WorldWideScience

Sample records for interaction models comparison

  1. More about the comparison of local and non-local NN interaction models

    International Nuclear Information System (INIS)

    Amghar, A.; Desplanques, B.

    2003-01-01

    The effect of non-locality in the NN interaction with an off-energy shell character has been studied in the past in relation with the possibility that some models could be approximately phase-shifts equivalent. This work is extended to a non-locality implying terms that involve an anticommutator with the operator p 2 . It includes both scalar and tensor components. The most recent 'high accuracy' models are considered in the analysis. After studying the deuteron wave functions, electromagnetic properties of various models are compared with the idea that these ones differ by their non-locality but are equivalent up to a unitary transformation. It is found that the extra non-local tensor interaction considered in this work tends to re-enforce the role of the term considered in previous works, allowing one to explain almost completely the difference in the deuteron D-state probabilities evidenced by the comparison of the Bonn-QB and Paris models for instance. Conclusions for the effect of the non-local scalar interaction are not so clear. In many cases, it was found that these terms could explain part of the differences that the comparison of predictions for various models evidences but cases where they could not were also found. Some of these last ones have been analyzed in order to pointing out the origin of the failure

  2. Biotic interactions in the face of climate change: a comparison of three modelling approaches.

    Directory of Open Access Journals (Sweden)

    Anja Jaeschke

    Full Text Available Climate change is expected to alter biotic interactions, and may lead to temporal and spatial mismatches of interacting species. Although the importance of interactions for climate change risk assessments is increasingly acknowledged in observational and experimental studies, biotic interactions are still rarely incorporated in species distribution models. We assessed the potential impacts of climate change on the obligate interaction between Aeshna viridis and its egg-laying plant Stratiotes aloides in Europe, based on an ensemble modelling technique. We compared three different approaches for incorporating biotic interactions in distribution models: (1 We separately modelled each species based on climatic information, and intersected the future range overlap ('overlap approach'. (2 We modelled the potential future distribution of A. viridis with the projected occurrence probability of S. aloides as further predictor in addition to climate ('explanatory variable approach'. (3 We calibrated the model of A. viridis in the current range of S. aloides and multiplied the future occurrence probabilities of both species ('reference area approach'. Subsequently, all approaches were compared to a single species model of A. viridis without interactions. All approaches projected a range expansion for A. viridis. Model performance on test data and amount of range gain differed depending on the biotic interaction approach. All interaction approaches yielded lower range gains (up to 667% lower than the model without interaction. Regarding the contribution of algorithm and approach to the overall uncertainty, the main part of explained variation stems from the modelling algorithm, and only a small part is attributed to the modelling approach. The comparison of the no-interaction model with the three interaction approaches emphasizes the importance of including obligate biotic interactions in projective species distribution modelling. We recommend the use of

  3. Exercise self-identity: interactions with social comparison and exercise behaviour

    NARCIS (Netherlands)

    Verkooijen, K.T.; de Bruijn, G.J.

    2013-01-01

    Possible interactions among exercise self-identity, social comparison and exercise behaviour were explored in a sample of 417 undergraduate students (Mean age = 21.5, SD = 3.0; 73% female). Two models were examined using self-report data; (1) a mediation model which proposed an association between

  4. Exercise self-identity: interactions with social comparison and exercise behaviour

    NARCIS (Netherlands)

    Verkooijen, K.T.; Bruijn, de G.J.

    2013-01-01

    Possible interactions among exercise self-identity, social comparison and exercise behaviour were explored in a sample of 417 undergraduate students (Mean age¿=¿21.5, SD¿=¿3.0; 73% female). Two models were examined using self-report data; (1) a mediation model which proposed an association between

  5. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    representation of groundwater in the hydrological model is found to important and this imply resolving the small river valleys. Because, the important shallow groundwater is found in the river valleys. If the model does not represent the shallow groundwater then the area mean surface flux calculation......The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...... by the hydrological model is found to be insensitive to model resolution. Furthermore, this study highlights the effect of bias precipitation by regional climate model and it implications for hydrological modelling....

  6. Melt/concrete interactions: the Sandia experimental program, model development, and code comparison test

    International Nuclear Information System (INIS)

    Powers, D.A.; Muir, J.F.

    1979-01-01

    High temperature melt/concrete interactions have been studied both experimentally and analytically at Sandia under sponsorship of Reactor Safety Research of the US Nuclear Regulatory Commission. The purpose of these studies has been to develop an understanding of these interactions suitable for risk assessment. Results of the experimental program are summarized and a computer model of melt/concrete interactions is described. A melt/concrete interaction test that will allow this and other models of the interaction to be compared is also described

  7. Nuclear interaction potential in a folded-Yukawa model with diffuse densities

    International Nuclear Information System (INIS)

    Randrup, J.

    1975-09-01

    The folded-Yukawa model for the nuclear interaction potential is generalized to diffuse density distributions which are generated by folding a Yukawa function into sharp generating distributions. The effect of a finite density diffuseness or of a finite interaction range is studied. The Proximity Formula corresponding to the generalized model is derived and numerical comparison is made with the exact results. (8 figures)

  8. CCF model comparison

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    2004-04-01

    The report describes a simple comparison of two CCF-models, the ECLM, and the Beta-model. The objective of the comparison is to identify differences in the results of the models by applying the models in some simple test data cases. The comparison focuses mainly on theoretical aspects of the above mentioned CCF-models. The properties of the model parameter estimates in the data cases is also discussed. The practical aspects in using and estimating CCFmodels in real PSA context (e.g. the data interpretation, properties of computer tools, the model documentation) are not discussed in the report. Similarly, the qualitative CCF-analyses needed in using the models are not discussed in the report. (au)

  9. Quark interchange model of baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  10. Quark interchange model of baryon interactions

    International Nuclear Information System (INIS)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers

  11. Synergism between rocuronium and cisatracurium: comparison of the Minto and Greco interaction models.

    Science.gov (United States)

    Jeon, Soeun; Kwon, Jae Young; Kim, Hae-Kyu; Kim, Tae Kyun

    2016-08-01

    This study was conducted to investigate the pharmacodynamic interaction between rocuronium and cisatracurium using the response surface model, which is not subject to the limitations of traditional isobolographic analysis. One hundred and twenty patients were randomly allocated to receive one of the fifteen predefined combinations of rocuronium and cisatracurium. To study single drugs, cisatracurium 0.2, 0.15, or 0.1 mg/kg or rocuronium 0.8, 0.6 or 0.4 mg/kg doses were administered alone. To study the pharmacodynamic interaction, drugs were applied in three types of combination ratio, i.e., half dose of each drug alone, 75% of each single dose of rocuronium and 25% of each single dose of cisatracurium, and vice versa. Train-of-four (TOF) ratio and T1% (first twitch of the TOF presented as percentage compared to the initial T1) were used as pharmacodynamic endpoints, and the Greco and Minto models were used as surface interaction models. The interaction term α of the Greco model for TOF ratio and T1% measurements showed synergism with values of 0.977 and 1.12, respectively. Application of the Minto model resulted in U50 (θ) values (normalized unit of concentration that produces 50% of the maximal effect in the 0 rocuronium and cisatracurium exhibit synergism. Response surface modeling of the interaction between rocuronium and cisatracurium, based on considerations of their effects on muscle relaxation as measured by TOF ratio and T1%, indicated that the two drugs show considerable synergism.

  12. Cranking model and attenuation of Coriolis interaction

    International Nuclear Information System (INIS)

    Lyutorovich, N.A.

    1987-01-01

    Description of rotational bands of odd deformed nuclei in the self-consistent Cranking model (SCM) is given. Causes of attenuation of the Coriolis interaction in the nuclei investigated are studied, and account of bound of one-particle degrees of freedom with rotation of the Hartree-Fock-Bogolyubov (HFB) self-consistent method is introduced additionally to SCM for qualitative agreement with experimental data. Merits and shortages of SCM in comparison with the quadruparticle-rotor (QR) model are discussed. All know ways for constructing the Hamiltonian QR model (or analog of such Hamiltonian) on the basis of the microscopic theory are shown to include two more approximations besides others: quasi-particle-rotational interaction leading to pair break is taken into account in the second order of the perturbation theory; some exchange diagrams are neglected among diagrams of the second order according to this interaction. If one makes the same approximations in SCM instead of HFB method, then the dependence of level energies on spin obtained in this case is turned out to be close to the results of the QR model. Besides, the problem on renormalization of matrix elements of quasi-rotational interaction occurs in such nonself-consistent approach as in the QR model. In so far as the similar problem does not occur in SCM, one can make the conclusion that the problem of attenuation of Coriolis interaction involves the approximations given above

  13. Species Coexistence in Nitrifying Chemostats: A Model of Microbial Interactions

    Directory of Open Access Journals (Sweden)

    Maxime Dumont

    2016-12-01

    Full Text Available In a previous study, the two nitrifying functions (ammonia oxidizing bacteria (AOB or nitrite-oxidizing bacteria (NOB of a nitrification reactor—operated continuously over 525 days with varying inputs—were assigned using a mathematical modeling approach together with the monitoring of bacterial phylotypes. Based on these theoretical identifications, we develop here a chemostat model that does not explicitly include only the resources’ dynamics (different forms of soluble nitrogen but also explicitly takes into account microbial inter- and intra-species interactions for the four dominant phylotypes detected in the chemostat. A comparison of the models obtained with and without interactions has shown that such interactions permit the coexistence of two competing ammonium-oxidizing bacteria and two competing nitrite-oxidizing bacteria in competition for ammonium and nitrite, respectively. These interactions are analyzed and discussed.

  14. CORCON: a computer program for modelling molten fuel/concrete interactions

    International Nuclear Information System (INIS)

    Muir, J.F.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete is being developed to provide a capability for making quantitative estimates of reactor fuel-melt accidents. The principal phenomenological models, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. A code test comparison calculation is discussed

  15. A new thermodynamic model of energetic molten fuel-coolant interactions

    International Nuclear Information System (INIS)

    Hall, A.N.

    1987-01-01

    A new thermodynamic model of energetic molten fuel-coolant interactions is presented, in which the response of fluid around the interaction zone is treated explicitly. By assuming that this fluid is compressed reversibly and adiabatically, a qualified lower limit to the efficiency of conversion of thermal energy to mechanical work is obtained. A detailed comparison of the model predictions with the results of the SUW series of experiments at AEE Winfrith is made. The predicted efficiencies are found to be in close agreement with those determined experimentally. Model predictions for a system of infinite volume are also presented. (author)

  16. AIC, BIC, Bayesian evidence against the interacting dark energy model

    International Nuclear Information System (INIS)

    Szydlowski, Marek; Krawiec, Adam; Kurek, Aleksandra; Kamionka, Michal

    2015-01-01

    Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative - the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock- Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam's razor we are inclined to reject this model. (orig.)

  17. Comparison of vibration test results for Atucha II NPP and large scale concrete block models

    International Nuclear Information System (INIS)

    Iizuka, S.; Konno, T.; Prato, C.A.

    2001-01-01

    In order to study the soil structure interaction of reactor building that could be constructed on a Quaternary soil, a comparison study of the soil structure interaction springs was performed between full scale vibration test results of Atucha II NPP and vibration test results of large scale concrete block models constructed on Quaternary soil. This comparison study provides a case data of soil structure interaction springs on Quaternary soil with different foundation size and stiffness. (author)

  18. Reexploration of interacting holographic dark energy model. Cases of interaction term excluding the Hubble parameter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-Li; Zhang, Jing-Fei; Feng, Lu [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Zhang, Xin [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Peking University, Center for High Energy Physics, Beijing (China)

    2017-12-15

    In this paper, we make a deep analysis for the five typical interacting holographic dark energy models with the interaction terms Q = 3βH{sub 0}ρ{sub de}, Q = 3βH{sub 0}ρ{sub c}, Q = 3βH{sub 0}(ρ{sub de} + ρ{sub c}), Q = 3βH{sub 0}√(ρ{sub de}ρ{sub c}), and Q = 3βH{sub 0}(ρ{sub de}ρ{sub c})/(ρ{sub de}+ρ{sub c}), respectively. We obtain observational constraints on these models by using the type Ia supernova data (the Joint Light-Curve Analysis sample), the cosmic microwave background data (Planck 2015 distance priors), the baryon acoustic oscillations data, and the direct measurement of the Hubble constant. We find that the values of χ{sub min}{sup 2} for all the five models are almost equal (around 699), indicating that the current observational data equally favor these IHDE models. In addition, a comparison with the cases of an interaction term involving the Hubble parameter H is also made. (orig.)

  19. Comparison of molecular dynamics and kinetic modeling of gas-surface interactions

    NARCIS (Netherlands)

    Frezzotti, A.; Gaastra - Nedea, S.V.; Markvoort, A.J.; Spijker, P.; Gibelli, L.

    2008-01-01

    The interaction of a dilute monatomic gas with a solid surface is studied byMolecular Dynamics (MD) simulations and by numerical solutions of a recently proposed kinetic model. Following previous investigations, the heat transport between parallel walls and Couette flow have been adopted as test

  20. AIC, BIC, Bayesian evidence against the interacting dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Krawiec, Adam [Jagiellonian University, Institute of Economics, Finance and Management, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Kurek, Aleksandra [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Kamionka, Michal [University of Wroclaw, Astronomical Institute, Wroclaw (Poland)

    2015-01-01

    Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative - the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock- Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam's razor we are inclined to reject this model. (orig.)

  1. AIC, BIC, Bayesian evidence against the interacting dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Szydłowski, Marek, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059, Kraków (Poland); Krawiec, Adam, E-mail: adam.krawiec@uj.edu.pl [Institute of Economics, Finance and Management, Jagiellonian University, Łojasiewicza 4, 30-348, Kraków (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059, Kraków (Poland); Kurek, Aleksandra, E-mail: alex@oa.uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków (Poland); Kamionka, Michał, E-mail: kamionka@astro.uni.wroc.pl [Astronomical Institute, University of Wrocław, ul. Kopernika 11, 51-622, Wrocław (Poland)

    2015-01-14

    Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative—the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam’s principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock–Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam’s razor we are inclined to reject this model.

  2. Modeling polymer-induced interactions between two grafted surfaces: comparison between interfacial statistical associating fluid theory and self-consistent field theory.

    Science.gov (United States)

    Jain, Shekhar; Ginzburg, Valeriy V; Jog, Prasanna; Weinhold, Jeffrey; Srivastava, Rakesh; Chapman, Walter G

    2009-07-28

    The interaction between two polymer grafted surfaces is important in many applications, such as nanocomposites, colloid stabilization, and polymer alloys. In our previous work [Jain et al., J. Chem. Phys. 128, 154910 (2008)], we showed that interfacial statistical associating fluid density theory (iSAFT) successfully calculates the structure of grafted polymer chains in the absence/presence of a free polymer. In the current work, we have applied this density functional theory to calculate the force of interaction between two such grafted monolayers in implicit good solvent conditions. In particular, we have considered the case where the segment sizes of the free (sigma(f)) and grafted (sigma(g)) polymers are different. The interactions between the two monolayers in the absence of the free polymer are always repulsive. However, in the presence of the free polymer, the force either can be purely repulsive or can have an attractive minimum depending upon the relative chain lengths of the free (N(f)) and grafted polymers (N(g)). The attractive minimum is observed only when the ratio alpha = N(f)/N(g) is greater than a critical value. We find that these critical values of alpha satisfy the following scaling relation: rho(g) square root(N(g)) beta(3) proportional to alpha(-lambda), where beta = sigma(f)/sigma(g) and lambda is the scaling exponent. For beta = 1 or the same segment sizes of the free and grafted polymers, this scaling relation is in agreement with those from previous theoretical studies using self-consistent field theory (SCFT). Detailed comparisons between iSAFT and SCFT are made for the structures of the monolayers and their forces of interaction. These comparisons lead to interesting implications for the modeling of nanocomposite thermodynamics.

  3. Random regression models for detection of gene by environment interaction

    Directory of Open Access Journals (Sweden)

    Meuwissen Theo HE

    2007-02-01

    Full Text Available Abstract Two random regression models, where the effect of a putative QTL was regressed on an environmental gradient, are described. The first model estimates the correlation between intercept and slope of the random regression, while the other model restricts this correlation to 1 or -1, which is expected under a bi-allelic QTL model. The random regression models were compared to a model assuming no gene by environment interactions. The comparison was done with regards to the models ability to detect QTL, to position them accurately and to detect possible QTL by environment interactions. A simulation study based on a granddaughter design was conducted, and QTL were assumed, either by assigning an effect independent of the environment or as a linear function of a simulated environmental gradient. It was concluded that the random regression models were suitable for detection of QTL effects, in the presence and absence of interactions with environmental gradients. Fixing the correlation between intercept and slope of the random regression had a positive effect on power when the QTL effects re-ranked between environments.

  4. A componential model of human interaction with graphs: 1. Linear regression modeling

    Science.gov (United States)

    Gillan, Douglas J.; Lewis, Robert

    1994-01-01

    Task analyses served as the basis for developing the Mixed Arithmetic-Perceptual (MA-P) model, which proposes (1) that people interacting with common graphs to answer common questions apply a set of component processes-searching for indicators, encoding the value of indicators, performing arithmetic operations on the values, making spatial comparisons among indicators, and repsonding; and (2) that the type of graph and user's task determine the combination and order of the components applied (i.e., the processing steps). Two experiments investigated the prediction that response time will be linearly related to the number of processing steps according to the MA-P model. Subjects used line graphs, scatter plots, and stacked bar graphs to answer comparison questions and questions requiring arithmetic calculations. A one-parameter version of the model (with equal weights for all components) and a two-parameter version (with different weights for arithmetic and nonarithmetic processes) accounted for 76%-85% of individual subjects' variance in response time and 61%-68% of the variance taken across all subjects. The discussion addresses possible modifications in the MA-P model, alternative models, and design implications from the MA-P model.

  5. Data-Model and Inter-Model Comparisons of the GEM Outflow Events Using the Space Weather Modeling Framework

    Science.gov (United States)

    Welling, D. T.; Eccles, J. V.; Barakat, A. R.; Kistler, L. M.; Haaland, S.; Schunk, R. W.; Chappell, C. R.

    2015-12-01

    Two storm periods were selected by the Geospace Environment Modeling Ionospheric Outflow focus group for community collaborative study because of its high magnetospheric activity and extensive data coverage: the September 27 - October 4, 2002 corotating interaction region event and the October 22 - 29 coronal mass ejection event. During both events, the FAST, Polar, Cluster, and other missions made key observations, creating prime periods for data-model comparison. The GEM community has come together to simulate this period using many different methods in order to evaluate models, compare results, and expand our knowledge of ionospheric outflow and its effects on global dynamics. This paper presents Space Weather Modeling Framework (SWMF) simulations of these important periods compared against observations from the Polar TIDE, Cluster CODIF and EFW instruments. Emphasis will be given to the second event. Density and velocity of oxygen and hydrogen throughout the lobes, plasma sheet, and inner magnetosphere will be the focus of these comparisons. For these simulations, the SWMF couples the multifluid version of BATS-R-US MHD to a variety of ionospheric outflow models of varying complexity. The simplest is outflow arising from constant MHD inner boundary conditions. Two first-principles-based models are also leveraged: the Polar Wind Outflow Model (PWOM), a fluid treatment of outflow dynamics, and the Generalized Polar Wind (GPW) model, which combines fluid and particle-in-cell approaches. Each model is capable of capturing a different set of energization mechanisms, yielding different outflow results. The data-model comparisons will illustrate how well each approach captures reality and which energization mechanisms are most important. Inter-model comparisons will illustrate how the different outflow specifications affect the magnetosphere. Specifically, it is found that the GPW provides increased heavy ion outflow over a broader spatial range than the alternative

  6. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    Science.gov (United States)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  7. Comparison of Experimental Models for Predicting Laser Tissue Interaction from 3.8-Micron Lasers

    National Research Council Canada - National Science Library

    Williams, Charles Melville

    2004-01-01

    The purpose of this study was to compare and contrast the effects of single 3.8-micron laser pulses in an in-vitro and in-vivo model of human skin and to demonstrate the efficacy of in-vitro laser tissue interaction models...

  8. Comparison of diffraction dissociation of antiprotons with inelastic anti pp interactions and e+e- annihilation into hadrons

    International Nuclear Information System (INIS)

    Batyunya, B.V.; Boguslavskij, I.V.; Vrba, V.

    1982-01-01

    The comparison of experimental multiplicity distributions for the processes of inelastic anti pp interaction and antiproton diffraction dissociation at 22.4 GeV/c with leading particles removed from event with e + e - annihilation into hadron is presented. The observed similarity of these processes corresponds to the dual parton model predictions

  9. Results of an interactively coupled atmospheric chemistry - general circulation model. Comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Hein, R.; Dameris, M.; Schnadt, C. [and others

    2000-01-01

    An interactively coupled climate-chemistry model which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks is presented. This is the first model, which interactively combines a general circulation model based on primitive equations with a rather complex model of stratospheric and tropospheric chemistry, and which is computational efficient enough to allow long-term integrations with currently available computer resources. The applied model version extends from the Earth's surface up to 10 hPa with a relatively high number (39) of vertical levels. We present the results of a present-day (1990) simulation and compare it to available observations. We focus on stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. The current model version ECHAM4.L39(DLR)/CHEM can realistically reproduce stratospheric dynamics in the Arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to formerly applied model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their interhemispheric differences are reproduced. The consideration of the chemistry feedback on dynamics results in an improved representation of the spatial distribution of stratospheric water vapor concentrations, i.e., the simulated meriodional water vapor gradient in the stratosphere is realistic. The present model version constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas emissions, and the future evolution of the ozone layer. (orig.)

  10. Numerically exact dynamics of the interacting many-body Schroedinger equation for Bose-Einstein condensates. Comparison to Bose-Hubbard and Gross-Pitaevskii theory

    Energy Technology Data Exchange (ETDEWEB)

    Sakmann, Kaspar

    2010-07-21

    In this thesis, the physics of trapped, interacting Bose-Einstein condensates is analyzed by solving the many-body Schroedinger equation. Particular emphasis is put on coherence, fragmentation and reduced density matrices. First, the ground state of a trapped Bose-Einstein condensate and its correlation functions are obtained. Then the dynamics of a bosonic Josephson junction is investigated by solving the time-dependent many-body Schroedinger equation numerically exactly. These are the first exact results in literature in this context. It is shown that the standard approximations of the field, Gross-Pitaevskii theory and the Bose-Hubbard model fail at weak interaction strength and within their range of expected validity. For stronger interactions the dynamics becomes strongly correlated and a new equilibration phenomenon is discovered. By comparison with exact results it is shown that a symmetry of the Bose- Hubbard model between attractive and repulsive interactions must be considered an artefact of the model. A conceptual innovation of this thesis are time-dependent Wannier functions. Equations of motion for time-dependent Wannier functions are derived from the variational principle. By comparison with exact results it is shown that lattice models can be greatly improved at little computational cost by letting the Wannier functions of a lattice model become time-dependent. (orig.)

  11. Comparisons of treatment means when factors do not interact in two-factorial studies

    KAUST Repository

    Wei, Jiawei; Carroll, Raymond J.; Harden, Kathryn K.; Wu, Guoyao

    2011-01-01

    Scientists in the fields of nutrition and other biological sciences often design factorial studies to test the hypotheses of interest and importance. In the case of two-factorial studies, it is widely recognized that the analysis of factor effects is generally based on treatment means when the interaction of the factors is statistically significant, and involves multiple comparisons of treatment means. However, when the two factors do not interact, a common understanding among biologists is that comparisons among treatment means cannot or should not be made. Here, we bring this misconception into the attention of researchers. Additionally, we indicate what kind of comparisons among the treatment means can be performed when there is a nonsignificant interaction among two factors. Such information should be useful in analyzing the experimental data and drawing meaningful conclusions.

  12. Comparisons of treatment means when factors do not interact in two-factorial studies

    KAUST Repository

    Wei, Jiawei

    2011-05-06

    Scientists in the fields of nutrition and other biological sciences often design factorial studies to test the hypotheses of interest and importance. In the case of two-factorial studies, it is widely recognized that the analysis of factor effects is generally based on treatment means when the interaction of the factors is statistically significant, and involves multiple comparisons of treatment means. However, when the two factors do not interact, a common understanding among biologists is that comparisons among treatment means cannot or should not be made. Here, we bring this misconception into the attention of researchers. Additionally, we indicate what kind of comparisons among the treatment means can be performed when there is a nonsignificant interaction among two factors. Such information should be useful in analyzing the experimental data and drawing meaningful conclusions.

  13. Interaction Deep Excavation Adjacent Structure Numerical Two and Three Dimensional Modeling

    International Nuclear Information System (INIS)

    Abdallah, M.; Chehade, F. H.; Chehade, W.; Fawaz, A.

    2011-01-01

    Urban development often requires the construction of deep excavations near to buildings or other structures. We have to study complex material structure interactions where we should take into consideration several particularities. In this paper, we perform a numerical modeling with the finite element method, using PLAXIS software, of the interaction deep excavation-diaphragm wall-soil-structure in the case of non linear soil behavior. We focus our study on a comparison of the results given respectively by two and three dimensional modelings. This allows us to give some recommendations concerning the validity of twodimensional study. We perform a parametric study according to the initial loading on the structure and the struts number. (author)

  14. Structural Modeling for the Comparison Indicators in Various Electricity Generating Systems

    International Nuclear Information System (INIS)

    Kim, Seong Ho; Kim, Tae Woon

    2006-01-01

    Comparison indicators of various power systems can be yielded by solving a multicriteria decision-making (MCDM) problem. In reality, there are different grades of interdependence among the decision elements (e.g., decision goal, decision criteria, and decision alternatives). In our previous work, based on an analytic hierarchy process (AHP) technique, an independence model was developed for the comparison indicators under the assumption that there is no interdependence among the decision elements. For handling different interdependence phenomena (e.g., independence, inner dependence, outer dependence, feedback effect, a combination thereof) among the decision elements, one of the simplest graph structures was investigated on the basis of an analytic network process (ANP) technique. In the present work, the main objective is to study an assessment model with a high grade of interactions among the decision elements. Comparison indicators (e.g., weighting factors, overall priority scores, and risk attitudes towards a nuclear power plant) for seven power generation systems are obtained

  15. The 〈 ln A 〉 study with the Muon tracking detector in the KASCADE-Grande experiment – comparison of hadronic interaction models

    Directory of Open Access Journals (Sweden)

    Łuczak P.

    2015-01-01

    Full Text Available With the KASCADE-Grande Muon Tracking Detector it was possible to measure with high accuracy directions of EAS muons with energy above 0.8 GeV and up to 700 m distance from the shower centre. Reconstructed muon tracks allow investigation of muon pseudorapidity (η distributions. These distributions are nearly identical to the pseudorapidity distributions of their parent mesons produced in hadronic interactions. Comparison of the η distributions from measured and simulated showers can be used to test the quality of the high energy hadronic interaction models. The pseudorapidity distributions reflect the longitudinal development of EAS and, as such, are sensitive to the mass of the cosmic ray primary particles. With various parameters of the η distribution, obtained from the Muon Tracking Detector data, it is possible to calculate the average logarithm of mass of the primary cosmic ray particles. The results of the 〈 ln A 〉 analysis in the primary energy range 1016 eV–1017 eV with the 1st quartile and the mean value of the distributions will be presented for the QGSJet-II-2, QGSJet-II-4, EPOS 1.99 and EPOS LHC models in combination with the FLUKA model.

  16. Modeling of the interactions of alpha particles with the ablation cloud of a low-Z pellet for alpha diagnostics

    International Nuclear Information System (INIS)

    Gerdin, G.A.; Vahala, L.L.

    1991-04-01

    Several of the original objectives, such as the modeling of both lithium and carbon pellet-plasma interactions utilizing a non-equilibrium steady-state flow model, have been achieved and some degree of success in comparison of the present model with experiment has been attained. However, some important effects, such as those due to the magnetic-field, choked flow, and time-dependent phenomena, can not be simulated. This summer (1991) available software will begin being utilized to perform impurity-pellet plasma interaction simulations, which can accommodate the effects listed above, so that the comparison of the results of the simulations and those of the experiments can be more exact. 13 refs

  17. Modeling leukocyte-leukocyte non-contact interactions in a lymph node.

    Directory of Open Access Journals (Sweden)

    Nicola Gritti

    Full Text Available The interaction among leukocytes is at the basis of the innate and adaptive immune-response and it is largely ascribed to direct cell-cell contacts. However, the exchange of a number of chemical stimuli (chemokines allows also non-contact interaction during the immunological response. We want here to evaluate the extent of the effect of the non-contact interactions on the observed leukocyte-leukocyte kinematics and their interaction duration. To this aim we adopt a simplified mean field description inspired by the Keller-Segel chemotaxis model, of which we report an analytical solution suited for slowly varying sources of chemokines. Since our focus is on the non-contact interactions, leukocyte-leukocyte contact interactions are simulated only by means of a space dependent friction coefficient of the cells. The analytical solution of the Keller-Segel model is then taken as the basis of numerical simulations of interactions between leukocytes and their duration. The mean field interaction force that we derive has a time-space separable form and depends on the chemotaxis sensitivity parameter as well as on the chemokines diffusion coefficient and their degradation rate. All these parameters affect the distribution of the interaction durations. We draw a successful qualitative comparison between simulated data and sets of experimental data for DC-NK cells interaction duration and other kinematic parameters. Remarkably, the predicted percentage of the leukocyte-leukocyte interactions falls in the experimental range and depends (~25% increase upon the chemotactic parameter indicating a non-negligible direct effect of the non-contact interaction on the leukocyte interactions.

  18. Modeling leukocyte-leukocyte non-contact interactions in a lymph node.

    Science.gov (United States)

    Gritti, Nicola; Caccia, Michele; Sironi, Laura; Collini, Maddalena; D'Alfonso, Laura; Granucci, Francesca; Zanoni, Ivan; Chirico, Giuseppe

    2013-01-01

    The interaction among leukocytes is at the basis of the innate and adaptive immune-response and it is largely ascribed to direct cell-cell contacts. However, the exchange of a number of chemical stimuli (chemokines) allows also non-contact interaction during the immunological response. We want here to evaluate the extent of the effect of the non-contact interactions on the observed leukocyte-leukocyte kinematics and their interaction duration. To this aim we adopt a simplified mean field description inspired by the Keller-Segel chemotaxis model, of which we report an analytical solution suited for slowly varying sources of chemokines. Since our focus is on the non-contact interactions, leukocyte-leukocyte contact interactions are simulated only by means of a space dependent friction coefficient of the cells. The analytical solution of the Keller-Segel model is then taken as the basis of numerical simulations of interactions between leukocytes and their duration. The mean field interaction force that we derive has a time-space separable form and depends on the chemotaxis sensitivity parameter as well as on the chemokines diffusion coefficient and their degradation rate. All these parameters affect the distribution of the interaction durations. We draw a successful qualitative comparison between simulated data and sets of experimental data for DC-NK cells interaction duration and other kinematic parameters. Remarkably, the predicted percentage of the leukocyte-leukocyte interactions falls in the experimental range and depends (~25% increase) upon the chemotactic parameter indicating a non-negligible direct effect of the non-contact interaction on the leukocyte interactions.

  19. Numerical Analysis of Particle Interactions with Nuclei in the Framework of Quantum Molecular Dynamic Model

    CERN Document Server

    Amirkhanov, I V; Zemlyanaya, E V; Polanski, A; Puzynina, T P; Uzhinsky, V V

    2004-01-01

    Combinations of the QMD model with various models of nuclear residual de-excitation are considered. The QMD model parameters are fitted; neutron spectra in hadron-nucleus interactions are calculated. The numerical results were compared with analogous calculations by the cascade-evaporation model and with experimental data. The comparison shows that the numerical results are in agreement between each other and with the experimental data for the energies of projectile particles lower than 200-300 MeV for fast neutrons. Cross-sections of isotope yields in the neutron interactions with radioactive iodine, americium, plutonium and others isotopes have been calculated.

  20. An interactive website for analytical method comparison and bias estimation.

    Science.gov (United States)

    Bahar, Burak; Tuncel, Ayse F; Holmes, Earle W; Holmes, Daniel T

    2017-12-01

    Regulatory standards mandate laboratories to perform studies to ensure accuracy and reliability of their test results. Method comparison and bias estimation are important components of these studies. We developed an interactive website for evaluating the relative performance of two analytical methods using R programming language tools. The website can be accessed at https://bahar.shinyapps.io/method_compare/. The site has an easy-to-use interface that allows both copy-pasting and manual entry of data. It also allows selection of a regression model and creation of regression and difference plots. Available regression models include Ordinary Least Squares, Weighted-Ordinary Least Squares, Deming, Weighted-Deming, Passing-Bablok and Passing-Bablok for large datasets. The server processes the data and generates downloadable reports in PDF or HTML format. Our website provides clinical laboratories a practical way to assess the relative performance of two analytical methods. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Comparison of biomolecules on the basis of Molecular Interaction Potentials

    Directory of Open Access Journals (Sweden)

    Rodrigo Jordi

    2002-01-01

    Full Text Available Molecular Interaction Potentials (MIP are frequently used for the comparison of series of compounds displaying related biological behaviors. These potentials are interaction energies between the considered compounds and relevant probes. The interaction energies are computed in the nodes of grids defined around the compounds. There is a need of detailed and objective comparative analyses of MIP distributions in the framework of structure-activity studies. On the other hand, MIP-based studies do not have to be restricted to series of small ligands, since such studies present also interesting possibilities for the analysis and comparison of biological macromolecules. Such analyses can benefit from the application of new methods and computational approaches. The new software MIPSim (Molecular Interaction Potentials Similarity analysis has recently been introduced with the purpose of analyzing and comparing MIP distributions of series of biomolecules. This program is transparently integrated with other programs, like GAMESS or GRID, which can be used for the computation of the potentials to be analyzed or compared. MIPSim incorporates several definitions of similarity coefficients, and is capable of combining several similarity measures into a single one. On the other hand, MIPSim can perform automatic explorations of the maximum similarity alignments between pairs of molecules.

  2. Metamodel comparison and model comparison for safety assurance

    NARCIS (Netherlands)

    Luo, Y.; Engelen, L.J.P.; Brand, van den M.G.J.; Bondavelli, A.; Ceccarelli, A.; Ortmeier, F.

    2014-01-01

    In safety-critical domains, conceptual models are created in the form of metamodels using different concepts from possibly overlapping domains. Comparison between those conceptual models can facilitate the reuse of models from one domain to another. This paper describes the mappings detected when

  3. Effects of septum and pericardium on heart-lung interactions in a cardiopulmonary simulation model.

    Science.gov (United States)

    Karamolegkos, Nikolaos; Albanese, Antonio; Chbat, Nicolas W

    2017-07-01

    Mechanical heart-lung interactions are often overlooked in clinical settings. However, their impact on cardiac function can be quite significant. Mechanistic physiology-based models can provide invaluable insights into such cardiorespiratory interactions, which occur not only under external mechanical ventilatory support but in normal physiology as well. In this work, we focus on the cardiac component of a previously developed mathematical model of the human cardiopulmonary system, aiming to improve the model's response to the intrathoracic pressure variations that are associated with the respiratory cycle. Interventricular septum and pericardial membrane are integrated into the existing model. Their effect on the overall cardiac response is explained by means of comparison against simulation results from the original model as well as experimental data from literature.

  4. Analytical expressions for two-nucleon transfer spectroscopic factors in sdg interacting boson model

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1991-01-01

    Analytical expressions for two-nucleon (l = 0,2 and 4) transfer spectroscopic factors are derived in the SU sdg (3) limit of the sdg interacting boson model. In addition, large N (boson number) limit expressions for the ratio of summed l = 0 transfer strength to excited 0 + states to that of ground state are derived in all the symmetry limits of the sdg model. Some comparisons with data are made. (author)

  5. Interactive collision detection for deformable models using streaming AABBs.

    Science.gov (United States)

    Zhang, Xinyu; Kim, Young J

    2007-01-01

    We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB

  6. Interacting hadron resonance gas model in the K -matrix formalism

    Science.gov (United States)

    Dash, Ashutosh; Samanta, Subhasis; Mohanty, Bedangadas

    2018-05-01

    An extension of hadron resonance gas (HRG) model is constructed to include interactions using relativistic virial expansion of partition function. The noninteracting part of the expansion contains all the stable baryons and mesons and the interacting part contains all the higher mass resonances which decay into two stable hadrons. The virial coefficients are related to the phase shifts which are calculated using K -matrix formalism in the present work. We have calculated various thermodynamics quantities like pressure, energy density, and entropy density of the system. A comparison of thermodynamic quantities with noninteracting HRG model, calculated using the same number of hadrons, shows that the results of the above formalism are larger. A good agreement between equation of state calculated in K -matrix formalism and lattice QCD simulations is observed. Specifically, the lattice QCD calculated interaction measure is well described in our formalism. We have also calculated second-order fluctuations and correlations of conserved charges in K -matrix formalism. We observe a good agreement of second-order fluctuations and baryon-strangeness correlation with lattice data below the crossover temperature.

  7. The application of a phenomenological model to inelastic nucleus-nucleus interactions for laboratory momenta below 5 GeV/c per nucleon of the incident nucleus

    International Nuclear Information System (INIS)

    Grishin, V.G.; Kladnitskaya, E.N.

    1985-01-01

    A phenomenological model for inelastic nucleus-nucleus interactions at momenta below 5 GeV/c per nucleon is described. Particle interactions inside the interacting nuclei are described by phenomenological models of hadron-nucleus and hadron-nucleon interactions. The Monte-Carlo model provides the kinematic variables for a set of events under study. The comparison of the model inclusive distri-- butions for different particles and nucleus-nucleus interactions agrees well with the experimental data

  8. Analytical expressions for two-nucleon transfer spectroscopic factors in sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Devi, Y.D.; Kota, V.K.B. (Physical Research Lab., Ahmedabad (India))

    1991-11-01

    Analytical expressions for two-nucleon (l = 0,2 and 4) transfer spectroscopic factors are derived in the SU{sub sdg}(3) limit of the sdg interacting boson model. In addition, large N (boson number) limit expressions for the ratio of summed l = 0 transfer strength to excited 0{sup +} states to that of ground state are derived in all the symmetry limits of the sdg model. Some comparisons with data are made. (author).

  9. Ensemble urban flood simulation in comparison with laboratory-scale experiments: Impact of interaction models for manhole, sewer pipe, and surface flow

    Science.gov (United States)

    Noh, Seong Jin; Lee, Seungsoo; An, Hyunuk; Kawaike, Kenji; Nakagawa, Hajime

    2016-11-01

    An urban flood is an integrated phenomenon that is affected by various uncertainty sources such as input forcing, model parameters, complex geometry, and exchanges of flow among different domains in surfaces and subsurfaces. Despite considerable advances in urban flood modeling techniques, limited knowledge is currently available with regard to the impact of dynamic interaction among different flow domains on urban floods. In this paper, an ensemble method for urban flood modeling is presented to consider the parameter uncertainty of interaction models among a manhole, a sewer pipe, and surface flow. Laboratory-scale experiments on urban flood and inundation are performed under various flow conditions to investigate the parameter uncertainty of interaction models. The results show that ensemble simulation using interaction models based on weir and orifice formulas reproduces experimental data with high accuracy and detects the identifiability of model parameters. Among interaction-related parameters, the parameters of the sewer-manhole interaction show lower uncertainty than those of the sewer-surface interaction. Experimental data obtained under unsteady-state conditions are more informative than those obtained under steady-state conditions to assess the parameter uncertainty of interaction models. Although the optimal parameters vary according to the flow conditions, the difference is marginal. Simulation results also confirm the capability of the interaction models and the potential of the ensemble-based approaches to facilitate urban flood simulation.

  10. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.

    Science.gov (United States)

    Furukawa, Akira; Marenduzzo, Davide; Cates, Michael E

    2014-08-01

    Using a fluid-particle dynamics approach, we numerically study the effects of hydrodynamic interactions on the collective dynamics of active suspensions within a simple model for bacterial motility: each microorganism is modeled as a stroke-averaged dumbbell swimmer with prescribed dipolar force pairs. Using both simulations and qualitative arguments, we show that, when the separation between swimmers is comparable to their size, the swimmers' motions are strongly affected by activity-induced hydrodynamic forces. To further understand these effects, we investigate semidilute suspensions of swimmers in the presence of thermal fluctuations. A direct comparison between simulations with and without hydrodynamic interactions shows these to enhance the dynamic clustering at a relatively small volume fraction; with our chosen model the key ingredient for this clustering behavior is hydrodynamic trapping of one swimmer by another, induced by the active forces. Furthermore, the density dependence of the motility (of both the translational and rotational motions) exhibits distinctly different behaviors with and without hydrodynamic interactions; we argue that this is linked to the clustering tendency. Our study illustrates the fact that hydrodynamic interactions not only affect kinetic pathways in active suspensions, but also cause major changes in their steady state properties.

  11. Hypernuclear properties derived from the Juelich hyperon-nucleon interaction (in comparison with the Nijmegen interactions)

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Reuber, A.; Himeno, H.; Nagata, S.; Motoba, T.

    1992-01-01

    The G-matrix interactions are derived from the Juelich YN interaction models A and B, compared with those from the Nijmegen models. The DDHF calculations for heavy Λ hypernuclei and the shell-model analysis for spin-doublet states of light hypernuclei are performed by use of the G-matrix interactions. It is demonstrated that the OBE models can be tested by the hypernuclear calculations. (author) 3 tabs., 5 figs., 23 refs

  12. Second generation diffusion model of interacting gravity waves on the surface of deep fluid

    Directory of Open Access Journals (Sweden)

    A. Pushkarev

    2004-01-01

    Full Text Available We propose a second generation phenomenological model for nonlinear interaction of gravity waves on the surface of deep water. This model takes into account the effects of non-locality of the original Hasselmann diffusion equation still preserving important properties of the first generation model: physically consistent scaling, adherence to conservation laws and the existence of Kolmogorov-Zakharov solutions. Numerical comparison of both models with the original Hasselmann equation shows that the second generation models improves the angular distribution in the evolving wave energy spectrum.

  13. Uranium dioxide-sodium interactions. Development of a theoretical model. Fitting of this model to the experimental results

    International Nuclear Information System (INIS)

    Syrmalenios, Panayotis

    1973-01-01

    This research thesis addresses the issue of safety of fast neutron reactors, and more particularly is a contribution of the study of mechanisms of interaction between molten fuel and sodium. It aims at developing tools of prediction of consequences of three main types of accidents: local fusion of a fuel rod and contact of the fuel with the surrounding sodium, failure of an assembly due to the fusion of several rods and fuel-coolant interaction within the assembly, and fuel-coolant interaction at the level of the reactor core. The author first proposes a bibliographical analysis of experimental and theoretical studies related to this issue of interaction between a hot body and a cold liquid, and of its consequences. Then, he introduces a mathematical model and its resolution method, and reports the use of the associated code (Corfou) for the interpretation of experimental results: expulsion of cold sodium column by expansion of an overheated sodium mass, fusion of a rod by Joule effect, interaction between UO_2 molten by high frequency with liquid sodium. Finally, the author discusses a comparison between the Corfou code and other models which are being currently developed [fr

  14. Numerical investigation of two interacting parallel thruster-plumes and comparison to experiment

    Science.gov (United States)

    Grabe, Martin; Holz, André; Ziegenhagen, Stefan; Hannemann, Klaus

    2014-12-01

    Clusters of orbital thrusters are an attractive option to achieve graduated thrust levels and increased redundancy with available hardware, but the heavily under-expanded plumes of chemical attitude control thrusters placed in close proximity will interact, leading to a local amplification of downstream fluxes and of back-flow onto the spacecraft. The interaction of two similar, parallel, axi-symmetric cold-gas model thrusters has recently been studied in the DLR High-Vacuum Plume Test Facility STG under space-like vacuum conditions, employing a Patterson-type impact pressure probe with slot orifice. We reproduce a selection of these experiments numerically, and emphasise that a comparison of numerical results to the measured data is not straight-forward. The signal of the probe used in the experiments must be interpreted according to the degree of rarefaction and local flow Mach number, and both vary dramatically thoughout the flow-field. We present a procedure to reconstruct the probe signal by post-processing the numerically obtained flow-field data and show that agreement to the experimental results is then improved. Features of the investigated cold-gas thruster plume interaction are discussed on the basis of the numerical results.

  15. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    Science.gov (United States)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  16. A constituent quark model with colour degrees of freedom confronts the data on hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Rozanska, M.; Jezabek, M.

    1991-04-01

    Three version of a model with colour excitations of constituent quarks are examined using inclusive leading proton and antiproton spectra in nuclear interactions at high energies. The comparison with experimental data excludes the models in which fragmentation into leading final hadrons depends only on the colour charge of constituents in an intermediate system. (author)

  17. Comparison between simulation and experimentally observed interactions between two magnetic beads in a fluidic system

    Energy Technology Data Exchange (ETDEWEB)

    Oduwole, Olayinka, E-mail: olayinka.oduwole@eng.ox.ac.uk; Grob, David Tim, E-mail: tim.grob@eng.ox.ac.uk; Sheard, Steve, E-mail: steve.sheard@eng.ox.ac.uk

    2016-06-01

    Continuous flow separation of magnetic particles within a microfluidic device could lead to improved performance of magnetic bead-based assays but the undesirable formation of bead clusters reduces its efficiency; this efficiency refers to the ability to separate bound magnetic beads from a mixture of particles. Such agglomerates are formed due to magnetic binding forces while hydrodynamic interactions strongly influence the particles' movement. This paper presents a model for interactions between a pair of equal sized super-paramagnetic beads suspended in water within a uniform magnetic field. To the best of our knowledge, we present for the first time a comparison between simulated trajectories and the beads' movement captured on video; the beads were suspended in a stationary fluid placed within a uniform magnetic field. In conclusion, the model is a good approximation for beads interacting with their nearest neighbours and is able to predict the trajectory pattern of these particles in a magnetic bead-based assay. Predicting the magnetically induced interaction of nearby beads will help in determining the density of beads in an assay and in avoiding agglomeration over a fixed time duration. - Highlights: • We modelled the interactions between a pair of super-paramagnetic beads suspended in water within a uniform magnetic field. • We tracked the movement of the bead pair and captured it on video. • We compared the numerical results with the video data and achieved a good agreement. • We predicted the agglomeration time as a function of the separation distance.

  18. Sample sizes and model comparison metrics for species distribution models

    Science.gov (United States)

    B.B. Hanberry; H.S. He; D.C. Dey

    2012-01-01

    Species distribution models use small samples to produce continuous distribution maps. The question of how small a sample can be to produce an accurate model generally has been answered based on comparisons to maximum sample sizes of 200 observations or fewer. In addition, model comparisons often are made with the kappa statistic, which has become controversial....

  19. Task-Driven Comparison of Topic Models.

    Science.gov (United States)

    Alexander, Eric; Gleicher, Michael

    2016-01-01

    Topic modeling, a method of statistically extracting thematic content from a large collection of texts, is used for a wide variety of tasks within text analysis. Though there are a growing number of tools and techniques for exploring single models, comparisons between models are generally reduced to a small set of numerical metrics. These metrics may or may not reflect a model's performance on the analyst's intended task, and can therefore be insufficient to diagnose what causes differences between models. In this paper, we explore task-centric topic model comparison, considering how we can both provide detail for a more nuanced understanding of differences and address the wealth of tasks for which topic models are used. We derive comparison tasks from single-model uses of topic models, which predominantly fall into the categories of understanding topics, understanding similarity, and understanding change. Finally, we provide several visualization techniques that facilitate these tasks, including buddy plots, which combine color and position encodings to allow analysts to readily view changes in document similarity.

  20. Effective model with strong Kitaev interactions for α -RuCl3

    Science.gov (United States)

    Suzuki, Takafumi; Suga, Sei-ichiro

    2018-04-01

    We use an exact numerical diagonalization method to calculate the dynamical spin structure factors of three ab initio models and one ab initio guided model for a honeycomb-lattice magnet α -RuCl3 . We also use thermal pure quantum states to calculate the temperature dependence of the heat capacity, the nearest-neighbor spin-spin correlation function, and the static spin structure factor. From the results obtained from these four effective models, we find that, even when the magnetic order is stabilized at low temperature, the intensity at the Γ point in the dynamical spin structure factors increases with increasing nearest-neighbor spin correlation. In addition, we find that the four models fail to explain heat-capacity measurements whereas two of the four models succeed in explaining inelastic-neutron-scattering experiments. In the four models, when temperature decreases, the heat capacity shows a prominent peak at a high temperature where the nearest-neighbor spin-spin correlation function increases. However, the peak temperature in heat capacity is too low in comparison with that observed experimentally. To address these discrepancies, we propose an effective model that includes strong ferromagnetic Kitaev coupling, and we show that this model quantitatively reproduces both inelastic-neutron-scattering experiments and heat-capacity measurements. To further examine the adequacy of the proposed model, we calculate the field dependence of the polarized terahertz spectra, which reproduces the experimental results: the spin-gapped excitation survives up to an onset field where the magnetic order disappears and the response in the high-field region is almost linear. Based on these numerical results, we argue that the low-energy magnetic excitation in α -RuCl3 is mainly characterized by interactions such as off-diagonal interactions and weak Heisenberg interactions between nearest-neighbor pairs, rather than by the strong Kitaev interactions.

  1. Low and intermediate energy pion-nucleus interactions in the cascade-exciton model

    International Nuclear Information System (INIS)

    Mashnik, S.G.

    1993-01-01

    A large variety of experimental data on pion-nucleus interactions in the bombarding energy range of 0-3000 MeV, on nucleon-induced pion production and on cumulative nucleon production, when a two-step process of pion production followed by absorption on nucleon pairs within a target is taken into account, are analyzed with the Cascade-Exciton Model of nuclear reactions.Comparison is made with other up-to-date models of these processes. The contributions of different pion absorption mechanisms and the relative role of different particle production mechanisms in these reactions are discussed

  2. Interacting boson model with surface delta interaction between nucleons: Structure and interaction of bosons

    International Nuclear Information System (INIS)

    Druce, C.H.; Moszkowski, S.A.

    1986-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested

  3. Interacting boson model with surface delta interaction between nucleons: Structure and interaction of bosons

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; Moszkowski, S.A.

    1986-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested.

  4. Interactive Dimensioning of Parametric Models

    KAUST Repository

    Kelly, T.

    2015-06-22

    We propose a solution for the dimensioning of parametric and procedural models. Dimensioning has long been a staple of technical drawings, and we present the first solution for interactive dimensioning: A dimension line positioning system that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify the desired interactive behavior of a dimension line. Second, we propose a novel algorithm to place dimension lines at interactive speeds. Third, we introduce multiple extensions, including chained dimension lines, controls for different parameter types (e.g. discrete choices, angles), and the use of dimension lines for interactive editing. Our results show the use of dimension lines in an interactive parametric modeling environment for architectural, botanical, and mechanical models.

  5. Interacting boson model with surface delta interaction between nucleons

    International Nuclear Information System (INIS)

    Druce, C.; Moszkowski, S.A.

    1984-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. The authors have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson proton-boson interaction for the case of degenerate orbits

  6. Some Remarks on Prediction of Drug-Target Interaction with Network Models.

    Science.gov (United States)

    Zhang, Shao-Wu; Yan, Xiao-Ying

    2017-01-01

    System-level understanding of the relationships between drugs and targets is very important for enhancing drug research, especially for drug function repositioning. The experimental methods used to determine drug-target interactions are usually time-consuming, tedious and expensive, and sometimes lack reproducibility. Thus, it is highly desired to develop computational methods for efficiently and effectively analyzing and detecting new drug-target interaction pairs. With the explosive growth of different types of omics data, such as genome, pharmacology, phenotypic, and other kinds of molecular networks, numerous computational approaches have been developed to predict Drug-Target Interactions (DTI). In this review, we make a survey on the recent advances in predicting drug-target interaction with network-based models from the following aspects: i) Available public data sources and benchmark datasets; ii) Drug/target similarity metrics; iii) Network construction; iv) Common network algorithms; v) Performance comparison of existing network-based DTI predictors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. A study on the modeling of molten corium-concrete interaction

    International Nuclear Information System (INIS)

    Park, Soo Yong

    1994-02-01

    The phenomenon known as molten corium concrete interaction (MCCI) has been recognized as important aspects of severe reactor accidents. The potential hazard of a MCCI is the threat to the integrity of the containment building due to the possibility of a basemat melt through, containment overpressurization by noncondensible gases, or oxidation of combustible gases. Over the past several years, a large experimental and analytical effort has been under taken in corium-concrete interaction phenomena by several organization. The purpose of this paper is to investigate the previous analytical results and computer programs, and finally to establish a new stand alone model which can predict the corium-concrete interaction. A model to predict the behavior of molten corium-concrete interaction in the reactor cavity during vessel ruptured accidents is established. Gas film model, gas bubble model, slag model and periodic contact model are employed as a major heat transfer model between corium and concrete. Solidified debris crust is considered at the boundary of molten corium. Upon the experimental observations, no layer stratification is assumed due to the strong dispersion of the metallic melt in the oxidic phase. With the assumption of temperature profile within the corium pool and crust, the temperature distribution of concrete is found by explicit solution of heat conduction equation. The sideward heat transfer rate can be obtained by considering multiplication factor to the downward heat transfer rate. The multiplication factor is treated as a user input because of its large uncertainty. Comparisons are made with two large scale experiments, SURC-2 and BETA V3.3. There is a reasonable agreement in the corium temperature, erosion depth and gas generation between the experimental data and the predicted results with periodic contact model given the uncertainties in the input data or the measurement. The gas bubble model has the highest heat transfer coefficient, and the

  8. Interactive comparison and remediation of collections of macromolecular structures.

    Science.gov (United States)

    Moriarty, Nigel W; Liebschner, Dorothee; Klei, Herbert E; Echols, Nathaniel; Afonine, Pavel V; Headd, Jeffrey J; Poon, Billy K; Adams, Paul D

    2018-01-01

    Often similar structures need to be compared to reveal local differences throughout the entire model or between related copies within the model. Therefore, a program to compare multiple structures and enable correction any differences not supported by the density map was written within the Phenix framework (Adams et al., Acta Cryst 2010; D66:213-221). This program, called Structure Comparison, can also be used for structures with multiple copies of the same protein chain in the asymmetric unit, that is, as a result of non-crystallographic symmetry (NCS). Structure Comparison was designed to interface with Coot(Emsley et al., Acta Cryst 2010; D66:486-501) and PyMOL(DeLano, PyMOL 0.99; 2002) to facilitate comparison of large numbers of related structures. Structure Comparison analyzes collections of protein structures using several metrics, such as the rotamer conformation of equivalent residues, displays the results in tabular form and allows superimposed protein chains and density maps to be quickly inspected and edited (via the tools in Coot) for consistency, completeness and correctness. © 2017 The Protein Society.

  9. A Multiagent Cooperation Model Based on Trust Rating in Dynamic Infinite Interaction Environment

    Directory of Open Access Journals (Sweden)

    Sixia Fan

    2018-01-01

    Full Text Available To improve the liveness of agents and enhance trust and collaboration in multiagent system, a new cooperation model based on trust rating in dynamic infinite interaction environment (TR-DII is proposed. TR-DII model is used to control agent’s autonomy and selfishness and to make agent do the rational decision. TR-DII model is based on two important components. One is dynamic repeated interaction structure, and the other is trust rating. The dynamic repeated interaction structure is formed with multistage inviting and evaluating actions. It transforms agents’ interactions into an infinity task allocation environment, where controlled and renewable cycle is a component most agent models ignored. Additionally, it influences the expectations and behaviors of agents which may not appear in one-shot time but may appear in long-time cooperation. Moreover, with rewards and punishments mechanism (RPM, the trust rating (TR is proposed to control agent blindness in selection phase. However, RPM is the factor that directly influences decisions, not the reputation as other models have suggested. Meanwhile, TR could monitor agent’s statuses in which they could be trustworthy or untrustworthy. Also, it refines agent’s disrepute in a new way which is ignored by the others. Finally, grids puzzle experiment has been used to test TR-DII model and other five models are used as comparisons. The results show that TR-DII model can effectively adjust the trust level between agents and makes the solvers be more trustworthy and do choices that are more rational. Moreover, through interaction result feedback, TR-DII model could adjust the income function, to control cooperation reputation, and could achieve a closed-loop control.

  10. Io's Magnetospheric Interaction: An MHD Model with Day-Night Asymmetry

    Science.gov (United States)

    Kabin, K.; Combi, M. R.; Gombosi, T. I.; DeZeeuw, D. L.; Hansen, K. C.; Powell, K. G.

    2001-01-01

    In this paper we present the results of all improved three-dimensional MHD model for Io's interaction with Jupiter's magnetosphere. We have included the day-night asymmetry into the spatial distribution of our mass-loading, which allowed us to reproduce several smaller features or the Galileo December 1995 data set. The calculation is performed using our newly modified description of the pick-up processes that accounts for the effects of the corotational electric field existing in the Jovian magnetosphere. This change in the formulation of the source terms for the MHD equations resulted in significant improvements in the comparison with the Galileo measurements. We briefly discuss the limitations of our model and possible future improvements.

  11. Comparison of Nordic dose models

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.

    1978-04-01

    A comparison is made between the models used in the four Nordic countries, Finland, Norway, Sweden and Denmark, for calculation of concentrations and doses from releases of radioactive material to the atmosphere. The comparison is limited to the near-zone models, i.e. the models for calculation of concentrations and doses within 50 km from the release point, and it comprises the following types of calculation: a. Concentrations of airborne material, b. External gamma doses from a plume, c. External gamma doses from radioactive material deposited on the ground. All models are based on the gaussian dispersion model (the gaussian plume model). Unit releases of specific isotopes under specific meteorological conditions are assumed. On the basis of the calculation results from the models, it is concluded that there are no essential differences. The difference between the calculation results only exceeds a factor of 3 in special cases. It thus lies within the known limits of uncertainty for the gaussian plume model. (author)

  12. Integrated Modeling of Groundwater and Surface Water Interactions in a Manmade Wetland

    Directory of Open Access Journals (Sweden)

    Guobiao Huang Gour-Tsyh Yeh

    2012-01-01

    Full Text Available A manmade pilot wetland in south Florida, the Everglades Nutrient Removal (ENR project, was modeled with a physics-based integrated approach using WASH123D (Yeh et al. 2006. Storm water is routed into the treatment wetland for phosphorus removal by plant and sediment uptake. It overlies a highly permeable surficial groundwater aquifer. Strong surface water and groundwater interactions are a key component of the hydrologic processes. The site has extensive field measurement and monitoring tools that provide point scale and distributed data on surface water levels, groundwater levels, and the physical range of hydraulic parameters and hydrologic fluxes. Previous hydrologic and hydrodynamic modeling studies have treated seepage losses empirically by some simple regression equations and, only surface water flows are modeled in detail. Several years of operational data are available and were used in model historical matching and validation. The validity of a diffusion wave approximation for two-dimensional overland flow (in the region with very flat topography was also tested. The uniqueness of this modeling study is notable for (1 the point scale and distributed comparison of model results with observed data; (2 model parameters based on available field test data; and (3 water flows in the study area include two-dimensional overland flow, hydraulic structures/levees, three-dimensional subsurface flow and one-dimensional canal flow and their interactions. This study demonstrates the need and the utility of a physics-based modeling approach for strong surface water and groundwater interactions.

  13. COMPARISON OF ACCEPTOR PROPERTIES FOR INTERACTION ...

    African Journals Online (AJOL)

    Preferred Customer

    determined by UV-Vis titration method for the adducts. Surprisingly, the ... Interaction of. TCNE and DDQ as π-acceptors with hydrocarbon donors such as cycloalkanes, alkenes, ... obtained from a Shimadzu GC-MS model QP5050 instrument.

  14. The Modeling and Analysis for the Self-Excited Vibration of the Maglev Vehicle-Bridge Interaction System

    Directory of Open Access Journals (Sweden)

    Jinhui Li

    2015-01-01

    Full Text Available This paper addresses the self-excited vibration problems of maglev vehicle-bridge interaction system which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, two levitation models with different complexity are developed, and the comparison of the energy curves associated with the two models is carried out. We conclude that the interaction model with a single levitation control unit is sufficient for the study of the self-excited vibration. Then, the principle underlying the self-excited vibration is explored from the standpoint of work acting on the bridge done by the levitation system. Furthermore, the influences of the parameters, including the modal frequency and modal damping of bridge, the gain of the controller, the sprung mass, and the unsprung mass, on the stability of the interaction system are carried out. The study provides a theoretical guidance for solving the self-excited vibration problems of the vehicle-bridge interaction systems.

  15. A Generalized Form of Context-Dependent Psychophysiological Interactions (gPPI): A Comparison to Standard Approaches

    Science.gov (United States)

    McLaren, Donald G.; Ries, Michele L.; Xu, Guofan; Johnson, Sterling C.

    2012-01-01

    Functional MRI (fMRI) allows one to study task-related regional responses and task-dependent connectivity analysis using psychophysiological interaction (PPI) methods. The latter affords the additional opportunity to understand how brain regions interact in a task-dependent manner. The current implementation of PPI in Statistical Parametric Mapping (SPM8) is configured primarily to assess connectivity differences between two task conditions, when in practice fMRI tasks frequently employ more than two conditions. Here we evaluate how a generalized form of context-dependent PPI (gPPI; http://www.nitrc.org/projects/gppi), which is configured to automatically accommodate more than two task conditions in the same PPI model by spanning the entire experimental space, compares to the standard implementation in SPM8. These comparisons are made using both simulations and an empirical dataset. In the simulated dataset, we compare the interaction beta estimates to their expected values and model fit using the Akaike Information Criterion (AIC). We found that interaction beta estimates in gPPI were robust to different simulated data models, were not different from the expected beta value, and had better model fits than when using standard PPI (sPPI) methods. In the empirical dataset, we compare the model fit of the gPPI approach to sPPI. We found that the gPPI approach improved model fit compared to sPPI. There were several regions that became non-significant with gPPI. These regions all showed significantly better model fits with gPPI. Also, there were several regions where task-dependent connectivity was only detected using gPPI methods, also with improved model fit. Regions that were detected with all methods had more similar model fits. These results suggest that gPPI may have greater sensitivity and specificity than standard implementation in SPM. This notion is tempered slightly as there is no gold standard; however, data simulations with a known outcome support our

  16. Modeling multimodal human-computer interaction

    NARCIS (Netherlands)

    Obrenovic, Z.; Starcevic, D.

    2004-01-01

    Incorporating the well-known Unified Modeling Language into a generic modeling framework makes research on multimodal human-computer interaction accessible to a wide range off software engineers. Multimodal interaction is part of everyday human discourse: We speak, move, gesture, and shift our gaze

  17. Semantic models for adaptive interactive systems

    CERN Document Server

    Hussein, Tim; Lukosch, Stephan; Ziegler, Jürgen; Calvary, Gaëlle

    2013-01-01

    Providing insights into methodologies for designing adaptive systems based on semantic data, and introducing semantic models that can be used for building interactive systems, this book showcases many of the applications made possible by the use of semantic models.Ontologies may enhance the functional coverage of an interactive system as well as its visualization and interaction capabilities in various ways. Semantic models can also contribute to bridging gaps; for example, between user models, context-aware interfaces, and model-driven UI generation. There is considerable potential for using

  18. Agent-based financial dynamics model from stochastic interacting epidemic system and complexity analysis

    International Nuclear Information System (INIS)

    Lu, Yunfan; Wang, Jun; Niu, Hongli

    2015-01-01

    An agent-based financial stock price model is developed and investigated by a stochastic interacting epidemic system, which is one of the statistical physics systems and has been used to model the spread of an epidemic or a forest fire. Numerical and statistical analysis are performed on the simulated returns of the proposed financial model. Complexity properties of the financial time series are explored by calculating the correlation dimension and using the modified multiscale entropy method. In order to verify the rationality of the financial model, the real stock market indexes, Shanghai Composite Index and Shenzhen Component Index, are studied in comparison with the simulation data of the proposed model for the different infectiousness parameters. The empirical research reveals that this financial model can reproduce some important features of the real stock markets. - Highlights: • A new agent-based financial price model is developed by stochastic interacting epidemic system. • The structure of the proposed model allows to simulate the financial dynamics. • Correlation dimension and MMSE are applied to complexity analysis of financial time series. • Empirical results show the rationality of the proposed financial model

  19. Agent-based financial dynamics model from stochastic interacting epidemic system and complexity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yunfan, E-mail: yunfanlu@yeah.net; Wang, Jun; Niu, Hongli

    2015-06-12

    An agent-based financial stock price model is developed and investigated by a stochastic interacting epidemic system, which is one of the statistical physics systems and has been used to model the spread of an epidemic or a forest fire. Numerical and statistical analysis are performed on the simulated returns of the proposed financial model. Complexity properties of the financial time series are explored by calculating the correlation dimension and using the modified multiscale entropy method. In order to verify the rationality of the financial model, the real stock market indexes, Shanghai Composite Index and Shenzhen Component Index, are studied in comparison with the simulation data of the proposed model for the different infectiousness parameters. The empirical research reveals that this financial model can reproduce some important features of the real stock markets. - Highlights: • A new agent-based financial price model is developed by stochastic interacting epidemic system. • The structure of the proposed model allows to simulate the financial dynamics. • Correlation dimension and MMSE are applied to complexity analysis of financial time series. • Empirical results show the rationality of the proposed financial model.

  20. Generating explanations via analogical comparison.

    Science.gov (United States)

    Hoyos, Christian; Gentner, Dedre

    2017-10-01

    Generating explanations can be highly effective in promoting learning in both adults and children. Our interest is in the mechanisms that underlie this effect and in whether and how they operate in early learning. In adult reasoning, explanation may call on many subprocesses-including comparison, counterfactual reasoning, and reasoning by exclusion; but it is unlikely that all these processes are available to young children. We propose that one process that may serve both children and adults is comparison. In this study, we asked whether children would use the results of a comparison experience when asked to explain why a model skyscraper was stable. We focused on a challenging principle-that diagonal cross-bracing lends stability to physical structures (Gentner et al., Cognitive Science, 40, 224-240, 2016). Six-year-olds either received no training or interacted with model skyscrapers in one of three different conditions, designed to vary in their potential to invite and support comparison. In the Single Model condition, children interacted with a single braced model. In the comparison conditions (Low Alignability and High Alignability), children compared braced and unbraced models. Following experience with the models, children were asked to explain why the braced model was stable. They then received two transfer tasks. We found that children who received highly alignable pairs were most likely to (a) produce brace-based explanations and (b) transfer the brace principle to a dissimilar context. This provides evidence that children can benefit from analogical comparison in generating explanations and also suggests limitations on this ability.

  1. Interaction Modeling at PROS Research Center

    OpenAIRE

    Panach , José ,; Aquino , Nathalie; PASTOR , Oscar

    2011-01-01

    Part 1: Long and Short Papers; International audience; This paper describes how the PROS Research Center deals with interaction in the context of a model-driven approach for the development of information systems. Interaction is specified in a conceptual model together with the structure and behavior of the system. Major achievements and current research challenges of PROS in the field of interaction modeling are presented.

  2. Comparison of GEANT4 very low energy cross section models with experimental data in water

    DEFF Research Database (Denmark)

    Incerti, S; Ivanchenko, A; Karamitros, M

    2010-01-01

    The GEANT4 general-purpose Monte Carlo simulation toolkit is able to simulate physical interaction processes of electrons, hydrogen and helium atoms with charge states (H0, H+) and (He0, He+, He2+), respectively, in liquid water, the main component of biological systems, down to the electron volt...... of electromagnetic interactions within the GEANT4 toolkit framework (since GEANT4 version 9.3 beta). This work presents a quantitative comparison of these physics models with a collection of experimental data in water collected from the literature....

  3. Vector-Interaction-Enhanced Bag Model

    Science.gov (United States)

    Cierniak, Mateusz; Klähn, Thomas; Fischer, Tobias; Bastian, Niels-Uwe

    2018-02-01

    A commonly applied quark matter model in astrophysics is the thermodynamic bag model (tdBAG). The original MIT bag model approximates the effect of quark confinement, but does not explicitly account for the breaking of chiral symmetry, an important property of Quantum Chromodynamics (QCD). It further ignores vector repulsion. The vector-interaction-enhanced bag model (vBag) improves the tdBAG approach by accounting for both dynamical chiral symmetry breaking and repulsive vector interactions. The latter is of particular importance to studies of dense matter in beta-equilibriumto explain the two solar mass maximum mass constraint for neutron stars. The model is motivated by analyses of QCD based Dyson-Schwinger equations (DSE), assuming a simple quark-quark contact interaction. Here, we focus on the study of hybrid neutron star properties resulting from the application of vBag and will discuss possible extensions.

  4. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    International Nuclear Information System (INIS)

    Rest, J.; Hofman, G.L.

    1997-01-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 -Al for various dispersion fuel element designs with the data

  5. GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data.

    Directory of Open Access Journals (Sweden)

    Borbala Mifsud

    Full Text Available Hi-C is one of the main methods for investigating spatial co-localisation of DNA in the nucleus. However, the raw sequencing data obtained from Hi-C experiments suffer from large biases and spurious contacts, making it difficult to identify true interactions. Existing methods use complex models to account for biases and do not provide a significance threshold for detecting interactions. Here we introduce a simple binomial probabilistic model that resolves complex biases and distinguishes between true and false interactions. The model corrects biases of known and unknown origin and yields a p-value for each interaction, providing a reliable threshold based on significance. We demonstrate this experimentally by testing the method against a random ligation dataset. Our method outperforms previous methods and provides a statistical framework for further data analysis, such as comparisons of Hi-C interactions between different conditions. GOTHiC is available as a BioConductor package (http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html.

  6. GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data.

    Science.gov (United States)

    Mifsud, Borbala; Martincorena, Inigo; Darbo, Elodie; Sugar, Robert; Schoenfelder, Stefan; Fraser, Peter; Luscombe, Nicholas M

    2017-01-01

    Hi-C is one of the main methods for investigating spatial co-localisation of DNA in the nucleus. However, the raw sequencing data obtained from Hi-C experiments suffer from large biases and spurious contacts, making it difficult to identify true interactions. Existing methods use complex models to account for biases and do not provide a significance threshold for detecting interactions. Here we introduce a simple binomial probabilistic model that resolves complex biases and distinguishes between true and false interactions. The model corrects biases of known and unknown origin and yields a p-value for each interaction, providing a reliable threshold based on significance. We demonstrate this experimentally by testing the method against a random ligation dataset. Our method outperforms previous methods and provides a statistical framework for further data analysis, such as comparisons of Hi-C interactions between different conditions. GOTHiC is available as a BioConductor package (http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html).

  7. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    Science.gov (United States)

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…

  8. MCNPX Model/Table Comparison

    International Nuclear Information System (INIS)

    Hendricks, J.S.

    2003-01-01

    MCNPX is a Monte Carlo N-Particle radiation transport code extending the capabilities of MCNP4C. As with MCNP, MCNPX uses nuclear data tables to transport neutrons, photons, and electrons. Unlike MCNP, MCNPX also uses (1) nuclear data tables to transport protons; (2) physics models to transport 30 additional particle types (deuterons, tritons, alphas, pions, muons, etc.); and (3) physics models to transport neutrons and protons when no tabular data are available or when the data are above the energy range (20 to 150 MeV) where the data tables end. MCNPX can mix and match data tables and physics models throughout a problem. For example, MCNPX can model neutron transport in a bismuth germinate (BGO) particle detector by using data tables for bismuth and oxygen and using physics models for germanium. Also, MCNPX can model neutron transport in UO 2 , making the best use of physics models and data tables: below 20 MeV, data tables are used; above 150 MeV, physics models are used; between 20 and 150 MeV, data tables are used for oxygen and models are used for uranium. The mix-and-match capability became available with MCNPX2.5.b (November 2002). For the first time, we present here comparisons that calculate radiation transport in materials with various combinations of data charts and model physics. The physics models are poor at low energies (<150 MeV); thus, data tables should be used when available. Our comparisons demonstrate the importance of the mix-and-match capability and indicate how well physics models work in the absence of data tables

  9. Off-site interaction effect in the Extended Hubbard Model with the SCRPA method

    International Nuclear Information System (INIS)

    Harir, S; Bennai, M; Boughaleb, Y

    2007-01-01

    The self consistent random phase approximation (SCRPA) and a direct analytical (DA) method are proposed to solve the Extended Hubbard Model (EHM) in one dimension (1D). We have considered an EHM including on-site and off-site interactions for closed chains in 1D with periodic boundary conditions. The comparison of the SCRPA results with the ones obtained by a DA approach shows that the SCRPA treats the problem of these closed chains in a rigorous manner. The analysis of the nearest-neighbour repulsion effect on the dynamics of our closed chains shows that this repulsive interaction between the electrons of the neighbouring atoms induces supplementary conductivity, since, the SCRPA energygap vanishes when these closed chains are governed by a strong repulsive on-site interaction and intermediate nearest-neighbour repulsion

  10. Vehicle - Bridge interaction, comparison of two computing models

    Science.gov (United States)

    Melcer, Jozef; Kuchárová, Daniela

    2017-07-01

    The paper presents the calculation of the bridge response on the effect of moving vehicle moves along the bridge with various velocities. The multi-body plane computing model of vehicle is adopted. The bridge computing models are created in two variants. One computing model represents the bridge as the Bernoulli-Euler beam with continuously distributed mass and the second one represents the bridge as the lumped mass model with 1 degrees of freedom. The mid-span bridge dynamic deflections are calculated for both computing models. The results are mutually compared and quantitative evaluated.

  11. Single nuclear transfer strengths and sum rules in the interacting boson-fermion model and in the spectral averaging theory

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    1991-01-01

    In the interacting boson-fermion model of collective nuclei, in the symmetry limits of the model appropriate for vibrational, rotational and γ-unstable nuclei, for one-particle transfer, the selection rules, model predictions for the allowed strengths and comparison of theory with experiment are briefly reviewed. In the spectral-averaging theory, with the specific example of orbit occupancies, the smoothed forms (linear or better ratio of Gaussians) as determined by central limit theorems, how they provide a good criterion for selecting effective interactions and the convolution structure of occupancy densities in huge spaces are described. Complementary information provided by nuclear models and statistical laws is broughtout. (author). 63 refs., 5 figs

  12. Field studies of submerged-diffuser thermal plumes with comparisons to predictive model results

    International Nuclear Information System (INIS)

    Frigo, A.A.; Paddock, R.A.; Ditmars, J.D.

    1976-01-01

    Thermal plumes from submerged discharges of cooling water from two power plants on Lake Michigan were studied. The system for the acquisition of water temperatures and ambient conditions permitted the three-dimensional structure of the plumes to be determined. The Zion Nuclear Power Station has two submerged discharge structures separated by only 94 m. Under conditions of flow from both structures, interaction between the two plumes resulted in larger thermal fields than would be predicted by the superposition of single non-interacting plumes. Maximum temperatures in the near-field region of the plume compared favorably with mathematical model predictions. A comparison of physical-model predictions for the plume at the D. C. Cook Nuclear Plant with prototype measurements indicated good agreement in the near-field region, but differences in the far-field occurred as similitude was not preserved there

  13. The Cryosphere Model Comparison Tool (CmCt): Ice Sheet Model Validation and Comparison Tool for Greenland and Antarctica

    Science.gov (United States)

    Simon, E.; Nowicki, S.; Neumann, T.; Tyahla, L.; Saba, J. L.; Guerber, J. R.; Bonin, J. A.; DiMarzio, J. P.

    2017-12-01

    The Cryosphere model Comparison tool (CmCt) is a web based ice sheet model validation tool that is being developed by NASA to facilitate direct comparison between observational data and various ice sheet models. The CmCt allows the user to take advantage of several decades worth of observations from Greenland and Antarctica. Currently, the CmCt can be used to compare ice sheet models provided by the user with remotely sensed satellite data from ICESat (Ice, Cloud, and land Elevation Satellite) laser altimetry, GRACE (Gravity Recovery and Climate Experiment) satellite, and radar altimetry (ERS-1, ERS-2, and Envisat). One or more models can be uploaded through the CmCt website and compared with observational data, or compared to each other or other models. The CmCt calculates statistics on the differences between the model and observations, and other quantitative and qualitative metrics, which can be used to evaluate the different model simulations against the observations. The qualitative metrics consist of a range of visual outputs and the quantitative metrics consist of several whole-ice-sheet scalar values that can be used to assign an overall score to a particular simulation. The comparison results from CmCt are useful in quantifying improvements within a specific model (or within a class of models) as a result of differences in model dynamics (e.g., shallow vs. higher-order dynamics approximations), model physics (e.g., representations of ice sheet rheological or basal processes), or model resolution (mesh resolution and/or changes in the spatial resolution of input datasets). The framework and metrics could also be used for use as a model-to-model intercomparison tool, simply by swapping outputs from another model as the observational datasets. Future versions of the tool will include comparisons with other datasets that are of interest to the modeling community, such as ice velocity, ice thickness, and surface mass balance.

  14. Using Interaction Scenarios to Model Information Systems

    DEFF Research Database (Denmark)

    Bækgaard, Lars; Bøgh Andersen, Peter

    The purpose of this paper is to define and discuss a set of interaction primitives that can be used to model the dynamics of socio-technical activity systems, including information systems, in a way that emphasizes structural aspects of the interaction that occurs in such systems. The primitives...... a number of case studies that indicate that interaction primitives can be useful modeling tools for supplementing conventional flow-oriented modeling of business processes....... are based on a unifying, conceptual definition of the disparate interaction types - a robust model of the types. The primitives can be combined and may thus represent mediated interaction. We present a set of visualizations that can be used to define multiple related interactions and we present and discuss...

  15. Comparison of Models for Ball Bearing Dynamic Capacity and Life

    Science.gov (United States)

    Gupta, Pradeep K.; Oswald, Fred B.; Zaretsky, Erwin V.

    2015-01-01

    Generalized formulations for dynamic capacity and life of ball bearings, based on the models introduced by Lundberg and Palmgren and Zaretsky, have been developed and implemented in the bearing dynamics computer code, ADORE. Unlike the original Lundberg-Palmgren dynamic capacity equation, where the elastic properties are part of the life constant, the generalized formulations permit variation of elastic properties of the interacting materials. The newly updated Lundberg-Palmgren model allows prediction of life as a function of elastic properties. For elastic properties similar to those of AISI 52100 bearing steel, both the original and updated Lundberg-Palmgren models provide identical results. A comparison between the Lundberg-Palmgren and the Zaretsky models shows that at relatively light loads the Zaretsky model predicts a much higher life than the Lundberg-Palmgren model. As the load increases, the Zaretsky model provides a much faster drop off in life. This is because the Zaretsky model is much more sensitive to load than the Lundberg-Palmgren model. The generalized implementation where all model parameters can be varied provides an effective tool for future model validation and enhancement in bearing life prediction capabilities.

  16. A comparison study between observations and simulation results of Barghouthi model for O+ and H+ outflows in the polar wind

    Directory of Open Access Journals (Sweden)

    I. A. Barghouthi

    2011-11-01

    Full Text Available To advance our understanding of the effect of wave-particle interactions on ion outflows in the polar wind region and the resulting ion heating and escape from low altitudes to higher altitudes, we carried out a comparison between polar wind simulations obtained using Barghouthi model with corresponding observations obtained from different satellites. The Barghouthi model describes O+ and H+ outflows in the polar wind region in the range 1.7 RE to 13.7 RE, including the effects of gravity, polarization electrostatic field, diverging geomagnetic field lines, and wave-particle interactions. Wave-particle interactions were included into the model by using a particle diffusion equation, which depends on diffusion coefficients determined from estimates of the typical electric field spectral density at relevant altitudes and frequencies. We provide a formula for the velocity diffusion coefficient that depends on altitude and velocity, in which the velocity part depends on the perpendicular wavelength of the electromagnetic turbulence λ⊥. Because of the shortage of information about λ⊥, it was included into the model as a parameter. We produce different simulations (i.e. ion velocity distributions, ions density, ion drift velocity, ion parallel and perpendicular temperatures for O+ and H+ ions, and for different λ⊥. We discuss the simulations in terms of wave-particle interactions, perpendicular adiabatic cooling, parallel adiabatic cooling, mirror force, and ion potential energy. The main findings of the simulations are as follows: (1 O+ ions are highly energized at all altitudes in the simulation tube due to wave-particle interactions that heat the ions in the perpendicular direction, and part of this gained energy transfer to the parallel direction by mirror force, resulting in accelerating O+ ions along geomagnetic field lines from lower altitudes to higher altitudes. (2 The effect of wave-particle interactions is negligible for H

  17. Comparison of isocratic retention models for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides.

    Science.gov (United States)

    Česla, Petr; Vaňková, Nikola; Křenková, Jana; Fischer, Jan

    2016-03-18

    In this work, we have investigated retention of maltooligosaccharides and their fluorescent derivatives in hydrophilic interaction liquid chromatography using four different stationary phases. The non-derivatized maltooligosaccharides (maltose to maltoheptaose) and their derivatives with 2-aminobenzoic acid, 2-aminobenzamide, 2-aminopyridine and 8-aminonaphthalene-1,3,6-trisulfonic acid were analyzed on silica gel, aminopropyl silica, amide (carbamoyl-bonded silica) and ZIC-HILIC zwitterionic sulfobetain bonded phase. The partitioning of the analytes between the bulk mobile phase and adsorbed water-rich layer, polar and ionic interactions of analytes with stationary phase have been evaluated and compared. The effects of the mobile phase additives (0.1% (v/v) of acetic acid and ammonium acetate in concentration range 5-30 mmol L(-1)) on retention were described. The suitability of different models for prediction of retention was tested including linear solvent strength model, quadratic model, mixed-mode model, and empirical Neue-Kuss model. The mixed-mode model was extended to the parameter describing the contribution of monomeric glucose unit to the retention of non-derivatized and derivatized maltooligosaccharides, which was used for evaluation of contribution of both, oligosaccharide backbone and end-group to retention. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Experimental comparison of particle interaction measurement techniques using optical traps

    International Nuclear Information System (INIS)

    Koehler, Timothy P.; Grillet, Anne Mary; Brotherton, Christopher M.; Molecke, Ryan A.

    2008-01-01

    Optical tweezers has become a powerful and common tool for sensitive determination of electrostatic interactions between colloidal particles. Recently, two techniques, 'blinking' tweezers and direct force measurements, have become increasingly prevalent in investigations of inter-particle potentials. The 'blinking' tweezers method acquires physical statistics of particle trajectories to determine drift velocities, diffusion coefficients, and ultimately colloidal forces as a function of the center-center separation of two particles. Direct force measurements monitor the position of a particle relative to the center of an optical trap as the separation distance between two continuously trapped particles is gradually decreased. As the particles near each other, the displacement from the trap center for each particle increases proportional to the inter-particle force. Although commonly employed in the investigation of interactions of colloidal particles, there exists no direct comparison of these experimental methods in the literature. In this study, an experimental apparatus was developed capable of performing both methods and is used to quantify electrostatic potentials between particles in several particle/solvent systems. Comparisons are drawn between the experiments conducted using the two measurement techniques, theory, and existing literature. Forces are quantified on the femto-Newton scale and results agree well with literature values

  19. Interactive differential equations modeling program

    International Nuclear Information System (INIS)

    Rust, B.W.; Mankin, J.B.

    1976-01-01

    Due to the recent emphasis on mathematical modeling, many ecologists are using mathematics and computers more than ever, and engineers, mathematicians and physical scientists are now included in ecological projects. However, the individual ecologist, with intuitive knowledge of the system, still requires the means to critically examine and adjust system models. An interactive program was developed with the primary goal of allowing an ecologist with minimal experience in either mathematics or computers to develop a system model. It has also been used successfully by systems ecologists, engineers, and mathematicians. This program was written in FORTRAN for the DEC PDP-10, a remote terminal system at Oak Ridge National Laboratory. However, with relatively minor modifications, it can be implemented on any remote terminal system with a FORTRAN IV compiler, or equivalent. This program may be used to simulate any phenomenon which can be described as a system of ordinary differential equations. The program allows the user to interactively change system parameters and/or initial conditions, to interactively select a set of variables to be plotted, and to model discontinuities in the state variables and/or their derivatives. One of the most useful features to the non-computer specialist is the ability to interactively address the system parameters by name and to interactively adjust their values between simulations. These and other features are described in greater detail

  20. Comparison of high-latitude thermospheric meridionalwinds II: combined FPI, radar and model Climatologies

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4°N, 20.4°E has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM (Hedin et al., 1988 and the numerical Coupled Thermosphere and Ionosphere Model (CTIM are compared to the measured behaviour at Kiruna, as a single site example. The empirical International Reference Ionosphere (IRI model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using Fabry-Perot Interferometers (FPI, together with 2 separate techniques applied to the European Incoherent Scatter radar (EISCAT database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics

  1. Comparison of high-latitude thermospheric meridionalwinds II: combined FPI, radar and model Climatologies

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4°N, 20.4°E has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM (Hedin et al., 1988 and the numerical Coupled Thermosphere and Ionosphere Model (CTIM are compared to the measured behaviour at Kiruna, as a single site example. The empirical International Reference Ionosphere (IRI model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using Fabry-Perot Interferometers (FPI, together with 2 separate techniques applied to the European Incoherent Scatter radar (EISCAT database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes. Key words. Meteorology and atmospheric dynamics (thermospheric dynamics

  2. An analytical model for interactive failures

    International Nuclear Information System (INIS)

    Sun Yong; Ma Lin; Mathew, Joseph; Zhang Sheng

    2006-01-01

    In some systems, failures of certain components can interact with each other, and accelerate the failure rates of these components. These failures are defined as interactive failure. Interactive failure is a prevalent cause of failure associated with complex systems, particularly in mechanical systems. The failure risk of an asset will be underestimated if the interactive effect is ignored. When failure risk is assessed, interactive failures of an asset need to be considered. However, the literature is silent on previous research work in this field. This paper introduces the concepts of interactive failure, develops an analytical model to analyse this type of failure quantitatively, and verifies the model using case studies and experiments

  3. Thermal sensation models: a systematic comparison.

    Science.gov (United States)

    Koelblen, B; Psikuta, A; Bogdan, A; Annaheim, S; Rossi, R M

    2017-05-01

    Thermal sensation models, capable of predicting human's perception of thermal surroundings, are commonly used to assess given indoor conditions. These models differ in many aspects, such as the number and type of input conditions, the range of conditions in which the models can be applied, and the complexity of equations. Moreover, the models are associated with various thermal sensation scales. In this study, a systematic comparison of seven existing thermal sensation models has been performed with regard to exposures including various air temperatures, clothing thermal insulation, and metabolic rate values after a careful investigation of the models' range of applicability. Thermo-physiological data needed as input for some of the models were obtained from a mathematical model for human physiological responses. The comparison showed differences between models' predictions for the analyzed conditions, mostly higher than typical intersubject differences in votes. Therefore, it can be concluded that the choice of model strongly influences the assessment of indoor spaces. The issue of comparing different thermal sensation scales has also been discussed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Pulsational Pair-instability Model for Superluminous Supernova PTF12dam:Interaction and Radioactive Decay

    Energy Technology Data Exchange (ETDEWEB)

    Tolstov, Alexey; Nomoto, Ken’ichi; Blinnikov, Sergei; Quimby, Robert [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Sorokina, Elena [Sternberg Astronomical Institute, M.V.Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Baklanov, Petr, E-mail: alexey.tolstov@ipmu.jp [Institute for Theoretical and Experimental Physics (ITEP), 117218 Moscow (Russian Federation)

    2017-02-01

    Being a superluminous supernova, PTF12dam can be explained by a {sup 56}Ni-powered model, a magnetar-powered model, or an interaction model. We propose that PTF12dam is a pulsational pair-instability supernova, where the outer envelope of a progenitor is ejected during the pulsations. Thus, it is powered by a double energy source: radioactive decay of {sup 56}Ni and a radiative shock in a dense circumstellar medium. To describe multicolor light curves and spectra, we use radiation-hydrodynamics calculations of the STELLA code. We found that light curves are well described in the model with 40 M {sub ⊙} ejecta and 20–40 M {sub ⊙} circumstellar medium. The ejected {sup 56}Ni mass is about 6 M {sub ⊙}, which results from explosive nucleosynthesis with large explosion energy (2–3)×10{sup 52} erg. In comparison with alternative scenarios of pair-instability supernova and magnetar-powered supernova, in the interaction model, all the observed main photometric characteristics are well reproduced: multicolor light curves, color temperatures, and photospheric velocities.

  5. Porous models for wave-seabed interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, Dong-Sheng [Shanghai Jiaotong Univ., SH (China)

    2013-02-01

    Detailed discussion about the phenomenon of wave-seabed interactions. Novel models for wave-induced seabed response. Intensive theoretical derivations for wave-seabed interactions. Practical examples for engineering applications. ''Porous Models for Wave-seabed Interactions'' discusses the Phenomenon of wave-seabed interactions, which is a vital issue for coastal and geotechnical engineers involved in the design of foundations for marine structures such as pipelines, breakwaters, platforms, etc. The most important sections of this book will be the fully detailed theoretical models of wave-seabed interaction problem, which are particularly useful for postgraduate students and junior researchers entering the discipline of marine geotechnics and offshore engineering. This book also converts the research outcomes of theoretical studies to engineering applications that will provide front-line engineers with practical and effective tools in the assessment of seabed instability in engineering design.

  6. Experimental and analytical studies of sodium interactions with various concretes

    International Nuclear Information System (INIS)

    Suo-Anttila, A.; Smaardyk, J.E.

    1982-01-01

    Mechanistic models of sodium/concrete interactions are described. The SCAM model of interactions with basaltic concrete is being verified by experiments. Modelling of sodium interactions with limestone concrete is still at a preliminary stage but shows promise of being able to predict quantitatively the experimental data. Comparisons with experimental data are presented

  7. The joy of interactive modeling

    Science.gov (United States)

    Donchyts, Gennadii; Baart, Fedor; van Dam, Arthur; Jagers, Bert

    2013-04-01

    The conventional way of working with hydrodynamical models usually consists of the following steps: 1) define a schematization (e.g., in a graphical user interface, or by editing input files) 2) run model from start to end 3) visualize results 4) repeat any of the previous steps. This cycle commonly takes up from hours to several days. What if we can make this happen instantly? As most of the research done using numerical models is in fact qualitative and exploratory (Oreskes et al., 1994), why not use these models as such? How can we adapt models so that we can edit model input, run and visualize results at the same time? More and more, interactive models become available as online apps, mainly for demonstration and educational purposes. These models often simplify the physics behind flows and run on simplified model geometries, particularly when compared with state-of-the-art scientific simulation packages. Here we show how the aforementioned conventional standalone models ("static, run once") can be transformed into interactive models. The basic concepts behind turning existing (conventional) model engines into interactive engines are the following. The engine does not run the model from start to end, but is always available in memory, and can be fed by new boundary conditions, or state changes at any time. The model can be run continuously, per step, or up to a specified time. The Hollywood principle dictates how the model engine is instructed from 'outside', instead of the model engine taking all necessary actions on its own initiative. The underlying techniques that facilitate these concepts are introspection of the computation engine, which exposes its state variables, and control functions, e.g. for time stepping, via a standardized interface, such as BMI (Peckam et. al., 2012). In this work we have used a shallow water flow model engine D-Flow Flexible Mesh. The model was converted from executable to a library, and coupled to the graphical modelling

  8. Modeling of electron-specimen interaction in scanning electron microscope for e-beam metrology and inspection: challenges and perspectives

    Science.gov (United States)

    Suzuki, Makoto; Kameda, Toshimasa; Doi, Ayumi; Borisov, Sergey; Babin, Sergey

    2018-03-01

    The interpretation of scanning electron microscopy (SEM) images of the latest semiconductor devices is not intuitive and requires comparison with computed images based on theoretical modeling and simulations. For quantitative image prediction and geometrical reconstruction of the specimen structure, the accuracy of the physical model is essential. In this paper, we review the current models of electron-solid interaction and discuss their accuracy. We perform the comparison of the simulated results with our experiments of SEM overlay of under-layer, grain imaging of copper interconnect, and hole bottom visualization by angular selective detectors, and show that our model well reproduces the experimental results. Remaining issues for quantitative simulation are also discussed, including the accuracy of the charge dynamics, treatment of beam skirt, and explosive increase in computing time.

  9. Comparison of the models of financial distress prediction

    Directory of Open Access Journals (Sweden)

    Jiří Omelka

    2013-01-01

    Full Text Available Prediction of the financial distress is generally supposed as approximation if a business entity is closed on bankruptcy or at least on serious financial problems. Financial distress is defined as such a situation when a company is not able to satisfy its liabilities in any forms, or when its liabilities are higher than its assets. Classification of financial situation of business entities represents a multidisciplinary scientific issue that uses not only the economic theoretical bases but interacts to the statistical, respectively to econometric approaches as well.The first models of financial distress prediction have originated in the sixties of the 20th century. One of the most known is the Altman’s model followed by a range of others which are constructed on more or less conformable bases. In many existing models it is possible to find common elements which could be marked as elementary indicators of potential financial distress of a company. The objective of this article is, based on the comparison of existing models of prediction of financial distress, to define the set of basic indicators of company’s financial distress at conjoined identification of their critical aspects. The sample defined this way will be a background for future research focused on determination of one-dimensional model of financial distress prediction which would subsequently become a basis for construction of multi-dimensional prediction model.

  10. Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction

    Directory of Open Access Journals (Sweden)

    Djillali Amar Bouzid

    2018-04-01

    Full Text Available A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines (OWTs chosen from five different offshore wind farms in Europe. The simulation is using this model to accurately estimate the natural frequency of these slender structures, as a function of the interaction of the foundations with the subsoil. After a brief introduction to the wind power energy as a reliable alternative in comparison to fossil fuel, the paper focuses on concept of natural frequency as a primary indicator in designing the foundations of OWTs. Then the range of natural frequencies is provided for a safe design purpose. Next, an analytical expression of an OWT natural frequency is presented as a function of soil-monopile interaction through monopile head springs characterized by lateral stiffness KL, rotational stiffness KR and cross-coupling stiffness KLR, of which the differences are discussed. The nonlinear pseudo three-dimensional finite element vertical slices model has been used to analyze the lateral behaviors of monopiles supporting the OWTs of different wind farm sites considered. Through the monopiles head movements (displacements and rotations, the values of KL, KR and KLR were obtained and substituted in the analytical expression of natural frequency for comparison. The comparison results between computed and measured natural frequencies showed an excellent agreement for most cases. This confirms the convenience of the finite element model used for the accurate estimation of the monopile head stiffness. Keywords: Nonlinear finite element analysis, Vertical slices model, Monopiles under horizontal loading, Natural frequency, Monopile head stiffness, Offshore wind turbines (OWTs

  11. Stochastic hyperfine interactions modeling library

    Science.gov (United States)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When

  12. The ‘hit’ phenomenon: a mathematical model of human dynamics interactions as a stochastic process

    Science.gov (United States)

    Ishii, Akira; Arakaki, Hisashi; Matsuda, Naoya; Umemura, Sanae; Urushidani, Tamiko; Yamagata, Naoya; Yoshida, Narihiko

    2012-06-01

    A mathematical model for the ‘hit’ phenomenon in entertainment within a society is presented as a stochastic process of human dynamics interactions. The model uses only the advertisement budget time distribution as an input, and word-of-mouth (WOM), represented by posts on social network systems, is used as data to make a comparison with the calculated results. The unit of time is days. The WOM distribution in time is found to be very close to the revenue distribution in time. Calculations for the Japanese motion picture market based on the mathematical model agree well with the actual revenue distribution in time.

  13. Comparison of Two Models for Radiative Heat Transfer in High Temperature Thermal Plasmas

    Directory of Open Access Journals (Sweden)

    Matthieu Melot

    2011-01-01

    Full Text Available Numerical simulation of the arc-flow interaction in high-voltage circuit breakers requires a radiation model capable of handling high-temperature participating thermal plasmas. The modeling of the radiative transfer plays a critical role in the overall accuracy of such CFD simulations. As a result of the increase of computational power, CPU intensive methods based on the radiative transfer equation, leading to more accurate results, are now becoming attractive alternatives to current approximate models. In this paper, the predictive capabilities of the finite volume method (RTE-FVM and the P1 model are investigated. A systematic comparison between these two models and analytical solutions are presented for a variety of relevant test cases. Two implementations of each approach are compared, and a critical evaluation is presented.

  14. Drug-model membrane interactions

    International Nuclear Information System (INIS)

    Deniz, Usha K.

    1994-01-01

    In the present day world, drugs play a very important role in medicine and it is necessary to understand their mode of action at the molecular level, in order to optimise their use. Studies of drug-biomembrane interactions are essential for gaining such as understanding. However, it would be prohibitively difficult to carry out such studies, since biomembranes are highly complex systems. Hence, model membranes (made up of these lipids which are important components of biomembranes) of varying degrees of complexity are used to investigate drug-membrane interactions. Bio- as well as model-membranes undergo a chain melting transition when heated, the chains being in a disordered state above the transition point, T CM . This transition is of physiological importance since biomembranes select their components such that T CM is less than the ambient temperature but not very much so, so that membrane flexibility is ensured and porosity, avoided. The influence of drugs on the transition gives valuable clues about various parameters such as the location of the drug in the membrane. Deep insights into drug-membrane interactions are obtained by observing the effect of drugs on membrane structure and the mobilities of the various groups in lipids, near T CM . Investigation of such changes have been carried out with several drugs, using techniques such as DSC, XRD and NMR. The results indicate that the drug-membrane interaction not only depends on the nature of drug and lipids but also on the form of the model membrane - stacked bilayer or vesicles. The light that these results shed on the nature of drug-membrane interactions is discussed. (author). 13 refs., 13 figs., 1 tab

  15. Short-Term Bus Passenger Demand Prediction Based on Time Series Model and Interactive Multiple Model Approach

    Directory of Open Access Journals (Sweden)

    Rui Xue

    2015-01-01

    Full Text Available Although bus passenger demand prediction has attracted increased attention during recent years, limited research has been conducted in the context of short-term passenger demand forecasting. This paper proposes an interactive multiple model (IMM filter algorithm-based model to predict short-term passenger demand. After aggregated in 15 min interval, passenger demand data collected from a busy bus route over four months were used to generate time series. Considering that passenger demand exhibits various characteristics in different time scales, three time series were developed, named weekly, daily, and 15 min time series. After the correlation, periodicity, and stationarity analyses, time series models were constructed. Particularly, the heteroscedasticity of time series was explored to achieve better prediction performance. Finally, IMM filter algorithm was applied to combine individual forecasting models with dynamically predicted passenger demand for next interval. Different error indices were adopted for the analyses of individual and hybrid models. The performance comparison indicates that hybrid model forecasts are superior to individual ones in accuracy. Findings of this study are of theoretical and practical significance in bus scheduling.

  16. Verification of an interaction model of an ultrasonic oscillatory system with periodontal tissues

    Directory of Open Access Journals (Sweden)

    V. A. Karpuhin

    2014-01-01

    Full Text Available Verification of an interaction model of an ultrasonic oscillatory system with biological tissues which was developed in COMSOL Multiphysics was carried out. It was shown that calculation results in COMSOL Multiphysics obtained using the “Finer” grid (the ratio of the grid step to a minimum transversal section area of the model ≤ 0.3 mm-1 best of all qualitatively and quantitatively corresponded to practical results. The average relative error of the obtained results in comparison with the experimental ones did not exceed 4.0%. Influence of geometrical parameters (thickness of load on electrical admittance of the ultrasonic oscillatory system interacting with biological tissues was investigated. It was shown that increase in thickness of load within the range from 0 to 95 mm led to decrease in calculated values of natural resonance frequency of longitudinal fluctuations and electrical admittance from 26,58 to 26,35 kHz and from 0,86 to 0,44 mS.

  17. Study of horizontal-vertical interactive Sway Rocking (SR) model for basemat uplift. Part 2: non-linear response analysis and validation

    International Nuclear Information System (INIS)

    Momma, T.; Shirahama, K.; Suzuki, K.; Ogihara, M.

    1995-01-01

    Non-linear earthquake response analyses of a BWR MARK-II type nuclear reactor building are conducted by using a Sway Rocking model (SR model) proposed in Part 1 considering the interaction between horizontal and vertical motion. The results are compared with those of accurate mathematical model using the Green Function method. Horizontal response of the SR model agrees very well with that of the Green Function model. The floor response spectra of induced vertical motions by both methods are also corresponding well in periodic characteristics as well as peak-levels. From these results, it is confirmed that the horizontal-vertical interactive SR model is applicable to non-linear response analyses considering basemat uplift. Based on the comparison of the induced vertical motions due to basemat uplift by both methods, an application limit of the horizontal-vertical interactive SR model is set up at the ground contact ratio of about 50%. (author). 4 refs., 8 figs., 1 tab

  18. One-dimensional model of interacting-step fluctuations on vicinal surfaces: Analytical formulas and kinetic Monte-Carlo simulations

    Science.gov (United States)

    Patrone, Paul; Einstein, T. L.; Margetis, Dionisios

    2011-03-01

    We study a 1+1D, stochastic, Burton-Cabrera-Frank (BCF) model of interacting steps fluctuating on a vicinal crystal. The step energy accounts for entropic and nearest-neighbor elastic-dipole interactions. Our goal is to formulate and validate a self-consistent mean-field (MF) formalism to approximately solve the system of coupled, nonlinear stochastic differential equations (SDEs) governing fluctuations in surface motion. We derive formulas for the time-dependent terrace width distribution (TWD) and its steady-state limit. By comparison with kinetic Monte-Carlo simulations, we show that our MF formalism improves upon models in which step interactions are linearized. We also indicate how fitting parameters of our steady state MF TWD may be used to determine the mass transport regime and step interaction energy of certain experimental systems. PP and TLE supported by NSF MRSEC under Grant DMR 05-20471 at U. of Maryland; DM supported by NSF under Grant DMS 08-47587.

  19. Comparison of two uranium-market forecasting models

    International Nuclear Information System (INIS)

    Bleistein, S.; Recek, J.

    1983-01-01

    The techniques and methodologies, similarities and differences, and the results of two uranium market computer models - the Uranium Supply Analysis System and the EUREKA model - are surveyed. These models can be of use to electric utilities in developing procurement strategies or planning new reactor requirements. The models are designed to simulate actual market performance of the domestic uranium industry under varying user-specified assumptions. These models provide output in the form of projections of variables of interest, such as investment in exploration and new production capacity, additions to reserves and resources, and adjustments in inventories. Comparison between the models is demonstrative of how output can vary even with use of the same input data. Utilities may profit by the comparison with respect to the task of selecting models on the basis of obtaining the most-useful solution for a given problem. 18 figures

  20. The modeling of predator-prey interactions

    OpenAIRE

    Muhammad Shakil; H. A. Wahab; Muhammad Naeem, et al.

    2015-01-01

    In this paper, we aim to study the interactions between the territorial animals like foxes and the rabbits. The territories for the foxes are considered to be the simple cells. The interactions between predator and its prey are represented by the chemical reactions which obey the mass action law. In this sense, we apply the mass action law for predator prey models and the quasi chemical approach is applied for the interactions between the predator and its prey to develop the modeled equations...

  1. Marginal and Interaction Effects in Ordered Response Models

    OpenAIRE

    Debdulal Mallick

    2009-01-01

    In discrete choice models the marginal effect of a variable of interest that is interacted with another variable differs from the marginal effect of a variable that is not interacted with any variable. The magnitude of the interaction effect is also not equal to the marginal effect of the interaction term. I present consistent estimators of both marginal and interaction effects in ordered response models. This procedure is general and can easily be extended to other discrete choice models. I ...

  2. Comparison of the surface friction model with the time-dependent Hartree-Fock method

    International Nuclear Information System (INIS)

    Froebrich, P.

    1984-01-01

    A comparison is made between the classical phenomenological surface friction model and a time-dependent Hartree-Fock study by Dhar for the system 208 Pb+ 74 Ge at E/sub lab/(Pb) = 1600 MeV. The general trends for energy loss, mean values for charge and mass, interaction times and energy-angle correlations turn out to be fairly similar in both methods. However, contrary to Dhar, the events close to capture are interpreted as normal deep-inelastic, i.e., not as fast fission processes

  3. Deep Predictive Models in Interactive Music

    OpenAIRE

    Martin, Charles P.; Ellefsen, Kai Olav; Torresen, Jim

    2018-01-01

    Automatic music generation is a compelling task where much recent progress has been made with deep learning models. In this paper, we ask how these models can be integrated into interactive music systems; how can they encourage or enhance the music making of human users? Musical performance requires prediction to operate instruments, and perform in groups. We argue that predictive models could help interactive systems to understand their temporal context, and ensemble behaviour. Deep learning...

  4. Comparison of Critical Flow Models' Evaluations for SBLOCA Tests

    International Nuclear Information System (INIS)

    Kim, Yeon Sik; Park, Hyun Sik; Cho, Seok

    2016-01-01

    A comparison of critical flow models between the Trapp-Ransom and Henry-Fauske models for all SBLOCA (small break loss of coolant accident) scenarios of the ATLAS (Advanced thermal-hydraulic test loop for accident simulation) facility was performed using the MARS-KS code. For the comparison of the two critical models, the accumulated break mass was selected as the main parameter for the comparison between the analyses and tests. Four cases showed the same respective discharge coefficients between the two critical models, e.g., 6' CL (cold leg) break and 25%, 50%, and 100% DVI (direct vessel injection) breaks. In the case of the 4' CL break, no reasonable results were obtained with any possible Cd values. In addition, typical system behaviors, e.g., PZR (pressurizer) pressure and collapsed core water level, were also compared between the two critical models. Four cases showed the same respective discharge coefficients between the two critical models, e.g., 6' CL break and 25%, 50%, and 100% DVI breaks. In the case of the 4' CL break, no reasonable results were obtained with any possible Cd values. In addition, typical system behaviors, e.g., PZR pressure and collapsed core water level, were also compared between the two critical models. From the comparison between the two critical models for the CL breaks, the Trapp-Ransom model predicted quite well with respect to the other model for the smallest and larger breaks, e.g., 2', 6', and 8.5' CL breaks. In addition, from the comparison between the two critical models for the DVI breaks, the Trapp-Ransom model predicted quite well with respect to the other model for the smallest and larger breaks, e.g., 5%, 50%, and 100% DVI breaks. In the case of the 50% and 100% breaks, the two critical models predicted the test data quite well.

  5. The Monash University Interactive Simple Climate Model

    Science.gov (United States)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  6. Relativistic direct interaction and hadron models

    International Nuclear Information System (INIS)

    Biswas, T.

    1984-01-01

    Direct interaction theories at a nonrelativistic level have been used successfully in several areas earlier (e.g. nuclear physics). But for hadron spectroscopy relativistic effects are important and hence the need for a relativistic direct interaction theory arises. It is the goal of this thesis to suggest such a theory which has the simplicity and the flexibility required for phenomenological model building. In general the introduction of relativity in a direct interaction theory is shown to be non-trivial. A first attempt leads to only an approximate form for allowed interactions. Even this is far too complex for phenomenological applicability. To simplify the model an extra spacelike particle called the vertex is introduced in any set of physical (timelike) particles. The vertex model is successfully used to fit and to predict experimental data on hadron spectra, γ and psi states fit very well with an interaction function inspired by QCD. Light mesons also fit reasonably well. Better forms of hyperfine interaction functions would be needed to improve the fitting of light mesons. The unexpectedly low pi meson mass is partially explained. Baryon ground states are fitted with unprecedented accuracy with very few adjustable parameters. For baryon excited states it is shown that better QCD motivated interaction functions are needed for a fit. Predictions for bb states in e + e - experiments are made to assist current experiments

  7. M-GCAT: interactively and efficiently constructing large-scale multiple genome comparison frameworks in closely related species

    Directory of Open Access Journals (Sweden)

    Messeguer Xavier

    2006-10-01

    Full Text Available Abstract Background Due to recent advances in whole genome shotgun sequencing and assembly technologies, the financial cost of decoding an organism's DNA has been drastically reduced, resulting in a recent explosion of genomic sequencing projects. This increase in related genomic data will allow for in depth studies of evolution in closely related species through multiple whole genome comparisons. Results To facilitate such comparisons, we present an interactive multiple genome comparison and alignment tool, M-GCAT, that can efficiently construct multiple genome comparison frameworks in closely related species. M-GCAT is able to compare and identify highly conserved regions in up to 20 closely related bacterial species in minutes on a standard computer, and as many as 90 (containing 75 cloned genomes from a set of 15 published enterobacterial genomes in an hour. M-GCAT also incorporates a novel comparative genomics data visualization interface allowing the user to globally and locally examine and inspect the conserved regions and gene annotations. Conclusion M-GCAT is an interactive comparative genomics tool well suited for quickly generating multiple genome comparisons frameworks and alignments among closely related species. M-GCAT is freely available for download for academic and non-commercial use at: http://alggen.lsi.upc.es/recerca/align/mgcat/intro-mgcat.html.

  8. Model Checking Feature Interactions

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Olsen, Petur; Pedersen, Thomas

    2015-01-01

    This paper presents an offline approach to analyzing feature interactions in embedded systems. The approach consists of a systematic process to gather the necessary information about system components and their models. The model is first specified in terms of predicates, before being refined to t...... to timed automata. The consistency of the model is verified at different development stages, and the correct linkage between the predicates and their semantic model is checked. The approach is illustrated on a use case from home automation....

  9. Validation and comparison of dispersion models of RTARC DSS

    International Nuclear Information System (INIS)

    Duran, J.; Pospisil, M.

    2004-01-01

    RTARC DSS (Real Time Accident Release Consequences - Decision Support System) is a computer code developed at the VUJE Trnava, Inc. (Stubna, M. et al, 1993). The code calculations include atmospheric transport and diffusion, dose assessment, evaluation and displaying of the affected zones, evaluation of the early health effects, concentration and dose rate time dependence in the selected sites etc. The simulation of the protective measures (sheltering, iodine administration) is involved. The aim of this paper is to present the process of validation of the RTARC dispersion models. RTARC includes models for calculations of release for very short (Method Monte Carlo - MEMOC), short (Gaussian Straight-Line Model) and long distances (Puff Trajectory Model - PTM). Validation of the code RTARC was performed using the results of comparisons and experiments summarized in the Table 1.: 1. Experiments and comparisons in the process of validation of the system RTARC - experiments or comparison - distance - model. Wind tunnel experiments (Universitaet der Bundeswehr, Muenchen) - Area of NPP - Method Monte Carlo. INEL (Idaho National Engineering Laboratory) - short/medium - Gaussian model and multi tracer atmospheric experiment - distances - PTM. Model Validation Kit - short distances - Gaussian model. STEP II.b 'Realistic Case Studies' - long distances - PTM. ENSEMBLE comparison - long distances - PTM (orig.)

  10. Ex-Vessel Core Melt Modeling Comparison between MELTSPREAD-CORQUENCH and MELCOR 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Farmer, Mitchell [Argonne National Lab. (ANL), Argonne, IL (United States); Francis, Matthew W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    System-level code analyses by both United States and international researchers predict major core melting, bottom head failure, and corium-concrete interaction for Fukushima Daiichi Unit 1 (1F1). Although system codes such as MELCOR and MAAP are capable of capturing a wide range of accident phenomena, they currently do not contain detailed models for evaluating some ex-vessel core melt behavior. However, specialized codes containing more detailed modeling are available for melt spreading such as MELTSPREAD as well as long-term molten corium-concrete interaction (MCCI) and debris coolability such as CORQUENCH. In a preceding study, Enhanced Ex-Vessel Analysis for Fukushima Daiichi Unit 1: Melt Spreading and Core-Concrete Interaction Analyses with MELTSPREAD and CORQUENCH, the MELTSPREAD-CORQUENCH codes predicted the 1F1 core melt readily cooled in contrast to predictions by MELCOR. The user community has taken notice and is in the process of updating their systems codes; specifically MAAP and MELCOR, to improve and reduce conservatism in their ex-vessel core melt models. This report investigates why the MELCOR v2.1 code, compared to the MELTSPREAD and CORQUENCH 3.03 codes, yield differing predictions of ex-vessel melt progression. To accomplish this, the differences in the treatment of the ex-vessel melt with respect to melt spreading and long-term coolability are examined. The differences in modeling approaches are summarized, and a comparison of example code predictions is provided.

  11. A Method for Model Checking Feature Interactions

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Le Guilly, Thibaut; Ravn, Anders Peter

    2015-01-01

    This paper presents a method to check for feature interactions in a system assembled from independently developed concurrent processes as found in many reactive systems. The method combines and refines existing definitions and adds a set of activities. The activities describe how to populate the ...... the definitions with models to ensure that all interactions are captured. The method is illustrated on a home automation example with model checking as analysis tool. In particular, the modelling formalism is timed automata and the analysis uses UPPAAL to find interactions....

  12. Study on competitive interaction models in Cayley tree

    International Nuclear Information System (INIS)

    Moreira, J.G.M.A.

    1987-12-01

    We propose two kinds of models in the Cayley tree to simulate Ising models with axial anisotropy in the cubic lattice. The interaction in the direction of the anisotropy is simulated by the interaction along the branches of the tree. The interaction in the planes perpendicular to the anisotropy direction, in the first model, is simulated by interactions between spins in neighbour branches of the same generation arising from same site of the previous generation. In the second model, the simulation of the interaction in the planes are produced by mean field interactions among all spins in sites of the same generation arising from the same site of the previous generations. We study these models in the limit of infinite coordination number. First, we analyse a situation with antiferromagnetic interactions along the branches between first neighbours only, and we find the analogous of a metamagnetic Ising model. In the following, we introduce competitive interactions between first and second neighbours along the branches, to simulate the ANNNI model. We obtain one equation of differences which relates the magnetization of one generation with the magnetization of the two previous generations, to permit a detailed study of the modulated phase region. We note that the wave number of the modulation, for one fixed temperature, changes with the competition parameter to form a devil's staircase with a fractal dimension which increases with the temperature. We discuss the existence of strange atractors, related to a possible caothic phase. Finally, we show the obtained results when we consider interactions along the branches with three neighbours. (author)

  13. Comparative analysis of methods for detecting interacting loci.

    Science.gov (United States)

    Chen, Li; Yu, Guoqiang; Langefeld, Carl D; Miller, David J; Guy, Richard T; Raghuram, Jayaram; Yuan, Xiguo; Herrington, David M; Wang, Yue

    2011-07-05

    Interactions among genetic loci are believed to play an important role in disease risk. While many methods have been proposed for detecting such interactions, their relative performance remains largely unclear, mainly because different data sources, detection performance criteria, and experimental protocols were used in the papers introducing these methods and in subsequent studies. Moreover, there have been very few studies strictly focused on comparison of existing methods. Given the importance of detecting gene-gene and gene-environment interactions, a rigorous, comprehensive comparison of performance and limitations of available interaction detection methods is warranted. We report a comparison of eight representative methods, of which seven were specifically designed to detect interactions among single nucleotide polymorphisms (SNPs), with the last a popular main-effect testing method used as a baseline for performance evaluation. The selected methods, multifactor dimensionality reduction (MDR), full interaction model (FIM), information gain (IG), Bayesian epistasis association mapping (BEAM), SNP harvester (SH), maximum entropy conditional probability modeling (MECPM), logistic regression with an interaction term (LRIT), and logistic regression (LR) were compared on a large number of simulated data sets, each, consistent with complex disease models, embedding multiple sets of interacting SNPs, under different interaction models. The assessment criteria included several relevant detection power measures, family-wise type I error rate, and computational complexity. There are several important results from this study. First, while some SNPs in interactions with strong effects are successfully detected, most of the methods miss many interacting SNPs at an acceptable rate of false positives. In this study, the best-performing method was MECPM. Second, the statistical significance assessment criteria, used by some of the methods to control the type I error rate

  14. Comparative analysis of methods for detecting interacting loci

    Directory of Open Access Journals (Sweden)

    Yuan Xiguo

    2011-07-01

    Full Text Available Abstract Background Interactions among genetic loci are believed to play an important role in disease risk. While many methods have been proposed for detecting such interactions, their relative performance remains largely unclear, mainly because different data sources, detection performance criteria, and experimental protocols were used in the papers introducing these methods and in subsequent studies. Moreover, there have been very few studies strictly focused on comparison of existing methods. Given the importance of detecting gene-gene and gene-environment interactions, a rigorous, comprehensive comparison of performance and limitations of available interaction detection methods is warranted. Results We report a comparison of eight representative methods, of which seven were specifically designed to detect interactions among single nucleotide polymorphisms (SNPs, with the last a popular main-effect testing method used as a baseline for performance evaluation. The selected methods, multifactor dimensionality reduction (MDR, full interaction model (FIM, information gain (IG, Bayesian epistasis association mapping (BEAM, SNP harvester (SH, maximum entropy conditional probability modeling (MECPM, logistic regression with an interaction term (LRIT, and logistic regression (LR were compared on a large number of simulated data sets, each, consistent with complex disease models, embedding multiple sets of interacting SNPs, under different interaction models. The assessment criteria included several relevant detection power measures, family-wise type I error rate, and computational complexity. There are several important results from this study. First, while some SNPs in interactions with strong effects are successfully detected, most of the methods miss many interacting SNPs at an acceptable rate of false positives. In this study, the best-performing method was MECPM. Second, the statistical significance assessment criteria, used by some of the

  15. Comparison of NGA-West2 directivity models

    Science.gov (United States)

    Spudich, Paul A.; Rowshandel, Badie; Shahi, Shrey; Baker, Jack W.; Chiou, Brian S-J

    2014-01-01

    Five directivity models have been developed based on data from the NGA-West2 database and based on numerical simulations of large strike-slip and reverse-slip earthquakes. All models avoid the use of normalized rupture dimension, enabling them to scale up to the largest earthquakes in a physically reasonable way. Four of the five models are explicitly “narrow-band” (in which the effect of directivity is maximum at a specific period that is a function of earthquake magnitude). Several strategies for determining the zero-level for directivity have been developed. We show comparisons of maps of the directivity amplification. This comparison suggests that the predicted geographic distributions of directivity amplification are dominated by effects of the models' assumptions, and more than one model should be used for ruptures dipping less than about 65 degrees.

  16. Comparison between the Lactation Model and the Test-Day Model ...

    African Journals Online (AJOL)

    ARC-IRENE

    National Genetic Evaluation, using a Fixed Regression Test-day Model (TDM). This comparison is made for. Ayrshire, Guernsey, Holstein and Jersey cows participating in the South African Dairy Animal Improvement. Scheme. Specific differences between the two models were documented, with differences in statistical.

  17. Comparison of dogs and humans in visual scanning of social interaction.

    Science.gov (United States)

    Törnqvist, Heini; Somppi, Sanni; Koskela, Aija; Krause, Christina M; Vainio, Outi; Kujala, Miiamaaria V

    2015-09-01

    Previous studies have demonstrated similarities in gazing behaviour of dogs and humans, but comparisons under similar conditions are rare, and little is known about dogs' visual attention to social scenes. Here, we recorded the eye gaze of dogs while they viewed images containing two humans or dogs either interacting socially or facing away: the results were compared with equivalent data measured from humans. Furthermore, we compared the gazing behaviour of two dog and two human populations with different social experiences: family and kennel dogs; dog experts and non-experts. Dogs' gazing behaviour was similar to humans: both species gazed longer at the actors in social interaction than in non-social images. However, humans gazed longer at the actors in dog than human social interaction images, whereas dogs gazed longer at the actors in human than dog social interaction images. Both species also made more saccades between actors in images representing non-conspecifics, which could indicate that processing social interaction of non-conspecifics may be more demanding. Dog experts and non-experts viewed the images very similarly. Kennel dogs viewed images less than family dogs, but otherwise their gazing behaviour did not differ, indicating that the basic processing of social stimuli remains similar regardless of social experiences.

  18. Two-channel interaction models in cavity QED

    International Nuclear Information System (INIS)

    Wang, L.

    1993-01-01

    The authors introduce four fully quantized models of light-matter interactions in optical or microwave cavities. These are the first exactly soluble models in cavity quantum electrodynamics (cavity QED) that provide two transition channels for the flipping of atomic states. In these models a loss-free cavity is assumed to support three or four quantized field modes, which are coupled to a single atom. The atom exchanges photons with the cavity, in either the Raman configuration including both Stokes and anti-Stokes modes, or through two-photon cascade processes. The authors obtain the effective Hamiltonians for these models by adiabatically eliminating an off-resonant intermediate atomic level, and discuss their novel properties in comparison to the existing one-channel Jaynes-Cummings models. They give a detailed description of a method to find exact analytic solutions for the eigenfunctions and eigenvalues for the Hamiltonians of four models. These are also valid when the AC Stark shifts are included. It is shown that the eigenvalues can be expressed in very simple terms, and formulas for normalized eigenvectors are also given, as well as discussions of some of their simple properties. Heisenberg picture equations of motions are derived for several operators with solutions provided in a couple of cases. The dynamics of the systems with both Fock state and coherent state fields are demonstrated and discussed using the model's two key variables, the atomic inversion and the expectation value of photon number. Clear evidences of high efficiency mode-mixing are seen in both the Raman and cascade configurations, and different kinds of collapses and revivals are encountered in the atomic inversions. Effects of several factors like the AC Stark shift and variations in the complex coupling constants are also illustrated

  19. Mathematical models for plant-herbivore interactions

    Science.gov (United States)

    Feng, Zhilan; DeAngelis, Donald L.

    2017-01-01

    Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.

  20. Visualizing the Impact of Art: An Update and Comparison of Current Psychological Models of Art Experience.

    Science.gov (United States)

    Pelowski, Matthew; Markey, Patrick S; Lauring, Jon O; Leder, Helmut

    2016-01-01

    The last decade has witnessed a renaissance of empirical and psychological approaches to art study, especially regarding cognitive models of art processing experience. This new emphasis on modeling has often become the basis for our theoretical understanding of human interaction with art. Models also often define areas of focus and hypotheses for new empirical research, and are increasingly important for connecting psychological theory to discussions of the brain. However, models are often made by different researchers, with quite different emphases or visual styles. Inputs and psychological outcomes may be differently considered, or can be under-reported with regards to key functional components. Thus, we may lose the major theoretical improvements and ability for comparison that can be had with models. To begin addressing this, this paper presents a theoretical assessment, comparison, and new articulation of a selection of key contemporary cognitive or information-processing-based approaches detailing the mechanisms underlying the viewing of art. We review six major models in contemporary psychological aesthetics. We in turn present redesigns of these models using a unified visual form, in some cases making additions or creating new models where none had previously existed. We also frame these approaches in respect to their targeted outputs (e.g., emotion, appraisal, physiological reaction) and their strengths within a more general framework of early, intermediate, and later processing stages. This is used as a basis for general comparison and discussion of implications and future directions for modeling, and for theoretically understanding our engagement with visual art.

  1. Visualizing the Impact of Art: An Update and Comparison of Current Psychological Models of Art Experience

    Science.gov (United States)

    Pelowski, Matthew; Markey, Patrick S.; Lauring, Jon O.; Leder, Helmut

    2016-01-01

    The last decade has witnessed a renaissance of empirical and psychological approaches to art study, especially regarding cognitive models of art processing experience. This new emphasis on modeling has often become the basis for our theoretical understanding of human interaction with art. Models also often define areas of focus and hypotheses for new empirical research, and are increasingly important for connecting psychological theory to discussions of the brain. However, models are often made by different researchers, with quite different emphases or visual styles. Inputs and psychological outcomes may be differently considered, or can be under-reported with regards to key functional components. Thus, we may lose the major theoretical improvements and ability for comparison that can be had with models. To begin addressing this, this paper presents a theoretical assessment, comparison, and new articulation of a selection of key contemporary cognitive or information-processing-based approaches detailing the mechanisms underlying the viewing of art. We review six major models in contemporary psychological aesthetics. We in turn present redesigns of these models using a unified visual form, in some cases making additions or creating new models where none had previously existed. We also frame these approaches in respect to their targeted outputs (e.g., emotion, appraisal, physiological reaction) and their strengths within a more general framework of early, intermediate, and later processing stages. This is used as a basis for general comparison and discussion of implications and future directions for modeling, and for theoretically understanding our engagement with visual art. PMID:27199697

  2. A meson-theoretical model for the πρinteraction and the πNN form factor

    International Nuclear Information System (INIS)

    Janssen, G.

    1993-02-01

    Based on the successful description of ππ interaction within the meson exchange framework we extend our model to a further meson-meson process, the πρ interaction. In comparison with ππ interaction several new aspects appear in the πρ system. Besides other points the main new aspect is due to the instability of the ρ-meson, which induces a transition of the πρ system into a 3π system. A realistic model for the πρ interaction should take into account coupling to this three-particle channel and thus requires application of the complicated three-body formalism. Having obtained the πρ T-matrix we first investigate the L JT = S 11 partial wave, i.e. the A 1 -channel. Here, ρ-exchange provides the dominant exchange contribution; however, it is definitely necessary to include the genuine A 1 -pole term. The detailed investigation of the structure of the resulting T-matrix provides an explanation for discrepancies existing in the interpretation of different experimental data sets. As a first application of our πρ interaction model we investigate the πNN vertex. We consider the meson cloud part of the vertex extension by calculating loop corrections to the pointlike vertex. It turns out that the formfactor is rather soft in our calculation (Λ πNN ≅ 1.0GeV; monopole parametrization). For this result the inclusion of the πρ interaction is quite important, because it leads to a remarkable shift in the formfactor towards lower cut-off masses. (orig.) [de

  3. The interacting boson model

    International Nuclear Information System (INIS)

    Iachello, F.; Arima, A.

    1987-01-01

    The book gives an account of some of the properties of the interacting boson model. The model was introduced in 1974 to describe in a unified way the collective properties of nuclei. The book presents the mathematical techniques used to analyse the structure of the model. The mathematical framework of the model is discussed in detail. The book also contains all the formulae that have been developed throughout the years to account for collective properties of nuclei. These formulae can be used by experimentalists to compare their data with the predictions of the model. (U.K.)

  4. Functional Modeling of Neural-Glia Interaction

    DEFF Research Database (Denmark)

    Postnov, D.E.; Brazhe, N.A.; Sosnovtseva, Olga

    2012-01-01

    Functional modeling is an approach that focuses on the representation of the qualitative dynamics of the individual components (e.g. cells) of a system and on the structure of the interaction network.......Functional modeling is an approach that focuses on the representation of the qualitative dynamics of the individual components (e.g. cells) of a system and on the structure of the interaction network....

  5. Interacting holographic dark energy models: a general approach

    Science.gov (United States)

    Som, S.; Sil, A.

    2014-08-01

    Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ -1/2. It is concluded that among the popular choices an interaction of the form Q∝ Hρ m suits the best in avoiding the coincidence problem in this model.

  6. Comparison of dogs and humans in visual scanning of social interaction

    OpenAIRE

    Törnqvist, Heini; Somppi, Sanni; Koskela, Aija; Krause, Christina M.; Vainio, Outi; Kujala, Miiamaaria V.

    2015-01-01

    Previous studies have demonstrated similarities in gazing behaviour of dogs and humans, but comparisons under similar conditions are rare, and little is known about dogs' visual attention to social scenes. Here, we recorded the eye gaze of dogs while they viewed images containing two humans or dogs either interacting socially or facing away: the results were compared with equivalent data measured from humans. Furthermore, we compared the gazing behaviour of two dog and two human populations w...

  7. Model expressions for the spin-orbit interaction and phonon-mediated spin dynamics in quantum dots

    Science.gov (United States)

    Vaughan, M. P.; Rorison, J. M.

    2018-01-01

    Model expressions for the spin-orbit interaction in a quantum dot are obtained. The resulting form does not neglect cubic terms and allows for a generalized structural inversion asymmetry. We also obtain analytical expressions for the coupling between states for the electron-phonon interaction and use these to derive spin-relaxation rates, which are found to be qualitatively similar to those derived elsewhere in the literature. We find that, due to the inclusion of cubic terms, the Dresselhaus contribution to the ground state spin relaxation disappears for spherical dots. A comparison with previous theory and existing experimental results shows good agreement thereby presenting a clear analytical formalism for future developments. Comparative calculations for potential materials are presented.

  8. Contemporary Ecological Interactions Improve Models of Past Trait Evolution.

    Science.gov (United States)

    Hutchinson, Matthew C; Gaiarsa, Marília P; Stouffer, Daniel B

    2018-02-20

    Despite the fact that natural selection underlies both traits and interactions, evolutionary models often neglect that ecological interactions may, and in many cases do, influence the evolution of traits. Here, we explore the interdependence of ecological interactions and functional traits in the pollination associations of hawkmoths and flowering plants. Specifically, we develop an adaptation of the Ornstein-Uhlenbeck model of trait evolution that allows us to study the influence of plant corolla depth and observed hawkmoth-plant interactions on the evolution of hawkmoth proboscis length. Across diverse modelling scenarios, we find that the inclusion of contemporary interactions can provide a better description of trait evolution than the null expectation. Moreover, we show that the pollination interactions provide more-likely models of hawkmoth trait evolution when interactions are considered at increasingly finescale groups of hawkmoths. Finally, we demonstrate how the results of best-fit modelling approaches can implicitly support the association between interactions and trait evolution that our method explicitly examines. In showing that contemporary interactions can provide insight into the historical evolution of hawkmoth proboscis length, we demonstrate the clear utility of incorporating additional ecological information to models designed to study past trait evolution.

  9. Multisite Interactions in Lattice-Gas Models

    Science.gov (United States)

    Einstein, T. L.; Sathiyanarayanan, R.

    For detailed applications of lattice-gas models to surface systems, multisite interactions often play at least as significant a role as interactions between pairs of adatoms that are separated by a few lattice spacings. We recall that trio (3-adatom, non-pairwise) interactions do not inevitably create phase boundary asymmetries about half coverage. We discuss a sophisticated application to an experimental system and describe refinements in extracting lattice-gas energies from calculations of total energies of several different ordered overlayers. We describe how lateral relaxations complicate matters when there is direct interaction between the adatoms, an issue that is important when examining the angular dependence of step line tensions. We discuss the connector model as an alternative viewpoint and close with a brief account of recent work on organic molecule overlayers.

  10. Optical model potential analysis of n ¯A and n A interactions

    Science.gov (United States)

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2018-05-01

    We use a momentum-dependent optical model potential to analyze the annihilation cross sections of the antineutron n ¯ on C, Al, Fe, Cu, Ag, Sn, and Pb nuclei for projectile momenta plab ≲500 MeV /c . We obtain a good description of annihilation cross section data of Barbina et al. [Nucl. Phys. A 612, 346 (1997), 10.1016/S0375-9474(96)00331-4] and of Astrua et al. [Nucl. Phys. A 697, 209 (2002), 10.1016/S0375-9474(01)01252-0] which exhibit an interesting dependence of the cross sections on plab as well as on the target mass number A . We also obtain the neutron (n ) nonelastic reaction cross sections for the same targets. Comparing the n A reaction cross sections σrecn A to the n ¯A annihilation cross sections σannn ¯A, we find that σannn ¯A is significantly larger than σrecn A, that is, the σannn ¯A/σrecn A cross section ratio lies between the values of about 1.5 to 4.0 in the momentum region where comparison is possible. The dependence of the n ¯ annihilation cross section on the projectile charge is also examined in comparison with the antiproton p ¯. Here we predict the p ¯A annihilation cross section on the simplest assumption that both p ¯A and n ¯A interactions have the same nuclear part of the optical potential but differ only in the electrostatic Coulomb interaction. Deviation from a such simple model extrapolation in measurements will provide new information on the difference between n ¯A and p ¯A potentials.

  11. Data for Room Fire Model Comparisons.

    Science.gov (United States)

    Peacock, Richard D; Davis, Sanford; Babrauskas, Vytenis

    1991-01-01

    With the development of models to predict fire growth and spread in buildings, there has been a concomitant evolution in the measurement and analysis of experimental data in real-scale fires. This report presents the types of analyses that can be used to examine large-scale room fire test data to prepare the data for comparison with zone-based fire models. Five sets of experimental data which can be used to test the limits of a typical two-zone fire model are detailed. A standard set of nomenclature describing the geometry of the building and the quantities measured in each experiment is presented. Availability of ancillary data (such as smaller-scale test results) is included. These descriptions, along with the data (available in computer-readable form) should allow comparisons between the experiment and model predictions. The base of experimental data ranges in complexity from one room tests with individual furniture items to a series of tests conducted in a multiple story hotel equipped with a zoned smoke control system.

  12. Data for Room Fire Model Comparisons

    Science.gov (United States)

    Peacock, Richard D.; Davis, Sanford; Babrauskas, Vytenis

    1991-01-01

    With the development of models to predict fire growth and spread in buildings, there has been a concomitant evolution in the measurement and analysis of experimental data in real-scale fires. This report presents the types of analyses that can be used to examine large-scale room fire test data to prepare the data for comparison with zone-based fire models. Five sets of experimental data which can be used to test the limits of a typical two-zone fire model are detailed. A standard set of nomenclature describing the geometry of the building and the quantities measured in each experiment is presented. Availability of ancillary data (such as smaller-scale test results) is included. These descriptions, along with the data (available in computer-readable form) should allow comparisons between the experiment and model predictions. The base of experimental data ranges in complexity from one room tests with individual furniture items to a series of tests conducted in a multiple story hotel equipped with a zoned smoke control system. PMID:28184121

  13. Models test on dynamic structure-structure interaction of nuclear power plant buildings

    International Nuclear Information System (INIS)

    Kitada, Y.; Hirotani, T.

    1999-01-01

    A reactor building of an NPP (nuclear power plant) is generally constructed closely adjacent to a turbine building and other buildings such as the auxiliary building, and in increasing numbers of NPPs, multiple plants are being planned and constructed closely on a single site. In these situations, adjacent buildings are considered to influence each other through the soil during earthquakes and to exhibit dynamic behaviour different from that of separate buildings, because those buildings in NPP are generally heavy and massive. The dynamic interaction between buildings during earthquake through the soil is termed here as 'dynamic cross interaction (DCI)'. In order to comprehend DCI appropriately, forced vibration tests and earthquake observation are needed using closely constructed building models. Standing on this background, Nuclear Power Engineering Corporation (NUPEC) had planned the project to investigate the DCI effect in 1993 after the preceding SSI (soil-structure interaction) investigation project, 'model tests on embedment effect of reactor building'. The project consists of field and laboratory tests. The field test is being carried out using three different building construction conditions, e.g. a single reactor building to be used for the comparison purposes as for a reference, two same reactor buildings used to evaluate pure DCI effects, and two different buildings, reactor and turbine building models to evaluate DCI effects under the actual plant conditions. Forced vibration tests and earthquake observations are planned in the field test. The laboratory test is planned to evaluate basic characteristics of the DCI effects using simple soil model made of silicon rubber and structure models made of aluminum. In this test, forced vibration tests and shaking table tests are planned. The project was started in April 1994 and will be completed in March 2002. This paper describes an outline and the summary of the current status of this project. (orig.)

  14. Should students design or interact with models? Using the Bifocal Modelling Framework to investigate model construction in high school science

    Science.gov (United States)

    Fuhrmann, Tamar; Schneider, Bertrand; Blikstein, Paulo

    2018-05-01

    The Bifocal Modelling Framework (BMF) is an approach for science learning which links students' physical experimentation with computer modelling in real time, focusing on the comparison of the two media. In this paper, we explore how a Bifocal Modelling implementation supported learning outcomes related to both content and metamodeling knowledge, focusing on the role of designing models. Our study consisted of three conditions implemented with a total of 69 9th grade high-school students. The first and second classes were assigned two implementation modes of BMF: with and without a model design module. The third condition, employed as a control, consisted of a class that received instruction in the school's traditional approach. Our results indicate that students participating in both BMF implementations demonstrated improved content knowledge and a better understanding of metamodeling. However, only the 'BMF-with-design' group improved significantly in both content and metamodeling knowledge. Our qualitative analyses indicate that both BMF groups designed detailed models that included scientific explanations. However only students who engaged in the model design component: (1) completed a detailed model displaying molecular interaction; and (2) developed a critical perspective about models. We discuss the implications of those results for teaching scientific science concepts and metamodeling knowledge.

  15. Pattern formation of a nonlocal, anisotropic interaction model

    KAUST Repository

    Burger, Martin

    2017-11-24

    We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.

  16. Pattern formation of a nonlocal, anisotropic interaction model

    KAUST Repository

    Burger, Martin; Dü ring, Bertram; Kreusser, Lisa Maria; Markowich, Peter A.; Schö nlieb, Carola-Bibiane

    2017-01-01

    We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.

  17. QSO evolution in the interaction model

    International Nuclear Information System (INIS)

    De Robertis, M.

    1985-01-01

    QSO evolution is investigated according to the interaction hypothesis described most recently by Stockton (1982), in which activity results from an interaction between two galaxies resulting in the transfer of gas onto a supermassive black hole (SBH) at the center of at least one participant. Explicit models presented here for interactions in cluster environments show that a peak QSO population can be formed in this way at zroughly-equal2--3, with little activity prior to this epoch. Calculated space densities match those inferred from observations for this epoch. Substantial density evolution is expected in such models, since, after virialization, conditions in the cores of rich clusters lead to the depletion of gas-rich systems through ram-pressure stripping. Density evolution parameters of 6--12 are easily accounted for. At smaller redshifts, however, QSOs should be found primarily in poor clusters or groups. Probability estimates provided by this model are consistent with local estimates for the observed number of QSOs per interaction. Significant luminosity-dependent evolution might also be expected in these models. It is suggested that the mean SBH mass increases with lookback time, leading to a statistical brightening with redshift. Undoubtedly, both forms of evolution contribute to the overall QSO luminosity function

  18. Optimization of mathematical models for soil structure interaction

    International Nuclear Information System (INIS)

    Vallenas, J.M.; Wong, C.K.; Wong, D.L.

    1993-01-01

    Accounting for soil-structure interaction in the design and analysis of major structures for DOE facilities can involve significant costs in terms of modeling and computer time. Using computer programs like SASSI for modeling major structures, especially buried structures, requires the use of models with a large number of soil-structure interaction nodes. The computer time requirements (and costs) increase as a function of the number of interaction nodes to the third power. The added computer and labor cost for data manipulation and post-processing can further increase the total cost. This paper provides a methodology to significantly reduce the number of interaction nodes. This is achieved by selectively increasing the thickness of soil layers modeled based on the need for the mathematical model to capture as input only those frequencies that can actually be transmitted by the soil media. The authors have rarely found that a model needs to capture frequencies as high as 33 Hz. Typically coarser meshes (and a lesser number of interaction nodes) are adequate

  19. The Color Mutation Model for soft interaction

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1998-01-01

    A comprehensive model for soft interaction is presented. It overcomes all the shortcomings of the existing models - in particular, the failure of Fritiof and Venus models in predicting the correct multiplicity fluctuations as observed in the intermittency data. The Color Mutation Model incorporates all the main features of hadronic interaction: eikonal formalism, parton model, evolution in color space according to QCD, branching of color neutral clusters, contraction due to confinement forces, dynamical self-similarity, resonance production, and power-law behavior of factorial moments. (author)

  20. Development of two-group interfacial area transport equation for confined flow-1. Modeling of bubble interactions

    International Nuclear Information System (INIS)

    Sun, Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2003-01-01

    This paper presents the modeling of bubble interaction mechanisms in the two-group interfacial area transport equation (IATE) for confined gas-liquid two-phase flow. The transport equation is applicable to bubbly, cap-turbulent, and churn-turbulent flow regimes. In the two-group IATE, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest, and are analytically modeled as the source/sink terms for the transport equations based on certain assumptions for the confined flow. These models include both intra-group (within a certain group) and inter-group (between two groups) bubble interactions. The comparisons of the prediction by the one-dimensional two-group IATE with experimental data are presented in the second paper of this series. (author)

  1. MODELING OF THE TRACK AND ROLLING STOCK INTERACTION

    Directory of Open Access Journals (Sweden)

    N. V. Khalipova

    2013-09-01

    Full Text Available Purpose. Interaction of system’s elements of "carriage–track" modelling requires consideration of various criteria, it also requires analysis of many uncertainty and randomness factors’ influence on the basic parameters to ensure optimal or rational parameters of the system. The researching of interactions’ process requires new theoretical approaches to formulation of objectives, based on a generalization of existing modeling approaches. The purpose of this work is development of interaction models between track and rolling stock based on multiple structures of objects. Methodology. Dedicated and formed the main evaluation criteria of dynamic interaction between track and rolling stock optimization - quality assurance and safety of transportation process, improving of their efficiency and reducing of prime cost’s. Based on vector optimization methods, proposed model of rolling stock and track’s elements interaction. For the synthesis of the model used mathematical machine of multiple objects structures. Findings. Generalized approaches to modeling in the interaction of rolling stock and track for different structural elements of the system under different exploitation conditions. This theoretical approach demonstrated on the examples of modeling of passenger and freight cars with track under different exploitation conditions. Originality. Proposed theoretical approach to the problem of track and rolling stock interaction, based on a synthesis of existing models by using of multiple objects structures. Practical value. Using of proposed model allows to structure key data and rational parameters of rolling stock and track interaction’s modeling and to formulate optimal and rational parameters of the system, to determine the effective exploitation parameters and measurement system for rational use of infrastructure.

  2. Modelling of molten fuel/concrete interactions

    International Nuclear Information System (INIS)

    Muir, J.F.; Benjamin, A.S.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete (CORCON) is being developed to provide quantitative estimates of fuel-melt accident consequences suitable for risk assessment of light water reactors. The principal features of CORCON are reviewed. Models developed for the principal interaction phenomena, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. Alternative models for the controlling phenomenon, heat transfer from the molten pool to the surrounding concrete, are presented. These models, formulated in conjunction with the development of CORCON, are characterized by the presence or absence of either a gas film or viscous layer of molten concrete at the melt/concrete interface. Predictions of heat transfer based on these models compare favorably with available experimental data

  3. Modeling strategic interaction with application to environmental engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dagnino, A.

    1987-01-01

    The main purpose of this thesis is to develop practical decision models for use in the analysis of complex strategic interaction situations. Following the presentation of the different bargain in models that have been developed previously, an algorithm that formally defines, models, and analyzes the cooperation present in strategic interaction is given. In addition to other valuable information, the algorithm predicts the compromise solutions to complex disputes and how a given decision maker can select a strategy to reach a preferable solution. To model misconceptions of decision makers involved in strategic interaction situations, a cooperative hypergame model is developed. Then a computerized algorithm that handles preference information of decision makers involved in strategic interaction is presented. This model allows one to perform exhaustive sensitivity analyses in an efficient and quick manner. Following this, practical decision algorithms useful for mediators seeking for joint solutions are presented. These mediation models allow the study and development of compromise zones among decision makers taking part in a dispute.

  4. Saturn's Magnetosphere Interaction with Titan for T9 Encounter: 3D Hybrid Modeling and Comparison with CAPS Observations

    Science.gov (United States)

    Lipatov, A. S.; Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.

    2011-01-01

    Global dynamics of ionized and neutral gases in the environment of Titan plays an important role in the interaction of Saturn s magnetosphere with Titan. Several hybrid simulations of this problem have already been done (Brecht et al., 2000; Kallio et al., 2004; Modolo et al., 2007a; Simon et al., 2007a, 2007b; Modolo and Chanteur, 2008). Observational data from CAPS for the T9 encounter (Sittler et al., 2009) indicates an absence of O(+) heavy ions in the upstream that change the models of interaction which were discussed in current publications (Kallio et al., 2004; Modolo et al., 2007a; Simon et al., 2007a, 2007b; Ma et al., 2007; Szego et al., 2007). Further analysis of the CAPS data shows very low density or even an absence of H(+) ions in upstream. In this paper we discuss two models of the interaction of Saturn s magnetosphere with Titan: (A) high density of H(+) ions in the upstream flow (0.1/cu cm), and (B) low density of H(+) ions in the upstream flow (0.02/cu cm). The hybrid model employs a fluid description for electrons and neutrals, whereas a particle approach is used for ions. We also take into account charge-exchange and photoionization processes and solve self-consistently for electric and magnetic fields. The model atmosphere includes exospheric H(+), H(2+), N(2+)and CH(4+) pickup ion production as well as an immobile background ionosphere and a shell distribution for active ionospheric ions (M(sub i)=28 amu). The hybrid model allows us to account for the realistic anisotropic ion velocity distribution that cannot be done in fluid simulations with isotropic temperatures. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of Alfven wing-like structures. The results of the ion dynamics in Titan s environment are compared with Cassini T9 encounter data (CAPS).

  5. Are Noncovalent Interactions an Achilles Heel in Chemistry Education? A Comparison of Instructional Approaches

    Science.gov (United States)

    Williams, Leah C.; Underwood, Sonia M.; Klymkowsky, Michael W.; Cooper, Melanie M.

    2015-01-01

    Intermolecular forces (IMFs), or more broadly, noncovalent interactions either within or between molecules, are central to an understanding of a wide range of chemical and biological phenomena. In this study, we present a multiyear, multi-institutional, longitudinal comparison of how students enrolled in traditional general chemistry courses and…

  6. Electrostatics of electron-hole interactions in van der Waals heterostructures

    Science.gov (United States)

    Cavalcante, L. S. R.; Chaves, A.; Van Duppen, B.; Peeters, F. M.; Reichman, D. R.

    2018-03-01

    The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poisson's equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.

  7. A heat transfer correlation based on a surface renewal model for molten core concrete interaction study

    International Nuclear Information System (INIS)

    Tourniaire, B. . E-mail bruno.tourniaire@cea.fr

    2006-01-01

    The prediction of heat transfer between corium pool and concrete basemat is of particular significance in the framework of the study of PWR's severe accident. Heat transfer directly governs the ablation velocity of concrete in case of molten core concrete interaction (MCCI) and, consequently, the time delay when the reactor cavity may fail. From a restricted hydrodynamic point of view, this issue is related to heat transfer between a heated bubbling pool and a porous wall with gas injection. Several experimental studies have been performed with simulant materials and many correlations have been provided to address this issue. The comparisons of the results of these correlations with the measurements and their extrapolation to reactor materials show that strong discrepancies between the results of these models are obtained which probably means that some phenomena are not well taken into account. The main purpose of this paper is to present an alternative heat transfer model which was originally developed for chemical engineering applications (bubble columns) by Deckwer. A part of this work is devoted to the presentation of this model, which is based on a surface renewal assumption. Comparison of the results of this model with available experimental data in different systems are presented and discussed. These comparisons clearly show that this model can be used to deal with the particular problem of MCCI. The analyses also lead to enrich the original model by taking into account the thermal resistance of the wall: a new formulation of the Deckwer's correlation is finally proposed

  8. Comparison of the CME-associated shock arrival times at the earth using the WSA-ENLIL model with three cone models

    Science.gov (United States)

    Jang, S.; Moon, Y.; Na, H.

    2012-12-01

    We have made a comparison of CME-associated shock arrival times at the earth based on the WSA-ENLIL model with three cone models using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters from Michalek et al. (2007) as well as their associated interplanetary (IP) shocks. For this study we consider three different cone models (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine CME cone parameters (radial velocity, angular width and source location), which are used for input parameters of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the elliptical cone model is 10 hours, which is about 2 hours smaller than those of the other models. However, this value is still larger than that (8.7 hours) of an empirical model by Kim et al. (2007). We are investigating several possibilities on relatively large errors of the WSA-ENLIL cone model, which may be caused by CME-CME interaction, background solar wind speed, and/or CME density enhancement.

  9. Numerical modeling of magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, Onno

    2001-01-01

    This report explains the numerical programs behind a comprehensive modeling effort of magma-repository interactions. Magma-repository interactions occur when a magma dike with high-volatile content magma ascends through surrounding rock and encounters a tunnel or drift filled with either a magmatic

  10. A fashion model with social interaction

    Science.gov (United States)

    Nakayama, Shoichiro; Nakamura, Yasuyuki

    2004-06-01

    In general, it is difficult to investigate social phenomena mathematically or quantitatively due to non-linear interactions. Statistical physics can provide powerful methods for studying social phenomena with interactions, and could be very useful for them. In this study, we take a focus on fashion as a social phenomenon with interaction. The social interaction considered here are “bandwagon effect” and “snob effect.” In the bandwagon effect, the correlation between one's behavior and others is positive. People feel fashion weary or boring when it is overly popular. This is the snob effect. It is assumed that the fashion phenomenon is formed by the aggregation of individual's binary choice, that is, the fashion is adopted or not. We formulate the fashion phenomenon as the logit model, which is based on the random utility theory in social science, especially economics. The model derived here basically has the similarity with the pioneering model by Weidlich (Phys. Rep. 204 (1991) 1), which was derived from the master equation, the Langevin equation, or the Fokker-Planck equation. This study seems to give the behavioral or behaviormetrical foundation to his model. As a result of dynamical analysis, it is found that in the case that both the bandwagon effect and the snob effect work, periodic or chaotic behavior of fashion occurs under certain conditions.

  11. Comparison of charged particle multiplicity distributions in p tilde p and pp interactions and verification of the dual unitarization scheme

    International Nuclear Information System (INIS)

    Batyunya, B.V.; Boguslavsky, I.V.; Gramenitsky, I.M.

    1979-01-01

    The difference between antiproton annihilation and pp interactions has been discussed. Charged particle multiplicity distributions in anti pp-interactions at 22.4 GeV/c were used to obtain antiproton annihilation characteristics. The comparison of the topological cross section of antipp interactions with those of non-diffractive pp interactions confirms the validity of dual unitarization

  12. Discrete choice models for commuting interactions

    DEFF Research Database (Denmark)

    Rouwendal, Jan; Mulalic, Ismir; Levkovich, Or

    An emerging quantitative spatial economics literature models commuting interactions by a gravity equation that is mathematically equivalent to a multinomial logit model. This model is widely viewed as restrictive because of the independence of irrelevant alternatives (IIA) property that links sub...

  13. Heavy ion fusion reactions: comparison among different models

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F; Carlson, B V; Hussein, M S

    1988-03-01

    A comparison among different ion fusion models is presented. In particular, the multistep aspects of the recently proposed Dinucleus Doorway Model are made explicit and the model is confronted with other compound nucleus limitation models. It is suggested that the latter models provide effective one-step descriptions of heavy ion fusion.

  14. Interactive Visual Analysis within Dynamic Ocean Models

    Science.gov (United States)

    Butkiewicz, T.

    2012-12-01

    The many observation and simulation based ocean models available today can provide crucial insights for all fields of marine research and can serve as valuable references when planning data collection missions. However, the increasing size and complexity of these models makes leveraging their contents difficult for end users. Through a combination of data visualization techniques, interactive analysis tools, and new hardware technologies, the data within these models can be made more accessible to domain scientists. We present an interactive system that supports exploratory visual analysis within large-scale ocean flow models. The currents and eddies within the models are illustrated using effective, particle-based flow visualization techniques. Stereoscopic displays and rendering methods are employed to ensure that the user can correctly perceive the complex 3D structures of depth-dependent flow patterns. Interactive analysis tools are provided which allow the user to experiment through the introduction of their customizable virtual dye particles into the models to explore regions of interest. A multi-touch interface provides natural, efficient interaction, with custom multi-touch gestures simplifying the otherwise challenging tasks of navigating and positioning tools within a 3D environment. We demonstrate the potential applications of our visual analysis environment with two examples of real-world significance: Firstly, an example of using customized particles with physics-based behaviors to simulate pollutant release scenarios, including predicting the oil plume path for the 2010 Deepwater Horizon oil spill disaster. Secondly, an interactive tool for plotting and revising proposed autonomous underwater vehicle mission pathlines with respect to the surrounding flow patterns predicted by the model; as these survey vessels have extremely limited energy budgets, designing more efficient paths allows for greater survey areas.

  15. Results of an interactively coupled atmospheric chemistry – general circulation model: Comparison with observations

    Directory of Open Access Journals (Sweden)

    R. Hein

    Full Text Available The coupled climate-chemistry model ECHAM4.L39(DLR/CHEM is presented which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks. This is the first model which interactively combines a general circulation model with a chemical model, employing most of the important reactions and species necessary to describe the stratospheric and upper tropospheric ozone chemistry, and which is computationally fast enough to allow long-term integrations with currently available computer resources. This is possible as the model time-step used for the chemistry can be chosen as large as the integration time-step for the dynamics. Vertically the atmosphere is discretized by 39 levels from the surface up to the top layer which is centred at 10 hPa, with a relatively high vertical resolution of approximately 700 m near the extra-tropical tropopause. We present the results of a control simulation representing recent conditions (1990 and compare it to available observations. The focus is on investigations of stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. ECHAM4.L39(DLR/CHEM reproduces main features of stratospheric dynamics in the arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to earlier model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their inter-hemispheric differences are reproduced. Considering methane oxidation as part of the dynamic-chemistry feedback results in an improved representation of the spatial distribution of stratospheric water vapour concentrations. The current model constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic

  16. Arima model and exponential smoothing method: A comparison

    Science.gov (United States)

    Wan Ahmad, Wan Kamarul Ariffin; Ahmad, Sabri

    2013-04-01

    This study shows the comparison between Autoregressive Moving Average (ARIMA) model and Exponential Smoothing Method in making a prediction. The comparison is focused on the ability of both methods in making the forecasts with the different number of data sources and the different length of forecasting period. For this purpose, the data from The Price of Crude Palm Oil (RM/tonne), Exchange Rates of Ringgit Malaysia (RM) in comparison to Great Britain Pound (GBP) and also The Price of SMR 20 Rubber Type (cents/kg) with three different time series are used in the comparison process. Then, forecasting accuracy of each model is measured by examinethe prediction error that producedby using Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute deviation (MAD). The study shows that the ARIMA model can produce a better prediction for the long-term forecasting with limited data sources, butcannot produce a better prediction for time series with a narrow range of one point to another as in the time series for Exchange Rates. On the contrary, Exponential Smoothing Method can produce a better forecasting for Exchange Rates that has a narrow range of one point to another for its time series, while itcannot produce a better prediction for a longer forecasting period.

  17. Modeling Users' Experiences with Interactive Systems

    CERN Document Server

    Karapanos, Evangelos

    2013-01-01

    Over the past decade the field of Human-Computer Interaction has evolved from the study of the usability of interactive products towards a more holistic understanding of how they may mediate desired human experiences.  This book identifies the notion of diversity in usersʼ experiences with interactive products and proposes methods and tools for modeling this along two levels: (a) interpersonal diversity in usersʽ responses to early conceptual designs, and (b) the dynamics of usersʼ experiences over time. The Repertory Grid Technique is proposed as an alternative to standardized psychometric scales for modeling interpersonal diversity in usersʼ responses to early concepts in the design process, and new Multi-Dimensional Scaling procedures are introduced for modeling such complex quantitative data. iScale, a tool for the retrospective assessment of usersʼ experiences over time is proposed as an alternative to longitudinal field studies, and a semi-automated technique for the analysis of the elicited exper...

  18. A systematic comparison of two-equation Reynolds-averaged Navier-Stokes turbulence models applied to shock-cloud interactions

    Science.gov (United States)

    Goodson, Matthew D.; Heitsch, Fabian; Eklund, Karl; Williams, Virginia A.

    2017-07-01

    Turbulence models attempt to account for unresolved dynamics and diffusion in hydrodynamical simulations. We develop a common framework for two-equation Reynolds-averaged Navier-Stokes turbulence models, and we implement six models in the athena code. We verify each implementation with the standard subsonic mixing layer, although the level of agreement depends on the definition of the mixing layer width. We then test the validity of each model into the supersonic regime, showing that compressibility corrections can improve agreement with experiment. For models with buoyancy effects, we also verify our implementation via the growth of the Rayleigh-Taylor instability in a stratified medium. The models are then applied to the ubiquitous astrophysical shock-cloud interaction in three dimensions. We focus on the mixing of shock and cloud material, comparing results from turbulence models to high-resolution simulations (up to 200 cells per cloud radius) and ensemble-averaged simulations. We find that the turbulence models lead to increased spreading and mixing of the cloud, although no two models predict the same result. Increased mixing is also observed in inviscid simulations at resolutions greater than 100 cells per radius, which suggests that the turbulent mixing begins to be resolved.

  19. Hysteresis and creep: Comparison between a power-law model and Kuhnen's model

    Energy Technology Data Exchange (ETDEWEB)

    Oliveri, Alberto; Stellino, Flavio; Parodi, Mauro; Storace, Marco, E-mail: marco.storace@unige.it

    2016-04-01

    In this paper we analyze some properties of a recently proposed model of hysteresis and creep (related to a circuit model, whose only nonlinear element is based on a power law) and compare it with the well-known Kuhnen's model. A first qualitative comparison relies on the analysis of the behavior of the elementary cell of each model. Their responses to step inputs (which allow to better evidence the creep effect) are analyzed and compared. Then, a quantitative comparison is proposed, based on the fitting performances of the two models on experimental data measured from a commercial piezoelectric actuator.

  20. Dynamic-chemistry-aerosol modelling interaction: the ESCOMPTE 2001 experiment

    International Nuclear Information System (INIS)

    Cousin, F.

    2004-09-01

    After most pollution studies independently devoted to gases and aerosols, there now appears an urgent need to consider their interactions. In this view, an aerosol module has been implemented in the Meso-NH-C model to simulate two IOPs documented during the ESCOMPTE campaign which took place in the Marseille/Fos-Berre region in June-July 2001. First, modelled dynamic parameters (winds, temperatures, boundary layer thickness) and gaseous chemistry have been validated with measurements issued from the exhaustive ESCOMPTE database. Sensitivity analysis have also been performed using different gaseous emission inventories at various resolution. These simulations have illustrated the deep impact of both synoptic and local dynamics on observed ozone concentrations on June 24 (IOP2b) in the ESCOMPTE domain. Afterwards, the ORISAM aerosol module has been introduced into the Meso-NH-C model. Dynamics, gaseous chemistry and aerosol processes have thus been coupled on-line. The particulate pollution episode on June 24 (IOP2b) has been characterised through a satisfactory comparison, specially from sub-micron particles, between modelling and measurements at different representative stations in the domain. This study, with validation of the particulate emission inventory has also highlighted the need for future improvements, such as further characterisation of organic and inorganic aerosol species and consideration of coarse particles. Aerosol impact on gaseous chemistry has been preliminary approached in view of future development and modification to be given to the Meso-NH-C model. (author)

  1. A two-particle exchange interaction model

    International Nuclear Information System (INIS)

    Lyubina, Julia; Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich

    2010-01-01

    The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation δM(H m ) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H m not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called δM-plot depends on whether the sample is ac-field or thermally demagnetised.

  2. A two-particle exchange interaction model

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, Julia, E-mail: j.lyubina@ifw-dresden.d [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany); Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany)

    2010-10-15

    The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation {delta}M(H{sub m}) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H{sub m} not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called {delta}M-plot depends on whether the sample is ac-field or thermally demagnetised.

  3. Comparison of global sensitivity analysis methods – Application to fuel behavior modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, Timo, E-mail: timo.ikonen@vtt.fi

    2016-02-15

    Highlights: • Several global sensitivity analysis methods are compared. • The methods’ applicability to nuclear fuel performance simulations is assessed. • The implications of large input uncertainties and complex models are discussed. • Alternative strategies to perform sensitivity analyses are proposed. - Abstract: Fuel performance codes have two characteristics that make their sensitivity analysis challenging: large uncertainties in input parameters and complex, non-linear and non-additive structure of the models. The complex structure of the code leads to interactions between inputs that show as cross terms in the sensitivity analysis. Due to the large uncertainties of the inputs these interactions are significant, sometimes even dominating the sensitivity analysis. For the same reason, standard linearization techniques do not usually perform well in the analysis of fuel performance codes. More sophisticated methods are typically needed in the analysis. To this end, we compare the performance of several sensitivity analysis methods in the analysis of a steady state FRAPCON simulation. The comparison of importance rankings obtained with the various methods shows that even the simplest methods can be sufficient for the analysis of fuel maximum temperature. However, the analysis of the gap conductance requires more powerful methods that take into account the interactions of the inputs. In some cases, moment-independent methods are needed. We also investigate the computational cost of the various methods and present recommendations as to which methods to use in the analysis.

  4. Modeling Fetal Weight for Gestational Age: A Comparison of a Flexible Multi-level Spline-based Model with Other Approaches

    Science.gov (United States)

    Villandré, Luc; Hutcheon, Jennifer A; Perez Trejo, Maria Esther; Abenhaim, Haim; Jacobsen, Geir; Platt, Robert W

    2011-01-01

    We present a model for longitudinal measures of fetal weight as a function of gestational age. We use a linear mixed model, with a Box-Cox transformation of fetal weight values, and restricted cubic splines, in order to flexibly but parsimoniously model median fetal weight. We systematically compare our model to other proposed approaches. All proposed methods are shown to yield similar median estimates, as evidenced by overlapping pointwise confidence bands, except after 40 completed weeks, where our method seems to produce estimates more consistent with observed data. Sex-based stratification affects the estimates of the random effects variance-covariance structure, without significantly changing sex-specific fitted median values. We illustrate the benefits of including sex-gestational age interaction terms in the model over stratification. The comparison leads to the conclusion that the selection of a model for fetal weight for gestational age can be based on the specific goals and configuration of a given study without affecting the precision or value of median estimates for most gestational ages of interest. PMID:21931571

  5. In silico, experimental, mechanistic model for extended-release felodipine disposition exhibiting complex absorption and a highly variable food interaction.

    Directory of Open Access Journals (Sweden)

    Sean H J Kim

    Full Text Available The objective of this study was to develop and explore new, in silico experimental methods for deciphering complex, highly variable absorption and food interaction pharmacokinetics observed for a modified-release drug product. Toward that aim, we constructed an executable software analog of study participants to whom product was administered orally. The analog is an object- and agent-oriented, discrete event system, which consists of grid spaces and event mechanisms that map abstractly to different physiological features and processes. Analog mechanisms were made sufficiently complicated to achieve prespecified similarity criteria. An equation-based gastrointestinal transit model with nonlinear mixed effects analysis provided a standard for comparison. Subject-specific parameterizations enabled each executed analog's plasma profile to mimic features of the corresponding six individual pairs of subject plasma profiles. All achieved prespecified, quantitative similarity criteria, and outperformed the gastrointestinal transit model estimations. We observed important subject-specific interactions within the simulation and mechanistic differences between the two models. We hypothesize that mechanisms, events, and their causes occurring during simulations had counterparts within the food interaction study: they are working, evolvable, concrete theories of dynamic interactions occurring within individual subjects. The approach presented provides new, experimental strategies for unraveling the mechanistic basis of complex pharmacological interactions and observed variability.

  6. Understanding and modelling man-machine interaction

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1996-01-01

    This paper gives an overview of the current state of the art in man-machine system interaction studies, focusing on the problems derived from highly automated working environments and the role of humans in the control loop. In particular, it is argued that there is a need for sound approaches to the design and analysis of man-machine interaction (MMI), which stem from the contribution of three expertises in interfacing domains, namely engineering, computer science and psychology: engineering for understanding and modelling plants and their material and energy conservation principles; psychology for understanding and modelling humans an their cognitive behaviours; computer science for converting models in sound simulations running in appropriate computer architectures. (orig.)

  7. Understanding and modelling Man-Machine Interaction

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1991-01-01

    This paper gives an overview of the current state of the art in man machine systems interaction studies, focusing on the problems derived from highly automated working environments and the role of humans in the control loop. In particular, it is argued that there is a need for sound approaches to design and analysis of Man-Machine Interaction (MMI), which stem from the contribution of three expertises in interfacing domains, namely engineering, computer science and psychology: engineering for understanding and modelling plants and their material and energy conservation principles; psychology for understanding and modelling humans and their cognitive behaviours; computer science for converting models in sound simulations running in appropriate computer architectures. (author)

  8. How can model comparison help improving species distribution models?

    Directory of Open Access Journals (Sweden)

    Emmanuel Stephan Gritti

    Full Text Available Today, more than ever, robust projections of potential species range shifts are needed to anticipate and mitigate the impacts of climate change on biodiversity and ecosystem services. Such projections are so far provided almost exclusively by correlative species distribution models (correlative SDMs. However, concerns regarding the reliability of their predictive power are growing and several authors call for the development of process-based SDMs. Still, each of these methods presents strengths and weakness which have to be estimated if they are to be reliably used by decision makers. In this study we compare projections of three different SDMs (STASH, LPJ and PHENOFIT that lie in the continuum between correlative models and process-based models for the current distribution of three major European tree species, Fagussylvatica L., Quercusrobur L. and Pinussylvestris L. We compare the consistency of the model simulations using an innovative comparison map profile method, integrating local and multi-scale comparisons. The three models simulate relatively accurately the current distribution of the three species. The process-based model performs almost as well as the correlative model, although parameters of the former are not fitted to the observed species distributions. According to our simulations, species range limits are triggered, at the European scale, by establishment and survival through processes primarily related to phenology and resistance to abiotic stress rather than to growth efficiency. The accuracy of projections of the hybrid and process-based model could however be improved by integrating a more realistic representation of the species resistance to water stress for instance, advocating for pursuing efforts to understand and formulate explicitly the impact of climatic conditions and variations on these processes.

  9. Positive interaction of social comparison and personal responsibility for outcomes.

    Science.gov (United States)

    Grygolec, Jaroslaw; Coricelli, Giorgio; Rustichini, Aldo

    2012-01-01

    We formulate and test a model that allows sharp separation between two different ways in which environment affects evaluation of outcomes, by comparing social vs. private and personal responsibility vs. chance. In the experiment, subjects chose between two lotteries, one low-risk and one high-risk. They could then observe the outcomes. By varying the environment between private (they could observe the outcome of the chosen lottery and the outcome of the lottery they had not chosen) and social (they could observe the outcome of the lottery chosen by another subject) we can differentiate the response and brain activity following the feedback in social and private settings. The evidence suggests that envy and pride are significant motives driving decisions and outcomes evaluation, stronger than private emotions like regret and rejoice, with ventral striatum playing a key role. When we focus on the outcome evaluation stage we demonstrate that BOLD signal in ventral striatum is increasing in the difference between obtained and counterfactual payoffs. For a given difference in payoffs, striatal responses are more pronounced in social than in private environment. Moreover, a positive interaction (complementarity) between social comparison and personal responsibility is reflected in the pattern of activity in the ventral striatum. At decision stage we observe getting ahead of the Joneses effect in ventral striatum with subjective value of risk larger in social than in private environment.

  10. Modeling of soil-water-structure interaction

    DEFF Research Database (Denmark)

    Tang, Tian

    as the developed nonlinear soil displacements and stresses under monotonic and cyclic loading. With the FVM nonlinear coupled soil models as a basis, multiphysics modeling of wave-seabed-structure interaction is carried out. The computations are done in an open source code environment, OpenFOAM, where FVM models...

  11. Quantum secure communication models comparison

    Directory of Open Access Journals (Sweden)

    Georgi Petrov Bebrov

    2017-12-01

    Full Text Available The paper concerns the quantum cryptography, more specifically, the quantum secure communication type of schemes. The main focus here is on making a comparison between the distinct secure quantum communication models – quantum secure direct communication and deterministic secure quantum communication, in terms of three parameters: resource efficiency, eavesdropping check efficiency, and security (degree of preserving the confidentiality.

  12. Particle-hole excitations in the interacting boson model; 4, the U(5)-SU(3) coupling

    CERN Document Server

    De Coster, C; Heyde, Kris L G; Jolie, J; Lehmann, H; Wood, J L

    1999-01-01

    In the extended interacting boson model (EIBM) both particle- and hole-like bosons are incorporated to encompass multi-particle-multi-hole excitations at and near to closed shells.We apply the group theoretical concepts of the EIBM to the particular case of two coexisting systems in the same nucleus exhibiting a U(5) (for the regular configurations) and an SU(3) symmetry (for the intruder configurations).Besides the description of ``global'' symmetry aspects in terms of I-spin , also the very specific local mixing effects characteristic for the U(5)-SU(3) symmetry coupling are studied.The model is applied to the Po isotopes and a comparison with a morerealistic calculation is made.

  13. The interacting boson-fermion model

    International Nuclear Information System (INIS)

    Iachello, F.; Van Isacker, P.

    1990-01-01

    The interacting boson-fermion model has become in recent years the standard model for the description of atomic nuclei with an odd number of protons and/or neutrons. This book describes the mathematical framework on which the interacting boson-fermion model is built and presents applications to a variety of situations encountered in nuclei. The book addresses both the analytical and the numerical aspects of the problem. The analytical aspect requires the introduction of rather complex group theoretic methods, including the use of graded (or super) Lie algebras. The first (and so far only) example of supersymmetry occurring in nature is also discussed. The book is the first comprehensive treatment of the subject and will appeal to both theoretical and experimental physicists. The large number of explicit formulas for level energies, electromagnetic transition rates and intensities of transfer reactions presented in the book provide a simple but detailed way to analyze experimental data. This book can also be used as a textbook for advanced graduate students

  14. RISM theory distribution functions for Lennard--Jones interaction site fluids

    International Nuclear Information System (INIS)

    Johnson, E.; Hazoume, R.P.

    1978-01-01

    Reference interaction site model (RISM) theory distribution functions for Lennard-Jones interaction site fluids are discussed. The comparison with computer simulation results suggests that these distribution functions are as accurate as RISM distribution functions for fused hard sphere molecular fluids

  15. Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data.

    Science.gov (United States)

    Fu, Changhe; Deng, Su; Jin, Guangxu; Wang, Xinxin; Yu, Zu-Guo

    2017-09-21

    Molecular interaction data at proteomic and genetic levels provide physical and functional insights into a molecular biosystem and are helpful for the construction of pathway structures complementarily. Despite advances in inferring biological pathways using genetic interaction data, there still exists weakness in developed models, such as, activity pathway networks (APN), when integrating the data from proteomic and genetic levels. It is necessary to develop new methods to infer pathway structure by both of interaction data. We utilized probabilistic graphical model to develop a new method that integrates genetic interaction and protein interaction data and infers exquisitely detailed pathway structure. We modeled the pathway network as Bayesian network and applied this model to infer pathways for the coherent subsets of the global genetic interaction profiles, and the available data set of endoplasmic reticulum genes. The protein interaction data were derived from the BioGRID database. Our method can accurately reconstruct known cellular pathway structures, including SWR complex, ER-Associated Degradation (ERAD) pathway, N-Glycan biosynthesis pathway, Elongator complex, Retromer complex, and Urmylation pathway. By comparing N-Glycan biosynthesis pathway and Urmylation pathway identified from our approach with that from APN, we found that our method is able to overcome its weakness (certain edges are inexplicable). According to underlying protein interaction network, we defined a simple scoring function that only adopts genetic interaction information to avoid the balance difficulty in the APN. Using the effective stochastic simulation algorithm, the performance of our proposed method is significantly high. We developed a new method based on Bayesian network to infer detailed pathway structures from interaction data at proteomic and genetic levels. The results indicate that the developed method performs better in predicting signaling pathways than previously

  16. Comparison of performance of simulation models for floor heating

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Svendsen, Svend

    2005-01-01

    This paper describes the comparison of performance of simulation models for floor heating with different level of detail in the modelling process. The models are compared in an otherwise identical simulation model containing room model, walls, windows, ceiling and ventilation system. By exchanging...

  17. Non-perturbative effective interactions in the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, Boris A. [Moscow Lomonosov State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2014-07-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of allfundamental interactions in natureexcept gravity. The Standard Model is divided into two parts: the quantum chromodynamics (QCD) and the electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu-Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogolyubov's conception of compensation equations. As a result we then describe the principal features of the Standard Model, e.g. Higgs sector, and significant nonperturbative effects including recent results obtained at LHC and TEVATRON.

  18. Effects of muscle dysmorphia, social comparisons and body schema priming on desire for social interaction: an experimental approach.

    Science.gov (United States)

    Schneider, Catharina; Agthe, Maria; Yanagida, Takuya; Voracek, Martin; Hennig-Fast, Kristina

    2017-06-15

    Muscle dysmorphia (MD) is a relatively young diagnosis referring to the desire for a high degree in lean muscle mass, while simultaneously believing that one is insufficiently muscular, mostly found in men. It goes along with a risk for social withdrawal to maintain rigid exercise and dietary regimen. The aim of the current study was thus, to explore differences in men with and without a risk for muscle dysmorphia regarding their desire for social interaction. Furthermore, we investigated potential effects of individual social comparison tendencies (the tendency to compare oneself with persons who are perceived to be superior or inferior to oneself on a certain dimension) and of one's own body schema on the desire for social interaction. One hundred physically active, college aged Austrian men were recruited via social media and flyers at fitness centers and the sports department of the University of Vienna. Participants were randomly assigned to a priming condition evoking their own body schema or a control condition and had to state their desire for social interaction with male or female stimulus persons of high or average attractiveness. We conducted a 2 (group of participant; men with vs. without a risk for MD) × 2 (priming condition; priming vs. non-priming) × 2 (attractiveness of stimulus person; highly attractive vs. less attractive) experimental design with different social comparison tendencies as covariates. Men with a risk for muscle dysmorphia showed lesser desire for social interaction than men without this risk, which can be seen as a risk factor for psychopathological outcomes. Generally, men with and without a risk for muscle dysmorphia did not differ with regard to their preferences for attractive stimulus persons as subjects for social interaction. We confirmed the notion that a tendency for downward social comparisons goes along with a diminished desire for social interaction. This study showed that men with a risk for muscle dysmorphia

  19. Guided interaction exploration in artifact-centric process models

    NARCIS (Netherlands)

    van Eck, M.L.; Sidorova, N.; van der Aalst, W.M.P.

    2017-01-01

    Artifact-centric process models aim to describe complex processes as a collection of interacting artifacts. Recent development in process mining allow for the discovery of such models. However, the focus is often on the representation of the individual artifacts rather than their interactions. Based

  20. Improvement of molten core-concrete interaction model of the debris spreading analysis model in the SAMPSON code - 15193

    International Nuclear Information System (INIS)

    Hidaka, M.; Fujii, T.; Sakai, T.

    2015-01-01

    A debris spreading analysis (DSA) module has been developed and improved. The module is used in the severe accident analysis code SAMPSON and it has models for 3-dimensional natural convection with simultaneous spreading, melting and solidification. The existing analysis method of the quasi-3D boundary transportation to simulate downward concrete erosion for evaluation of molten-core concrete interaction (MCCI) was improved to full-3D to solve, for instance, debris lateral erosion under concrete floors at the bottom of the sump pit. In the advanced MCCI model, buffer cells were defined in order to solve numerical problems in case of trammel formation. Mass, momentum, and the advection term of energy between the debris melt cells and the buffer cells are solved. On the other hand, only the heat transfer and thermal conduction are solved between the debris melt cells and the structure cells, and the crust cells and the structure cells. As a preliminary analysis, a validation calculation was performed for erosion that occurred in the core-concrete interaction (CCI-2) test in the OECD/MCCI program. Comparison between the calculation and the CCI-2 test results showed the analysis has the ability to simulate debris lateral erosion under concrete floors. (authors)

  1. Comparison of marine dispersion model predictions with environmental radionuclide concentrations

    International Nuclear Information System (INIS)

    Johnson, C.E.; McKay, W.A.

    1988-01-01

    The comparison of marine dispersion model results with measurements is an essential part of model development and testing. The results from two residual flow models are compared with seawater concentrations, and in one case with concentrations measured in marine molluscs. For areas with short turnover times, seawater concentrations respond rapidly to variations in discharge rate and marine currents. These variations are difficult to model, and comparison with concentrations in marine animals provides an alternative and complementary technique for model validation with the advantages that the measurements reflect the mean conditions and frequently form a useful time series. (author)

  2. N-barN interaction theoretical models

    International Nuclear Information System (INIS)

    Loiseau, B.

    1991-12-01

    In the framework of antinucleon-nucleon interaction theoretical models, our present understanding on the N-barN interaction is discussed, either from quark- or/and meson- and baryon-degrees of freedom, by considering the N-barN annihilation into mesons and the N-barN elastic and charge-exchange scattering. (author) 52 refs., 11 figs., 2 tabs

  3. Experimental investigation shell model excitations of 89Zr up to high spin and its comparison with 88,90Zr

    International Nuclear Information System (INIS)

    Saha, S.; Palit, R.; Sethi, J.

    2012-01-01

    The excited states of nuclei near N=50 closed shell provide suitable laboratory for testing the interactions of shell model states, possible presence of high spin isomers and help in understanding the shape transition as the higher orbitals are occupied. In particular, the structure of N = 49 isotones (and Z =32 to 46) with one hole in N=50 shell gap have been investigated using different reactions. Interestingly, the high spin states in these isotones have contribution from particle excitations across the respective proton and neutron shell gaps and provide suitable testing ground for the prediction of shell model interactions describing theses excitations across the shell gap. In the literature, extensive study of the high spin states of heavier N = 49 isotones starting with 91 Mo up to 95 Pd are available. Limited information existed on the high spin states of lighter isotones. Therefore, the motivation of the present work is to extend the high spin structure of 89 Zr and to characterize the structure of these levels through comparison with the large scale shell model calculations based on two new residual interactions in f 5/2 pg 9/2 model space

  4. International Space Station Centrifuge Rotor Models A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    Science.gov (United States)

    Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.

    2006-01-01

    The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.

  5. Ferromagnetic interaction model of activity level in workplace communication

    Science.gov (United States)

    Akitomi, Tomoaki; Ara, Koji; Watanabe, Jun-ichiro; Yano, Kazuo

    2013-03-01

    The nature of human-human interaction, specifically, how people synchronize with each other in multiple-participant conversations, is described by a ferromagnetic interaction model of people’s activity levels. We found two microscopic human interaction characteristics from a real-environment face-to-face conversation. The first characteristic is that people quite regularly synchronize their activity level with that of the other participants in a conversation. The second characteristic is that the degree of synchronization increases as the number of participants increases. Based on these microscopic ferromagnetic characteristics, a “conversation activity level” was modeled according to the Ising model. The results of a simulation of activity level based on this model well reproduce macroscopic experimental measurements of activity level. This model will give a new insight into how people interact with each other in a conversation.

  6. Modeling and complexity of stochastic interacting Lévy type financial price dynamics

    Science.gov (United States)

    Wang, Yiduan; Zheng, Shenzhou; Zhang, Wei; Wang, Jun; Wang, Guochao

    2018-06-01

    In attempt to reproduce and investigate nonlinear dynamics of security markets, a novel nonlinear random interacting price dynamics, which is considered as a Lévy type process, is developed and investigated by the combination of lattice oriented percolation and Potts dynamics, which concerns with the instinctive random fluctuation and the fluctuation caused by the spread of the investors' trading attitudes, respectively. To better understand the fluctuation complexity properties of the proposed model, the complexity analyses of random logarithmic price return and corresponding volatility series are preformed, including power-law distribution, Lempel-Ziv complexity and fractional sample entropy. In order to verify the rationality of the proposed model, the corresponding studies of actual security market datasets are also implemented for comparison. The empirical results reveal that this financial price model can reproduce some important complexity features of actual security markets to some extent. The complexity of returns decreases with the increase of parameters γ1 and β respectively, furthermore, the volatility series exhibit lower complexity than the return series

  7. An Efficient Test for Gene-Environment Interaction in Generalized Linear Mixed Models with Family Data.

    Science.gov (United States)

    Mazo Lopera, Mauricio A; Coombes, Brandon J; de Andrade, Mariza

    2017-09-27

    Gene-environment (GE) interaction has important implications in the etiology of complex diseases that are caused by a combination of genetic factors and environment variables. Several authors have developed GE analysis in the context of independent subjects or longitudinal data using a gene-set. In this paper, we propose to analyze GE interaction for discrete and continuous phenotypes in family studies by incorporating the relatedness among the relatives for each family into a generalized linear mixed model (GLMM) and by using a gene-based variance component test. In addition, we deal with collinearity problems arising from linkage disequilibrium among single nucleotide polymorphisms (SNPs) by considering their coefficients as random effects under the null model estimation. We show that the best linear unbiased predictor (BLUP) of such random effects in the GLMM is equivalent to the ridge regression estimator. This equivalence provides a simple method to estimate the ridge penalty parameter in comparison to other computationally-demanding estimation approaches based on cross-validation schemes. We evaluated the proposed test using simulation studies and applied it to real data from the Baependi Heart Study consisting of 76 families. Using our approach, we identified an interaction between BMI and the Peroxisome Proliferator Activated Receptor Gamma ( PPARG ) gene associated with diabetes.

  8. Motion Model Employment using interacting Motion Model Algorithm

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    The paper presents a simulation study to track a maneuvering target using a selective approach in choosing Interacting Multiple Models (IMM) algorithm to provide a wider coverage to track such targets.  Initially, there are two motion models in the system to track a target.  Probability of each m...

  9. Wake interaction and power production of variable height model wind farms

    International Nuclear Information System (INIS)

    Vested, M H; Sørensen, J N; Hamilton, N; Cal, R B

    2014-01-01

    Understanding wake dynamics is an ongoing research topic in wind energy, since wakes have considerable effects on the power production when wind turbines are placed in a wind farm. Wind tunnel experiments have been conducted to study the wake to wake interaction in a model wind farm in tandem with measurements of the extracted power. The aim is to investigate how alternating mast height influences the interaction of the wakes and the power production. Via the use of stereo-particle image velocimetry, the flow field was obtained in the first and last rows of the wind turbine array as a basis of comparison. It was found that downstream of the exit row wind turbine, the power was increased by 25% in the case of a staggered height configuration. This is partly due to the fact that the taller turbines reach into a flow area with a softened velocity gradient. Another aspect is that the wake downstream of a tall wind turbine to some extent passes above the standard height wind turbine. Overall the experiments show that the velocity field downstream of the exit row changes considerably when the mast height is alternating

  10. Fluid structure interaction in LMFBR cores modelling by an homogenization method

    International Nuclear Information System (INIS)

    Brochard, D.

    1988-01-01

    The upper plenum of the internals of PWR, the steam generator bundle, the nuclear reactor core, may be schematically represented by a beam bundle immersed in a fluid. The dynamical study of such a system needs to take into account fluid structure interaction. A refined model at the scale of the tubes can be used but leads to a very difficult problem to solve even on the largest computers. The homogenization method allows to have an approximation of the fluid structure interaction for the global behaviour of the bundle. It consists of replacing the heterogeneous physical medium (tubes and fluid) by an equivalent homogeneous medium whose characteristics are determined from the resolution of a set of problems on the elementary cell. The aim of this paper is to present the main steps of the determination of this equivalent medium in the case of small displacements (acoustic behaviour of the fluid). Then an application to LMFBR core geometry has been realised, which shows the lowering effect on eigenfrequencies due to the fluid. Some comparisons with test results will be presented. 6 refs, 7 figs, 2 tabs

  11. Model Comparison for Electron Thermal Transport

    Science.gov (United States)

    Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques

    2015-11-01

    Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  12. Extended Lipkin-type models with residual proton-neutron interaction

    International Nuclear Information System (INIS)

    Stoica, S.

    1999-01-01

    Extended Lipkin-Meshkov-Glick (LMG) models for testing the Random Phase Approximation (RPA) and proton-neutron Random Phase Approximation (pnRPA) methods are developed taking into account explicitly the proton and neutron degrees of freedom. First, an extended LMG model for testing RPA is developed. The proton and neutron Hamiltonians are taken to be of the LMG form and, in addition, a residual proton-neutron interaction is included. Exact solutions in a SU(2) x SU(2) basis as well as the RPA solutions for the energy spectrum of the model Hamiltonian are obtained. Then, the behaviour of the first collective excited state is studied as a function of the interaction parameters of the model using the exact and RPA methods. Secondly, an extended LMG model for testing pnRPA method is developed. Besides the proton and neutron single particle terms two types of residual proton-neutron interactions, one simulating a particle-particle and the other a particle-hole interaction, are included in the model Hamiltonian, so that the model is exactly solvable in an isospin SU(2) x SU(2) basis. The exact and pnRPA spectra of the model Hamiltonian are calculated as a function of the model parameters and compared to each other. Furthermore, charge-changing operators simulating a nuclear beta decay and their action on eigenfunctions of the model Hamiltonian are defined, and transition amplitude of them are calculated using exact and pnRPA wave functions. The best agreement between the exact RPA-type calculations for spectra and transitions, was obtained when the correlated RPA ground state, instead of the uncorrelated HF ground state was employed and when both kinds of residual interactions (i.e. like- and unlike-particle two-body interactions) are included in the model Hamiltonians. (author)

  13. A Nonlinear Model for Gene-Based Gene-Environment Interaction

    Directory of Open Access Journals (Sweden)

    Jian Sa

    2016-06-01

    Full Text Available A vast amount of literature has confirmed the role of gene-environment (G×E interaction in the etiology of complex human diseases. Traditional methods are predominantly focused on the analysis of interaction between a single nucleotide polymorphism (SNP and an environmental variable. Given that genes are the functional units, it is crucial to understand how gene effects (rather than single SNP effects are influenced by an environmental variable to affect disease risk. Motivated by the increasing awareness of the power of gene-based association analysis over single variant based approach, in this work, we proposed a sparse principle component regression (sPCR model to understand the gene-based G×E interaction effect on complex disease. We first extracted the sparse principal components for SNPs in a gene, then the effect of each principal component was modeled by a varying-coefficient (VC model. The model can jointly model variants in a gene in which their effects are nonlinearly influenced by an environmental variable. In addition, the varying-coefficient sPCR (VC-sPCR model has nice interpretation property since the sparsity on the principal component loadings can tell the relative importance of the corresponding SNPs in each component. We applied our method to a human birth weight dataset in Thai population. We analyzed 12,005 genes across 22 chromosomes and found one significant interaction effect using the Bonferroni correction method and one suggestive interaction. The model performance was further evaluated through simulation studies. Our model provides a system approach to evaluate gene-based G×E interaction.

  14. Statistical pairwise interaction model of stock market

    Science.gov (United States)

    Bury, Thomas

    2013-03-01

    Financial markets are a classical example of complex systems as they are compound by many interacting stocks. As such, we can obtain a surprisingly good description of their structure by making the rough simplification of binary daily returns. Spin glass models have been applied and gave some valuable results but at the price of restrictive assumptions on the market dynamics or they are agent-based models with rules designed in order to recover some empirical behaviors. Here we show that the pairwise model is actually a statistically consistent model with the observed first and second moments of the stocks orientation without making such restrictive assumptions. This is done with an approach only based on empirical data of price returns. Our data analysis of six major indices suggests that the actual interaction structure may be thought as an Ising model on a complex network with interaction strengths scaling as the inverse of the system size. This has potentially important implications since many properties of such a model are already known and some techniques of the spin glass theory can be straightforwardly applied. Typical behaviors, as multiple equilibria or metastable states, different characteristic time scales, spatial patterns, order-disorder, could find an explanation in this picture.

  15. Modeling attacker-defender interactions in information networks.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Michael Joseph

    2010-09-01

    The simplest conceptual model of cybersecurity implicitly views attackers and defenders as acting in isolation from one another: an attacker seeks to penetrate or disrupt a system that has been protected to a given level, while a defender attempts to thwart particular attacks. Such a model also views all non-malicious parties as having the same goal of preventing all attacks. But in fact, attackers and defenders are interacting parts of the same system, and different defenders have their own individual interests: defenders may be willing to accept some risk of successful attack if the cost of defense is too high. We have used game theory to develop models of how non-cooperative but non-malicious players in a network interact when there is a substantial cost associated with effective defensive measures. Although game theory has been applied in this area before, we have introduced some novel aspects of player behavior in our work, including: (1) A model of how players attempt to avoid the costs of defense and force others to assume these costs; (2) A model of how players interact when the cost of defending one node can be shared by other nodes; and (3) A model of the incentives for a defender to choose less expensive, but less effective, defensive actions.

  16. Introduction to interacting boson model

    International Nuclear Information System (INIS)

    Goutte, D.

    1986-01-01

    A very simple presentation of the interacting boson model is first given. The two computerized models which are presented allow, with few parameters, to reproduce an impressive quantity of data characterizing the deformed nuclei. Their excitation spectra, the reduced transition probabilities, the quadrupolar moments, the two nucleon transfer experiment results, ... Then a specific application of the model is given: radial extension reproduction of nuclear functions. It is shown first how the electron inelastic scattering allows to measure observables related to these radial functions, the transition charge densities, then, on some examples, how the model allows to reproduce them [fr

  17. How does Interactive Chemistry Influence the Representation of Stratosphere-Troposphere Coupling in a Climate Model?

    Science.gov (United States)

    Haase, S.; Matthes, K. B.

    2017-12-01

    Changes in stratospheric ozone can trigger tropospheric circulation changes. In the Southern hemisphere (SH), the observed shift of the Southern Annular Mode was attributed to the observed trend in lower stratospheric ozone. In the Northern Hemisphere (NH), a recent study showed that extremely low stratospheric ozone conditions during spring produce robust anomalies in the troposphere (zonal wind, temperature and precipitation). This could only be reproduced in a coupled chemistry climate model indicating that chemical-dynamical feedbacks are also important on the NH. To further investigate the importance of interactive chemistry for surface climate, we conducted a set of experiments using NCAR's Community Earth System Model (CESM1) with the Whole Atmosphere Community Climate Model (WACCM) as the atmosphere component. WACCM contains a fully interactive stratospheric chemistry module in its standard configuration. It also allows for an alternative configuration, referred to as SC-WACCM, in which the chemistry (O3, NO, O, O2, CO2 and chemical and shortwave heating rates) is specified as a 2D field in the radiation code. A comparison of the interactive vs. the specified chemistry version enables us to evaluate the relative importance of interactive chemistry by systematically inhibiting the feedbacks between chemistry and dynamics. To diminish the effect of temporal interpolation when prescribing ozone, we use daily resolved zonal mean ozone fields for the specified chemistry run. Here, we investigate the differences in stratosphere-troposphere coupling between the interactive and specified chemistry simulations for the mainly chemically driven SH as well as for the mainly dynamically driven NH. We will especially consider years that are characterized by extremely low stratospheric ozone on the one hand and by large dynamical disturbances, i.e. Sudden Stratospheric Warmings, on the other hand.

  18. Examining a model of dispositional mindfulness, body comparison, and body satisfaction

    NARCIS (Netherlands)

    Dijkstra, Pieternel; Barelds, Dick P. H.

    The present study examined the links between dispositional mindfulness, body comparison, and body satisfaction. It was expected that mindfulness would be associated with less body comparison and more body satisfaction. Two models were tested: one exploring body comparison as a mediator between

  19. The Spiral-Interactive Program Evaluation Model.

    Science.gov (United States)

    Khaleel, Ibrahim Adamu

    1988-01-01

    Describes the spiral interactive program evaluation model, which is designed to evaluate vocational-technical education programs in secondary schools in Nigeria. Program evaluation is defined; utility oriented and process oriented models for evaluation are described; and internal and external evaluative factors and variables that define each…

  20. Bayesian modeling to paired comparison data via the Pareto distribution

    Directory of Open Access Journals (Sweden)

    Nasir Abbas

    2017-12-01

    Full Text Available A probabilistic approach to build models for paired comparison experiments based on the comparison of two Pareto variables is considered. Analysis of the proposed model is carried out in classical as well as Bayesian frameworks. Informative and uninformative priors are employed to accommodate the prior information. Simulation study is conducted to assess the suitablily and performance of the model under theoretical conditions. Appropriateness of fit of the is also carried out. Entire inferential procedure is illustrated by comparing certain cricket teams using real dataset.

  1. Object interaction competence model v. 2.0

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Schulte, C.

    2013-01-01

    Teaching and learning object oriented programming has to take into account the specific object oriented characteristics of program execution, namely the interaction of objects during runtime. Prior to the research reported in this article, we have developed a competence model for object interaction...

  2. Model of Anisotropic Magnetization of In(1-x)Mn(x)S: Comparison to Experiment

    Science.gov (United States)

    Garner, J.; Franzese, G.; Byrd, Ashlee; Pekarek, T. M.; Miotkowski, I.; Ramdas, A. K.

    2004-03-01

    Calculations of and experimental results for the anisotropic magnetization of the new III-VI dilute magnetic semiconductor, In(1-x)Mn(x)S, are presented. The model Hamiltonian incorporates the interaction of the incomplete shell of Mn 3d-electrons with the crystal lattice within the point-ion approximation. Other terms in the Hamiltonian include the Zeeman interaction, the spin-orbit and the spin-spin terms. It is assumed the Mn atoms do not interact with each other (this is the singlet model, which is appropriate when x is small, here 2%). The temperature- and field- dependent magnetization is found from the energy eigenvalues of the Hamiltonian matrix, which was expressed in terms of an uncoupled angular momentum basis set. Magnetization versus temperature results are found for several field values, B, pointing along various directions relative to the underlying dilute magnetic semiconductor crystal lattice. In addition, the magnetization versus field is computed for several fixed temperatures and for various B-field directions and magnitudes. Overall, the agreement of this simple model with the experimental data is very good except at low temperatures ( a few Tesla). It would be useful for quantitative comparison purposes to have optical absorption data in order to better fix the crystal potential parameters that are input parameters in the theory. In addition, the model could be improved by going beyond the point-ion approximation to better model the covalent bonds in the crystal.* Supported by UNF Research Grants, Research Corporation Award, CC4845, NSF Grant Nos. DMR-03-05653, DMR-01-02699, and ECS-01-29853 and Donors of the American Chemical Society Petroleum Research Fund PRF#40209-B5M, and a Purdue Univ. Academic Reimbursement Grant.

  3. Quantitative chemogenomics: machine-learning models of protein-ligand interaction.

    Science.gov (United States)

    Andersson, Claes R; Gustafsson, Mats G; Strömbergsson, Helena

    2011-01-01

    Chemogenomics is an emerging interdisciplinary field that lies in the interface of biology, chemistry, and informatics. Most of the currently used drugs are small molecules that interact with proteins. Understanding protein-ligand interaction is therefore central to drug discovery and design. In the subfield of chemogenomics known as proteochemometrics, protein-ligand-interaction models are induced from data matrices that consist of both protein and ligand information along with some experimentally measured variable. The two general aims of this quantitative multi-structure-property-relationship modeling (QMSPR) approach are to exploit sparse/incomplete information sources and to obtain more general models covering larger parts of the protein-ligand space, than traditional approaches that focuses mainly on specific targets or ligands. The data matrices, usually obtained from multiple sparse/incomplete sources, typically contain series of proteins and ligands together with quantitative information about their interactions. A useful model should ideally be easy to interpret and generalize well to new unseen protein-ligand combinations. Resolving this requires sophisticated machine-learning methods for model induction, combined with adequate validation. This review is intended to provide a guide to methods and data sources suitable for this kind of protein-ligand-interaction modeling. An overview of the modeling process is presented including data collection, protein and ligand descriptor computation, data preprocessing, machine-learning-model induction and validation. Concerns and issues specific for each step in this kind of data-driven modeling will be discussed. © 2011 Bentham Science Publishers

  4. Simulating Complex, Cold-region Process Interactions Using a Multi-scale, Variable-complexity Hydrological Model

    Science.gov (United States)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2017-12-01

    Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.

  5. Modelling dislocation-obstacle interactions in metals exposed to an irradiation environment

    International Nuclear Information System (INIS)

    Bacon, D.J.; Osetsky, Yu.N.

    2005-01-01

    Irradiation of metals with high-energy atomic particles creates obstacles to glide, such as voids, dislocation loops, stacking-fault tetrahedra and irradiation-induced precipitates through which dislocations have to move during plastic flow. Approximations based on the elasticity theory of defects offer the simplest treatment of strengthening, but are deficient in many respects. It is now widely recognised that a multiscale modelling approach should be used, wherein the mechanisms and strength parameters of interaction are derived by simulation of the atomic level to feed higher-level treatments based on continuum mechanics. Atomic-scale simulation has been developed to provide quantitative information on the influence of stress, strain rate and temperature. Recent results of modelling dislocations gliding under stress against obstacles in a variety of metals across a range of temperature are considered. The effects observed include cutting, absorbing and dragging obstacles. Simulations of 0 K provide for direct comparison with results from continuum mechanics, and although some processes can be represented within the continuum treatment of dislocations, others cannot

  6. On Thermally Interacting Multiple Boreholes with Variable Heating Strength: Comparison between Analytical and Numerical Approaches

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2012-08-01

    Full Text Available The temperature response in the soil surrounding multiple boreholes is evaluated analytically and numerically. The assumption of constant heat flux along the borehole wall is examined by coupling the problem to the heat transfer problem inside the borehole and presenting a model with variable heat flux along the borehole length. In the analytical approach, a line source of heat with a finite length is used to model the conduction of heat in the soil surrounding the boreholes. In the numerical method, a finite volume method in a three dimensional meshed domain is used. In order to determine the heat flux boundary condition, the analytical quasi-three-dimensional solution to the heat transfer problem of the U-tube configuration inside the borehole is used. This solution takes into account the variation in heating strength along the borehole length due to the temperature variation of the fluid running in the U-tube. Thus, critical depths at which thermal interaction occurs can be determined. Finally, in order to examine the validity of the numerical method, a comparison is made with the results of line source method.

  7. User Interaction Modeling and Profile Extraction in Interactive Systems: A Groupware Application Case Study †

    Science.gov (United States)

    Tîrnăucă, Cristina; Duque, Rafael; Montaña, José L.

    2017-01-01

    A relevant goal in human–computer interaction is to produce applications that are easy to use and well-adjusted to their users’ needs. To address this problem it is important to know how users interact with the system. This work constitutes a methodological contribution capable of identifying the context of use in which users perform interactions with a groupware application (synchronous or asynchronous) and provides, using machine learning techniques, generative models of how users behave. Additionally, these models are transformed into a text that describes in natural language the main characteristics of the interaction of the users with the system. PMID:28726762

  8. Model comparisons and genetic and environmental parameter ...

    African Journals Online (AJOL)

    arc

    Model comparisons and genetic and environmental parameter estimates of growth and the ... breeding strategies and for accurate breeding value estimation. The objectives ...... Sci. 23, 72-76. Van Wyk, J.B., Fair, M.D. & Cloete, S.W.P., 2003.

  9. Effects of economic interactions on credit risk

    International Nuclear Information System (INIS)

    Hatchett, J P L; Kuehn, R

    2006-01-01

    We study a credit-risk model which captures effects of economic interactions on a firm's default probability. Economic interactions are represented as a functionally defined graph, and the existence of both cooperative and competitive business relations is taken into account. We provide an analytic solution of the model in a limit where the number of business relations of each company is large, but the overall fraction of the economy with which a given company interacts may be small. While the effects of economic interactions are relatively weak in typical (most probable) scenarios, they are pronounced in situations of economic stress, and thus lead to a substantial fattening of the tails of loss distributions in large loan portfolios. This manifests itself in a pronounced enhancement of the value at risk computed for interacting economies in comparison with their non-interacting counterparts

  10. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

    Science.gov (United States)

    Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

    2016-03-01

    In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Designing experiments and analyzing data a model comparison perspective

    CERN Document Server

    Maxwell, Scott E

    2013-01-01

    Through this book's unique model comparison approach, students and researchers are introduced to a set of fundamental principles for analyzing data. After seeing how these principles can be applied in simple designs, students are shown how these same principles also apply in more complicated designs. Drs. Maxwell and Delaney believe that the model comparison approach better prepares students to understand the logic behind a general strategy of data analysis appropriate for various designs; and builds a stronger foundation, which allows for the introduction of more complex topics omitt

  12. An introduction to the interacting boson model

    International Nuclear Information System (INIS)

    Iachello, F.

    1981-01-01

    This chapter introduces an alternative, algebraic, description of the properties of nuclei with several particles outside the closed shells. Focuses on the group theory of the interacting boson model. Discusses the group structure of the boson Hamiltonian; subalgebras; the classification of states; dynamical symmetry; electromagnetic transition rates; transitional classes; and general cases. Omits a discussion of the latest developments (e.g., the introduction of proton and neutron degrees of freedom); the spectra of odd-A nuclei; and the bosonfermion model. Concludes that the major new feature of the interacting boson model is the introduction and systematic exploitation of algebraic techniques, which allows a simple and detailed description of many nuclear properties

  13. Image potential in the interaction of fast ions with carbon nanotubes: A comparison between the one- and two-fluid hydrodynamic models

    International Nuclear Information System (INIS)

    Karbunar, L.; Borka, D.; Radović, I.; Mišković, Z.L.

    2015-01-01

    Highlights: • We study the interaction of protons with carbon nanotubes under channeling conditions. • We use the linearized, 2D, one-fluid and two-fluid hydrodynamic models. • The image potential for a proton moving parallel to the nanotube axis is calculated. • Results for the image potential are compared for different types of nanotubes. • We also compute the angular and spatial distributions of channeled protons. - Abstract: We study the interaction of charged particles with four different types of single-walled carbon nanotubes (SWNTs) under channeling conditions by means of the linearized, two dimensional, one-fluid and two-fluid hydrodynamic models. The models are used to calculate the image potential for protons moving parallel to the axis of the SWNTs at the speeds up to 10 a.u. Numerical results are obtained to show the influence of the damping factor, the nanotube radius, and the particle position on the image potential inside the nanotube. We also compute the spatial and angular distributions of protons and compare them for the two models

  14. Nonlinear interaction model of subsonic jet noise.

    Science.gov (United States)

    Sandham, Neil D; Salgado, Adriana M

    2008-08-13

    Noise generation in a subsonic round jet is studied by a simplified model, in which nonlinear interactions of spatially evolving instability modes lead to the radiation of sound. The spatial mode evolution is computed using linear parabolized stability equations. Nonlinear interactions are found on a mode-by-mode basis and the sound radiation characteristics are determined by solution of the Lilley-Goldstein equation. Since mode interactions are computed explicitly, it is possible to find their relative importance for sound radiation. The method is applied to a single stream jet for which experimental data are available. The model gives Strouhal numbers of 0.45 for the most amplified waves in the jet and 0.19 for the dominant sound radiation. While in near field axisymmetric and the first azimuthal modes are both important, far-field sound is predominantly axisymmetric. These results are in close correspondence with experiment, suggesting that the simplified model is capturing at least some of the important mechanisms of subsonic jet noise.

  15. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    Science.gov (United States)

    Devi, Y. D.; Kota, V. K. B.

    1993-07-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150Nd.

  16. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1993-01-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150 Nd

  17. Non-perturbative effective interactions in the standard model

    CERN Document Server

    Arbuzov, Boris A

    2014-01-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...

  18. Comparison of heat transfer models for reciprocating compressor

    International Nuclear Information System (INIS)

    Tuhovcak, J.; Hejcik, J.; Jicha, M.

    2016-01-01

    Highlights: • Comparison of integral heat transfer models. • Influence of heat transfer model on volumetric and isentropic efficiency. • Various gases used as working fluid. - Abstract: One of the main factors affecting the efficiency of reciprocating compressor is heat transfer inside the cylinder. An analysis of heat transfer could be done using numerical models or integral correlations developed mainly from approaches used in combustion engines; however their accuracy is not completely verified due to the complicated experimental set up. The goal of this paper is to analyse the effect of heat transfer on compressor efficiency. Various integral correlations were compared for different compressor settings and fluids. CoolProp library was used in the code to obtain the properties of common coolants and gases. A comparison was done using the in-house code developed in Matlab, based on 1st Law of Thermodynamics.

  19. Pedagogical Interaction in High School, the Structural and Functional Model of Pedagogical Interaction

    Science.gov (United States)

    Semenova, Larissa A.; Kazantseva, Anastassiya I.; Sergeyeva, Valeriya V.; Raklova, Yekaterina M.; Baiseitova, Zhanar B.

    2016-01-01

    The study covers the problems of pedagogical technologies and their experimental implementation in the learning process. The theoretical aspects of the "student-teacher" interaction are investigated. A structural and functional model of pedagogical interaction is offered, which determines the conditions for improving pedagogical…

  20. Interacting p- Boson model with isospin

    International Nuclear Information System (INIS)

    Chen, C.H.-T.

    A description of collective states in self-conjugate nuclei is proposed, both odd-odd and even-even, in terms of an interacting isoscalar p-boson model. Within this model, two limiting cases can be identified with the anharmonic vibrator and axial rotor limits of the classical geometrical description. (Author) [pt

  1. COMPARISON OF CLASSICAL AND INTERACTIVE MULTI-ROBOT EXPLORATION STRATEGIES IN POPULATED ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Nassim Kalde

    2015-06-01

    Full Text Available Multi-robot exploration consists in coordinating robots for mapping an unknown environment. It raises several issues concerning task allocation, robot control, path planning and communication. We study exploration in populated environments, in which pedestrian flows can severely impact performances. However, humans have adaptive skills for taking advantage of these flows while moving. Therefore, in order to exploit these human abilities, we propose a novel exploration strategy that explicitly allows for human-robot interactions. Our model for exploration in populated environments combines the classical frontier-based strategy with our interactive approach. We implement interactions where robots can locally choose a human guide to follow and define a parametric heuristic to balance interaction and frontier assignments. Finally, we evaluate to which extent human presence impacts our exploration model in terms of coverage ratio, travelled distance and elapsed time to completion.

  2. Comparison between phase shift derived and exactly calculated nucleon--nucleon interaction matrix elements

    International Nuclear Information System (INIS)

    Gregersen, A.W.

    1977-01-01

    A comparison is made between matrix elements calculated using the uncoupled channel Sussex approach to second order in DWBA and matrix elements calculated using a square well potential. The square well potential illustrated the problem of the determining parameter independence balanced with the concept of phase shift difference. The super-soft core potential was used to discuss the systematics of the Sussex approach as a function of angular momentum as well as the relation between Sussex generated and effective interaction matrix elements. In the uncoupled channels the original Sussex method of extracting effective interaction matrix elements was found to be satisfactory. In the coupled channels emphasis was placed upon the 3 S 1 -- 3 D 1 coupled channel matrix elements. Comparison is made between exactly calculated matrix elements, and matrix elements derived using an extended formulation of the coupled channel Sussex method. For simplicity the potential used is a nonseparable cut-off oscillator. The eigenphases of this potential can be made to approximate the realistic nucleon--nucleon phase shifts at low energies. By using the cut-off oscillator test potential, the original coupled channel Sussex method of determining parameter independence was shown to be incapable of accurately reproducing the exact cut-off oscillator matrix elements. The extended Sussex method was found to be accurate to within 10 percent. The extended method is based upon more general coupled channel DWBA and a noninfinite oscillator wave function solution to the cut-off oscillator auxiliary potential. A comparison is made in the coupled channels between matrix elements generated using the original Sussex method and the extended method. Tables of matrix elements generated using the original uncoupled channel Sussex method and the extended coupled channel Sussex method are presented for all necessary angular momentum channels

  3. Spatially balanced topological interaction grants optimal cohesion in flocking models.

    Science.gov (United States)

    Camperi, Marcelo; Cavagna, Andrea; Giardina, Irene; Parisi, Giorgio; Silvestri, Edmondo

    2012-12-06

    Models of self-propelled particles (SPPs) are an indispensable tool to investigate collective animal behaviour. Originally, SPP models were proposed with metric interactions, where each individual coordinates with neighbours within a fixed metric radius. However, recent experiments on bird flocks indicate that interactions are topological: each individual interacts with a fixed number of neighbours, irrespective of their distance. It has been argued that topological interactions are more robust than metric ones against external perturbations, a significant evolutionary advantage for systems under constant predatory pressure. Here, we test this hypothesis by comparing the stability of metric versus topological SPP models in three dimensions. We show that topological models are more stable than metric ones. We also show that a significantly better stability is achieved when neighbours are selected according to a spatially balanced topological rule, namely when interacting neighbours are evenly distributed in angle around the focal individual. Finally, we find that the minimal number of interacting neighbours needed to achieve fully stable cohesion in a spatially balanced model is compatible with the value observed in field experiments on starling flocks.

  4. Semi-local invariance in Ising models with multi-spin interaction

    International Nuclear Information System (INIS)

    Lipowski, A.

    1996-08-01

    We examine implications of semi-local invariance in Ising models with multispin interaction. In ergodic models all spin-spin correlation functions vanish and the local symmetry is the same as in locally gauge-invariant models. The d = 3 model with four-spin interaction is nonergodic at low temperature but the magnetic symmetry remains unbroken. The d = 3 model with eight-spin interaction is ergodic but undergoes the phase transition and most likely its low-temperature phase is characterized by a nonlocal order parameter. (author). 7 refs, 1 fig

  5. On the shapes of the presumed probability density function for the modeling of turbulence-radiation interactions

    International Nuclear Information System (INIS)

    Liu, L.H.; Xu, X.; Chen, Y.L.

    2004-01-01

    The laminar flamelet equations in combination with the joint probability density function (PDF) transport equation of mixture fraction and turbulence frequency have been used to simulate turbulent jet diffusion flames. To check the suitability of the presumed shapes of the PDF for the modeling of turbulence-radiation interactions (TRI), two types of presumed joint PDFs are constructed by using the second-order moments of temperature and the species concentrations, which are derived by the laminar flamelet model. The time-averaged radiative source terms and the time-averaged absorption coefficients are calculated by the presumed joint PDF approaches, and compared with those obtained by the laminar flamelet model. By comparison, it is shown that there are obvious differences between the results of the independent PDF approach and the laminar flamelet model. Generally, the results of the dependent PDF approach agree better with those of the flamelet model. For the modeling of TRI, the dependent PDF approach is superior to the independent PDF approach

  6. Study of the Deformation/Interaction Model: How Interactions Increase the Reaction Barrier

    Directory of Open Access Journals (Sweden)

    Zhiling Liang

    2018-01-01

    Full Text Available The interactions (including weak interactions between dienophiles and dienes play an important role in the Diels-Alder reaction. To elucidate the influence of these interactions on the reactivity, a popular DFT functional and a variational DFT functional corrected with dispersion terms are used to investigate different substituent groups incorporated on the dienophiles and dienes. The bond order is used to track the trajectory of the cycloaddition reaction. The deformation/interaction model is used to obtain the interaction energy from the reactant complex to the inflection point until reaching the saddle point. The interaction energy initially increases with a decrease in the interatomic distance, reaching a maximum value, but then decreases when the dienophiles and dienes come closer. Reduced density gradient and chemical energy component analysis are used to analyse the interaction. Traditional transition state theory and variational transition state theory are used to obtain the reaction rates. The influence of tunneling on the reaction rate is also discussed.

  7. MODELLING THE DELAMINATION FAILURE ALONG THE CFRP-CFST BEAM INTERACTION SURFACE USING DIFFERENT FINITE ELEMENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    AHMED W. AL-ZAND

    2017-01-01

    Full Text Available Nonlinear finite element (FE models are prepared to investigate the behaviour of concrete-filled steel tube (CFST beams strengthened by carbon fibre reinforced polymer (CFRP sheets. The beams are strengthened from the bottom side only by varied sheet lengths (full and partial beam lengths and then subjected to ultimate flexural loads. Three surface interaction techniques are used to implement the bonding behaviour between the steel tube and the CFRP sheet, namely, full tie interaction (TI, cohesive element (CE and cohesive behaviour (CB techniques using ABAQUS software. Results of the comparison between the FE analysis and existing experimental study confirm that the FE models with the TI technique could be applicable for beams strengthened by CFRP sheets with a full wrapping length; the technique could not accurately implement the CFRP delamination failure, which occurred for beams with a partial wrapping length. Meanwhile, the FE models with the CE and CB techniques are applicable in the implementation of both CFRP failures (rapture and delamination for both full and partial wrapping lengths, respectively. Where, the ultimate loads' ratios achieved by the FE models using TI, CE and CB techniques about 1.122, 1.047 and 1.045, respectively, comparing to the results of existing experimental tests.

  8. Comparisons of Air Radiation Model with Shock Tube Measurements

    Science.gov (United States)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  9. A comparison of linear tyre models for analysing shimmy

    NARCIS (Netherlands)

    Besselink, I.J.M.; Maas, J.W.L.H.; Nijmeijer, H.

    2011-01-01

    A comparison is made between three linear, dynamic tyre models using low speed step responses and yaw oscillation tests. The match with the measurements improves with increasing complexity of the tyre model. Application of the different tyre models to a two degree of freedom trailing arm suspension

  10. Heat transfer modelling of pulsed laser-tissue interaction

    Science.gov (United States)

    Urzova, J.; Jelinek, M.

    2018-03-01

    Due to their attributes, the application of medical lasers is on the rise in numerous medical fields. From a biomedical point of view, the most interesting applications are the thermal interactions and the photoablative interactions, which effectively remove tissue without excessive heat damage to the remaining tissue. The objective of this work is to create a theoretical model for heat transfer in the tissue following its interaction with the laser beam to predict heat transfer during medical laser surgery procedures. The dimensions of the ablated crater (shape and ablation depth) were determined by computed tomography imaging. COMSOL Multiphysics software was used for temperature modelling. The parameters of tissue and blood, such as density, specific heat capacity, thermal conductivity and diffusivity, were calculated from the chemical ratio. The parameters of laser-tissue interaction, such as absorption and reflection coefficients, were experimentally determined. The parameters of the laser beam were power density, repetition frequency, pulse length and spot dimensions. Heat spreading after laser interaction with tissue was captured using a Fluke thermal camera. The model was verified for adipose tissue, skeletal muscle tissue and heart muscle tissue.

  11. Hysteretic Models Considering Axial-Shear-Flexure Interaction

    Science.gov (United States)

    Ceresa, Paola; Negrisoli, Giorgio

    2017-10-01

    Most of the existing numerical models implemented in finite element (FE) software, at the current state of the art, are not capable to describe, with enough reliability, the interaction between axial, shear and flexural actions under cyclic loading (e.g. seismic actions), neglecting crucial effects for predicting the nature of the collapse of reinforced concrete (RC) structural elements. Just a few existing 3D volume models or fibre beam models can lead to a quite accurate response, but they are still computationally inefficient for typical applications in earthquake engineering and also characterized by very complex formulation. Thus, discrete models with lumped plasticity hinges may be the preferred choice for modelling the hysteretic behaviour due to cyclic loading conditions, in particular with reference to its implementation in a commercial software package. These considerations lead to this research work focused on the development of a model for RC beam-column elements able to consider degradation effects and interaction between the actions under cyclic loading conditions. In order to develop a model for a general 3D discrete hinge element able to take into account the axial-shear-flexural interaction, it is necessary to provide an implementation which involves a corrector-predictor iterative scheme. Furthermore, a reliable constitutive model based on damage plasticity theory is formulated and implemented for its numerical validation. Aim of this research work is to provide the formulation of a numerical model, which will allow implementation within a FE software package for nonlinear cyclic analysis of RC structural members. The developed model accounts for stiffness degradation effect and stiffness recovery for loading reversal.

  12. Comparison of four different models of vortex generators

    DEFF Research Database (Denmark)

    Fernandez, U.; Réthoré, Pierre-Elouan; Sørensen, Niels N.

    2012-01-01

    A detailed comparison between four different models of vortex generators is presented in this paper. To that end, a single Vortex Generator on a flat plate test case has been designed and solved by the following models. The first one is the traditional mesh-resolved VG and the second one, called...

  13. Comparison of 9-hydroxy-artemisinin with artemisinin: interaction with bovine hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Mengsi; Yuan, Xiuxue; Xie, Wenli; Ge, Xuefeng [Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Analysis and Testing Center, Key Laboratory of applied photochemistry, Nanjing Normal University, Nanjing 210023 (China); Zhou, Yanhuai [Department of Physical Science and Technology, Nanjing Normal University, Nanjing 210023 (China); Zhou, Lin, E-mail: zhoulin@njnu.edu.cn [Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Analysis and Testing Center, Key Laboratory of applied photochemistry, Nanjing Normal University, Nanjing 210023 (China); Zhou, Jiahong, E-mail: zhoujiahong@njnu.edu.cn [Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Analysis and Testing Center, Key Laboratory of applied photochemistry, Nanjing Normal University, Nanjing 210023 (China); Shen, Jian [Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Analysis and Testing Center, Key Laboratory of applied photochemistry, Nanjing Normal University, Nanjing 210023 (China)

    2015-04-15

    In this article, the UV–vis absorption, steady state/time resolved fluorescence spectroscopy and synchronous fluorescence, circular dichrosim (CD) spectroscopy are used to investigate the interaction of artemisinin (QHS) and 9-hydroxy-artemisinin (9-OH QHS) with BHb, respectively. The UV–vis studies present that QHS and 9-OH QHS can disturb the structure of bovine hemoglobin (BHb). Fluorescence data presents that the binding constant of QHS and 9-OH QHS with BHb complex at 298 K is 4.32×10{sup 5} and 5.98×10{sup 5} M{sup −1}. CD spectra indicate QHS and 9-OH QHS can change the conformation of BHb. The comparison results suggest that the binding of BHb with 9-OH QHS is more stable and stronger than QHS, which means the structure modification of 9-OH QHS is meaningful. - Highlights: • QHS and 9-OH QHS both induce the heme group of BHb • QHS and 9-OH QHS both can change the polarity of BHb • The interaction between BHb and 9-OH QHS is stronger than QHS.

  14. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sören

    2017-11-22

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of a plant and the exothermic reaction of the combustion. Coupled with realistic physics for rods, the particles enable dynamic branch motions. We model material properties, such as moisture and charring behavior, and associate them with individual particles. The combustion is efficiently processed in the surface domain of the tree model on a polygonal mesh. A user can dynamically interact with the model by initiating fires and by inducing stress on branches. The flames realistically propagate through the tree model by consuming the available resources. Our method runs at interactive rates and supports multiple tree instances in parallel. We demonstrate the effectiveness of our approach through numerous examples and evaluate its plausibility against the combustion of real wood samples.

  15. Fluctuation instability of the Dirac Sea in quark models of strong interactions

    Science.gov (United States)

    Zinovjev, G. M.; Molodtsov, S. V.

    2016-03-01

    A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac sea (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac sea, a neutral ensemble, a color superconductor, and a Bardeen-Cooper-Schrieffer (BCS) state, was performed. In the presence of color quark interaction, a BCS state is unambiguously chosen as the ground state of the quark ensemble.

  16. Fluctuation instability of the Dirac Sea in quark models of strong interactions

    International Nuclear Information System (INIS)

    Zinovjev, G. M.; Molodtsov, S. V.

    2016-01-01

    A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac sea (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac sea, a neutral ensemble, a color superconductor, and a Bardeen–Cooper–Schrieffer (BCS) state, was performed. In the presence of color quark interaction, a BCS state is unambiguously chosen as the ground state of the quark ensemble.

  17. Fluctuation instability of the Dirac Sea in quark models of strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zinovjev, G. M., E-mail: Gennady.Zinovjev@cern.ch [National Academy of Sciences of Ukraine, Bogolyubov Institute for Theoretical Physics (Ukraine); Molodtsov, S. V. [Joint Institute for Nuclear Research (Russian Federation)

    2016-03-15

    A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac sea (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac sea, a neutral ensemble, a color superconductor, and a Bardeen–Cooper–Schrieffer (BCS) state, was performed. In the presence of color quark interaction, a BCS state is unambiguously chosen as the ground state of the quark ensemble.

  18. Modelling the interaction between flooding events and economic growth

    Directory of Open Access Journals (Sweden)

    J. Grames

    2015-06-01

    Full Text Available Socio-hydrology describes the interaction between the socio-economy and water. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre et al., 2013; Viglione et al., 2014. These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. In order to build this first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events, we transform an existing descriptive stochastic model into an optimal deterministic model. The intermediate step is to formulate and simulate a descriptive deterministic model. We develop a periodic water function to approximate the former discrete stochastic time series of rainfall events. Due to the non-autonomous exogenous periodic rainfall function the long-term path of consumption and investment will be periodic.

  19. Development and application of an oil spill model with wave–current interactions in coastal areas

    International Nuclear Information System (INIS)

    Guo, WeiJun; Hao, Yanni; Zhang, Li; Xu, Tiaojian; Ren, Xiaozhong; Cao, Feng; Wang, Shoudong

    2014-01-01

    Highlights: • Numerical oil spill developed by incorporating wave–current interactions and applied to hindcasting the Dalian oil spill. • Numerical model results taking into wave–current coupling shows better conformity with the observed data. • Oil dispersion will be enhanced due to the gradient of surface wave radiation stress in the coastal waters. - Abstract: The present paper focuses on developing a numerical oil spill model that incorporates the full three-dimensional wave–current interactions for a better representation of the spilled oil transport mechanics in complicated coastal environments. The incorporation of surface wave effects is not only imposing a traditional drag coefficient formulation at the free surface, but also the 3D momentum equations are adjusted to include the impact of the vertically dependent radiation stresses on the currents. Based on the current data from SELFE and wave data from SWAN, the oil spill model utilizes oil particle method to predict the trajectory of individual droplets and the oil concentration. Compared with the observations in Dalian New Port oil spill event, the developed model taking into account wave–current coupling administers to giving better conformity than the one without. The comparisons demonstrates that 3D radiation stress impacts the spill dynamics drastically near the sea surface and along the coastline, while having less impact in deeper water

  20. Modeling the interaction of light intensity, nutrient concentration and uranium toxicity in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, E.; Horemans, N.; Vandenhove, H. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Cedergreen, N. [University of Copenhagen (Denmark); Jager, T. [Vrije Universiteit Amsterdam (Netherlands)

    2014-07-01

    Radioecology aims at assessing the effect of radionuclides and radiation on the environment. Since we cannot test every possible environmental situation in the laboratory, we need modeling approaches to extrapolate the results of toxicity assays to environmentally relevant scenarios. Therefore, it is of crucial importance to understand the effect of relevant environmental factors, such as nutrients, temperature and light on the toxicity of the test. Radionuclides are often found to induce the production of reactive oxygen species (ROS). In plants, an overload of ROS can lead to disturbances of the photosynthetic system. Since the light intensity determines the efficiency of the photo-systems in plants, it can be expected to interact with the effect of radionuclides. The nutrient concentration of the test medium determines the physiological state of the plant, affecting in turn the plant's capability of dealing with stress and hence influences the toxicity of the contaminant. To study the interaction of stressors with environmental conditions, mechanistic effect modeling is promoted widely in ecotoxicology. In principle, the modelling aims at a mechanistic understanding of the different processes causing the stress individually, and integrating them in one framework to study their joint effect and possible interaction. We here present a mechanistic effect model for Lemna minor (common duckweed), which is based on Dynamic Energy Budget (DEB) theory. Models based on DEB have been used widely to study the effects of compounds on animals. Due to its general applicability to all types of organisms, it holds potential to be used for comparison of species and compounds in a broad context. Energy uptake from the environment is modeled explicitly, and metabolic rates are set to depend on temperature in DEB models. Therefore, they can be used to extrapolate effects to a wide range of environmentally relevant scenarios. Until now, the DEB research in ecotoxicology has

  1. Liquid nitrogen - water interaction experiments for fusion reactor accident scenarios

    International Nuclear Information System (INIS)

    Duckworth, R.; Murphy, J.; Pfotenhauer, J.; Corradini, M.

    2001-01-01

    With the implementation of superconducting magnets in fusion reactors, the possibility exists for the interaction between water and cryogenic systems. The interaction between liquid nitrogen and water was investigated experimentally and numerically. The rate of pressurization and peak pressure were found to be driven thermodynamically by the expansion of the water and the boil-off of the liquid nitrogen and did not have a vapor explosion nature. Since the peak pressure was small in comparison to previous work with stratified geometries, the role of the geometry of the interacting fluids has been shown to be significant. Comparisons of the peak pressure and the rate of pressurization with respect to the ratio of the liquid nitrogen mass to water mass reveal no functional dependence as was observed in the liquid helium-water experiments. A simple thermodynamic model provides a fairly good description of the pressure rise data. From the data, the model will allow one to extract the interaction area of the water. As with previous liquid helium-water interaction experiments, more extensive investigation of the mass ratio and interaction geometry is needed to define boundaries between explosive and non-explosive conditions. (authors)

  2. Ferromagnetic Potts models with multisite interaction

    Science.gov (United States)

    Schreiber, Nir; Cohen, Reuven; Haber, Simi

    2018-03-01

    We study the q -state Potts model with four-site interaction on a square lattice. Based on the asymptotic behavior of lattice animals, it is argued that when q ≤4 the system exhibits a second-order phase transition and when q >4 the transition is first order. The q =4 model is borderline. We find 1 /lnq to be an upper bound on Tc, the exact critical temperature. Using a low-temperature expansion, we show that 1 /(θ lnq ) , where θ >1 is a q -dependent geometrical term, is an improved upper bound on Tc. In fact, our findings support Tc=1 /(θ lnq ) . This expression is used to estimate the finite correlation length in first-order transition systems. These results can be extended to other lattices. Our theoretical predictions are confirmed numerically by an extensive study of the four-site interaction model using the Wang-Landau entropic sampling method for q =3 ,4 ,5 . In particular, the q =4 model shows an ambiguous finite-size pseudocritical behavior.

  3. 3D shape decomposition and comparison for gallbladder modeling

    Science.gov (United States)

    Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen

    2011-03-01

    This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.

  4. Air-sea interactions during strong winter extratropical storms

    Science.gov (United States)

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  5. Real and financial interacting markets: A behavioral macro-model

    International Nuclear Information System (INIS)

    Naimzada, Ahmad; Pireddu, Marina

    2015-01-01

    Highlights: •We propose a model in which the real sector and the stock market interact. •In the stock market there are optimistic and pessimistic fundamentalists. •We detect the mechanisms through which instabilities get transmitted between markets. •In order to perform such analysis, we introduce the “interaction degree approach”. •We show the effects of increasing the interaction degree between the two markets. -- Abstract: In the present paper we propose a model in which the real side of the economy, described via a Keynesian good market approach, interacts with the stock market with heterogeneous speculators, i.e., optimistic and pessimistic fundamentalists, that respectively overestimate and underestimate the reference value due to a belief bias. Agents may switch between optimism and pessimism according to which behavior is more profitable. To the best of our knowledge, this is the first contribution considering both real and financial interacting markets and an evolutionary selection process for which an analytical study is performed. Indeed, employing analytical and numerical tools, we detect the mechanisms and the channels through which the stability of the isolated real and financial sectors leads to instability for the two interacting markets. In order to perform such analysis, we introduce the “interaction degree approach”, which allows us to study the complete three-dimensional system by decomposing it into two subsystems, i.e., the isolated financial and real markets, easier to analyze, that are then linked through a parameter describing the interaction degree between the two markets. We derive the stability conditions both for the isolated markets and for the whole system with interacting markets. Next, we show how to apply the interaction degree approach to our model. Among the various scenarios we are led to analyze, the most interesting one is that in which the isolated markets are stable, but their interaction is destabilizing

  6. Integrated water flow model and modflow-farm process: A comparison of theory, approaches, and features of two integrated hydrologic models

    Science.gov (United States)

    Dogrul, Emin C.; Schmid, Wolfgang; Hanson, Randall T.; Kadir, Tariq; Chung, Francis

    2016-01-01

    Effective modeling of conjunctive use of surface and subsurface water resources requires simulation of land use-based root zone and surface flow processes as well as groundwater flows, streamflows, and their interactions. Recently, two computer models developed for this purpose, the Integrated Water Flow Model (IWFM) from the California Department of Water Resources and the MODFLOW with Farm Process (MF-FMP) from the US Geological Survey, have been applied to complex basins such as the Central Valley of California. As both IWFM and MFFMP are publicly available for download and can be applied to other basins, there is a need to objectively compare the main approaches and features used in both models. This paper compares the concepts, as well as the method and simulation features of each hydrologic model pertaining to groundwater, surface water, and landscape processes. The comparison is focused on the integrated simulation of water demand and supply, water use, and the flow between coupled hydrologic processes. The differences in the capabilities and features of these two models could affect the outcome and types of water resource problems that can be simulated.

  7. On Parametric Sensitivity of Reynolds-Averaged Navier-Stokes SST Turbulence Model: 2D Hypersonic Shock-Wave Boundary Layer Interactions

    Science.gov (United States)

    Brown, James L.

    2014-01-01

    Examined is sensitivity of separation extent, wall pressure and heating to variation of primary input flow parameters, such as Mach and Reynolds numbers and shock strength, for 2D and Axisymmetric Hypersonic Shock Wave Turbulent Boundary Layer interactions obtained by Navier-Stokes methods using the SST turbulence model. Baseline parametric sensitivity response is provided in part by comparison with vetted experiments, and in part through updated correlations based on free interaction theory concepts. A recent database compilation of hypersonic 2D shock-wave/turbulent boundary layer experiments extensively used in a prior related uncertainty analysis provides the foundation for this updated correlation approach, as well as for more conventional validation. The primary CFD method for this work is DPLR, one of NASA's real-gas aerothermodynamic production RANS codes. Comparisons are also made with CFL3D, one of NASA's mature perfect-gas RANS codes. Deficiencies in predicted separation response of RANS/SST solutions to parametric variations of test conditions are summarized, along with recommendations as to future turbulence approach.

  8. Modeling the Thermal Interactions of Meteorites Below the Antarctic Ice

    Science.gov (United States)

    Oldroyd, William Jared; Radebaugh, Jani; Stephens, Denise C.; Lorenz, Ralph; Harvey, Ralph; Karner, James

    2017-10-01

    Meteorites with high specific gravities, such as irons, appear to be underrepresented in Antarctic collections over the last 40 years. This underrepresentation is in comparison with observed meteorite falls, which are believed to represent the actual population of meteorites striking Earth. Meteorites on the Antarctic ice sheet absorb solar flux, possibly leading to downward tunneling into the ice, though observations of this in action are very limited. This descent is counteracted by ice sheet flow supporting the meteorites coupled with ablation near mountain margins, which helps to force meteorites towards the surface. Meteorites that both absorb adequate thermal energy and are sufficiently dense may instead reach a shallow equilibrium depth as downward melting overcomes upward forces during the Antarctic summer. Using a pyronometer, we have measured the incoming solar flux at multiple depths in two deep field sites in Antarctica, the Miller Range and Elephant Moraine. We compare these data with laboratory analogues and model the thermal and physical interactions between a variety of meteorites and their surroundings. Our Matlab code model will account for a wide range of parameters used to characterize meteorites in an Antarctic environment. We will present the results of our model along with depth estimates for several types of meteorites. The recovery of an additional population of heavy meteorites would increase our knowledge of the formation and composition of the solar system.

  9. Comparison of interacting boson-fermion model with spin-dependent generalized collective model for the j=3/2

    International Nuclear Information System (INIS)

    Baktybaev, K.; Koilyk, N.; Ramankulov, K.

    2006-01-01

    Full text: Collective Schrodinger equations are applied to describe low-energy spectra of even-even nuclei [1]. Spectra for even-odd nuclei are calculated by coupling the single particle degrees of freedom to the collective degree of freedom of the core nucleus, which is of even-even type. The collective spin has a value of 3/2. This leads to the assumption that the linearized equation may be applied to describe nuclei with spin 3/2 in the ground state. Good description of the low energy spectra and electromagnetic transition probabilities can be obtained only with introduction of spin-dependent potentials, which apart from coordinates and momenta also depend on the matrices of the Clifford algebra arising in the linearization,. The interacting boson-fermion models (IBFM) [2] represent another approach to describe spectra of even-odd nuclei. For even-odd nuclei with spin 3/2 in the ground state one uses so-called j=3/2 - IBFM, which is also denoted as the U B (6)xU F (4) IBFM. In this paper we establish the relation between the matrices of the Clifford algebra, which arise in the linearization procedure, and the fermion operators of the j=3/2 IBFM. This allows us to establish a connection between the j=3/2 IBFM and spin dependent generalized collective model (SGCM). The results of the SGCM for Ir and Au nuclei are presented and compared with the results of the j=3/2 IBFM with a dynamical spin symmetry [3] present. In this respect we could apply the linearized collective Schrodinger equation and IBFM with arbitrary spin to all other even-odd nuclei. (author)

  10. Weak interaction potentials of nucleons in the Weinberg-Salam model

    International Nuclear Information System (INIS)

    Lobov, G.A.

    1979-01-01

    Weak interaction potentials of nucleons due to the nonet vector meson exchange are obtained in the Weinberg-Salam model using the vector-meson dominance. Contribution from the hadronic neutral currents to the weak interaction potential due to the charged pion exchange is obtained. The isotopic structure of the obtained potentials, that is unambiguous in the Weinberg-Salam model, is investigated. Enhancement of the nucleon weak interaction in nuclei resulting from the hadronic neutral currents is discussed. A nuclear one-particle weak interaction potential is presented that is a result of averaging of the two-particle potential over the states of the nuclear core. An approach to the nucleon weak interaction based on the quark model, is discussed. Effects of the nucleon weak interaction in the radiative capture of a thermal neutron by a proton, are considered

  11. Tip studies using CFD and comparison with tip loss models

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Johansen, J.

    2004-01-01

    The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD......The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD...

  12. Variable sound speed in interacting dark energy models

    Science.gov (United States)

    Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy

    2018-04-01

    We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.

  13. Improved degree of conversion of model self-etching adhesives through their interaction with dentin

    Science.gov (United States)

    Zhang, Ying; Wang, Yong

    2011-01-01

    Objective To investigate the correlation of the chemical interaction between model self-etching adhesives and dentin with the degree of conversion (DC) of the adhesives. Methods The model self-etching adhesives contained bis[2-methacryloyloxy)ethyl] phosphate (2MP) and 2-hydroxyethyl methacrylate (HEMA) with a mass ratio of 1/1, and 0-40% water contents, respectively. The adhesives were applied either onto the prepared dentin surface or unreactive substrates (such as glass slides), agitated for 15s, then light-cured for 40s. The DCs of the adhesives were determined using micro-Raman spectral and mapping analysis. Results The DCs of the adhesives cured on the dentin substrate were found to be significantly higher than those on the unreactive glass substrate. Moreover, the DCs of the adhesives displayed a decreasing trend as the distance from the dentin surface became greater. The chemical interaction of the acidic 2MP/HEMA adhesives with the mineral apatite in dentin was proposed to play a significant role for the observations. The chemical interaction could be validated by the spectral comparison in the phosphate regions of 1100 cm−1 and 960 cm−1 in the Raman spectra. The results also revealed a notable influence of water content on the DC of adhesives. The DCs of the adhesive at 10% water content exhibited the highest DC level for both substrates. Conclusions Interaction with dentin dramatically improved the degree of conversion of self-etching adhesives. Our ability to chemically characterize the a/d interface including in situ detection of the DC distribution is very important in understanding self-etching adhesive bonding under in vivo conditions. PMID:22024375

  14. Improved degree of conversion of model self-etching adhesives through their interaction with dentine.

    Science.gov (United States)

    Zhang, Ying; Wang, Yong

    2012-01-01

    To investigate the correlation of the chemical interaction between model self-etching adhesives and dentine with the degree of conversion (DC) of the adhesives. The model self-etching adhesives contained bis[2-methacryloyloxy)ethyl] phosphate (2MP) and 2-hydroxyethyl methacrylate (HEMA) with a mass ratio of 1/1, and 0-40% water contents, respectively. The adhesives were applied either onto the prepared dentine surface or unreactive substrates (such as glass slides), agitated for 15s, then light-cured for 40s. The DCs of the adhesives were determined using micro-Raman spectral and mapping analysis. The DCs of the adhesives cured on the dentine substrate were found to be significantly higher than those on the unreactive glass substrate. Moreover, the DCs of the adhesives displayed a decreasing trend as the distance from the dentine surface became greater. The chemical interaction of the acidic 2MP/HEMA adhesives with the mineral apatite in dentine was proposed to play a significant role for the observations. The chemical interaction could be validated by the spectral comparison in the phosphate regions of 1100 cm(-1) and 960 cm(-1) in the Raman spectra. The results also revealed a notable influence of water content on the DC of adhesives. The DCs of the adhesive at 10% water content exhibited the highest DC level for both substrates. Interaction with dentine dramatically improved the degree of conversion of self-etching adhesives. Our ability to chemically characterise the a/d interface including in situ detection of the DC distribution is very important in understanding self-etching adhesive bonding under in vivo conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Modelling dynamic human-device interaction in healthcare

    OpenAIRE

    Niezen, Gerrit

    2013-01-01

    Errors are typically blamed on human factors, forgetting that the system should have been designed to take them into account and minimise these problems. In our research we are developing tools to design interactive medical devices using human-in-the-loop modelling. Manual control theory is used to describe and analyse the dynamic aspects of human-device interaction.

  16. Modeling of hydrogen interactions with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-01-01

    In this paper, improved mathematical models are developed for hydrogen interactions with beryllium. This includes the saturation effect observed for high-flux implantation of ions from plasmas and retention of tritium produced from neutronic transmutations in beryllium. Use of the models developed is justified by showing how they can replicated experimental data using the TMAP4 tritium transport code. (author)

  17. Data Analysis A Model Comparison Approach, Second Edition

    CERN Document Server

    Judd, Charles M; Ryan, Carey S

    2008-01-01

    This completely rewritten classic text features many new examples, insights and topics including mediational, categorical, and multilevel models. Substantially reorganized, this edition provides a briefer, more streamlined examination of data analysis. Noted for its model-comparison approach and unified framework based on the general linear model, the book provides readers with a greater understanding of a variety of statistical procedures. This consistent framework, including consistent vocabulary and notation, is used throughout to develop fewer but more powerful model building techniques. T

  18. Standard problems to evaluate soil structure interaction computer codes

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.; Philippacopoulos, A.J.

    1979-01-01

    The seismic response of nuclear power plant structures is often calculated using lumped parameter methods. A finite element model of the structure is coupled to the soil with a spring-dashpot system used to represent the interaction process. The parameters of the interaction model are based on analytic solutions to simple problems which are idealizations of the actual problems of interest. The objective of the work reported in this paper is to compare predicted responses using the standard lumped parameter models with experimental data. These comparisons are shown to be good for a fairly uniform soil system and for loadings which do not result in nonlinear interaction effects such as liftoff. 7 references, 7 figures

  19. Systems pharmacology - Towards the modeling of network interactions.

    Science.gov (United States)

    Danhof, Meindert

    2016-10-30

    Mechanism-based pharmacokinetic and pharmacodynamics (PKPD) and disease system (DS) models have been introduced in drug discovery and development research, to predict in a quantitative manner the effect of drug treatment in vivo in health and disease. This requires consideration of several fundamental properties of biological systems behavior including: hysteresis, non-linearity, variability, interdependency, convergence, resilience, and multi-stationarity. Classical physiology-based PKPD models consider linear transduction pathways, connecting processes on the causal path between drug administration and effect, as the basis of drug action. Depending on the drug and its biological target, such models may contain expressions to characterize i) the disposition and the target site distribution kinetics of the drug under investigation, ii) the kinetics of target binding and activation and iii) the kinetics of transduction. When connected to physiology-based DS models, PKPD models can characterize the effect on disease progression in a mechanistic manner. These models have been found useful to characterize hysteresis and non-linearity, yet they fail to explain the effects of the other fundamental properties of biological systems behavior. Recently systems pharmacology has been introduced as novel approach to predict in vivo drug effects, in which biological networks rather than single transduction pathways are considered as the basis of drug action and disease progression. These models contain expressions to characterize the functional interactions within a biological network. Such interactions are relevant when drugs act at multiple targets in the network or when homeostatic feedback mechanisms are operative. As a result systems pharmacology models are particularly useful to describe complex patterns of drug action (i.e. synergy, oscillatory behavior) and disease progression (i.e. episodic disorders). In this contribution it is shown how physiology-based PKPD and

  20. Tensor-optimized shell model for the Li isotopes with a bare nucleon-nucleon interaction

    Science.gov (United States)

    Myo, Takayuki; Umeya, Atsushi; Toki, Hiroshi; Ikeda, Kiyomi

    2012-08-01

    We study the Li isotopes systematically in terms of the tensor-optimized shell model (TOSM) by using a bare nucleon-nucleon interaction as the AV8' interaction. The short-range correlation is treated in the unitary correlation operator method (UCOM). Using the TOSM + UCOM approach, we investigate the role of the tensor force on each spectrum of the Li isotopes. It is found that the tensor force produces quite a characteristic effect on various states in each spectrum and those spectra are affected considerably by the tensor force. The energy difference between the spin-orbit partner, the p1/2 and p3/2 orbits of the last neutron, in 5Li is caused by opposite roles of the tensor correlation. In 6Li, the spin-triplet state in the LS coupling configuration is favored energetically by the tensor force in comparison with jj coupling shell-model states. In 7,8,9Li, the low-lying states containing extra neutrons in the p3/2 orbit are favored energetically due to the large tensor contribution to allow the excitation from the 0s, orbit to the p1/2 orbit by the tensor force. Those three nuclei show the jj coupling character in their ground states which is different from 6Li.

  1. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    2003-11-01

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model. In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented. The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.Key words. Magnetospheric physics (planetary magnetospheres; solar wind-magnetosphere interactions – Space plasma

  2. Learning models of activities involving interacting objects

    DEFF Research Database (Denmark)

    Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.

    2013-01-01

    We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were t...

  3. Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements.

    Science.gov (United States)

    Guivier-Curien, Carine; Deplano, Valérie; Bertrand, Eric

    2009-10-01

    A numerical 3-D fluid-structure interaction (FSI) model of a prosthetic aortic valve was developed, based on a commercial computational fluid dynamics (CFD) software program using an Arbitrary Eulerian Lagrangian (ALE) formulation. To make sure of the validity of this numerical model, an equivalent experimental model accounting for both the geometrical features and the hydrodynamic conditions was also developed. The leaflet and the flow behaviours around the bileaflet valve were investigated numerically and experimentally by performing particle image velocimetry (PIV) measurements. Through quantitative and qualitative comparisons, it was shown that the leaflet behaviour and the velocity fields were similar in both models. The present study allows the validation of a fully coupled 3-D FSI numerical model. The promising numerical tool could be therefore used to investigate clinical issues involving the aortic valve.

  4. Interactive Coherence-Based Façade Modeling

    KAUST Repository

    Musialski, Przemyslaw

    2012-05-01

    We propose a novel interactive framework for modeling building facades from images. Our method is based on the notion of coherence-based editing which allows exploiting partial symmetries across the facade at any level of detail. The proposed workflow mixes manual interaction with automatic splitting and grouping operations based on unsupervised cluster analysis. In contrast to previous work, our approach leads to detailed 3d geometric models with up to several thousand regions per facade. We compare our modeling scheme to others and evaluate our approach in a user study with an experienced user and several novice users.

  5. Uncertainties in soil-plant interactions in advanced models for long-timescale dose assessment

    Energy Technology Data Exchange (ETDEWEB)

    Klos, R. [Aleksandria Sciences Ltd. (United Kingdom); Limer, L. [Limer Scientific Ltd. (United Kingdom); Perez-Sanchez, D. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas - CIEMAT (Spain); Xu, S.; Andersson, P. [Swedish Radiation Safty Authority (Sweden)

    2014-07-01

    looks more closely at the soil-plant interaction in agricultural soils employing a variant of a ten-soil layer, monthly varying model. Results from a simple three-layer representation of the same system allows a comparison of calculated crop concentrations by the two uptake models. Depending on spatio-temporal resolution and conceptual interpretation soil-plant system, results indicate that for weakly and moderately sorbing redox sensitive radionuclides (illustrated here by {sup 79}Se and {sup 129}I respectively) conceptual model uncertainty can be as high as an order of magnitude. Alternative interpretations of contaminant availability and an inverse relationship between soil k{sub d} and availability for uptake further indicate uncertainties of up to one order of magnitude for {sup 79}Se, three for {sup 129}I and as much as four orders of magnitudes for the strongly sorbing {sup 226}Ra. The temporal dynamics of crop inventories suggest a better understanding of soil-plant interactions is required in models for circumstances where prior accumulation is important and short-timescale transients are of concern. The advanced modelling tools employed here offer flexibility. Alternative parameter configurations also allow NORM waste and LLRW as well as HLRW scenarios. Document available in abstract form only. (authors)

  6. Computational Software to Fit Seismic Data Using Epidemic-Type Aftershock Sequence Models and Modeling Performance Comparisons

    Science.gov (United States)

    Chu, A.

    2016-12-01

    Modern earthquake catalogs are often analyzed using spatial-temporal point process models such as the epidemic-type aftershock sequence (ETAS) models of Ogata (1998). My work implements three of the homogeneous ETAS models described in Ogata (1998). With a model's log-likelihood function, my software finds the Maximum-Likelihood Estimates (MLEs) of the model's parameters to estimate the homogeneous background rate and the temporal and spatial parameters that govern triggering effects. EM-algorithm is employed for its advantages of stability and robustness (Veen and Schoenberg, 2008). My work also presents comparisons among the three models in robustness, convergence speed, and implementations from theory to computing practice. Up-to-date regional seismic data of seismic active areas such as Southern California and Japan are used to demonstrate the comparisons. Data analysis has been done using computer languages Java and R. Java has the advantages of being strong-typed and easiness of controlling memory resources, while R has the advantages of having numerous available functions in statistical computing. Comparisons are also made between the two programming languages in convergence and stability, computational speed, and easiness of implementation. Issues that may affect convergence such as spatial shapes are discussed.

  7. Baryons and baryonic matter in four-fermion interaction models

    International Nuclear Information System (INIS)

    Urlichs, K.

    2007-01-01

    In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon number. In contrast

  8. Baryons and baryonic matter in four-fermion interaction models

    Energy Technology Data Exchange (ETDEWEB)

    Urlichs, K.

    2007-02-23

    In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon

  9. One-dimensional Ising model with multispin interactions

    Science.gov (United States)

    Turban, Loïc

    2016-09-01

    We study the spin-1/2 Ising chain with multispin interactions K involving the product of m successive spins, for general values of m. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions and we calculate the two-spin correlation function. When placed in an external field H the system is shown to be self-dual. Using another change of spin variables the one-dimensional Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions K and H. The 2D system, with size m × N/m, has the topology of a cylinder with helical BC. In the thermodynamic limit N/m\\to ∞ , m\\to ∞ , a 2D critical singularity develops on the self-duality line, \\sinh 2K\\sinh 2H=1.

  10. A model of mechanical interactions between heart and lungs.

    Science.gov (United States)

    Fontecave Jallon, Julie; Abdulhay, Enas; Calabrese, Pascale; Baconnier, Pierre; Gumery, Pierre-Yves

    2009-12-13

    To study the mechanical interactions between heart, lungs and thorax, we propose a mathematical model combining a ventilatory neuromuscular model and a model of the cardiovascular system, as described by Smith et al. (Smith, Chase, Nokes, Shaw & Wake 2004 Med. Eng. Phys.26, 131-139. (doi:10.1016/j.medengphy.2003.10.001)). The respiratory model has been adapted from Thibault et al. (Thibault, Heyer, Benchetrit & Baconnier 2002 Acta Biotheor. 50, 269-279. (doi:10.1023/A:1022616701863)); using a Liénard oscillator, it allows the activity of the respiratory centres, the respiratory muscles and rib cage internal mechanics to be simulated. The minimal haemodynamic system model of Smith includes the heart, as well as the pulmonary and systemic circulation systems. These two modules interact mechanically by means of the pleural pressure, calculated in the mechanical respiratory system, and the intrathoracic blood volume, calculated in the cardiovascular model. The simulation by the proposed model provides results, first, close to experimental data, second, in agreement with the literature results and, finally, highlighting the presence of mechanical cardiorespiratory interactions.

  11. Coarse-grain modelling of protein-protein interactions

    NARCIS (Netherlands)

    Baaden, Marc; Marrink, Siewert J.

    2013-01-01

    Here, we review recent advances towards the modelling of protein-protein interactions (PPI) at the coarse-grained (CG) level, a technique that is now widely used to understand protein affinity, aggregation and self-assembly behaviour. PPI models of soluble proteins and membrane proteins are

  12. A Bone-Implant Interaction Mouse Model for Evaluating Molecular Mechanism of Biomaterials/Bone Interaction.

    Science.gov (United States)

    Liu, Wenlong; Dan, Xiuli; Wang, Ting; Lu, William W; Pan, Haobo

    2016-11-01

    The development of an optimal animal model that could provide fast assessments of the interaction between bone and orthopedic implants is essential for both preclinical and theoretical researches in the design of novel biomaterials. Compared with other animal models, mice have superiority in accessing the well-developed transgenic modification techniques (e.g., cell tracing, knockoff, knockin, and so on), which serve as powerful tools in studying molecular mechanisms. In this study, we introduced the establishment of a mouse model, which was specifically tailored for the assessment of bone-implant interaction in a load-bearing bone marrow microenvironment and could potentially allow the molecular mechanism study of biomaterials by using transgenic technologies. The detailed microsurgery procedures for developing a bone defect (Φ = 0.8 mm) at the metaphysis region of the mouse femur were recorded. According to our results, the osteoconductive and osseointegrative properties of a well-studied 45S5 bioactive glass were confirmed by utilizing our mouse model, verifying the reliability of this model. The feasibility and reliability of the present model were further checked by using other materials as objects of study. Furthermore, our results indicated that this animal model provided a more homogeneous tissue-implant interacting surface than the rat at the early stage of implantation and this is quite meaningful for conducting quantitative analysis. The availability of transgenic techniques to mechanism study of biomaterials was further testified by establishing our model on Nestin-GFP transgenic mice. Intriguingly, the distribution of Nestin + cells was demonstrated to be recruited to the surface of 45S5 glass as early as 3 days postsurgery, indicating that Nestin + lineage stem cells may participate in the subsequent regeneration process. In summary, the bone-implant interaction mouse model could serve as a potential candidate to evaluate the early stage tissue

  13. Modeling energy-economy interactions using integrated models

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.

    1994-06-01

    Integrated models are defined as economic energy models that consist of several submodels, either coupled by an interface module, or embedded in one large model. These models can be used for energy policy analysis. Using integrated models yields the following benefits. They provide a framework in which energy-economy interactions can be better analyzed than in stand-alone models. Integrated models can represent both energy sector technological details, as well as the behaviour of the market and the role of prices. Furthermore, the combination of modeling methodologies in one model can compensate weaknesses of one approach with strengths of another. These advantages motivated this survey of the class of integrated models. The purpose of this literature survey therefore was to collect and to present information on integrated models. To carry out this task, several goals were identified. The first goal was to give an overview of what is reported on these models in general. The second one was to find and describe examples of such models. Other goals were to find out what kinds of models were used as component models, and to examine the linkage methodology. Solution methods and their convergence properties were also a subject of interest. The report has the following structure. In chapter 2, a 'conceptual framework' is given. In chapter 3 a number of integrated models is described. In a table, a complete overview is presented of all described models. Finally, in chapter 4, the report is summarized, and conclusions are drawn regarding the advantages and drawbacks of integrated models. 8 figs., 29 refs

  14. Model-Mapped RPA for Determining the Effective Coulomb Interaction

    Science.gov (United States)

    Sakakibara, Hirofumi; Jang, Seung Woo; Kino, Hiori; Han, Myung Joon; Kuroki, Kazuhiko; Kotani, Takao

    2017-04-01

    We present a new method to obtain a model Hamiltonian from first-principles calculations. The effective interaction contained in the model is determined on the basis of random phase approximation (RPA). In contrast to previous methods such as projected RPA and constrained RPA (cRPA), the new method named "model-mapped RPA" takes into account the long-range part of the polarization effect to determine the effective interaction in the model. After discussing the problems of cRPA, we present the formulation of the model-mapped RPA, together with a numerical test for the single-band Hubbard model of HgBa2CuO4.

  15. Crucial role of strategy updating for coexistence of strategies in interaction networks

    NARCIS (Netherlands)

    Zhang, Jianlei; Zhang, Chunyan; Cao, Ming; Weissing, Franz J.

    2015-01-01

    Network models are useful tools for studying the dynamics of social interactions in a structured population. After a round of interactions with the players in their local neighborhood, players update their strategy based on the comparison of their own payoff with the payoff of one of their

  16. Modelling Safe Interface Interactions in Web Applications

    Science.gov (United States)

    Brambilla, Marco; Cabot, Jordi; Grossniklaus, Michael

    Current Web applications embed sophisticated user interfaces and business logic. The original interaction paradigm of the Web based on static content pages that are browsed by hyperlinks is, therefore, not valid anymore. In this paper, we advocate a paradigm shift for browsers and Web applications, that improves the management of user interaction and browsing history. Pages are replaced by States as basic navigation nodes, and Back/Forward navigation along the browsing history is replaced by a full-fledged interactive application paradigm, supporting transactions at the interface level and featuring Undo/Redo capabilities. This new paradigm offers a safer and more precise interaction model, protecting the user from unexpected behaviours of the applications and the browser.

  17. Phase diagram of the quantum Ising model with long-range interactions on an infinite-cylinder triangular lattice

    Science.gov (United States)

    Saadatmand, S. N.; Bartlett, S. D.; McCulloch, I. P.

    2018-04-01

    Obtaining quantitative ground-state behavior for geometrically-frustrated quantum magnets with long-range interactions is challenging for numerical methods. Here, we demonstrate that the ground states of these systems on two-dimensional lattices can be efficiently obtained using state-of-the-art translation-invariant variants of matrix product states and density-matrix renormalization-group algorithms. We use these methods to calculate the fully-quantitative ground-state phase diagram of the long-range interacting triangular Ising model with a transverse field on six-leg infinite-length cylinders and scrutinize the properties of the detected phases. We compare these results with those of the corresponding nearest neighbor model. Our results suggest that, for such long-range Hamiltonians, the long-range quantum fluctuations always lead to long-range correlations, where correlators exhibit power-law decays instead of the conventional exponential drops observed for short-range correlated gapped phases. Our results are relevant for comparisons with recent ion-trap quantum simulator experiments that demonstrate highly-controllable long-range spin couplings for several hundred ions.

  18. Wind tunnel modeling of roadways: Comparison with mathematical models

    International Nuclear Information System (INIS)

    Heidorn, K.; Davies, A.E.; Murphy, M.C.

    1991-01-01

    The assessment of air quality impacts from roadways is a major concern to urban planners. In order to assess future road and building configurations, a number of techniques have been developed including mathematical models, which simulate traffic emissions and atmospheric dispersion through a series of mathematical relationships and physical models. The latter models simulate emissions and dispersion through scaling of these processes in a wind tunnel. Two roadway mathematical models, HIWAY-2 and CALINE-4, were applied to a proposed development in a large urban area. Physical modeling procedures developed by Rowan Williams Davies and Irwin Inc. (RWDI) in the form of line source simulators were also applied, and the resulting carbon monoxide concentrations were compared. The results indicated a factor of two agreement between the mathematical and physical models. The physical model, however, reacted to change in building massing and configuration. The mathematical models did not, since no provision for such changes was included in the mathematical models. In general, the RWDI model resulted in higher concentrations than either HIWAY-2 or CALINE-4. Where there was underprediction, it was often due to shielding of the receptor by surrounding buildings. Comparison of these three models with the CALTRANS Tracer Dispersion Experiment showed good results although concentrations were consistently underpredicted

  19. Carbon-nitrogen-water interactions: is model parsimony fruitful?

    Science.gov (United States)

    Puertes, Cristina; González-Sanchis, María; Lidón, Antonio; Bautista, Inmaculada; Lull, Cristina; Francés, Félix

    2017-04-01

    It is well known that carbon and nitrogen cycles are highly intertwined and both should be explained through the water balance. In fact, in water-controlled ecosystems nutrient deficit is related to this water scarcity. For this reason, the present study compares the capability of three models in reproducing the interaction between the carbon and nitrogen cycles and the water cycle. The models are BIOME-BGCMuSo, LEACHM and a simple carbon-nitrogen model coupled to the hydrological model TETIS. Biome-BGCMuSo and LEACHM are two widely used models that reproduce the carbon and nitrogen cycles adequately. However, their main limitation is that these models are quite complex and can be too detailed for watershed studies. On the contrary, the TETIS nutrient sub-model is a conceptual model with a vertical tank distribution over the active soil depth, dividing it in two layers. Only the input of the added litter and the losses due to soil respiration, denitrification, leaching and plant uptake are considered as external fluxes. Other fluxes have been neglected. The three models have been implemented in an experimental plot of a semi-arid catchment (La Hunde, East of Spain), mostly covered by holm oak (Quercus ilex). Plant transpiration, soil moisture and runoff have been monitored daily during nearly two years (26/10/2012 to 30/09/2014). For the same period, soil samples were collected every two months and taken to the lab in order to obtain the concentrations of dissolved organic carbon, microbial biomass carbon, ammonium and nitrate. In addition, between field trips soil samples were placed in PVC tubes with resin traps and were left incubating (in situ buried cores). Thus, mineralization and nitrification accumulated fluxes for two months, were obtained. The ammonium and nitrate leaching accumulated for two months were measured using ion-exchange resin cores. Soil respiration was also measured every field trip. Finally, water samples deriving from runoff, were collected

  20. Efficient analysis using custom interactive visualization tools at a Superfund site

    International Nuclear Information System (INIS)

    Williams, G.; Durham, L.

    1992-01-01

    Custom visualization analysis programs were developed and used to analyze contaminant transport calculations from a three-dimensional numerical groundwater flow model developed for a Department of Energy Superfund site. The site hydrogeology, which is highly heterogenous, includes both fractured limestone and dolomite and alluvium deposits. Three-dimensional interactive visualization techniques were used to understand and analyze the three-dimensional, double-porosity modeling results. A graphical object oriented programming environment was applied to efficiently develop custom visualization programs in a coarse-grained data structure language. Comparisons were made, using the results from the three-dimensional, finite-difference model, between traditional two-dimensional analyses (contour and vector plots) and interactive three-dimensional techniques. Subjective comparison areas include the accuracy of analysis, the ability to understand the results of three-dimensional contaminant transport simulation, and the capability to transmit the results of the analysis to the project management. In addition, a quantitative comparison was made on the time required to develop a thorough analysis of the modeling results. The conclusions from the comparative study showed that the visualization analysis provided an increased awareness of the contaminant transport mechanisms, provided new insights into contaminant migration, and resulted in a significant time savings

  1. Efficient analysis using custom interactive visualization tools at a Superfund site

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G. [Northwestern Univ., Evanston, IL (United States); Durham, L. [Argonne National Lab., IL (United States)

    1992-12-01

    Custom visualization analysis programs were developed and used to analyze contaminant transport calculations from a three-dimensional numerical groundwater flow model developed for a Department of Energy Superfund site. The site hydrogeology, which is highly heterogenous, includes both fractured limestone and dolomite and alluvium deposits. Three-dimensional interactive visualization techniques were used to understand and analyze the three-dimensional, double-porosity modeling results. A graphical object oriented programming environment was applied to efficiently develop custom visualization programs in a coarse-grained data structure language. Comparisons were made, using the results from the three-dimensional, finite-difference model, between traditional two-dimensional analyses (contour and vector plots) and interactive three-dimensional techniques. Subjective comparison areas include the accuracy of analysis, the ability to understand the results of three-dimensional contaminant transport simulation, and the capability to transmit the results of the analysis to the project management. In addition, a quantitative comparison was made on the time required to develop a thorough analysis of the modeling results. The conclusions from the comparative study showed that the visualization analysis provided an increased awareness of the contaminant transport mechanisms, provided new insights into contaminant migration, and resulted in a significant time savings.

  2. A lock-and-key model for protein–protein interactions

    OpenAIRE

    Morrison, Julie L.; Breitling, Rainer; Higham, Desmond J.; Gilbert, David R.

    2006-01-01

    Motivation: Protein–protein interaction networks are one of the major post-genomic data sources available to molecular biologists. They provide a comprehensive view of the global interaction structure of an organism’s proteome, as well as detailed information on specific interactions. Here we suggest a physical model of protein interactions that can be used to extract additional information at an intermediate level: It enables us to identify proteins which share biological interaction motifs,...

  3. Testing process predictions of models of risky choice: a quantitative model comparison approach

    Science.gov (United States)

    Pachur, Thorsten; Hertwig, Ralph; Gigerenzer, Gerd; Brandstätter, Eduard

    2013-01-01

    This article presents a quantitative model comparison contrasting the process predictions of two prominent views on risky choice. One view assumes a trade-off between probabilities and outcomes (or non-linear functions thereof) and the separate evaluation of risky options (expectation models). Another view assumes that risky choice is based on comparative evaluation, limited search, aspiration levels, and the forgoing of trade-offs (heuristic models). We derived quantitative process predictions for a generic expectation model and for a specific heuristic model, namely the priority heuristic (Brandstätter et al., 2006), and tested them in two experiments. The focus was on two key features of the cognitive process: acquisition frequencies (i.e., how frequently individual reasons are looked up) and direction of search (i.e., gamble-wise vs. reason-wise). In Experiment 1, the priority heuristic predicted direction of search better than the expectation model (although neither model predicted the acquisition process perfectly); acquisition frequencies, however, were inconsistent with both models. Additional analyses revealed that these frequencies were primarily a function of what Rubinstein (1988) called “similarity.” In Experiment 2, the quantitative model comparison approach showed that people seemed to rely more on the priority heuristic in difficult problems, but to make more trade-offs in easy problems. This finding suggests that risky choice may be based on a mental toolbox of strategies. PMID:24151472

  4. Testing Process Predictions of Models of Risky Choice: A Quantitative Model Comparison Approach

    Directory of Open Access Journals (Sweden)

    Thorsten ePachur

    2013-09-01

    Full Text Available This article presents a quantitative model comparison contrasting the process predictions of two prominent views on risky choice. One view assumes a trade-off between probabilities and outcomes (or nonlinear functions thereof and the separate evaluation of risky options (expectation models. Another view assumes that risky choice is based on comparative evaluation, limited search, aspiration levels, and the forgoing of trade-offs (heuristic models. We derived quantitative process predictions for a generic expectation model and for a specific heuristic model, namely the priority heuristic (Brandstätter, Gigerenzer, & Hertwig, 2006, and tested them in two experiments. The focus was on two key features of the cognitive process: acquisition frequencies (i.e., how frequently individual reasons are looked up and direction of search (i.e., gamble-wise vs. reason-wise. In Experiment 1, the priority heuristic predicted direction of search better than the expectation model (although neither model predicted the acquisition process perfectly; acquisition frequencies, however, were inconsistent with both models. Additional analyses revealed that these frequencies were primarily a function of what Rubinstein (1988 called similarity. In Experiment 2, the quantitative model comparison approach showed that people seemed to rely more on the priority heuristic in difficult problems, but to make more trade-offs in easy problems. This finding suggests that risky choice may be based on a mental toolbox of strategies.

  5. Smilansky-Solomyak model with a delta '-interaction

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Lipovský, J.

    2018-01-01

    Roč. 382, č. 18 (2018), s. 1207-1213 ISSN 0375-9601 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : Smilansky-Solomyak model * delta '-interaction * spectral theory Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.772, year: 2016

  6. Appointing silver and bronze standards for noncovalent interactions: A comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches

    International Nuclear Information System (INIS)

    Burns, Lori A.; Marshall, Michael S.; Sherrill, C. David

    2014-01-01

    A systematic examination of noncovalent interactions as modeled by wavefunction theory is presented in comparison to gold-standard quality benchmarks available for 345 interaction energies of 49 bimolecular complexes. Quantum chemical techniques examined include spin-component-scaling (SCS) variations on second-order perturbation theory (MP2) [SCS, SCS(N), SCS(MI)] and coupled cluster singles and doubles (CCSD) [SCS, SCS(MI)]; also, method combinations designed to improve dispersion contacts [DW-MP2, MP2C, MP2.5, DW-CCSD(T)-F12]; where available, explicitly correlated (F12) counterparts are also considered. Dunning basis sets augmented by diffuse functions are employed for all accessible ζ-levels; truncations of the diffuse space are also considered. After examination of both accuracy and performance for 394 model chemistries, SCS(MI)-MP2/cc-pVQZ can be recommended for general use, having good accuracy at low cost and no ill-effects such as imbalance between hydrogen-bonding and dispersion-dominated systems or non-parallelity across dissociation curves. Moreover, when benchmarking accuracy is desirable but gold-standard computations are unaffordable, this work recommends silver-standard [DW-CCSD(T**)-F12/aug-cc-pVDZ] and bronze-standard [MP2C-F12/aug-cc-pVDZ] model chemistries, which support accuracies of 0.05 and 0.16 kcal/mol and efficiencies of 97.3 and 5.5 h for adenine·thymine, respectively. Choice comparisons of wavefunction results with the best symmetry-adapted perturbation theory [T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, J. Chem. Phys. 140, 094106 (2014)] and density functional theory [L. A. Burns, Á. Vázquez-Mayagoitia, B. G. Sumpter, and C. D. Sherrill, J. Chem. Phys. 134, 084107 (2011)] methods previously studied for these databases are provided for readers' guidance

  7. Self-Organized Societies: On the Sakoda Model of Social Interactions

    Directory of Open Access Journals (Sweden)

    Pablo Medina

    2017-01-01

    Full Text Available We characterize the behavior and the social structures appearing from a model of general social interaction proposed by Sakoda. The model consists of two interacting populations in a two-dimensional periodic lattice with empty sites. It contemplates a set of simple rules that combine attitudes, ranges of interactions, and movement decisions. We analyze the evolution of the 45 different interaction rules via a Potts-like energy function which drives the system irreversibly to an equilibrium or a steady state. We discuss the robustness of the social structures, dynamical behaviors, and the existence of spatial long range order in terms of the social interactions and the equilibrium energy.

  8. Modeling fluid-rock interaction at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ''Geochemical Modeling of Clinoptilolite-Water Interactions,'' solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ''Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,'' describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement

  9. Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.

    Science.gov (United States)

    Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier

    2018-01-01

    Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.

  10. A definitional framework for the human/biometric sensor interaction model

    Science.gov (United States)

    Elliott, Stephen J.; Kukula, Eric P.

    2010-04-01

    Existing definitions for biometric testing and evaluation do not fully explain errors in a biometric system. This paper provides a definitional framework for the Human Biometric-Sensor Interaction (HBSI) model. This paper proposes six new definitions based around two classifications of presentations, erroneous and correct. The new terms are: defective interaction (DI), concealed interaction (CI), false interaction (FI), failure to detect (FTD), failure to extract (FTX), and successfully acquired samples (SAS). As with all definitions, the new terms require a modification to the general biometric model developed by Mansfield and Wayman [1].

  11. Probing interaction and spatial curvature in the holographic dark energy model

    International Nuclear Information System (INIS)

    Li, Miao; Li, Xiao-Dong; Wang, Shuang; Wang, Yi; Zhang, Xin

    2009-01-01

    In this paper we place observational constraints on the interaction and spatial curvature in the holographic dark energy model. We consider three kinds of phenomenological interactions between holographic dark energy and matter, i.e., the interaction term Q is proportional to the energy densities of dark energy (ρ Λ ), matter (ρ m ), and matter plus dark energy (ρ m +ρ Λ ). For probing the interaction and spatial curvature in the holographic dark energy model, we use the latest observational data including the type Ia supernovae (SNIa) Constitution data, the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinson Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our results show that the interaction and spatial curvature in the holographic dark energy model are both rather small. Besides, it is interesting to find that there exists significant degeneracy between the phenomenological interaction and the spatial curvature in the holographic dark energy model

  12. Physical model and calculation code for fuel coolant interactions

    International Nuclear Information System (INIS)

    Goldammer, H.; Kottowski, H.

    1976-01-01

    A physical model is proposed to describe fuel coolant interactions in shock-tube geometry. According to the experimental results, an interaction model which divides each cycle into three phases is proposed. The first phase is the fuel-coolant-contact, the second one is the ejection and recently of the coolant, and the third phase is the impact and fragmentation. Physical background of these phases are illustrated in the first part of this paper. Mathematical expressions of the model are exposed in the second part. A principal feature of the computational method is the consistent application of the fourier-equation throughout the whole interaction process. The results of some calculations, performed for different conditions are compiled in attached figures. (Aoki, K.)

  13. First results from the International Urban Energy Balance Model Comparison: Model Complexity

    Science.gov (United States)

    Blackett, M.; Grimmond, S.; Best, M.

    2009-04-01

    A great variety of urban energy balance models has been developed. These vary in complexity from simple schemes that represent the city as a slab, through those which model various facets (i.e. road, walls and roof) to more complex urban forms (including street canyons with intersections) and features (such as vegetation cover and anthropogenic heat fluxes). Some schemes also incorporate detailed representations of momentum and energy fluxes distributed throughout various layers of the urban canopy layer. The models each differ in the parameters they require to describe the site and the in demands they make on computational processing power. Many of these models have been evaluated using observational datasets but to date, no controlled comparisons have been conducted. Urban surface energy balance models provide a means to predict the energy exchange processes which influence factors such as urban temperature, humidity, atmospheric stability and winds. These all need to be modelled accurately to capture features such as the urban heat island effect and to provide key information for dispersion and air quality modelling. A comparison of the various models available will assist in improving current and future models and will assist in formulating research priorities for future observational campaigns within urban areas. In this presentation we will summarise the initial results of this international urban energy balance model comparison. In particular, the relative performance of the models involved will be compared based on their degree of complexity. These results will inform us on ways in which we can improve the modelling of air quality within, and climate impacts of, global megacities. The methodology employed in conducting this comparison followed that used in PILPS (the Project for Intercomparison of Land-Surface Parameterization Schemes) which is also endorsed by the GEWEX Global Land Atmosphere System Study (GLASS) panel. In all cases, models were run

  14. Simple concentration-dependent pair interaction model for large-scale simulations of Fe-Cr alloys

    International Nuclear Information System (INIS)

    Levesque, Maximilien; Martinez, Enrique; Fu, Chu-Chun; Nastar, Maylise; Soisson, Frederic

    2011-01-01

    This work is motivated by the need for large-scale simulations to extract physical information on the iron-chromium system that is a binary model alloy for ferritic steels used or proposed in many nuclear applications. From first-principles calculations and the experimental critical temperature we build a new energetic rigid lattice model based on pair interactions with concentration and temperature dependence. Density functional theory calculations in both norm-conserving and projector augmented-wave approaches have been performed. A thorough comparison of these two different ab initio techniques leads to a robust parametrization of the Fe-Cr Hamiltonian. Mean-field approximations and Monte Carlo calculations are then used to account for temperature effects. The predictions of the model are in agreement with the most recent phase diagram at all temperatures and compositions. The solubility of Cr in Fe below 700 K remains in the range of about 6 to 12%. It reproduces the transition between the ordering and demixing tendency and the spinodal decomposition limits are also in agreement with the values given in the literature.

  15. Calculation of control rod worth with mutual interaction

    International Nuclear Information System (INIS)

    Balthar, M.C.V.; Oliveira Vellozo, S. de; Carvalho Vital, H. de

    1989-01-01

    This work presents a two-dimensional model for determining the total worth of a set of N absorbing rods. The model simplifies the evaluation of the interaction coefficient among rods by analysing them in pairs and attributes to it a purely geometrical character. Comparisons with conventional calculational methods indicate that the results are in error by less than 6%. (author) [pt

  16. Pre-relaxation in weakly interacting models

    Science.gov (United States)

    Bertini, Bruno; Fagotti, Maurizio

    2015-07-01

    We consider time evolution in models close to integrable points with hidden symmetries that generate infinitely many local conservation laws that do not commute with one another. The system is expected to (locally) relax to a thermal ensemble if integrability is broken, or to a so-called generalised Gibbs ensemble if unbroken. In some circumstances expectation values exhibit quasi-stationary behaviour long before their typical relaxation time. For integrability-breaking perturbations, these are also called pre-thermalisation plateaux, and emerge e.g. in the strong coupling limit of the Bose-Hubbard model. As a result of the hidden symmetries, quasi-stationarity appears also in integrable models, for example in the Ising limit of the XXZ model. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-\\frac{1}{2} chain with additional perturbations that break integrability. One of the most intriguing results of the analysis is the appearance of persistent oscillatory behaviour. To unravel its origin, we study in detail a toy model: the transverse-field Ising chain with an additional nonlocal interaction proportional to the square of the transverse spin per unit length (2013 Phys. Rev. Lett. 111 197203). Despite being nonlocal, this belongs to a class of models that emerge as intermediate steps of the mean-field mapping and shares many dynamical properties with the weakly interacting models under consideration.

  17. Evaluation of Interactive Website Design Indicators for e-Entrepreneurship

    Directory of Open Access Journals (Sweden)

    Chih-Chao Chung

    2016-04-01

    Full Text Available Using an analytic network process (ANP as an analytical tool, this study aims to construct an ANP evaluation model of interactive website design indicators. Through a review of the literature, interactive website design of e-entrepreneurship is generalized to the following dimensions: (1 Design; (2 Checking; (3 Service; (4 Interactive; and (5 Promotion, including 19 design indicators. The research is conducted for a case company. According to the findings, the model helps the case company review its current execution of interactive website design indicators and the experts’ opinions of the importance of interactive website design indicators. In addition, by comprehensive comparison, it confirms key design indicators and analyzes the managerial implications to help the case company set up precise strategic planning and resource distribution to enhance corporate operational performance and competitiveness.

  18. Validation of PWR core seismic models with shaking table tests on interacting scale 1 fuel assemblies

    International Nuclear Information System (INIS)

    Viallet, E.; Bolsee, G.; Ladouceur, B.; Goubin, T.; Rigaudeau, J.

    2003-01-01

    The fuel assembly mechanical strength must be justified with respect to the lateral loads under accident conditions, in particular seismic loads. This justification is performed by means of time-history analyses with dynamic models of an assembly row in the core, allowing for assembly deformations, impacts at grid locations and reactor coolant effects. Due to necessary simplifications, the models include 'equivalent' parameters adjusted with respect to dynamic characterisation tests of the fuel assemblies. Complementing such tests on isolated assemblies by an overall model validation with shaking table tests on interacting assemblies is obviously desirable. Seismic tests have been performed by French CEA (Commissariat a l'Energie Atomique) on a row of six full scale fuel assemblies, including two types of 17 x 17 12ft design. The row models are built according to the usual procedure, with preliminary characterisation tests performed on a single assembly. The test-calculation comparisons are made for two test configurations : in air and in water. The relatively large number of accelerograms (15, used for each configuration) is also favourable to significant comparisons. The results are presented for the impact forces at row ends, displacements at mid assembly, and also 'statistical' parameters. Despite a non-negligible scattering in the results obtained with different accelerograms, the calculations prove realistic, and the modelling process is validated with a good confidence level. This satisfactory validation allows to evaluate precisely the margins in the seismic design methodology of the fuel assemblies, and thus to confirm the safety of the plants in case of seismic event. (author)

  19. Dosimetric comparison of interactive planned and dynamic dose calculated prostate seed brachytherapy

    International Nuclear Information System (INIS)

    Meijer, Gert J.; Berg, Hetty A. van den; Hurkmans, Coen W.; Stijns, Pascal E.; Weterings, Jan H.

    2006-01-01

    Purpose: To compare the dosimetrical results of an interactive planning procedure and a procedure based on dynamic dose calculation for permanent prostate brachytherapy. Materials and methods: Between 6/2000 and 11/2005, 510 patients underwent 125 I implants for T1-T2 prostate cancer. Before 4/2003, 187 patients were treated using an interactive technique that included needle updating. After that period, 323 patients were treated with a more refined dynamic technique that included constant updating of the deposited seed position. The comparison is based on postimplant dose-volume parameters such as the V 100 and d 90 for the target, V 100 r for the rectum and d 10 u for the urethra. Furthermore, the target volume ratios (TVR=V 100 body /V 100 ), and the homogeneity indices (HI=[V 100 -V 150 ]/V 100 ) were calculated as additional quality parameters. Results: The dose outside the target volume was significantly reduced, the V 100 r decreased from 1.4cm 3 for the interactive technique to 0.6cm 3 for the dynamic technique. Similarly the mean TVR reduced from 1.66 to 1.44. In addition, the mean V 100 increased from 92% for the interactive procedure to 95% for the dynamic procedure. More importantly, the percentage of patients with a V 100 10 u (136% vs. 140%) and the HI (0.58 vs. 0.51). Conclusion: The dynamic implant procedure resulted in improved implants. Almost ideal dose coverage was achieved, while minimizing the dose outside the prostate

  20. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model.

    In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented.

    The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.

    Key words. Magnetospheric physics

  1. Nuclear effect study on nucleon structure functions, in comparison with antineutrino interactions on neon and deuterium

    International Nuclear Information System (INIS)

    Vallee, C.

    1984-03-01

    We have studied the nuclear effects on high energy antineutrino charged current interactions by comparing the data which were taken in the Bubble Chamber BEBC filled with Neon and Deuterium. On the one hand, the study of nuclear reinteractions gave us the possibility to estimate the formation time of hadrons. On the other hand, the comparison of structure functions does not show any significant difference between Neon and Deuterium. Though this result does not contradict the effects observed with charged leptons by the EMC and SLAC experiments, it is strongly incompatible with certain theoretical interpretations which implied a stronger effect in antineutrino interactions [fr

  2. Element-specific density profiles in interacting biomembrane models

    International Nuclear Information System (INIS)

    Schneck, Emanuel; Rodriguez-Loureiro, Ignacio; Bertinetti, Luca; Gochev, Georgi; Marin, Egor; Novikov, Dmitri; Konovalov, Oleg

    2017-01-01

    Surface interactions involving biomembranes, such as cell–cell interactions or membrane contacts inside cells play important roles in numerous biological processes. Structural insight into the interacting surfaces is a prerequisite to understand the interaction characteristics as well as the underlying physical mechanisms. Here, we work with simplified planar experimental models of membrane surfaces, composed of lipids and lipopolymers. Their interaction is quantified in terms of pressure–distance curves using ellipsometry at controlled dehydrating (interaction) pressures. For selected pressures, their internal structure is investigated by standing-wave x-ray fluorescence (SWXF). This technique yields specific density profiles of the chemical elements P and S belonging to lipid headgroups and polymer chains, as well as counter-ion profiles for charged surfaces. (paper)

  3. A DPL model of photo-thermal interaction in an infinite semiconductor material containing a spherical hole

    Science.gov (United States)

    Hobiny, Aatef D.; Abbas, Ibrahim A.

    2018-01-01

    The dual phase lag (DPL) heat transfer model is applied to study the photo-thermal interaction in an infinite semiconductor medium containing a spherical hole. The inner surface of the cavity was traction free and loaded thermally by pulse heat flux. By using the eigenvalue approach methodology and Laplace's transform, the physical variable solutions are obtained analytically. The numerical computations for the silicon-like semiconductor material are obtained. The comparison among the theories, i.e., dual phase lag (DPL), Lord and Shulman's (LS) and the classically coupled thermoelastic (CT) theory is presented graphically. The results further show that the analytical scheme can overcome mathematical problems by analyzing these problems.

  4. Consumer Decision-Making Styles Extension to Trust-Based Product Comparison Site Usage Model

    Directory of Open Access Journals (Sweden)

    Radoslaw Macik

    2016-09-01

    Full Text Available The paper describes an implementation of extended consumer decision-making styles concept in explaining consumer choices made in product comparison site environment in the context of trust-based information technology acceptance model. Previous research proved that trust-based acceptance model is useful in explaining purchase intention and anticipated satisfaction in product comparison site environment, as an example of online decision shopping aids. Trust to such aids is important in explaining their usage by consumers. The connections between consumer decision-making styles, product and sellers opinions usage, cognitive and affective trust toward online product comparison site, as well as choice outcomes (purchase intention and brand choice are explored trough structural equation models using PLS-SEM approach, using a sample of 461 young consumers. Research confirmed the validity of research model in explaining product comparison usage, and some consumer decision-making styles influenced consumers’ choices and purchase intention. Product and sellers reviews usage were partially mediating mentioned relationships.

  5. Measurement error models with interactions

    Science.gov (United States)

    Midthune, Douglas; Carroll, Raymond J.; Freedman, Laurence S.; Kipnis, Victor

    2016-01-01

    An important use of measurement error models is to correct regression models for bias due to covariate measurement error. Most measurement error models assume that the observed error-prone covariate (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$W$\\end{document}) is a linear function of the unobserved true covariate (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$X$\\end{document}) plus other covariates (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Z$\\end{document}) in the regression model. In this paper, we consider models for \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$W$\\end{document} that include interactions between \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$X$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Z$\\end{document}. We derive the conditional distribution of

  6. Time domain contact model for tyre/road interaction including nonlinear contact stiffness due to small-scale roughness

    Science.gov (United States)

    Andersson, P. B. U.; Kropp, W.

    2008-11-01

    Rolling resistance, traction, wear, excitation of vibrations, and noise generation are all attributes to consider in optimisation of the interaction between automotive tyres and wearing courses of roads. The key to understand and describe the interaction is to include a wide range of length scales in the description of the contact geometry. This means including scales on the order of micrometres that have been neglected in previous tyre/road interaction models. A time domain contact model for the tyre/road interaction that includes interfacial details is presented. The contact geometry is discretised into multiple elements forming pairs of matching points. The dynamic response of the tyre is calculated by convolving the contact forces with pre-calculated Green's functions. The smaller-length scales are included by using constitutive interfacial relations, i.e. by using nonlinear contact springs, for each pair of contact elements. The method is presented for normal (out-of-plane) contact and a method for assessing the stiffness of the nonlinear springs based on detailed geometry and elastic data of the tread is suggested. The governing equations of the nonlinear contact problem are solved with the Newton-Raphson iterative scheme. Relations between force, indentation, and contact stiffness are calculated for a single tread block in contact with a road surface. The calculated results have the same character as results from measurements found in literature. Comparison to traditional contact formulations shows that the effect of the small-scale roughness is large; the contact stiffness is only up to half of the stiffness that would result if contact is made over the whole element directly to the bulk of the tread. It is concluded that the suggested contact formulation is a suitable model to include more details of the contact interface. Further, the presented result for the tread block in contact with the road is a suitable input for a global tyre/road interaction model

  7. Evaluating nuclear physics inputs in core-collapse supernova models

    Science.gov (United States)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  8. Comparative modeling for power generating systems with interaction phenomena

    International Nuclear Information System (INIS)

    Kim, Seong Ho; Kim, Tae Woon

    2007-01-01

    From a conflicting viewpoint, comprehensive assessment of various national power systems can be treated as a multicriteria decision-making (MCDM) problem. In reality, there are interaction phenomena among the decision elements. The main objective of this work is to propose a comprehensive framework to determinate the priority of appropriate national power sources involving various degrees of interaction among the decision elements (e.g., decision goal, decision criteria, and decision alternatives) such as inner dependence, outer dependence, and feedback effect. In the context of a generic hierarchical network (or hiernet) structure instead of one-way directional tree structure, the impact of the interaction phenomena on the grade of priority is investigated using a supermatrix technique or an analytic network process (ANP) method. Moreover, the three types of attitudes towards nuclear power system of the multiple actors are incorporated into the network structure to figure out the effect of characteristics of power systems. An illustrative example of the generic hiernet structure is demonstrated in comparison to the specific hierarchy structure without any interaction among the decision elements. The proposed framework can be applied to select the appropriate power systems, to understand the effect of its underlying decision structures, and to include risk attitudes towards a certain alternative. (author)

  9. Modeling object pursuit for 3D interactive tasks in virtual reality

    NARCIS (Netherlands)

    Liu, L.; Liere, van R.

    2011-01-01

    Models of interaction tasks are quantitative descriptions of relationships between human temporal performance and the spatial characteristics of the interactive tasks. Examples include Fitts' law for modeling the pointing task and Accot and Zhai's steering law for the path steering task, etc. Models

  10. Dynamic-chemistry-aerosol modelling interaction: the ESCOMPTE 2001 experiment; Modelisation de l'interaction dynamique- chimie - aerosol: campagne ESCOMPTE 2001

    Energy Technology Data Exchange (ETDEWEB)

    Cousin, F

    2004-09-01

    After most pollution studies independently devoted to gases and aerosols, there now appears an urgent need to consider their interactions. In this view, an aerosol module has been implemented in the Meso-NH-C model to simulate two IOPs documented during the ESCOMPTE campaign which took place in the Marseille/Fos-Berre region in June-July 2001. First, modelled dynamic parameters (winds, temperatures, boundary layer thickness) and gaseous chemistry have been validated with measurements issued from the exhaustive ESCOMPTE database. Sensitivity analysis have also been performed using different gaseous emission inventories at various resolution. These simulations have illustrated the deep impact of both synoptic and local dynamics on observed ozone concentrations on June 24 (IOP2b) in the ESCOMPTE domain. Afterwards, the ORISAM aerosol module has been introduced into the Meso-NH-C model. Dynamics, gaseous chemistry and aerosol processes have thus been coupled on-line. The particulate pollution episode on June 24 (IOP2b) has been characterised through a satisfactory comparison, specially from sub-micron particles, between modelling and measurements at different representative stations in the domain. This study, with validation of the particulate emission inventory has also highlighted the need for future improvements, such as further characterisation of organic and inorganic aerosol species and consideration of coarse particles. Aerosol impact on gaseous chemistry has been preliminary approached in view of future development and modification to be given to the Meso-NH-C model. (author)

  11. Benchmarking comparison and validation of MCNP photon interaction data

    Directory of Open Access Journals (Sweden)

    Colling Bethany

    2017-01-01

    Full Text Available The objective of the research was to test available photoatomic data libraries for fusion relevant applications, comparing against experimental and computational neutronics benchmarks. Photon flux and heating was compared using the photon interaction data libraries (mcplib 04p, 05t, 84p and 12p. Suitable benchmark experiments (iron and water were selected from the SINBAD database and analysed to compare experimental values with MCNP calculations using mcplib 04p, 84p and 12p. In both the computational and experimental comparisons, the majority of results with the 04p, 84p and 12p photon data libraries were within 1σ of the mean MCNP statistical uncertainty. Larger differences were observed when comparing computational results with the 05t test photon library. The Doppler broadening sampling bug in MCNP-5 is shown to be corrected for fusion relevant problems through use of the 84p photon data library. The recommended libraries for fusion neutronics are 84p (or 04p with MCNP6 and 84p if using MCNP-5.

  12. Benchmarking comparison and validation of MCNP photon interaction data

    Science.gov (United States)

    Colling, Bethany; Kodeli, I.; Lilley, S.; Packer, L. W.

    2017-09-01

    The objective of the research was to test available photoatomic data libraries for fusion relevant applications, comparing against experimental and computational neutronics benchmarks. Photon flux and heating was compared using the photon interaction data libraries (mcplib 04p, 05t, 84p and 12p). Suitable benchmark experiments (iron and water) were selected from the SINBAD database and analysed to compare experimental values with MCNP calculations using mcplib 04p, 84p and 12p. In both the computational and experimental comparisons, the majority of results with the 04p, 84p and 12p photon data libraries were within 1σ of the mean MCNP statistical uncertainty. Larger differences were observed when comparing computational results with the 05t test photon library. The Doppler broadening sampling bug in MCNP-5 is shown to be corrected for fusion relevant problems through use of the 84p photon data library. The recommended libraries for fusion neutronics are 84p (or 04p) with MCNP6 and 84p if using MCNP-5.

  13. A Model-Model and Data-Model Comparison for the Early Eocene Hydrological Cycle

    Science.gov (United States)

    Carmichael, Matthew J.; Lunt, Daniel J.; Huber, Matthew; Heinemann, Malte; Kiehl, Jeffrey; LeGrande, Allegra; Loptson, Claire A.; Roberts, Chris D.; Sagoo, Navjit; Shields, Christine

    2016-01-01

    A range of proxy observations have recently provided constraints on how Earth's hydrological cycle responded to early Eocene climatic changes. However, comparisons of proxy data to general circulation model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised. In this work, we undertake an intercomparison of GCM-derived precipitation and P - E distributions within the extended EoMIP ensemble (Eocene Modelling Intercomparison Project; Lunt et al., 2012), which includes previously published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure, and precipitation-relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to the preindustrial conditions. This is primarily due to elevated atmospheric paleo-CO2, resulting in elevated temperatures, although the effects of differences in paleogeography and ice sheets are also important in some models. For a given CO2 level, globally averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP=dT ) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa, and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that GCMs generally underestimate precipitation rates at high latitudes, although a possible seasonal bias of the proxies cannot be excluded. Models which warm these regions, either via elevated CO2 or by varying poorly constrained model parameter values, are most successful in simulating a

  14. Stress concentration during pellet cladding interaction: Comparison of closed-form solutions with 2D(r,θ) finite element simulations

    International Nuclear Information System (INIS)

    Sercombe, Jérôme; Masson, Renaud; Helfer, Thomas

    2013-01-01

    Highlights: • This paper presents closed-formed solutions concerning pellet cladding interaction. • First, the opening of a radial crack in a pellet fragment is estimated. • Second, the stresses in the cladding in front of the pellet crack are calculated. • The closed-formed solutions are found in good agreement with 2D FE simulations. • They are then used in the fuel code ALCYONE to model PCI during power ramps. -- Abstract: This paper presents two closed-form solutions that can be used to enrich the mechanical description of fuel pellets and cladding behavior in standard one-dimensional based fuel performance codes. The first one is concerned with the estimation of the opening of a radial crack in a pellet fragment induced by the radial thermal gradient in the pellet and limited by the pellet-clad contact pressure. The second one describes the stress distribution in a cladding bore in front of an opening pellet crack. A linear angular variation of the pellet-clad contact pressure and a constant prescribed radial displacement are considered. The closed-form solutions are checked by comparison to independent finite element models of the pellet fragment and of the cladding. Their ability to describe non-axisymmetric displacement and stress fields during loading histories representative of base irradiation and power ramps is then demonstrated by cross-comparison with the 2D pellet fragment-cladding model of the multi-dimensional fuel performance code ALCYONE. The calculated radial crack opening profiles at different times and the hoop stress concentration in the cladding at the top of the ramp are found in good agreement with ALCYONE

  15. On the statistical comparison of climate model output and climate data

    International Nuclear Information System (INIS)

    Solow, A.R.

    1991-01-01

    Some broad issues arising in the statistical comparison of the output of climate models with the corresponding climate data are reviewed. Particular attention is paid to the question of detecting climate change. The purpose of this paper is to review some statistical approaches to the comparison of the output of climate models with climate data. There are many statistical issues arising in such a comparison. The author will focus on some of the broader issues, although some specific methodological questions will arise along the way. One important potential application of the approaches discussed in this paper is the detection of climate change. Although much of the discussion will be fairly general, he will try to point out the appropriate connections to the detection question. 9 refs

  16. On the statistical comparison of climate model output and climate data

    International Nuclear Information System (INIS)

    Solow, A.R.

    1990-01-01

    Some broad issues arising in the statistical comparison of the output of climate models with the corresponding climate data are reviewed. Particular attention is paid to the question of detecting climate change. The purpose of this paper is to review some statistical approaches to the comparison of the output of climate models with climate data. There are many statistical issues arising in such a comparison. The author will focus on some of the broader issues, although some specific methodological questions will arise along the way. One important potential application of the approaches discussed in this paper is the detection of climate change. Although much of the discussion will be fairly general, he will try to point out the appropriate connections to the detection question

  17. Meson exchange current (MEC) models in neutrino interaction generators

    International Nuclear Information System (INIS)

    Katori, Teppei

    2015-01-01

    Understanding of the so-called 2 particle-2 hole (2p-2h) effect is an urgent program in neutrino interaction physics for current and future oscillation experiments. Such processes are believed to be responsible for the event excesses observed by recent neutrino experiments. The 2p-2h effect is dominated by the meson exchange current (MEC), and is accompanied by a 2-nucleon emission from the primary vertex, instead of a single nucleon emission from the charged-current quasi-elastic (CCQE) interaction. Current and future high resolution experiments can potentially nail down this effect. For this reason, there are world wide efforts to model and implement this process in neutrino interaction simulations. In these proceedings, I would like to describe how this channel is modeled in neutrino interaction generators

  18. Phase space analysis of some interacting Chaplygin gas models

    Energy Technology Data Exchange (ETDEWEB)

    Khurshudyan, M. [Academy of Sciences of Armenia, Institute for Physical Research, Ashtarak (Armenia); Tomsk State University of Control Systems and Radioelectronics, Laboratory for Theoretical Cosmology, Tomsk (Russian Federation); Tomsk State Pedagogical University, Department of Theoretical Physics, Tomsk (Russian Federation); Myrzakulov, R. [Eurasian National University, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan)

    2017-02-15

    In this paper we discuss a phase space analysis of various interacting Chaplygin gas models in general relativity. Linear and nonlinear sign changeable interactions are considered. For each case appropriate late time attractors of field equations are found. The Chaplygin gas is one of the dark fluids actively considered in modern cosmology due to the fact that it is a joint model of dark energy and dark matter. (orig.)

  19. Bereday and Hilker: Origins of the "Four Steps of Comparison" Model

    Science.gov (United States)

    Adick, Christel

    2018-01-01

    The article draws attention to the forgotten ancestry of the "four steps of comparison" model (description--interpretation--juxtaposition--comparison). Comparativists largely attribute this to George Z. F. Bereday [1964. "Comparative Method in Education." New York: Holt, Rinehart and Winston], but among German scholars, it is…

  20. BLEVE overpressure: multi-scale comparison of blast wave modeling

    International Nuclear Information System (INIS)

    Laboureur, D.; Buchlin, J.M.; Rambaud, P.; Heymes, F.; Lapebie, E.

    2014-01-01

    BLEVE overpressure modeling has been already widely studied but only few validations including the scale effect have been made. After a short overview of the main models available in literature, a comparison is done with different scales of measurements, taken from previous studies or coming from experiments performed in the frame of this research project. A discussion on the best model to use in different cases is finally proposed. (authors)

  1. Interactive modelling with stakeholders in two cases in flood management

    Science.gov (United States)

    Leskens, Johannes; Brugnach, Marcela

    2013-04-01

    New policies on flood management called Multi-Level Safety (MLS), demand for an integral and collaborative approach. The goal of MLS is to minimize flood risks by a coherent package of protection measures, crisis management and flood resilience measures. To achieve this, various stakeholders, such as water boards, municipalities and provinces, have to collaborate in composing these measures. Besides the many advances this integral and collaborative approach gives, the decision-making environment becomes also more complex. Participants have to consider more criteria than they used to do and have to take a wide network of participants into account, all with specific perspectives, cultures and preferences. In response, sophisticated models are developed to support decision-makers in grasping this complexity. These models provide predictions of flood events and offer the opportunity to test the effectiveness of various measures under different criteria. Recent model advances in computation speed and model flexibility allow stakeholders to directly interact with a hydrological hydraulic model during meetings. Besides a better understanding of the decision content, these interactive models are supposed to support the incorporation of stakeholder knowledge in modelling and to support mutual understanding of different perspectives of stakeholders To explore the support of interactive modelling in integral and collaborate policies, such as MLS, we tested a prototype of an interactive flood model (3Di) with respect to a conventional model (Sobek) in two cases. The two cases included the designing of flood protection measures in Amsterdam and a flood event exercise in Delft. These case studies yielded two main results. First, we observed that in the exploration phase of a decision-making process, stakeholders participated actively in interactive modelling sessions. This increased the technical understanding of complex problems and the insight in the effectiveness of various

  2. Comparison of models discribing cladding deformations during LOCA

    International Nuclear Information System (INIS)

    Chakraborty, A.K.; Zipper, R.

    1981-05-01

    This report compares the important models for the determination of cladding deformations during LOCA. In addition to the comparisons of underlying assumptions of different models the same is done for the coefficients applied for the models. In order to assess the predictive capability of the models the calculated results are compared with the experimental results of the individual claddings. It was found out that the results of temperature ramp tests could be calculated better than that of the pressure ramp tests. The calculations revealed that even with the simplified assumption of the model used in TESPA the agreement of the calculated results with those of model NORA was relatively good. (orig.) [de

  3. Multipartite interacting scalar dark matter in the light of updated LUX data

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Subhaditya; Ghosh, Purusottam; Poulose, Poulose, E-mail: subhab@iitg.ernet.in, E-mail: p.ghosh@iitg.ernet.in, E-mail: poulose@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India)

    2017-04-01

    We explore constraints on multipartite dark matter (DM) framework composed of singlet scalar DM interacting with the Standard Model (SM) through Higgs portal coupling. We compute relic density and direct search constraints including the updated LUX bound for two component scenario with non-zero interactions between two DM components in Z{sub 2} × Z{sub 2}{sup '} framework in comparison with the one having O(2) symmetry. We point out availability of a significantly large region of parameter space of such a multipartite model with DM-DM interactions.

  4. Modeling of interaction effects in granular systems

    CERN Document Server

    El-Hilo, M; Al-Rsheed, A

    2000-01-01

    Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(DELTA E) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(DELTA E) can easily give a temperature-independent behavior of S(T) when these changes give a 1/DELTA E behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur an...

  5. Sphericity in the interacting boson model

    International Nuclear Information System (INIS)

    Ogata, H.

    1977-01-01

    The interacting boson model (IBM) of Arima and Iachello is examined. The transition between the rotational and vibrational modes of even-even nuclei is presented as a function of a sphericity parameter, which is determined primarily from yrast band spectra. The backbending feature is reasonably reproduced. (author)

  6. Relativistic strings and dual models of strong interactions

    International Nuclear Information System (INIS)

    Marinov, M.S.

    1977-01-01

    The theory of strong interactions,based on the model depicting a hardon as a one-dimentional elastic relativistic system(''string'') is considered. The relationship between this model and the concepts of quarks and partons is discussed. Presented are the principal results relating to the Veneziano dual theory, which may be considered as the consequence of the string model, and to its modifications. The classical string theory is described in detail. Attention is focused on questions of importance to the construction of the quantum theory - the Hamilton mechanisms and conformal symmetry. Quantization is described, and it is shown that it is not contradictory only in the 26-dimentional space and with a special requirement imposed on the spectrum of states. The theory of a string with a distributed spin is considered. The spin is introduced with the aid of the Grassman algebra formalism. In this case quantization is possible only in the 10-dimentional space. The strings interact by their ruptures and gluings. A method for calculating the interaction amplitudes is indicated

  7. Comparative study on collaborative interaction in non-immersive and immersive systems

    Science.gov (United States)

    Shahab, Qonita M.; Kwon, Yong-Moo; Ko, Heedong; Mayangsari, Maria N.; Yamasaki, Shoko; Nishino, Hiroaki

    2007-09-01

    This research studies the Virtual Reality simulation for collaborative interaction so that different people from different places can interact with one object concurrently. Our focus is the real-time handling of inputs from multiple users, where object's behavior is determined by the combination of the multiple inputs. Issues addressed in this research are: 1) The effects of using haptics on a collaborative interaction, 2) The possibilities of collaboration between users from different environments. We conducted user tests on our system in several cases: 1) Comparison between non-haptics and haptics collaborative interaction over LAN, 2) Comparison between non-haptics and haptics collaborative interaction over Internet, and 3) Analysis of collaborative interaction between non-immersive and immersive display environments. The case studies are the interaction of users in two cases: collaborative authoring of a 3D model by two users, and collaborative haptic interaction by multiple users. In Virtual Dollhouse, users can observe physics law while constructing a dollhouse using existing building blocks, under gravity effects. In Virtual Stretcher, multiple users can collaborate on moving a stretcher together while feeling each other's haptic motions.

  8. A unitarized meson model including color Coulomb interaction

    International Nuclear Information System (INIS)

    Metzger, Kees.

    1990-01-01

    Ch. 1 gives a general introduction into the problem field of the thesis. It discusses in how far the internal structure of mesons is understood theoretically and which models exist. It discusses from a phenomenological point of view the problem of confinement indicates how quark models of mesons may provide insight in this phenomenon. In ch. 2 the formal theory of scattering in a system with confinement is given. It is shown how a coupled channel (CC) description and the work of other authors fit into this general framework. Explicit examples and arguments are given to support the CC treatment of such a system. In ch. 3 the full coupled-channel model as is employed in this thesis is presented. On the basis of arguments from the former chapters and the observed regularities in the experimental data, the choices underlying the model are supported. In this model confinement is described with a mass-dependent harmonic-oscillator potential and the presence of open (meson-meson) channels plays an essential role. In ch. 4 the unitarized model is applied to light scalar meson resonances. In this regime the contribution of the open channels is considerable. It is demonstrated that the model parameters as used for the description of the pseudo-scalar and vector mesons, unchanged can be used for the description of these mesons. Ch. 5 treats the color-Coulomb interaction. There the effect of the Coulomb interaction is studied in simple models without decay. The results of incorporating the color-Coulomb interaction into the full CC model are given in ch.6. Ch. 7 discusses the results of the previous chapters and the present status of the model. (author). 182 refs.; 16 figs.; 33 tabs

  9. Kinetic Models for Topological Nearest-Neighbor Interactions

    Science.gov (United States)

    Blanchet, Adrien; Degond, Pierre

    2017-12-01

    We consider systems of agents interacting through topological interactions. These have been shown to play an important part in animal and human behavior. Precisely, the system consists of a finite number of particles characterized by their positions and velocities. At random times a randomly chosen particle, the follower, adopts the velocity of its closest neighbor, the leader. We study the limit of a system size going to infinity and, under the assumption of propagation of chaos, show that the limit kinetic equation is a non-standard spatial diffusion equation for the particle distribution function. We also study the case wherein the particles interact with their K closest neighbors and show that the corresponding kinetic equation is the same. Finally, we prove that these models can be seen as a singular limit of the smooth rank-based model previously studied in Blanchet and Degond (J Stat Phys 163:41-60, 2016). The proofs are based on a combinatorial interpretation of the rank as well as some concentration of measure arguments.

  10. Interaction in Spoken Word Recognition Models: Feedback Helps

    Science.gov (United States)

    Magnuson, James S.; Mirman, Daniel; Luthra, Sahil; Strauss, Ted; Harris, Harlan D.

    2018-01-01

    Human perception, cognition, and action requires fast integration of bottom-up signals with top-down knowledge and context. A key theoretical perspective in cognitive science is the interactive activation hypothesis: forward and backward flow in bidirectionally connected neural networks allows humans and other biological systems to approximate optimal integration of bottom-up and top-down information under real-world constraints. An alternative view is that online feedback is neither necessary nor helpful; purely feed forward alternatives can be constructed for any feedback system, and online feedback could not improve processing and would preclude veridical perception. In the domain of spoken word recognition, the latter view was apparently supported by simulations using the interactive activation model, TRACE, with and without feedback: as many words were recognized more quickly without feedback as were recognized faster with feedback, However, these simulations used only a small set of words and did not address a primary motivation for interaction: making a model robust in noise. We conducted simulations using hundreds of words, and found that the majority were recognized more quickly with feedback than without. More importantly, as we added noise to inputs, accuracy and recognition times were better with feedback than without. We follow these simulations with a critical review of recent arguments that online feedback in interactive activation models like TRACE is distinct from other potentially helpful forms of feedback. We conclude that in addition to providing the benefits demonstrated in our simulations, online feedback provides a plausible means of implementing putatively distinct forms of feedback, supporting the interactive activation hypothesis. PMID:29666593

  11. Interaction in Spoken Word Recognition Models: Feedback Helps.

    Science.gov (United States)

    Magnuson, James S; Mirman, Daniel; Luthra, Sahil; Strauss, Ted; Harris, Harlan D

    2018-01-01

    Human perception, cognition, and action requires fast integration of bottom-up signals with top-down knowledge and context. A key theoretical perspective in cognitive science is the interactive activation hypothesis: forward and backward flow in bidirectionally connected neural networks allows humans and other biological systems to approximate optimal integration of bottom-up and top-down information under real-world constraints. An alternative view is that online feedback is neither necessary nor helpful; purely feed forward alternatives can be constructed for any feedback system, and online feedback could not improve processing and would preclude veridical perception. In the domain of spoken word recognition, the latter view was apparently supported by simulations using the interactive activation model, TRACE, with and without feedback: as many words were recognized more quickly without feedback as were recognized faster with feedback, However, these simulations used only a small set of words and did not address a primary motivation for interaction: making a model robust in noise. We conducted simulations using hundreds of words, and found that the majority were recognized more quickly with feedback than without. More importantly, as we added noise to inputs, accuracy and recognition times were better with feedback than without. We follow these simulations with a critical review of recent arguments that online feedback in interactive activation models like TRACE is distinct from other potentially helpful forms of feedback. We conclude that in addition to providing the benefits demonstrated in our simulations, online feedback provides a plausible means of implementing putatively distinct forms of feedback, supporting the interactive activation hypothesis.

  12. Interaction in Spoken Word Recognition Models: Feedback Helps

    Directory of Open Access Journals (Sweden)

    James S. Magnuson

    2018-04-01

    Full Text Available Human perception, cognition, and action requires fast integration of bottom-up signals with top-down knowledge and context. A key theoretical perspective in cognitive science is the interactive activation hypothesis: forward and backward flow in bidirectionally connected neural networks allows humans and other biological systems to approximate optimal integration of bottom-up and top-down information under real-world constraints. An alternative view is that online feedback is neither necessary nor helpful; purely feed forward alternatives can be constructed for any feedback system, and online feedback could not improve processing and would preclude veridical perception. In the domain of spoken word recognition, the latter view was apparently supported by simulations using the interactive activation model, TRACE, with and without feedback: as many words were recognized more quickly without feedback as were recognized faster with feedback, However, these simulations used only a small set of words and did not address a primary motivation for interaction: making a model robust in noise. We conducted simulations using hundreds of words, and found that the majority were recognized more quickly with feedback than without. More importantly, as we added noise to inputs, accuracy and recognition times were better with feedback than without. We follow these simulations with a critical review of recent arguments that online feedback in interactive activation models like TRACE is distinct from other potentially helpful forms of feedback. We conclude that in addition to providing the benefits demonstrated in our simulations, online feedback provides a plausible means of implementing putatively distinct forms of feedback, supporting the interactive activation hypothesis.

  13. New analytically solvable models of relativistic point interactions

    International Nuclear Information System (INIS)

    Gesztesy, F.; Seba, P.

    1987-01-01

    Two new analytically solvable models of relativistic point interactions in one dimension (being natural extensions of the nonrelativistic δ-resp, δ'-interaction) are considered. Their spectral properties in the case of finitely many point interactions as well as in the periodic case are fully analyzed. Moreover the spectrum is explicitely determined in the case of independent, identically distributed random coupling constants and the analog of the Saxon and Huther conjecture concerning gaps in the energy spectrum of such systems is derived

  14. Model-based comparison of strategies for reduction of stormwater micropollutant emissions

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Sharma, Anitha Kumari; Mikkelsen, Peter Steen

    to improve the recipient quality by reducing the fluxes of heavy metals (copper, zinc) and organic compounds (fluoranthene) to natural waters. MP sources were identified by using GIS land usage data. When comparing the different control strategies, the integrated model showed the greater benefits......Strategies for reduction of micropollutant (MP) emissions from stormwater systems require the comparison of different scenarios including source control, end-of-pipe treatment, or their combination. Dynamic integrated models can be important tools for this comparison, as they can integrate...... the limited data provided by monitoring campaigns and evaluate the performance of different strategies based on model simulation results. This study presents an example where an integrated dynamic model, in combination with stormwater quality measurements, was used to evaluate 6 different strategies...

  15. Derivative interactions and perturbative UV contributions in N Higgs doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Kikuta, Yohei [KEK Theory Center, KEK, Tsukuba (Japan); The Graduate University for Advanced Studies, Department of Particle and Nuclear Physics, Tsukuba (Japan); Yamamoto, Yasuhiro [Universidad de Granada, Deportamento de Fisica Teorica y del Cosmos, Facultad de Ciencias and CAFPE, Granada (Spain)

    2016-05-15

    We study the Higgs derivative interactions on models including arbitrary number of the Higgs doublets. These interactions are generated by two ways. One is higher order corrections of composite Higgs models, and the other is integration of heavy scalars and vectors. In the latter case, three point couplings between the Higgs doublets and these heavy states are the sources of the derivative interactions. Their representations are constrained to couple with the doublets. We explicitly calculate all derivative interactions generated by integrating out. Their degrees of freedom and conditions to impose the custodial symmetry are discussed. We also study the vector boson scattering processes with a couple of two Higgs doublet models to see experimental signals of the derivative interactions. They are differently affected by each heavy field. (orig.)

  16. Modeling sediment yield in small catchments at event scale: Model comparison, development and evaluation

    Science.gov (United States)

    Tan, Z.; Leung, L. R.; Li, H. Y.; Tesfa, T. K.

    2017-12-01

    Sediment yield (SY) has significant impacts on river biogeochemistry and aquatic ecosystems but it is rarely represented in Earth System Models (ESMs). Existing SY models focus on estimating SY from large river basins or individual catchments so it is not clear how well they simulate SY in ESMs at larger spatial scales and globally. In this study, we compare the strengths and weaknesses of eight well-known SY models in simulating annual mean SY at about 400 small catchments ranging in size from 0.22 to 200 km2 in the US, Canada and Puerto Rico. In addition, we also investigate the performance of these models in simulating event-scale SY at six catchments in the US using high-quality hydrological inputs. The model comparison shows that none of the models can reproduce the SY at large spatial scales but the Morgan model performs the better than others despite its simplicity. In all model simulations, large underestimates occur in catchments with very high SY. A possible pathway to reduce the discrepancies is to incorporate sediment detachment by landsliding, which is currently not included in the models being evaluated. We propose a new SY model that is based on the Morgan model but including a landsliding soil detachment scheme that is being developed. Along with the results of the model comparison and evaluation, preliminary findings from the revised Morgan model will be presented.

  17. BPMNDiffViz : a tool for BPMN models comparison

    NARCIS (Netherlands)

    Ivanov, S.Y.; Kalenkova, A.A.; Aalst, van der W.M.P.; Daniel, F.; Zugal, S.

    2015-01-01

    Automatic comparison of business processes plays an important role in their analysis and optimization. In this paper we present the web-based tool BPMNDiffViz, that finds business processes discrepancies and visualizes them. BPMN (Business Process Model and Notation) 2.0 - one of the most commonly

  18. Waste glass corrosion modeling: Comparison with experimental results

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1993-11-01

    A chemical model of glass corrosion will be used to predict the rates of release of radionuclides from borosilicate glass waste forms in high-level waste repositories. The model will be used both to calculate the rate of degradation of the glass, and also to predict the effects of chemical interactions between the glass and repository materials such as spent fuel, canister and container materials, backfill, cements, grouts, and others. Coupling between the degradation processes affecting all these materials is expected. Models for borosilicate glass dissolution must account for the processes of (1) kinetically-controlled network dissolution, (2) precipitation of secondary phases, (3) ion exchange, (4) rate-limiting diffusive transport of silica through a hydrous surface reaction layer, and (5) specific glass surface interactions with dissolved cations and anions. Current long-term corrosion models for borosilicate glass employ a rate equation consistent with transition state theory embodied in a geochemical reaction-path modeling program that calculates aqueous phase speciation and mineral precipitation/dissolution. These models are currently under development. Future experimental and modeling work to better quantify the rate-controlling processes and validate these models are necessary before the models can be used in repository performance assessment calculations

  19. Dosimetric comparison of interactive planned and dynamic dose calculated prostate seed brachytherapy.

    Science.gov (United States)

    Meijer, Gert J; van den Berg, Hetty A; Hurkmans, Coen W; Stijns, Pascal E; Weterings, Jan H

    2006-09-01

    To compare the dosimetrical results of an interactive planning procedure and a procedure based on dynamic dose calculation for permanent prostate brachytherapy. Between 6/2000 and 11/2005, 510 patients underwent (125)I implants for T1-T2 prostate cancer. Before 4/2003, 187 patients were treated using an interactive technique that included needle updating. After that period, 323 patients were treated with a more refined dynamic technique that included constant updating of the deposited seed position. The comparison is based on postimplant dose - volume parameters such as the V(100) and d(90) for the target, V(100)(r) for the rectum and d(10)(u) for the urethra. Furthermore, the target volume ratios (TVR identical with V(100)(body)/V(100)), and the homogeneity indices (HI identical with [V(100)-V(150)]/V(100)) were calculated as additional quality parameters. The dose outside the target volume was significantly reduced, the V(100)(r) decreased from 1.4 cm(3) for the interactive technique to 0.6 cm(3) for the dynamic technique. Similarly the mean TVR reduced from 1.66 to 1.44. In addition, the mean V(100) increased from 92% for the interactive procedure to 95% for the dynamic procedure. More importantly, the percentage of patients with a V(100) < 80% reduced from 5% to 1%. A slight decline was observed with regard to the d(10)(u) (136% vs. 140%) and the HI (0.58 vs. 0.51). The dynamic implant procedure resulted in improved implants. Almost ideal dose coverage was achieved, while minimizing the dose outside the prostate.

  20. Repetition-based Interactive Facade Modeling

    KAUST Repository

    AlHalawani, Sawsan

    2012-07-01

    Modeling and reconstruction of urban environments has gained researchers attention throughout the past few years. It spreads in a variety of directions across multiple disciplines such as image processing, computer graphics and computer vision as well as in architecture, geoscience and remote sensing. Having a virtual world of our real cities is very attractive in various directions such as entertainment, engineering, governments among many others. In this thesis, we address the problem of processing a single fa cade image to acquire useful information that can be utilized to manipulate the fa cade and generate variations of fa cade images which can be later used for buildings\\' texturing. Typical fa cade structures exhibit a rectilinear distribution where in windows and other elements are organized in a grid of horizontal and vertical repetitions of similar patterns. In the firt part of this thesis, we propose an efficient algorithm that exploits information obtained from a single image to identify the distribution grid of the dominant elements i.e. windows. This detection method is initially assisted with the user marking the dominant window followed by an automatic process for identifying its repeated instances which are used to define the structure grid. Given the distribution grid, we allow the user to interactively manipulate the fa cade by adding, deleting, resizing or repositioning the windows in order to generate new fa cade structures. Having the utility for the interactive fa cade is very valuable to create fa cade variations and generate new textures for building models. Ultimately, there is a wide range of interesting possibilities of interactions to be explored.

  1. Modeling molecular boiling points using computed interaction energies.

    Science.gov (United States)

    Peterangelo, Stephen C; Seybold, Paul G

    2017-12-20

    The noncovalent van der Waals interactions between molecules in liquids are typically described in textbooks as occurring between the total molecular dipoles (permanent, induced, or transient) of the molecules. This notion was tested by examining the boiling points of 67 halogenated hydrocarbon liquids using quantum chemically calculated molecular dipole moments, ionization potentials, and polarizabilities obtained from semi-empirical (AM1 and PM3) and ab initio Hartree-Fock [HF 6-31G(d), HF 6-311G(d,p)], and density functional theory [B3LYP/6-311G(d,p)] methods. The calculated interaction energies and an empirical measure of hydrogen bonding were employed to model the boiling points of the halocarbons. It was found that only terms related to London dispersion energies and hydrogen bonding proved significant in the regression analyses, and the performances of the models generally improved at higher levels of quantum chemical computation. An empirical estimate for the molecular polarizabilities was also tested, and the best models for the boiling points were obtained using either this empirical polarizability itself or the polarizabilities calculated at the B3LYP/6-311G(d,p) level, along with the hydrogen-bonding parameter. The results suggest that the cohesive forces are more appropriately described as resulting from highly localized interactions rather than interactions between the global molecular dipoles.

  2. Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction

    International Nuclear Information System (INIS)

    Upadrashta, Deepesh; Yang, Yaowen

    2015-01-01

    Piezoelectric energy harvesting from ambient vibrations is a potential technology for powering wireless sensors and low power electronic devices. The conventional linear harvesters suffer from narrow operational bandwidth. Many attempts have been made especially using the magnetic interaction to broaden the bandwidth of harvesters. The finite element (FE) modeling has been used only for analyzing the linear harvesters in the literature. The main difficulties in extending the FE modeling to analyze the nonlinear harvesters involving magnetic interaction are developing the mesh needed for magnetic interaction in dynamic problems and the high demand on computational resource needed for solving the coupled electrical–mechanical–magnetic problem. In this paper, an innovative method is proposed to model the magnetic interaction without inclusion of the magnetic module. The magnetic force is modeled using the nonlinear spring element available in ANSYS finite element analysis (FEA) package, thus simplifying the simulation of nonlinear piezoelectric energy harvesters as an electromechanically coupled problem. Firstly, an FE model of a monostable nonlinear harvester with cantilever configuration is developed and the results are validated with predictions from the theoretical model. Later, the proposed technique of FE modeling is extended to a complex 2-degree of freedom nonlinear energy harvester for which an accurate analytical model is difficult to derive. The performance predictions from FEA are compared with the experimental results. It is concluded that the proposed modeling technique is able to accurately analyze the behavior of nonlinear harvesters with magnetic interaction. (paper)

  3. Comparison of Spatiotemporal Fusion Models: A Review

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2015-02-01

    Full Text Available Simultaneously capturing spatial and temporal dynamics is always a challenge for the remote sensing community. Spatiotemporal fusion has gained wide interest in various applications for its superiority in integrating both fine spatial resolution and frequent temporal coverage. Though many advances have been made in spatiotemporal fusion model development and applications in the past decade, a unified comparison among existing fusion models is still limited. In this research, we classify the models into three categories: transformation-based, reconstruction-based, and learning-based models. The objective of this study is to (i compare four fusion models (STARFM, ESTARFM, ISTAFM, and SPSTFM under a one Landsat-MODIS (L-M pair prediction mode and two L-M pair prediction mode using time-series datasets from the Coleambally irrigation area and Poyang Lake wetland; (ii quantitatively assess prediction accuracy considering spatiotemporal comparability, landscape heterogeneity, and model parameter selection; and (iii discuss the advantages and disadvantages of the three categories of spatiotemporal fusion models.

  4. Bayesian Comparison of Alternative Graded Response Models for Performance Assessment Applications

    Science.gov (United States)

    Zhu, Xiaowen; Stone, Clement A.

    2012-01-01

    This study examined the relative effectiveness of Bayesian model comparison methods in selecting an appropriate graded response (GR) model for performance assessment applications. Three popular methods were considered: deviance information criterion (DIC), conditional predictive ordinate (CPO), and posterior predictive model checking (PPMC). Using…

  5. Comparison of source-term calculations using the AREST and SYVAC-Vault models: [Final report

    International Nuclear Information System (INIS)

    Apted, M.J.; Engel, D.W.; Garisto, N.C.; LeNeveu, D.M.

    1988-07-01

    A comparison of the calculated radionuclide release from a waste package in a geologic repository has been performed using the verified SYVAC-Vault Model and AREST Model. the purpose of this comparison is to further establish the credibility of these codes for predictive performance assessment and to identify improvements that may be required. A reference case for a Canadian conceptual design with spent fuel as the waste form was chosen to make an initial comparison. The results from the two models were in good agreement, including peak release rates, time to reach peak release, and long term release rates. Differences in results from the two models are attributed to differences in computational approaches. Studies of the effects of sorption, convective flow, distributed containment failure, and precipitation are identified as key areas for further comparisons and are currently in progress. 11 refs., 3 figs., 5 tabs

  6. Interaction of a Ni(II) tetraazaannulene complex with elongated fullerenes as simple models for carbon nanotubes.

    Science.gov (United States)

    Henao-Holguín, Laura Verónica; Basiuk, Vladimir A

    2015-06-01

    Nickel(II) complex of 5,14-dihydro-6,8,15,17-tetramethyldibenzo[b,i][1,4,8,11] tetraazacyclotetradecine (NiTMTAA), which can be employed for noncovalent functionalization of carbon nanotubes (CNTs), represents a more complex and interesting case in terms of structure of the resulting nanohybrids, as compared to the related materials functionalized with porphyrins and phthalocyanines. Due to its saddle shape, the NiTMTAA molecule adsorbed can adopt different, energetically non-equivalent orientations with respect to CNT, depending on whether CH3 or C6H4 groups contact the latter. The main goal of the present work was to provide information on the interactions of NiTMTAA with simple single-walled CNT (SWNT) models accessible for dispersion-corrected DFT calculations. For reasons of comparison, we employed three such functionals: M06-2X and LC-BLYP as implemented in Gaussian 09 package, and PBE-G as implemented in Materials Studio 6.0. In order to roughly estimate the effect of nanotube chirality on the interaction strenght, we considered two short closed-end SWNT models (also referred to as 'elongated fullerenes'), one armchair and one zigzag, derived from C60 and C80 hemispheres. In addition, we calculated similar complexes with C60, as well as I h and D 5h isomers of C80. The results were analyzed in terms of optimized geometries, formation energies, HOMO-LUMO gap energies, and intermolecular separations. Graphical Abstract Interaction of Ni(II) tetraazaannulene complex with elongated fullerenes.

  7. Investigation of inelastic interactions of 400 GeV protons with emulsion nuclei

    International Nuclear Information System (INIS)

    Boos, E.G.

    1978-01-01

    Proton-nucleus (pA) interactions registered in nuclear emulsion irradiated at the Batavian accelerator at 400 GeV/c are analyzed. Presented are energy dependences of some main parameters of hadron-nucleus (hA) interactions using experimental data on pA interactions for lesser energies. Quantitative and qualitative data comparison with predictions of a series of popular models of multiple particle production resulted from collisions with nuclei has been carried out. It is shown that most models can not explain all the experimental results. An analysis of the experimental data obtained permits to suggest that the production mechanism in hA interactions has two- or multi-component character

  8. Modeling of interaction effects in granular systems

    International Nuclear Information System (INIS)

    El-Hilo, M.; Shatnawy, M.; Al-Rsheed, A.

    2000-01-01

    Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(ΔE) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(ΔE) can easily give a temperature-independent behavior of S(T) when these changes give a 1/ΔE behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur and the loops are only predicted when the interaction field is positive. From these predictions, minor loops will form when the interaction field is strong enough to magnetize some moments during the recoil process back to zero field. Thus, these minor loops are originated from interaction driving irreversible changes along the recoil curve and the irreversible component of magnetization has no direct influence on the formation of these minor loops

  9. Effective dark energy equation of state in interacting dark energy models

    International Nuclear Information System (INIS)

    Avelino, P.P.; Silva, H.M.R. da

    2012-01-01

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  10. Effective dark energy equation of state in interacting dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Silva, H.M.R. da, E-mail: hilberto.silva@gmail.com [Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2012-07-24

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  11. Weak interaction models with spontaneously broken left-right symmetry

    International Nuclear Information System (INIS)

    Mohapatra, R.H.

    1978-01-01

    The present status of weak interaction models with spontaneously broken left-right symmetry is reviewed. The theoretical basis for asymptotic parity conservation, manifest left-right symmetry in charged current weak interactions, natural parity conservation in neutral currents and CP-violation in the context of SU(2)/sub L/ circled x SU (2)/sub R/ circled x U(1) models are outlined in detail. Various directions for further research in the theoretical and experimental side are indicated

  12. Fuzzy interaction modelling for participants in innovation development: approaches and examples

    Directory of Open Access Journals (Sweden)

    CHERNOV Vladimir

    2018-01-01

    Full Text Available The article considers the interaction problems of the participants in innovative development at the regional level. Mathematical approaches and formulations for mode lling, such as the interaction on the basis of game approaches and the theory of fuzzy sets, have been proposed. In particular, the interaction model of innovative participants in the region, considered as a fuzzy coalition game, is presented. Its theoretical justification and an example of practical calculations are given. Further, the methodology of interaction modelling is considered , taking into account the motives of the participants in innovative development when forming fuzzy coalitions. An example of the corresponding calculations is also given. Also, the interaction model of "state-regions" in the interpretation of the fuzzy hierarchical game is proposed and described. The features of its solution are described and an example of calculations is presented.

  13. A more general interacting model of holographic dark energy

    International Nuclear Information System (INIS)

    Yu Fei; Zhang Jingfei; Lu Jianbo; Wang Wei; Gui Yuanxing

    2010-01-01

    So far, there have been no theories or observational data that deny the presence of interaction between dark energy and dark matter. We extend naturally the holographic dark energy (HDE) model, proposed by Granda and Oliveros, in which the dark energy density includes not only the square of the Hubble scale, but also the time derivative of the Hubble scale to the case with interaction and the analytic forms for the cosmic parameters are obtained under the specific boundary conditions. The various behaviors concerning the cosmic expansion depend on the introduced numerical parameters which are also constrained. The more general interacting model inherits the features of the previous ones of HDE, keeping the consistency of the theory.

  14. Interaction of S-layer proteins of Lactobacillus kefir with model membranes and cells.

    Science.gov (United States)

    Hollmann, Axel; Delfederico, Lucrecia; Santos, Nuno C; Disalvo, E Anibal; Semorile, Liliana

    2018-06-01

    In previous works, it was shown that S-layer proteins from Lactobacillus kefir were able to recrystallize and stabilize liposomes, this feature reveling a great potential for developing liposomal-based carriers. Despite previous studies on this subject are important milestones, a number of questions remain unanswered. In this context, the feasibility of S-layer proteins as a biomaterial for drug delivery was evaluated in this work. First, S-layer proteins were fully characterized by electron microscopy, 2D-electrophoresis, and anionic exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). Afterward, interactions of S-layer proteins with model lipid membranes were evaluated, showing that proteins adsorb to the lipid surface following a non-fickean or anomalous diffusion, when positively charged lipid were employed, suggesting that electrostatic interaction is a key factor in the recrystallization process on these proteins. Finally, the interaction of S-layer coated liposomes with Caco-2 cell line was assessed: First, cytotoxicity of formulations was tested showing no cytotoxic effects in S-layer coated vesicles. Second, by flow cytometry, it was observed an increased ability to transfer cargo molecules into Caco-2 cells from S-layer coated liposomes in comparison to control ones. All data put together, supports the idea that a combination of adhesive properties of S-layer proteins concomitant with higher stability of S-layer coated liposomes represents an exciting starting point in the development of new drug carriers.

  15. Revision of the high energy hadronic interaction models PHOJET/DPMJET-III

    CERN Document Server

    Fedynitch, A

    2015-01-01

    The high-energy hadronic interaction model DPMJET-III is responsible for simulating nuclear interactions in the particle simulation package FLUKA. On the level of individual nucleon interactions it employs PHOJET, which provides sophisticated forward physics and diffraction models. This paper summarizes some of the recent developments, in particular regarding minimum-bias physics at the LHC, which apply to DPMJET-III and PHOJET at the same time.

  16. 3D for Geosciences: Interactive Tangibles and Virtual Models

    Science.gov (United States)

    Pippin, J. E.; Matheney, M.; Kitsch, N.; Rosado, G.; Thompson, Z.; Pierce, S. A.

    2016-12-01

    Point cloud processing provides a method of studying and modelling geologic features relevant to geoscience systems and processes. Here, software including Skanect, MeshLab, Blender, PDAL, and PCL are used in conjunction with 3D scanning hardware, including a Structure scanner and a Kinect camera, to create and analyze point cloud images of small scale topography, karst features, tunnels, and structures at high resolution. This project successfully scanned internal karst features ranging from small stalactites to large rooms, as well as an external waterfall feature. For comparison purposes, multiple scans of the same object were merged into single object files both automatically, using commercial software, and manually using open source libraries and code. Files with format .ply were manually converted into numeric data sets to be analyzed for similar regions between files in order to match them together. We can assume a numeric process would be more powerful and efficient than the manual method, however it could lack other useful features that GUI's may have. The digital models have applications in mining as efficient means of replacing topography functions such as measuring distances and areas. Additionally, it is possible to make simulation models such as drilling templates and calculations related to 3D spaces. Advantages of using methods described here for these procedures include the relatively quick time to obtain data and the easy transport of the equipment. With regard to openpit mining, obtaining 3D images of large surfaces and with precision would be a high value tool by georeferencing scan data to interactive maps. The digital 3D images obtained from scans may be saved as printable files to create physical 3D-printable models to create tangible objects based on scientific information, as well as digital "worlds" able to be navigated virtually. The data, models, and algorithms explored here can be used to convey complex scientific ideas to a range of

  17. Comparison of CME radial velocities from a flux rope model and an ice cream cone model

    Science.gov (United States)

    Kim, T.; Moon, Y.; Na, H.

    2011-12-01

    Coronal Mass Ejections (CMEs) on the Sun are the largest energy release process in the solar system and act as the primary driver of geomagnetic storms and other space weather phenomena on the Earth. So it is very important to infer their directions, velocities and three-dimensional structures. In this study, we choose two different models to infer radial velocities of halo CMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using the STEREO/SECCHI data. In addition, we use another flux rope model in which the separation angle of flux rope is zero, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from among each model have very good correlations (R>0.9). We will extending this comparison to other partial CMEs observed by STEREO and SOHO.

  18. Qualitative and quantitative guidelines for the comparison of environmental model predictions

    International Nuclear Information System (INIS)

    Scott, M.

    1995-03-01

    The question of how to assess or compare predictions from a number of models is one of concern in the validation of models, in understanding the effects of different models and model parameterizations on model output, and ultimately in assessing model reliability. Comparison of model predictions with observed data is the basic tool of model validation while comparison of predictions amongst different models provides one measure of model credibility. The guidance provided here is intended to provide qualitative and quantitative approaches (including graphical and statistical techniques) to such comparisons for use within the BIOMOVS II project. It is hoped that others may find it useful. It contains little technical information on the actual methods but several references are provided for the interested reader. The guidelines are illustrated on data from the VAMP CB scenario. Unfortunately, these data do not permit all of the possible approaches to be demonstrated since predicted uncertainties were not provided. The questions considered are concerned with a) intercomparison of model predictions and b) comparison of model predictions with the observed data. A series of examples illustrating some of the different types of data structure and some possible analyses have been constructed. A bibliography of references on model validation is provided. It is important to note that the results of the various techniques discussed here, whether qualitative or quantitative, should not be considered in isolation. Overall model performance must also include an evaluation of model structure and formulation, i.e. conceptual model uncertainties, and results for performance measures must be interpreted in this context. Consider a number of models which are used to provide predictions of a number of quantities at a number of time points. In the case of the VAMP CB scenario, the results include predictions of total deposition of Cs-137 and time dependent concentrations in various

  19. NASCENT: an automatic protein interaction network generation tool for non-model organisms.

    Science.gov (United States)

    Banky, Daniel; Ordog, Rafael; Grolmusz, Vince

    2009-04-24

    Large quantity of reliable protein interaction data are available for model organisms in public depositories (e.g., MINT, DIP, HPRD, INTERACT). Most data correspond to experiments with the proteins of Saccharomyces cerevisiae, Drosophila melanogaster, Homo sapiens, Caenorhabditis elegans, Escherichia coli and Mus musculus. For other important organisms the data availability is poor or non-existent. Here we present NASCENT, a completely automatic web-based tool and also a downloadable Java program, capable of modeling and generating protein interaction networks even for non-model organisms. The tool performs protein interaction network modeling through gene-name mapping, and outputs the resulting network in graphical form and also in computer-readable graph-forms, directly applicable by popular network modeling software. http://nascent.pitgroup.org.

  20. Oil transformation sector modelling: price interactions

    International Nuclear Information System (INIS)

    Maurer, A.

    1992-01-01

    A global oil and oil product prices evolution model is proposed that covers the transformation sector incidence and the final user price establishment together with price interactions between gaseous and liquid hydrocarbons. High disparities among oil product prices in the various consumer zones (North America, Western Europe, Japan) are well described and compared with the low differences between oil supply prices in these zones. Final user price fluctuations are shown to be induced by transformation differences and competition; natural gas market is also modelled

  1. Coulomb-interacting billiards in circular cavities

    International Nuclear Information System (INIS)

    Solanpää, J; Räsänen, E; Nokelainen, J; Luukko, P J J

    2013-01-01

    We apply a molecular dynamics scheme to analyze classically chaotic properties of a two-dimensional circular billiard system containing two Coulomb-interacting electrons. As such, the system resembles a prototype model for a semiconductor quantum dot. The interaction strength is varied from the noninteracting limit with zero potential energy up to the strongly interacting regime where the relative kinetic energy approaches zero. At weak interactions the bouncing maps show jumps between quasi-regular orbits. In the strong-interaction limit we find an analytic expression for the bouncing map. Its validity in the general case is assessed by comparison with our numerical data. To obtain a more quantitative view on the dynamics as the interaction strength is varied, we compute and analyze the escape rates of the system. Apart from very weak or strong interactions, the escape rates show consistently exponential behavior, thus suggesting strongly chaotic dynamics and a phase space without significant sticky regions within the considered time scales. (paper)

  2. Modeling of ultrafast THz interactions in molecular crystals

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Clark, Stewart J.; Jepsen, Peter Uhd

    2014-01-01

    In this paper we present a numerical study of terahertz pulses interacting with crystals of cesium iodide. We model the molecular dynamics of the cesium iodide crystals with the Density Functional Theory software CASTEP, where ultrafast terahertz pulses are implemented to the CASTEP software...... to interact with molecular crystals. We investigate the molecular dynamics of cesium iodide crystals when interacting with realistic terahertz pulses of field strengths from 0 to 50 MV/cm. We find nonlinearities in the response of the CsI crystals at field strengths higher than 10 MV/cm....

  3. Mechanical Interaction in Pressurized Pipe Systems: Experiments and Numerical Models

    Directory of Open Access Journals (Sweden)

    Mariana Simão

    2015-11-01

    Full Text Available The dynamic interaction between the unsteady flow occurrence and the resulting vibration of the pipe are analyzed based on experiments and numerical models. Waterhammer, structural dynamic and fluid–structure interaction (FSI are the main subjects dealt with in this study. Firstly, a 1D model is developed based on the method of characteristics (MOC using specific damping coefficients for initial components associated with rheological pipe material behavior, structural and fluid deformation, and type of anchored structural supports. Secondly a 3D coupled complex model based on Computational Fluid Dynamics (CFD, using a Finite Element Method (FEM, is also applied to predict and distinguish the FSI events. Herein, a specific hydrodynamic model of viscosity to replicate the operation of a valve was also developed to minimize the number of mesh elements and the complexity of the system. The importance of integrated analysis of fluid–structure interaction, especially in non-rigidity anchored pipe systems, is equally emphasized. The developed models are validated through experimental tests.

  4. Vector Susceptibility of QCD Vacuum from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; QI Shi; CHEN Wei; WU Xiao-Hua

    2003-01-01

    .A new approach for calculating vacuum susceptibilities from an effective quark-quark interaction model is derived. As a special case, the vector vacuum susceptibility is calculated. A comparison with the results of the previous approaches is given.

  5. Metabolic network modeling of microbial interactions in natural and engineered environmental systems

    Directory of Open Access Journals (Sweden)

    Octavio ePerez-Garcia

    2016-05-01

    Full Text Available We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA, experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e. i lumped networks, ii compartment per guild networks, iii bi-level optimization simulations and iv dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial

  6. Data Requirements and Modeling for Gas Hydrate-Related Mixtures and a Comparison of Two Association Models

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Aloupis, Georgios; Kontogeorgis, Georgios M.

    2017-01-01

    the performance of the CPA and sPC-SAFT EOS for modeling the fluid-phase equilibria of gas hydrate-related systems and will try to explore how the models can help in suggesting experimental measurements. These systems contain water, hydrocarbon (alkane or aromatic), and either methanol or monoethylene glycol...... parameter sets have been chosen for the sPC-SAFT EOS for a fair comparison. The comparisons are made for pure fluid properties, vapor liquid-equilibria, and liquid liquid equilibria of binary and ternary mixtures as well as vapor liquid liquid equilibria of quaternary mixtures. The results show, from...

  7. Modelling the behaviour of long-lived radionuclides in the Irish Sea - comparison of model predictions with field observations

    International Nuclear Information System (INIS)

    Kershaw, P.J.; Pentreath, R.J.; Gurbutt, P.A.; Woodhead, D.S.; Durance, J.A.; Camplin, W.C.

    1988-01-01

    A multi-compartmental box model of the Irish Sea has been developed to predict the distribution and radiological consequences of radionuclides discharged from the Sellafield reprocessing plant. The box structure was based on observations of radionuclide distributions in the sea bed and the water circulation was generated from extensive time-series data on 137 Cs concentrations in seawater. Measurements of naturally-occurring nuclides provided both data on the extent and rate of these processes and a means to validate the model assumptions. The model structure is briefly outlined, comparisons are made between model predictions and field observation, and some of the difficulties in making such comparisons are discussed. (author)

  8. Multi-physics fluid-structure interaction modelling software

    CSIR Research Space (South Africa)

    Malan, AG

    2008-11-01

    Full Text Available -structure interaction modelling software AG MALAN AND O OXTOBY CSIR Defence, Peace, Safety and Security, PO Box 395, Pretoria, 0001 Email: amalan@csir.co.za – www.csir.co.za Internationally leading aerospace company Airbus sponsored key components... of the development of the CSIR fl uid-structure interaction (FSI) software. Below are extracts from their evaluation of the devel- oped technology: “The fi eld of FSI covers a massive range of engineering problems, each with their own multi-parameter, individual...

  9. Comparison among Models to Estimate the Shielding Effectiveness Applied to Conductive Textiles

    Directory of Open Access Journals (Sweden)

    Alberto Lopez

    2013-01-01

    Full Text Available The purpose of this paper is to present a comparison among two models and its measurement to calculate the shielding effectiveness of electromagnetic barriers, applying it to conductive textiles. Each one, models a conductive textile as either a (1 wire mesh screen or (2 compact material. Therefore, the objective is to perform an analysis of the models in order to determine which one is a better approximation for electromagnetic shielding fabrics. In order to provide results for the comparison, the shielding effectiveness of the sample has been measured by means of the standard ASTM D4935-99.

  10. Vector-vector production in photon-photon interactions

    International Nuclear Information System (INIS)

    Ronan, M.T.

    1988-01-01

    Measurements of exclusive untagged /rho/ 0 /rho/ 0 , /rho//phi/, K/sup *//bar K//sup */, and /rho/ω production and tagged /rho/ 0 /rho/ 0 production in photon-photon interactions by the TPC/Two-Gamma experiment are reviewed. Comparisons to the results of other experiments and to models of vector-vector production are made. Fits to the data following a four quark model prescription for vector meson pair production are also presented. 10 refs., 9 figs

  11. Comparison of two conceptual models of flow using the TSA

    International Nuclear Information System (INIS)

    Wilson, M.L.

    1992-01-01

    Several new capabilities have been added to the Total-System Analyzer (TSA), including a new model of unsaturated flow and transport, two new models of source releases, a different computational method for saturated transport, and gas-release capability. In this paper these new capabilities are described, and a comparison is made of results from the two different conceptual models of unsaturated flow that are now part of the TSA, a composite-porosity model and a simple fracture-flow model

  12. Interactive Rapid Dose Assessment Model (IRDAM): user's guide

    International Nuclear Information System (INIS)

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    As part of the continuing emphasis on emergency preparedness the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This User's Guide provides instruction in the setup and operation of the equipment necessary to run IRDAM. Instructions are also given on how to load the magnetic disks and access the interactive part of the program. Two other companion volumes to this one provide additional information on IRDAM. Reactor Accident Assessment Methods (NUREG/CR-3012, Volume 2) describes the technical bases for IRDAM including methods, models and assumptions used in calculations. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios

  13. Bayesian Model Comparison With the g-Prior

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Cemgil, Ali Taylan

    2014-01-01

    ’s asymptotic MAP rule was an improvement, and in this paper we extend the work by Djuric in several ways. Specifically, we consider the elicitation of proper prior distributions, treat the case of real- and complex-valued data simultaneously in a Bayesian framework similar to that considered by Djuric......, and develop new model selection rules for a regression model containing both linear and non-linear parameters. Moreover, we use this framework to give a new interpretation of the popular information criteria and relate their performance to the signal-to-noise ratio of the data. By use of simulations, we also...... demonstrate that our proposed model comparison and selection rules outperform the traditional information criteria both in terms of detecting the true model and in terms of predicting unobserved data. The simulation code is available online....

  14. Modeling Child–Nature Interaction in a Nature Preschool: A Proof of Concept

    Directory of Open Access Journals (Sweden)

    Peter H. Kahn

    2018-05-01

    Full Text Available This article provides a proof of concept for an approach to modeling child–nature interaction based on the idea of interaction patterns: characterizations of essential features of interaction between humans and nature, specified abstractly enough such that countless different instantiations of each one can occur – in more domestic or wild forms – given different types of nature, people, and purposes. The model draws from constructivist psychology, ecological psychology, and evolutionary psychology, and is grounded in observational data collected through a time-sampling methodology at a nature preschool. Through using a nature language that emphasizes ontogenetic and phylogenetic significance, seven keystone interaction patterns are described for this nature preschool: using one’s body vigorously in nature, striking wood on wood, constructing shelter, being in solitude in nature, lying on earth, cohabiting with a wild animal, and being outside in weather. These 7 interactions patterns are then brought together with 13 other patterns published elsewhere to provide a total of 20 keystone interaction patterns that begin to fill out the model, and to show its promise. Discussion focuses on what the model aims to be in terms of both product and process, on what work the model can currently do, and how to further develop the model.

  15. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    prefragments, then decay by the emission of nucleons, composites, and gamma rays. Recent improvements to the model have incorporated coalescence effects, which effectively tie up single nucleons in the formation of composites during final-state interactions. Comparison of the improved model s predictions with neutron production data near 0 deg in the CA-40+ H reaction at 357 and 565 MeV/nucleon show marked improvement.

  16. NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS

    International Nuclear Information System (INIS)

    TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.

    2004-01-01

    For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability

  17. Model of cognitive processes and conversational principles in survey interview interaction

    NARCIS (Netherlands)

    Ongena, Y.P.; Dijkstra, W.

    2007-01-01

    In this paper we provide a model of interviewer-respondent interaction in survey interviews. Our model is primarily focused on the occurrence of problems within this interaction that seem likely to affect data quality. Both conversational principles and cognitive processes, especially where they do

  18. Tropical climate and vegetation changes during Heinrich Event 1: a model-data comparison

    Directory of Open Access Journals (Sweden)

    D. Handiani

    2012-01-01

    Full Text Available Abrupt climate changes from 18 to 15 thousand years before present (kyr BP associated with Heinrich Event 1 (HE1 had a strong impact on vegetation patterns not only at high latitudes of the Northern Hemisphere, but also in the tropical regions around the Atlantic Ocean. To gain a better understanding of the linkage between high and low latitudes, we used the University of Victoria (UVic Earth System-Climate Model (ESCM with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era, the Last Glacial Maximum (LGM, and a Heinrich-like event with two different climate backgrounds (interglacial and glacial. We calculated mega-biomes from the plant-functional types (PFTs generated by the model to allow for a direct comparison between model results and palynological vegetation reconstructions.

    Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well with biome reconstructions of the modern and LGM time slices, respectively, except that our pre-industrial simulation predicted the dominance of grassland in southern Europe and our LGM simulation resulted in more forest cover in tropical and sub-tropical South America.

    The HE1-like simulation with a glacial climate background produced sea-surface temperature patterns and enhanced inter-hemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. We found that the cooling of the Northern Hemisphere caused a southward shift of those PFTs that are indicative of an increased desertification and a retreat of broadleaf forests in West Africa and northern South America. The mega-biomes from our HE1 simulation agreed well with paleovegetation data from tropical Africa and northern South America. Thus, according to our model-data comparison, the reconstructed vegetation changes for the tropical regions around the Atlantic Ocean were physically consistent with the remote

  19. Hybrid modelling of soil-structure interaction for embedded structures

    International Nuclear Information System (INIS)

    Gupta, S.; Penzien, J.

    1981-01-01

    The basic methods currently being used for the analysis of soil-structure interaction fail to properly model three-dimensional embedded structures with flexible foundations. A hybrid model for the analysis of soil-structure interaction is developed in this investigation which takes advantage of the desirable features of both the finite element and substructure methods and which minimizes their undesirable features. The hybrid model is obtained by partitioning the total soil-structure system into a nearfield and a far-field with a smooth hemispherical interface. The near-field consists of the structure and a finite region of soil immediately surrounding its base. The entire near-field may be modelled in three-dimensional form using the finite element method; thus, taking advantage of its ability to model irregular geometries, and the non-linear soil behavior in the immediate vicinity of the structure. (orig./WL)

  20. Modelling of pellet-cladding interaction in PWR's

    International Nuclear Information System (INIS)

    Esteves, A.M.; Silva, A.T. e.

    1992-01-01

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyses the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. (author)

  1. Comparison of transient PCRV model test results with analysis

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Belytschko, T.B.

    1979-01-01

    Comparisons are made of transient data derived from simple models of a reactor containment vessel with analytical solutions. This effort is a part of the ongoing process of development and testing of the DYNAPCON computer code. The test results used in these comparisons were obtained from scaled models of the British sodium cooled fast breeder program. The test structure is a scaled model of a cylindrically shaped reactor containment vessel made of concrete. This concrete vessel is prestressed axially by holddown bolts spanning the top and bottom slabs along the cylindrical walls, and is also prestressed circumferentially by a number of cables wrapped around the vessel. For test purposes this containment vessel is partially filled with water, which comes in direct contact with the vessel walls. The explosive charge is immersed in the pool of water and is centrally suspended from the top of the vessel. The tests are very similar to the series of tests made for the COVA experimental program, but the vessel here is the prestressed concrete container. (orig.)

  2. Extending NGOMSL Model for Human-Humanoid Robot Interaction in the Soccer Robotics Domain

    Directory of Open Access Journals (Sweden)

    Rajesh Elara Mohan

    2008-01-01

    Full Text Available In the field of human-computer interaction, the Natural Goals, Operators, Methods, and Selection rules Language (NGOMSL model is one of the most popular methods for modelling knowledge and cognitive processes for rapid usability evaluation. The NGOMSL model is a description of the knowledge that a user must possess to operate the system represented as elementary actions for effective usability evaluations. In the last few years, mobile robots have been exhibiting a stronger presence in commercial markets and very little work has been done with NGOMSL modelling for usability evaluations in the human-robot interaction discipline. This paper focuses on extending the NGOMSL model for usability evaluation of human-humanoid robot interaction in the soccer robotics domain. The NGOMSL modelled human-humanoid interaction design of Robo-Erectus Junior was evaluated and the results of the experiments showed that the interaction design was able to find faults in an average time of 23.84 s. Also, the interaction design was able to detect the fault within the 60 s in 100% of the cases. The Evaluated Interaction design was adopted by our Robo-Erectus Junior version of humanoid robots in the RoboCup 2007 humanoid soccer league.

  3. A two-level solvable model involving competing pairing interactions

    International Nuclear Information System (INIS)

    Dussel, G.G.; Maqueda, E.E.; Perazzo, R.P.J.; Evans, J.A.

    1986-01-01

    A model is considered consisting of nucleons moving in two non-degenerate l-shells and interacting through two pairing residual interactions with (S, T) = (1, 0) and (0, 1). These, together with the single particle hamiltonian induce mutually destructive correlations, giving rise to various collective pictures that can be discussed as representing a two-dimensional space of phases. The model is solved exactly using an O(8)xO(8) group theoretical classification scheme. The transfer of correlated pairs and quartets is also discussed. (orig.)

  4. A mathematical model of tumor–immune interactions

    KAUST Repository

    Robertson-Tessi, Mark; El-Kareh, Ardith; Goriely, Alain

    2012-01-01

    the interactions between the cell populations. Decreased access of effector cells to the tumor interior with increasing tumor size is accounted for. The model is applied to tumors with different growth rates and antigenicities to gauge the relative importance

  5. Electron scattering in the interacting boson model

    NARCIS (Netherlands)

    Dieperink, AEL; Iachello, F; Rinat, A; Creswell, C

    1978-01-01

    It is suggested that the interacting boson model be used in the analysis of electron scattering data. Qualitative features of the expected behavior of the inelastic excitation of some 2 ÷ states inthe transitional Sm-Nd region are discussed

  6. Incorporating Context Dependency of Species Interactions in Species Distribution Models.

    Science.gov (United States)

    Lany, Nina K; Zarnetske, Phoebe L; Gouhier, Tarik C; Menge, Bruce A

    2017-07-01

    Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same

  7. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    Science.gov (United States)

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  8. A Location-Based Interactive Model of Internet of Things and Cloud (IoT-Cloud) for Mobile Cloud Computing Applications.

    Science.gov (United States)

    Dinh, Thanh; Kim, Younghan; Lee, Hyukjoon

    2017-03-01

    This paper presents a location-based interactive model of Internet of Things (IoT) and cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model.

  9. Reranking candidate gene models with cross-species comparison for improved gene prediction

    Directory of Open Access Journals (Sweden)

    Pereira Fernando CN

    2008-10-01

    Full Text Available Abstract Background Most gene finders score candidate gene models with state-based methods, typically HMMs, by combining local properties (coding potential, splice donor and acceptor patterns, etc. Competing models with similar state-based scores may be distinguishable with additional information. In particular, functional and comparative genomics datasets may help to select among competing models of comparable probability by exploiting features likely to be associated with the correct gene models, such as conserved exon/intron structure or protein sequence features. Results We have investigated the utility of a simple post-processing step for selecting among a set of alternative gene models, using global scoring rules to rerank competing models for more accurate prediction. For each gene locus, we first generate the K best candidate gene models using the gene finder Evigan, and then rerank these models using comparisons with putative orthologous genes from closely-related species. Candidate gene models with lower scores in the original gene finder may be selected if they exhibit strong similarity to probable orthologs in coding sequence, splice site location, or signal peptide occurrence. Experiments on Drosophila melanogaster demonstrate that reranking based on cross-species comparison outperforms the best gene models identified by Evigan alone, and also outperforms the comparative gene finders GeneWise and Augustus+. Conclusion Reranking gene models with cross-species comparison improves gene prediction accuracy. This straightforward method can be readily adapted to incorporate additional lines of evidence, as it requires only a ranked source of candidate gene models.

  10. Modelling hadronic interactions in HEP MC generators

    CERN Document Server

    Skands, Peter

    2015-01-01

    HEP event generators aim to describe high-energy collisions in full exclusive detail. They combine perturbative matrix elements and parton showers with dynamical models of less well-understood phenomena such as hadronization, diffraction, and the so-called underlying event. We briefly summarise some of the main concepts relevant to the modelling of soft/inclusive hadron interactions in MC generators, in particular PYTHIA, with emphasis on questions recently highlighted by LHC data.

  11. A Statistical Model for Soliton Particle Interaction in Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Pécseli, Hans; Truelsen, J.

    1986-01-01

    A statistical model for soliton-particle interaction is presented. A master equation is derived for the time evolution of the particle velocity distribution as induced by resonant interaction with Korteweg-de Vries solitons. The detailed energy balance during the interaction subsequently determines...... the evolution of the soliton amplitude distribution. The analysis applies equally well for weakly nonlinear plasma waves in a strongly magnetized waveguide, or for ion acoustic waves propagating in one-dimensional systems....

  12. Tests and comparisons of gravity models.

    Science.gov (United States)

    Marsh, J. G.; Douglas, B. C.

    1971-01-01

    Optical observations of the GEOS satellites were used to obtain orbital solutions with different sets of geopotential coefficients. The solutions were compared before and after modification to high order terms (necessary because of resonance) and were then analyzed by comparing subsequent observations with predicted trajectories. The most important source of error in orbit determination and prediction for the GEOS satellites is the effect of resonance found in most published sets of geopotential coefficients. Modifications to the sets yield greatly improved orbits in most cases. The results of these comparisons suggest that with the best optical tracking systems and gravity models, satellite position error due to gravity model uncertainty can reach 50-100 m during a heavily observed 5-6 day orbital arc. If resonant coefficients are estimated, the uncertainty is reduced considerably.

  13. Model-free inference of direct network interactions from nonlinear collective dynamics.

    Science.gov (United States)

    Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc

    2017-12-19

    The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.

  14. A comparison of hydrologic models for ecological flows and water availability

    Science.gov (United States)

    Peter V. Caldwell; Jonathan G. Kennen; Ge Sun; Julie E. Kiang; Jon B. Butcher; Michele C. Eddy; Lauren E. Hay; Jacob H. LaFontaine; Ernie F. Hain; Stacy A. C. Nelson; Steve G. McNulty

    2015-01-01

    Robust hydrologic models are needed to help manage water resources for healthy aquatic ecosystems and reliable water supplies for people, but there is a lack of comprehensive model comparison studies that quantify differences in streamflow predictions among model applications developed to answer management questions. We assessed differences in daily streamflow...

  15. Functionalized anatomical models for EM-neuron Interaction modeling

    Science.gov (United States)

    Neufeld, Esra; Cassará, Antonino Mario; Montanaro, Hazael; Kuster, Niels; Kainz, Wolfgang

    2016-06-01

    The understanding of interactions between electromagnetic (EM) fields and nerves are crucial in contexts ranging from therapeutic neurostimulation to low frequency EM exposure safety. To properly consider the impact of in vivo induced field inhomogeneity on non-linear neuronal dynamics, coupled EM-neuronal dynamics modeling is required. For that purpose, novel functionalized computable human phantoms have been developed. Their implementation and the systematic verification of the integrated anisotropic quasi-static EM solver and neuronal dynamics modeling functionality, based on the method of manufactured solutions and numerical reference data, is described. Electric and magnetic stimulation of the ulnar and sciatic nerve were modeled to help understanding a range of controversial issues related to the magnitude and optimal determination of strength-duration (SD) time constants. The results indicate the importance of considering the stimulation-specific inhomogeneous field distributions (especially at tissue interfaces), realistic models of non-linear neuronal dynamics, very short pulses, and suitable SD extrapolation models. These results and the functionalized computable phantom will influence and support the development of safe and effective neuroprosthetic devices and novel electroceuticals. Furthermore they will assist the evaluation of existing low frequency exposure standards for the entire population under all exposure conditions.

  16. Animal models of gene-environment interactions in schizophrenia.

    Science.gov (United States)

    Ayhan, Yavuz; Sawa, Akira; Ross, Christopher A; Pletnikov, Mikhail V

    2009-12-07

    The pathogenesis of schizophrenia and related mental illnesses likely involves multiple interactions between susceptibility genes of small effects and environmental factors. Gene-environment interactions occur across different stages of neurodevelopment to produce heterogeneous clinical and pathological manifestations of the disease. The main obstacle for mechanistic studies of gene-environment interplay has been the paucity of appropriate experimental systems for elucidating the molecular pathways that mediate gene-environment interactions relevant to schizophrenia. Recent advances in psychiatric genetics and a plethora of experimental data from animal studies allow us to suggest a new approach to gene-environment interactions in schizophrenia. We propose that animal models based on identified genetic mutations and measurable environment factors will help advance studies of the molecular mechanisms of gene-environment interplay.

  17. Electron scattering in the interacting boson model

    International Nuclear Information System (INIS)

    Dieperink, A.E.L.; Iachello, F.; Creswell, C.

    1978-01-01

    It is suggested that the interacting boson model be used in the analysis of electron scattering data. Qualitative features of the expected behavior of the inelastic excitation of some 2 + states in the transitional Sm-Nd region are discussed. (Auth.)

  18. Comparison of Vehicle Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Thomas S. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Rebecca S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Changzheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lin, Zhenhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birky, Alicia [Energetics Incorporated, Columbia, MD (United States); Kontou, Eleftheria [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-31

    Five consumer vehicle choice models that give projections of future sales shares of light-duty vehicles were compared by running each model using the same inputs, where possible, for two scenarios. The five models compared — LVCFlex, MA3T, LAVE-Trans, ParaChoice, and ADOPT — have been used in support of the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office in analyses of future light-duty vehicle markets under different assumptions about future vehicle technologies and market conditions. The models give projections of sales shares by powertrain technology. Projections made using common, but not identical, inputs showed qualitative agreement, with the exception of ADOPT. ADOPT estimated somewhat lower advanced vehicle shares, mostly composed of hybrid electric vehicles. Other models projected large shares of multiple advanced vehicle powertrains. Projections of models differed in significant ways, including how different technologies penetrated cars and light trucks. Since the models are constructed differently and take different inputs, not all inputs were identical, but were the same or very similar where possible. Projections by all models were in close agreement only in the first few years. Although the projections from LVCFlex, MA3T, LAVE-Trans, and ParaChoice were in qualitative agreement, there were significant differences in sales shares given by the different models for individual powertrain types, particularly in later years (2030 and later). For example, projected sales shares of conventional spark-ignition vehicles in 2030 for a given scenario ranged from 35% to 74%. Reasons for such differences are discussed, recognizing that these models were not developed to give quantitatively accurate predictions of future sales shares, but to represent vehicles markets realistically and capture the connections between sales and important influences. Model features were also compared at a high level, and suggestions for further comparison

  19. Data-Model Comparison of Pliocene Sea Surface Temperature

    Science.gov (United States)

    Dowsett, H. J.; Foley, K.; Robinson, M. M.; Bloemers, J. T.

    2013-12-01

    The mid-Piacenzian (late Pliocene) climate represents the most geologically recent interval of long-term average warmth and shares similarities with the climate projected for the end of the 21st century. As such, its fossil and sedimentary record represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. We present the first systematic comparison of Pliocene sea surface temperatures (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) and the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional (mid- to high latitude North Atlantic and tropics) and dynamic (upwelling) situations where there is discord between reconstructed SST and the PlioMIP simulations. These differences can lead to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. Scatter plot of multi-model-mean anomalies (squares) and PRISM3 data anomalies (large blue circles) by latitude. Vertical bars on data anomalies represent the variability of warm climate phase within the time-slab at each locality. Small colored circles represent individual model anomalies and show the spread of model estimates about the multi-model-mean. While not directly comparable in terms of the development of the means nor the meaning of variability, this plot provides a first order comparison of the anomalies. Encircled areas are a, PRISM low latitude sites outside of upwelling areas; b, North Atlantic coastal sequences and Mediterranean sites; c, large anomaly PRISM sites from the northern hemisphere. Numbers identify Ocean Drilling Program sites.

  20. Perceptual interaction between carrier periodicity and amplitude modulation in broadband stimuli: A comparison of the autocorrelation and modulation-filterbank model

    DEFF Research Database (Denmark)

    Stein, A.; Ewert, Stephan; Wiegrebe, L.

    2005-01-01

    , autocorrelation is applied. Considering the large overlap in pitch and modulation perception, this is not parsimonious. Two experiments are presented to investigate the interaction between carrier periodicity, which produces strong pitch sensations, and envelope periodicity using broadband stimuli. Results show......Recent temporal models of pitch and amplitude modulation perception converge on a relatively realistic implementation of cochlear processing followed by a temporal analysis of periodicity. However, for modulation perception, a modulation filterbank is applied whereas for pitch perception...

  1. A Hard Constraint Algorithm to Model Particle Interactions in DNA-laden Flows

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, D; Miller, G H; Bybee, M D

    2006-08-01

    We present a new method for particle interactions in polymer models of DNA. The DNA is represented by a bead-rod polymer model and is fully-coupled to the fluid. The main objective in this work is to implement short-range forces to properly model polymer-polymer and polymer-surface interactions, specifically, rod-rod and rod-surface uncrossing. Our new method is based on a rigid constraint algorithm whereby rods elastically bounce off one another to prevent crossing, similar to our previous algorithm used to model polymer-surface interactions. We compare this model to a classical (smooth) potential which acts as a repulsive force between rods, and rods and surfaces.

  2. An Analytic Approach to Modeling Land-Atmosphere Interaction: 1. Construct and Equilibrium Behavior

    Science.gov (United States)

    Brubaker, Kaye L.; Entekhabi, Dara

    1995-03-01

    A four-variable land-atmosphere model is developed to investigate the coupled exchanges of water and energy between the land surface and atmosphere and the role of these exchanges in the statistical behavior of continental climates. The land-atmosphere system is substantially simplified and formulated as a set of ordinary differential equations that, with the addition of random noise, are suitable for analysis in the form of the multivariate Îto equation. The model treats the soil layer and the near-surface atmosphere as reservoirs with storage capacities for heat and water. The transfers between these reservoirs are regulated by four states: soil saturation, soil temperature, air specific humidity, and air potential temperature. The atmospheric reservoir is treated as a turbulently mixed boundary layer of fixed depth. Heat and moisture advection, precipitation, and layer-top air entrainment are parameterized. The system is forced externally by solar radiation and the lateral advection of air and water mass. The remaining energy and water mass exchanges are expressed in terms of the state variables. The model development and equilibrium solutions are presented. Although comparisons between observed data and steady state model results re inexact, the model appears to do a reasonable job of partitioning net radiation into sensible and latent heat flux in appropriate proportions for bare-soil midlatitude summer conditions. Subsequent work will introduce randomness into the forcing terms to investigate the effect of water-energy coupling and land-atmosphere interaction on variability and persistence in the climatic system.

  3. A comparison of food crispness based on the cloud model.

    Science.gov (United States)

    Wang, Minghui; Sun, Yonghai; Hou, Jumin; Wang, Xia; Bai, Xue; Wu, Chunhui; Yu, Libo; Yang, Jie

    2018-02-01

    The cloud model is a typical model which transforms the qualitative concept into the quantitative description. The cloud model has been used less extensively in texture studies before. The purpose of this study was to apply the cloud model in food crispness comparison. The acoustic signals of carrots, white radishes, potatoes, Fuji apples, and crystal pears were recorded during compression. And three time-domain signal characteristics were extracted, including sound intensity, maximum short-time frame energy, and waveform index. The three signal characteristics and the cloud model were used to compare the crispness of the samples mentioned above. The crispness based on the Ex value of the cloud model, in a descending order, was carrot > potato > white radish > Fuji apple > crystal pear. To verify the results of the acoustic signals, mechanical measurement and sensory evaluation were conducted. The results of the two verification experiments confirmed the feasibility of the cloud model. The microstructures of the five samples were also analyzed. The microstructure parameters were negatively related with crispness (p cloud model method can be used for crispness comparison of different kinds of foods. The method is more accurate than the traditional methods such as mechanical measurement and sensory evaluation. The cloud model method can also be applied to other texture studies extensively. © 2017 Wiley Periodicals, Inc.

  4. Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling

    DEFF Research Database (Denmark)

    Dotto, C. B.; Mannina, G.; Kleidorfer, M.

    2012-01-01

    -UA), an approach based on a multi-objective auto-calibration (a multialgorithm, genetically adaptive multiobjective method, AMALGAM) and a Bayesian approach based on a simplified Markov Chain Monte Carlo method (implemented in the software MICA). To allow a meaningful comparison among the different uncertainty...... techniques, common criteria have been set for the likelihood formulation, defining the number of simulations, and the measure of uncertainty bounds. Moreover, all the uncertainty techniques were implemented for the same case study, in which the same stormwater quantity and quality model was used alongside...... the same dataset. The comparison results for a well-posed rainfall/runoff model showed that the four methods provide similar probability distributions of model parameters, and model prediction intervals. For ill-posed water quality model the differences between the results were much wider; and the paper...

  5. Localisation in a Growth Model with Interaction

    Science.gov (United States)

    Costa, M.; Menshikov, M.; Shcherbakov, V.; Vachkovskaia, M.

    2018-05-01

    This paper concerns the long term behaviour of a growth model describing a random sequential allocation of particles on a finite cycle graph. The model can be regarded as a reinforced urn model with graph-based interaction. It is motivated by cooperative sequential adsorption, where adsorption rates at a site depend on the configuration of existing particles in the neighbourhood of that site. Our main result is that, with probability one, the growth process will eventually localise either at a single site, or at a pair of neighbouring sites.

  6. Energy economy in the actomyosin interaction: lessons from simple models.

    Science.gov (United States)

    Lehman, Steven L

    2010-01-01

    The energy economy of the actomyosin interaction in skeletal muscle is both scientifically fascinating and practically important. This chapter demonstrates how simple cross-bridge models have guided research regarding the energy economy of skeletal muscle. Parameter variation on a very simple two-state strain-dependent model shows that early events in the actomyosin interaction strongly influence energy efficiency, and late events determine maximum shortening velocity. Addition of a weakly-bound state preceding force production allows weak coupling of cross-bridge mechanics and ATP turnover, so that a simple three-state model can simulate the velocity-dependence of ATP turnover. Consideration of the limitations of this model leads to a review of recent evidence regarding the relationship between ligand binding states, conformational states, and macromolecular structures of myosin cross-bridges. Investigation of the fine structure of the actomyosin interaction during the working stroke continues to inform fundamental research regarding the energy economy of striated muscle.

  7. Pipeline for Efficient Mapping of Transcription Factor Binding Sites and Comparison of Their Models

    KAUST Repository

    Ba alawi, Wail

    2011-06-01

    The control of genes in every living organism is based on activities of transcription factor (TF) proteins. These TFs interact with DNA by binding to the TF binding sites (TFBSs) and in that way create conditions for the genes to activate. Of the approximately 1500 TFs in human, TFBSs are experimentally derived only for less than 300 TFs and only in generally limited portions of the genome. To be able to associate TF to genes they control we need to know if TFs will have a potential to interact with the control region of the gene. For this we need to have models of TFBS families. The existing models are not sufficiently accurate or they are too complex for use by ordinary biologists. To remove some of the deficiencies of these models, in this study we developed a pipeline through which we achieved the following: 1. Through a comparison analysis of the performance we identified the best models with optimized thresholds among the four different types of models of TFBS families. 2. Using the best models we mapped TFBSs to the human genome in an efficient way. The study shows that a new scoring function used with TFBS models based on the position weight matrix of dinucleotides with remote dependency results in better accuracy than the other three types of the TFBS models. The speed of mapping has been improved by developing a parallelized code and shows a significant speed up of 4x when going from 1 CPU to 8 CPUs. To verify if the predicted TFBSs are more accurate than what can be expected with the conventional models, we identified the most frequent pairs of TFBSs (for TFs E4F1 and ATF6) that appeared close to each other (within the distance of 200 nucleotides) over the human genome. We show unexpectedly that the genes that are most close to the multiple pairs of E4F1/ATF6 binding sites have a co-expression of over 90%. This indirectly supports our hypothesis that the TFBS models we use are more accurate and also suggests that the E4F1/ATF6 pair is exerting the

  8. Inferring transcriptional compensation interactions in yeast via stepwise structure equation modeling

    Directory of Open Access Journals (Sweden)

    Wang Woei-Fuh

    2008-03-01

    Full Text Available Abstract Background With the abundant information produced by microarray technology, various approaches have been proposed to infer transcriptional regulatory networks. However, few approaches have studied subtle and indirect interaction such as genetic compensation, the existence of which is widely recognized although its mechanism has yet to be clarified. Furthermore, when inferring gene networks most models include only observed variables whereas latent factors, such as proteins and mRNA degradation that are not measured by microarrays, do participate in networks in reality. Results Motivated by inferring transcriptional compensation (TC interactions in yeast, a stepwise structural equation modeling algorithm (SSEM is developed. In addition to observed variables, SSEM also incorporates hidden variables to capture interactions (or regulations from latent factors. Simulated gene networks are used to determine with which of six possible model selection criteria (MSC SSEM works best. SSEM with Bayesian information criterion (BIC results in the highest true positive rates, the largest percentage of correctly predicted interactions from all existing interactions, and the highest true negative (non-existing interactions rates. Next, we apply SSEM using real microarray data to infer TC interactions among (1 small groups of genes that are synthetic sick or lethal (SSL to SGS1, and (2 a group of SSL pairs of 51 yeast genes involved in DNA synthesis and repair that are of interest. For (1, SSEM with BIC is shown to outperform three Bayesian network algorithms and a multivariate autoregressive model, checked against the results of qRT-PCR experiments. The predictions for (2 are shown to coincide with several known pathways of Sgs1 and its partners that are involved in DNA replication, recombination and repair. In addition, experimentally testable interactions of Rad27 are predicted. Conclusion SSEM is a useful tool for inferring genetic networks, and the

  9. Modelling microbial interactions and food structure in predictive microbiology

    NARCIS (Netherlands)

    Malakar, P.K.

    2002-01-01

    Keywords: modelling, dynamic models, microbial interactions, diffusion, microgradients, colony growth, predictive microbiology.

    Growth response of microorganisms in foods is a complex process. Innovations in food production and preservation techniques have resulted in adoption of

  10. Experimental and mathematical modeling methods for the investigation of toxicological interactions

    International Nuclear Information System (INIS)

    El-Masri, Hisham A.

    2007-01-01

    While procedures have been developed and used for many years to assess risk and determine acceptable exposure levels to individual chemicals, most cases of environmental contamination can result in concurrent or sequential exposure to more than one chemical. Toxicological predictions of such combinations must be based on an understanding of the mechanisms of action and interaction of the components of the mixtures. Statistical and experimental methods test the existence of toxicological interactions in a mixture. However, these methods are limited to experimental data ranges for which they are derived, in addition to limitations caused by response differences from experimental animals to humans. Empirical methods such as isobolograms, median-effect principle and response surface methodology (RSM) are based on statistical experimental design and regression of data. For that reason, the predicted response surfaces can be used for extrapolation across dose regions where interaction mechanisms are not anticipated to change. In general, using these methods for predictions can be problematic without including biologically based mechanistic descriptions that can account for dose and species differences. Mechanistically based models, such as physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models, include explicit descriptions of interaction mechanisms which are related to target tissues levels. These models include dose-dependent mechanistic hypotheses of toxicological interactions which can be tested by model-directed experimental design and used to identify dose regions where interactions are not significant

  11. Comparison of methods for the analysis of relatively simple mediation models.

    Science.gov (United States)

    Rijnhart, Judith J M; Twisk, Jos W R; Chinapaw, Mai J M; de Boer, Michiel R; Heymans, Martijn W

    2017-09-01

    Statistical mediation analysis is an often used method in trials, to unravel the pathways underlying the effect of an intervention on a particular outcome variable. Throughout the years, several methods have been proposed, such as ordinary least square (OLS) regression, structural equation modeling (SEM), and the potential outcomes framework. Most applied researchers do not know that these methods are mathematically equivalent when applied to mediation models with a continuous mediator and outcome variable. Therefore, the aim of this paper was to demonstrate the similarities between OLS regression, SEM, and the potential outcomes framework in three mediation models: 1) a crude model, 2) a confounder-adjusted model, and 3) a model with an interaction term for exposure-mediator interaction. Secondary data analysis of a randomized controlled trial that included 546 schoolchildren. In our data example, the mediator and outcome variable were both continuous. We compared the estimates of the total, direct and indirect effects, proportion mediated, and 95% confidence intervals (CIs) for the indirect effect across OLS regression, SEM, and the potential outcomes framework. OLS regression, SEM, and the potential outcomes framework yielded the same effect estimates in the crude mediation model, the confounder-adjusted mediation model, and the mediation model with an interaction term for exposure-mediator interaction. Since OLS regression, SEM, and the potential outcomes framework yield the same results in three mediation models with a continuous mediator and outcome variable, researchers can continue using the method that is most convenient to them.

  12. Semantic Interaction for Sensemaking: Inferring Analytical Reasoning for Model Steering.

    Science.gov (United States)

    Endert, A; Fiaux, P; North, C

    2012-12-01

    Visual analytic tools aim to support the cognitively demanding task of sensemaking. Their success often depends on the ability to leverage capabilities of mathematical models, visualization, and human intuition through flexible, usable, and expressive interactions. Spatially clustering data is one effective metaphor for users to explore similarity and relationships between information, adjusting the weighting of dimensions or characteristics of the dataset to observe the change in the spatial layout. Semantic interaction is an approach to user interaction in such spatializations that couples these parametric modifications of the clustering model with users' analytic operations on the data (e.g., direct document movement in the spatialization, highlighting text, search, etc.). In this paper, we present results of a user study exploring the ability of semantic interaction in a visual analytic prototype, ForceSPIRE, to support sensemaking. We found that semantic interaction captures the analytical reasoning of the user through keyword weighting, and aids the user in co-creating a spatialization based on the user's reasoning and intuition.

  13. A Comparison of Surface Acoustic Wave Modeling Methods

    Science.gov (United States)

    Wilson, W. c.; Atkinson, G. M.

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method a first order model, and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices.

  14. Amorphous track models: a numerical comparison study

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Hahn, Ute

    in carbon ion treatment at the particle facility HIT in Heidelberg. Apparent differences between the LEM and the Katz model are the way how interactions of individual particle tracks and how extended targets are handled. Complex scenarios, however, can mask the actual effect of these differences. Here, we......Amorphous track models such as Katz' Ion-Gamma-Kill (IGK) approach [1, 2] or the Local Effect Model (LEM) [3, 4] had reasonable success in predicting the response of solid state dosimeters and radiobiological systems. LEM is currently applied in radiotherapy for biological dose optimization...

  15. Three dimensional modelling of grain boundary interaction and evolution during directional solidification of multi-crystalline silicon

    Science.gov (United States)

    Jain, T.; Lin, H. K.; Lan, C. W.

    2018-03-01

    The development of grain structures during directional solidification of multi-crystalline silicon (mc-Si) plays a crucial role in the materials quality for silicon solar cells. Three dimensional (3D) modelling of the grain boundary (GB) interaction and evolution based on phase fields by considering anisotropic GB energy and mobility for mc-Si is carried out for the first time to elucidate the process. The energy and mobility of GBs are allowed to depend on misorientation and the GB plane. To examine the correctness of our method, the known the coincident site lattice (CSL) combinations such as (∑ a + ∑ b → ∑ a × b) or (∑ a + ∑ b → ∑ a / b) are verified. We frther discuss how to use the GB normal to characterize a ∑ 3 twin GB into a tilt or a twist one, and show the interaction between tilt and twist ∑ 3 twin GBs. Two experimental scenarios are considered for comparison and the results are in good agreement with the experiments as well as the theoretical predictions.

  16. Complete Neuron-Astrocyte Interaction Model: Digital Multiplierless Design and Networking Mechanism.

    Science.gov (United States)

    Haghiri, Saeed; Ahmadi, Arash; Saif, Mehrdad

    2017-02-01

    Glial cells, also known as neuroglia or glia, are non-neuronal cells providing support and protection for neurons in the central nervous system (CNS). They also act as supportive cells in the brain. Among a variety of glial cells, the star-shaped glial cells, i.e., astrocytes, are the largest cell population in the brain. The important role of astrocyte such as neuronal synchronization, synaptic information regulation, feedback to neural activity and extracellular regulation make the astrocytes play a vital role in brain disease. This paper presents a modified complete neuron-astrocyte interaction model that is more suitable for efficient and large scale biological neural network realization on digital platforms. Simulation results show that the modified complete interaction model can reproduce biological-like behavior of the original neuron-astrocyte mechanism. The modified interaction model is investigated in terms of digital realization feasibility and cost targeting a low cost hardware implementation. Networking behavior of this interaction is investigated and compared between two cases: i) the neuron spiking mechanism without astrocyte effects, and ii) the effect of astrocyte in regulating the neurons behavior and synaptic transmission via controlling the LTP and LTD processes. Hardware implementation on FPGA shows that the modified model mimics the main mechanism of neuron-astrocyte communication with higher performance and considerably lower hardware overhead cost compared with the original interaction model.

  17. Congested Aggregation via Newtonian Interaction

    Science.gov (United States)

    Craig, Katy; Kim, Inwon; Yao, Yao

    2018-01-01

    We consider a congested aggregation model that describes the evolution of a density through the competing effects of nonlocal Newtonian attraction and a hard height constraint. This provides a counterpoint to existing literature on repulsive-attractive nonlocal interaction models, where the repulsive effects instead arise from an interaction kernel or the addition of diffusion. We formulate our model as the Wasserstein gradient flow of an interaction energy, with a penalization to enforce the constraint on the height of the density. From this perspective, the problem can be seen as a singular limit of the Keller-Segel equation with degenerate diffusion. Two key properties distinguish our problem from previous work on height constrained equations: nonconvexity of the interaction kernel (which places the model outside the scope of classical gradient flow theory) and nonlocal dependence of the velocity field on the density (which causes the problem to lack a comparison principle). To overcome these obstacles, we combine recent results on gradient flows of nonconvex energies with viscosity solution theory. We characterize the dynamics of patch solutions in terms of a Hele-Shaw type free boundary problem and, using this characterization, show that in two dimensions patch solutions converge to a characteristic function of a disk in the long-time limit, with an explicit rate on the decay of the energy. We believe that a key contribution of the present work is our blended approach, combining energy methods with viscosity solution theory.

  18. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  19. New aspects of the interacting boson model

    International Nuclear Information System (INIS)

    Nadzakov, E.G.; Mikhajlov, I.N.

    1987-01-01

    In the framework of the boson space extension called interacting multiboson model: conserving the model basic dynamic symmetries, the s p d f boson model is considered. It does not destruct the intermediate mass nuclei simple description, and at the same time includes the number of levels and transitions, inaccessible to the usual s d boson model. Its applicability, even in a brief version, to the recently observed asymmetric nuclear shape effect in the Ra-Th-U region (and in other regions) with possible octupole and dipole deformation is demonstrated. It is done by reproducing algebraically the yrast lines of nuclei with vibrational, transitional and rotational spectra

  20. Two-Stage Hidden Markov Model in Gesture Recognition for Human Robot Interaction

    Directory of Open Access Journals (Sweden)

    Nhan Nguyen-Duc-Thanh

    2012-07-01

    Full Text Available Hidden Markov Model (HMM is very rich in mathematical structure and hence can form the theoretical basis for use in a wide range of applications including gesture representation. Most research in this field, however, uses only HMM for recognizing simple gestures, while HMM can definitely be applied for whole gesture meaning recognition. This is very effectively applicable in Human-Robot Interaction (HRI. In this paper, we introduce an approach for HRI in which not only the human can naturally control the robot by hand gesture, but also the robot can recognize what kind of task it is executing. The main idea behind this method is the 2-stages Hidden Markov Model. The 1st HMM is to recognize the prime command-like gestures. Based on the sequence of prime gestures that are recognized from the 1st stage and which represent the whole action, the 2nd HMM plays a role in task recognition. Another contribution of this paper is that we use the output Mixed Gaussian distribution in HMM to improve the recognition rate. In the experiment, we also complete a comparison of the different number of hidden states and mixture components to obtain the optimal one, and compare to other methods to evaluate this performance.

  1. Quark compound bag (QCB) model and nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1983-01-01

    Quark degrees of freedom are treated in the NN system in the framework of the QCB model. The resulting QCB potential is in agreement with experimental data. P-matrix analysis inherent to the QCB model is discussed in detail. Applications of the QCB model are given including the weak NN interaction

  2. Interactive Mapping on Virtual Terrain Models Using RIMS (Real-time, Interactive Mapping System)

    Science.gov (United States)

    Bernardin, T.; Cowgill, E.; Gold, R. D.; Hamann, B.; Kreylos, O.; Schmitt, A.

    2006-12-01

    geophysicists, and planetary scientists. The strength of our system is that it combines interactive rendering with interactive mapping and measurement of features observed in topographic and texture data. Comparison with commercially available software indicates that our system improves mapping accuracy and efficiency. More importantly, it enables Earth scientists to rapidly achieve a deeper level of understanding of remotely sensed data, as observations can be made that are not possible with existing systems.

  3. General quadrupole shapes in the Interacting Boson Model

    International Nuclear Information System (INIS)

    Leviatan, A.

    1990-01-01

    Characteristic attributes of nuclear quadrupole shapes are investigated within the algebraic framework of the Interacting Boson Model. For each shape the Hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed and used to estimate transition matrix elements. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of the three-body interactions. 27 refs

  4. Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---

    Science.gov (United States)

    Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.

    We review the Nijmegen extended-soft-core (ESC) models for the baryon-baryon (BB) interactions of the SU(3) flavor-octet of baryons (N, Lambda, Sigma, and Xi). The interactions are basically studied from the meson-exchange point of view, in the spirit of the Yukawa-approach to the nuclear force problem [H. Yukawa, ``On the interaction of Elementary Particles I'', Proceedings of the Physico-Mathematical Society of Japan 17 (1935), 48], using generalized soft-core Yukawa-functions. These interactions are supplemented with (i) multiple-gluon-exchange, and (ii) structural effects due to the quark-core of the baryons. We present in some detail the most recent extended-soft-core model, henceforth referred to as ESC08, which is the most complete, sophisticated, and successful interaction-model. Furthermore, we discuss briefly its predecessor the ESC04-model [Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044007; Th. A. Rijken and Y. Yamamoto, Ph ys. Rev. C 73 (2006), 044008; Th. A. Rijken and Y. Yamamoto, nucl-th/0608074]. For the soft-core one-boson-exchange (OBE) models we refer to the literature [Th. A. Rijken, in Proceedings of the International Conference on Few-Body Problems in Nuclear and Particle Physics, Quebec, 1974, ed. R. J. Slobodrian, B. Cuec and R. Ramavataram (Presses Universitè Laval, Quebec, 1975), p. 136; Th. A. Rijken, Ph. D. thesis, University of Nijmegen, 1975; M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. D 17 (1978), 768; P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40 (1989), 2226; Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59 (1999), 21; V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59 (1999), 3009]. All ingredients of these latter models are also part of ESC08, and so a description of ESC08 comprises all models so far in principle. The extended-soft-core (ESC) interactions consist of local- and non-local-potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of

  5. Levels of Interaction Provided by Online Distance Education Models

    Science.gov (United States)

    Alhih, Mohammed; Ossiannilsson, Ebba; Berigel, Muhammet

    2017-01-01

    Interaction plays a significant role to foster usability and quality in online education. It is one of the quality standard to reveal the evidence of practice in online distance education models. This research study aims to evaluate levels of interaction in the practices of distance education centres. It is aimed to provide online distance…

  6. Multi-scale inference of interaction rules in animal groups using Bayesian model selection.

    Directory of Open Access Journals (Sweden)

    Richard P Mann

    2012-01-01

    Full Text Available Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis. We show that these exhibit a stereotypical 'phase transition', whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have 'memory' of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture fine scale rules of interaction, which are primarily mediated by physical contact. Conversely, the Markovian self-propelled particle model captures the fine scale rules of interaction but fails to reproduce global dynamics. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics. We conclude that prawns' movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects.

  7. Some dynamical aspects of interacting quintessence model

    Science.gov (United States)

    Choudhury, Binayak S.; Mondal, Himadri Shekhar; Chatterjee, Devosmita

    2018-04-01

    In this paper, we consider a particular form of coupling, namely B=σ (\\dot{ρ _m}-\\dot{ρ _φ }) in spatially flat (k=0) Friedmann-Lemaitre-Robertson-Walker (FLRW) space-time. We perform phase-space analysis for this interacting quintessence (dark energy) and dark matter model for different numerical values of parameters. We also show the phase-space analysis for the `best-fit Universe' or concordance model. In our analysis, we observe the existence of late-time scaling attractors.

  8. Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations

    Science.gov (United States)

    Madden, Michael M.

    2007-01-01

    A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.

  9. A mathematical model of tumor–immune interactions

    KAUST Repository

    Robertson-Tessi, Mark

    2012-02-01

    A mathematical model of the interactions between a growing tumor and the immune system is presented. The equations and parameters of the model are based on experimental and clinical results from published studies. The model includes the primary cell populations involved in effector T-cell mediated tumor killing: regulatory T cells, helper T cells, and dendritic cells. A key feature is the inclusion of multiple mechanisms of immunosuppression through the main cytokines and growth factors mediating the interactions between the cell populations. Decreased access of effector cells to the tumor interior with increasing tumor size is accounted for. The model is applied to tumors with different growth rates and antigenicities to gauge the relative importance of various immunosuppressive mechanisms. The most important factors leading to tumor escape are TGF-Β-induced immunosuppression, conversion of helper T cells into regulatory T cells, and the limitation of immune cell access to the full tumor at large tumor sizes. The results suggest that for a given tumor growth rate, there is an optimal antigenicity maximizing the response of the immune system. Further increases in antigenicity result in increased immunosuppression, and therefore a decrease in tumor killing rate. This result may have implications for immunotherapies which modulate the effective antigenicity. Simulation of dendritic cell therapy with the model suggests that for some tumors, there is an optimal dose of transfused dendritic cells. © 2011 Elsevier Ltd.

  10. A comparison of three models of 137Cs transfer in forest ecosystems

    International Nuclear Information System (INIS)

    Avila, R.; Bergman, R.; Scimone, M.; Fesenko, S.; Sancharova, N.; Moberg, L.

    2001-01-01

    The predictions of three models of 137 Cs transfer in forest ecosystems (FOA, LOGNAT and FORESTLAND) were compared. The scenario for the model-model comparison consisted of an acute dry deposition of 137 Cs over a coniferous forest. The model predictions were subsequently compared (model-data comparison) with values derived from experimental data measured in forests of the Bryansk region in Russia that were contaminated by the Chernobyl accident and that have similar characteristics to the forests described in the scenario. The predictions of radiocaesium levels in the litter-soil layer, berries, needles, wood, whole tree and moose made with the models were in relatively good agreement with each other (within a factor of 1.4-2.9). The best agreement was observed for berries and moose and the worst for wood. There was also good agreement between the model predictions for the same variables and the experimental data (within a factor of 1.2-3.2). In this case, the best agreement was observed for the litter-soil layer and the worst for wood and the whole tree. Overall, at least for the studied scenario and for the first 10 years after deposition, any of the models can be used if the final aim is to estimate average concentrations in different forest components. The agreement between the model predictions worsens with time and there were differences in the form of the time dependencies predicted by the models, especially for wood. This may lead to larger differences between the model predictions and the experimental data for times beyond the period for which data were available for comparison (10 years after the deposition)

  11. Positronium annihilation in liquids in the framework of non-local interaction

    International Nuclear Information System (INIS)

    Mukherjee, Tapas; Dutta, Dhanadeep

    2012-01-01

    In the bubble model of ortho positronium (o-Ps) annihilation in liquid the origin of the trapping of o-Ps is the electron-exchange repulsive interaction between the electron of o-Ps and the electron of the medium. The corresponding effective interaction is non-local in nature. However, in the prevalent bubble model, this effective interaction is usually treated as local (model) potential (sharp or smooth). In the present study, we have taken an approach to consider this trapping interaction as non-local in nature, which is included through a model separable non-local function to tackle the problem in analytically solvable manner. The analytical calculations show that this non-local interaction effectively acts as a gauge potential in the energy of the Ps atom in parameter (bubble radius) space. The computed bubble variables obtained using experimental Ps annihilation data are shown. A comparison between the present data with the calculated results using prevalent bubble model has been presented. Discussions have been made on the input parameter dependencies of the computed data. - Highlights: ► Bubble model has been modified by considering positronium-atom non-local interaction. ► No straight forward correlation between bubble size and effective potential is observed. ► Non-local potential acts as a guage potential.

  12. Comparison of test and earthquake response modeling of a nuclear power plant containment building

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1985-01-01

    The reactor building of a BWR plant was subjected to dynamic testing, a minor earthquake, and a strong earthquake at different times. Analytical models simulating each of these events were devised by previous investigators. A comparison of the characteristics of these models is made in this paper. The different modeling assumptions involved in the different simulation analyses restrict the validity of the models for general use and also narrow the comparison down to only a few modes. The dynamic tests successfully identified the first mode of the soil-structure system.

  13. Comparison of test and earthquake response modeling of a nuclear power plant containment building

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1985-01-01

    The reactor building of a BWR plant was subjected to dynamic testing, a minor earthquake, and a strong earthquake at different times. Analytical models simulating each of these events were devised by previous investigators. A comparison of the characteristics of these models is made in this paper. The different modeling assumptions involved in the different simulation analyses restrict the validity of the models for general use and also narrow the comparison down to only a few modes. The dynamic tests successfully identified the first mode of the soil-structure system

  14. Interactive computer graphics for bio-stereochemical modelling

    Indian Academy of Sciences (India)

    Proc, Indian Acad. Sci., Vol. 87 A (Chem. Sci.), No. 4, April 1978, pp. 95-113, (e) printed in India. Interactive computer graphics for bio-stereochemical modelling. ROBERT REIN, SHLOMONIR, KAREN HAYDOCK and. ROBERTD MACELROY. Department of Experimental Pathology, Roswell Park Memorial Institute,. 666 Elm ...

  15. Comparison of Software Models for Energy Savings from Cool Roofs

    Energy Technology Data Exchange (ETDEWEB)

    New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Yu (Joe) [White Box Technologies; Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  16. Geometrical analysis of the interacting boson model

    International Nuclear Information System (INIS)

    Dieperink, A.E.L.

    1983-01-01

    The Interacting Boson Model is considered, in relation with geometrical models and the application of mean field techniques to algebraic models, in three lectures. In the first, several methods are reviewed to establish a connection between the algebraic formulation of collective nuclear properties in terms of the group SU(6) and the geometric approach. In the second lecture the geometric interpretation of new degrees of freedom that arise in the neutron-proton IBA is discussed, and in the third one some further applications of algebraic techniques to the calculation of static and dynamic collective properties are presented. (U.K.)

  17. Application of Differential Colorimetry To Evaluate Anthocyanin-Flavonol-Flavanol Ternary Copigmentation Interactions in Model Solutions.

    Science.gov (United States)

    Gordillo, Belén; Rodríguez-Pulido, Francisco J; González-Miret, M Lourdes; Quijada-Morín, Natalia; Rivas-Gonzalo, Julián C; García-Estévez, Ignacio; Heredia, Francisco J; Escribano-Bailón, M Teresa

    2015-09-09

    The combined effect of anthocyanin-flavanol-flavonol ternary interactions on the colorimetric and chemical stability of malvidin-3-glucoside has been studied. Model solutions with fixed malvidin-3-glucoside/(+)-catechin ratio (MC) and variable quercetin-3-β-d-glucoside concentration (MC+Q) and solutions with fixed malvidin-3-glucoside/quercetin-3-β-d-glucoside ratio (MQ) and variable (+)-catechin concentration (MQ+C) were tested at levels closer to those existing in wines. Color variations during storage were evaluated by differential colorimetry. Changes in the anthocyanin concentration were monitored by HPLC-DAD. CIELAB color-difference formulas were demonstrated to be of practical interest to assess the stronger and more stable interaction of quercetin-3-β-d-glucoside with MC binary mixture than (+)-catechin with MQ mixture. The results imply that MC+Q ternary solutions kept their intensity and bluish tonalities for a longer time in comparison to MQ+C solutions. The stability of malvidin-3-glucoside improves when the concentration of quercetin-3-β-d-glucoside increases in MC+Q mixtures, whereas the addition of (+)-catechin in MQ+C mixtures resulted in an opposite effect.

  18. Near-atomic model of microtubule-tau interactions.

    Science.gov (United States)

    Kellogg, Elizabeth H; Hejab, Nisreen M A; Poepsel, Simon; Downing, Kenneth H; DiMaio, Frank; Nogales, Eva

    2018-06-15

    Tau is a developmentally regulated axonal protein that stabilizes and bundles microtubules (MTs). Its hyperphosphorylation is thought to cause detachment from MTs and subsequent aggregation into fibrils implicated in Alzheimer's disease. It is unclear which tau residues are crucial for tau-MT interactions, where tau binds on MTs, and how it stabilizes them. We used cryo-electron microscopy to visualize different tau constructs on MTs and computational approaches to generate atomic models of tau-tubulin interactions. The conserved tubulin-binding repeats within tau adopt similar extended structures along the crest of the protofilament, stabilizing the interface between tubulin dimers. Our structures explain the effect of phosphorylation on MT affinity and lead to a model of tau repeats binding in tandem along protofilaments, tethering together tubulin dimers and stabilizing polymerization interfaces. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Interaction of attosecond electromagnetic pulses with atoms: The exactly solvable model

    International Nuclear Information System (INIS)

    Popov, Yu. V.; Kouzakov, K. A.; Vinitsky, S. I.; Gusev, A. A.

    2007-01-01

    We consider the exactly solvable model of interaction of zero-duration electromagnetic pulses with an atom. The model has a number of peculiar properties which are outlined in the cases of a single pulse and two opposite pulses. In perspective, it can be useful in different fields of physics involving interaction of attosecond laser pulses with quantum systems

  20. Approximate Solutions of Interactive Dynamic Influence Diagrams Using Model Clustering

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Doshi, Prashant; Qiongyu, Cheng

    2007-01-01

    Interactive dynamic influence diagrams (I-DIDs) offer a transparent and semantically clear representation for the sequential decision-making problem over multiple time steps in the presence of other interacting agents. Solving I-DIDs exactly involves knowing the solutions of possible models...

  1. Preliminary comparison of the system of AERMOD and ISCST3 models

    International Nuclear Information System (INIS)

    Turtos Carbonell, Leonor; Curbelo Garea, Lariza; Diaz Rivero, Norberto

    2006-01-01

    On October 21st, 2005 the U.S. Environmental Protection Agency (EPA), establishes AERMOD as regulatory model to be used for the dispersion of pollutants at local scale, in substitution of the ISCST3 model used up to that moment. Whenever a new dispersion model appears, it is necessary for the scientific community to make a comparison in order to discover the differences between the results obtained with the new model and the previous one. Considering the above mentioned fact, this work makes a preliminary comparison between the maximum concentrations calculated by each model (ISCST3 and AERMOD) for a specific case study that consists of eleven batteries of generation sets distributed throughout Havana City which will operate in base load mode and will use a fuel oil with 4% of sulphur. The modelling domain is the 50 xs 37 km with 1 x 1 km cells for a total of 1 850 calculation points (receptors), located in all Havana City and the bordering municipalities of Havana province. In each one of these receptors the dispersion of SO 2 and NO x were modelled

  2. Percolation Model of Nuclear Multifragmentation in High Energy Nucleus-Nucleus Interactions

    International Nuclear Information System (INIS)

    Abdel-Waged, Kh.

    1994-01-01

    A hybrid model based on Reggeon theory inspired model of nuclear distribution, which was successful in explaining the cascading of particles in high energy nucleus-nucleus interactions, and percolation model is proposed. In the framework of this model the yield of the fragment in p + Ag, Au at 350 GeV and C + Ag, Au at 3.6 GeV/nucleon as well as the charge distribution of fragments in Kr, Xe and U interactions with emulsion at ∼ 1 GeV/nucleon is correctly described. 32 refs., 3 figs

  3. Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy

    International Nuclear Information System (INIS)

    Karami, K; Fahimi, K

    2013-01-01

    We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar field models. (paper)

  4. An empirical comparison of several recent epistatic interaction detection methods.

    Science.gov (United States)

    Wang, Yue; Liu, Guimei; Feng, Mengling; Wong, Limsoon

    2011-11-01

    Many new methods have recently been proposed for detecting epistatic interactions in GWAS data. There is, however, no in-depth independent comparison of these methods yet. Five recent methods-TEAM, BOOST, SNPHarvester, SNPRuler and Screen and Clean (SC)-are evaluated here in terms of power, type-1 error rate, scalability and completeness. In terms of power, TEAM performs best on data with main effect and BOOST performs best on data without main effect. In terms of type-1 error rate, TEAM and BOOST have higher type-1 error rates than SNPRuler and SNPHarvester. SC does not control type-1 error rate well. In terms of scalability, we tested the five methods using a dataset with 100 000 SNPs on a 64 bit Ubuntu system, with Intel (R) Xeon(R) CPU 2.66 GHz, 16 GB memory. TEAM takes ~36 days to finish and SNPRuler reports heap allocation problems. BOOST scales up to 100 000 SNPs and the cost is much lower than that of TEAM. SC and SNPHarvester are the most scalable. In terms of completeness, we study how frequently the pruning techniques employed by these methods incorrectly prune away the most significant epistatic interactions. We find that, on average, 20% of datasets without main effect and 60% of datasets with main effect are pruned incorrectly by BOOST, SNPRuler and SNPHarvester. The software for the five methods tested are available from the URLs below. TEAM: http://csbio.unc.edu/epistasis/download.php BOOST: http://ihome.ust.hk/~eeyang/papers.html. SNPHarvester: http://bioinformatics.ust.hk/SNPHarvester.html. SNPRuler: http://bioinformatics.ust.hk/SNPRuler.zip. Screen and Clean: http://wpicr.wpic.pitt.edu/WPICCompGen/. wangyue@nus.edu.sg.

  5. Lagrangian model of conformal invariant interacting quantum field theory

    International Nuclear Information System (INIS)

    Lukierski, J.

    1976-01-01

    A Lagrangian model of conformal invariant interacting quantum field theory is presented. The interacting Lagrangian and free Lagrangian are derived replacing the canonical field phi by the field operator PHIsub(d)sup(c) and introducing the conformal-invariant interaction Lagrangian. It is suggested that in the conformal-invariant QFT with the dimensionality αsub(B) obtained from the bootstrep equation, the normalization constant c of the propagator and the coupling parametery do not necessarily need to satisfy the relation xsub(B) = phi 2 c 3

  6. Comparison of Langevin and Markov channel noise models for neuronal signal generation.

    Science.gov (United States)

    Sengupta, B; Laughlin, S B; Niven, J E

    2010-01-01

    The stochastic opening and closing of voltage-gated ion channels produce noise in neurons. The effect of this noise on the neuronal performance has been modeled using either an approximate or Langevin model based on stochastic differential equations or an exact model based on a Markov process model of channel gating. Yet whether the Langevin model accurately reproduces the channel noise produced by the Markov model remains unclear. Here we present a comparison between Langevin and Markov models of channel noise in neurons using single compartment Hodgkin-Huxley models containing either Na+ and K+, or only K+ voltage-gated ion channels. The performance of the Langevin and Markov models was quantified over a range of stimulus statistics, membrane areas, and channel numbers. We find that in comparison to the Markov model, the Langevin model underestimates the noise contributed by voltage-gated ion channels, overestimating information rates for both spiking and nonspiking membranes. Even with increasing numbers of channels, the difference between the two models persists. This suggests that the Langevin model may not be suitable for accurately simulating channel noise in neurons, even in simulations with large numbers of ion channels.

  7. Sculpting proteins interactively: continual energy minimization embedded in a graphical modeling system.

    Science.gov (United States)

    Surles, M C; Richardson, J S; Richardson, D C; Brooks, F P

    1994-02-01

    We describe a new paradigm for modeling proteins in interactive computer graphics systems--continual maintenance of a physically valid representation, combined with direct user control and visualization. This is achieved by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein, plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic interactions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their effects and interactions. Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-multiplier method; calculation time increases only linearly with the number of atoms because the matrix of constraint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are described: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded beta-ribbon into an approximate beta-barrel, and to design the sequence and conformation of a 30-residue peptide that mimics one partner of a protein subunit interaction. Computer models that are both interactive and physically realistic (within the limitations of a given force field) have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de novo design), and

  8. SU(2) x U(1) x U'(1) models which are slightly different from the Weinberg-Salam model

    International Nuclear Information System (INIS)

    Gao, C.; Wu, D.

    1981-01-01

    We discuss SU(2) x U(1) x U'(1) models by a uniform formula which is convenient for their comparison with the standard Weinberg-Salam model. As examples, we give three interesting models which are based on different grand unification models. In one model, U'(1) does not contribute to the electromagnetic interaction; in the other two, both U(1) and U'(1) do contribute to the electromagnetic interaction. Also, the first two models can approach the standard Weinberg-Salam model as close as one wants; but the third model has limitations on it

  9. Finite element modeling of pellet-clad mechanical interaction with ABAQUS

    International Nuclear Information System (INIS)

    Cheon, C. S.; Lee, B. H.; Koo, Y. H.; Oh, J. Y.; Son, D. S.

    2002-01-01

    Pellet-clad mechanical interaction (PCMI) was modelled by an axisymmetric finite element method. Thermomechanical models of pellet and clad materials and a contact model for their interaction have been implemented in addition to the application of appropriate boundary conditions so that the FE model was configured. Temperature and displacement were evaluated through a coupled analysis using a general purposed FE code, ABAQUS. Also, a batch program has been developed to efficiently deal with a series of jobs such as making an interface with a fuel performance code, the generation of an input deck for ABAQUS code and its execution, and an interpretation of the output. Under various conditions, results from the present FE model were analyzed. Preliminary verification was conducted by comparing the clad elongation measured during an in-pile PCMI experiment with that calculated by means of the developed FE model

  10. A model-independent description of few-body system with strong interaction

    International Nuclear Information System (INIS)

    Simenog, I.V.

    1985-01-01

    In this contribution, the authors discuss the formulation of equations that provide model-independent description of systems of three and more nucleons irrespective of the details of the interaction, substantiate the approach, estimate the correction terms with respect to the force range, and give basic qualitative results obtained by means of the model-independent procedure. They consider three nucleons in the doublet state (spin S=I/2) taking into account only S-interaction. The elastic nd-scattering amplitude may be found from the model-independent equations that follow from the Faddeev equations in the short-range-force limit. They note that the solutions of several model-independent equations and basic results obtained with the use of this approach may serve both as a standard solution and starting point in the discussion of various conceptions concerning the details of nuclear interactions

  11. CADRE-SS, an in Silico Tool for Predicting Skin Sensitization Potential Based on Modeling of Molecular Interactions.

    Science.gov (United States)

    Kostal, Jakub; Voutchkova-Kostal, Adelina

    2016-01-19

    Using computer models to accurately predict toxicity outcomes is considered to be a major challenge. However, state-of-the-art computational chemistry techniques can now be incorporated in predictive models, supported by advances in mechanistic toxicology and the exponential growth of computing resources witnessed over the past decade. The CADRE (Computer-Aided Discovery and REdesign) platform relies on quantum-mechanical modeling of molecular interactions that represent key biochemical triggers in toxicity pathways. Here, we present an external validation exercise for CADRE-SS, a variant developed to predict the skin sensitization potential of commercial chemicals. CADRE-SS is a hybrid model that evaluates skin permeability using Monte Carlo simulations, assigns reactive centers in a molecule and possible biotransformations via expert rules, and determines reactivity with skin proteins via quantum-mechanical modeling. The results were promising with an overall very good concordance of 93% between experimental and predicted values. Comparison to performance metrics yielded by other tools available for this endpoint suggests that CADRE-SS offers distinct advantages for first-round screenings of chemicals and could be used as an in silico alternative to animal tests where permissible by legislative programs.

  12. An oil spill-food chain interaction model for coastal waters

    International Nuclear Information System (INIS)

    Yew Hoong Gin, K.; Huda, Md. K.; Tkalich, P.

    2001-01-01

    An oil spill-food chain interaction model, composed of a multiphase oil spill model (MOSM) and a food chain model, has been developed to assess the probable impacts of oil spills on several key marine organisms (phytoplankton, zooplankton, small fish, large fish and benthic invertebrates). The MOSM predicts oil slick thickness on the water surface; dissolved, emulsified and particulate oil concentrations in the water column; and dissolved and particulate oil concentrations in bed sediments. This model is used to predict the fate of oil spills and transport with respect to specific organic compounds, while the food chain model addresses the uptake of toxicant by marine organisms. The oil spill-food chain interaction model can be used to assess the environmental impacts of oil spills in marine ecosystems. The model is applied to the recent Evoikos-Orapin Global oil spill that occurred in the Singapore Strait. (author)

  13. How sedimentation affects rift segment interaction during oblique extension: a 4D analogue modelling study

    Science.gov (United States)

    Zwaan, Frank; Schreurs, Guido; Adam, Jürgen

    2017-04-01

    During the early stages of rifting, rift segments may form along non-continuous and/or offset pre-existing weaknesses. It is important to understand how these initial rift segments interact and connect to form a continuous rift system. Previous modelling of rift interaction structures has shown the dominant influence of oblique extension, promoting rift segment linkage (e.g. Zwaan et al., 2016) and eventual continent break-up (Brune et al., 2012). However, these studies did not incorporate sedimentation, which can have important implications for rift evolution (e.g. Bialas and Buck, 2009). Here we present a series of analogue model experiments investigating the influence of sedimentation on rift interaction structures under oblique extension conditions. Our set-up involves a base of compressed foam and plexiglass that forces distributed extension in the overlying analogue materials when the model sidewalls move apart. A sand layer simulates the brittle upper crust and a viscous sand/silicone mixture the ductile lower crust. One of the underlying base plates can move laterally allowing oblique extension. Right-stepping offset and disconnected lines of silicone (seeds) on top of the basal viscous serve as inherited structures since the strong sand cover is locally thinner. We apply syn-rift sediments by filling in the developing rift and transfer zone basins with sand at fixed time steps. Models are run either with sedimentation or without to allow comparison. The first results suggest that the gross structures are similar with or without sedimentation. As seen by Zwaan et al. (2016), dextral oblique extension promotes rift linkage because rift propagation aligns itself perpendicular to the extension direction. This causes the rift segments to grow towards each other and to establish a continuous rift structure. However, the structures within the rift segments show quite different behaviour when sedimentation is applied. The extra sediment loading in the rift basin

  14. Ecosystem management via interacting models of political and ecological processes

    Directory of Open Access Journals (Sweden)

    Haas, T. C.

    2004-01-01

    Full Text Available The decision to implement environmental protection options is a political one. Political realities may cause a country to not heed the most persuasive scientific analysis of an ecosystem's future health. A predictive understanding of the political processes that result in ecosystem management decisions may help guide ecosystem management policymaking. To this end, this article develops a stochastic, temporal model of how political processes influence and are influenced by ecosystem processes. This model is realized in a system of interacting influence diagrams that model the decision making of a country's political bodies. These decisions interact with a model of the ecosystem enclosed by the country. As an example, a model for Cheetah (Acinonyx jubatus management in Kenya is constructed and fitted to decision and ecological data.

  15. Relativistic scalar-vector models of the N-N and N-nuclear interactions

    International Nuclear Information System (INIS)

    Green, A.E.S.

    1985-01-01

    This paper for the Proceedings of Conference an Anti-Nucleon and Nucleon-Nucleus Interactions summarizes work by the principal investigator and his collaborators on the nucleon-nucleon (N-N) and nucleon-nuclear (N-eta) interactions. It draws heavily on a paper presented at the Many Body Conference in Rome in 1972 but also includes a brief review of our phenomenological N-eta interaction studies. We first summarize our 48-49 generalized scalar-vector meson field theory model of the N-N interactions. This is followed by a brief description of our phenomenological work in the 50's on the N-eta interaction sponsored by the Atomic Energy Commission (the present DOE). This work finally led to strong velocity dependent potentials with spin orbit and isospin terms for shell and optical model applications. This is followed by a section on the Emergence of One-Boson Exchange Models describing developments in the 60's of quantitative generalized one boson exchange potentials (GOBEP) including our purely relativistic N-N analyses. Then follows a section on the application of this meson field model to the N-eta interaction, in particular to spherical closed shell nuclei. This work was sponsored by AFOSR but funding was halted with the Mansfield amendment. We conclude with a discussion of subsequent collateral work by former colleagues and by others who have converged upon scalar-vector relativistic models of N-N, antiN-N, N-eta and antiN-eta interactions and some lessons learned from this extended endeavor. 61 refs

  16. Experimental investigations and modelling of sodium-concrete interaction

    International Nuclear Information System (INIS)

    Schultheiss, G.F.; Deeg, H.J.

    1990-01-01

    The use of sodium as a coolant in liquid metal fast breeder reactors, fusion reactors, and solar plants requires special consideration of its chemical reactivity and related safety problems in the case of sodium leckage. On contact between hot sodium and concrete an interaction takes place resulting in energy release and hydrogen generation, which may contribute to containment loading by pressurization in a hypothetical accident situation. For this reason, sodium-concrete interactions were investigated experimentally and theoretically. The experiments revealed important effects of quartzitic material within the concrete and of the sodium temperature on the interaction mechanisms, the energy release and the consequent hydrogen production. The numerical model shows good agreement with the experimental results. (orig.) [de

  17. Atmospheric statistical dynamic models. Model performance: the Lawrence Livermore Laboratoy Zonal Atmospheric Model

    International Nuclear Information System (INIS)

    Potter, G.L.; Ellsaesser, H.W.; MacCracken, M.C.; Luther, F.M.

    1978-06-01

    Results from the zonal model indicate quite reasonable agreement with observation in terms of the parameters and processes that influence the radiation and energy balance calculations. The model produces zonal statistics similar to those from general circulation models, and has also been shown to produce similar responses in sensitivity studies. Further studies of model performance are planned, including: comparison with July data; comparison of temperature and moisture transport and wind fields for winter and summer months; and a tabulation of atmospheric energetics. Based on these preliminary performance studies, however, it appears that the zonal model can be used in conjunction with more complex models to help unravel the problems of understanding the processes governing present climate and climate change. As can be seen in the subsequent paper on model sensitivity studies, in addition to reduced cost of computation, the zonal model facilitates analysis of feedback mechanisms and simplifies analysis of the interactions between processes

  18. Topological phases in the Haldane model with spin–spin on-site interactions

    Science.gov (United States)

    Rubio-García, A.; García-Ripoll, J. J.

    2018-04-01

    Ultracold atom experiments allow the study of topological insulators, such as the non-interacting Haldane model. In this work we study a generalization of the Haldane model with spin–spin on-site interactions that can be implemented on such experiments. We focus on measuring the winding number, a topological invariant, of the ground state, which we compute using a mean-field calculation that effectively captures long-range correlations and a matrix product state computation in a lattice with 64 sites. Our main result is that we show how the topological phases present in the non-interacting model survive until the interactions are comparable to the kinetic energy. We also demonstrate the accuracy of our mean-field approach in efficiently capturing long-range correlations. Based on state-of-the-art ultracold atom experiments, we propose an implementation of our model that can give information about the topological phases.

  19. Model of Collective Fish Behavior with Hydrodynamic Interactions

    Science.gov (United States)

    Filella, Audrey; Nadal, François; Sire, Clément; Kanso, Eva; Eloy, Christophe

    2018-05-01

    Fish schooling is often modeled with self-propelled particles subject to phenomenological behavioral rules. Although fish are known to sense and exploit flow features, these models usually neglect hydrodynamics. Here, we propose a novel model that couples behavioral rules with far-field hydrodynamic interactions. We show that (1) a new "collective turning" phase emerges, (2) on average, individuals swim faster thanks to the fluid, and (3) the flow enhances behavioral noise. The results of this model suggest that hydrodynamic effects should be considered to fully understand the collective dynamics of fish.

  20. Looking beyond general metrics for model comparison - lessons from an international model intercomparison study

    Science.gov (United States)

    de Boer-Euser, Tanja; Bouaziz, Laurène; De Niel, Jan; Brauer, Claudia; Dewals, Benjamin; Drogue, Gilles; Fenicia, Fabrizio; Grelier, Benjamin; Nossent, Jiri; Pereira, Fernando; Savenije, Hubert; Thirel, Guillaume; Willems, Patrick

    2017-01-01

    International collaboration between research institutes and universities is a promising way to reach consensus on hydrological model development. Although model comparison studies are very valuable for international cooperation, they do often not lead to very clear new insights regarding the relevance of the modelled processes. We hypothesise that this is partly caused by model complexity and the comparison methods used, which focus too much on a good overall performance instead of focusing on a variety of specific events. In this study, we use an approach that focuses on the evaluation of specific events and characteristics. Eight international research groups calibrated their hourly model on the Ourthe catchment in Belgium and carried out a validation in time for the Ourthe catchment and a validation in space for nested and neighbouring catchments. The same protocol was followed for each model and an ensemble of best-performing parameter sets was selected. Although the models showed similar performances based on general metrics (i.e. the Nash-Sutcliffe efficiency), clear differences could be observed for specific events. We analysed the hydrographs of these specific events and conducted three types of statistical analyses on the entire time series: cumulative discharges, empirical extreme value distribution of the peak flows and flow duration curves for low flows. The results illustrate the relevance of including a very quick flow reservoir preceding the root zone storage to model peaks during low flows and including a slow reservoir in parallel with the fast reservoir to model the recession for the studied catchments. This intercomparison enhanced the understanding of the hydrological functioning of the catchment, in particular for low flows, and enabled to identify present knowledge gaps for other parts of the hydrograph. Above all, it helped to evaluate each model against a set of alternative models.

  1. Predictive Modeling of Expressed Emotions in Music Using Pairwise Comparisons

    DEFF Research Database (Denmark)

    Madsen, Jens; Jensen, Bjørn Sand; Larsen, Jan

    2013-01-01

    We introduce a two-alternative forced-choice (2AFC) experimental paradigm to quantify expressed emotions in music using the arousal and valence (AV) dimensions. A wide range of well-known audio features are investigated for predicting the expressed emotions in music using learning curves...... and essential baselines. We furthermore investigate the scalability issues of using 2AFC in quantifying emotions expressed in music on large-scale music databases. The possibility of dividing the annotation task between multiple individuals, while pooling individuals’ comparisons is investigated by looking...... comparisons at random by using learning curves. We show that a suitable predictive model of expressed valence in music can be achieved from only 15% of the total number of comparisons when using the Expected Value of Information (EVOI) active learning scheme. For the arousal dimension we require 9...

  2. Comparison between a sire model and an animal model for genetic evaluation of fertility traits in Danish Holstein population

    DEFF Research Database (Denmark)

    Sun, C; Madsen, P; Nielsen, U S

    2009-01-01

    Comparisons between a sire model, a sire-dam model, and an animal model were carried out to evaluate the ability of the models to predict breeding values of fertility traits, based on data including 471,742 records from the first lactation of Danish Holstein cows, covering insemination years from...... the results suggest that the animal model, rather than the sire model, should be used for genetic evaluation of fertility traits......Comparisons between a sire model, a sire-dam model, and an animal model were carried out to evaluate the ability of the models to predict breeding values of fertility traits, based on data including 471,742 records from the first lactation of Danish Holstein cows, covering insemination years from...... 1995 to 2004. The traits in the analysis were days from calving to first insemination, calving interval, days open, days from first to last insemination, number of inseminations per conception, and nonreturn rate within 56 d after first service. The correlations between sire estimated breeding value...

  3. ANNIE - INTERACTIVE PROCESSING OF DATA BASES FOR HYDROLOGIC MODELS.

    Science.gov (United States)

    Lumb, Alan M.; Kittle, John L.

    1985-01-01

    ANNIE is a data storage and retrieval system that was developed to reduce the time and effort required to calibrate, verify, and apply watershed models that continuously simulate water quantity and quality. Watershed models have three categories of input: parameters to describe segments of a drainage area, linkage of the segments, and time-series data. Additional goals for ANNIE include the development of software that is easily implemented on minicomputers and some microcomputers and software that has no special requirements for interactive display terminals. Another goal is for the user interaction to be based on the experience of the user so that ANNIE is helpful to the inexperienced user and yet efficient and brief for the experienced user. Finally, the code should be designed so that additional hydrologic models can easily be added to ANNIE.

  4. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models.

    Science.gov (United States)

    Moran, Paula; Stokes, Jennifer; Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John; O'Tuathaigh, Colm

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.

  5. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    Science.gov (United States)

    Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia. PMID:27725886

  6. Hydrodynamic interaction of a self-propelling particle with a wall : Comparison between an active Janus particle and a squirmer model.

    Science.gov (United States)

    Shen, Zaiyi; Würger, Alois; Lintuvuori, Juho S

    2018-03-27

    Using lattice Boltzmann simulations we study the hydrodynamics of an active spherical particle near a no-slip wall. We develop a computational model for an active Janus particle, by considering different and independent mobilities on the two hemispheres and compare the behaviour to a standard squirmer model. We show that the topology of the far-field hydrodynamic nature of the active Janus particle is similar to the standard squirmer model, but in the near-field the hydrodynamics differ. In order to study how the near-field effects affect the interaction between the particle and a flat wall, we compare the behaviour of a Janus swimmer and a squirmer near a no-slip surface via extensive numerical simulations. Our results show generally a good agreement between these two models, but they reveal some key differences especially with low magnitudes of the squirming parameter [Formula: see text]. Notably the affinity of the particles to be trapped at a surface is increased for the active Janus particles when compared to standard squirmers. Finally, we find that when the particle is trapped on the surface, the velocity parallel to the surface exceeds the bulk swimming speed and scales linearly with [Formula: see text].

  7. The hadronic standard model for strong and electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Raczka, R. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1993-12-31

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.

  8. The hadronic standard model for strong and electroweak interactions

    International Nuclear Information System (INIS)

    Raczka, R.

    1993-01-01

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of Λ-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e + + e - → hadrons, e + + e - → W + + W - , e + + e - → p + anti-p, e + p → e + p and p + anti-p → p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant α(M z ) and we predicted the top baryon mass M Λ t ≅ 240 GeV. Since in our model the proton, neutron, Λ-particles, vector mesons like ρ, ω, φ, J/ψ ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab

  9. The hadronic standard model for strong and electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Raczka, R [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.

  10. Using interactive model simulations in co-design : An experiment in urban design

    NARCIS (Netherlands)

    Steen, M.G.D.; Arendsen, J.; Cremers, A.H.M.; Vries, A. de; Jong, J.M.G. de; Koning, N.M. de

    2013-01-01

    This paper presents an experiment in which people performed a co-design task in urban design, using a multi-user touch table application with or without interactive model simulations. We hypothesised that using the interactive model simulations would improve communication and co-operation between

  11. A model of cognitive processes and conversational principles in survey interview interaction

    NARCIS (Netherlands)

    Ongena, Yfke P.; Dijkstra, Wil

    In this paper we provide a model of interviewer–respondent interaction in survey interviews. Our model is primarily focused on the occurrence of problems within this interaction that seem likely to affect data quality. Both conversational principles and cognitive processes, especially where they do

  12. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model

    NARCIS (Netherlands)

    Bickelhaupt, F. Matthias; Houk, Kendall N.

    2017-01-01

    The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction

  13. Observational constraint on the interacting dark energy models including the Sandage-Loeb test

    Science.gov (United States)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2014-05-01

    Two types of interacting dark energy models are investigated using the type Ia supernova (SNIa), observational data (OHD), cosmic microwave background shift parameter, and the secular Sandage-Loeb (SL) test. In the investigation, we have used two sets of parameter priors including WMAP-9 and Planck 2013. They have shown some interesting differences. We find that the inclusion of SL test can obviously provide a more stringent constraint on the parameters in both models. For the constant coupling model, the interaction term has been improved to be only a half of the original scale on corresponding errors. Comparing with only SNIa and OHD, we find that the inclusion of the SL test almost reduces the best-fit interaction to zero, which indicates that the higher-redshift observation including the SL test is necessary to track the evolution of the interaction. For the varying coupling model, data with the inclusion of the SL test show that the parameter at C.L. in Planck priors is , where the constant is characteristic for the severity of the coincidence problem. This indicates that the coincidence problem will be less severe. We then reconstruct the interaction , and we find that the best-fit interaction is also negative, similar to the constant coupling model. However, for a high redshift, the interaction generally vanishes at infinity. We also find that the phantom-like dark energy with is favored over the CDM model.

  14. Comparison Between Overtopping Discharge in Small and Large Scale Models

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, Hans F.

    2006-01-01

    The present paper presents overtopping measurements from small scale model test performed at the Haudraulic & Coastal Engineering Laboratory, Aalborg University, Denmark and large scale model tests performed at the Largde Wave Channel,Hannover, Germany. Comparison between results obtained from...... small and large scale model tests show no clear evidence of scale effects for overtopping above a threshold value. In the large scale model no overtopping was measured for waveheights below Hs = 0.5m as the water sunk into the voids between the stones on the crest. For low overtopping scale effects...

  15. Trophic interaction modifications: an empirical and theoretical framework.

    Science.gov (United States)

    Terry, J Christopher D; Morris, Rebecca J; Bonsall, Michael B

    2017-10-01

    Consumer-resource interactions are often influenced by other species in the community. At present these 'trophic interaction modifications' are rarely included in ecological models despite demonstrations that they can drive system dynamics. Here, we advocate and extend an approach that has the potential to unite and represent this key group of non-trophic interactions by emphasising the change to trophic interactions induced by modifying species. We highlight the opportunities this approach brings in comparison to frameworks that coerce trophic interaction modifications into pairwise relationships. To establish common frames of reference and explore the value of the approach, we set out a range of metrics for the 'strength' of an interaction modification which incorporate increasing levels of contextual information about the system. Through demonstrations in three-species model systems, we establish that these metrics capture complimentary aspects of interaction modifications. We show how the approach can be used in a range of empirical contexts; we identify as specific gaps in current understanding experiments with multiple levels of modifier species and the distributions of modifications in networks. The trophic interaction modification approach we propose can motivate and unite empirical and theoretical studies of system dynamics, providing a route to confront ecological complexity. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  16. Analysing earthquake slip models with the spatial prediction comparison test

    KAUST Repository

    Zhang, L.; Mai, Paul Martin; Thingbaijam, Kiran Kumar; Razafindrakoto, H. N. T.; Genton, Marc G.

    2014-01-01

    Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.

  17. Analysing earthquake slip models with the spatial prediction comparison test

    KAUST Repository

    Zhang, L.

    2014-11-10

    Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.

  18. Model/data comparison of typhoon-generated noise

    International Nuclear Information System (INIS)

    Wang Jing-Yan; Li Feng-Hua

    2016-01-01

    Ocean noise recorded during a typhoon can be used to monitor the typhoon and investigate the mechanism of the wind-generated noise. An analytical expression for the typhoon-generated noise intensity is derived as a function of wind speed. A “bi-peak” structure was observed in an experiment during which typhoon-generated noise was recorded. Wind speed dependence and frequency dependence were also observed in the frequency range of 100 Hz–1000 Hz. The model/data comparison shows that results of the present model of 500 Hz and 1000 Hz are in reasonable agreement with the experimental data, and the typhoon-generated noise intensity has a dependence on frequency and a power-law dependence on wind speed. (special topic)

  19. Effect of three body interaction in the Hamiltonian of the interacting bosons model

    International Nuclear Information System (INIS)

    Nunes, C.A.A.

    1987-01-01

    The interacting boson model algebra is analysed on the basis of group theory. Through the topological properties of the groups a geometry is associated and the fundamental state of the nucleus is obtained. Calculations were carried out for 102 Ru and 168 Er. (A.C.A.S.) [pt

  20. Models for genotype by environment interaction estimation on halomorphic soil

    Directory of Open Access Journals (Sweden)

    Dimitrijević Miodrag

    2006-01-01

    Full Text Available In genotype by environment interaction estimation, as well as, in total trial variability anal­ysis several models are in use. The most often used are Analysis of variance, Eberhart and Russell model and AMMI model. Each of the models has its own specificities, in the way of sources of varia­tion comprehension and treatment. It is known that agriculturally less productive environments increase errors, dimmish reaction differences between genotypes and decrease repeatability of conditions during years. A sample consisting on six bread wheat varieties was studied in three veg­etation periods on halomorphic soil, solonetz type in Banat (vil. Kumane. Genotype by environ­ment interaction was quantified using ANOVA, Eberhart and Russell model and AMMI model. The results were compared not only on pure solonetz soil (control, but also on two level of ameliora­tion (25 and 50t/ha phosphor-gypsum.