Arabic in elaborating unclear phenomena (p TOEFL scores for the male students, but not for female students. Multivariate analysis was undertaken to analyse the relative contribution of the TOEFL, parental education and years of studying in English. The best predictor of students' contributions in PBL groups was identified as TOEFL scores. The study demonstrates the importance of facilitating a locally acceptable level of English proficiency prior to admission to the FMHS. However, it also highlights the importance of not focusing only on English proficiency but paying attention to additional factors in facilitating medical students in maximizing benefits from interactions in PBL settings.
Reactor internals vibration monitoring by neutron noise methods in PWRs
International Nuclear Information System (INIS)
Pazsit, I.; Por, G.; Lux, I.
1983-01-01
Certain elements of PWR cores such as control/fuel rods or cassettes, or other parts of reactor internals, often represent a vibration problem. Early analyses at operating PWR plant revealed that these vibrations can be detected by in-core neutron detectors, opening up the possibility of vibration monitoring and diagnostics by noise methods. Theoretical methods of calculating vibration induced neutron noise and its application to vibration diagnostics are summarized. Experiments to check theoretical conclusions are under way at the Central Research Institute for Physics, Budapest. (author)
Indian Academy of Sciences (India)
We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.
Manurung, Sondang; Demonta Pangabean, Deo
2017-05-01
The main purpose of this study is to produce needs analysis, literature review, and learning tools in the study of developmental of interactive multimedia based physic learning charged in problem solving to improve thinking ability of physic prospective student. The first-year result of the study is: result of the draft based on a needs analysis of the facts on the ground, the conditions of existing learning and literature studies. Following the design of devices and instruments performed as well the development of media. Result of the second study is physics learning device -based interactive multimedia charged problem solving in the form of textbooks and scientific publications. Previous learning models tested in a limited sample, then in the evaluation and repair. Besides, the product of research has an economic value on the grounds: (1) a virtual laboratory to offer this research provides a solution purchases physics laboratory equipment is expensive; (2) address the shortage of teachers of physics in remote areas as a learning tool can be accessed offline and online; (3). reducing material or consumables as tutorials can be done online; Targeted research is the first year: i.e story board learning physics that have been scanned in a web form CD (compact disk) and the interactive multimedia of gas Kinetic Theory concept. This draft is based on a needs analysis of the facts on the ground, the existing learning conditions, and literature studies. Previous learning models tested in a limited sample, then in the evaluation and repair.
Zhu, Zheng; Andresen, Juan Carlos; Janzen, Katharina; Katzgraber, Helmut G.
2013-03-01
We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free graphs in a magnetic field. Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show, in agreement with analytical calculations, that the system exhibits a de Almeida-Thouless line. Furthermore, we study avalanches in the system at zero temperature to see if the system displays self-organized criticality. This would suggest that damage (avalanches) can spread across the whole system with nonzero probability, i.e., that Boolean decision problems on scale-free networks with competing interactions are fragile when not in thermal equilibrium.
Inverse problem for the mean-field monomer-dimer model with attractive interaction
International Nuclear Information System (INIS)
Contucci, Pierluigi; Luzi, Rachele; Vernia, Cecilia
2017-01-01
The inverse problem method is tested for a class of monomer-dimer statistical mechanics models that contain also an attractive potential and display a mean-field critical point at a boundary of a coexistence line. The inversion is obtained by analytically identifying the parameters in terms of the correlation functions and via the maximum-likelihood method. The precision is tested in the whole phase space and, when close to the coexistence line, the algorithm is used together with a clustering method to take care of the underlying possible ambiguity of the inversion. (paper)
Bogatskaya, A. V.; Klenov, N. V.; Tereshonok, M. V.; Adjemov, S. S.; Popov, A. M.
2018-05-01
We present an analysis of the possibility of penetrating electromagnetic waves through opaque media using an optical-mechanical analogy. As an example, we consider the plasma sheath surrounding the vehicle as a potential barrier and analyze the overcoming of radiocommunication blackout problem. The idea is to embed a «resonator» between the surface on the vehicle and plasma sheath which is supposed to provide an effective tunneling of the signal to the receiving antenna. We discuss the peculiarities of optical mechanical analogy applicability and analyze the radio frequency wave tunneling regime in detail. The cases of normal and oblique incidence of radiofrequency waves on the vehicle surface are studied.
Computational issues and algorithm assessment for shock/turbulence interaction problems
International Nuclear Information System (INIS)
Larsson, J; Cook, A; Lele, S K; Moin, P; Cabot, B; Sjoegreen, B; Yee, H; Zhong, X
2007-01-01
The paper provides an overview of the challenges involved in the computation of flows with interactions between turbulence, strong shockwaves, and sharp density interfaces. The prediction and physics of such flows is the focus of an ongoing project in the Scientific Discovery through Advanced Computing (SciDAC) program. While the project is fundamental in nature, there are many important potential applications of scientific and engineering interest ranging from inertial confinement fusion to exploding supernovae. The essential challenges will be discussed, and some representative numerical results that highlight these challenges will be shown. In addition, the overall approach taken in this project will be outlined
Liu, Shuai; Chen, Ge; Yao, Shifeng; Tian, Fenglin; Liu, Wei
2017-07-01
This paper presents a novel integrated marine visualization framework which focuses on processing, analyzing the multi-dimension spatiotemporal marine data in one workflow. Effective marine data visualization is needed in terms of extracting useful patterns, recognizing changes, and understanding physical processes in oceanography researches. However, the multi-source, multi-format, multi-dimension characteristics of marine data pose a challenge for interactive and feasible (timely) marine data analysis and visualization in one workflow. And, global multi-resolution virtual terrain environment is also needed to give oceanographers and the public a real geographic background reference and to help them to identify the geographical variation of ocean phenomena. This paper introduces a data integration and processing method to efficiently visualize and analyze the heterogeneous marine data. Based on the data we processed, several GPU-based visualization methods are explored to interactively demonstrate marine data. GPU-tessellated global terrain rendering using ETOPO1 data is realized and the video memory usage is controlled to ensure high efficiency. A modified ray-casting algorithm for the uneven multi-section Argo volume data is also presented and the transfer function is designed to analyze the 3D structure of ocean phenomena. Based on the framework we designed, an integrated visualization system is realized. The effectiveness and efficiency of the framework is demonstrated. This system is expected to make a significant contribution to the demonstration and understanding of marine physical process in a virtual global environment.
Schlagheck, R. A.
1977-01-01
New planning techniques and supporting computer tools are needed for the optimization of resources and costs for space transportation and payload systems. Heavy emphasis on cost effective utilization of resources has caused NASA program planners to look at the impact of various independent variables that affect procurement buying. A description is presented of a category of resource planning which deals with Spacelab inventory procurement analysis. Spacelab is a joint payload project between NASA and the European Space Agency and will be flown aboard the Space Shuttle starting in 1980. In order to respond rapidly to the various procurement planning exercises, a system was built that could perform resource analysis in a quick and efficient manner. This system is known as the Interactive Resource Utilization Program (IRUP). Attention is given to aspects of problem definition, an IRUP system description, questions of data base entry, the approach used for project scheduling, and problems of resource allocation.
International Nuclear Information System (INIS)
Gonis, Antonios; Daene, Markus W.; Nicholson, Don M.; Stocks, George Malcolm
2012-01-01
We have developed and tested in terms of atomic calculations an exact, analytic and computationally simple procedure for determining the functional derivative of the exchange energy with respect to the density in the implementation of the Kohn Sham formulation of density functional theory (KS-DFT), providing an analytic, closed-form solution of the self-interaction problem in KS-DFT. We demonstrate the efficacy of our method through ground-state calculations of the exchange potential and energy for atomic He and Be atoms, and comparisons with experiment and the results obtained within the optimized effective potential (OEP) method.
A THEORETICAL STUDY AND 3D MODELING OF NONLINEAR PASSIVE VIBRATION ISOLATOR
Sabyasachi Mukherjee
2017-01-01
The study of sound and vibration are closely related. Sound or "pressure waves" are generated by vibrating structures (e.g. vocal cords); these pressure waves can also induce the vibration of structures (e.g. ear drum). Hence, when trying to reduce noise it is often a problem in trying to reduce vibration. The high speed engines and machines when mounted on foundations and supports cause vibrations of excessive amplitude because of unbalance forces setup during their working. These are the di...
International Nuclear Information System (INIS)
Bakalov, D.D.; Melezhik, V.S.
1987-01-01
The relativistic Hamiltonian for 3-spin particles with electromagnetic interaction has been represented in the form of a sum of terms with factorized dependence on spin, angular and spheroidal variable, and its matrix elements have been expressed in terms of the matrix elements of a small number of ''basic'' operators. The numerical values of the latter have been tabulated, thus allowing for the evaluation of the leading relativistic effects in any 3-body system (with unit particle charge) with and accuracy of ∼ 0(1/2M), where 1/2M=(M 1 -1 +M 2 -1 )/2(M 1 -1 +M 3 -1 ) is the small parameter of the adiabatic expansion (M i , i=1,2,3 being particle masses)
Energy Technology Data Exchange (ETDEWEB)
Brown, P J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1996-11-01
A semi-quantitative analysis is given of some of the ways in which spin-lattice interactions can modify the cross-sections observable in neutron scattering experiments. This analysis is applied to the scattering from the invar alloy Fe{sub 65}Ni{sub 35} using a model in which the magnetic moment is a function of the near neighbour separation. This model has been applied to clarify the results of inelastic scattering experiments carried out on Fe{sub 65}Ni{sub 35} using both polarised and unpolarised neutrons. The extra information obtainable using polarised neutrons as well as the difficulties and limitations of the technique for inelastic scattering are discussed. (author) 8 figs., 14 refs.
International Nuclear Information System (INIS)
Caniparoli, Jean-Philippe
1988-01-01
After having determined the structural properties of smectic liquid crystals made from double chain surfactants/water binary systems, residual anisotropic interactions and relaxation times measurements were used to investigate the molecular ordering. Phosphorus, deuterium and nitrogen NMR of the surfactant molecules evidenced their high degree of order and the strong anisotropy of their motions. Quantitative results depended on the surfactant polar head -phosphate or ammonium-, while they displayed little variations with the hydrocarbon tail size. The marked dependence of the order and dynamics of small solutes in a lamellar phase on their hydrophilic or hydrophobic behaviour was shown using the same methods. By means of para-magnetically induced relaxation, it was proved that the non-polar solute benzene is located in the organic domain of the liquid crystalline matrix. (author) [fr
International Nuclear Information System (INIS)
Jo, Jong Chull; Roh, Kyung Wan; Jhung, Myung Jo
2006-12-01
During this work period, a preliminary research has been conducted in the three different and related areas as stated in the proposal: literature survey, preliminary feasibility study of LBM and FEM coupling for FSI problems, and benchmark problems. As far as the literature review was concerned, approximately one hundred articles were found for the LBM techniques and critical review has been performed. The reviewed articles were classified into several topics that are useful for a subsequent development of the proposed computer program. Those topics included immiscible multicomponent flows, flow with energy transport, coupled multi-physics applications, application of the boundary conditions, irregular lattices, and turbulence. Furthermore, some fundamental review of the LBM was also included in this report. Secondly, a description of the LBM and FEM coupling program, which has been developed so far, was described here along with some demonstration examples. The preliminary study showed a great potential of the proposed technique for FSI application. A sample computer program list is also attached as Appendix A. As a future benchmark study, a set of test cases were proposed so that experimental data would be obtained in the next phase of the study. These data would be beneficial to understand the fundamental physics of the FSI nature under different basic conditions, and also provide benchmark results against which the developed program at a later stage could be validated. Finally, the future research direction as the extension of the present work is provided with emphasis on its goal, as well as merits and benefits resulting from the proposed research for the regulatory evaluation activities of KINS and the associated technical activities of industries such as design, manufacturing, fabrication, operation and maintenance
Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems
International Nuclear Information System (INIS)
Donea, J.; Fasoli-Stella, P.; Giuliani, S.
1977-01-01
The basic finite element equations for transient compressible fluid flow are presented in a form that allows the elements to be moved with the fluid in normal Lagrangian fashion, to be held fixed in a Eulerian manner, or to be moved in some arbitrarily specified way. The co-existence of Lagrangian and Eulerian regions within the finite element mesh will permit to handle greater distortions in the fluid motion than would be allowed by a purely Lagrangian method, with more resolution than is afforded by a purely Eulerian method. To achieve a mixed formulation, the conservation statements of mass, momentum and energy are expressed in integral form over a reference volume whose surface may be moving with an arbitrarily prescribed velocity. Direct use can be made of the integral forms of the mass and energy equations to adjust the element density and specific internal energy. The Galerkin process is employed to formulate a variational statement associated with the momentum equation. The difficulties associated with the presence of convective terms in the conservation equations are handled by expressing transports of mass, momentum and energy terms of intermediate velocities derived at each cycle from the previous cycle velocities and accelerations. The hydrodynamic elements presented are triangles, quadrilaterals with constant pressure and density. The finite element equations associated with these elements are described in the necessary detail. Numerical results are presented based on purely Lagrangian, purely Eulerian and mixed formulations. Simple problems with analytic solution are solved first to show the validity and accuracy of the proposed mixed finite element formulation. Then, practical problems are illustrated in the field of fast reactor safety analysis
Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W
2015-03-01
For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.
Directory of Open Access Journals (Sweden)
Åse Bjørseth
Full Text Available The aim of the present investigation was to compare the effectiveness of Parent-Child Interaction Therapy (PCIT with treatment as usual (TAU in young children who were referred to regular child and adolescent mental health clinics for behavior problems.Eighty-one Norwegian families with two- to seven-year-old children (52 boys who had scored ≥ 120 on the Eyberg Child Behavior Inventory (ECBI were randomly assigned to receive either PCIT or TAU. The families were assessed 6 and 18 months after beginning treatment. Parenting skills were measured using the Dyadic Parent-Child Interaction Coding System (DPICS, and child behavior problems were measured using the ECBI and the Child Behavior Checklist (CBCL.Linear growth curve analyses revealed that the behavior problems of children receiving PCIT improved more compared with children receiving TAU according to mother reports (ECBI d = .64, CBCL d = .61, both p < .05 but not according to father report. Parents also improved with regard to Do and Don't skills (d = 2.58, d = 1.46, respectively, both p ≤ .001. At the 6-month assessment, which often occurred before treatment was finished, children who had received PCIT had lower father-rated ECBI and mother-rated CBCL-scores (p = .06 compared with those who had received TAU. At the 18-month follow-up, the children who had received PCIT showed fewer behavior problems compared with TAU according to mother (d = .37 and father (d = .56 reports on the ECBI and mother reports on the CBCL regarding externalizing problems (d = .39. Parents receiving PCIT developed more favorable Do Skills (6-month d = 1.81; 18-month d = 1.91 and Don't Skills (6-month d = 1.46; 18-month d = 1.42 according to observer ratings on the DPICS compared with those receiving TAU.Children receiving PCIT in regular clinical practice exhibited a greater reduction in behavior problems compared with children receiving TAU, and their parents' parenting skills improved to a greater degree
Interfacial instabilities in vibrated fluids
Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier
2016-07-01
Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced
Hand-Arm vibration assessment among tiller operator
Directory of Open Access Journals (Sweden)
P. Nassiri
2013-08-01
Result: Results of the present study indicated that in all measured situations, exposure to hand arm vibration was higher than the standard limit suggested by Iranian occupational health committee and there was risk of vibration-induced disorders. The maximum exposure to vibration is in plowing ground. Exposure to hand arm vibration in three modes of plowing, transmission and natural, were respectively 16.95, 14.16 and 8.65 meters per second squared. Additionally, in all situations, vibration exposure was highest in the X-axis in comparison with Z- and Y-axes. .Conclusion: This study emphasizes on the need to provide intervention and controlling and managing strategies in order to eliminate or reduce vibration transmitted from tiller to operators hand and arm and also prevent to serious problems including neurovascular disorders, discomfort and white finger syndrome. Meanwhile, more studies are necessary to identify the sources of vibration on different models of tiller.
Leon, Stéphane; Bergond, Gilles; Vallenari, Antonella
1999-04-01
We present the tidal tail distributions of a sample of candidate binary clusters located in the bar of the Large Magellanic Cloud (LMC). One isolated cluster, SL 268, is presented in order to study the effect of the LMC tidal field. All the candidate binary clusters show tidal tails, confirming that the pairs are formed by physically linked objects. The stellar mass in the tails covers a large range, from 1.8x 10(3) to 3x 10(4) \\msun. We derive a total mass estimate for SL 268 and SL 356. At large radii, the projected density profiles of SL 268 and SL 356 fall off as r(-gamma ) , with gamma = 2.27 and gamma =3.44, respectively. Out of 4 pairs or multiple systems, 2 are older than the theoretical survival time of binary clusters (going from a few 10(6) years to 10(8) years). A pair shows too large age difference between the components to be consistent with classical theoretical models of binary cluster formation (Fujimoto & Kumai \\cite{fujimoto97}). We refer to this as the ``overmerging'' problem. A different scenario is proposed: the formation proceeds in large molecular complexes giving birth to groups of clusters over a few 10(7) years. In these groups the expected cluster encounter rate is larger, and tidal capture has higher probability. Cluster pairs are not born together through the splitting of the parent cloud, but formed later by tidal capture. For 3 pairs, we tentatively identify the star cluster group (SCG) memberships. The SCG formation, through the recent cluster starburst triggered by the LMC-SMC encounter, in contrast with the quiescent open cluster formation in the Milky Way can be an explanation to the paucity of binary clusters observed in our Galaxy. Based on observations collected at the European Southern Observatory, La Silla, Chile}
J Haabrekke, Kristin; Siqveland, Torill; Smith, Lars; Wentzel-Larsen, Tore; Walhovd, Kristine B; Moe, Vibeke
2015-10-01
This prospective, longitudinal study with data collected at four time points investigated how maternal psychiatric symptoms, substance abuse and maternal intrusiveness in interaction were related to early child language skills. Three groups of mothers were recruited during pregnancy: One from residential treatment institutions for substance abuse (n = 18), one from psychiatric outpatient treatment (n = 22) and one from well-baby clinics (n = 30). Maternal substance abuse and anti-social and borderline personality traits were assessed during pregnancy, postpartum depression at 3 months, maternal intrusiveness in interaction at 12 months, and child language skills at 2 years. Results showed that the mothers in the substance abuse group had the lowest level of education, they were younger and they were more likely to be single mothers than the mothers in the two other groups. There was a significant difference in expressive language between children born to mothers with substance abuse problems and those born to comparison mothers, however not when controlling for maternal age, education and single parenthood. No group differences in receptive language skills were detected. Results further showed that maternal intrusiveness observed in mother-child interaction at 12 months was significantly related to child expressive language at 2 years, also when controlling for socio-demographic risk factors. This suggests that in addition to addressing substance abuse and psychiatric problems, there is a need for applying treatment models promoting sensitive caregiving, in order to enhance child expressive language skills.
Anatomy of an Exciton : Vibrational Distortion and Exciton Coherence in H- and J-Aggregates
Tempelaar, Roel; Stradomska, Anna; Knoester, Jasper; Spano, Frank C.
2013-01-01
In organic materials, coupling of electronic excitations to vibrational degrees of freedom results in polaronic excited states. Through numerical calculations, we demonstrate that the vibrational distortion field accompanying such a polaron scales as the product of the excitonic interaction field
Vibrational self-consistent field theory using optimized curvilinear coordinates.
Bulik, Ireneusz W; Frisch, Michael J; Vaccaro, Patrick H
2017-07-28
A vibrational SCF model is presented in which the functions forming the single-mode functions in the product wavefunction are expressed in terms of internal coordinates and the coordinates used for each mode are optimized variationally. This model involves no approximations to the kinetic energy operator and does not require a Taylor-series expansion of the potential. The non-linear optimization of coordinates is found to give much better product wavefunctions than the limited variations considered in most previous applications of SCF methods to vibrational problems. The approach is tested using published potential energy surfaces for water, ammonia, and formaldehyde. Variational flexibility allowed in the current ansätze results in excellent zero-point energies expressed through single-product states and accurate fundamental transition frequencies realized by short configuration-interaction expansions. Fully variational optimization of single-product states for excited vibrational levels also is discussed. The highlighted methodology constitutes an excellent starting point for more sophisticated treatments, as the bulk characteristics of many-mode coupling are accounted for efficiently in terms of compact wavefunctions (as evident from the accurate prediction of transition frequencies).
Study of the influences of rotary table speed on stick-slip vibration of the drilling system
Directory of Open Access Journals (Sweden)
Liping Tang
2015-12-01
Full Text Available Stick-slip vibration presents one of the major causes of drilling problems, such as premature tool failures, low drilling efficiency and poor wellbore quality. The objective of this work is to investigate the influences of rotary table speed (RTS on stick-slip phenomenon of the drilling system. In this study, the drilling system is treated as a lumped torsional pendulum model of which the bit/rock interaction is regarded as Coulomb friction. By analyzing cases with different RTS, two types of vibrations on the bit are found: stick-slip vibration and uniform motion. With an increase in the RTS, the stick-slip vibration on the drill bit disappears once the RTS arrives at its critical value. For the cases that stick-slip vibrations occur, the phase trajectories converge toward a limit cycle. For the cases that stick-slip vibration does not appear, the drill bit tends to stabilize at a uniform motion and the phase trajectories correspond to contracting spirals observed in the phase plane.
Bandshapes in vibrational spectroscopy
International Nuclear Information System (INIS)
Dijkman, F.G.
1978-01-01
A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)
Frequency adjustable MEMS vibration energy harvester
Podder, P.; Constantinou, P.; Amann, A.; Roy, S.
2016-10-01
Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.
Frequency adjustable MEMS vibration energy harvester
International Nuclear Information System (INIS)
Podder, P; Constantinou, P; Roy, S; Amann, A
2016-01-01
Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators. (paper)
Vibrations and stability of complex beam systems
Stojanović, Vladimir
2015-01-01
This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...
2002-01-01
Next week-end, the Geneva Science History Museum invites you to a Science Night under the banner of waves and vibrations. Scientists, artists and storytellers from more than forty institutes and local or regional associations will show that waves and vibrations form an integral part of our environment. You will be able to get in contact with the nature of waves through interactive exhibitions on sound and light and through hands-on demonstrations arranged in the Park of the Perle du Lac. On the CERN stand, you will be able to measure the speed of light with a bar of chocolate, and understand the scattering of waves with plastic ducks. Amazing, no? In addition to the stands, the Night will offer many other activities: reconstructions of experiments, a play, a concert of crystal glasses, an illuminated fountain, a house of spirits. More information Science Night, 6 and 7 July, Park of the Perle du Lac, Geneva
International Conference on Acoustics and Vibration
Chaari, Fakher; Walha, Lasaad; Abdennadher, Moez; Abbes, Mohamed; Haddar, Mohamed
2017-01-01
The book provides readers with a snapshot of recent research and industrial trends in field of industrial acoustics and vibration. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at International Conference on Acoustics and Vibration (ICAV2016), which was organized by the Tunisian Association of Industrial Acoustics and Vibration (ATAVI) and held March 21-23, in Hammamet, Tunisia. The contributions, mainly written by north African authors, covers advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others.This book provides a valuable resource for both academics and professionals dealing with diverse issues in applied mechanics. By combining advanced theori...
Vibrational and electronic spectroscopic studies of melatonin
Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.
2014-01-01
We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.
Experimental Research on the Influence of Vibration on Fingers Mobility
Directory of Open Access Journals (Sweden)
Radu Panaitescu-Liess
2013-09-01
Full Text Available In many industrial activities the human body is exposed to vibrations transmitted through the hand-arm system. A long exposure to these vibrations can cause various health problems of blood vessels, nerves, muscles, bones, joints and upper limb [1]. This paper presents some considerations about the influence of vibration on finger joints mobility. I used a MediTouch system which consists of a motion capture device (an ergonomic glove and a dedicated software.
14th International Conference on Acoustics and Vibration of Mechanical Structures
Marinca, Vasile
2018-01-01
This book is a collection of papers presented at Acoustics and Vibration of Mechanical Structures 2017 – AVMS 2017 – highlighting the current trends and state-of-the-art developments in the field. It covers a broad range of topics, such as noise and vibration control, noise and vibration generation and propagation, the effects of noise and vibration, condition monitoring and vibration testing, modeling, prediction and simulation of noise and vibration, environmental and occupational noise and vibration, noise and vibration attenuators, as well as biomechanics and bioacoustics. The book also presents analytical, numerical and experimental techniques for evaluating linear and non-linear noise and vibration problems (including strong nonlinearity). It is primarily intended for academics, researchers and professionals, as well as PhD students in various fields of the acoustics and vibration of mechanical structures.
Directory of Open Access Journals (Sweden)
V. V. Kulyabko
2010-04-01
Full Text Available In the article the issues of increasing the possibilities of computer modeling of the dynamic interaction of bridge constructions and their infrastructure with moving transport and flows are considered.
Noise and vibration in friction systems
Sergienko, Vladimir P
2015-01-01
The book analyzes the basic problems of oscillation processes and theoretical aspects of noise and vibration in friction systems. It presents generalized information available in literature data and results of the authors in vibroacoustics of friction joints, including car brakes and transmissions. The authors consider the main approaches to abatement of noise and vibration in non-stationary friction processes. Special attention is paid to materials science aspects, in particular to advanced composite materials used to improve the vibroacoustic characteristics of tribopairs The book is intended for researchers and technicians, students and post-graduates specializing in mechanical engineering, maintenance of machines and transport means, production certification, problems of friction and vibroacoustics.
Lambda-matrices and vibrating systems
Lancaster, Peter; Stark, M; Kahane, J P
1966-01-01
Lambda-Matrices and Vibrating Systems presents aspects and solutions to problems concerned with linear vibrating systems with a finite degrees of freedom and the theory of matrices. The book discusses some parts of the theory of matrices that will account for the solutions of the problems. The text starts with an outline of matrix theory, and some theorems are proved. The Jordan canonical form is also applied to understand the structure of square matrices. Classical theorems are discussed further by applying the Jordan canonical form, the Rayleigh quotient, and simple matrix pencils with late
Energy Technology Data Exchange (ETDEWEB)
Maxwell, H.
1996-12-01
This paper is the first of two papers which describe the Predictive Maintenance Program for rotating machines at the Palo Verde Nuclear Generating Station. The organization has recently been restructured and significant benefits have been realized by the interaction, or {open_quotes}synergy{close_quotes} between the Vibration Program and the Lube Oil Analysis Program. This paper starts with the oldest part of the program - the Vibration Program and discusses the evolution of the program to its current state. The {open_quotes}Vibration{close_quotes} view of the combined program is then presented.
Kristiansen, Jesper; Persson, Roger; Björk, Jonas; Albin, Maria; Jakobsson, Kristina; Östergren, Per-Olof; Ardö, Jonas
2011-01-01
To examine the risk of sleep problems associated with work stress (job strain, job demands, and decision authority), worries and pain and to investigate the synergistic interaction between these factors and traffic noise. Sleep problems and predictor variables were assessed in a cross-sectional public health survey with 12,093 respondents. Traffic noise levels were assessed using modelled A-weighted energy equivalent traffic sound levels at the residence. The risk of sleep problems was modell...
Tucker, Jalie A.; Roth, David L.; Huang, Jin; Scott Crawford, M.; Simpson, Cathy A.
2012-01-01
Objective: Most problem drinkers do not seek help, and many recover on their own. A randomized controlled trial evaluated whether supportive interactive voice response (IVR) self-monitoring facilitated such “natural” resolutions. Based on behavioral economics, effects on drinking outcomes were hypothesized to vary with drinkers’ baseline “time horizons,” reflecting preferences among commodities of different value available over different delays and with their IVR utilization. Method: Recently resolved untreated problem drinkers were randomized to a 24-week IVR self-monitoring program (n = 87) or an assessment-only control condition (n = 98). Baseline interviews assessed outcome predictors including behavioral economic measures of reward preferences (delay discounting, pre-resolution monetary allocation to alcohol vs. savings). Six-month outcomes were categorized as resolved abstinent, resolved nonabstinent, unresolved, or missing. Complier average causal effect (CACE) models examined IVR self-monitoring effects. Results: IVR self-monitoring compliers (≥70% scheduled calls completed) were older and had greater pre-resolution drinking control and lower discounting than noncompliers (moderation than abstinent resolutions compared with predicted compliers in the control group with shorter time horizons and with all noncompliers. Intention-to-treat analytical models revealed no IVR-related effects. More balanced spending on savings versus alcohol predicted moderation in both approaches. Conclusions: IVR interventions should consider factors affecting IVR utilization and drinking outcomes, including person-specific behavioral economic variables. CACE models provide tools to evaluate interventions involving extended participation. PMID:22630807
International Nuclear Information System (INIS)
Bertagna, Luca; Veneziani, Alessandro
2014-01-01
Scientific computing has progressively become an important tool for research in cardiovascular diseases. The role of quantitative analyses based on numerical simulations has moved from ‘proofs of concept’ to patient-specific investigations, thanks to a strong integration between imaging and computational tools. However, beyond individual geometries, numerical models require the knowledge of parameters that are barely retrieved from measurements, especially in vivo. For this reason, recently cardiovascular mathematics considered data assimilation procedures for extracting the knowledge of patient-specific parameters from measures and images. In this paper, we consider specifically the quantification of vascular compliance, i.e. the parameter quantifying the tendency of arterial walls to deform under blood stress. Following up a previous paper, where a variational data assimilation procedure was proposed, based on solving an inverse fluid–structure interaction problem, here we consider model reduction techniques based on a proper orthogonal decomposition approach to accomplish the solution of the inverse problem in a computationally efficient way. (paper)
Verdonk, Petra; de Rijk, Angelique; Klinge, Ineke; de Vries, Anneke
2008-11-01
Highly educated Dutch women experience more work related mental health disability than their male counterparts, and yet little is known regarding the process. Using the theory of symbolic interactionism, we examined how women interpret their roles at work, during sick leave, and upon their return to work. Semi-structured interviews focusing on role perceptions and interactions with other actors were conducted with 13 women (aged 29-41 years) on sick leave or off work for periods ranging from half a year to 8 years. The women worked overtime because of work aholism, or to meet supervisors' expectations. This led to mental health problems and social isolation. Taking sick leave aided recovery, but further isolated the women. Insufficient support from the workplace and social insurance professionals intensified negative feelings. Psychological counselling provided alternatives whereby work and private roles could become more balanced. However, their reintegration into the workplace failed because the women could not implement these strategies when the organizational culture failed to change. A long lead-up time preceded sickness absence and sick leave allowed for recovery and value adjustment. However, a variety of interpretations reinforced the women's individualized focus, thereby hampering their successful reintegration. Given the importance of implementing effective sick leave prevention measures in the workplace, psychological treatment should focus on women's interactions with their work environment.
Ogibalov, V. P.; Shved, G. M.
2017-09-01
The near-infrared (NIR) emission of the Martian atmosphere in the CO2 bands at 4.3, 2.7, 2.0, 1.6, 1.4, 1.3, 1.2, and 1.05 µm and in the CO bands at 4.7, 2.3, 1.6, and 1.2 µm is mainly generated under nonlocal thermodynamic equilibrium (NLTE) conditions for vibrational states, the transitions from which form the specified bands. The paper presents the results of simulations of the population of these states under NLTE for daytime conditions. In the cold high-latitude troposphere, the NLTE takes place much lower than in the troposphere under typical temperature conditions. If the NIR-radiation reflection from the surface is ignored, the population of high vibrational states substantially decreases, at least, in some layer of the lower atmosphere. However, inelastic collisions of CO2 and CO molecules with O atoms produce no considerable influence on the values of populations. The population of vibrational states, the transitions from which form NIR bands, is also almost insensitive to possible large values of the quenching-in-collision rate constants of vibrational states higher than CO2(0001). However, very large errors in the estimates of the population of vibrational states of the CO2 molecule (rather than the CO molecule!) can be caused by the uncertainty in the values of the rate constant of exchange between CO2 molecules by the energy quantum of the asymmetric stretching vibrational mode. For this intermolecular exchange, we recommend a possible way to restrict the vibrational excitation degree of the molecule that is a collision partner and to maintain simultaneously a sufficiently high accuracy in the population estimate.
Forced vibration tests of a model foundation on rock ground
International Nuclear Information System (INIS)
Kisaki, N.; Siota, M.; Yamada, M.; Ikeda, A.; Tsuchiya, H.; Kitazawa, K.; Kuwabara, Y.; Ogiwara, Y.
1983-01-01
The response of very stiff structures, such as nuclear reactor buildings, to earthquake ground motion is significantly affected by radiation damping due to the soil-structure interaction. The radiation damping can be computed by vibration admittance theory or dynamical ground compliance theory. In order to apply the values derived from these theories to the practical problems, comparative studies between theoretical results and experimental results concerning the soil-structure interaction, especially if the ground is rock, are urgently needed. However, experimental results for rock are less easily obtained than theoretical ones. The purpose of this paper is to describe the harmonic excitation tests of a model foundation on rock and to describe the results of comparative studies. (orig./HP)
Mechanical vibration and shock analysis, sinusoidal vibration
Lalanne, Christian
2014-01-01
Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m
Hydroelastic Vibrations of Ships
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Folsø, Rasmus
2002-01-01
A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...
Surface vibrational spectroscopy
International Nuclear Information System (INIS)
Erskine, J.L.
1984-01-01
A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations
Gearbox vibration diagnostic analyzer
1992-01-01
This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.
Handbook Of Noise And Vibration
International Nuclear Information System (INIS)
1995-12-01
This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.
Role of theoretical dynamics in vibration diagnostics of pipe systems
International Nuclear Information System (INIS)
Rejent, B.
1992-01-01
The importance of vibration diagnostics of pipe systems and the relevance of theoretical dynamics are shown using examples. The problems are discussed of vibration diagnostics of the primary circuit of a nuclear power plant with viscous seismic dampers installed. (M.D.) 7 figs., 5 refs
Floor Vibrations - as Induced and Reduced by Humans
DEFF Research Database (Denmark)
Pedersen, Lars
. As for dynamic loads focus is placed on heel impact excitation and actions of jumping people causing floor vibrations. As for interaction between stationary humans and the vibrating floor focus is on modelling humans as oscillating spring-mass-damper systems attached to the floor rather than as simple added mass...
Vibrational frame transformation for electron-molecule scattering
International Nuclear Information System (INIS)
Greene, C.H.; Jungen, C.
1985-01-01
The frame-transformation theory of electron interaction with a vibrating diatomic core is extended to allow for energy dependence of its parameters. The Born-Oppenheimer separation of electron and nuclear motion is preserved when the electron penetrates the molecular core. The extended theory reproduces the boomerang-model treatment of vibrational excitation in resonant e-N 2 collisions
Vibration insensitive interferometry
Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.
2017-11-01
The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.
Vibrations of rotating machinery
Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick
2017-01-01
This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...
International Nuclear Information System (INIS)
Sigrist, Jean-Francois; Laine, Christian; Broc, Daniel
2006-01-01
. The paper has the following contents: Introduction; A homogenization method; Validation of the method; Conclusion. In conclusion, a homogenization method has been exposed in the present paper to deal with the modal analysis of a coupled fluid-structure problem that takes into account the presence of solid inner inclusions on the fluid domain. The basic theory of the developed homogenization method has been recalled. The fluid-structure interaction is described in terms of pressure-displacement with the corrective terms taking into account the confinement effect induced by the inclusion. From the theoretical point of view, the method is furthermore demonstrated to be physically consistent in terms of total mass conservation. The method is validated on a generic 2D case, by a comparison of calculation performed on the fluid-structure system with inclusions and on the fluid-structure modified problem without inclusions. The numerical results are identical both in terms of Eigen-frequencies, Eigenmodes and modal masses. The method can be applied to the modal analysis of a nuclear reactor
International Nuclear Information System (INIS)
Perotin, L.; Granger, S.
1997-01-01
In order to improve the prediction of wear problems due to flow-induced vibration in PWR components, an inverse method for identifying a distributed random excitation acting on a dynamical system has been developed at EDF. This method, whose applications go far beyond the flow-induced vibration field, has been implemented into the MEIDEE software. This method is presented. (author)
International Nuclear Information System (INIS)
Boulanger, P.; Jacques, Y.; Fardeau, P.; Barbier, D.; Rigaudeau, J.
1997-01-01
The Hydraulic Core Laboratory (LHC) performs experimental studies of PWR fuel assembly mechanical behaviour submitted to representative flows in PWR core. Cross-flows prove particularly troublesome by generating on rods, in special cases, vibratory levels high enough to induce early grid to rod fretting. The fluid-structure interaction under mixed axial and cross-flow is also a major topic for analysis. The authors present a test loop devoted to the mixed axial-cross-flow fluid-structure interaction on representative half-scale mockup which is able to simulate, under ambient conditions, any complex flow (direction and flow rates) representative of PWR core flows. Despite its reduced size, the mockup retains the overall structure of a PWR fuel assembly. Rods displacement/velocity and velocity flow field are measured by laser techniques
A practical, systematic and structured approach to piping vibration assessment
International Nuclear Information System (INIS)
Sukaih, Naren
2002-01-01
The main aim of this paper is to present a systematic and structured approach to piping vibration assessment and control. Piping vibration assessment is a complex subject, since there are no general analytical methods for dealing with vibration problems. It was noted that most existing vibrating piping systems had poor or degraded support arrangements. This approach therefore focuses mainly on vibration control through assessing and improving the supporting systems. Vibration theory has not been covered in any detail. A simplified procedure is presented for the Integrity custodian to determine when a simple assessment may be carried out and when specialist/consultant services are required. The assessment techniques are based on simplifying assumptions, good rules of thumb and available literature and current practices. A typical case study is used to illustrate the use and the flexibility of the above approach. A standard sheet is proposed to record and document the assessment and recommendations
Vibration diagnostics instrumentation for ILC
Energy Technology Data Exchange (ETDEWEB)
Bertolini, A.
2007-06-15
The future e{sup -}e{sup +} 500 GeV International Linear Collider will rely on unprecedented nanometer scale particle beam size at the interaction point, in order to achieve the design luminosity. Tight tolerances on static and dynamic alignment of the accelerator cavities and optical components are demanded to transport and focus the high energy electron and positron beams with reasonable position jitter and low emittance. A brief review of techniques and devices evaluated and developed so far for the vibration diagnostics of the machine is presented in this paper. (orig.)
Vibration diagnostics instrumentation for ILC
International Nuclear Information System (INIS)
Bertolini, A.
2007-06-01
The future e - e + 500 GeV International Linear Collider will rely on unprecedented nanometer scale particle beam size at the interaction point, in order to achieve the design luminosity. Tight tolerances on static and dynamic alignment of the accelerator cavities and optical components are demanded to transport and focus the high energy electron and positron beams with reasonable position jitter and low emittance. A brief review of techniques and devices evaluated and developed so far for the vibration diagnostics of the machine is presented in this paper. (orig.)
Kristiansen, Jesper; Persson, Roger; Björk, Jonas; Albin, Maria; Jakobsson, Kristina; Ostergren, Per-Olof; Ardö, Jonas
2011-02-01
To examine the risk of sleep problems associated with work stress (job strain, job demands, and decision authority), worries and pain and to investigate the synergistic interaction between these factors and traffic noise. Sleep problems and predictor variables were assessed in a cross-sectional public health survey with 12,093 respondents. Traffic noise levels were assessed using modelled A-weighted energy equivalent traffic sound levels at the residence. The risk of sleep problems was modelled using multiple logistic regression analysis. With regard to sleep problems not attributed to any external source (general sleep problems), independent main effects were found for traffic noise (women), decision authority (women), job strain, job demands, suffering from pain or other afflictions, worries about losing the job, experiencing bullying at work, having troubles paying the bills, and having a sick, disabled, or old relative to take care of (women). Significant synergistic effects were found for traffic noise and experiencing bullying at work in women. With regard to sleep problems attributed to traffic noise, strong synergistic interactions were found between traffic noise and, respectively, job demands (men), having pain or other afflictions, taking care of a sick, old, or disabled relative, and having troubles paying the bills. Main effects were found for worries about losing the job, experiencing bullying at work, job strain (men), and decision authority (men). Synergistic interactions could potentially contribute with 10-20% of the sleep problems attributed to traffic noise in the population. Work stress, pain, and different worries were independently associated with general sleep problems and showed in general no synergistic interaction with traffic noise. In contrast, synergistic effects between traffic noise and psychological factors were found with regard to sleep problems attributed to traffic noise. The synergy may contribute significantly to sleep
Vibration-type particle separation device with piezoceramic vibrator
Ooe, Katsutoshi; Doi, Akihiro
2008-12-01
During hemanalysis, it is necessary to separate blood cells from whole blood. Many blood separation methods, for example, centrifugation and filtering, are in practical use. However, the use of these methods involves problems from the perspectives of processing speed and processing volume. We develop new types of blood separation devices that use piezo-ceramic vibrators. The first device uses a capillary. One end of the capillary is fixed to the device frame, and the other is fixed to a piezo-ceramic vibrator. The vibrator transmits bending waves to the capillary. This device can process only a small amount of solution; therefore, it is not suitable for hemanalysis. In order to solve this problem, we developed a second device; this device has a pair of thin glass plates with a small gap as a substitute for the capillary used in the first device. These devices are based on the fact that particles heavier than water move toward transverse velocity antinodes while those lighter than water move toward velocity nodes. In this report, we demonstrate the highspeed separation of silica microbeads and 50-vol% glycerol water by using these devices. The first device can separate the abovementioned solution within 3 min while the second can separate it within 1 min. Both devices are driven by a rectangular wave of 15 to 20 Vpp. Furthermore, it has been confirmed that red blood cells are separated from diluted whole blood using the first device within approximately 1 min. These devices have transparency, so they can compose as the analysis system with the chemical analyzer easily.
Lambda-matrices and vibrating systems
Lancaster, Peter
2002-01-01
Features aspects and solutions of problems of linear vibrating systems with a finite number of degrees of freedom. Starts with development of necessary tools in matrix theory, followed by numerical procedures for relevant matrix formulations and relevant theory of differential equations. Minimum of mathematical abstraction; assumes a familiarity with matrix theory, elementary calculus. 1966 edition.
Proceedings of second international conference on vibration engineering and technology of machinery
International Nuclear Information System (INIS)
2002-12-01
This volume of proceedings of the conference on vibration engineering cover a wide range of fields spanning diagnostics and condition monitoring, dynamics of rotors, dynamics of structures, computational methods, vehicle dynamics, vibration control, fluid-structure interaction, random and non-linear vibration. Many of these topics are also important to nuclear industry. The papers relevant to INIS are indexed separately
Silicon micromachined vibrating gyroscopes
Voss, Ralf
1997-09-01
This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.
System Detects Vibrational Instabilities
Bozeman, Richard J., Jr.
1990-01-01
Sustained vibrations at two critical frequencies trigger diagnostic response or shutdown. Vibration-analyzing electronic system detects instabilities of combustion in rocket engine. Controls pulse-mode firing of engine and identifies vibrations above threshold amplitude at 5.9 and/or 12kHz. Adapted to other detection and/or control schemes involving simultaneous real-time detection of signals above or below preset amplitudes at two or more specified frequencies. Potential applications include rotating machinery and encoders and decoders in security systems.
Lanzani, Guglielmo; De Silvestri, Sandro
2007-01-01
Vibrational spectroscopy is a powerful investigation tool for a wide class of materials covering diverse areas in physics, chemistry and biology. The continuous development in the laser field regarding ultrashort pulse generation has led to the possibility of producing light pulses that can follow vibrational motion coupled to the electronic transitions in molecules and solids in real time. Aimed at researchers and graduate students using vibrational spectroscopy, this book provides both introductory chapters as well as more advanced contents reporting on recent progress. It also provides a good starting point for scientists seeking a sound introduction to ultrafast optics and spectroscopic techniques.
International Nuclear Information System (INIS)
Schröter, M.; Ivanov, S.D.; Schulze, J.; Polyutov, S.P.; Yan, Y.; Pullerits, T.; Kühn, O.
2015-01-01
The influence of exciton–vibrational coupling on the optical and transport properties of molecular aggregates is an old problem that gained renewed interest in recent years. On the experimental side, various nonlinear spectroscopic techniques gave insight into the dynamics of systems as complex as photosynthetic antennae. Striking evidence was gathered that in these protein–pigment complexes quantum coherence is operative even at room temperature conditions. Investigations were triggered to understand the role of vibrational degrees of freedom, beyond that of a heat bath characterized by thermal fluctuations. This development was paralleled by theory, where efficient methods emerged, which could provide the proper frame to perform non-Markovian and non-perturbative simulations of exciton–vibrational dynamics and spectroscopy. This review summarizes the state of affairs of the theory of exciton–vibrational interaction in molecular aggregates and photosynthetic antenna complexes. The focus is put on the discussion of basic effects of exciton–vibrational interaction from the stationary and dynamics points of view. Here, the molecular dimer plays a prominent role as it permits a systematic investigation of absorption and emission spectra by numerical diagonalization of the exciton–vibrational Hamiltonian in a truncated Hilbert space. An extension to larger aggregates, having many coupled nuclear degrees of freedom, becomes possible with the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for wave packet propagation. In fact it will be shown that this method allows one to approach the limit of almost continuous spectral densities, which is usually the realm of density matrix theory. Real system–bath situations are introduced for two models, which differ in the way strongly coupled nuclear coordinates are treated, as a part of the relevant system or the bath. A rather detailed exposition of the Hierarchy Equations Of Motion (HEOM
The nuclear N-body problem and the effective interaction in self-consistent mean-field methods
International Nuclear Information System (INIS)
Duguet, Thomas
2002-01-01
This work deals with two aspects of mean-field type methods extensively used in low-energy nuclear structure. The first study is at the mean-field level. The link between the wave-function describing an even-even nucleus and the odd-even neighbor is revisited. To get a coherent description as a function of the pairing intensity in the system, the utility of the formalization of this link through a two steps process is demonstrated. This two-steps process allows to identify the role played by different channels of the force when a nucleon is added in the system. In particular, perturbative formula evaluating the contribution of time-odd components of the functional to the nucleon separation energy are derived for zero and realistic pairing intensities. Self-consistent calculations validate the developed scheme as well as the derived perturbative formula. This first study ends up with an extended analysis of the odd-even mass staggering in nuclei. The new scheme allows to identify the contribution to this observable coming from different channels of the force. The necessity of a better understanding of time-odd terms in order to decide which odd-even mass formulae extracts the pairing gap the most properly is identified. These terms being nowadays more or less out of control, extended studies are needed to make precise the fit of a pairing force through the comparison of theoretical and experimental odd-even mass differences. The second study deals with beyond mean-field methods taking care of the correlations associated with large amplitude oscillations in nuclei. Their effects are usually incorporated through the GCM or the projected mean-field method. We derive a perturbation theory motivating such variational calculations from a diagrammatic point of view for the first time. Resuming two-body correlations in the energy expansion, we obtain an effective interaction removing the hard-core problem in the context of configuration mixing calculations. Proceeding to a
International Nuclear Information System (INIS)
Sinyavskii, V.F.; Fedotovskii, V.S.; Kukhtin, A.B.
1977-01-01
The vibrations of single cylinders in fluid being surrounded by the solid walls of different form as well as the bundles of cylindric rods have been considered in this report. A model is proposed for hydrodynamic damping of vibrations and the analytic solution of a problem concerning damping of cylinder vibrations in fluid surrounded by a concentric shell. It has been shown that the fluid viscosity and vibration frequency influence the value of the fluid added mass and the damping factor of vibrations
International Nuclear Information System (INIS)
Liu, Hao
2016-01-01
This Ph.D. work takes place within the framework of studies on Pellet-Cladding mechanical Interaction (PCI) which occurs in the fuel rods of pressurized water reactor. This manuscript focuses on automatic mesh refinement to simulate more accurately this phenomena while maintaining acceptable computational time and memory space for industrial calculations. An automatic mesh refinement strategy based on the combination of the Local Defect Correction multigrid method (LDC) with the Zienkiewicz and Zhu a posteriori error estimator is proposed. The estimated error is used to detect the zones to be refined, where the local sub-grids of the LDC method are generated. Several stopping criteria are studied to end the refinement process when the solution is accurate enough or when the refinement does not improve the global solution accuracy anymore. Numerical results for elastic 2D test cases with pressure discontinuity show the efficiency of the proposed strategy. The automatic mesh refinement in case of unilateral contact problems is then considered. The strategy previously introduced can be easily adapted to the multi-body refinement by estimating solution error on each body separately. Post-processing is often necessary to ensure the conformity of the refined areas regarding the contact boundaries. A variety of numerical experiments with elastic contact (with or without friction, with or without an initial gap) confirms the efficiency and adaptability of the proposed strategy. (author) [fr
Causes and proposed resolutions of high vibration in NWTF transfer pumps
International Nuclear Information System (INIS)
Trawinski, B.J.
1993-01-01
This Technical Report is intended to communicate the findings from the latest phase of New Waste Transfer Facility (NWTF) transfer pump testing. These tests have identified causes for the high pump vibrations that have been observed during previous phases of transfer pump startup testing, and have led to recommendations for resolving the vibration problem. The paper describes the problem, the test methodology, observations, and recommend actions to correct the vibration problem
Dynamics and vibrations progress in nonlinear analysis
Kachapi, Seyed Habibollah Hashemi
2014-01-01
Dynamical and vibratory systems are basically an application of mathematics and applied sciences to the solution of real world problems. Before being able to solve real world problems, it is necessary to carefully study dynamical and vibratory systems and solve all available problems in case of linear and nonlinear equations using analytical and numerical methods. It is of great importance to study nonlinearity in dynamics and vibration; because almost all applied processes act nonlinearly, and on the other hand, nonlinear analysis of complex systems is one of the most important and complicated tasks, especially in engineering and applied sciences problems. There are probably a handful of books on nonlinear dynamics and vibrations analysis. Some of these books are written at a fundamental level that may not meet ambitious engineering program requirements. Others are specialized in certain fields of oscillatory systems, including modeling and simulations. In this book, we attempt to strike a balance between th...
Energy Technology Data Exchange (ETDEWEB)
Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp; Huy Pham, C.; Riera, Marc; Moberg, Daniel R.; Morales, Miguel A.; Knight, Chris; Götz, Andreas W.; Paesani, Francesco
2016-11-21
The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water. Published by AIP Publishing.
DEFF Research Database (Denmark)
Nielsen, Søren R. K.
The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration th...... theory is unchanged in comparison to the 3rd edition. Only a few errors have been corrected.......The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...
Improved Laser Vibration Radar
National Research Council Canada - National Science Library
Hilaire, Pierre
1998-01-01
.... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...
NIF Ambient Vibration Measurements
International Nuclear Information System (INIS)
Noble, C.R.; Hoehler, M.S.; S.C. Sommer
1999-01-01
LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B
Vibration-rotation band intensities in the IR spectra of polyatomic molecules
International Nuclear Information System (INIS)
El'kin, M.D.; Kosterina, E.K.; Berezin
1995-01-01
Using the curvilinear vibrational coordinates for a nuclear subsystem, expressions for the effective dipole-moment operators are derived in order to analyze the vibrational-rotational transitions in the IR spectra of polyatomic rigid molecules. The explicit expressions obtained for the intensities of hot bands allow one to estimate the influence of the vibration-rotation interaction within the framework of the adopted molecular-vibration model. The suggested method is shown to be suitable for Raman spectra analysis. 12 refs
Energy Technology Data Exchange (ETDEWEB)
Philip J. Reid
2009-09-21
The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.
Sensitivity improvement techniques for micromechanical vibrating accelerometers
Directory of Open Access Journals (Sweden)
Vtorushin Sergey
2016-01-01
Full Text Available The paper presents the problems of detecting a desired signal generated by micromechanical vibrating accelerometer. Three detection methods, namely frequency, amplitude and phase are considered in this paper. These methods are used in micromechanical vibrating accelerometers that incorporate a force sensitive element which transforms measured acceleration into the output signal. Investigations are carried out using the ANSYS finite element program and MATLAB/Simulink support package. Investigation results include the comparative analysis of the output signal characteristics obtained by the different detection methods.
Dubois-Comtois, Karine; Bernier, Annie; Tarabulsy, George M; Cyr, Chantal; St-Laurent, Diane; Lanctôt, Anne-Sophie; St-Onge, Janie; Moss, Ellen; Béliveau, Marie-Julie
2015-10-01
This study investigated different environmental and contextual factors associated with maltreated children's adjustment in foster care. Participants included 83 children (52 boys), ages 1-7 years, and their foster caregivers. Quality of interaction with the foster caregiver was assessed from direct observation of a free-play situation; foster caregiver attachment state of mind and commitment toward the child were assessed using two interviews; disruptive behavior symptoms were reported by foster caregivers. Results showed that quality of interaction between foster caregivers and children were associated with behavior problems, such that higher-quality interactions were related to fewer externalizing and internalizing problems. Foster caregivers' state of mind and commitment were interrelated but not directly associated with behavior problems of foster children. Type of placement moderated the association between foster caregiver commitment and foster child behavior problems. Whereas greater foster caregiver commitment was associated with higher levels of adjustment for children in foster families (kin and non-kin), this was not the case in foster-to-adopt families. Finally, the associations between foster child behavior problems and history of maltreatment and placement related-risk conditions fell below significance after considering child age and quality of interaction with the foster caregiver. Findings underscore the crucial contribution of the foster caregiver-child relationship to fostering child adjustment and, thereby, have important implications for clinical services offered to this population. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vibrational spectroscopic study of terbutaline hemisulphate
Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.
2009-05-01
The Raman spectrum of terbutaline hemisulphate is reported for the first time, and molecular assignments are proposed on the basis of ab initio BLYP DFT calculations with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation; these predictions compare favourably with the observed vibrational spectra. Comparison with previously published infrared data explains several spectral features. The results from this study provide data that can be used for the preparative process monitoring of terbutaline hemisulphate, an important β 2 agonist drug in various dosage forms and its interaction with excipients and other components.
Localized Surface Plasmons in Vibrating Graphene Nanodisks
DEFF Research Database (Denmark)
Wang, Weihua; Li, Bo-Hong; Stassen, Erik
2016-01-01
in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined...... by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters...
Flow induced vibrations of piping
International Nuclear Information System (INIS)
Gibert, R.J.; Axisa, F.
1977-01-01
In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fuid mass to the structure. This may lead to serious errors.- Inertial effects from the fluid are not correctly evaluated especially in the case of bended or of non-uniform section pipes. Fluid boundary conditions are simply ignored. - In many practical problems fluid compressibility cannot be negelcted, even in the low frequencies domain which corresponds to efficient excitation by turbulent sources of the flow. This paper presents a method to take into account these efects, by solving a coupled mechanical acoustical problem: the computer code TEDEL of the C.E.A./D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. (Auth.)
International Nuclear Information System (INIS)
Popov, A.P.; Perevezentsev, A.M.
1995-01-01
The paper defines the main problems arising in connection with organization of interaction of the administrative bodies and the forces involved in liquidation of after-effects of radiation accident. It is demonstrated that in order to increase the efficiency of interaction of the administrative bodies of various levels it is necessary to make it automatic. The paper revealed the meaning of the levels of relationship between various automatic systems. 4 refs
de Jong, Marian Elizabeth
2015-01-01
In the process of parents’ interactions with principals and teachers to resolve behaviour problems, what happens that is likely to create positive outcomes for children in school? Research literature establishes that parent interactions, whether for behaviour or academic reasons, are directed by subtly defined or invisible parameters that provide inherent institutional influence to outcomes. Bourdieu’s social reproduction theory, which relates to the influence of cultural, social, and symbo...
Topology optimization of free vibrations of fiber laser packages
DEFF Research Database (Denmark)
Hansen, Lars Voxen
2005-01-01
The optimization problems described in the present paper are inspired by the problem of fiber laser package design for vibrating environments. The optical frequency of tuned fiber lasers glued to stiff packages is sensitive to acoustic or other mechanical vibrations. The paper presents a method...... for reducing this sensitivity by limiting the glue point movement on the package while using only a limited knowledge of vibrating external forces. By use of topology optimization a density distribution for the package is obtained, where the critical eigenmode of the package only effects a small elongation...
Abnormal vibration of turbine due to oil whip
International Nuclear Information System (INIS)
Koo, Jae Raeyang; Hwang, Jae Hyeon
2001-01-01
Almost all rotating machinery has bearings. Bearing is one of the most important part of rotating machinery. Vibration of rotating machinery depend on its bearing conditions. Bearing conditions are following; oil gap, bearing type, bearing temperature, bearing oil condition. Especially, bearing oil condition influences on rotating machinery vibration directly. In this paper we have discussed the abnormal vibration of turbine due to oil condition. Oil whip problem was occurred in the certain power plant and we had solved this problem through the control of operating values and alignment
Rotational dependence of Fermi-type resonance interactions in molecules
Mikhailov, Vladimir M.; Smirnov, M. A.
1997-03-01
In Pasadena, (Milliken Lab., USA, 1930) F. Rossetti has observed in Raman spectrum of carbon-dioxide molecule the full symmetric vibration of carbon dioxide appeared as the group of four near lying lines instead of the waited single line. The true interpretation of this enigmatic effect (in that time) was given by E. Fermi -- accidental degeneration of the first excited state of the full symmetric vibration in carbon dioxide. It was the first example of the event observed later in various organic molecules. This event was named as resonance Fermi. The rotational dependence of Fermi type resonance interactions in quasirigid molecules in dominant approximation can be selected in an expansion of the effective vibration-rotation Hamiltonian Hvib- roteff by the operator H(g)(Fermi) equals H30 plus (Sigma) nH3n(g). Let us consider in detail the problem of the construction of the effective vibration-rotational Hamiltonian HVR yields Heff from the point of view of various ordering schemes (grouping) of the vibrational-rotational interactions with sequential analysis of the choice of the convenient grouping adequate to the spectroscopic problem.
Vibration converter with magnetic levitation
Gladilin, A. V.; Pirogov, V. A.; Golyamina, I. P.; Kulaev, U. V.; Kurbatov, P. A.; Kurbatova, E. P.
2015-05-01
The paper presents a mathematical model, the results of computational and theoretical research, and the feasibility of creating a vibration converter with full magnetic levitation in the suspension of a high-temperature superconductor (HTSC). The axial and radial stability of the active part of the converter is provided by the interaction of the magnetic field of ring-shaped permanent magnets and a hollow cylinder made of the ceramic HTSC material. The force is created by a system of current-carrying coils whose magnetic field is polarized by permanent magnets and interacts with induced currents in the superconducting cylinder. The case of transition to the superconducting state of HTSC material in the field of the permanent magnets (FC mode) is considered. The data confirm the outlook for the proposed technical solutions.
International Nuclear Information System (INIS)
Brooks, B.R.
1979-09-01
The Graphical Unitary Group Approach (GUGA) was cast into an extraordinarily powerful form by restructuring the Hamiltonian in terms of loop types. This restructuring allows the adoption of the loop-driven formulation which illuminates vast numbers of previously unappreciated relationships between otherwise distinct Hamiltonian matrix elements. The theoretical/methodological contributions made here include the development of the loop-driven formula generation algorithm, a solution of the upper walk problem used to develop a loop breakdown algorithm, the restriction of configuration space employed to the multireference interacting space, and the restructuring of the Hamiltonian in terms of loop types. Several other developments are presented and discussed. Among these developments are the use of new segment coefficients, improvements in the loop-driven algorithm, implicit generation of loops wholly within the external space adapted within the framework of the loop-driven methodology, and comparisons of the diagonalization tape method to the direct method. It is also shown how it is possible to implement the GUGA method without the time-consuming full (m 5 ) four-index transformation. A particularly promising new direction presented here involves the use of the GUGA methodology to obtain one-electron and two-electron density matrices. Once these are known, analytical gradients (first derivatives) of the CI potential energy are easily obtained. Several test calculations are examined in detail to illustrate the unique features of the method. Also included is a calculation on the asymmetric 2 1 A' state of SO 2 with 23,613 configurations to demonstrate methods for the diagonalization of very large matrices on a minicomputer. 6 figures, 6 tables
Conformational and vibrational reassessment of solid paracetamol
Amado, Ana M.; Azevedo, Celeste; Ribeiro-Claro, Paulo J. A.
2017-08-01
This work provides an answer to the urge for a more detailed and accurate knowledge of the vibrational spectrum of the widely used analgesic/antipyretic drug commonly known as paracetamol. A comprehensive spectroscopic analysis - including infrared, Raman, and inelastic neutron scattering (INS) - is combined with a computational approach which takes account for the effects of intermolecular interactions in the solid state. This allows a full reassessment of the vibrational assignments for Paracetamol, thus preventing the propagation of incorrect data analysis and misassignments already found in the literature. In particular, the vibrational modes involving the hydrogen-bonded Nsbnd H and Osbnd H groups are correctly reallocated to bands shifted by up to 300 cm- 1 relatively to previous assignments.
Investigation of Concrete Floor Vibration Using Heel-Drop Test
Azaman, N. A. Mohd; Ghafar, N. H. Abd; Azhar, A. F.; Fauzi, A. A.; Ismail, H. A.; Syed Idrus, S. S.; Mokhjar, S. S.; Hamid, F. F. Abd
2018-04-01
In recent years, there is an increased in floor vibration problems of structures like residential and commercial building. Vibration is defined as a serviceability issue related to the comfort of the occupant or damage equipment. Human activities are the main source of vibration in the building and it could affect the human comfort and annoyance of residents in the building when the vibration exceed the recommend level. A new building, Madrasah Tahfiz located at Yong Peng have vibration problem when load subjected on the first floor of the building. However, the limitation of vibration occurs on building is unknown. Therefore, testing is needed to determine the vibration behaviour (frequency, damping ratio and mode shape) of the building. Heel-drop with pace 2Hz was used in field measurement to obtain the vibration response. Since, the heel-drop test results would vary in light of person performance, test are carried out three time to reduce uncertainty. Natural frequency from Frequency Response Function analysis (FRF) is 17.4Hz, 16.8, 17.4Hz respectively for each test.
Sutherland, Kevin S.; Conroy, Maureen A.; Algina, James; Ladwig, Crystal; Jesse, Gabriel; Gyure, Maria
2018-01-01
Research has consistently linked early problem behavior with later adjustment problems, including antisocial behavior, learning problems and risk for the development of emotional/behavioral disorders (EBDs). Researchers have focused upon developing effective intervention programs for young children who arrive in preschool exhibiting chronic…
Rosales, Javier; Vicente, Santiago; Chamoso, Jose M.; Munez, David; Orrantia, Josetxu
2012-01-01
Word problem solving involves the construction of two different mental representations, namely, mathematical and situational. Although educational research in word problem solving has documented different kinds of instruction at these levels, less is known about how both representational levels are evoked during word problem solving in day-to-day…
Adaptive super twisting vibration control of a flexible spacecraft with state rate estimation
Malekzadeh, Maryam; Karimpour, Hossein
2018-05-01
The robust attitude and vibration control of a flexible spacecraft trying to perform accurate maneuvers in spite of various sources of uncertainty is addressed here. Difficulties for achieving precise and stable pointing arise from noisy onboard sensors, parameters indeterminacy, outer disturbances as well as un-modeled or hidden dynamics interactions. Based on high-order sliding-mode methods, the non-minimum phase nature of the problem is dealt with through output redefinition. An adaptive super-twisting algorithm (ASTA) is incorporated with its observer counterpart on the system under consideration to get reliable attitude and vibration control in the presence of sensor noise and momentum coupling. The closed-loop efficiency is verified through simulations under various indeterminate situations and got compared to other methods.
Vibration Isolation for Parallel Hydraulic Hybrid Vehicles
Directory of Open Access Journals (Sweden)
The M. Nguyen
2008-01-01
Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.
Vibrational characteristics and wear of fuel rods
International Nuclear Information System (INIS)
Schmugar, K.L.
1977-01-01
Fuel rod wear, due to vibration, is a continuing concern in the design of liquid-cooled reactors. In my report, the methodology and models that are used to predict fuel rod vibrational response and vibratory wear, in a light water reactor environment, are discussed. This methodology is being followed at present in the design of Westinghouse Nuclear Fuel. Fuel rod vibrations are expressed as the normal bending modes, and sources of rod vibration are examined with special emphasis on flow-induced mechanisms in the stable flow region. In a typical Westinghouse PWR fuel assembly design, each fuel rod is supported at multiple locations along the rod axis by a square-shaped 'grid cell'. For a fuel rod /grid support system, the development of small oscillatory motions, due to fluid flow at the rod/grid interface, results in material wear. A theoretical wear mode is developed using the Archard Theory of Adhesive Wear as the basis. Without question certainty, fretting wear becomes a serious problem if it progresses to the stage where the fuel cladding is penetrated and fuel is exposed to the coolant. Westinghouse fuel is designed to minimize fretting wear by limiting the relative motion between the fuel rod and its supports. The wear producing motion between the fuel rod and its supports occurs when the vibration amplitude exceeds the slippage threshold amplitude
DEFF Research Database (Denmark)
Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD
This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions ...
Gilemkhanova, Elvira N.
2016-01-01
The changes in contemporary social and cultural environment determine the necessity to increase the efficiency of adaptive mechanisms, especially for those categories of people who are subject to social risks. One of those categories is students prone to chemical addictions. To study the relationship of forms of social interaction with problems of…
2012-01-01
Background Research into neural mechanisms of drug abuse risk has focused on the role of dysfunction in neural circuits for reward. In contrast, few studies have examined the role of dysfunction in neural circuits of threat in mediating drug abuse risk. Although typically regarded as a risk factor for mood and anxiety disorders, threat-related amygdala reactivity may serve as a protective factor against substance use disorders, particularly in individuals with exaggerated responsiveness to reward. Findings We used well-established neuroimaging paradigms to probe threat-related amygdala and reward-related ventral striatum reactivity in a sample of 200 young adult students from the ongoing Duke Neurogenetics Study. Recent life stress and problem drinking were assessed using self-report. We found a significant three-way interaction between threat-related amygdala reactivity, reward-related ventral striatum reactivity, and recent stress, wherein individuals with higher reward-related ventral striatum reactivity exhibit higher levels of problem drinking in the context of stress, but only if they also have lower threat-related amygdala reactivity. This three-way interaction predicted both contemporaneous problem drinking and problem drinking reported three-months later in a subset of participants. Conclusions These findings suggest complex interactions between stress and neural responsiveness to both threat and reward mediate problem drinking. Furthermore, they highlight a novel protective role for threat-related amygdala reactivity against drug use in individuals with high neural reactivity to reward. PMID:23151390
CISM Summer School on Fluid-Structure Interactions in Acoustics
1999-01-01
The subject of the book is directly related to environmental noise and vibration phenomena (sound emission by vibrating structures, prediction and reduction, ...). Transportation noise is one of the main applications. The book presents an overview of the most recent knowledge on interaction phenomena between a structure and a fluid, including nonlinear aspects. It covers all aspects of the phenomena, from the mathematical modeling up to the applications to automotive industrial problems. The aim is to provide readers with a good understanding of the physical phenomena as well as the most recent knowledge of predictive methods.
A study of modelling simplifications in ground vibration predictions for railway traffic at grade
Germonpré, M.; Degrande, G.; Lombaert, G.
2017-10-01
Accurate computational models are required to predict ground-borne vibration due to railway traffic. Such models generally require a substantial computational effort. Therefore, much research has focused on developing computationally efficient methods, by either exploiting the regularity of the problem geometry in the direction along the track or assuming a simplified track structure. This paper investigates the modelling errors caused by commonly made simplifications of the track geometry. A case study is presented investigating a ballasted track in an excavation. The soil underneath the ballast is stiffened by a lime treatment. First, periodic track models with different cross sections are analyzed, revealing that a prediction of the rail receptance only requires an accurate representation of the soil layering directly underneath the ballast. A much more detailed representation of the cross sectional geometry is required, however, to calculate vibration transfer from track to free field. Second, simplifications in the longitudinal track direction are investigated by comparing 2.5D and periodic track models. This comparison shows that the 2.5D model slightly overestimates the track stiffness, while the transfer functions between track and free field are well predicted. Using a 2.5D model to predict the response during a train passage leads to an overestimation of both train-track interaction forces and free field vibrations. A combined periodic/2.5D approach is therefore proposed in this paper. First, the dynamic axle loads are computed by solving the train-track interaction problem with a periodic model. Next, the vibration transfer to the free field is computed with a 2.5D model. This combined periodic/2.5D approach only introduces small modelling errors compared to an approach in which a periodic model is used in both steps, while significantly reducing the computational cost.
Flow induced vibrations of piping
International Nuclear Information System (INIS)
Gibert, R.J.; Axisa, F.
1977-01-01
In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fluid mass to the structure. This may lead to serious errors. This paper presents a method to take into account these effects, by solving a coupled mechanical-acoustical problem: the computer code TEDEL of the C.E.A /D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. By this way the mechanical-acoustical coupled eigenmodes of any piping system can be obtained. These eigenmodes are used to determine the response of the system to various sources. Equations have been written in the hypohesis that acoustical wave lengths remain large compared to the diameter of the pipe. The method has been checked by an experiment performed on the GASCOGNE loop at D.E.M.T. The piping system under test consists of a tube with four elbows. The circuit is ended at each extremity by a large vessel which performs acoustical isolation by generating modes for the pressure. Excitation of the circuit is caused by a valve located near the downstream vessel. This provides an efficient localised broad band acoustical source. The comparison between the test results and the calculations has shown that the low frequency resonant characteristics of the pipe and the vibrational amplitude at various flow-rates can be correctly predicted
Vibration transducer calibration techniques
Brinkley, D. J.
1980-09-01
Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.
Marsman, Rianne; Oldehinkel, Albertine J; Ormel, Johan; Buitelaar, Jan K
2013-08-30
Although externalizing behavior problems show in general a high stability over time, the course of externalizing behavior problems may vary from individual to individual. Our main goal was to investigate the predictive role of parenting on externalizing behavior problems. In addition, we investigated the potential moderating role of gender and genetic risk (operationalized as familial loading of externalizing behavior problems (FLE), and presence or absence of the dopamine receptor D4 (DRD4) 7-repeat and 4-repeat allele, respectively). Perceived parenting (rejection, emotional warmth, and overprotection) and FLE were assessed in a population-based sample of 1768 10- to 12-year-old adolescents. Externalizing behavior problems were assessed at the same age and 212 years later by parent report (CBCL) and self-report (YSR). DNA was extracted from blood samples. Parental emotional warmth predicted lower, and parental overprotection and rejection predicted higher levels of externalizing behavior problems. Whereas none of the parenting factors interacted with gender and the DRD4 7-repeat allele, we did find interaction effects with FLE and the DRD4 4-repeat allele. That is, the predictive effect of parental rejection was only observed in adolescents from low FLE families and the predictive effect of parental overprotection was stronger in adolescents not carrying the DRD4 4-repeat allele. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A Study on the Vibration Measurement and Analysis of Rotating Machine Foundations
Energy Technology Data Exchange (ETDEWEB)
Lee, Jong Rim; Jeon, Kyu Sik; Suh, Young Pyo; Cho, Chul Hwan; Kim, Sung Taeg; Lee, Myung Kyu [Korea Electric Power Research Institute, Taejon (Korea, Republic of)
1996-12-31
To search for the cause of vibration problem of rotating machine in the power plant, first the rotating machine is classified according to their type and each vibration characteristic is reviewed. The criteria for the evaluation of mechanical vibration effect on the structure and human being during the design of machine foundation is described below. The foundation of rotating machine is classified according to its shape and some factors are described which should be considered during dynamic modeling analysis for its correct result. Also the methods of incorporating foundation vibration into mechanical vibration analysis are reviewed. Type of vibration measurement and analysis which is used to find out the dynamic characteristic of structure is described in accordance with its signal processing and measuring method. Measurement of vibration and its analysis when there occurs real vibration troubles in power plant are compared with the results of numerical modeling as case studies. (author). 16 refs., 23 figs.
Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.
Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi
2018-05-08
Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.
Active Vibration Control of Hydrodynamic Journal Bearings
Tůma, J.; Šimek, J.; Škuta, J.; Los, J.; Zavadil, J.
Rotor instability is one of the most serious problems of high-speed rotors supported by sliding bearings. With constantly increasing parameters, new machines problems with rotor instability are encountered more and more often. Even though there are many solutions based on passive improvement of the bearing geometry to enlarge the operational speed range of the journal bearing, the paper deals with a working prototype of a system for the active vibration control of journal bearings with the use of piezoactuators. The actively controlled journal bearing consists of a movable bushing, which is actuated by two piezoactuators. It is assumed that the journal vibration is measured by a pair of proximity probes. Force produced by piezoactuators and acting at the bushing is controlled according to error signals derived from the proximity probe output signals. The active vibration control was tested with the use of a test rig, which consists of a rotor supported by two controllable journal bearings and driven by an inductive motor up to 23,000 rpm. As it was proved by experiments the active vibration control extends considerably the range of the rotor operational speed.
Nokes, L D; Thorne, G C
1988-01-01
Measurements of various mechanical properties of skeletal material using vibration techniques have been reported. The purposes of such investigations include the monitoring of pathogenic disorders such as osteoporosis, the rate and extent of fracture healing, and the status of internal fixations. Early investigations pioneered the application of conventional vibration measurement equipment to biological systems. The more recent advent of the microcomputer has made available to research groups more sophisticated techniques for data acquisition and analysis. The economical advantages of such equipment has led to the development of portable research instrumentation which lends itself to use in a clinical environment. This review article reports on the developments and progression of the various vibrational techniques and theories as applied to musculoskeletal systems.
Nonlinear vibration with control for flexible and adaptive structures
Wagg, David
2015-01-01
This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...
Time-resolved vibrational spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)
2009-05-14
This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.
Vibration control of a cluster of buildings through the Vibrating Barrier
Tombari, A.; Garcia Espinosa, M.; Alexander, N. A.; Cacciola, P.
2018-02-01
A novel device, called Vibrating Barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves has been recently proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. In this paper the efficiency of the ViBa is investigated to control the vibrations of a cluster of buildings. To this aim, a discrete model of structures-site interaction involving multiple buildings and the ViBa is developed where the effects of the soil on the structures, i.e. the soil-structure interaction (SSI), the structure-soil-structure interaction (SSSI) as well as the ViBa-soil-structures interaction are taken into account by means of linear elastic springs. Closed-form solutions are derived to design the ViBa in the case of harmonic excitation from the analysis of the discrete model. Advanced finite element numerical simulations are performed in order to assess the efficiency of the ViBa for protecting more than a single building. Parametric studies are also conducted to identify beneficial/adverse effects in the use of the proposed vibration control strategy to protect cluster of buildings. Finally, experimental shake table tests are performed to a prototype of a cluster of two buildings protected by the ViBa device for validating the proposed numerical models.
Vibrational spectra of aminoacetonitrile
International Nuclear Information System (INIS)
Bak, B.; Hansen, E.L.; Nicolaisen, F.M.; Nielsen, O.F.
1975-01-01
The preparation of pure, stable aminoacetonitrile(1-amino, 1'-cyanomethane)CH 2 NH 2 CN (1) is described. The Raman spectrum, now complete, and a novel infrared spectrum extending over the 50-3600 cm -1 region are reported. A tentative normal vibration analysis is presented and supported by Raman and infrared data from the spectra of CH 2 NHDCN (2) and CH 2 ND 2 CN (3). The predominance of the trans rotamer may be attributed to intramolecular hydrogen bonding but this is too unimportant to influence the vibrational frequencies of gaseous 1, 2, and 3. However, large gas/liquid frequency shifts occur. (author)
DEFF Research Database (Denmark)
Nielsen, Søren R. K.
The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration th...... theory is basically unchanged in comparison to the 1st edition. Only section 4.2 on single input - single output systems and chapter 6 on offshore structures have been modified in order to enhance the clearness....
Bourne, D.P.; Elman, H.; Osborn, J.E.
2009-01-01
This paper is the second part of a two-part paper treating a non-self-adjoint quadratic eigenvalue problem for the linear stability of solutions to the Taylor-Couette problem for flow of a viscous liquid in a deformable cylinder, with the cylinder modelled as a membrane. The first part formulated
van Dijk, Rianne; Dekovic, Maja; Bunte, Tessa L; Schoemaker, Kim; Zondervan-Zwijnenburg, Mariëlle; Espy, Kimberly A; Matthys, Walter
2017-01-01
Previous research has shown links between parenting and externalizing behavior problems in young children over time. Associations between inhibitory control, one of the executive functions, and externalizing behavior problems are widely established as well. Yet, the role of inhibitory control in the
Van Doorn, Marleen M. E. M.; Kuijpers, Rowella C. W. M.; Lichtwarck-aschoff, Anna; Bodden, Denise; Jansen, Mélou; Granic, Isabela
2016-01-01
The relation between maternal depressive symptoms and children’s mental health problems has been well established. However, prior studies have predominantly focused on maternal reports of children’s mental health problems and on parenting behavior, as a broad and unilateral concept. This
Steif, Paul S.; Fu, Luoting; Kara, Levent Burak
2016-01-01
Problems faced by engineering students involve multiple pathways to solution. Students rarely receive effective formative feedback on handwritten homework. This paper examines the potential for computer-based formative assessment of student solutions to multipath engineering problems. In particular, an intelligent tutor approach is adopted and…
Van der Giessen, D.; Hollenstein, T.; Hale, W.W.; Koot, H.M.; Meeus, W.H.J.; Branje, S.J.T.
2015-01-01
Emotional variability reflects the ability to flexibly switch among a broad range of positive and negative emotions from moment-to-moment during interactions. Emotional variability during mother-adolescent conflict interactions is considered to be important for healthy socio-emotional functioning of
Heterogeneous Dynamics of Coupled Vibrations
Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E
2009-01-01
Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.
Hansson, J E; Eklund, L; Kihlberg, S; Ostergren, C E
1987-03-01
The main objective of the study was to find efficient hand tools which caused only minor vibration loading. Vibration measurements were carried out under standardised working conditions. The time during which car body repairers in seven companies were exposed to vibration was determined. Chisel hammers, impact wrenches, sanders and saws were the types of tools which generated the highest vibration accelerations. The average daily exposure at the different garages ranged from 22 to 70 min. The risk of vibration injury is currently rated as high. The difference between the highest and lowest levels of vibration was considerable in most tool categories. Therefore the choice of tool has a major impact on the magnitude of vibration exposure. The importance of choosing the right tools and working methods is discussed and a counselling service on vibration is proposed.
Two-phase flow induced parametric vibrations in structural systems
International Nuclear Information System (INIS)
Hara, Fumio
1980-01-01
This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)
Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade
Directory of Open Access Journals (Sweden)
Osama N. Alshroof
2012-01-01
Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.
VIBRATIONS DETECTION IN INDUSTRIAL PUMPS BASED ON SPECTRAL ANALYSIS TO INCREASE THEIR EFFICIENCY
Directory of Open Access Journals (Sweden)
Belhadef RACHID
2016-01-01
Full Text Available Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analy-sis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.
DEFF Research Database (Denmark)
Jönsson, Jeppe; Hansen, Lars Pilegaard
1994-01-01
work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...
General principles of vibrational spectroscopies
Weckhuysen, B.M.; Schoonheydt, R.A.
2000-01-01
Atoms in molecules and solids do not remain in fixed relative positions, but vibrate about some mean position. This vibrational motion is quantized and at room temperature, most of the molecules in a given sample are in their lowest vibrational state. Absorption of electromagnetic radiation with
High-Temperature Vibration Damper
Clarke, Alan; Litwin, Joel; Krauss, Harold
1987-01-01
Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.
Elastic and inelastic vibrational cross sections for positron scattering by carbon monoxide
Energy Technology Data Exchange (ETDEWEB)
Tenfen, W. [Departamento de Física, Universidade Federal da Fronteira Sul, 85770-000, Realeza, Paraná (Brazil); Arretche, F., E-mail: fartch@gmail.com [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina (Brazil); Michelin, S.E.; Mazon, K.T. [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina (Brazil)
2015-11-01
The vibrational cross sections of the CO molecule induced by positron impact is the focus of this work. The positron–molecule interaction is represented by the static potential plus a model potential designed to take into account the positron–target correlations. To calculate the vibrational cross sections, we applied the multichannel version of the continued fractions method in the close-coupling scheme. We present vibrational excitation cross sections and elastic ones, for the ground and excited vibrational states. The results are interpreted in terms of the vibrational coupling-scheme used in the scattering model.
Applications of super elasticity in vibrational control
International Nuclear Information System (INIS)
Soul, H
2005-01-01
In this work, the possibilities of using shape memory alloys (SMA) as passive dampers devices in mechanicals vibrations problems are studied.The property that is exploited is the super elastic effect, by wich strains of the order of 10% can be obtained.The relationship between stress and strain means that this is an inelastic process.Nevertheless when load is removed the material recoveries its original dimension, presenting zero or almost zero permanent strain relative to others common materials, describing in its stress-strain diagram an important hysteretic loop.This features occurs basically because in well suited conditions the SMA can undergo martensitic transformations induced by stress.A series of uniaxial tension tests in commercial NiTi wires are performed, in order to characterize the super elastic behavior of the material.The influence of variables as ambient temperature, strain rate, strain levels and number of tension cycles accumulated are studied paying attention to the dissipative capacity of the material defined by means of the shape of the hysteretic loop.The influence on the damping capacity of the thermal effects associated with the martensitic transformation are evaluated by performing experiments at different transformation rates.Results are rationalized in terms of a model considering the interaction between a source term (heat of transformation), heat convection to the ambient and conduction along the wire.Some numerical results are obtained and discussed. For a performance evaluation in devices applications a simplified model of super elasticity is proposed.Then, the response of an elastic frame structure endowed with SMA tensors is evaluated following the model behavior when seismic movement is imposed at the base.The obtained results verify the possibility of using SMA as kernel elements in vibration control.This conclusion is experimentally verified in a prototype of the structure specially designed and constructed for this work
Logunova, O. S.; Sibileva, N. S.
2017-12-01
The purpose of the study is to increase the efficiency of the steelmaking process in large capacity arc furnace on the basis of implementation a new decision-making system about the composition of charge materials. The authors proposed an interactive builder for the formation of the optimization problem, taking into account the requirements of the customer, normative documents and stocks of charge materials in the warehouse. To implement the interactive builder, the sets of deterministic and stochastic model components are developed, as well as a list of preferences of criteria and constraints.
Yu, Rongqin; Branje, Susan; Keijsers, Loes; Meeus, Wim
2015-01-01
This longitudinal study examined person-environment interplay by testing interaction effects between adolescent personality type (i.e., overcontrollers, undercontrollers, and resilients) and young adult romantic relationship quality on young adult delinquency and anxiety. The study employed six
Yu, Rongqin; Branje, Susan; Keijsers, Loes; Meeus, W.H.J.
This longitudinal study examined person–environment interplay by testing interaction effects between adolescent personality type (i.e., overcontrollers, undercontrollers, and resilients) and young adult romantic relationship quality on young adult delinquency and anxiety. The study employed six
DOE/ANL/HTRI heat exchanger tube vibration data bank
International Nuclear Information System (INIS)
Halle, H.; Chenoweth, J.M.; Wambsganss, M.W.
1980-02-01
Development of a new heat exchanger tube vibration data bank at Argonne National Laboratory is described. Comprehensive case histories on heat exchangers that have experienced tube-vibration problems and units that have been trouble-free are accumulated and this information is rendered available for evaluation, improvement, and development of vibration-prediction methods and design guidelines. Discussions include difficulties in generating a data bank, data form development, and solicitation efforts. Also included are 15 case histories upon which the data bank will be built. As new case histories are received, they will be assembled and published as addenda to this report
Vibration monitoring and fault diagnostics of a thermal power plant
International Nuclear Information System (INIS)
Hafeez, T.; Ghani, R.; Chohan, G.Y.; Amir, M.
2003-01-01
A thermal power plant was monitored from HP-turbine to the generator end. The vibration data at different plant locations was obtained with the help of a data collector/analyzer. The spectra of-all locations generate the symptoms for different problems of moderate and high vibration levels like bent shaft, misalignment in the exciter rotor and three couplings, mechanical looseness on generator and exciter sides. The possible causes of these faults are discussed on the basis of presented vibration spectra in this paper. The faults were later on rectified on the basis of this diagnostics. (author)
International Nuclear Information System (INIS)
Maxwell, H.
1996-01-01
This paper is the first of two papers which describe the Predictive Maintenance Program for rotating machines at the Palo Verde Nuclear Generating Station. The organization has recently been restructured and significant benefits have been realized by the interaction, or open-quotes synergyclose quotes between the Vibration Program and the Lube Oil Analysis Program. This paper starts with the oldest part of the program - the Vibration Program and discusses the evolution of the program to its current state. The open-quotes Vibrationclose quotes view of the combined program is then presented
Equilibrium structure and atomic vibrations of Nin clusters
Borisova, Svetlana D.; Rusina, Galina G.
2017-12-01
The equilibrium bond lengths and binding energy, second differences in energy and vibrational frequencies of free clusters Nin (2 ≤ n ≤ 20) were calculated with the use of the interaction potential obtained in the tight-binding approximation (TBA). The results show that the minimum vibration frequency plays a significant role in the evaluation of the dynamic stability of the clusters. A nonmonotonic dependence of the minimum vibration frequency of clusters on their size and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 are demonstrated. This result agrees with the theoretical and experimental data on stable structures of small metallic clusters.
Isogeometric Shape Optimization of Vibrating Membranes
DEFF Research Database (Denmark)
Nguyen, Dang Manh; Evgrafov, Anton; Gersborg, Allan Roulund
2011-01-01
We consider a model problem of isogeometric shape optimization of vibrating membranes whose shapes are allowed to vary freely. The main obstacle we face is the need for robust and inexpensive extension of a B-spline parametrization from the boundary of a domain onto its interior, a task which has...... perform a number of numerical experiments with our isogeometric shape optimization algorithm and present smooth, optimized membrane shapes. Our conclusion is that isogeometric analysis fits well with shape optimization....
Microscopic theory of particle-vibration coupling
Energy Technology Data Exchange (ETDEWEB)
Colo, Gianluca; Bortignon, Pier Francesco [Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sez. di Milano, via Celoria 16, 20133 Milano (Italy); Sagawa, Hiroyuki [Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560 (Japan); Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van, E-mail: colo@mi.infn.it [Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex (France)
2011-09-16
Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.
Microscopic theory of particle-vibration coupling
International Nuclear Information System (INIS)
Colo, Gianluca; Bortignon, Pier Francesco; Sagawa, Hiroyuki; Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van
2011-01-01
Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.
Digital data acquisition for laser radar for vibration analysis
Montes, Felix G.
1998-01-01
Approved for public release; distribution is unlimited Laser radar for vibration analysis represents a military application to develop a target identification system in the future. The problem addressed is how to analyze the vibrations of a target illuminated by the laser radar to achieve a positive identification. This thesis develops a computer-based data acquisition and analysis system for improving the laser radar capability. Specifically, a review is made of the CO2 laser radar, coher...
An expert system for vibration based diagnostics of rotating machines
International Nuclear Information System (INIS)
Korteniemi, A.
1990-01-01
Very often changes in the mechanical condition of the rotating machinery can be observed as changes in its vibration. This paper presents an expert system for vibration-based diagnosis of rotating machines by describing the architecture of the developed prototype system. The importance of modelling the problem solving knowledge as well as the domain knowledge is emphasized by presenting the knowledge in several levels
The effects of vibration-reducing gloves on finger vibration
Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.
2015-01-01
Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new
Vibrational energy relaxation: proposed pathway of fast local chromatin denaturation
International Nuclear Information System (INIS)
Harder, D.; Greinert, R.
2002-01-01
The molecular mechanism responsible for the a component of exchange-type chromosome aberrations, of chromosome fragmentation and of reproductive cell death is one of the unsolved issues of radiation biology. Under review is whether vibrational energy relaxation in the constitutive biopolymers of chromatin, induced by inelastic energy deposition events and mediated via highly excited vibrational states, may provide a pathway of fast local chromatin denaturation, thereby producing the severe DNA lesion able to interact chemically with other, non-damaged chromatin. (author)
Dispersion of low frequency vibrations in the deuterated naphthalene crystal
International Nuclear Information System (INIS)
Bokhenkov, E.L.; Sheka, E.; Natkaniec, I.
1977-01-01
The dispersion curves of the lattice vibrations and of the two lowest intramolecular vibrations in d 8 -naphthalene (C 10 D 8 ) crystal have been measured by coherent inelastic neutron scattering for the [010] and the [100] directions at the temperature of 98 K and partially at 5 K. The results are compared with calculations based on the Kitaigorodskii parameters for C-C, C-H and H-H interactions in organic molecular crystals. (author)
Burt, S. A.; Klump, K. L.
2018-01-01
Background Prior research has suggested that, consistent with the diathesis–stress model of gene–environment interaction (G × E), parent–child conflict activates genetic influences on antisocial/externalizing behaviors during adolescence. It remains unclear, however, whether this model is also important during childhood, or whether the moderation of child conduct problems by negative/conflictive parenting is better characterized as a bioecological interaction, in which environmental influences are enhanced in the presence of environmental risk whereas genetic influences are expressed most strongly in their absence. The current study sought to distinguish between these possibilities, evaluating how the parent–child relationship moderates the etiology of childhood-onset conduct problems. Method We conducted a series of ‘latent G by measured E’ interaction analyses, in which a measured environmental variable was allowed to moderate both genetic and environmental influences on child conduct problems. Participants included 500 child twin pairs from the Michigan State University Twin Registry (MSUTR). Results Shared environmental influences on conduct problems were found to be several-fold larger in those with high levels of parent–child conflict as compared with those with low levels. Genetic influences, by contrast, were proportionally more influential at lower levels of conflict than at higher levels. Conclusions Our findings suggest that, although the diathesis–stress form of G × E appears to underlie the relationship between parenting and conduct problems during adolescence, this pattern of moderation does not extend to childhood. Instead, results were more consistent with the bioecological form of G × E which postulates that, in some cases, genetic influences may be most fully manifested in the absence of environmental risk. PMID:23746066
Vibration noise control in laser satellite communication
Saksonov, Avigdor; Shlomi, Arnon; Kopeika, Norman S.
2001-08-01
Laser satellite communication has become especially attractive in recent years. Because the laser beam width is narrow than in the RF or microwave range, the transmitted optical power may be significantly reduced. This leads to development of miniature communication systems with extremely low power consumption. On the other hand, the laser communication channel is very sensitive to vibrations of the optical platform. These vibrations cause angular noise in laser beam pointing, comparable to the laser beam width. As result, as significant portion of the optical power between transmitter and receiver is lost and the bit error rate is increased. Consequently, vibration noise control is a critical problem in laser satellite communication. The direction of the laser beam is corrected with a fast steering mirror (FSM). In this paper are presented two approaches for the FSM control. One is the feedback control that uses an LQG algorithm. The second is the direct feed- forward control when vibration noise is measured by three orthogonal accelerometers and drives directly the F SM. The performances of each approach are evaluated using MATLAB simulations.
Experimental study of acoustic vibration in BWRs
International Nuclear Information System (INIS)
Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji
2009-01-01
In recent years, the power uprate of Boiling Water Reactors have been conducted at several existing power plants as a way to improve plant economy. In one of the power uprated plants (117.8% uprates) in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In this study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on natural convection and forced convection. Dynamic PIV system is the newest entrant to the field of fluid flow measurement. Its paramount advantage is the instantaneous global evaluation of conditions over plane extended across the whole velocity field. Also, to evaluate the coupling between the acoustic wave and structure (simulated as tuning fork vibrator in this experiment), in the resonance frequency of tuning fork vibrator, fluid behavior and the motion of tuning fork vibrator are measured simultaneously. (author)
CSIR Research Space (South Africa)
Haelterman, R
2016-07-01
Full Text Available be mathematically stated in the following form: F (g) = pS(p) = g, (1) where F : DF ⊂ Rm → Rn : g 7→ F (g) and S : DS ⊂ Rn → Rm : p 7→ S(p). Each equation describes (the discretized equations of) a physical problem that is spatially decomposed. In fluid... physical problem, it often represents the equations obtained after discretizing the continuous equations in time and space, and thus only represents the evolution over one time-step (see §3). This is an example of how we could be presented with a series...
Flooring-systems and their interaction with furniture and humans
DEFF Research Database (Denmark)
Frier, Christian; Pedersen, Lars; Andersen, Lars Vabbersgaard
2017-01-01
Flooring-system designs may be sensitive in terms of their vibrational performance due the risk that serviceability-limit-state problems may be encountered. For evaluating the vibrational performance of a flooring system at the design stage, decisions must be made by the engineer in charge...... of computations. Passive humans and/or furniture are often present on a floor. Typically, these masses and their way of interacting with the floor mass are ignored in predictions of vibrational behaviour of the flooring system. Utilizing a shell finite-element model, the paper explores and quantifies how non......-structural mass can influence central parameters describing the dynamic behaviour of the flooring system with focus on elevated non-structural mass. © 2017 The Authors. Published by Elsevier Ltd....
Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).
Citir, Murat; Altinay, Gokhan; Metz, Ricardo B
2006-04-20
Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.
Controlling coupled bending-twisting vibrations of anisotropic composite wing
Ryabov, Victor; Yartsev, Boris
2018-05-01
The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance
Vibrations of thin piezoelectric shallow shells: Two-dimensional ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...
Analysis of radial vibrations of poroelastic circular cylindrical shells ...
African Journals Online (AJOL)
DR OKE
vanished, the considered problem reduces to the problem of radial vibrations of fluid-filled poroelastic circular cylindrical shell. (2). When the .... the volume change of the solid to that of liquid. ..... When the outer fluid density is zero, that is, ρof = 0 then the poroelastic cylindrical shell immersed in an acoustic medium will.
Bandwidth of reactor internals vibration resonance with coolant pressure oscillations
International Nuclear Information System (INIS)
Proskuryakov, K.N.; Novikov, K.S.; Galivec, E.Yu.
2009-01-01
In a few decades a significant increase in a part of an electricity development on the NPP will require NPP to be operated in non full capacity modes and increase in operation time in transitive modes. Operating in such conditions as compared to the operation on a constant mode will lead to the increase in cyclic dynamical loading. In water cooled water moderated reactors these loading are realized as low-cyclic and high-cyclic loadings. High-cyclic loadings increases are caused by a raised vibration in non stationary modes of operation. It is known, that in some modes of a non full capacity reactor high-cyclic dynamic loadings can increase. It is obvious, that the development of management technologies is necessary for the life time management operation. In the context of this problem one of the main tasks are revealing and the prevention of the conditions of the occurrence of the operation leading to the resonant interaction of the coolant fluctuations and the equipment, reactor vessel (RV), fuel assemblies (FA) and reactor internals (RI) vibration. To prevent the appearance of the conditions for resonance interaction between the fluid flow and the equipments, it is necessary to provide the different frequencies for the self oscillations in the separated elements of the circulating system and also in the parts of the system formed by the comprising of these elements. While solving these problems it is necessary to have a theoretical and settlement substantiation of an oscillation frequency band of coolant outside of which there is no resonant interaction. The presented work is devoted to finding the solution of this problem. There are results of theoretical an estimation of width of such band as well as the examples of a preliminary quantitative estimation of Q - factors of coolant acoustic oscillatory circuit formed by the equipment of the NPP. The accordance of results had been calculated with had been measured are satisfied for practical purposes. These
Morgan, Judith K.; Shaw, Daniel S.; Olino, Thomas M.
2012-01-01
Whereas socialization influences in early childhood have been linked to children's emerging internalizing problems and prosocial behavior, relatively few studies have examined how NE might moderate such associations in both advantageous and maladaptive ways. Furthermore, more research is needed to evaluate the impact of sibling relationships as an…
Cook, David A; Thompson, Warren G; Thomas, Kris G; Thomas, Matthew R
2009-03-01
Adaptation to learning styles has been proposed to enhance learning. We hypothesized that learners with sensing learning style would perform better using a problem-first instructional method while intuitive learners would do better using an information-first method. Randomized, controlled, crossover trial. Resident ambulatory clinics. 123 internal medicine residents. Four Web-based modules in ambulatory internal medicine were developed in both "didactic" (information first, followed by patient problem and questions) and "problem" (case and questions first, followed by information) format. Knowledge posttest, format preference, learning style (Index of Learning Styles). Knowledge scores were similar between the didactic (mean +/- standard error, 83.0 +/- 0.8) and problem (82.3 +/- 0.8) formats (p = .42; 95% confidence interval [CI] for difference, -2.3 to 0.9). There was no difference between formats in regression slopes of knowledge scores on sensing-intuitive scores (p = .63) or in analysis of knowledge scores by styles classification (sensing 82.5 +/- 1.0, intermediate 83.7 +/- 1.2, intuitive 81.0 +/- 1.5; p = .37 for main effect, p = .59 for interaction with format). Format preference was neutral (3.2 +/- 0.2 [1 strongly prefers didactic, 6 strongly prefers problem], p = .12), and there was no association between learning styles and preference (p = .44). Formats were similar in time to complete modules (43.7 +/- 2.2 vs 43.2 +/- 2.2 minutes, p = .72). Starting instruction with a problem (versus employing problems later on) may not improve learning outcomes. Sensing and intuitive learners perform similarly following problem-first and didactic-first instruction. Results may apply to other instructional media.
Structure-borne sound structural vibrations and sound radiation at audio frequencies
Cremer, L; Petersson, Björn AT
2005-01-01
Structure-Borne Sound"" is a thorough introduction to structural vibrations with emphasis on audio frequencies and the associated radiation of sound. The book presents in-depth discussions of fundamental principles and basic problems, in order to enable the reader to understand and solve his own problems. It includes chapters dealing with measurement and generation of vibrations and sound, various types of structural wave motion, structural damping and its effects, impedances and vibration responses of the important types of structures, as well as with attenuation of vibrations, and sound radi
International Nuclear Information System (INIS)
Yukhnovs'kij, Yi.R.; Kobrin, O.Je.; Tokarchuk, M.V.; Tokarevs'kij, V.V.
1997-01-01
The main forms of the existence of nuclear fuel and major concomitant factors of nuclear and ecological danger of the object 'Shelter' are presented. The processes of interaction between water and fuel containing materials have been analysed on the basis of experimental data
International Nuclear Information System (INIS)
Inoue, Tadashi; Yokoyama, Hayaichi
1982-01-01
Immiscibility and crystallization, and chemical interaction with stainless steel, SUS 304, which is designed as a canister material, were investigated on non-radioactive glasses with simulated waste of 26.4 wt%. Although glasses whose initial color was black changed to yellow or yellow-brown by heat-treatment at 600 0 C, the change of color was hardly observed by the treatment at 850 0 C. Molybdenum oxide and molybdate were detected in all heat-treated glasses. It was deduced that the compounds were existing as meta-stable particle corresponding to immiscibility particle at 600 0 C and as stable crystallized particle at 850 0 C. The chemical interaction occurred at the interface between glasses and SUS 304, whose surface was attacked by boundary corrosion proceeding to uniform corrosion with increasing temperature and time. Chromium oxide layer was mainly formed in the region suffered chemical interaction. It was deduced that the chemical interaction was moderated due to the formation of protective layer, which mainly consisted of nickel oxide, at the same time as the formation of Cr 2 O 3 layer. (author)
da Silva, André Constantino; Freire, Fernanda Maria Pereira; de Arruda, Alan Victor Pereira; da Rocha, Heloísa Vieira
2013-01-01
e-Learning environments offer content, such text, audio, video, animations, using the Web infrastructure and they are designed to users interacting with keyboard, mouse and a medium-sized screen. Mobile devices, such as smartphones and tablets, have enough computation power to render Web pages, allowing browsing the Internet and access e-Learning…
Directory of Open Access Journals (Sweden)
Susana Correnti
2016-01-01
Full Text Available The «PBL working environment» is a virtual environment developed in the framework of SCENE project (profeSsional development for an effeCtive PBL approach: a practical experiENce through ICT-enabled lEarning solution, co-funded by the European Lifelong Learning Program. The «PBL working environment» is devoted to prepare headmasters and teachers of secondary and vocational schools to use Problem-Based Learning (PBL pedagogy effectively. It is a student-centered pedagogy where learners are «actively» engaged in real world problems to solve or challenges to meet. Students develop problem-solving, self-directed learning and team skills. The «PBL working environment» is an virtual tool including three main elements: e-learning platform, virtual facilitator and PBL repository. Teachers, trainers and headmasters/school managers learn the PBL pedagogy by attending an on-line course (e-learning platform delivered through the «inductive method». It allows learners to experience PBL approach, by practicing it stage by stage, and then learn to turn practice into theory by abstracting their experience to build a theoretical understanding. Since generating the proper scenario is the most critical aspect of PBL, after benefiting from the on-line course, users can benefit from a further support: the Virtual Facilitator. It provides tips and hints on how correctly design a problem scenario and by asking questions to collect data on user's specific needs. The Virtual Facilitator is able to provide a/or more suitable example(s which match as closest as possible the teacher/trainer need. Finally, users can share problem scenarios and projects of different subjects of studies and with different characteristics uploaded and downloaded in the PBL repository.
Abouzari, Mehdi; Oberg, Scott; Gruber, Aaron; Tata, Matthew
2015-09-15
Problem gambling is thought to be highly comorbid with attention-deficit hyperactivity disorder (ADHD). We propose that the neurobiological pathologies underlying problem gambling overlap with those in ADHD. In this study, we used a simplified computerized version of the Iowa Gambling Task (IGT) to assess differences in reinforcement-driven choice adaptation among participants with pathological gambling and/or ADHD. The task contained two choice options with different net payouts over the session; a good bet that resulted in a win of +50 points on 60% of trials (and -50 points on 40%), and a bad bet that resulted in +100 points on 40% of the trials (and -100 points on 60%). We quantified participants' preference for the good bet over the session and their sensitivity to reinforcement. Both the control subjects and medicated ADHD nongamblers significantly increased the proportion of good bets over the 400-trial session. Subjects with problem gambling performed worse than controls and ADHD nongamblers, but better than our limited sample of unmedicated ADHD gamblers. Control subjects, medicated ADHD nongamblers, and unmedicated ADHD nongamblers tended to tolerate losses following good bets, whereas unmedicated ADHD gamblers tended to tolerate losses following bad bets. These data reveal that ADHD, particularly when treated with medication, is not associated with poor choices on the IGT, but may exacerbate pathological choices in problem gamblers. It seems that stabilization of dopamine signaling that occurs when ADHD is treated is itself also a treatment for certain forms of problem gambling. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Katarina Anthony
2015-01-01
In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins. A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...
Vibrational stability of graphene
Directory of Open Access Journals (Sweden)
Yangfan Hu
2013-05-01
Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.
Yang, Bingen
2005-01-01
Stress, Strain, and Structural Dynamics is a comprehensive and definitive reference to statics and dynamics of solids and structures, including mechanics of materials, structural mechanics, elasticity, rigid-body dynamics, vibrations, structural dynamics, and structural controls. This text integrates the development of fundamental theories, formulas and mathematical models with user-friendly interactive computer programs, written in the powerful and popular MATLAB. This unique merger of technical referencing and interactive computing allows instant solution of a variety of engineering problems