Accelerating Full Configuration Interaction Calculations for Nuclear Structure
International Nuclear Information System (INIS)
Yang, Chao; Sternberg, Philip; Maris, Pieter; Ng, Esmond; Sosonkina, Masha; Le, Hung Viet; Vary, James; Yang, Chao
2008-01-01
One of the emerging computational approaches in nuclear physics is the full configuration interaction (FCI) method for solving the many-body nuclear Hamiltonian in a sufficiently large single-particle basis space to obtain exact answers - either directly or by extrapolation. The lowest eigenvalues and corresponding eigenvectors for very large, sparse and unstructured nuclear Hamiltonian matrices are obtained and used to evaluate additional experimental quantities. These matrices pose a significant challenge to the design and implementation of efficient and scalable algorithms for obtaining solutions on massively parallel computer systems. In this paper, we describe the computational strategies employed in a state-of-the-art FCI code MFDn (Many Fermion Dynamics - nuclear) as well as techniques we recently developed to enhance the computational efficiency of MFDn. We will demonstrate the current capability of MFDn and report the latest performance improvement we have achieved. We will also outline our future research directions
Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions
International Nuclear Information System (INIS)
Li, X. F.; Yu, Q.; Qu, J. F.; Kong, Q.; Gu, Y. J.; Ma, Y. Y.; Kawata, S.
2016-01-01
In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser–plasma interaction by using the Lienard–Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser–plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electrons is significant, especially to the peak photon energy.
Shao, Meiyue; Aktulga, H. Metin; Yang, Chao; Ng, Esmond G.; Maris, Pieter; Vary, James P.
2018-01-01
We describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. The use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. We also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.
Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions
Czech Academy of Sciences Publication Activity Database
Li, X.F.; Yu, Q.; Gu, Yanjun; Qu, J.F.; Ma, Y.Y.; Kong, Q.; Kawata, S.
2016-01-01
Roč. 23, č. 3 (2016), s. 1-5, č. článku 033113. ISSN 1070-664X R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : wakefield accelerator * x-rays * beams * driven Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016
Interactive Design of Accelerators (IDA)
International Nuclear Information System (INIS)
Barton, M.Q.
1987-01-01
IDA is a beam transport line calculation program which runs interactively on an IBM PC computer. It can be used for a large fraction of the usual calculations done for beam transport systems or periods of accelerators or storage rings. Because of the interactive screen editor nature of the data input, this program permits one to rather quickly arrive at general properties of a beam line or an accelerator period
GPU based acceleration of first principles calculation
International Nuclear Information System (INIS)
Tomono, H; Tsumuraya, K; Aoki, M; Iitaka, T
2010-01-01
We present a Graphics Processing Unit (GPU) accelerated simulations of first principles electronic structure calculations. The FFT, which is the most time-consuming part, is about 10 times accelerated. As the result, the total computation time of a first principles calculation is reduced to 15 percent of that of the CPU.
Ahmed, Shaimaa; Vepuri, Suresh B; Jadhav, Mahantesh; Kalhapure, Rahul S; Govender, Thirumala
2018-06-01
Nano-drug delivery systems have proven to be an efficient formulation tool to overcome the challenges with current antibiotics therapy and resistance. A series of pH-responsive lipid molecules were designed and synthesized for future liposomal formulation as a nano-drug delivery system for vancomycin at the infection site. The structures of these lipids differ from each other in respect of hydrocarbon tails: Lipid1, 2, 3 and 4 have stearic, oleic, linoleic, and linolenic acid hydrocarbon chains, respectively. The impact of variation in the hydrocarbon chain in the lipid structure on drug encapsulation and release profile, as well as mode of drug interaction, was investigated using molecular modeling analyses. A wide range of computational tools, including accelerated molecular dynamics, normal molecular dynamics, binding free energy calculations and principle component analysis, were applied to provide comprehensive insight into the interaction landscape between vancomycin and the designed lipid molecules. Interestingly, both MM-GBSA and MM-PBSA binding affinity calculations using normal molecular dynamics and accelerated molecular dynamics trajectories showed a very consistent trend, where the order of binding affinity towards vancomycin was lipid4 > lipid1 > lipid2 > lipid3. From both normal molecular dynamics and accelerated molecular dynamics, the interaction of lipid3 with vancomycin is demonstrated to be the weakest (∆G binding = -2.17 and -11.57, for normal molecular dynamics and accelerated molecular dynamics, respectively) when compared to other complexes. We believe that the degree of unsaturation of the hydrocarbon chain in the lipid molecules may impact on the overall conformational behavior, interaction mode and encapsulation (wrapping) of the lipid molecules around the vancomycin molecule. This thorough computational analysis prior to the experimental investigation is a valuable approach to guide for predicting the encapsulation
International Nuclear Information System (INIS)
Dasgupta, S.
1994-01-01
Accelerators are research machines which produce energetic particle beam for use as projectiles to effect nuclear reactions. These machines along with their services and facilities may occupy very large areas. The man-machine interface of accelerators has evolved with technological changes in the computer industry and may be partitioned into three phases. The present paper traces the evolution of man-machine interface from the earliest accelerators to the present computerized systems incorporated in modern accelerators. It also discusses the advantages of incorporating expert system technology for assisting operators. (author). 8 ref
CHEF: an Interactive program for accelerator optics
International Nuclear Information System (INIS)
Michelotti, Leo; Ostiguy, Jean-Francois
2005-01-01
We report the current status and our plans for the completion of CHEF, an interactive application for performing optics calculations in accelerator physics. CHEF uses high level graphical user interfaces to facilitate the exploitation of lower level tools incorporated into a hierarchy of C++ class libraries, making them usable by those not familiar with C++ programming
Accelerating GW calculations with optimal polarizability basis
Energy Technology Data Exchange (ETDEWEB)
Umari, P.; Stenuit, G. [CNR-IOM DEMOCRITOS Theory Elettra Group, Basovizza (Trieste) (Italy); Qian, X.; Marzari, N. [Department of Materials Science and Engineering, MIT, Cambridge, MA (United States); Giacomazzi, L.; Baroni, S. [CNR-IOM DEMOCRITOS Theory Elettra Group, Basovizza (Trieste) (Italy); SISSA - Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy)
2011-03-15
We present a method for accelerating GW quasi-particle (QP) calculations. This is achieved through the introduction of optimal basis sets for representing polarizability matrices. First the real-space products of Wannier like orbitals are constructed and then optimal basis sets are obtained through singular value decomposition. Our method is validated by calculating the vertical ionization energies of the benzene molecule and the band structure of crystalline silicon. Its potentialities are illustrated by calculating the QP spectrum of a model structure of vitreous silica. Finally, we apply our method for studying the electronic structure properties of a model of quasi-stoichiometric amorphous silicon nitride and of its point defects. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Calculation of Rydberg interaction potentials
International Nuclear Information System (INIS)
Weber, Sebastian; Büchler, Hans Peter; Tresp, Christoph; Urvoy, Alban; Hofferberth, Sebastian; Menke, Henri; Firstenberg, Ofer
2017-01-01
The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence can be fine-tuned with great flexibility by choosing appropriate Rydberg states and applying external electric and magnetic fields. More and more experiments are probing this interaction at short atomic distances or with such high precision that perturbative calculations as well as restrictions to the leading dipole–dipole interaction term are no longer sufficient. In this tutorial, we review all relevant aspects of the full calculation of Rydberg interaction potentials. We discuss the derivation of the interaction Hamiltonian from the electrostatic multipole expansion, numerical and analytical methods for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source. (tutorial)
Acceleration methods and models in Sn calculations
International Nuclear Information System (INIS)
Sbaffoni, M.M.; Abbate, M.J.
1984-01-01
In some neutron transport problems solved by the discrete ordinate method, it is relatively common to observe some particularities as, for example, negative fluxes generation, slow and insecure convergences and solution instabilities. The commonly used models for neutron flux calculation and acceleration methods included in the most used codes were analyzed, in face of their use in problems characterized by a strong upscattering effect. Some special conclusions derived from this analysis are presented as well as a new method to perform the upscattering scaling for solving the before mentioned problems in this kind of cases. This method has been included in the DOT3.5 code (two dimensional discrete ordinates radiation transport code) generating a new version of wider application. (Author) [es
Calculation of Rydberg interaction potentials
DEFF Research Database (Denmark)
Weber, Sebastian; Tresp, Christoph; Menke, Henri
2017-01-01
for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up...... to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source....
Calculations of accelerator-based neutron sources characteristics
International Nuclear Information System (INIS)
Tertytchnyi, R.G.; Shorin, V.S.
2000-01-01
Accelerator-based quasi-monoenergetic neutron sources (T(p,n), D(d;n), T(d;n) and Li (p,n)-reactions) are widely used in experiments on measuring the interaction cross-sections of fast neutrons with nuclei. The present work represents the code for calculation of the yields and spectra of neutrons generated in (p, n)- and ( d; n)-reactions on some targets of light nuclei (D, T; 7 Li). The peculiarities of the stopping processes of charged particles (with incident energy up to 15 MeV) in multilayer and multicomponent targets are taken into account. The code version is made in terms of the 'SOURCE,' a subroutine for the well-known MCNP code. Some calculation results for the most popular accelerator- based neutron sources are given. (authors)
Calculation of Rydberg interaction potentials
DEFF Research Database (Denmark)
Weber, Sebastian; Tresp, Christoph; Menke, Henri
2017-01-01
The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence...... for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up...
Shielding calculation for treatment rooms of high energy linear accelerator
International Nuclear Information System (INIS)
Elleithy, M.A.
2006-01-01
A review of German Institute of Standardization (DIN) scheme of the shielding calculation and the essential data required has been done for X-rays and electron beam in the energy range from 1 MeV to 50 MeV. Shielding calculation was done for primary and secondary radiations generated during X-ray operation of Linac. In addition, shielding was done against X-rays generated (Bremsstrahlung) by useful electron beams. The calculations also covered the neutrons generated from the interactions of useful X-rays (at energies above 8 MeV) with the surrounding. The present application involved the computation of shielding against the double scattered components of X-rays and neutrons in the maze area and the thickness of the paraffin wax of the room door. A new developed computer program was designed to assist shielding thickness calculations for a new Linac installation or in replacing an existing machine. The program used a combination of published tables and figures in computing the shielding thickness at different locations for all possible radiation situations. The DIN published data of 40 MeV accelerator room was compared with the program calculations. It was found that there is good agreement between both calculations. The developed program improved the accuracy and speed of calculation
Computing tools for accelerator design calculations
International Nuclear Information System (INIS)
Fischler, M.; Nash, T.
1984-01-01
This note is intended as a brief, summary guide for accelerator designers to the new generation of commercial and special processors that allow great increases in computing cost effectiveness. New thinking is required to take best advantage of these computing opportunities, in particular, when moving from analytical approaches to tracking simulations. In this paper, we outline the relevant considerations
3D accelerator magnet calculations using MAGNUS-3D
International Nuclear Information System (INIS)
Pissanetzky, S.; Miao, Y.
1989-01-01
The steady trend towards increased magnetic and geometric complexity in the design of accelerator magnets has caused a need for reliable 3D computer models and a better understanding of the behavior of magnetic system in three dimensions. The capabilities of the MAGNUS-3D family of programs are ideally suited to solve this class of problems and provide insight into 3D effects. MAGNUS-3D can solve any problem of magnetostatics involving permanent magnets, nonlinear ferromagnetic materials and electric conductors. MAGNUS-3D uses the finite element method and the two-scalar-potentials formulation of Maxwell's equations to obtain the solution, which can then be used interactively to obtain tables of field components at specific points or lines, plots of field lines, function graphs representing a field component plotted against a coordinate along any line in space (such as the beam line), and views of the conductors, the mesh and the magnetic bodies. The magnetic quantities that can be calculated include the force or torque on conductors or magnetic parts, the energy, the flux through a specified surface, line integrals of any field component along any line in space, and the average field or potential harmonic coefficients. We describe the programs with emphasis placed on their use for accelerator magnet design, and present an advanced example of actual calculations. (orig.)
Nonlinear acceleration of SN transport calculations
Energy Technology Data Exchange (ETDEWEB)
Fichtl, Erin D [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory; Calef, Matthew T [Los Alamos National Laboratory
2010-12-20
The use of nonlinear iterative methods, Jacobian-Free Newton-Krylov (JFNK) in particular, for solving eigenvalue problems in transport applications has recently become an active subject of research. While JFNK has been shown to be effective for k-eigenvalue problems, there are a number of input parameters that impact computational efficiency, making it difficult to implement efficiently in a production code using a single set of default parameters. We show that different selections for the forcing parameter in particular can lead to large variations in the amount of computational work for a given problem. In contrast, we present a nonlinear subspace method that sits outside and effectively accelerates nonlinear iterations of a given form and requires only a single input parameter, the subspace size. It is shown to consistently and significantly reduce the amount of computational work when applied to fixed-point iteration, and this combination of methods is shown to be more efficient than JFNK for our application.
Shock Spectrum Calculation from Acceleration Time Histories
1980-09-01
accurate and economical . If the velocity is desired, it can be calculated with Equation A-8b. As it stands it is exact. Approx- imation will be...Washington DC; DAEN-MCE.D (R L Wight) Washington DC; DAEN.MPE-D Washington DC; DAEN- MPU . Washington DC; DARCOM; ERADCOM Tech Supp Dir. (DELSD-L) Ft
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
International Nuclear Information System (INIS)
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Energy Technology Data Exchange (ETDEWEB)
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Relativistic ion acceleration by ultraintense laser interactions
International Nuclear Information System (INIS)
Nakajima, K.; Koga, J.K.; Nakagawa, K.
2001-01-01
There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV
Calculation and optimization of laser acceleration in vacuum
Directory of Open Access Journals (Sweden)
Z. Huang
2004-01-01
Full Text Available Extraordinarily high fields generated by focused lasers are envisioned to accelerate particles to high energies. In this paper, we develop a new method to calculate laser acceleration in vacuum based on the energy exchange arising from the interference of the laser field with the radiation field of the particle. We apply this method to a simple accelerating structure, a perfectly conducting screen with a round hole, and show how to optimize the energy gain with respect to the hole radius, laser angle, and spot size, as well as the transverse profile of the laser. Limitations and energy scaling of this acceleration method are also discussed.
Proliferation Potential of Accelerator-Driven Systems: Feasibility Calculations
International Nuclear Information System (INIS)
Riendeau, C.D.; Moses, D.L.; Olson, A.P.
1998-01-01
Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium
Accelerator physics analysis with interactive tools
International Nuclear Information System (INIS)
Holt, J.A.; Michelotti, L.
1993-05-01
Work is in progress on interactive tools for linear and nonlinear accelerator design, analysis, and simulation using X-based graphics. The BEAMLINE and MXYZPTLK class libraries, were used with an X Windows graphics library to build a program for interactively editing lattices and studying their properties
Calculations of beam dynamics in Sandia linear electron accelerators, 1984
International Nuclear Information System (INIS)
Poukey, J.W.; Coleman, P.D.
1985-03-01
A number of code and analytic studies were made during 1984 which pertain to the Sandia linear accelerators MABE and RADLAC. In this report the authors summarize the important results of the calculations. New results include a better understanding of gap-induced radial oscillations, leakage currents in a typical MABE gas, emittance growth in a beam passing through a series of gaps, some new diocotron results, and the latest diode simulations for both accelerators. 23 references, 30 figures, 1 table
Calculation of coupling factor for the heterogeneous accelerating structure
International Nuclear Information System (INIS)
Bian Xiaohao; Chen Huaibi; Zheng Shuxin
2006-01-01
The converging part of electron accelerator is designed to converge the phase of injecting electrons, improving the beam quality of the accelerator. It is very crucial to calculate the coupling factor between cavities and to design the geometry structure of the coupling irises. By the E module of code MAFIA, the authors calculate the frequency of every single resonant cavity and the two eigenfrequencies of two-cavitiy line. Then we get the coupling factor between the two cavities. This method can be used to design the geometry structure of the coupling isises between every two cavities. Compared to experiment, the results of the method is very accurate. (authors)
Calculation of coupling factor for double-period accelerating structure
International Nuclear Information System (INIS)
Bian Xiaohao; Chen Huaibi; Zheng Shuxin
2005-01-01
In the design of the linear accelerating structure, the coupling factor between cavities is a crucial parameter. The error of coupling factor accounts for the electric or magnetic field error mainly. To accurately design the coupling iris, the accurate calculation of coupling factor is essential. The numerical simulation is widely used to calculate the coupling factor now. By using MAFIA code, two methods have been applied to calculate the dispersion characteristics of the single-period structure, one method is to simulate the traveling wave mode by the period boundary condition; another method is to simulate the standing wave mode by the electrical boundary condition. In this work, the authors develop the two methods to calculate the coupling factor of double-period accelerating structure. Compared to experiment, the results for both methods are very similar, and in agreement with measurement within 15% deviation. (authors)
GPU Accelerated Chemical Similarity Calculation for Compound Library Comparison
Ma, Chao; Wang, Lirong; Xie, Xiang-Qun
2012-01-01
Chemical similarity calculation plays an important role in compound library design, virtual screening, and “lead” optimization. In this manuscript, we present a novel GPU-accelerated algorithm for all-vs-all Tanimoto matrix calculation and nearest neighbor search. By taking advantage of multi-core GPU architecture and CUDA parallel programming technology, the algorithm is up to 39 times superior to the existing commercial software that runs on CPUs. Because of the utilization of intrinsic GPU instructions, this approach is nearly 10 times faster than existing GPU-accelerated sparse vector algorithm, when Unity fingerprints are used for Tanimoto calculation. The GPU program that implements this new method takes about 20 minutes to complete the calculation of Tanimoto coefficients between 32M PubChem compounds and 10K Active Probes compounds, i.e., 324G Tanimoto coefficients, on a 128-CUDA-core GPU. PMID:21692447
Acceleration methods for assembly-level transport calculations
International Nuclear Information System (INIS)
Adams, Marvin L.; Ramone, Gilles
1995-01-01
A family acceleration methods for the iterations that arise in assembly-level transport calculations is presented. A single iteration in these schemes consists of a transport sweep followed by a low-order calculation which is itself a simplified transport problem. It is shown that a previously-proposed method fitting this description is unstable in two and three dimensions. It is presented a family of methods and shown that some members are unconditionally stable. (author). 8 refs, 4 figs, 4 tabs
Hardware availability calculations and results of the IFMIF accelerator facility
International Nuclear Information System (INIS)
Bargalló, Enric; Arroyo, Jose Manuel; Abal, Javier; Beauvais, Pierre-Yves; Gobin, Raphael; Orsini, Fabienne; Weber, Moisés; Podadera, Ivan; Grespan, Francesco; Fagotti, Enrico; De Blas, Alfredo; Dies, Javier; Tapia, Carlos; Mollá, Joaquín; Ibarra, Ángel
2014-01-01
Highlights: • IFMIF accelerator facility hardware availability analyses methodology is described. • Results of the individual hardware availability analyses are shown for the reference design. • Accelerator design improvements are proposed for each system. • Availability results are evaluated and compared with the requirements. - Abstract: Hardware availability calculations have been done individually for each system of the deuteron accelerators of the International Fusion Materials Irradiation Facility (IFMIF). The principal goal of these analyses is to estimate the availability of the systems, compare it with the challenging IFMIF requirements and find new paths to improve availability performances. Major unavailability contributors are highlighted and possible design changes are proposed in order to achieve the hardware availability requirements established for each system. In this paper, such possible improvements are implemented in fault tree models and the availability results are evaluated. The parallel activity on the design and construction of the linear IFMIF prototype accelerator (LIPAc) provides detailed design information for the RAMI (reliability, availability, maintainability and inspectability) analyses and allows finding out the improvements that the final accelerator could have. Because of the R and D behavior of the LIPAc, RAMI improvements could be the major differences between the prototype and the IFMIF accelerator design
Hardware availability calculations and results of the IFMIF accelerator facility
Energy Technology Data Exchange (ETDEWEB)
Bargalló, Enric, E-mail: enric.bargallo-font@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Arroyo, Jose Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Abal, Javier [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Beauvais, Pierre-Yves; Gobin, Raphael; Orsini, Fabienne [Commissariat à l’Energie Atomique, Saclay (France); Weber, Moisés; Podadera, Ivan [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Grespan, Francesco; Fagotti, Enrico [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy); De Blas, Alfredo; Dies, Javier; Tapia, Carlos [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)
2014-10-15
Highlights: • IFMIF accelerator facility hardware availability analyses methodology is described. • Results of the individual hardware availability analyses are shown for the reference design. • Accelerator design improvements are proposed for each system. • Availability results are evaluated and compared with the requirements. - Abstract: Hardware availability calculations have been done individually for each system of the deuteron accelerators of the International Fusion Materials Irradiation Facility (IFMIF). The principal goal of these analyses is to estimate the availability of the systems, compare it with the challenging IFMIF requirements and find new paths to improve availability performances. Major unavailability contributors are highlighted and possible design changes are proposed in order to achieve the hardware availability requirements established for each system. In this paper, such possible improvements are implemented in fault tree models and the availability results are evaluated. The parallel activity on the design and construction of the linear IFMIF prototype accelerator (LIPAc) provides detailed design information for the RAMI (reliability, availability, maintainability and inspectability) analyses and allows finding out the improvements that the final accelerator could have. Because of the R and D behavior of the LIPAc, RAMI improvements could be the major differences between the prototype and the IFMIF accelerator design.
Simplified shielding calculation system for high-intensity proton accelerators
Energy Technology Data Exchange (ETDEWEB)
Masumura, Tomomi; Nakashima, Hiroshi; Nakane, Yoshihiro; Sasamoto, Nobuo [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)
2000-06-01
A simplified shielding calculation system is developed for applying conceptual shielding design of facilities in the joint project for high-intensity proton accelerators. The system is composed of neutron transmission calculation part for bulk shielding using simplified formulas: Moyer model and Tesch's formula, and neutron skyshine calculation part using an empirical formula: Stapleton's formula. The system is made with the Microsoft Excel software for user's convenience. This report provides a manual for the system as well as calculation conditions used in the calculation such as Moyer model's parameters. In this report preliminary results based on data at December 8, 1999, are also shown as an example. (author)
Criticality calculations in reactor accelerator coupling experiment (Race)
International Nuclear Information System (INIS)
Reda, M.A.; Spaulding, R.; Hunt, A.; Harmon, J.F.; Beller, D.E.
2005-01-01
A Reactor Accelerator Coupling Experiment (RACE) is to be performed at the Idaho State University Idaho Accelerator Center (IAC). The electron accelerator is used to generate neutrons by inducing Bremsstrahlung photon-neutron reactions in a Tungsten- Copper target. This accelerator/target system produces a source of ∼1012 n/s, which can initiate fission reactions in the subcritical system. This coupling experiment between a 40-MeV electron accelerator and a subcritical system will allow us to predict and measure coupling efficiency, reactivity, and multiplication. In this paper, the results of the criticality and multiplication calculations, which were carried out using the Monte Carlo radiation transport code MCNPX, for different coupling design options are presented. The fuel plate arrangements and the surrounding tank dimensions have been optimized. Criticality using graphite instead of water for reflector/moderator outside of the core region has been studied. The RACE configuration at the IAC will have a criticality (k-effective) of about 0,92 and a multiplication of about 10. (authors)
Wielandt acceleration for MCNP5 Monte Carlo eigenvalue calculations
International Nuclear Information System (INIS)
Brown, F.
2007-01-01
Monte Carlo criticality calculations use the power iteration method to determine the eigenvalue (k eff ) and eigenfunction (fission source distribution) of the fundamental mode. A recently proposed method for accelerating convergence of the Monte Carlo power iteration using Wielandt's method has been implemented in a test version of MCNP5. The method is shown to provide dramatic improvements in convergence rates and to greatly reduce the possibility of false convergence assessment. The method is effective and efficient, improving the Monte Carlo figure-of-merit for many problems. In addition, the method should eliminate most of the underprediction bias in confidence intervals for Monte Carlo criticality calculations. (authors)
Parametrisation of linear accelerator electron beam for computerised dosimetry calculations
International Nuclear Information System (INIS)
Millan, P.E.; Millan, S.; Hernandez, A.; Andreo, P.
1979-01-01
A previously published age-diffusion model has been adapted to obtain parameters for the Saggittaire linear accelerator electron beams. The calculations are shown and the results discussed. A comparison is presented between measured and predicted percentage depth doses for electron beams at various energies between 10 and 32 MeV. Theoretical isodose curves are compared, for an energy of 10 MeV, with experimental curves. The parameters obtained are used for computer electron isodose curve calculation in a program called FIJOE adapted from a previously published program. This program makes it possible to correct for irregular body contours, but not for internal inhomogeneities. (UK)
Numerical calculation of beam coupling impedances in synchrotron accelerators
International Nuclear Information System (INIS)
Haenichen, Lukas
2016-01-01
Beams of charged particles are of interest in various fields of research including particle and nuclear physics, material and medical science and many more. In synchrotron accelerators the accelerating section is passed periodically. A closed loop trajectory is enforced, by increasing the frequency of the accelerating electric field and the magnitude of the dipolar magnetic guide field synchronously. A synchrotron therefore consists of a circular assembly of various beamline elements which serve the purposes of accelerating and guiding the particle beam. For the flawless operation of such a machine it has to be assured that the particles perform a controlled motion along predefined trajectories. Amongst others, the fulfillment of the corresponding stability criteria is in close conjuction with the so-called beam coupling impedances which are an important figure of merit for collective effects in synchrotron accelerators. This work focuses on analytical and numerical methods for the calculation of beam coupling impedances. One of the primary objectives is to gain a better understanding of the electrodynamics related to charged particle beams, furthermore to recapitulate the mathematical description of charged particle beams in both time and frequency domain and finally establish the links between actual physics and numerical modeling. Analytical methods are usually restricted to symmetrical geometry and may solely serve for the approximate determination of the field distribution in real geometries or to validate certain numerical methods. More accurate prognosis is only possible with three-dimensional simulation models. Numerical simulation techniques have been established in the second half of the last century accompanying the evolution of many particle accelerators. Classical time domain codes were the prevailing simulation tools where the actual process of the particle motion sequence is reproduced. For the present case of a heavy ion synchrotron accelerator
Numerical calculation of beam coupling impedances in synchrotron accelerators
Energy Technology Data Exchange (ETDEWEB)
Haenichen, Lukas
2016-07-01
Beams of charged particles are of interest in various fields of research including particle and nuclear physics, material and medical science and many more. In synchrotron accelerators the accelerating section is passed periodically. A closed loop trajectory is enforced, by increasing the frequency of the accelerating electric field and the magnitude of the dipolar magnetic guide field synchronously. A synchrotron therefore consists of a circular assembly of various beamline elements which serve the purposes of accelerating and guiding the particle beam. For the flawless operation of such a machine it has to be assured that the particles perform a controlled motion along predefined trajectories. Amongst others, the fulfillment of the corresponding stability criteria is in close conjuction with the so-called beam coupling impedances which are an important figure of merit for collective effects in synchrotron accelerators. This work focuses on analytical and numerical methods for the calculation of beam coupling impedances. One of the primary objectives is to gain a better understanding of the electrodynamics related to charged particle beams, furthermore to recapitulate the mathematical description of charged particle beams in both time and frequency domain and finally establish the links between actual physics and numerical modeling. Analytical methods are usually restricted to symmetrical geometry and may solely serve for the approximate determination of the field distribution in real geometries or to validate certain numerical methods. More accurate prognosis is only possible with three-dimensional simulation models. Numerical simulation techniques have been established in the second half of the last century accompanying the evolution of many particle accelerators. Classical time domain codes were the prevailing simulation tools where the actual process of the particle motion sequence is reproduced. For the present case of a heavy ion synchrotron accelerator
Calculation of accelerating electric fields in the CO2 injector
International Nuclear Information System (INIS)
Baron, E.
1999-01-01
The accelerating structure in the injecting cyclotron for O.A.E. can be divided, if one takes the inflector exit as departure point, into the following two regions: 1. the relatively complex central zone comprising three accelerating gaps which is flanked by vertical pillars destined to increase the transit time factor and, at the same time, to reduce the influence of electric field vertical components; 2. the so-called 'large radius' subsequent zone where the gaps are no longer radially delimited. To study the behavior of the individual trajectories in these fields, the equations of motion must be integrated step by step (for instance by Runge-Kutta method) what implies the knowledge of field (or at least of potential) in every point. This is the method for the calculation of potential contour maps which is presented here; the potentials are static, and a sinusoidal time variation is subsequently applied to perform dynamical calculations. The paper has the following sections: 1. Introduction; 2. Potential and large radius field components; 2.1. Calculation of median plane potential; 2.2. Calculation of the off-median-plane potential and field; 3. Potential in the central region; 4. Further Developments
Acceleration and parallelization calculation of EFEN-SP_3 method
International Nuclear Information System (INIS)
Yang Wen; Zheng Youqi; Wu Hongchun; Cao Liangzhi; Li Yunzhao
2013-01-01
Due to the fact that the exponential function expansion nodal-SP_3 (EFEN-SP_3) method needs further improvement in computational efficiency to routinely carry out PWR whole core pin-by-pin calculation, the coarse mesh acceleration and spatial parallelization were investigated in this paper. The coarse mesh acceleration was built by considering discontinuity factor on each coarse mesh interface and preserving neutron balance within each coarse mesh in space, angle and energy. The spatial parallelization based on MPI was implemented by guaranteeing load balancing and minimizing communications cost to fully take advantage of the modern computing and storage abilities. Numerical results based on a commercial nuclear power reactor demonstrate an speedup ratio of about 40 for the coarse mesh acceleration and a parallel efficiency of higher than 60% with 40 CPUs for the spatial parallelization. With these two improvements, the EFEN code can complete a PWR whole core pin-by-pin calculation with 289 × 289 × 218 meshes and 4 energy groups within 100 s by using 48 CPUs (2.40 GHz frequency). (authors)
Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets
Energy Technology Data Exchange (ETDEWEB)
Propp, Adrienne [Harvard Univ., Cambridge, MA (United States)
2015-08-16
Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high-power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. However, this mechanism is not ideal for creating the high-energy proton beams needed for future applications. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for exploring new regimes of ion acceleration. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we achieved a pure proton beam with evidence of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic
Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets
International Nuclear Information System (INIS)
Propp, Adrienne
2015-01-01
Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high-power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. However, this mechanism is not ideal for creating the high-energy proton beams needed for future applications. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for exploring new regimes of ion acceleration. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we achieved a pure proton beam with evidence of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic
Construction of ion accelerator for ion-surface interaction research
International Nuclear Information System (INIS)
Obara, Kenziro; Ohtsuka, Hidewo; Yamada, Rayji; Abe, Tetsuya; Sone, Kazuho
1977-09-01
A Cockcroft-Walton type ion accelerator for ion-surface interaction research was installed at Plasma Engineering Laboratory, Division of Thermonuclear Fusion Research, JAERI, in March 1977. Its maximum accelerating voltage is 400 kV. The accelerator has some outstanding features compared with the conventional type. Described are setup of the accelerator specification of the major components, safety system and performance. (auth.)
MAGNUS-3D: Accelerator magnet calculations in 3-dimensions
Pissanetzky, S.
1988-12-01
MAGNUS-3D is a professional finite element code for nonlinear magnetic engineering. MAGNUS-3D can solve numerically any general problem of linear or nonlinear magnetostatics in three dimensions. The problem is formulated in a domain with Dirichlet, Neumann or periodic boundary conditions, that can contain any combination of conductors of any shape in space, nonlinear magnetic materials with magnetic properties specified by magnetization tables, and nonlinear permanent magnets with any given demagnetization curve. MAGNUS-3D uses the two-scalar-potentials formulation of Magnetostatics and the finite element method, has an automatic 3D mesh generator, and advanced post-processing features that include graphics on a variety of supported devices, tabulation, and calculation of design quantities required in Magnetic Engineering. MAGNUS-3D is a general purpose 3D code, but it has been extensively used for accelerator work and many special features required for accelerator engineering have been incorporated into the code. One of such features is the calculation of field harmonic coefficients averaged in the direction of the beam, so important for the design of magnet ends. Another feature is its ability to calculate line integrals of any field component along the direction of the beam, or plot the field as a function of the z coordinate. MAGNUS-3D has found applications to the design of accelerator magnets and spectrometers, steering magnets, wigglers and undulators for free electron lasers, microtrons and magnets for synchrotron light sources, as well as magnets for NMR and medical applications, recording heads and various magnetic devices. There are three more programs closely associated with MAGNUS-3D. MAGNUS-GKS is the graphical postprocessor for the package; it supports a numer of output devices, including color vector or bit map devices. WIRE is an independent program that can calculate the field produced by any configuration of electric conductors in space, at any
Late time solution for interacting scalar in accelerating spaces
Energy Technology Data Exchange (ETDEWEB)
Prokopec, Tomislav, E-mail: t.prokopec@uu.nl [Institute for Theoretical Physics, Spinoza Institute and EMME$\\Phi$, Utrecht University, Postbus 80.195, Utrecht, 3508 TD The Netherlands (Netherlands)
2015-11-01
We consider stochastic inflation in an interacting scalar field in spatially homogeneous accelerating space-times with a constant principal slow roll parameter ε. We show that, if the scalar potential is scale invariant (which is the case when scalar contains quartic self-interaction and couples non-minimally to gravity), the late-time solution on accelerating FLRW spaces can be described by a probability distribution function (PDF) ρ which is a function of φ/H only, where φ=φ( x-vector ) is the scalar field and H=H(t) denotes the Hubble parameter. We give explicit late-time solutions for ρarrow ρ{sub ∞}(φ/H), and thereby find the order ε corrections to the Starobinsky-Yokoyama result. This PDF can then be used to calculate e.g. various n-point functions of the (self-interacting) scalar field, which are valid at late times in arbitrary accelerating space-times with ε= constant.
Comparison calculations for an accelerator-driven minor actinide burner
International Nuclear Information System (INIS)
2002-01-01
International interest in accelerator-driven systems (ADS) has recently been increasing in view of the important role that these systems may play as efficient minor actinide and long-lived fission-product (LLFP) burners and/or energy producers with an enhanced safety potential. However, the current methods of analysis and nuclear data for minor actinide and LLFP burners are not as well established as those for conventionally fuelled reactor systems. Hence, in 1999, the OECD/NEA Nuclear Science Committee organised a benchmark exercise for an accelerator-driven minor actinide burner to check the performances of reactor codes and nuclear data for ADS with unconventional fuel and coolant. The benchmark model was a lead-bismuth-cooled subcritical system driven by a beam of 1 GeV protons. This report provides an analysis of the results supplied by seven participants from eight countries. The analysis reveals significant differences in important neutronic parameters, indicating a need for further investigation of the nuclear data, especially minor actinide data, as well as the calculation methods. This report will be of particular interest to reactor physicists and nuclear data evaluators developing nuclear systems for nuclear waste management. (authors)
Shielding calculations for a 30 MeV proton accelerator
International Nuclear Information System (INIS)
Nandy, Maitreyee; Sarkar, P.K.
2003-01-01
Full text: The thickness of the shield, made of ordinary concrete, required to reduce the equivalent dose rate below the maximum permissible limit and to ensure safe operation of a 30 MeV proton accelerator has been estimated using the Moyer model. Required double differential neutron yield from thick stopping targets has been calculated for several reactions to be used for production of 67 Ga, 111 In, 123 I and 201 Tl radioisotopes. The neutron emission at 0 deg and 90 deg angles with respect to the incident beam direction is estimated using the hybrid model code ALICE91 which considers preequilibrium and equilibrium emissions from the target+projectile composite system. From this neutron yield the equivalent neutron dose rate at unit distance is determined using the ICRP recommended flux-to-dose conversion factors
The application package DeCA for calculating cyclic accelerators
International Nuclear Information System (INIS)
Gladkikh, P.I.; Zelinsky, A.Yu.; Strelkov, M.A.
1993-01-01
The application Package DeCA (Design Cyclic Accelerator) is offered to solve a set of problem which arise on designing electron storage rings. The package is based on the block principle. This makes it extremely flexible in designing storage rings and investigating beam dynamics in them. The package is intended for a user not familiar with programming languages, it is arranged so that the user familiar with FORTRAN-77 can easily extend the package functions. This is of particular interest, when the input data are the storage ring or electron bunch parameters. The code allows operation in both the batch and interactive modes. The programming language is FORTRAN-77. The capacity of the total package is 40,000 code lines. The necessary main storage capacity for the total version is 4 Mbytes
Macroscopic multigroup constants for accelerator driven system core calculation
International Nuclear Information System (INIS)
Heimlich, Adino; Santos, Rubens Souza dos
2011-01-01
The high-level wastes stored in facilities above ground or shallow repositories, in close connection with its nuclear power plant, can take almost 106 years before the radiotoxicity became of the order of the background. While the disposal issue is not urgent from a technical viewpoint, it is recognized that extended storage in the facilities is not acceptable since these ones cannot provide sufficient isolation in the long term and neither is it ethical to leave the waste problem to future generations. A technique to diminish this time is to transmute these long-lived elements into short-lived elements. The approach is to use an Accelerator Driven System (ADS), a sub-critical arrangement which uses a Spallation Neutron Source (SNS), after separation the minor actinides and the long-lived fission products (LLFP), to convert them to short-lived isotopes. As an advanced reactor fuel, still today, there is a few data around these type of core systems. In this paper we generate macroscopic multigroup constants for use in calculations of a typical ADS fuel, take into consideration, the ENDF/BVI data file. Four energy groups are chosen to collapse the data from ENDF/B-VI data file by PREPRO code. A typical MOX fuel cell is used to validate the methodology. The results are used to calculate one typical subcritical ADS core. (author)
International Nuclear Information System (INIS)
Simonenko, A.V.; Pistryak, V.M.; Zats, A.V.; Levchenko, Yu.Z.; Kuz'menko, V.V.
1987-01-01
Features of charged particle accelerated beam shaping in the electrostatic part of the ''Sokol'' small-size accelerator are considered in complex taking into account the electrode real geometry. Effect of the extracting, accelerating electorde potential and accelerator total voltage on beam behaviour is investigated. A modified variation of the beam shaping system, allowing to decrease 2 times the required interval of accelerating electrode potential adjustment and to decrease the beam size in the starting acceleration region, is presented. It permits to simplify the construction and to improve accelerator operation. Comparison of experimental and calculational data on the beam in the improved accelerator variation is carried out. Effect of peripheral parts of accelerating tube electrodes on the beam is investigated
A flexible algorithm for calculating pair interactions on SIMD architectures
Páll, Szilárd; Hess, Berk
2013-12-01
Calculating interactions or correlations between pairs of particles is typically the most time-consuming task in particle simulation or correlation analysis. Straightforward implementations using a double loop over particle pairs have traditionally worked well, especially since compilers usually do a good job of unrolling the inner loop. In order to reach high performance on modern CPU and accelerator architectures, single-instruction multiple-data (SIMD) parallelization has become essential. Avoiding memory bottlenecks is also increasingly important and requires reducing the ratio of memory to arithmetic operations. Moreover, when pairs only interact within a certain cut-off distance, good SIMD utilization can only be achieved by reordering input and output data, which quickly becomes a limiting factor. Here we present an algorithm for SIMD parallelization based on grouping a fixed number of particles, e.g. 2, 4, or 8, into spatial clusters. Calculating all interactions between particles in a pair of such clusters improves data reuse compared to the traditional scheme and results in a more efficient SIMD parallelization. Adjusting the cluster size allows the algorithm to map to SIMD units of various widths. This flexibility not only enables fast and efficient implementation on current CPUs and accelerator architectures like GPUs or Intel MIC, but it also makes the algorithm future-proof. We present the algorithm with an application to molecular dynamics simulations, where we can also make use of the effective buffering the method introduces.
Exponential convergence and acceleration of Hartree-Fock calculations
International Nuclear Information System (INIS)
Bonaccorso, A.; Di Toro, M.; Lomnitz-Adler, J.
1979-01-01
It is shown that one can expect an exponential behaviour for the convergence of the Hartree-Fock solution during the HF iteration procedure. This property is used to extrapolate some collective degrees of freedom, in this case the shape, in order to speed up the self-consistent calculation. For axially deformed nuclei the method is applied to the quadrupole moment which corresponds to a simple scaling transformation on the single particle wave functions. Results are shown for the deformed nuclei 20 Ne and 28 Si with a Skyrme interaction. (Auth.)
International Nuclear Information System (INIS)
Blideanu, Valentin; Garcia, Mauricio; Joyer, Philippe; Lopez, Daniel; Mayoral, Alicia; Ogando, Francisco; Ortiz, Felix; Sanz, Javier; Sauvan, Patrick
2011-01-01
In the frame of IFMIF/EVEDA activities, a prototype accelerator delivering a high power deuteron beam is under construction in Japan. Interaction of these deuterons with matter will generate high levels of neutrons and induced activation, whose predicted yields depend strongly on the models used to calculate the different cross sections. A benchmark test was performed to validate these data for deuteron energies up to 20 MeV and to define a reasonable methodology for calculating the cross sections needed for EVEDA. Calculations were performed using the nuclear models included in MCNPX and PHITS, and the dedicated nuclear model code TALYS. Although the results obtained using TALYS (global parameters) or Monte Carlo codes disagree with experimental values, a solution is proposed to compute cross sections that are a good fit to experimental data. A consistent computational procedure is also suggested to improve both transport simulations/prompt dose and activation/residual dose calculations required for EVEDA.
Energy Technology Data Exchange (ETDEWEB)
Blideanu, Valentin [Commissariat a l' energie atomique CEA/IRFU, Centre de Saclay, 91191 Gif sur Yvette cedex (France); Garcia, Mauricio [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain); Joyer, Philippe, E-mail: philippe.joyer@cea.fr [Commissariat a l' energie atomique CEA/IRFU, Centre de Saclay, 91191 Gif sur Yvette cedex (France); Lopez, Daniel; Mayoral, Alicia; Ogando, Francisco [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain); Ortiz, Felix [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Sanz, Javier; Sauvan, Patrick [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain)
2011-10-01
In the frame of IFMIF/EVEDA activities, a prototype accelerator delivering a high power deuteron beam is under construction in Japan. Interaction of these deuterons with matter will generate high levels of neutrons and induced activation, whose predicted yields depend strongly on the models used to calculate the different cross sections. A benchmark test was performed to validate these data for deuteron energies up to 20 MeV and to define a reasonable methodology for calculating the cross sections needed for EVEDA. Calculations were performed using the nuclear models included in MCNPX and PHITS, and the dedicated nuclear model code TALYS. Although the results obtained using TALYS (global parameters) or Monte Carlo codes disagree with experimental values, a solution is proposed to compute cross sections that are a good fit to experimental data. A consistent computational procedure is also suggested to improve both transport simulations/prompt dose and activation/residual dose calculations required for EVEDA.
Confirm calculation of 12 MeV non-destructive testing electron linear accelerator target
International Nuclear Information System (INIS)
Ma Shudong; Zhang Rutong; Guo Yanbin; Zhou Yuan; Li Xuexian; Chen Yan
2012-01-01
The confirm calculation of 12 MeV non-destructive testing (NDT) electron linear accelerator (LINAC) target was studied. Firstly, the most optimal target thickness and related photon dose yield, distributions of dose rate, and related photon conversion efficiencies were got by calculation with specific analysis of the physical mechanism of the interactions between the beam and target; Secondly, the photon dose rate distribution, converter efficiencies, and thickness of various kinds of targets, such as W, Au, Ta, etc. were verified by MCNP simulation and the most optimal target was got using the MCNP code; Lastly, the calculation results of theory and MCNP were compared to confirm the validity of target calculation. (authors)
A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.
Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens
2017-01-01
To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.
A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.
Directory of Open Access Journals (Sweden)
Obioma Nwankwo
Full Text Available To introduce a new method of deriving a virtual source model (VSM of a linear accelerator photon beam from a phase space file (PSF for Monte Carlo (MC dose calculation.A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses.The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate for the evaluated fields.A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.
Calculations of the Acceleration of Centrifugal Loading on Adherent Cells
Chen, Kang; Song, Yang; Liu, Qing; Zhang, Chunqiu
2017-07-01
Studies have shown that the morphology and function of living cells are greatly affected by the state of different high acceleration. Based on the centrifuge, we designed a centrifugal cell loading machine for the mechanical biology of cells under high acceleration loading. For the machine, the feasibility of the experiment was studied by means of constant acceleration or variable acceleration loading in the Petri dish fixture and/or culture flask. Here we analyzed the distribution of the acceleration of the cells with the change of position and size of the culturing device quantitatively. It is obtained that Petri dish fixture and/or culture flask can be used for constant acceleration loading by experiments; the centripetal acceleration of the adherent cells increases with the increase of the distance between the rotor center of the centrifuge and the fixture of the Petri dish and the size of the fixture. It achieves the idea that the general biology laboratory can conduct the study of mechanical biology at high acceleration. It also provides a basis for more accurate study of the law of high acceleration on mechanobiology of cells.
Accelerating Calculations of Reaction Dissipative Particle Dynamics in LAMMPS
2017-05-17
HPC) resources and exploit emerging, heterogeneous architectures (e.g., co-processors and graphics processing units [GPUs]), while enabling EM...2 ODE solvers—CVODE* and RKF45—which we previously developed for NVIDIA Compute Unified Device Architecture (CUDA) GPUs.9 The CPU versions of both...nodes. Half of the accelerator nodes (178) have 2 NVIDIA Kepler K40m GPUs and the remaining 178 accelerator nodes have 2 Intel Xeon Phi 7120P co
Research on GPU acceleration for Monte Carlo criticality calculation
International Nuclear Information System (INIS)
Xu, Q.; Yu, G.; Wang, K.
2013-01-01
The Monte Carlo (MC) neutron transport method can be naturally parallelized by multi-core architectures due to the dependency between particles during the simulation. The GPU+CPU heterogeneous parallel mode has become an increasingly popular way of parallelism in the field of scientific supercomputing. Thus, this work focuses on the GPU acceleration method for the Monte Carlo criticality simulation, as well as the computational efficiency that GPUs can bring. The 'neutron transport step' is introduced to increase the GPU thread occupancy. In order to test the sensitivity of the MC code's complexity, a 1D one-group code and a 3D multi-group general purpose code are respectively transplanted to GPUs, and the acceleration effects are compared. The result of numerical experiments shows considerable acceleration effect of the 'neutron transport step' strategy. However, the performance comparison between the 1D code and the 3D code indicates the poor scalability of MC codes on GPUs. (authors)
Accelerating VASP electronic structure calculations using graphic processing units
Hacene, Mohamed
2012-08-20
We present a way to improve the performance of the electronic structure Vienna Ab initio Simulation Package (VASP) program. We show that high-performance computers equipped with graphics processing units (GPUs) as accelerators may reduce drastically the computation time when offloading these sections to the graphic chips. The procedure consists of (i) profiling the performance of the code to isolate the time-consuming parts, (ii) rewriting these so that the algorithms become better-suited for the chosen graphic accelerator, and (iii) optimizing memory traffic between the host computer and the GPU accelerator. We chose to accelerate VASP with NVIDIA GPU using CUDA. We compare the GPU and original versions of VASP by evaluating the Davidson and RMM-DIIS algorithms on chemical systems of up to 1100 atoms. In these tests, the total time is reduced by a factor between 3 and 8 when running on n (CPU core + GPU) compared to n CPU cores only, without any accuracy loss. © 2012 Wiley Periodicals, Inc.
Accelerating VASP electronic structure calculations using graphic processing units
Hacene, Mohamed; Anciaux-Sedrakian, Ani; Rozanska, Xavier; Klahr, Diego; Guignon, Thomas; Fleurat-Lessard, Paul
2012-01-01
We present a way to improve the performance of the electronic structure Vienna Ab initio Simulation Package (VASP) program. We show that high-performance computers equipped with graphics processing units (GPUs) as accelerators may reduce drastically the computation time when offloading these sections to the graphic chips. The procedure consists of (i) profiling the performance of the code to isolate the time-consuming parts, (ii) rewriting these so that the algorithms become better-suited for the chosen graphic accelerator, and (iii) optimizing memory traffic between the host computer and the GPU accelerator. We chose to accelerate VASP with NVIDIA GPU using CUDA. We compare the GPU and original versions of VASP by evaluating the Davidson and RMM-DIIS algorithms on chemical systems of up to 1100 atoms. In these tests, the total time is reduced by a factor between 3 and 8 when running on n (CPU core + GPU) compared to n CPU cores only, without any accuracy loss. © 2012 Wiley Periodicals, Inc.
Online calculation of the Tevatron collider luminosity using accelerator instrumentation
International Nuclear Information System (INIS)
Hahn, A.A.
1997-07-01
The luminosity of a collision region may be calculated if one understands the lattice parameters and measures the beam intensities, the transverse and longitudinal emittances, and the individual proton and antiproton beam trajectories (space and time) through the collision region. This paper explores an attempt to make this calculation using beam instrumentation during Run 1b of the Tevatron. The instrumentation used is briefly described. The calculations and their uncertainties are compared to luminosities calculated independently by the Collider Experiments (CDF and D0)
International Nuclear Information System (INIS)
Dolgaya, A.A.; Uzdin, A.M.; Indeykin, A.V.
1993-01-01
The investigation object is the design amplitude of accelerograms, which are used in the evaluation of seismic stability of responsible structures, first and foremost, NPS. The amplitude level is established depending on the degree of responsibility of the structure and on the prevailing period of earthquake action on the construction site. The investigation procedure is based on statistical analysis of 310 earthquakes. At the first stage of statistical data-processing we established the correlation dependence of both the mathematical expectation and root-mean-square deviation of peak acceleration of the earthquake on its prevailing period. At the second stage the most suitable law of acceleration distribution about the mean was chosen. To determine of this distribution parameters, we specified the maximum conceivable acceleration, the excess of which is not allowed. Other parameters of distribution are determined according to statistical data. At the third stage the dependencies of design amplitude on the prevailing period of seismic effect for different structures and equipment were established. The obtained data made it possible to recommend to fix the level of safe-shutdown (SSB) and operating basis earthquakes (OBE) for objects of various responsibility categories when designing NPS. (author)
Accelerated radiotherapy planners calculated by parallelization with GPUs
International Nuclear Information System (INIS)
Reinado, D.; Cozar, J.; Alonso, S.; Chinillach, N.; Cortina, T.; Ricos, B.; Diez, S.
2011-01-01
In this paper we have developed and tested by a subroutine parallelization architectures graphics processing units (GPUs) to apply to calculations with standard algorithms known code. The experience acquired during these tests shall also apply to the MC calculations in radiotherapy if you have the code.
Calculation of a concrete shielding for an ILU-8 D electron accelerator
International Nuclear Information System (INIS)
Helal, A.; Imam, A.
1996-01-01
A concrete shielding for an electron accelerator of 1 MeV is suggested to replace its structural steel shielding. The thickness of such a shield is calculated. The calculational model used is based on standard and transmission curves given in the literature. The calculated concrete shielding is generally adequate to attenuate the accelerator produced radiation to a level 1 μ Gy/h or less at any point outside of the vault enclosure. 5 figs
Calculation of a concrete shielding for an ILU-8 D electron accelerator
Energy Technology Data Exchange (ETDEWEB)
Helal, A [Nuclear Research Center, AEA, Cairo (Egypt); Imam, A [National Center for Nuclear Safety and Radiation Control, AEA, Cairo (Egypt)
1997-12-31
A concrete shielding for an electron accelerator of 1 MeV is suggested to replace its structural steel shielding. The thickness of such a shield is calculated. The calculational model used is based on standard and transmission curves given in the literature. The calculated concrete shielding is generally adequate to attenuate the accelerator produced radiation to a level 1 {mu} Gy/h or less at any point outside of the vault enclosure. 5 figs.
Improved techniques of impedance calculation and localization in particle accelerators
Biancacci, Nicolò; Migliorati, Mauro; Métral, Elias; Salvant, Benoit
In this thesis we mainly focus on particle accelerators applied to high energy physics research where a fundamental parameter, the luminosity, is maximized in order to increase the rate of particle collisions useful to particle physicists. One way to increase this parameter is to increase the intensity of the circulating beams which is limited by the onset of collective effects that may drive the beam unstable and eventually provoke beam losses or reduce the beam quality required by the particle physics experiments. One major cause of collective effects is the beam coupling impedance, a quantity that quantifies the effect of the fields scattered by a beam passing through any accelerator device. The development of an impedance budget is required in those machines that are planning substantial upgrades as shown in this thesis for the CERN PS case. The main source of impedance in the CERN LHC are the collimators. Within an impedance reduction perspective, in order to reach the goals of the planned upgrades, it ...
Monte Carlo criticality calculations accelerated by a growing neutron population
International Nuclear Information System (INIS)
Dufek, Jan; Tuttelberg, Kaur
2016-01-01
Highlights: • Efficiency is significantly improved when population size grows over cycles. • The bias in the fission source is balanced to other errors in the source. • The bias in the fission source decays over the cycle as the population grows. - Abstract: We propose a fission source convergence acceleration method for Monte Carlo criticality simulation. As the efficiency of Monte Carlo criticality simulations is sensitive to the selected neutron population size, the method attempts to achieve the acceleration via on-the-fly control of the neutron population size. The neutron population size is gradually increased over successive criticality cycles so that the fission source bias amounts to a specific fraction of the total error in the cumulative fission source. An optimal setting then gives a reasonably small neutron population size, allowing for an efficient source iteration; at the same time the neutron population size is chosen large enough to ensure a sufficiently small source bias, such that does not limit accuracy of the simulation.
Calculation of the neutrons shielding in cyclotron accelerator
International Nuclear Information System (INIS)
Ribeiro, Martha S.; Sanches, Matias P.; Rodrigues, Demerval L.
2000-01-01
The objective of radioprotection in cyclotron facilities is to reduce the dose levels in the workplaces to classify them like supervised areas. In this way, the radiation dose rates in areas occupied by workers during cyclotron operations should not exceed 7,5 μSv/h. In controlled areas these levels are not observed and some rigorous controls must be exerted by administrative procedures or protection mechanisms. The Cyclotron Laboratory at IPEN-CNEN/SP has a cyclotron model Cyclone 30, 30 MeV, used for research and it is also used for radioisotopes production for medical diagnosis and therapeutical applications. Among them, 123 I, 67 Ga and 18 F can be pointed. When accelerator is operating, failures in perforations and paths that conduce to room accelerator can be occur and thus, the dose levels are higher than that established by law. For this reason, a review for shielding structure was necessary in order to optimize radiation dose. The purpose of this work was to determine the shielding thickness and adequate material to diminish the dose rates in workplaces to a value below 7,5 μSv/h. It was used a method to employ the equivalent dose value in the facility areas for neutrons fluency rate for the principal reactions in target irradiation processes. The purposed shielding for the vault doors ensures dose levels lower than established limits to supervised areas. (author)
Quantum mechanical calculations on weakly interacting complexes
Heijmen, T.G.A.
1998-01-01
Symmetry-adapted perturbation theory (SAPT) has been applied to compute the intermolecular potential energy surfaces and the interaction-induced electrical properties of weakly interacting complexes. Asymptotic (large R) expressions have been derived for the contributions to the collision-induced
Accelerating atomistic calculations of quantum energy eigenstates on graphic cards
Rodrigues, Walter; Pecchia, A.; Lopez, M.; Auf der Maur, M.; Di Carlo, A.
2014-10-01
Electronic properties of nanoscale materials require the calculation of eigenvalues and eigenvectors of large matrices. This bottleneck can be overcome by parallel computing techniques or the introduction of faster algorithms. In this paper we report a custom implementation of the Lanczos algorithm with simple restart, optimized for graphical processing units (GPUs). The whole algorithm has been developed using CUDA and runs entirely on the GPU, with a specialized implementation that spares memory and reduces at most machine-to-device data transfers. Furthermore parallel distribution over several GPUs has been attained using the standard message passing interface (MPI). Benchmark calculations performed on a GaN/AlGaN wurtzite quantum dot with up to 600,000 atoms are presented. The empirical tight-binding (ETB) model with an sp3d5s∗+spin-orbit parametrization has been used to build the system Hamiltonian (H).
Acceleration and increased control of convergence in criticality calculations
International Nuclear Information System (INIS)
Jinaphanh, Alexis
2014-01-01
IRSN is developing a numerical simulation code called Moret to assess the nuclear criticality risk. This tool is designed to perform 3D simulations of neutron transport in a given system. It achieves this by adopting a probabilistic approach known as Monte Carlo, in which the transport of several successive generations of neutrons is calculated from an initial neutron distribution in the system under study. These generations are simulated until it is considered that convergence of the effective neutron multiplication coefficient (or K eff ) - which characterizes the gap before reaching the critical state - has been reached. Insufficient convergence can lead to underestimation of both K eff and the criticality risk. During this thesis work, A. Jinaphanh sought to improve the reliability of values by developing a new method for initializing calculations, together with a criterion used to reliably determine whether or not convergence has been reached. (author)
International Nuclear Information System (INIS)
Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.; Wagner, J.S.; Bennett, L.F.; Olson, W.R.; Turman, B.N.; Prestwich, K.R.; Wells, J.; Struve, K.
1992-01-01
The lifetime of the Ion Focusing Regime (IFR) channel following the pulsing of the post-accelerating gaps is critical for open-ended low energy devices. It dictates the number of allowable beam recirculations through the gaps. In the case of a closed racetrack configuration, it is significant but not as critical, since the presence of the electron beam focuses the ions and lengthens the lifetime of the ion channel. The authors have experimentally established that pulsing an accelerating gap perturbs the IFR channel. However for the parameters studied, the lifetime is long enough to allow at least four beam recirculations in a spiral device. In addition transparent grids of cusp fields positioned upstream and downstream from the gaps prevent them from perturbing the IFR channel. Experiments were performed with and without injected electron beams. For the experiments investigating the IFR channel interaction with the accelerating gap, the injector was removed and the beam line was extended downstream and upstream from the accelerating cavity. Only the first straight section of the RLA with one accelerating cavity (ET-2) was utilized. The acceleration and transport experiments were performed utilizing two injectors: first the low energy 1.3-MV Isolated Blumlein (IB) injector and most recently the new 4-MV 20-kA injector. Beams of 6--20 kA current were produced and successfully transported and accelerated through the ET-2 post-accelerating gap. For both injectors an apertured non-immersed ion-focused foilless diode was selected among various options. It is the simplest and easiest to operate and can be adjusted to provide variable beam impedance loads to the injector. The transport efficiencies were 90% for the low energy injector and 100% for the new 4-MV injector. The beam Gaussian profile and radius (5 mm) remain the same through acceleration. Experimental results will be presented and compared with numerical simulations
Energy Technology Data Exchange (ETDEWEB)
Nomura, Yasushi; Takada, Tomoyuki; Kuroishi, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kadotani, Hiroyuki [Shizuoka Sangyo Univ., Iwata, Shizuoka (Japan)
2003-03-01
In the case of Monte Carlo calculation to obtain a neutron multiplication factor for a system of weak neutron interaction, there might be some problems concerning convergence of the solution. Concerning this difficulty in the computer code calculations, theoretical derivation was made from the general neutron transport equation and consideration was given for acceleration of solution convergence by using the matrix eigenvector in this report. Accordingly, matrix eigenvector calculation scheme was incorporated together with procedure to make acceleration of convergence into the continuous energy Monte Carlo code MCNP. Furthermore, effectiveness of acceleration of solution convergence by matrix eigenvector was ascertained with the results obtained by applying to the two OECD/NEA criticality analysis benchmark problems. (author)
Nonlinear acceleration of S_n transport calculations
International Nuclear Information System (INIS)
Fichtl, Erin D.; Warsa, James S.; Calef, Matthew T.
2011-01-01
The use of nonlinear iterative methods, Jacobian-Free Newton-Krylov (JFNK) in particular, for solving eigenvalue problems in transport applications has recently become an active subject of research. While JFNK has been shown to be effective for k-eigenvalue problems, there are a number of input parameters that impact computational efficiency, making it difficult to implement efficiently in a production code using a single set of default parameters. We show that different selections for the forcing parameter in particular can lead to large variations in the amount of computational work for a given problem. In contrast, we employ a nonlinear subspace method that sits outside and effectively accelerates nonlinear iterations of a given form and requires only a single input parameter, the subspace size. It is shown to consistently and significantly reduce the amount of computational work when applied to fixed-point iteration, and this combination of methods is shown to be more efficient than JFNK for our application. (author)
Generalized Coarse-Mesh Rebalance Method for Acceleration of Neutron Transport Calculations
International Nuclear Information System (INIS)
Yamamoto, Akio
2005-01-01
This paper proposes a new acceleration method for neutron transport calculations: the generalized coarse-mesh rebalance (GCMR) method. The GCMR method is a unified scheme of the traditional coarse-mesh rebalance (CMR) and the coarse-mesh finite difference (CMFD) acceleration methods. Namely, by using an appropriate acceleration factor, formulation of the GCMR method becomes identical to that of the CMR or CMFD method. This also indicates that the convergence property of the GCMR method can be controlled by the acceleration factor since the convergence properties of the CMR and CMFD methods are generally different. In order to evaluate the convergence property of the GCMR method, a linearized Fourier analysis was carried out for a one-group homogeneous medium, and the results clarified the relationship between the acceleration factor and the spectral radius. It was also shown that the spectral radius of the GCMR method is smaller than those of the CMR and CMFD methods. Furthermore, the Fourier analysis showed that when an appropriate acceleration factor was used, the spectral radius of the GCMR method did not exceed unity in this study, which was in contrast to the results of the CMR or the CMFD method. Application of the GCMR method to practical calculations will be easy when the CMFD acceleration is already adopted in a transport code. By multiplying a suitable acceleration factor to a coefficient (D FD ) of a finite difference formulation, one can improve the numerical instability of the CMFD acceleration method
Efficient Detection of Repeating Sites to Accelerate Phylogenetic Likelihood Calculations.
Kobert, K; Stamatakis, A; Flouri, T
2017-03-01
The phylogenetic likelihood function (PLF) is the major computational bottleneck in several applications of evolutionary biology such as phylogenetic inference, species delimitation, model selection, and divergence times estimation. Given the alignment, a tree and the evolutionary model parameters, the likelihood function computes the conditional likelihood vectors for every node of the tree. Vector entries for which all input data are identical result in redundant likelihood operations which, in turn, yield identical conditional values. Such operations can be omitted for improving run-time and, using appropriate data structures, reducing memory usage. We present a fast, novel method for identifying and omitting such redundant operations in phylogenetic likelihood calculations, and assess the performance improvement and memory savings attained by our method. Using empirical and simulated data sets, we show that a prototype implementation of our method yields up to 12-fold speedups and uses up to 78% less memory than one of the fastest and most highly tuned implementations of the PLF currently available. Our method is generic and can seamlessly be integrated into any phylogenetic likelihood implementation. [Algorithms; maximum likelihood; phylogenetic likelihood function; phylogenetics]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
International Nuclear Information System (INIS)
Nowak, P.F.
1993-01-01
A grey diffusion acceleration method is presented and is shown by Fourier analysis and test calculations to be effective in accelerating radiative transfer calculations. The spectral radius is bounded by 0.9 for the continuous equations, but is significantly smaller for the discretized equations, especially in the optically thick regimes characteristic to radiation transport problems. The GDA method is more efficient than the multigroup DSA method because its slightly higher iteration count is more than offset by the much lower cost per iteration. A wide range of test calculations confirm the efficiency of GDA compared to multifrequency DSA. (orig.)
Calculation of the electron trajectory for 200 kV self-shielded electron accelerator
International Nuclear Information System (INIS)
Wang Shuiqing
2000-01-01
In order to calculate the electron trajectory of 200 kV self-shielded electron accelerator, the electric field is calculated with a TRAJ program. In this program, following electron track mash points one by one, the electron beam trajectories are calculated. Knowing the effect of grid voltage on electron optics and gaining grid voltage focusing effect in the various energy grades, the authors have gained scientific basis for adjusting grid voltage, and also accumulated a wealth of experience for designing self-shielded electron accelerator or electron curtain in future
International Nuclear Information System (INIS)
Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas
2002-01-01
In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan
Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction
Energy Technology Data Exchange (ETDEWEB)
Nakanotani, Masaru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Matsukiyo, Shuichi; Hada, Tohru [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Mazelle, Christian X., E-mail: nakanot@esst.kyushu-u.ac.jp [IRAP, Université Paul Sabatier Toulouse III-CNRS, F-31028 Toulouse Cedex 4 (France)
2017-09-10
A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.
Calculations following voltage breakdown in a single-ended Van de Graaff with an accelerator tube
International Nuclear Information System (INIS)
Staniforth, J.A.
1979-01-01
Calculation of voltages and voltage gradients in the terminal, along the insulating column and the accelerating tube are described for various breakdown positions. The method uses a number of inverted-L network sections to represent the machine assuming that the tube is coupled to the column. Various forms of coupling are examined. The calculations use an iterative computer program which calculates the voltages and currents in the networks at successive small time intervals. (author)
Calculations on Noncovalent Interactions and Databases of Benchmark Interaction Energies
Czech Academy of Sciences Publication Activity Database
Hobza, Pavel
2012-01-01
Roč. 45, č. 4 (2012), s. 663-672 ISSN 0001-4842 R&D Projects: GA ČR GBP208/12/G016 Grant - others:European Social Fund(XE) CZ.1.05/2.1.00/03.0058 Institutional research plan: CEZ:AV0Z40550506 Keywords : non-covalent interactions * covalent interactions * quantum chemical approach Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 20.833, year: 2012
International Nuclear Information System (INIS)
Tan, Zhiqiang; Wilson, D.; Varghese, P.L.
1997-01-01
We consider an extension of the ordinary Riemann problem and present an efficient approximate solution that can be used to improve the calculations of aerodynamic forces on an accelerating body. The method is demonstrated with one-dimensional examples where the Euler equations and the body motion are solved in the non-inertial co-ordinate frame fixed to the accelerating body. 8 refs., 6 figs
Inductive and electrostatic acceleration in relativistic jet-plasma interactions.
Ng, Johnny S T; Noble, Robert J
2006-03-24
We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma-wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of 2 during the simulation period. Particle acceleration via these mechanisms occurred when the criteria for Weibel instability were satisfied.
International Nuclear Information System (INIS)
Rossi, Pedro Carlos Russo
2011-01-01
This work presents a study of high energy nuclear reactions which are fundamental to dene the source term in accelerator driven systems. These nuclear reactions, also known as spallation, consist in the interaction of high energetic hadrons with nucleons in the atomic nucleus. The phenomenology of these reactions consist in two step. In the rst, the proton interacts through multiple scattering in a process called intra-nuclear cascade. It is followed by a step in which the excited nucleus, coming from the intranuclear cascade, could either, evaporates particles to achieve a moderate energy state or fission. This process is known as competition between evaporation and fission. In this work the main nuclear models, Bertini and Cugnon are reviewed, since these models are fundamental for design purposes of the source term in ADS, due to lack of evaluated nuclear data for these reactions. The implementation and validation of the calculation methods for the design of the source is carried out to implement the methodology of source design using the program MCNPX (Monte Carlo N-Particle eXtended), devoted to calculation of transport of these particles and the validation performed by an international cooperation together with a Coordinated Research Project (CRP) of the International Atomic Energy Agency and available jobs, in order to qualify the calculations on nuclear reactions and the de-excitation channels involved, providing a state of the art of design and methodology for calculating external sources of spallation for source driven systems. The CRISP, is a brazilian code for the phenomenological description of the reactions involved and the models implemented in the code were reviewed and improved to continue the qualification process. Due to failure of the main models in describing the production of light nuclides, the multifragmentation reaction model was studied. Because the discrepancies in the calculations of production of these nuclides are attributes to the
Soil structure interaction calculations: a comparison of methods
International Nuclear Information System (INIS)
Wight, L.; Zaslawsky, M.
1976-01-01
Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes
Soil structure interaction calculations: a comparison of methods
Energy Technology Data Exchange (ETDEWEB)
Wight, L.; Zaslawsky, M.
1976-07-22
Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes.
Calculation of flux density distribution on irradiation field of electron accelerator
International Nuclear Information System (INIS)
Tanaka, Ryuichi
1977-03-01
The simple equation of flux density distribution in the irradiation field of an ordinary electron accelerator is a function of the physical parameters concerning electron irradiation. Calculation is based on the mean square scattering angle derived from a simple multiple scattering theory, with the correction factors of air scattering, beam scanning and number transmission coefficient. The flux density distribution was measured by charge absorption in a graphite target set in the air. For the calculated mean square scattering angles of 0.089-0.29, the values of calculation agree with those by experiment within about 10% except at large scattering angles. The method is applicable to dose evaluation of ordinary electron accelerators and design of various irradiators for radiation chemical reaction. Applicability of the simple multiple scattering theory in calculation of the scattered flux density and periodical variation of the flux density of scanning beam are also described. (auth.)
3D Analytical Calculation of the Interactions between Permanent Magnets
Allag , Hicham; Yonnet , Jean-Paul
2008-01-01
International audience; Up to now, the analytical calculation has been made only when the magnets own parallel magnetization directions. We have succeeded in two new results of first importance for the analytical calculation: the torque between two magnets, and the force components and torque when the magnetization directions are perpendicular. The last result allows the analytical calculation of the interactions when the magnetizations are in all the directions. The 3D analytical expressions...
Directory of Open Access Journals (Sweden)
В.Т. Чемерис
2006-04-01
Full Text Available There is a method of simplified calculation and design parameters choice elaborated in this article with corresponding basing for the induction system of electron-beam sterilizer on the base of linear induction accelerator taking into account the parameters of magnetic material for production of cores and parameters of pulsed voltage.
Multigrid Algorithms for the Fast Calculation of Space-Charge Effects in Accelerator Design
Pöplau, G.; Rienen, van U.; Geer, van der S.B.; Loos, de M.J.
2004-01-01
Numerical prediction of charged particle dynamics in accelerators is essential for the design and understanding of these machines. Methods to calculate the self-fields of the bunch, the so-called space-charge forces, become increasingly important as the demand for high-quality bunches increases. We
A versatile program for the calculation of linear accelerator room shielding.
Hassan, Zeinab El-Taher; Farag, Nehad M; Elshemey, Wael M
2018-03-22
This work aims at designing a computer program to calculate the necessary amount of shielding for a given or proposed linear accelerator room design in radiotherapy. The program (Shield Calculation in Radiotherapy, SCR) has been developed using Microsoft Visual Basic. It applies the treatment room shielding calculations of NCRP report no. 151 to calculate proper shielding thicknesses for a given linear accelerator treatment room design. The program is composed of six main user-friendly interfaces. The first enables the user to upload their choice of treatment room design and to measure the distances required for shielding calculations. The second interface enables the user to calculate the primary barrier thickness in case of three-dimensional conventional radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT) and total body irradiation (TBI). The third interface calculates the required secondary barrier thickness due to both scattered and leakage radiation. The fourth and fifth interfaces provide a means to calculate the photon dose equivalent for low and high energy radiation, respectively, in door and maze areas. The sixth interface enables the user to calculate the skyshine radiation for photons and neutrons. The SCR program has been successfully validated, precisely reproducing all of the calculated examples presented in NCRP report no. 151 in a simple and fast manner. Moreover, it easily performed the same calculations for a test design that was also calculated manually, and produced the same results. The program includes a new and important feature that is the ability to calculate required treatment room thickness in case of IMRT and TBI. It is characterised by simplicity, precision, data saving, printing and retrieval, in addition to providing a means for uploading and testing any proposed treatment room shielding design. The SCR program provides comprehensive, simple, fast and accurate room shielding calculations in radiotherapy.
Analytical calculation of magnet interactions in 3D
Yonnet , Jean-Paul; Allag , Hicham
2009-01-01
International audience; A synthesis of all the analytical expressions of the interaction energy, force components and torque components is presented. It allows the analytical calculation of all the interactions when the magnetizations are in any direction. The 3D analytical expressions are difficult to obtain, but the torque and force expressions are very simple to use.
Self-consistency corrections in effective-interaction calculations
International Nuclear Information System (INIS)
Starkand, Y.; Kirson, M.W.
1975-01-01
Large-matrix extended-shell-model calculations are used to compute self-consistency corrections to the effective interaction and to the linked-cluster effective interaction. The corrections are found to be numerically significant and to affect the rate of convergence of the corresponding perturbation series. The influence of various partial corrections is tested. It is concluded that self-consistency is an important effect in determining the effective interaction and improving the rate of convergence. (author)
Electron acceleration via high contrast laser interacting with submicron clusters
International Nuclear Information System (INIS)
Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi; Faenov, Anatoly; Pikuz, Tatiana; Li Dazhang; Sheng Zhengming; Zhang Jie
2012-01-01
We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.
Determination of orbitals for use in configuration interaction calculations
International Nuclear Information System (INIS)
Dunning, T.H. Jr.; Davidson, E.R.; Ruedenberg, K.; Hinze, J.
1978-01-01
For a full configuration interaction (CI) calculation the choice of orbitals is completely irrelevant, i.e., the calculated wavefunction is unaffected by an arbitrary unitary transformation of the orbitals; it depends only on the space spanned by the original basis set. For most chemical systems it is not possible to realistically carry out a full CI calculation, so that specification of the orbital set is important. Even for less-than-full CI calculations, it can be shown, however, that for certain types of calculations the wavefunction is unaffected by restricted transformations among the orbital set. For example, for CI calculations based on a single configuration plus a complete set of excitations of a given type (single, double, etc.), the calculated wavefunction is independent of transformations among the set of occupied orbitals and among the set of virtual orbitals. The wavefunction does, however, depend on transformations which mix the occupied and virtual orbitals
MAPA: an interactive accelerator design code with GUI
Bruhwiler, David L.; Cary, John R.; Shasharina, Svetlana G.
1999-06-01
The MAPA code is an interactive accelerator modeling and design tool with an X/Motif GUI. MAPA has been developed in C++ and makes full use of object-oriented features. We present an overview of its features and describe how users can independently extend the capabilities of the entire application, including the GUI. For example, a user can define a new model for a focusing or accelerating element. If the appropriate form is followed, and the new element is "registered" with a single line in the specified file, then the GUI will fully support this user-defined element type after it has been compiled and then linked to the existing application. In particular, the GUI will bring up windows for modifying any relevant parameters of the new element type. At present, one can use the GUI for phase space tracking, finding fixed points and generating line plots for the Twiss parameters, the dispersion and the accelerator geometry. The user can define new types of simulations which the GUI will automatically support by providing a menu option to execute the simulation and subsequently rendering line plots of the resulting data.
MAPA: an interactive accelerator design code with GUI
International Nuclear Information System (INIS)
Bruhwiler, David L.; Cary, John R.; Shasharina, Svetlana G.
1999-01-01
The MAPA code is an interactive accelerator modeling and design tool with an X/Motif GUI. MAPA has been developed in C++ and makes full use of object-oriented features. We present an overview of its features and describe how users can independently extend the capabilities of the entire application, including the GUI. For example, a user can define a new model for a focusing or accelerating element. If the appropriate form is followed, and the new element is 'registered' with a single line in the specified file, then the GUI will fully support this user-defined element type after it has been compiled and then linked to the existing application. In particular, the GUI will bring up windows for modifying any relevant parameters of the new element type. At present, one can use the GUI for phase space tracking, finding fixed points and generating line plots for the Twiss parameters, the dispersion and the accelerator geometry. The user can define new types of simulations which the GUI will automatically support by providing a menu option to execute the simulation and subsequently rendering line plots of the resulting data
A study on the calculation of the shielding wall thickness in medical linear accelerator
Energy Technology Data Exchange (ETDEWEB)
Lee, Dong Yeon [Dept. of Radiation Oncology, Dongnam Ins. of Radiological and Medical Science, Busan (Korea, Republic of); Park, Eun Tae [Dept. of Radiation Oncology, Inje University Busan Paik Hospital, Busan (Korea, Republic of); Kim, Jung Hoon [Dept. of Radiological science, college of health sciences, Catholic University of Pusan, Busan (Korea, Republic of)
2017-06-15
The purpose of this study is to calculate the thickness of shielding for concrete which is mainly used for radiation shielding and study of the walls constructed to shield medical linear accelerator. The optimal shielding thickness was calculated using MCNPX(Ver.2.5.0) for 10 MV of photon beam energy generated by linear accelerator. As a result, the TVL for photon shielding was formed at 50⁓100 cm for pure concrete and concrete with Boron+polyethylene at 80⁓100 cm. The neutron shielding was calculated 100⁓140 cm for pure concrete and concrete with Boron+polyethylene at 90⁓100 cm. Based on this study, the concrete is considered to be most efficient method of using steel plates and adding Boron+polyethylene th the concrete.
International Nuclear Information System (INIS)
Dudnik, V.A.; Kudryavtsev, V.I.; Sereda, T.M.; Us, S.A.; Shestakov, M.V.
2009-01-01
The new opportunities of modern graphic processors (GPU) for acceleration of the scientific and technical calculations with the help of paralleling of a calculating task between the central processor and GPU are described. The description of using the technology NVIDIA CUDA for connection of parallel computing opportunities of GPU within the programme of the some intensive mathematical tasks is resulted. The examples of comparison of parameters of productivity in the process of these tasks' calculation without application of GPU and with use of opportunities NVIDIA CUDA for graphic processor GeForce 8800 are resulted
Accelerated successive substitution schemes for bubble-point and dew-point calculations
Energy Technology Data Exchange (ETDEWEB)
Peng, D.-Y. (Univ. of Saskatchewan, Saskatoon, SK (Canada))
1991-08-01
Phase equilibrium calculations form an important part of the process design operations in the hydrocarbon and petroleum industry. The accelerated successive substitution (SS) algorithms developed by Mehra et al. (1983) for flash calculations have been extended to the prediction of saturation points. A transformation matrix which is used to calculate the acceleration parameter has been rewritten in a form that is applicable at the saturation conditions. Simple equations for estimating the initial values and recursive formulae according to which the iterates can be updated are presented. The proposed schemes were compared with the conventional SS method and a multivariate Newton's method. The comparison suggests that the accelerated SS schemes are more tolerant of poor initial values and sometimes more efficient than Newton's method. The features of the acceleration schemes and those of the empirical equations developed in this study are illustrated using three hydrocarbon mixtures: a 5-component mixture of n-alkanes, a typical natural gas system, and a volatile oil. 19 refs., 6 figs., 6 tabs.
International Nuclear Information System (INIS)
Young, Ryong Park; Nam, Zin Cho
2005-01-01
As the nuclear reactor core becomes more complex, heterogeneous, and geometrically irregular, the method of characteristics (MOC) is gaining its wide use in the neutron transport calculations. However, the long computing times require good acceleration methods. In this paper, the concept of coarse-mesh angular dependent re-balance (CMADR) acceleration is described and applied to the MOC calculation in x-y-z (z-infinite, uniform) geometry. The method is based on the angular dependent re-balance factors defined only on the coarse-mesh boundaries; a coarse-mesh consists of several fine meshes that may be heterogeneous and of mixed geometries with irregular or unstructured mesh shapes. In addition, the coarse-mesh boundaries may not coincide with the structural interfaces of the problem and can be chosen artificially for convenience. CMADR acceleration is tested on several test problems and the results show that CMADR is very effective in reducing the number of iterations and computing times of MOC calculations. Fourier analysis is also provided to investigate convergence of the CMADR method analytically and the results show that CMADR acceleration is unconditionally stable. (authors)
Deep-penetration calculations in concrete and iron for shielding of proton therapy accelerators
International Nuclear Information System (INIS)
Sheu, Rong-Jiun; Chen, Yen-Fu; Lin, Uei-Tyng; Jiang, Shiang-Huei
2012-01-01
Proton accelerators in the energy range of approximately 200 MeV have become increasingly popular for cancer treatment in recent years. These proton therapy facilities usually involve bulky concrete or iron in their shielding design or accelerator structure. Simple shielding data, such as source terms or attenuation lengths for various proton energies and materials are useful in designing accelerator shielding. Understanding the appropriateness or uncertainties associated with these data, which are largely generated from Monte Carlo simulations, is critical to the quality of a shielding design. This study demonstrated and investigated the problems of deep-penetration calculations on the estimation of shielding parameters through an extensive comparison between the FLUKA and MCNPX calculations for shielding against a 200-MeV proton beam hitting an iron target. Simulations of double-differential neutron production from proton bombardment were validated by comparison with experimental data. For the concrete shielding, the FLUKA calculated depth–dose distributions were consistent with the MCNPX results, except for some discrepancies in backward directions. However, for the iron shielding, if FLUKA is used inappropriately then overestimation of neutron attenuation can be expected as shown by this work because of the multigroup treatment for low-energy neutrons in FLUKA. Two neutron energy group structures, three degrees of self-shielding correction, and two iron compositions were considered in this study. Significant variation of the resulting attenuation lengths indicated the importance of problem-dependent multigroup cross sections and proper modeling of iron composition in deep-penetration calculations.
Mathematical model of accelerator output characteristics and their calculation on a computer
International Nuclear Information System (INIS)
Mishulina, O.A.; Ul'yanina, M.N.; Kornilova, T.V.
1975-01-01
A mathematical model is described of output characteristics of a linear accelerator. The model is a system of differential equations. Presence of phase limitations is a specific feature of setting the problem which makes it possible to ensure higher simulation accuracy and determine a capture coefficient. An algorithm is elaborated of computing output characteristics based upon the mathematical model suggested. A capture coefficient, coordinate expectation characterizing an average phase value of the beam particles, coordinate expectation characterizing an average value of the reverse relative velocity of the beam particles as well as dispersion of these coordinates are output characteristics of the accelerator. Calculation methods of the accelerator output characteristics are described in detail. The computations have been performed on the BESM-6 computer, the characteristics computing time being 2 min 20 sec. Relative error of parameter computation averages 10 -2
International Nuclear Information System (INIS)
Griesheimer, D. P.; Toth, B. E.
2007-01-01
A novel technique for accelerating the convergence rate of the iterative power method for solving eigenvalue problems is presented. Smoothed Residual Acceleration (SRA) is based on a modification to the well known fixed-parameter extrapolation method for power iterations. In SRA the residual vector is passed through a low-pass filter before the extrapolation step. Filtering limits the extrapolation to the lower order Eigenmodes, improving the stability of the method and allowing the use of larger extrapolation parameters. In simple tests SRA demonstrates superior convergence acceleration when compared with an optimal fixed-parameter extrapolation scheme. The primary advantage of SRA is that it can be easily applied to Monte Carlo criticality calculations in order to reduce the number of discard cycles required before a stationary fission source distribution is reached. A simple algorithm for applying SRA to Monte Carlo criticality problems is described. (authors)
Interacting boson model: Microscopic calculations for the mercury isotopes
Energy Technology Data Exchange (ETDEWEB)
Druce, C.H.; Pittel, S.; Barrett, B.R.; Duval, P.D.
1987-05-15
Microscopic calculations of the parameters of the proton--neutron interacting boson model (IBM-2) appropriate to the even Hg isotopes are reported. The calculations are based on the Otsuka--Arima--Iachello boson mapping procedure, which is briefly reviewed. Renormalization of the parameters due to exclusion of the l = 4 g boson is treated perturbatively. The calculations employ a semi-realistic shell-model Hamiltonian with no adjustable parameters. The calculated parameters of the IBM-2 Hamiltonian are used to generate energy spectra and electromagnetic transition probabilities, which are compared with experimental data and with the result of phenomenological fits. The overall agreement is reasonable with some notable exceptions, which are discussed. Particular attention is focused on the parameters of the Majorana interaction and on the F-spin character of low-lying levels. copyright 1987 Academic Press, Inc.
The interacting boson model: Microscopic calculations for the mercury isotopes
Druce, C. H.; Pittel, S.; Barrett, B. R.; Duval, P. D.
1987-05-01
Microscopic calculations of the parameters of the proton-neutron interacting boson model (IBM-2) appropriate to the even Hg isotopes are reported. The calculations are based on the Otsuka-Armia-Iachello boson mapping procedure, which is briefly reviewed. Renormalization of the parameters due to exclusion of the l=4 g boson is treated perturbatively. The calculations employ a semi-realistic shell-model Hamiltonian with no adjustable parameters. The calculated parameters of the IBM-2 Hamiltonian are used to generate energy spectra and electromagnetic transition probabilities, which are compared with experimental data and with the result of phenomenological fits. The overall agreement is reasonable with some notable exceptions, which are discussed. Particular attention is focused on the parameters of the Majorana interaction and on the F-spin character of low-lying levels.
Interactions of model biomolecules. Benchmark CC calculations within MOLCAS
Energy Technology Data Exchange (ETDEWEB)
Urban, Miroslav [Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Institute of Materials Science, Bottova 25, SK-917 24 Trnava, Slovakia and Department of Physical and Theoretical Chemistry, Faculty of Natural Scie (Slovakia); Pitoňák, Michal; Neogrády, Pavel; Dedíková, Pavlína [Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava (Slovakia); Hobza, Pavel [Institute of Organic Chemistry and Biochemistry and Center for Complex Molecular Systems and biomolecules, Academy of Sciences of the Czech Republic, Prague (Czech Republic)
2015-01-22
We present results using the OVOS approach (Optimized Virtual Orbitals Space) aimed at enhancing the effectiveness of the Coupled Cluster calculations. This approach allows to reduce the total computer time required for large-scale CCSD(T) calculations about ten times when the original full virtual space is reduced to about 50% of its original size without affecting the accuracy. The method is implemented in the MOLCAS computer program. When combined with the Cholesky decomposition of the two-electron integrals and suitable parallelization it allows calculations which were formerly prohibitively too demanding. We focused ourselves to accurate calculations of the hydrogen bonded and the stacking interactions of the model biomolecules. Interaction energies of the formaldehyde, formamide, benzene, and uracil dimers and the three-body contributions in the cytosine – guanine tetramer are presented. Other applications, as the electron affinity of the uracil affected by solvation are also shortly mentioned.
Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators
Energy Technology Data Exchange (ETDEWEB)
Mastoridis, Themistoklis [Stanford Univ., CA (United States)
2010-08-01
The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC
Interactive intervention planning in particle accelerator environments with ionizing radiation
International Nuclear Information System (INIS)
Fabry, Thomas; Vanherpe, Liesbeth; Baudin, Mathieu; Theis, Chris; Braesch, Christian; Feral, Bruno
2013-01-01
A core issue during the planning of a maintenance intervention in a facility with ionizing radiation is the minimization of the integrated equivalent dose contracted by the maintenance workers during the intervention. In this work, we lay down the concepts for intervention planning in an irradiated environment and present a new software program for intervention planning, which provides interactive visualization of facilities and radiation levels, as well as tools for interactive trajectory planning. The software includes automatic calculation of the expected integrated equivalent radiation dose contracted during an intervention
Interactive intervention planning in particle accelerator environments with ionizing radiation
Energy Technology Data Exchange (ETDEWEB)
Fabry, Thomas, E-mail: thomas.fabry@cern.ch [European Organization for Nuclear Research, CERN, CH-1211 Genève 23 (Switzerland); Vanherpe, Liesbeth [European Organization for Nuclear Research, CERN, CH-1211 Genève 23 (Switzerland); Baudin, Mathieu [European Organization for Nuclear Research, CERN, CH-1211 Genève 23 (Switzerland); LCPI, ENSAM ParisTech, 151 Boulevard de l' Hôpital, 75013 Paris (France); Theis, Chris [European Organization for Nuclear Research, CERN, CH-1211 Genève 23 (Switzerland); Braesch, Christian [SYMME, Université de Savoie, Polytech Annecy-Chambry, 5 chemin de Bellevue, 74944 Annecy le Vieux (France); Feral, Bruno [European Organization for Nuclear Research, CERN, CH-1211 Genève 23 (Switzerland)
2013-04-21
A core issue during the planning of a maintenance intervention in a facility with ionizing radiation is the minimization of the integrated equivalent dose contracted by the maintenance workers during the intervention. In this work, we lay down the concepts for intervention planning in an irradiated environment and present a new software program for intervention planning, which provides interactive visualization of facilities and radiation levels, as well as tools for interactive trajectory planning. The software includes automatic calculation of the expected integrated equivalent radiation dose contracted during an intervention.
Interactive intervention planning in particle accelerator environments with ionizing radiation
Fabry, Thomas; Baudin, Mathieu; Theis, Chris; Braesch, Christian; Feral, Bruno
2013-01-01
A core issue during the planning of a maintenance intervention in a facility with ionizing radiation is the minimization of the integrated equivalent dose contracted by the maintenance workers during the intervention. In this work, we lay down the concepts for intervention planning in an irradiated environment and present a new software program for intervention planning, which provides interactive visualization of facilities and radiation levels, as well as tools for interactive trajectory planning. The software includes automatic calculation of the expected integrated equivalent radiation dose contracted during an intervention.
Monte Carlo method for calculating the radiation skyshine produced by electron accelerators
Energy Technology Data Exchange (ETDEWEB)
Kong Chaocheng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China)]. E-mail: kongchaocheng@tsinghua.org.cn; Li Quanfeng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Chen Huaibi [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Du Taibin [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Cheng Cheng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Tang Chuanxiang [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Zhu Li [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Zhang Hui [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Pei Zhigang [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Ming Shenjin [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China)
2005-06-01
Using the MCNP4C Monte Carlo code, the X-ray skyshine produced by 9 MeV, 15 MeV and 21 MeV electron linear accelerators were calculated respectively with a new two-step method combined with the split and roulette variance reduction technique. Results of the Monte Carlo simulation, the empirical formulas used for skyshine calculation and the dose measurements were analyzed and compared. In conclusion, the skyshine dose measurements agreed reasonably with the results computed by the Monte Carlo method, but deviated from computational results given by empirical formulas. The effect on skyshine dose caused by different structures of accelerator head is also discussed in this paper.
International Nuclear Information System (INIS)
Karnaukhov, I.M.; Popkov, Yu.P.; Telegin, Yu.N.; Trushkin, N.A.; Dajkovskij, A.G.; Zakamskaya, L.T.; Ryabov, A.D.
1989-01-01
Comparative analysis of several types of accelerating structures at standing E 010 wave is conducted on the basis of numerical calculations performed with the use of the PRUD-0 and PRUD programs. Dispersion dependences of electromagnetic field distribution, quality and coupling impedance are calculated both for axially symmetric and axially asymmetric modes of oscillations in structures with 699.3 MHz operating frequency. It is shown that structure with a cell the form of which is optimized with respect to shunt resistance on the main mode possesses the numerical spurious impedance in higher modes. This is the main factor when choosing accelerating structure for storage ring with multi-bunch operation conditions. 12 refs.; 3 figs.; 3 tabs
Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method
International Nuclear Information System (INIS)
Xu Qi; Yu Ganglin; Wang Kan; Sun Jialong
2014-01-01
In this paper, the adaptability of the neutron diffusion numerical algorithm on GPUs was studied, and a GPU-accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. The IAEA 3D PWR benchmark problem was calculated in the numerical test. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. (authors)
International Nuclear Information System (INIS)
Li Qingzhong; Sun Chengwei; Zhao Feng; Gao Wen; Wen Shanggang; Liu Wenhan
1999-11-01
The generalized geometrical optics model for the detonation shock dynamics (DSD) has been incorporated into the two dimensional hydro-code WSU to form a combination code ADW for numerical simulation of explosive acceleration of metals. An analytical treatment of the coupling conditions at the nodes just behind the detonation front is proposed. The experiments on two kinds of explosive-flyer assemblies with different length/diameter ratio were carried out to verify the ADW calculations, where the tested explosive was HMX or TATB based. It is found that the combination of DSD and hydro-code can improve the calculation precision, and has advantages in larger meshes and less CPU time
Energy Technology Data Exchange (ETDEWEB)
Freudenreich, W.E.; Gruppelaar, H
1998-12-01
This report contains the results of calculations made at ECN-Petten of a benchmark to study the neutronic potential of a modular fast spectrum ADS (Accelerator-Driven System) for radiotoxic waste transmutation. The study is focused on the incineration of TRans-Uranium elements (TRU), Minor Actinides (MA) and Long-Lived Fission Products (LLFP), in this case {sup 99}Tc. The benchmark exercise is made in the framework of an IAEA Co-ordinated Research Programme. A simplified description of an ADS, restricted to the reactor part, with TRU or MA fuel (k{sub eff}=0.96) has been analysed. All spectrum calculations have been performed with the Monte Carlo code MCNP-4A. The burnup calculations have been performed with the code FISPACT coupled to MCNP-4A by means of our OCTOPUS system. The cross sections are based upon JEF-2.2 for transport calculations and supplemented with EAF-4 data for inventory calculations. The determined quantities are: core dimensions, fuel inventories, system power, sensitivity on external source spectrum and waste transmutation rates. The main conclusions are: The MA-burner requires only a small accelerator current increase during burnup, in contrast to the TRU-burner. The {sup 99} Tc-burner has a large initial loading; a more effective design may be possible. 5 refs.
International Nuclear Information System (INIS)
Freudenreich, W.E.; Gruppelaar, H.
1998-12-01
This report contains the results of calculations made at ECN-Petten of a benchmark to study the neutronic potential of a modular fast spectrum ADS (Accelerator-Driven System) for radiotoxic waste transmutation. The study is focused on the incineration of TRans-Uranium elements (TRU), Minor Actinides (MA) and Long-Lived Fission Products (LLFP), in this case 99 Tc. The benchmark exercise is made in the framework of an IAEA Co-ordinated Research Programme. A simplified description of an ADS, restricted to the reactor part, with TRU or MA fuel (k eff =0.96) has been analysed. All spectrum calculations have been performed with the Monte Carlo code MCNP-4A. The burnup calculations have been performed with the code FISPACT coupled to MCNP-4A by means of our OCTOPUS system. The cross sections are based upon JEF-2.2 for transport calculations and supplemented with EAF-4 data for inventory calculations. The determined quantities are: core dimensions, fuel inventories, system power, sensitivity on external source spectrum and waste transmutation rates. The main conclusions are: The MA-burner requires only a small accelerator current increase during burnup, in contrast to the TRU-burner. The 99 Tc-burner has a large initial loading; a more effective design may be possible. 5 refs
Quantum Monte Carlo calculations with chiral effective field theory interactions
Energy Technology Data Exchange (ETDEWEB)
Tews, Ingo
2015-10-12
The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By
Calculation of control rod worth with mutual interaction
International Nuclear Information System (INIS)
Balthar, M.C.V.; Oliveira Vellozo, S. de; Carvalho Vital, H. de
1989-01-01
This work presents a two-dimensional model for determining the total worth of a set of N absorbing rods. The model simplifies the evaluation of the interaction coefficient among rods by analysing them in pairs and attributes to it a purely geometrical character. Comparisons with conventional calculational methods indicate that the results are in error by less than 6%. (author) [pt
Benchmark Calculations of Noncovalent Interactions of Halogenated Molecules
Czech Academy of Sciences Publication Activity Database
Řezáč, Jan; Riley, Kevin Eugene; Hobza, Pavel
2012-01-01
Roč. 8, č. 11 (2012), s. 4285-4292 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : halogenated molecules * noncovalent interactions * benchmark calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.389, year: 2012
Study on the acceleration of the neutronics calculation based on GPGPU
International Nuclear Information System (INIS)
Ohoka, Y.; Tatsumi, M.
2007-01-01
The cost of the reactor physics calculation tends to become higher with more detail treatment in the physics models and computational algorithms. For example, SCOPE2 requires considerably high computational costs for multi-group transport calculation in 3-D pin-by-pin geometry. In this paper, applicability of GPGPU to acceleration of neutronics calculation is discussed. At first, performance and accuracy of the basic matrix calculations with fundamental arithmetic operators and the exponential, function are studied. The calculation was performed on a machine with Pentium 4 of 3.2 MHz and GPU of nVIDIA GeForce7800GTX using a test program written in C++, OpenGL and GLSL on Linux. When matrix size becomes large, the calculation on GPU is 10-50 times faster than that on CPU for fundamental arithmetic operators. For the exponential function, calculation on GPU is 270-370 times faster than that on CPU. The precision of all the cases are equivalent to that on CPU, which is less than the criterion of IEEE754 (10 -6 as single precision). Next, the GPGPU is applied to a functional module in SCOPE2. In the present study, as the first step of GPGPU application, calculations in. small geometry are tested. Performance gain, by GPGPU in this application was relatively modest, approximately 15%, compared to the feasibility study. This is because the part in which GPGPU was applied had appropriate structure for GPGPU implementation but had only small fraction of computational load. For much advanced acceleration, it is important to consider various factors such as easiness of implementation, fraction of computational load and bottleneck in data transfer between GPU and CPU. (authors)
Calculation of beam injection and modes of acceleration for the JINR phasotron
International Nuclear Information System (INIS)
Vorozhtsov, S.B.; Dmitrievsky, V.P.
1981-01-01
On the basis of computer simulation of particles motion from the injection region up to the final radius of the accelerated proton beam behaviour together with different modes of the JINR high current synchrocyclotron operation is investigated. The THOUR modified computer code is used for calculations. The calculations have been performed with allowance for particle radial-phase motion and particle axial motion and although with beam collective effects. Beam dynamics during first turns of particles has been considered by integrating equations of motion. Tolerances for magnetic field structure in the region of first phase oscillation are obtained. Verifications of time dependences of accelerated voltage amplitude are performed. Time dependences of beam intensity (with and without account for space charge effect) and of mean magnetic field disturbance and the dependence of the separatrice dimension on the orbit radius of the accelerated beam are given. The conclusion is drawn on the correctness of the earlier appreciation of beam intensity equaling 40-45 mkA
Study of the acceleration of nuclide burnup calculation using GPU with CUDA
International Nuclear Information System (INIS)
Okui, S.; Ohoka, Y.; Tatsumi, M.
2009-01-01
The computation costs of neutronics calculation code become higher as physics models and methods are complicated. The degree of them in neutronics calculation tends to be limited due to available computing power. In order to open a door to the new world, use of GPU for general purpose computing, called GPGPU, has been studied [1]. GPU has multi-threads computing mechanism enabled with multi-processors which realize mush higher performance than CPUs. NVIDIA recently released the CUDA language for general purpose computation which is a C-like programming language. It is relatively easy to learn compared to the conventional ones used for GPGPU, such as OpenGL or CG. Therefore application of GPU to the numerical calculation became much easier. In this paper, we tried to accelerate nuclide burnup calculation, which is important to predict nuclides time dependence in the core, using GPU with CUDA. We chose the 4.-order Runge-Kutta method to solve the nuclide burnup equation. The nuclide burnup calculation and the 4.-order Runge-Kutta method were suitable to the first step of introduction CUDA into numerical calculation because these consist of simple operations of matrices and vectors of single precision where actual codes were written in the C++ language. Our experimental results showed that nuclide burnup calculations with GPU have possibility of speedup by factor of 100 compared to that with CPU. (authors)
Second RPA calculations with the Skyrme and Gogny interactions
Energy Technology Data Exchange (ETDEWEB)
Gambacurta, Danilo [Horia Hulubei National Institute for Physics and Nuclear Engineering, Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Magurele, Jud. Ilfov (Romania); Grasso, Marcella [Universite Paris-Sud, IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France)
2016-07-15
The Second Random Phase Approximation (SRPA) is a natural extension of RPA where more general excitation operators are introduced. These operators contain, in addition to the one particle-one hole configurations already considered in RPA, also two particle-two hole excitations. Only in the last years, large-scale SRPA calculations have been performed, showing the merits and limits of this approach. In the first part of this paper, we present an overview of recent applications of the SRPA based on the Skyrme and Gogny interactions. Giant resonances in {sup 16}O will be studied and their properties discussed by using different models. In particular, we will present the first applications of the SRPA model with the finite-range Gogny interaction, discussing the advantages and drawbacks of using such an interaction in this type of calculations. After that, some more recent results, obtained by using a subtraction procedure to overcome double-counting in the SRPA, will be discussed. We will show that this procedure leads to results that are weakly cutoff dependent and that a strong reduction of the SRPA downwards shift with respect to the RPA spectra is found. Moreover, applying this procedure for the first time in the Gogny-SRPA framework, we will show that this method is able to reduce the anomalous shift found in previous calculations and related to some proton-neutron matrix elements of the residual interaction. (orig.)
Structural activation calculations due to proton beam loss in the APT accelerator design
International Nuclear Information System (INIS)
Lee, S. K.; Beard, C. A.; Wilson, W. B.; Daemen, L. L.; Liska, D. J.; Waters, L. S.; Adams, M. L.
1995-01-01
For the new, high-power accelerators currently being designed, the amount of activation of the accelerator structure has become an important issue. To quantify this activation, a methodology was utilized that coupled transport and depletion codes to obtain dose rate estimates at several locations near the accelerator. This research focused on the 20 and 100 MeV sections of the Bridge-Coupled Drift Tube Linear Accelerator. The peak dose rate was found to be approximately 6 mR/hr in the 100 MeV section near the quadrupoles at a 25-cm radius for an assumed beam loss of 1 nA/m. It was determined that the activation was dominated by the proton interactions and subsequent spallation product generation, as opposed to the presence of the generated neutrons. The worst contributors were the spallation products created by proton bombardment of iron, and the worst component was the beam pipe, which consists mostly of iron. No definitive conclusions about the feasibility of hands-on maintenance can be determined, as the design is still not finalized
Structural activation calculations due to proton beam loss in the APT accelerator design
International Nuclear Information System (INIS)
Lee, S.K.; Beard, C.A.; Wilson, W.B.; Daemen, L.L.; Liska, D.J.; Waters, L.S.; Adams, M.L.
1994-01-01
For the new, high-power accelerators currently being designed, the amount of activation of the accelerator structure has become an important issue. To quantify this activation, a methodology was utilized that coupled transport and depletion codes to obtain dose rate estimates at several locations near the accelerator. This research focused on the 20 and 100 MeV sections of the Bridge-Coupled Drift Tube Linear Accelerator. The peak dose rate was found to be approximately 6 mR/hr in the 100 MeV section near the quadrupoles at a 25-cm radius for an assumed beam loss of 1 nA/m. It was determined that the activation was dominated by the proton interactions and subsequent spallation product generation, as opposed to the presence of the generated neutrons. The worst contributors were the spallation products created by proton bombardment of iron, and the worst component was the beam pipe, which consists mostly of iron. No definitive conclusions about the feasibility of hands-on maintenance can be determined, as the design is still not finalized
Metastable He (n=2) - Ne potential interaction calculation
International Nuclear Information System (INIS)
Rahal, H.
1983-10-01
Diabatic potential terms corresponding to He (2 1 S)-Ne and He (2 3 S)-Ne interactions are calculated. These potentials reproduce the experimental results thermal metastable atom elastic scattering on Ne target. A model which reduces the interaction to a one-electron problem is proposed: the He excited electron. Its interaction with the He + center is reproduced by a ''l'' dependent potential model with a 1/2 behaviour at short range. The electron interaction facing the Ne is described by a l-dependent pseudopotential reproducing with accuracy the electron elastic scattering on a Ne atom. The importance of the corrective term related to the Ne polarizations by the electron and the He + ion is showed in this work. In the modelling problems, the accuracy cannot be better than 0.1 MeV [fr
Wu, Xin; Koslowski, Axel; Thiel, Walter
2012-07-10
In this work, we demonstrate that semiempirical quantum chemical calculations can be accelerated significantly by leveraging the graphics processing unit (GPU) as a coprocessor on a hybrid multicore CPU-GPU computing platform. Semiempirical calculations using the MNDO, AM1, PM3, OM1, OM2, and OM3 model Hamiltonians were systematically profiled for three types of test systems (fullerenes, water clusters, and solvated crambin) to identify the most time-consuming sections of the code. The corresponding routines were ported to the GPU and optimized employing both existing library functions and a GPU kernel that carries out a sequence of noniterative Jacobi transformations during pseudodiagonalization. The overall computation times for single-point energy calculations and geometry optimizations of large molecules were reduced by one order of magnitude for all methods, as compared to runs on a single CPU core.
Energy Technology Data Exchange (ETDEWEB)
Toyama, Shin`ichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center
1998-07-01
It is important for high current accelerators to estimate the contribution of the space charge effect to keep the beam off its beak up (BBU). The CW electron linac is designed in order to study BBU experimentally. The design is primary on the consideration which type of accelerator structure is suitable to reduce the BBU threshold, and how to observe and control BBU when it appears. The contribution of beam charge for the acceleration characteristics is surveyed by means of the comparison between traveling wave and standing wave structures in this report. At first, the characteristics of both traveling wave and standing wave structures are calculated analytically and the conversion efficiency and accelerator gain are presented. The merits and drawbacks are also mentioned concerning with unit accelerator length. Next, the choice of RF frequency on energy conversion is mentioned as independent matter of the types of accelerator structure. After that, the characteristics of TWRR are described as the advanced accelerator structure compared with above structures. The effect of longitudinal induced field is estimated by means of the loss parameter. The result from the analysis shows that the unit accelerator length is 1 m to get high conversion ratio from RF to beam power and that the BBU for transverse component is small. Therefore, total BBU is expected small in the accelerator, for transverse BBU is already expected small in previous reports. (author)
Calculational advance in the modeling of fuel-coolant interactions
International Nuclear Information System (INIS)
Bohl, W.R.
1982-01-01
A new technique is applied to numerically simulate a fuel-coolant interaction. The technique is based on the ability to calculate separate space- and time-dependent velocities for each of the participating components. In the limiting case of a vapor explosion, this framework allows calculation of the pre-mixing phase of film boiling and interpenetration of the working fluid by hot liquid, which is required for extrapolating from experiments to a reactor hypothetical accident. Qualitative results are compared favorably to published experimental data where an iron-alumina mixture was poured into water. Differing results are predicted with LMFBR materials
Concept for calculating dose rates from activated groundwater at accelerator sites
Prolingheuer, N; Vanderborght, J; Schlögl, B; Nabbi, R; Moormann, R
Licensing of particle accelerators requires the proof that the groundwater outside of the site will not be significantly contaminated by activation products formed below accelerator and target. In order to reduce the effort for this proof, a site independent simplified but conservative method is under development. The conventional approach for calculation of activation of soil and groundwater is shortly described on example of a site close to Forschungszentrum Juelich, Germany. Additionally an updated overview of a data library for partition coefficients for relevant nuclides transported in the aquifer at the site is presented. The approximate model for transport of nuclides with ground water including exemplary results on nuclide concentrations outside of the site boundary and of resulting effective doses is described. Further applications and developments are finally outlined.
Pade approximants and the calculation of effective interactions
International Nuclear Information System (INIS)
Schucan, T.H.
1975-01-01
It is known that the series expansion of the effective interaction in nuclei diverges in practical applications due to the occurrence of low lying collective states. An approximation scheme which can be used to overcome the difficulties connected with this divergence is reviewed and it is shown that a continued fraction expansion can be used to calculate the eigenstate that has the larger overlap with the model space. An extension of this method is obtained by using Pade approximants (P.A.) which are then applied to the effective interaction, and to related matrices and matrix elements. Mathematical properties of the P.A. are discussed in light of these applications. 7 figures
Directory of Open Access Journals (Sweden)
E. E. Woodfield
2013-10-01
Full Text Available Jupiter has the most intense radiation belts of all the outer planets. It is not yet known how electrons can be accelerated to energies of 10 MeV or more. It has been suggested that cyclotron-resonant wave-particle interactions by chorus waves could accelerate electrons to a few MeV near the orbit of Io. Here we use the chorus wave intensities observed by the Galileo spacecraft to calculate the changes in electron flux as a result of pitch angle and energy diffusion. We show that, when the bandwidth of the waves and its variation with L are taken into account, pitch angle and energy diffusion due to chorus waves is a factor of 8 larger at L-shells greater than 10 than previously shown. We have used the latitudinal wave intensity profile from Galileo data to model the time evolution of the electron flux using the British Antarctic Survey Radiation Belt (BAS model. This profile confines intense chorus waves near the magnetic equator with a peak intensity at ∼5° latitude. Electron fluxes in the BAS model increase by an order of magnitude for energies around 3 MeV. Extending our results to L = 14 shows that cyclotron-resonant interactions with chorus waves are equally important for electron acceleration beyond L = 10. These results suggest that there is significant electron acceleration by cyclotron-resonant interactions at Jupiter contributing to the creation of Jupiter's radiation belts and also increasing the range of L-shells over which this mechanism should be considered.
Amino acids interacting with defected carbon nanotubes: ab initio calculations
Directory of Open Access Journals (Sweden)
M. Darvish Ganji
2016-09-01
Full Text Available The adsorption of a number of amino acids on a defected single-walled carbon nanotube (SWCNT is investigated by using the density-functional theory (DFT calculations. The adsorption energies and equilibrium distances are calculated for various configurations such as amino acid attaching to defect sites heptagon, pentagon and hexagon in defective tube and also for several molecular orientations with respect to the nanotube surface. The results showed that amino acids prefer to be physisorbed on the outer surface of the defected nanotube with different interaction strength following the hierarchy histidine > glycine > phenylalanine > cysteine. Comparing these findings with those obtained for perfect SWCNTs reveals that the adsorption energy of the amino acids increase for adsorption onto defected CNTs. The adsorption nature has also been evaluated by means of electronics structures analysis within the Mulliken population and DOS spectra for the interacting entities.
Configuration interaction calculations of positron binding to Be(3P )
International Nuclear Information System (INIS)
Bromley, M.W.J.; Mitroy, J.
2006-01-01
The configuration interaction method is applied to investigate the possibility of positron binding to the metastable beryllium (1s 2 2s2p 3 P ) state. The largest calculation obtained an estimated energy that was unstable by 0.00014 Hartree with respect to the Ps + Be + (2s) lowest dissociation channel. It is likely that positron binding to parent states with non-zero angular momentum is inhibited by centrifugal barriers
Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage Phi29.
Keller, Nicholas; delToro, Damian; Grimes, Shelley; Jardine, Paul J; Smith, Douglas E
2014-06-20
We use optical tweezers to study the effect of attractive versus repulsive DNA-DNA interactions on motor-driven viral packaging. Screening of repulsive interactions accelerates packaging, but induction of attractive interactions by spermidine(3+) causes heterogeneous dynamics. Acceleration is observed in a fraction of complexes, but most exhibit slowing and stalling, suggesting that attractive interactions promote nonequilibrium DNA conformations that impede the motor. Thus, repulsive interactions facilitate packaging despite increasing the energy of the theoretical optimum spooled DNA conformation.
Nuclear structure calculations in the dynamic-interaction propagator approach
International Nuclear Information System (INIS)
Engelbrecht, C.A.; Hahne, F.J.W.; Heiss, W.D.
1978-01-01
The dynamic-interaction propagator approach provides a natural method for the handling of energy-dependent effective two-body interactions induced by collective excitations of a many-body system. In this work this technique is applied to the calculation of energy spectra and two-particle strengths in mass-18 nuclei. The energy dependence is induced by the dynamic exchange of the lowest 3 - octupole phonon in O 16 , which is described within a normal static particle-hole RPA. This leads to poles in the two-body self-energy, which can be calculated if other fermion lines are restricted to particle states. The two-body interaction parameters are chosen to provide the correct phonon energy and reasonable negative-parity mass-17 and positive-parity mass-18 spectra. The fermion lines must be dressed consistently with the same exchange phonon to avoid redundant solutions or ghosts. The negative-parity states are then calculated in a parameter-free way which gives good agreement with the observed spectra [af
Localized-overlap approach to calculations of intermolecular interactions
Rob, Fazle
Symmetry-adapted perturbation theory (SAPT) based on the density functional theory (DFT) description of the monomers [SAPT(DFT)] is one of the most robust tools for computing intermolecular interaction energies. Currently, one can use the SAPT(DFT) method to calculate interaction energies of dimers consisting of about a hundred atoms. To remove the methodological and technical limits and extend the size of the systems that can be calculated with the method, a novel approach has been proposed that redefines the electron densities and polarizabilities in a localized way. In the new method, accurate but computationally expensive quantum-chemical calculations are only applied for the regions where it is necessary and for other regions, where overlap effects of the wave functions are negligible, inexpensive asymptotic techniques are used. Unlike other hybrid methods, this new approach is mathematically rigorous. The main benefit of this method is that with the increasing size of the system the calculation scales linearly and, therefore, this approach will be denoted as local-overlap SAPT(DFT) or LSAPT(DFT). As a byproduct of developing LSAPT(DFT), some important problems concerning distributed molecular response, in particular, the unphysical charge-flow terms were eliminated. Additionally, to illustrate the capabilities of SAPT(DFT), a potential energy function has been developed for an energetic molecular crystal of 1,1-diamino-2,2-dinitroethylene (FOX-7), where an excellent agreement with the experimental data has been found.
Calculations of the beam transport through the low energy side of the Lund Pelletron accelerator
International Nuclear Information System (INIS)
Dymnikov, A.; Hellborg, R.; Pallon, J.; Skog, G.; Yang, C.
1993-01-01
A new recursive technique has been used to solve the equations of motion of charged particles in electric and magnetic fields taking into account the effect of space charge. Based on this technique a computer code has been written and calculations have been carried out for the beam optics, from the ion-source to the terminal, stripper of the Lund Pelletron tandem accelerator. The code has been found capable of describing the beam-optics of the existing setup and will in future be used together with a library of typical field descriptions to design new beam lines. (orig.)
Physical model and calculation code for fuel coolant interactions
International Nuclear Information System (INIS)
Goldammer, H.; Kottowski, H.
1976-01-01
A physical model is proposed to describe fuel coolant interactions in shock-tube geometry. According to the experimental results, an interaction model which divides each cycle into three phases is proposed. The first phase is the fuel-coolant-contact, the second one is the ejection and recently of the coolant, and the third phase is the impact and fragmentation. Physical background of these phases are illustrated in the first part of this paper. Mathematical expressions of the model are exposed in the second part. A principal feature of the computational method is the consistent application of the fourier-equation throughout the whole interaction process. The results of some calculations, performed for different conditions are compiled in attached figures. (Aoki, K.)
Directory of Open Access Journals (Sweden)
Avramović Ivana
2007-01-01
Full Text Available The H5B is a concept of an accelerator-driven sub-critical research facility (ADSRF being developed over the last couple of years at the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. Using well-known computer codes, the MCNPX and MCNP, this paper deals with the results of a tar get study and neutron flux calculations in the sub-critical core. The neutron source is generated by an interaction of a proton or deuteron beam with the target placed inside the sub-critical core. The results of the total neutron flux density escaping the target and calculations of neutron yields for different target materials are also given here. Neutrons escaping the target volume with the group spectra (first step are used to specify a neutron source for further numerical simulations of the neutron flux density in the sub-critical core (second step. The results of the calculations of the neutron effective multiplication factor keff and neutron generation time L for the ADSRF model have also been presented. Neutron spectra calculations for an ADSRF with an uranium tar get (highest values of the neutron yield for the selected sub-critical core cells for both beams have also been presented in this paper.
Energy Technology Data Exchange (ETDEWEB)
Yang, James N.; Pino, Ramiro [Department of Radiation Physics, Unit 94, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiology, Baylor College of Medicine and Methodist Hospital, Houston, Texas 77030 (United States)
2008-10-15
Narrow beams are extensively used in stereotactic radiosurgery. The accuracy of treatment planning dose calculation depends largely on how well the dosimetric data are measured during the machine commissioning. Narrow beams are characterized by the lack of lateral electronic equilibrium. The lateral electronic disequilibrium in the radiation field and detector's finite size are likely to compromise the accuracy in dose measurements in these beams. This may have a profound impact on outcome in patients who undergo stereotactic radiosurgery. To confirm the measured commissioning data for a dedicated 6-MV linear accelerator-based radiosurgery system, we developed an analytical model to calculate the narrow photon beam central-axis dose. This model is an extension of a previously reported method of Nizin and Mooij for the calculation of the absorbed dose under lateral electronic disequilibrium conditions at depth of d{sub max} or greater. The scatter factor and tissue-maximum ratio were calculated for narrow beams using the parametrized model and compared to carefully measured results for the same beams. For narrow beam radii ranging from 0.2 to 1.5 cm, the differences between the analytical and measured scatter factors were no greater than 1.4%. In addition, the differences between the analytical and measured tissue-maximum ratios were within 3.3% for regions greater than the maximum dose depth. The estimated error of this analytical calculation was less than 2%, which is sufficient to validate measurement results.
Calculations for Extra Well Shielding for 15 MV Clinical Linear accelerator
International Nuclear Information System (INIS)
Mahmoud, M.A.; Emran, M.M.; Ahmad, A.S.
2000-01-01
A radiological survey was conducted around the walls of a clinical linear accelerator (Siemens Mevatron) in South Egypt Cancer Institute, Assiut University. Neutron measurements showed adequate results for all beam orientations. Photon measurements showed adequate results for all beam orientations except for beam orientation 270 degree, facing the control room. During operation, photon measurements were taken in order to calculate the additional shield thickness required to reduce measurements to accepted values. For convenience, lead was the material of choice for extra shielding. A value for the build up factor needed in the calculations of broad beam attenuation was estimated. Measurements inside the control room after adding the calculated lead thickness are much lower than the annual effective equivalent dose limits recommended by the ICRP-60 (International Commission on Radiation Protection) for occupational exposure. Also, measurements taken in the patients waiting hall recorded levels consistent with the six-hour daily occupancy for members of the public. The value of the build up factor was verified by calculations. Also the variation of build up factor distance from the field centre was calculated. Important and useful recommendations were reached from this experience which should be discussed to avoid facing similar situations in radiotherapy departments in Egypt
Viscous self interacting dark matter and cosmic acceleration
Atreya, Abhishek; Bhatt, Jitesh R.; Mishra, Arvind
2018-02-01
Self interacting dark matter (SIDM) provides us with a consistent solution to certain astrophysical observations in conflict with collision-less cold DM paradigm. In this work we estimate the shear viscosity (η) and bulk viscosity (ζ) of SIDM, within kinetic theory formalism, for galactic and cluster size SIDM halos. To that extent we make use of the recent constraints on SIDM cross-section for the dwarf galaxies, LSB galaxies and clusters. We also estimate the change in solution of Einstein's equation due to these viscous effects and find that σ/m constraints on SIDM from astrophysical data provide us with sufficient viscosity to account for the observed cosmic acceleration at present epoch, without the need of any additional dark energy component. Using the estimates of dark matter density for galactic and cluster size halo we find that the mean free path of dark matter ~ few Mpc. Thus the smallest scale at which the viscous effect start playing the role is cluster scale. Astrophysical data for dwarf, LSB galaxies and clusters also seems to suggest the same. The entire analysis is independent of any specific particle physics motivated model for SIDM.
Ishizawa, Yoshiki; Dobashi, Suguru; Kadoya, Noriyuki; Ito, Kengo; Chiba, Takahito; Takayama, Yoshiki; Sato, Kiyokazu; Takeda, Ken
2018-05-17
An accurate source model of a medical linear accelerator is essential for Monte Carlo (MC) dose calculations. This study aims to propose an analytical photon source model based on particle transport in parameterized accelerator structures, focusing on a more realistic determination of linac photon spectra compared to existing approaches. We designed the primary and secondary photon sources based on the photons attenuated and scattered by a parameterized flattening filter. The primary photons were derived by attenuating bremsstrahlung photons based on the path length in the filter. Conversely, the secondary photons were derived from the decrement of the primary photons in the attenuation process. This design facilitates these sources to share the free parameters of the filter shape and be related to each other through the photon interaction in the filter. We introduced two other parameters of the primary photon source to describe the particle fluence in penumbral regions. All the parameters are optimized based on calculated dose curves in water using the pencil-beam-based algorithm. To verify the modeling accuracy, we compared the proposed model with the phase space data (PSD) of the Varian TrueBeam 6 and 15 MV accelerators in terms of the beam characteristics and the dose distributions. The EGS5 Monte Carlo code was used to calculate the dose distributions associated with the optimized model and reference PSD in a homogeneous water phantom and a heterogeneous lung phantom. We calculated the percentage of points passing 1D and 2D gamma analysis with 1%/1 mm criteria for the dose curves and lateral dose distributions, respectively. The optimized model accurately reproduced the spectral curves of the reference PSD both on- and off-axis. The depth dose and lateral dose profiles of the optimized model also showed good agreement with those of the reference PSD. The passing rates of the 1D gamma analysis with 1%/1 mm criteria between the model and PSD were 100% for 4
International Nuclear Information System (INIS)
Torres Pozas, S.; Monja Rey, P. de la; Sanchez Carrasca, M.; Yanez Lopez, D.; Macias Verde, D.; Martin Oliva, R.
2011-01-01
In recent years, the progress experienced in cancer treatment with ionizing radiation can deliver higher doses to smaller volumes and better shaped, making it necessary to take into account new aspects in the calculation of structural barriers. Furthermore, given that forecasts suggest that in the near future will install a large number of accelerators, or existing ones modified, we believe a useful tool to estimate the thickness of the structural barriers of treatment rooms. The shielding calculation methods are based on standard DIN 6847-2 and the recommendations given by the NCRP 151. In our experience we found only estimates originated from the DIN. Therefore, we considered interesting to develop an application that incorporates the formulation suggested by the NCRP, together with previous work based on the rules DIN allow us to establish a comparison between the results of both methods. (Author)
Monte-Carlo calculation of irradiation dose content beyond shielding of high-energy accelerators
International Nuclear Information System (INIS)
Mokhov, N.V.; Frolov, V.V.
1975-01-01
The MARS programme, designed for calculating the three-dimensional internuclear cascade in defence of the accelerators by the Monte Carlo method, is described. The methods used to reduce the dispersion and the system of semi-empirical formulas made it possible to exceed the parameters of the existing programmes. By means of a synthesis of the results, registered by MARS and HAMLET programmes, the dosage fields for homogeneous and heterogeneous defence were evaluated. The results of the calculated absorbed and equivalent dose behind the barrier, irradiated by a proton beam, having the energy of Esub(o)=1/1000 GeV are exposed. The dependence of the high- and low-energy neutron, proton, pion, kaon, muonium and γ-quantum dosage on the initial energy and thickness, on the material and the composition of the defence is investigated
Dose calculation due to electrons interaction with DNA
Energy Technology Data Exchange (ETDEWEB)
Mark, S; Orion, I; Shani, G [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Nuclear Engineering; Laster, B [Brookhaven National Lab., Upton, NY (United States)
1996-12-01
Experiments done with gadolinium loaded V79 Chinese Hamster cells, irradiated with thermal neutrons, showed that cells lethality increased by a factor of 1.8 compared to the case where the Gd atoms were located outside the cell.(l) It was obvious that the dramatic increase in cell lethality is due to the emission of Auger electrons following the {sup 157}Gd(n,{gamma}){sup 158}Gd reaction. Electrons of various energies from about 40 keV (very few) to less than 1 keV, are emitted. In the present work, energy absorbed in DNA was calculated, due to interaction of electron of different energies: 30, 15, 10, 8, 5 and 2 keV. The Monte Carlo code EGS4(2) was used for the calculations. The DNA was modeled as a series of alternative layers of sugar (phosphate - C{sub 5}O{sub 5}H{sub 7}P p=1.39gr cm{sup -1}) and water. The sugar layer thickness was assumed 2.5nm and the water layer thickness 10nm. An isotropic electron source was assumed to be located in a water layer and the electrons interactions (absorption and scattering) were calculated in the forward hemisphere. The energy absorbed in a group of 8 layers, (4 sugar and 4 water) was calculated for each one of the electron energies. An interesting fact found in those calculations; when the source electrons energy is 10 keV or more, most of the electrons are absorbed in the DNA-water system, are at energy about 2keV. There is no good explanation for this phenomenon except for assuming that when the electron`s energy reaches a low point of about 2keV, it cannot escape absorption in the medium. 10% of the 10 keV electrons deposit their entire energy in the 8 layers range (authors).
Directory of Open Access Journals (Sweden)
Cerutti F.
2017-01-01
Full Text Available The role of Monte Carlo calculations in addressing machine protection and radiation protection challenges regarding accelerator design and operation is discussed, through an overview of different applications and validation examples especially referring to recent LHC measurements.
Cerutti, F.
2017-09-01
The role of Monte Carlo calculations in addressing machine protection and radiation protection challenges regarding accelerator design and operation is discussed, through an overview of different applications and validation examples especially referring to recent LHC measurements.
Fabry, Thomas; Feral, Bruno
2013-01-01
Intervention planning is crucial for maintenance operations in particle accelerator environments with ionizing radiation, during which the radiation dose contracted by maintenance workers should be reduced to a minimum. In this context, we discuss the visualization aspects of a new software tool, which integrates interactive exploration of a scene depicting an accelerator facility augmented with residual radiation level simulations, with the visualization of intervention data such as the followed trajectory and maintenance tasks. The visualization of each of these aspects has its effect on the final predicted contracted radiation dose. In this context, we explore the possible benefits of a user study, with the goal of enhancing the visual conditions in which the intervention planner using the software tool is minimizing the radiation dose.
Beam equipment electromagnetic interaction in accelerators: simulation and experimental benchmarking
Passarelli, Andrea; Vaccaro, Vittorio Giorgio; Massa, Rita; Masullo, Maria Rosaria
One of the most significant technological problems to achieve the nominal performances in the Large Hadron Collider (LHC) concerns the system of collimation of particle beams. The use of collimators crystals, exploiting the channeling effect on extracted beam, has been experimentally demonstrated. The first part of this thesis is about the optimization of UA9 goniometer at CERN, this device used for beam collimation will replace a part of the vacuum chamber. The optimization process, however, requires the calculation of the coupling impedance between the circulating beam and this structure in order to define the threshold of admissible intensity to do not trigger instability processes. Simulations have been performed with electromagnetic codes to evaluate the coupling impedance and to assess the beam-structure interaction. The results clearly showed that the most concerned resonance frequencies are due solely to the open cavity to the compartment of the motors and position sensors considering the crystal in o...
Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage phi29
Keller, Nicholas; delToro, Damian; Grimes, Shelley; Jardine, Paul J.; Smith, Douglas E.
2014-01-01
We use optical tweezers to study the effect of attractive versus repulsive DNA-DNA interactions on motor-driven viral packaging. Screening of repulsive interactions accelerates packaging, but induction of attractive interactions by spermidine3+ causes heterogeneous dynamics. Acceleration is observed in a fraction of complexes, but most exhibit slowing and stalling, suggesting that attractive interactions promote nonequilibrium DNA conformations that impede the motor. Thus, repulsive interacti...
International Nuclear Information System (INIS)
Zhong, Z.; Gohar, Y.; Talamo, A.
2009-01-01
Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical facility (ADS). The facility will be utilized for basic research, medical isotopes production, and training young nuclear specialists. The burnup methodology and analysis of the KIPT ADS are presented in this paper. MCNPX and MCB Monte Carlo computer codes have been utilized. MCNPX has the capability of performing electron, photon and neutron coupled transport problems, but it lacks the burnup capability for driven subcritical systems. MCB has the capability for performing the burnup calculation of driven subcritical systems, while it cannot transport electrons. A calculational methodology coupling MCNPX and MCB has been developed, which can exploit the electrons transport capability of MCNPX for neutron production and the burnup capability of MCB for driven subcritical systems. In this procedure, a neutron source file is generated using MCNPX transport calculation, preserving the neutrons yield from photonuclear reactions initiated by electrons, and this source file is utilized by MCB for the burnup analyses with the same geometrical model. In this way, the ADS depletion calculation can be accurately. (authors)
Numerical Calculation of Interaction Between Plane Jet and Subsonic Flow
Directory of Open Access Journals (Sweden)
V. O. Moskalenko
2016-01-01
Full Text Available The paper makes numerical calculation of interaction between plane jet and subsonic flow. Its aim is to determine the jet trajectory, velocity profiles, distribution of pressure coefficient on the plate surface at different jet angles, namely ωj=45°; 90°; 105° and at low blowing strengths ( ≤1.5 as well as a to make comparison with the experimental data of other authors.To simulate a two-dimensional jet in the subsonic flow the software package “CAD SolidWorks Flow Simulation” has been used. Initially, the test task was solved with its calculation results compared with experimental ones [6.8] in order to improve the convergence; the size of the computational domain and a computational grid within the k-ε turbulence model were selected. As a result of the calculation, were identified and analysed the pressure values, jet trajectories, and velocity profiles. In the graphs the solid lines show calculation results, and dots represent experimental data.From the calculation results it is seen that, with increasing intensity of the reduced mass flow ¯q in the above range, the change of the jet pressure coefficient p¯ distribution behind a slotted nozzle is almost linear and significant. Before the nozzle, with increasing ¯q the pressure coefficient increases slightly.Analysis of results has shown that blowing of jets with ωj>90ω, provides a greater perturbation of the subsonic flow. Thus, the jet penetrates into the flow deeper, forms a dead region of the greater length, and more significantly redistributes the pressure coefficient on the surface of the plate.The calculation results are in good compliance with the experimental data both for the jet axis and for the pressure coefficient distribution on the plate surface. The research results can be used in the designing the jet control of aircrafts.
International Nuclear Information System (INIS)
Alsmiller, R.G. Jr.; Alsmiller, F.S.; Lewis, T.A.
1986-05-01
In a series of previous papers, calculated results obtained using a one-dimensional ballistic model were presented to aid in the design of a prebuncher for the Oak Ridge Electron Linear Accelerator. As part of this work, a model was developed to provide limits on the fraction of an incident current pulse that would be accelerated by the existing accelerator. In this paper experimental data on this fraction are presented and the validity of the model developed previously is tested by comparing calculated and experimental data. Part of the experimental data is used to fix the physical parameters in the model and then good agreement between the calculated results and the rest of the experimental data is obtained
Interactive boundary-layer calculations of a transonic wing flow
Kaups, Kalle; Cebeci, Tuncer; Mehta, Unmeel
1989-01-01
Results obtained from iterative solutions of inviscid and boundary-layer equations are presented and compared with experimental values. The calculated results were obtained with an Euler code and a transonic potential code in order to furnish solutions for the inviscid flow; they were interacted with solutions of two-dimensional boundary-layer equations having a strip-theory approximation. Euler code results are found to be in better agreement with the experimental data than with the full potential code, especially in the presence of shock waves, (with the sole exception of the near-tip region).
Self-interaction corrected local spin density calculations of actinides
DEFF Research Database (Denmark)
Petit, Leon; Svane, Axel; Szotek, Z
2010-01-01
We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration...... of the actinide ions in these compounds from first principles. Here we review a number of applications, ranging from electronic structure calculations of actinide metals, nitrides and carbides to the behaviour under pressure of intermetallics, and O vacancies in PuO2....
Photoabsorption in sodium clusters: first principles configuration interaction calculations
Priya, Pradip Kumar; Rai, Deepak Kumar; Shukla, Alok
2017-05-01
We present systematic and comprehensive correlated-electron calculations of the linear photoabsorption spectra of small neutral closed- and open-shell sodium clusters (Nan, n = 2 - 6), as well as closed-shell cation clusters (Nan+, n = 3, 5). We have employed the configuration interaction (CI) methodology at the full CI (FCI) and quadruple CI (QCI) levels to compute the ground, and the low-lying excited states of the clusters. For most clusters, besides the minimum energy structures, we also consider their energetically close isomers. The photoabsorption spectra were computed under the electric-dipole approximation, employing the dipole-matrix elements connecting the ground state with the excited states of each isomer. Our calculations were tested rigorously for convergence with respect to the basis set, as well as with respect to the size of the active orbital space employed in the CI calculations. These calculations reveal that as far as electron-correlation effects are concerned, core excitations play an important role in determining the optimized ground state geometries of various clusters, thereby requiring all-electron correlated calculations. But, when it comes to low-lying optical excitations, only valence electron correlation effects play an important role, and excellent agreement with the experimental results is obtained within the frozen-core approximation. For the case of Na6, the largest cluster studied in this work, we also discuss the possibility of occurrence of plasmonic resonance in the optical absorption spectrum. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-70728-3
Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B
2012-09-11
In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.
Huang, Yu-Ming M; McCammon, J Andrew; Miao, Yinglong
2018-04-10
Through adding a harmonic boost potential to smooth the system potential energy surface, Gaussian accelerated molecular dynamics (GaMD) provides enhanced sampling and free energy calculation of biomolecules without the need of predefined reaction coordinates. This work continues to improve the acceleration power and energy reweighting of the GaMD by combining the GaMD with replica exchange algorithms. Two versions of replica exchange GaMD (rex-GaMD) are presented: force constant rex-GaMD and threshold energy rex-GaMD. During simulations of force constant rex-GaMD, the boost potential can be exchanged between replicas of different harmonic force constants with fixed threshold energy. However, the algorithm of threshold energy rex-GaMD tends to switch the threshold energy between lower and upper bounds for generating different levels of boost potential. Testing simulations on three model systems, including the alanine dipeptide, chignolin, and HIV protease, demonstrate that through continuous exchanges of the boost potential, the rex-GaMD simulations not only enhance the conformational transitions of the systems but also narrow down the distribution width of the applied boost potential for accurate energetic reweighting to recover biomolecular free energy profiles.
Neutron Flux and Activation Calculations for a High Current Deuteron Accelerator
Coniglio, Angela; Sandri, Sandro
2005-01-01
Neutron analysis of the first Neutral Beam (NB) for the International Thermonuclear Experimental Reactor (ITER) was performed to provide the basis for the study of the following main aspects: personnel safety during normal operation and maintenance, radiation shielding design, transportability of the NB components in the European countries. The first ITER NB is a medium energy light particle accelerator. In the scenario considered for the calculation the accelerated particles are negative deuterium ions with maximum energy of 1 MeV. The average beam current is 13.3 A. To assess neutron transport in the ITER NB structure a mathematical model of the components geometry was implemented into MCNP computer code (MCNP version 4c2. "Monte Carlo N-Particle Transport Code System." RSICC Computer Code Collection. June 2001). The neutron source definition was outlined considering both D-D and D-T neutron production. FISPACT code (R.A. Forrest, FISPACT-2003. EURATOM/UKAEA Fusion, December 2002) was used to assess neutron...
Calculation and analysis of burnup and optimum core design in accelerator driven sub-critical system
International Nuclear Information System (INIS)
Wang Yuwei; Yang Yongwei; Cui Pengfei
2011-01-01
The premise of the accelerator driven sub-critical system (ADS) in the accident is still subcritical, the biggest k eff change with burn time is less than 1.5% and the cladding material, HT9 steel, can withstand the maximum radiation damage, core fuel area is divided into fuel transmutation area and fuel multiplication area, and fuel transmutation area maintains the same fuel composition in the whole process. Through the analysis of the composition of the fuel, shape of core layout and the power distribution, etc., supposed outer and inner Pu enrichment ratio range of 1.0-1.5, then the fuel components of fuel multiplication area was adjusted. Time evolution of k eff was calculated by COUPLED2 which coupled with MCNP and ORIGEN. At the same time the power peaking factors, minoractinides transmutation rate desired to maximization and burnup were considered. A sub-critical system fitting for engineering practice was established. (authors)
Advanced Accelerators: Particle, Photon and Plasma Wave Interactions
Energy Technology Data Exchange (ETDEWEB)
Williams, Ronald L. [Florida A & M University, Tallahassee, FL (United States)
2017-06-29
The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to study techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.
Ion acceleration from relativistic laser nano-target interaction
International Nuclear Information System (INIS)
Jung, Daniel
2012-01-01
Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the μm range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, λ=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C 6+ energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH 2 targets. Experimental data is presented, where the conversion efficiency into carbon C 6+ (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil targets at Trident with an
Accurate first principles calculation of many-body interactions
International Nuclear Information System (INIS)
Tawa, G.J.; Moskowitz, J.W.; Schmidt, K.E.
1991-01-01
This paper reports on the electronic structure Schrodinger equation that is solved for the van der Waals complexes spin-polarized H 2 and H 3 , and the closed-shell systems He 2 and He 3 by Monte Carlo methods. Two types of calculations are performed, variational Monte Carlo, which gives an upper bound to the eigenvalue of the Schrodinger equation, and Green's function Monte Carlo, which can solve the Schrodinger equation exactly within statistical sampling errors. The simulations are carried out on an ETA-10 supercomputer, and already existing computer codes were extensively modified to ensure highly efficient coding. A major component of the computations was the development of highly optimized many-electron wave functions. The results from the variational Monte Carlo simulations are reported for both the two- and three-body interaction energies
Interaction of the ATA beam with the TM030 mode of the accelerating cells
International Nuclear Information System (INIS)
Neil, V.K.
1985-01-01
The interaction of the electron beam in the Advanced Test Accelerator with an azimuthally symmetric mode of the accelerating cells is investigated theoretically. The interaction possibly could cause modulation of the beam current at the resonant frequency of the mode. Values of the shunt impedance and Q value of the mode were obtained from previous measurement and analysis. Lagranian hydrodynamics is employed and a WKB solution to the equation of motion is obtained. Results indicate that the interaction will not be a problem in the accelerator
International Nuclear Information System (INIS)
Katz, G.R.
1986-01-01
Part I of this thesis is a perturbative QCD calculation to two loops of the meson nonsinglet evolution potential in the Feynman gauge. The evolution potential describes the momentum dependence of the distribution amplitude. This amplitude is needed for the calculation to beyond leading order of exclusive amplitudes and form factors. Techniques are presented that greatly simplify the calculation. The results agree with an independent light-cone gauge calculation and disagree with predictions made using conformal symmetry. In Part II the author presents a Fourier acceleration method that is effective in accelerating the computation of the fermion propagator in lattice QCD. The conventional computation suffers from critical slowing down: the long distance structure converges much slower than the short distance structure. by evaluating the fermion propagator in momentum space using fast Fourier transforms, it is possible to make different length scales converge at a more equal rate. From numerical experiments made on a 8 4 lattice, the author obtained savings of a factor of 3 to 4 by using Fourier acceleration. He also discusses the important of gauge fixing when using Fourier acceleration
Optical design for increased interaction length in a high gradient dielectric laser accelerator
Cesar, D.; Maxson, J.; Musumeci, P.; Shen, X.; England, R. J.; Wootton, K. P.
2018-01-01
We present a methodology for designing and measuring pulse front tilt in an ultrafast laser for use in dielectric laser acceleration. Previous research into dielectric laser accelerating modules has focused on measuring high accelerating gradients in novel structures, but has done so only for short electron-laser coupling lengths. Here we demonstrate an optical design to extend the laser-electron interaction to 1mm.
International Nuclear Information System (INIS)
Gohar, Y.; Zhong, Z.; Talamo, A.
2009-01-01
Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is ∼375 kW including the fission power of ∼260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the electrons and the
International Nuclear Information System (INIS)
Gonnot, R.
1975-01-01
While it may be reasonable to assume that the reliability of a system - the design of which is perfectly known - can be evaluated, it seems less easy to be sure that overall reliability is correctly estimated in the case of multiple redundancies arranged in sequence. Framatome is trying to develop a method of evaluating overall reliability correctly for its installations. For example, the protection systems in its power stations considered as a whole are such that several scram signals may be relayed in sequence when an incident occurs. These signals all involve the same components for a given type of action, but the components themselves are in fact subject to different stresses and constraints, which tend to reduce their reliability. Whatever the sequence in which these signals are transmitted (in a fast-developing accident, for example), it is possible to evaluate the actual reliability of a given system (or component) for different constraints, as the latter are generally obtained via the transient codes. By applying the so-called ''equal probability'' hypothesis one can estimate a reliability acceleration function taking into account the constraints imposed. This function is linear for the principal failure probability distribution laws. By generalizing such a method one can: (1) Perform failure calculations for redundant systems (or components) in a more general way than is possible with event trees, since one of the main parameters is the constraint exercised on that system (or component); (2) Determine failure rates of components on the basis of accelerated tests (up to complete failure of the component) which are quicker than the normal long-term tests (statistical results of operation); (3) Evaluate the multiplication factor for the reliability of a system or component in the case of common mode failures. The author presents the mathematical tools required for such a method and described their application in the cases mentioned above
Accelerated expansion of a universe containing a self-interacting Bose-Einstein gas
Energy Technology Data Exchange (ETDEWEB)
Izquierdo, German; Besprosvany, Jaime, E-mail: german.izquierdo@gmail.co, E-mail: bespro@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion CientIfica S/N, Ciudad Universitaria, CP 04510, Mexico, Distrito Federal (Mexico)
2010-03-21
Acceleration of the universe is obtained from a model of non-relativistic particles with a short-range attractive interaction, at low enough temperature to produce a Bose-Einstein condensate. Conditions are derived for negative-pressure behavior. In particular, we show that a phantom-accelerated regime at the beginning of the universe solves the horizon problem, consistently with nucleosynthesis.
Basic atomic interactions of accelerated heavy ions in matter atomic interactions of heavy ions
Tolstikhina, Inga; Winckler, Nicolas; Shevelko, Viacheslav
2018-01-01
This book provides an overview of the recent experimental and theoretical results on interactions of heavy ions with gaseous, solid and plasma targets from the perspective of atomic physics. The topics discussed comprise stopping power, multiple-electron loss and capture processes, equilibrium and non-equilibrium charge-state fractions in penetration of fast ion beams through matter including relativistic domain. It also addresses mean charge-states and equilibrium target thickness in ion-beam penetrations, isotope effects in low-energy electron capture, lifetimes of heavy ion beams, semi-empirical formulae for effective cross sections. The book is intended for researchers and graduate students working in atomic, plasma and accelerator physics.
The use of bulk states to accelerate the band edge state calculation of a semiconductor quantum dot
International Nuclear Information System (INIS)
Voemel, Christof; Tomov, Stanimire Z.; Wang, Lin-Wang; Marques, Osni A.; Dongarra, Jack J.
2007-01-01
We present a new technique to accelerate the convergence of the folded spectrum method in empirical pseudopotential band edge state calculations for colloidal quantum dots. We use bulk band states of the materials constituent of the quantum dot to construct initial vectors and a preconditioner. We apply these to accelerate the convergence of the folded spectrum method for the interior states at the top of the valence and the bottom of the conduction band. For large CdSe quantum dots, the number of iteration steps until convergence decreases by about a factor of 4 compared to previous calculations
SU-E-T-270: Optimized Shielding Calculations for Medical Linear Accelerators (LINACs).
Muhammad, W; Lee, S; Hussain, A
2012-06-01
The purpose of radiation shielding is to reduce the effective equivalent dose from a medical linear accelerator (LINAC) to a point outside the room to a level determined by individual state/international regulations. The study was performed to design LINAC's room for newly planned radiotherapy centers. Optimized shielding calculations were performed for LINACs having maximum photon energy of 20 MV based on NCRP 151. The maximum permissible dose limits were kept 0.04 mSv/week and 0.002 mSv/week for controlled and uncontrolled areas respectively by following ALARA principle. The planned LINAC's room was compared to the already constructed (non-optimized) LINAC's room to evaluate the shielding costs and the other facilities those are directly related to the room design. In the evaluation process it was noted that the non-optimized room size (i.e., 610 × 610 cm 2 or 20 feet × 20 feet) is not suitable for total body irradiation (TBI) although the machine installed inside was having not only the facility of TBI but the license was acquired. By keeping this point in view, the optimized INAC's room size was kept 762 × 762 cm 2. Although, the area of the optimized rooms was greater than the non-planned room (i.e., 762 × 762 cm 2 instead of 610 × 610 cm 2), the shielding cost for the optimized LINAC's rooms was reduced by 15%. When optimized shielding calculations were re-performed for non-optimized shielding room (i.e., keeping room size, occupancy factors, workload etc. same), it was found that the shielding cost may be lower to 41 %. In conclusion, non- optimized LINAC's room can not only put extra financial burden on the hospital but also can cause of some serious issues related to providing health care facilities for patients. © 2012 American Association of Physicists in Medicine.
The Calculation of Fe-Al-O Interaction Coefficient
International Nuclear Information System (INIS)
Kuo, Chin-Guo
2010-01-01
Aluminum is a very common deoxidizer in steel-making processes. The solubility of oxygen in molten iron decreases with increasing aluminum content. For the deoxidation process, the solubility of oxygen in Fe-Al melts decreases with increasing aluminum content. When %Al is increased to 0.34 wt.%, %O decreases to 6.4 ppm, which is the lowest point of the FeAl 2 O 4 curve. Then the Al 2 O 3 curve appears and replaces the FeAl 2 O 4 curve, where the interconnection point of the two curves is the coexistence point of FeAl 2 O 4 and Al 2 O 3 phases. When %Al is increased to 0.4%, the %O decreases to 6.35 ppm, which is the lowest point of the Al 2 O 3 curve. The solubility of oxygen in Fe-Al alloys is about 6.35 ppm with 0.4 wt.% aluminum at 1873 K. Liquid FeO-Al 2 O 3 , hercynite (FeAl 2 O 4 ), and alumina (Al 2 O 3 ) are three possible products during the deoxidation process. Based on thermodynamic calculation, the value of the interaction coefficient of e o Al was determined as -0.75 at 1873 K. This value is in good agreement with experimental curves in the literature.
Large Display Interaction via Multiple Acceleration Curves and Multifinger Pointer Control
Directory of Open Access Journals (Sweden)
Andrey Esakia
2014-01-01
Full Text Available Large high-resolution displays combine high pixel density with ample physical dimensions. The combination of these factors creates a multiscale workspace where interactive targeting of on-screen objects requires both high speed for distant targets and high accuracy for small targets. Modern operating systems support implicit dynamic control-display gain adjustment (i.e., a pointer acceleration curve that helps to maintain both speed and accuracy. However, large high-resolution displays require a broader range of control-display gains than a single acceleration curve can usably enable. Some interaction techniques attempt to solve the problem by utilizing multiple explicit modes of interaction, where different modes provide different levels of pointer precision. Here, we investigate the alternative hypothesis of using a single mode of interaction for continuous pointing that enables both (1 standard implicit granularity control via an acceleration curve and (2 explicit switching between multiple acceleration curves in an efficient and dynamic way. We evaluate a sample solution that augments standard touchpad accelerated pointer manipulation with multitouch capability, where the choice of acceleration curve dynamically changes depending on the number of fingers in contact with the touchpad. Specifically, users can dynamically switch among three different acceleration curves by using one, two, or three fingers on the touchpad.
Ultra-relativistic ion acceleration in the laser-plasma interactions
International Nuclear Information System (INIS)
Huang Yongsheng; Wang Naiyan; Tang Xiuzhang; Shi Yijin; Xueqing Yan
2012-01-01
An analytical relativistic model is proposed to describe the relativistic ion acceleration in the interaction of ultra-intense laser pulses with thin-foil plasmas. It is found that there is a critical value of the ion momentum to make sure that the ions are trapped by the light sail and accelerated in the radiation pressure acceleration (RPA) region. If the initial ion momentum is smaller than the critical value, that is in the classical case of RPA, the potential has a deep well and traps the ions to be accelerated, as the same described before by simulation results [Eliasson et al., New J. Phys. 11, 073006 (2009)]. There is a new ion acceleration region different from RPA, called ultra-relativistic acceleration, if the ion momentum exceeds the critical value. In this case, ions will experience a potential downhill. The dependence of the ion momentum and the self-similar variable at the ion front on the acceleration time has been obtained. In the ultra-relativistic limit, the ion momentum at the ion front is proportional to t 4/5 , where t is the acceleration time. In our analytical hydrodynamical model, it is naturally predicted that the ion distribution from RPA is not monoenergetic, although the phase-stable acceleration mechanism is effective. The critical conditions of the laser and plasma parameters which identify the two acceleration modes have been achieved.
Ultra-relativistic ion acceleration in the laser-plasma interactions
Energy Technology Data Exchange (ETDEWEB)
Huang Yongsheng; Wang Naiyan; Tang Xiuzhang; Shi Yijin [China Institute of Atomic Energy, Beijing 102413 (China); Xueqing Yan [Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)
2012-09-15
An analytical relativistic model is proposed to describe the relativistic ion acceleration in the interaction of ultra-intense laser pulses with thin-foil plasmas. It is found that there is a critical value of the ion momentum to make sure that the ions are trapped by the light sail and accelerated in the radiation pressure acceleration (RPA) region. If the initial ion momentum is smaller than the critical value, that is in the classical case of RPA, the potential has a deep well and traps the ions to be accelerated, as the same described before by simulation results [Eliasson et al., New J. Phys. 11, 073006 (2009)]. There is a new ion acceleration region different from RPA, called ultra-relativistic acceleration, if the ion momentum exceeds the critical value. In this case, ions will experience a potential downhill. The dependence of the ion momentum and the self-similar variable at the ion front on the acceleration time has been obtained. In the ultra-relativistic limit, the ion momentum at the ion front is proportional to t{sup 4/5}, where t is the acceleration time. In our analytical hydrodynamical model, it is naturally predicted that the ion distribution from RPA is not monoenergetic, although the phase-stable acceleration mechanism is effective. The critical conditions of the laser and plasma parameters which identify the two acceleration modes have been achieved.
CERN. Geneva
2001-01-01
The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.
International Nuclear Information System (INIS)
Toumi, I.
1995-01-01
Time requirements for 3D two-phase flow steady state calculations are generally long. Usually, numerical methods for steady state problems are iterative methods consisting in time-like methods that are marched to a steady state. Based on the eigenvalue spectrum of the iteration matrix for various flow configuration, two convergence acceleration techniques are discussed; over-relaxation and eigenvalue annihilation. This methods were applied to accelerate the convergence of three dimensional steady state two-phase flow calculations within the FLICA-4 computer code. These acceleration methods are easy to implement and no extra computer memory is required. Successful results are presented for various test problems and a saving of 30 to 50 % in CPU time have been achieved. (author). 10 refs., 4 figs
A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations
International Nuclear Information System (INIS)
Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel; Buluc, Aydin; Shao, Meiyue
2017-01-01
As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using the compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.
Convergence of configuration-interaction single-center calculations of positron-atom interactions
International Nuclear Information System (INIS)
Mitroy, J.; Bromley, M. W. J.
2006-01-01
The configuration interaction (CI) method using orbitals centered on the nucleus has recently been applied to calculate the interactions of positrons interacting with atoms. Computational investigations of the convergence properties of binding energy, phase shift, and annihilation rate with respect to the maximum angular momentum of the orbital basis for the e + Cu and PsH bound states, and the e + -H scattering system were completed. The annihilation rates converge very slowly with angular momentum, and moreover the convergence with radial basis dimension appears to be slower for high angular momentum. A number of methods of completing the partial wave sum are compared; an approach based on a ΔX J =a(J+(1/2)) -n +b(J+(1/2)) -(n+1) form [with n=4 for phase shift (or energy) and n=2 for the annihilation rate] seems to be preferred on considerations of utility and underlying physical justification
International Nuclear Information System (INIS)
Rechatin, C.
2009-09-01
In any particle accelerator, the injector plays a crucial role since it determines most of the characteristics of the accelerated beam. This is also true for laser-plasma accelerators, that are based on the interaction of an ultra short, ultra intense laser with an underdense plasma. However, due to the compactness of these accelerators, injection is a real challenge: to obtain a good beam quality, injected electron beams have to be ultra short and precisely synchronized with the laser. In this manuscript, the relevance of an optical injector, that relies on a second laser pulse, is experimentally demonstrated. With this injector, mono energetic electron beams have been produced in a stable manner. Moreover, this injector gives control over the electron beam parameters. Using the parameters of the second laser pulse, it has been proven that the energy, the charge and the energy spread of the accelerated beam can be simply tuned. Those additional controls make it possible to study in great details the physical phenomena at play during the acceleration. Beam loading effects, due to the interaction of the accelerated bunch with the plasma, have been identified and studied. With optimized injector parameters, the narrowest electron beams measured to date in the laser plasma interaction have been obtained, with a relative energy spread of 1%. (author)
The Computer Program LIAR for Beam Dynamics Calculations in Linear Accelerators
International Nuclear Information System (INIS)
Assmann, R.W.; Adolphsen, C.; Bane, K.; Raubenheimer, T.O.; Siemann, R.H.; Thompson, K.
2011-01-01
Linear accelerators are the central components of the proposed next generation of linear colliders. They need to provide acceleration of up to 750 GeV per beam while maintaining very small normalized emittances. Standard simulation programs, mainly developed for storage rings, do not meet the specific requirements for high energy linear accelerators. We present a new program LIAR ('LInear Accelerator Research code') that includes wakefield effects, a 6D coupled beam description, specific optimization algorithms and other advanced features. Its modular structure allows to use and to extend it easily for different purposes. The program is available for UNIX workstations and Windows PC's. It can be applied to a broad range of accelerators. We present examples of simulations for SLC and NLC.
New developments in multireference and complete configuration interaction calculations
International Nuclear Information System (INIS)
Knowles, P.J.; Werner, H.J.
1987-01-01
Some recently developed techniques for the calculation of Hamiltonian matrix elements in molecular electronic structure calculations are described. These techniques allow the very rapid calculation, in any desired order, of one particle coupling coefficients between spin symmetry adapted basis functions of arbitrary structure. The matrix elements that are required, for either internally contracted multireference CI calculations, or full CI calculations, are then obtainable from suitable summations over resolutions of the identity, which has been shown previously to be rather efficient; this is especially true on vector computers, since all arithmetic can be formulated as matrix multiplications. These ideas have culminated in the preparation of a new multireference CI program which is capable of handling very large numbers of reference configurations. Application of the new techniques to full CI calculations are also presented
Leang, Sarom S; Rendell, Alistair P; Gordon, Mark S
2014-03-11
Increasingly, modern computer systems comprise a multicore general-purpose processor augmented with a number of special purpose devices or accelerators connected via an external interface such as a PCI bus. The NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two examples of such accelerators. Accelerators offer peak performances that can be well above those of the host processor. How to exploit this heterogeneous environment for legacy application codes is not, however, straightforward. This paper considers how matrix operations in typical quantum chemical calculations can be migrated to the GPU and Phi systems. Double precision general matrix multiply operations are endemic in electronic structure calculations, especially methods that include electron correlation, such as density functional theory, second order perturbation theory, and coupled cluster theory. The use of approaches that automatically determine whether to use the host or an accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload and download rates between 5-5.6 GB/s and 5.4-6.3 GB/s, respectively. The GPU outperforms the Phi for both square and nonsquare matrix multiplications.
Enhancement of proton acceleration field in laser double-layer target interaction
International Nuclear Information System (INIS)
Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Ma, Y. Y.
2013-01-01
A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations
Electron acceleration by femtosecond laser interaction with micro-structured plasmas
Goers, Andy James
Laser-driven accelerators are a promising and compact alternative to RF accelerator technology for generating relativistic electron bunches for medical, scientific, and security applications. This dissertation presents three experiments using structured plasmas designed to advance the state of the art in laser-based electron accelerators, with the goal of reducing the energy of the drive laser pulse and enabling higher repetition rate operation with current laser technology. First, electron acceleration by intense femtosecond laser pulses in He-like nitrogen plasma waveguides is demonstrated. Second, significant progress toward a proof of concept realization of quasi-phasematched direct acceleration (QPM-DLA) is presented. Finally, a laser wakefield accelerator at very high plasma density is studied, enabling relativistic electron beam generation with ˜10 mJ pulse energies. Major results from these experiments include: • Acceleration of electrons up to 120 MeV from an ionization injected wakefield accelerator driven in a 1.5 mm long He-like nitrogen plasma waveguide • Guiding of an intense, quasi-radially polarized femtosecond laser pulse in a 1 cm plasma waveguide. This pulse provides a strong drive field for the QPM-DLA concept. • Wakefield acceleration of electrons up to ˜10 MeV with sub-terawatt, ˜10 mJ pulses interacting with a thin (˜200 mum), high density (>1020 cm-3) plasma. • Observation of an intense, coherent, broadband wave breaking radiation flash from a high plasma density laser wakefield accelerator. The flash radiates > 1% of the drive laser pulse energy in a bandwidth consistent with half-cycle (˜1 fs) emission from violent unidirectional acceleration of electron bunches from rest. These results open the way to high repetition rate (>˜kHz) laser-driven generation of relativistic electron beams with existing laser technology.
Calculation of nuclear moment of inertia with proper treatment of pairing interaction
International Nuclear Information System (INIS)
Tazaki, S.; Ando, Y.; Hasegawa, M.
1997-01-01
An attempt to calculate nuclear moments of inertia treating the pairing interaction exactly is reported. As usual, hamiltonian is composed of the Nilsson's singleparticle energies and the pairing interaction, but the eigenstates and the eigenvalues are calculated exactly in a realistic, sufficiently large model space. The method of calculating the moment of inertia is presented. (author)
Shielding Calculations for Industrial 5/7.5MeV Electron Accelerators Using the MCNP Monte Carlo Code
International Nuclear Information System (INIS)
Peri, E.; Orion, I.
2014-01-01
High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, in order to extend the shelf life of products. High energy photons can cause food activation due to (D 3 ,n) reactions. Until 2004, to eliminate the possibility of food activation, the electron energy was limited to 5 MeV X-rays for food irradiation. In 2004, the FDA approved the usage of up to 7.5 MeV, but only with tantalum and gold targets (1). Higher X-ray energy results an increased flux of X-rays in the forward direction, increased penetration, and higher photon dose rate due to better electron-to-photon conversion. These improvements could decrease the irradiation time and allow irradiation of larger packages, thereby providing higher production rates with lower treatment cost. Medical accelerators usually work with 6-18 MV electron energy with tungsten target to convert the electron beam to X-rays. In order to protect the patients, the accelerator head is protected with a heavy lead shielding; therefore, the bremsstrahlung is emitted only in the forward direction. There are many publications and standards that guide how to design optimal shielding for medical accelerator rooms. The shielding data for medical accelerators is not applicable for industrial accelerators, since the data is for different conversion targets, different X-Ray energies, and only for the forward direction. Collimators are not always in use in industrial accelerators, and therefore bremsstrahlung photons can be emitted in all directions. The bremsstrahlung spectrum and dose rate change as a function of the emission angle. The dose rate decreases from maximum in the forward direction (0°) to minimum at 180° by 1-2 orders of magnitude. In order to design and calculate optimal shielding for food accelerator rooms, there is a need to have the bremsstrahlung spectrum data, dose rates and concrete attenuation data in all emission directions
Hardware-accelerated autostereogram rendering for interactive 3D visualization
Petz, Christoph; Goldluecke, Bastian; Magnor, Marcus
2003-05-01
Single Image Random Dot Stereograms (SIRDS) are an attractive way of depicting three-dimensional objects using conventional display technology. Once trained in decoupling the eyes' convergence and focusing, autostereograms of this kind are able to convey the three-dimensional impression of a scene. We present in this work an algorithm that generates SIRDS at interactive frame rates on a conventional PC. The presented system allows rotating a 3D geometry model and observing the object from arbitrary positions in real-time. Subjective tests show that the perception of a moving or rotating 3D scene presents no problem: The gaze remains focused onto the object. In contrast to conventional SIRDS algorithms, we render multiple pixels in a single step using a texture-based approach, exploiting the parallel-processing architecture of modern graphics hardware. A vertex program determines the parallax for each vertex of the geometry model, and the graphics hardware's texture unit is used to render the dot pattern. No data has to be transferred between main memory and the graphics card for generating the autostereograms, leaving CPU capacity available for other tasks. Frame rates of 25 fps are attained at a resolution of 1024x512 pixels on a standard PC using a consumer-grade nVidia GeForce4 graphics card, demonstrating the real-time capability of the system.
Calculation of deuteron wave functions with relativistic interactions
International Nuclear Information System (INIS)
Buck, W.W. III.
1976-01-01
Deuteron wave functions with a repulsive core are obtained numerically from a fully relativistic wave equation introduced by Gross. The numerical technique enables analytic solutions for classes of interactions composed of the relativistic exchanges of a single pion and a single phenomenological meson, sigma. The pion is chosen to interact as a mixture of pseudoscalar and pseudovector. The amount of mixture is determined by a free mixing parameter, lambda, ranging between 1 (pure pseudoscalar) and (pure pseudovector). Each value of lambda corresponds, then, to a different interaction. Solutions are found for lambda = 1, .9, .8, .6, and 0. The wave functions for each interaction come in a group of four. Of the four wave functions, two are the usual S and D state wave functions, while the remaining two, arising out of the relativistic prescription, are identified as 3 P 1 and 1 P 1 wave functions (P state wave functions). For the interactions solved for, the D state probabilities ranged between 5.1 percent and 6.3 percent, while the total P state probabilities ranged between 0.7 percent and 2.7 percent. The method of obtaining solutions was to adjust the sigma meson parameters to give the correct binding energy and a good quadrupole moment. All wave functions obtained are applied to relativistic N-d scattering in the backward direction where the effect of the P states is quite measurable
Calculation of ion storage in electron beams with account of ion-ion interactions
International Nuclear Information System (INIS)
Perel'shtejn, Eh.A.; Shirkov, G.D.
1979-01-01
Ion storage in relativistic electron beams was calculated taking account of ion-ion charge exchange and ionization. The calculations were made for nitrogen ion storage from residual gas during the compression of electron rings in the adhezator of the JINR heavy ion accelerator. The calculations were made for rings of various parameters and for various pressures of the residual gas. The results are compared with analogous calculations made without account of ion-ion processes. It is shown that at heavy loading of a ring by ions ion-ion collisions play a significant part, and they should be taken into account while calculating ion storage
Calculation of beam source geometry of electron accelerator for radiation technologies
International Nuclear Information System (INIS)
Balalykin, N.I.; Derendyaev, Yu.S.; Dolbilov, G.V.; Karlov, A.A.; Korenev, S.A.; Petrov, V.A.; Smolyakova, T.F.
1994-01-01
ELLIPT and GRAFOR programmes written in FORTRAN language were developed to calculate the geometry of an electron source. The programmes enable calculation of electromagnetic field of the source and electron trajectories in the source under preset boundary and initial conditions. The GRAFOR programme allows to display electric field curves and calculated trajectories of large particles. 4 refs., 1 fig
Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code
Peri, Eyal; Orion, Itzhak
2017-09-01
High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.
International Nuclear Information System (INIS)
Kazarnovskij, M.V.; Matushko, G.K.; Matushko, V.L.; Par'ev, Eh.Ya.; Serezhnikov, S.V.
1981-01-01
The problem on propagation of the internuclear cascade initiated by nucleons of 0.1-1 GeV energy in accelerator schielding is solved approximately in the analytical form. Analytical expressions for the function of spatial, angular and energy distribution of the flux density of nucleons with the energy above 20 MeV and some functionals from it are obtained. The results of the calculations obtained by the developed methods are compared with calculations obtained by the method of direct simulation. It is shown that at the atomic mass of shielding material [ru
International Nuclear Information System (INIS)
Coddington, P.; Fishlock, T.P.; Jakeman, D.
1976-01-01
In making assessments of fast reactor safety a number of accident sequences can be postulated in which molten fuel contacts sodium in a number of possible modes. In the absence of an understanding of the way in which reactor materials interact for these contact modes it is necessary to make assessments over a range of plausible conditions and assumptions. This enables those areas where an interaction might cause a new stage in the escalation of the accident to be identified and at the same time to establish what characteristics of the interaction may be important. Whether in real situations interaction of molten reactor materials can have such characteristics can then be considered from both a theoretical and experimental viewpoint. It is suggested that although high efficiency vapour explosions involving large amounts of fuel in which there is rapid and coherent fragmentation are a main source of concern in many accident sequences, interactions with other characteristics may also be important. Two areas which have been identified are: (i) the interactions of low efficiency which need only involve small fractions of the fuel or possibly could include molten clad but which can accelerate sodium and fuel sufficiently to give rise to large reactivity changes. The recent incident at a steel plant in the U.K. in which 100 tons of molten steel was ejected to a height of 10 m from a torpedo ladle when water accidentally poured into it is a particularly striking illustration of such movement; and (ii) interactions giving rise to a much slower and less coherent heat transfer which may require some degree of fragmentation but not the extensive fragmentation by the specific mechanisms associated with vapour explosions but which nevertheless on the reactor scale could lead to high slug impacts on the containment. Accident codes are being constructed in the U.K. to investigate a series of hypothetical incidents. Modules are required for these codes which enable the consequences
Pade approximants and the calculation of effective interactions
International Nuclear Information System (INIS)
Schucan, T.H.
1975-01-01
The analytic properties of the effective interaction in nuclei have become increasingly well understood in the last few years. It has been found that the corresponding series expansion diverges in most practical applications due to the occurrence of low lying collective states. It is the purpose of this paper to review and discuss an approximation scheme that has been used to rearrange this series with the aim to overcome the difficulties connected with its divergence. (orig./WL) [de
Accelerator-Based Studies of Heavy Ion Interactions Relevant to Space Biomedicine
Miller, J.; Heilbronn, L.; Zeitlin, C.
1999-01-01
Evaluation of the effects of space radiation on the crews of long duration space missions must take into account the interactions of high energy atomic nuclei in spacecraft and planetary habitat shielding and in the bodies of the astronauts. These heavy ions (i.e. heavier than hydrogen), while relatively small in number compared to the total galactic cosmic ray (GCR) charged particle flux, can produce disproportionately large effects by virtue of their high local energy deposition: a single traversal by a heavy charged particle can kill or, what may be worse, severely damage a cell. Research into the pertinent physics and biology of heavy ion interactions has consequently been assigned a high priority in a recent report by a task group of the National Research Council. Fragmentation of the incident heavy ions in shielding or in the human body will modify an initially well known radiation field and thereby complicate both spacecraft shielding design and the evaluation of potential radiation hazards. Since it is impractical to empirically test the radiation transport properties of each possible shielding material and configuration, a great deal of effort is going into the development of models of charged particle fragmentation and transport. Accurate nuclear fragmentation cross sections (probabilities), either in the form of measurements with thin targets or theoretical calculations, are needed for input to the transport models, and fluence measurements (numbers of fragments produced by interactions in thick targets) are needed both to validate the models and to test specific shielding materials and designs. Fluence data are also needed to characterize the incident radiation field in accelerator radiobiology experiments. For a number of years, nuclear fragmentation measurements at GCR-like energies have been carried out at heavy ion accelerators including the LBL Bevalac, Saturne (France), the Synchrophasotron and Nuklotron (Dubna, Russia), SIS-18 (GSI, Germany), the
An accelerated hologram calculation using the wavefront recording plane method and wavelet transform
Arai, Daisuke; Shimobaba, Tomoyoshi; Nishitsuji, Takashi; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi
2017-06-01
Fast hologram calculation methods are critical in real-time holography applications such as three-dimensional (3D) displays. We recently proposed a wavelet transform-based hologram calculation called WASABI. Even though WASABI can decrease the calculation time of a hologram from a point cloud, it increases the calculation time with increasing propagation distance. We also proposed a wavefront recoding plane (WRP) method. This is a two-step fast hologram calculation in which the first step calculates the superposition of light waves emitted from a point cloud in a virtual plane, and the second step performs a diffraction calculation from the virtual plane to the hologram plane. A drawback of the WRP method is in the first step when the point cloud has a large number of object points and/or a long distribution in the depth direction. In this paper, we propose a method combining WASABI and the WRP method in which the drawbacks of each can be complementarily solved. Using a consumer CPU, the proposed method succeeded in performing a hologram calculation with 2048 × 2048 pixels from a 3D object with one million points in approximately 0.4 s.
Finite element calculation of the interaction energy of shape memory alloy
International Nuclear Information System (INIS)
Yang, Seung Yong
2004-01-01
Strain energy due to the mechanical interaction between self-accommodation groups of martensitic phase transformation is called interaction energy. Evaluation of the interaction energy should be accurate since the energy appears in constitutive models for predicting the mechanical behavior of shape memory alloy. In this paper, the interaction energy is evaluated in terms of theoretical formulation and explicit finite element calculation. A simple example with two habit plane variants was considered. It was shown that the theoretical formulation assuming elastic interaction between the self-accommodation group and matrix gives larger interaction energy than explicit finite element calculation in which transformation softening is accounted for
Kurz, S
1999-01-01
In this paper a new technique for the accurate calculation of magnetic fields in the end regions of superconducting accelerator magnets is presented. This method couples Boundary Elements (BEM) which discretize the surface of the iron yoke and Finite Elements (FEM) for the modelling of the nonlinear interior of the yoke. The BEM-FEM method is therefore specially suited for the calculation of 3-dimensional effects in the magnets, as the coils and the air regions do not have to be represented in the finite-element mesh and discretization errors only influence the calculation of the magnetization (reduced field) of the yoke. The method has been recently implemented into the CERN-ROXIE program package for the design and optimization of the LHC magnets. The field shape and multipole errors in the two-in-one LHC dipoles with its coil ends sticking out of the common iron yoke is presented.
Configuration interaction calculations for the region of 76Ge
Brown, Alex
2017-09-01
I will present a short history of the configuration interaction Hamiltonians that have been developed for the (0f5 / 2 , 1p3 / 2 , 1p1 / 2 , 0g9 / 2) (jj 44) model space. This model space is appropriate for the region of nuclei bounded by the nickel isotopes for Z = 28 and the isotones with N = 50 . I will discuss results for the double-beta decay of 76Ge that lies in the jj 44 region. I will show results for the structure of nuclei around 76Ge for some selected data from gamma decay, Gamow-Teller beta decay, charge-exchange reactions, one-nucleon transfer reactions, and two-nucleon transfer reactions. This work was supported by NSF Grant PHY-1404442.
International Nuclear Information System (INIS)
Fabry, Thomas; Blaha, Jan; Vanherpe, Liesbeth; Braesch, Christian; Tabourot, Laurent; Feral, Bruno
2014-01-01
A core issue during the planning of a maintenance intervention in a facility with ionizing radiation is the minimization of the integrated equivalent dose contracted by the maintenance workers during the intervention. In this work, we explore the use of a technical-scientific software program facilitating the intervention planning in irradiated environments using sound mathematical concepts. We show how the software can be used in planning future operations using a case studies: the decommissioning of a beam dump for a linear 160 MeV H − accelerator. Interactive visualization of the facilities and radiation levels, as well as tools for interactive trajectory planning are explored, as well as automatic calculation of the expected integrated individual dose contracted during an intervention
Energy Technology Data Exchange (ETDEWEB)
Fabry, Thomas, E-mail: thomas.fabry@cern.ch [European Organization for Nuclear Research, CERN, CH-1211 Genève 23 (Switzerland); Blaha, Jan; Vanherpe, Liesbeth [European Organization for Nuclear Research, CERN, CH-1211 Genève 23 (Switzerland); Braesch, Christian; Tabourot, Laurent [SYMME, Université de Savoie, Polytech Annecy-Chambéry, 5 Chemin de Bellevue, 74944 Annecy le Vieux (France); Feral, Bruno [European Organization for Nuclear Research, CERN, CH-1211 Genève 23 (Switzerland)
2014-04-11
A core issue during the planning of a maintenance intervention in a facility with ionizing radiation is the minimization of the integrated equivalent dose contracted by the maintenance workers during the intervention. In this work, we explore the use of a technical-scientific software program facilitating the intervention planning in irradiated environments using sound mathematical concepts. We show how the software can be used in planning future operations using a case studies: the decommissioning of a beam dump for a linear 160 MeV H{sup −} accelerator. Interactive visualization of the facilities and radiation levels, as well as tools for interactive trajectory planning are explored, as well as automatic calculation of the expected integrated individual dose contracted during an intervention.
Fabry, Thomas; Vanherpe, Liesbeth; Braesch, Christian; Tabourot, Laurent; Feral, Bruno
2014-01-01
A core issue during the planning of a maintenance intervention in a facility with ionizing radiation is the minimization of the integrated equivalent dose contracted by the maintenance workers during the intervention. In this work, we explore the use of a technical-scientific software program facilitating the intervention planning in irradiated environments using sound mathematical concepts. We show how the software can be used in planning future operations using a case studies: the decommissioning of a beam dump for a linear 160 MeV H− accelerator. Interactive visualization of the facilities and radiation levels, as well as tools for interactive trajectory planning are explored, as well as automatic calculation of the expected integrated individual dose contracted during an intervention.
Simulation of isothermal multi-phase fuel-coolant interaction using MPS method with GPU acceleration
Energy Technology Data Exchange (ETDEWEB)
Gou, W.; Zhang, S.; Zheng, Y. [Zhejiang Univ., Hangzhou (China). Center for Engineering and Scientific Computation
2016-07-15
The energetic fuel-coolant interaction (FCI) has been one of the primary safety concerns in nuclear power plants. Graphical processing unit (GPU) implementation of the moving particle semi-implicit (MPS) method is presented and used to simulate the fuel coolant interaction problem. The governing equations are discretized with the particle interaction model of MPS. Detailed implementation on single-GPU is introduced. The three-dimensional broken dam is simulated to verify the developed GPU acceleration MPS method. The proposed GPU acceleration algorithm and developed code are then used to simulate the FCI problem. As a summary of results, the developed GPU-MPS method showed a good agreement with the experimental observation and theoretical prediction.
Energy Technology Data Exchange (ETDEWEB)
Druce, C.H.; Barrett, B.R. (Arizona Univ., Tucson (USA). Dept. of Physics); Pittel, S. (Delaware Univ., Newark (USA). Bartol Research Foundation); Duval, P.D. (BEERS Associates, Reston, VA (USA))
1985-07-11
The parameters of the Majorana interaction of the neutron-proton interacting boson model are calculated for the Hg isotopes. The calculations utilize the Otsuka-Arima-Iachello mapping procedure and also lead to predictions for the other boson parameters. The resulting spectra are compared with experimental spectra and those obtained from phenomenological fits.
Druce, C. H.; Pittel, S.; Barrett, B. R.; Duval, P. D.
1985-07-01
The parameters of the Majorana interaction of the neutron-proton interacting boson model are calculated for the Hg isotopes. The calculations utilize the Otsuka-Arima-Iachello mapping procedure and also lead to predictions for the other boson parameters. The resulting spectra are compared with experimental spectra and those obtained from phenomenological fits.
International Nuclear Information System (INIS)
Brown, P.; Chang, B.
1998-01-01
The linear Boltzmann transport equation (BTE) is an integro-differential equation arising in deterministic models of neutral and charged particle transport. In slab (one-dimensional Cartesian) geometry and certain higher-dimensional cases, Diffusion Synthetic Acceleration (DSA) is known to be an effective algorithm for the iterative solution of the discretized BTE. Fourier and asymptotic analyses have been applied to various idealizations (e.g., problems on infinite domains with constant coefficients) to obtain sharp bounds on the convergence rate of DSA in such cases. While DSA has been shown to be a highly effective acceleration (or preconditioning) technique in one-dimensional problems, it has been observed to be less effective in higher dimensions. This is due in part to the expense of solving the related diffusion linear system. We investigate here the effectiveness of a parallel semicoarsening multigrid (SMG) solution approach to DSA preconditioning in several three dimensional problems. In particular, we consider the algorithmic and implementation scalability of a parallel SMG-DSA preconditioner on several types of test problems
International Nuclear Information System (INIS)
Azmy, Y.Y.
1996-01-01
The formal development of the Adjacent-cell Preconditioner (AP) and its implementation in the TORT code are briefly reviewed. Based on earlier experience with diffusion type acceleration, and excellent results in slab geometry the reciprocal averaging formula is used to mix the preconditioner elements across material and mesh discontinuities. Numerical testing of the method employing the Burre Suite of Test Problems (BSTeP), a collection of 144 cases covering a wide range in parameter space, using AP, Partial Current Rebalance (PCR), and TWODANT's Diffusion Synthetic Acceleration (DSA) is presented. While AP outperforms the other two methods for the majority of the cases included in BSTeP it consumes many more iterations than can be explained by spectral analysis of the homogeneous model problem in cases with sharp material discontinuity. In order to verify this undesirable behavior and explore potential remedies a model problem, the Periodic Horizontal Interface (PHI), is developed that permits discontinuity of nuclear properties and cell height across the interface. Fourier mode decomposition is applied to AP with the reciprocal averaging mixing formula for the PHI configuration and shown to possess a spectral radius that approaches unity as the material discontinuity gets larger. The question of whether an unconditionally stable AP exists for PHI is tackled and preliminary indications are negative. Novel preconditioners that have nontraditional cell-coupling schemes that remain stable in these regimes may have to be sought
Microscopic calculation of parameters of the sdg interacting boson model for 104-110Pd isotopes
International Nuclear Information System (INIS)
Liu Yong
1995-01-01
The parameters of the sdg interacting boson model Hamiltonian are calculated for the 104-110 Pd isotopes. The calculations utilize the microscopic procedure based on the Dyson boson mapping proposed by Yang-Liu-Qi and extended to include the g boson effects. The calculated parameters reproduce those values from the phenomenological fits. The resulting spectra are compared with the experimental spectra
Reece, Albert Stuart; Norman, Amanda; Hulse, Gary Kenneth
2016-11-07
Many reports exist of the cardiovascular toxicity of smoked cannabis but none of arterial stiffness measures or vascular age (VA). In view of its diverse toxicology, the possibility that cannabis-exposed patients may be ageing more quickly requires investigation. Cross-sectional and longitudinal, observational. Prospective. Single primary care addiction clinic in Brisbane, Australia. 11 cannabis-only smokers, 504 tobacco-only smokers, 114 tobacco and cannabis smokers and 534 non-smokers. known cardiovascular disease or therapy or acute exposure to alcohol, amphetamine, heroin or methadone. Radial arterial pulse wave tonometry (AtCor, SphygmoCor, Sydney) performed opportunistically and sequentially on patients between 2006 and 2011. Algorithmically calculated VA. other central haemodynamic variables. Differences between group chronological ages (CA, 30.47±0.48 to 40.36±2.44, mean±SEM) were controlled with linear regression. Between-group sex differences were controlled by single-sex analysis. Mean cannabis exposure among patients was 37.67±7.16 g-years. In regression models controlling for CA, Body Mass Index (BMI), time and inhalant group, the effect of cannabis use on VA was significant in males (p=0.0156) and females (p=0.0084). The effect size in males was 11.84%. A dose-response relationship was demonstrated with lifetime exposure (pcannabis was robust to adjustment and was unrelated to its acute effects. Significant power interactions between cannabis exposure and the square and cube of CA were demonstrated (from pCannabis is an interactive cardiovascular risk factor (additional to tobacco and opioids), shows a prominent dose-response effect and is robust to adjustment. Cannabis use is associated with an acceleration of the cardiovascular age, which is a powerful surrogate for the organismal-biological age. This likely underlies and bi-directionally interacts with its diverse toxicological profile and is of considerable public health and regulatory
Nagaoka, Tomoaki; Watanabe, Soichi
2012-01-01
Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.
Investigation of ion acceleration mechanism through laser-matter interaction in femtosecond domain
Energy Technology Data Exchange (ETDEWEB)
Altana, C., E-mail: altana@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Muoio, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Lanzalone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore”, Via delle Olimpiadi, 94100 Enna (Italy); Tudisco, S. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Brandi, F. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Cristoforetti, G. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Ferrara, P.; Fulgentini, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Giove, D. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Koester, P. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Labate, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); and others
2016-09-01
An experimental campaign aiming to investigate the ion acceleration mechanisms through laser-matter interaction in the femtosecond domain has been carried out at the ILIL facility at a laser intensity of up to 2×10{sup 19} W/cm{sup 2}. A Thomson Parabola Spectrometer was used to identify different ion species and measure the energy spectra and the corresponding temperature parameters. We discuss the dependence of the protons spectra upon the structural characteristics of the targets (thickness and atomic mass) and the role of surface versus target bulk during acceleration process. - Highlights: • Ion acceleration mechanism in TNSA regime was investigated. • The energy spectra and the corresponding temperature parameters were measured. • Dependence of the spectra upon the target structural characteristics was discussed.
Du, S.; Guo, F.; Zank, G. P.; Li, X.; Stanier, A.
2017-12-01
The interaction between magnetic flux ropes has been suggested as a process that leads to efficient plasma energization and particle acceleration (e.g., Drake et al. 2013; Zank et al. 2014). However, the underlying plasma dynamics and acceleration mechanisms are subject to examination of numerical simulations. As a first step of this effort, we carry out 2D fully kinetic simulations using the VPIC code to study the plasma energization and particle acceleration during coalescence of two magnetic flux ropes. Our analysis shows that the reconnection electric field and compression effect are important in plasma energization. The results may help understand the energization process associated with magnetic flux ropes frequently observed in the solar wind near the heliospheric current sheet.
Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers
Ratcliff, Laura E.; Degomme, A.; Flores-Livas, José A.; Goedecker, Stefan; Genovese, Luigi
2018-03-01
Performing high accuracy hybrid functional calculations for condensed matter systems containing a large number of atoms is at present computationally very demanding or even out of reach if high quality basis sets are used. We present a highly optimized multiple graphics processing unit implementation of the exact exchange operator which allows one to perform fast hybrid functional density-functional theory (DFT) calculations with systematic basis sets without additional approximations for up to a thousand atoms. With this method hybrid DFT calculations of high quality become accessible on state-of-the-art supercomputers within a time-to-solution that is of the same order of magnitude as traditional semilocal-GGA functionals. The method is implemented in a portable open-source library.
Ab initio calculation of molecular energies including parity violating interactions
International Nuclear Information System (INIS)
Bakasov, A.; Ha Taekyu; Quack, M.
1995-01-01
A new approach, RHF-CIS, based on the perturbation of the ground state RHF wave function by the CIS excitations, has been implemented for evaluation of energy of parity violating interaction in molecules, E pv . The earlier approach, RHF-SDE, was based on the perturbation of the RHF ground states by the single-determinant ''excitations'' (SDE). The results obtained show the dramatic difference between E pv values in the RHF-CIS framework and those in the RHF-SDE framework: the E pv values of the RHF-CIS formalism are more than one order of magnitude greater compared to the RHF-SDE formalism as well as the corresponding tensor components. The maximal total value obtained for hydrogen peroxide in the RHF-CIS framework is 3.661 X 10 -19 E H (DZ ** basis set) while the maximal E pv value for the RHF-SDE formalism is just 3.635 X 10 -20 E H (TZ basis set). It is remarkable that both in the RFH-CIS and in the RHF-SDE approaches the diagonal tensor components of E pv strictly follow the geometry of a molecule and are always different from zero at chiral conformations. The zeros of the total E pv at chiral geometries are now found to be the results of the interplay between the diagonal tensor components values. We have carried out exhaustive analysis of the RHF-SDE formalism and found that it is not sufficiently accurate for studies of E pv . To this end, we have completely reproduced the previous work, which has been done in the RHF-SDE frame-work, and developed it further, studying how the RHF-SDE results vary when changing size and quality of basis sets. This last resource does not save the RHF-SDE formalism for evaluations of E pv from the general failure. Packages of FORTRAN routines called ENWEAK/RHFSDE-93 and ENWEAK/RHFCIS-94 have been developed which run on top of an ab initio MO package. We used 6-31G and 6-31G**, DZ and DZ**, TZ and TZ**, and (10s, 6p,**) basis sets. We will discuss the importance of the present results for possible measurement of the parity
Miyazato, Itsuki; Tanaka, Yuzuru; Takahashi, Keisuke
2018-02-01
Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.
A computer code 'BEAM' for the ion optics calculation of the JAERI tandem accelerator system
International Nuclear Information System (INIS)
Kikuchi, Shiroh; Takeuchi, Suehiro
1987-11-01
The computer code BEAM is described, together with an outline of the formalism used for the ion optics calculation. The purpose of the code is to obtain the optimum parameters of devices, with which the ion beam is transported through the system without losses. The procedures of the calculation, especially those of searching for the parameters of quadrupole lenses, are discussed in detail. The flow of the code is illustrated as a whole and its constituent subroutines are explained individually. A few resultant beam trajectories and the parameters used to obtain them are shown as examples. (author)
Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction
Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.
2016-03-01
In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.
Accelerator system for producing two-component beams for studies of interactive surface effects
International Nuclear Information System (INIS)
Kaminsky, M.; Das, S.K.; Ekern, R.; Hess, D.C.
1977-01-01
For studies of interactive surface effects caused by the simultaneous bombardment of targets by both chemically active and inactive ion species (e.g., D + and He + , respectively) a two beam component accelerator facility was placed in operation. One component, consisting of light ions (e.g., H, D, He) is accelerated by a 2-MV Van de Graaff accelerator which provides a mass analyzed and focussed beam for the energy range from approximately 100-keV to 2-MeV (for singly charged ions). The other component is a beam of light ions in the energy range from approximately 10-keV to 100-keV. This is furnished by a 100-kV dc accelerator system which provides a mass analyzed focussed beam. This beam is guided into the beam line of the Van de Graaff accelerator electrostatically, and with the aid of beam steerers it is made to be co-axial with the Van de Graaff generated beam. The angle of incidence becomes hereby a free parameter for the interaction of the mixed beams with a surface. For each beam component, current densities of 650 μA cm -2 on target can readily be obtained. In order to reduce carbon contamination of the irradiated targets significantly, stainless steel beam lines have been used together with a combination of turbomolecular pumps and ion-sublimation pumps.A total pressure of 2 to 3 x 10 -8 torr in the beam lines and of 2 x 10 -9 torr in the target chamber can be obtained readily. Experimental results on the surface damage of Ni bombarded simultaneously with He + and D + ions are presented. The importance of such studies of interactive surface effects for the controlled thermonuclear fusion program are discussed
International Nuclear Information System (INIS)
Ibrahim, Ahmad M.; Polunovskiy, Eduard; Loughlin, Michael J.; Grove, Robert E.; Sawan, Mohamed E.
2016-01-01
Highlights: • Assess the detailed distribution of the nuclear heating among the components of the ITER toroidal field coils. • Utilize the FW-CADIS method to dramatically accelerate the calculation of detailed nuclear analysis. • Compare the efficiency and reliability of the FW-CADIS method and the MCNP weight window generator. - Abstract: Because the superconductivity of the ITER toroidal field coils (TFC) must be protected against local overheating, detailed spatial distribution of the TFC nuclear heating is needed to assess the acceptability of the designs of the blanket, vacuum vessel (VV), and VV thermal shield. Accurate Monte Carlo calculations of the distributions of the TFC nuclear heating are challenged by the small volumes of the tally segmentations and by the thick layers of shielding provided by the blanket and VV. To speed up the MCNP calculation of the nuclear heating distribution in different segments of the coil casing, ground insulation, and winding packs of the ITER TFC, the ITER Organization (IO) used the MCNP weight window generator (WWG). The maximum relative uncertainty of the tallies in this calculation was 82.7%. In this work, this MCNP calculation was repeated using variance reduction parameters generated by the Oak Ridge National Laboratory AutomateD VAriaNce reducTion Generator (ADVANTG) code and both MCNP calculations were compared in terms of computational efficiency and reliability. Even though the ADVANTG MCNP calculation used less than one-sixth of the computational resources of the IO calculation, the relative uncertainties of all the tallies in the ADVANTG MCNP calculation were less than 6.1%. The nuclear heating results of the two calculations were significantly different by factors between 1.5 and 2.3 in some of the segments of the furthest winding pack turn from the plasma neutron source. Even though the nuclear heating in this turn may not affect the ITER design because it is much smaller than the nuclear heating in the
Energy Technology Data Exchange (ETDEWEB)
Ibrahim, Ahmad M., E-mail: ibrahimam@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Polunovskiy, Eduard; Loughlin, Michael J. [ITER Organization, Route de Vinon Sur Verdon, 13067 St. Paul Lez Durance (France); Grove, Robert E. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Sawan, Mohamed E. [University of Wisconsin-Madison, 1500 Engineering Dr., Madison, WI 53706 (United States)
2016-11-01
Highlights: • Assess the detailed distribution of the nuclear heating among the components of the ITER toroidal field coils. • Utilize the FW-CADIS method to dramatically accelerate the calculation of detailed nuclear analysis. • Compare the efficiency and reliability of the FW-CADIS method and the MCNP weight window generator. - Abstract: Because the superconductivity of the ITER toroidal field coils (TFC) must be protected against local overheating, detailed spatial distribution of the TFC nuclear heating is needed to assess the acceptability of the designs of the blanket, vacuum vessel (VV), and VV thermal shield. Accurate Monte Carlo calculations of the distributions of the TFC nuclear heating are challenged by the small volumes of the tally segmentations and by the thick layers of shielding provided by the blanket and VV. To speed up the MCNP calculation of the nuclear heating distribution in different segments of the coil casing, ground insulation, and winding packs of the ITER TFC, the ITER Organization (IO) used the MCNP weight window generator (WWG). The maximum relative uncertainty of the tallies in this calculation was 82.7%. In this work, this MCNP calculation was repeated using variance reduction parameters generated by the Oak Ridge National Laboratory AutomateD VAriaNce reducTion Generator (ADVANTG) code and both MCNP calculations were compared in terms of computational efficiency and reliability. Even though the ADVANTG MCNP calculation used less than one-sixth of the computational resources of the IO calculation, the relative uncertainties of all the tallies in the ADVANTG MCNP calculation were less than 6.1%. The nuclear heating results of the two calculations were significantly different by factors between 1.5 and 2.3 in some of the segments of the furthest winding pack turn from the plasma neutron source. Even though the nuclear heating in this turn may not affect the ITER design because it is much smaller than the nuclear heating in the
International Nuclear Information System (INIS)
Lin, Lin; Yang, Chao; Chen, Mohan; He, Lixin
2013-01-01
We describe how to apply the recently developed pole expansion and selected inversion (PEXSI) technique to Kohn–Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating the charge density, the total energy, the Helmholtz free energy and the atomic forces (including both the Hellmann–Feynman force and the Pulay force) without using the eigenvalues and eigenvectors of the Kohn–Sham Hamiltonian. We also show how to update the chemical potential without using Kohn–Sham eigenvalues. The advantage of using PEXSI is that it has a computational complexity much lower than that associated with the matrix diagonalization procedure. We demonstrate the performance gain by comparing the timing of PEXSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D systems, the complexity of PEXSI is linear with respect to the number of atoms. This linear scaling can be observed in our computational experiments when the number of atoms in a nanotube is larger than a few hundreds. Both the wall clock time and the memory requirement of PEXSI are modest. This even makes it possible to perform Kohn–Sham DFT calculations for 10 000-atom nanotubes with a sequential implementation of the selected inversion algorithm. We also perform an accurate geometry optimization calculation on a truncated (8, 0) boron nitride nanotube system containing 1024 atoms. Numerical results indicate that the use of PEXSI does not lead to loss of the accuracy required in a practical DFT calculation. (paper)
International Nuclear Information System (INIS)
Santos, Maira R.; Silveira, Thiago B.; Garcia, Paulo L.; Trindade, Cassia; Martins, Lais P.; Batista, Delano V.S.
2013-01-01
Given the new methodology introduced in the shielding calculation due to recent modulated techniques in radiotherapy treatment, it became necessary to evaluate the impact of changes in the accelerator routine using such techniques. Based on a group of 30 patients from the National Cancer Institute (INCA) the workload multiplier factors for intensity modulated radiotherapy (IMRT factor) and for RapidArc™ (RA factor) were established. Four different routines in a 6 MV generic accelerator were proposed to estimate the impact of these modified workloads in the building cost of the secondary barriers. The results indicate that if 50% of patients are treating with IMRT, the secondary barrier becomes 14,1% more expensive than the barrier calculated for conformal treatments exclusive. While RA, in the same proportion, leads to a barrier only 3,7% more expensive. Showing that RA can, while reducing treatment time, increase the proportion of patients treated with modulation technique, without increasing the cost of the barrier, when compared with IMRT. (author)
International Nuclear Information System (INIS)
Lefebvre, E.
2010-01-01
This series of slides overviews the development of powerful lasers for inertial confinement fusion (Icf) at NIF (National Ignition Facility, Usa) and LMJ (Laser Megajoule, France) facilities. Then the principle of laser wakefield acceleration is presented and the possibility of designing compact accelerators delivering 200 GeV/m while conventional RF accelerators reach only 50 MeV/m, is considered. This technical breakthrough will bring important gains in terms of size, cost and new uses for accelerators. While Icf will use nanosecond (10 -9 s) laser pulses, wakefield accelerators will use femtosecond (10 -15 s) laser pulses which means more power but less energy. The electrons accelerated by laser can produce a multi-MeV X radiation useful for industrial radiography or cancer treatment. (A.C.)
Particle acceleration at corotating interaction regions in the three-dimensional heliosphere
International Nuclear Information System (INIS)
Desai, M.I.; Marsden, R.G.; Sanderson, T.R.; Balogh, A.; Forsyth, R.J.; Gosling, J.T.
1998-01-01
We have investigated the relationship between the energetic (∼1MeV) proton intensity (J) and the magnetic compression ratio (C) measured at the trailing edges of corotating interaction regions observed at Ulysses. In general, our results show that the proton intensity was well correlated with the compression ratio, provided that the seed intensity remained constant, consistent with predictions of the Fermi model. Specifically, our results indicate that particles were accelerated to above ∼1MeV in energy at or near the trailing edges of the compression regions observed in the midlatitude southern heliosphere, irrespective of whether the bounding reverse shocks were present or not. On the basis of this, we conclude that shock acceleration is probably not the only mechanism by which particles are accelerated to above ∼1MeV in energy at compression or interaction regions (CIRs). On the basis of magnetic field measurements obtained near the trailing edges of several midlatitude CIRs, we propose that particles could have been accelerated via the Fermi mechanism by being scattered back and forth across the trailing edges of the compression regions by large-amplitude Alfvacute en waves. Our results also show that the proton intensity was well correlated with the compression ratio during low solar activity periods but was essentially independent of C during periods of high solar activity. We suggest that the correlation between J and C was not observed during solar active periods because of significant variations in the seed intensity that result from sporadic contributions from transient solar events. In contrast, the correlation was observable during quiescent periods probably because contributions from transients had decreased dramatically, which allowed the CIRs to accelerate particles out of a seed population whose intensity remained relatively unperturbed. copyright 1998 American Geophysical Union
Calculations of the photon dose behind concrete shielding of high energy proton accelerators
International Nuclear Information System (INIS)
Dworak, D.; Tesch, K.; Zazula, J.M.
1992-02-01
The photon dose per primary beam proton behind lateral concrete shieldings was calculated by using an extension of the Monte Carlo particle shower code FLUKA. The following photon-producing processes were taken into account: capture of thermal neutrons, deexcitation of nuclei after nuclear evaporation, inelastic neutron scattering and nuclear reactions below 140 MeV, as well as photons from electromagnetic cascades. The obtained ratio of the photon dose to the neutron dose equivalent varies from 8% to 20% and it well compares with measurements performed recently at DESY giving a mean ratio of 14%. (orig.)
The Calculation and Design of Fire suppression system in the proton accelerator research center
International Nuclear Information System (INIS)
Jeon, G. P.; Kim, J. Y.; Cho, J. H.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Joo, H. G.
2010-01-01
The fire protection system is composed of various fire suppression systems and fire detection and alarm systems. The primary function of the fire protection system is to protect life and property from a fire through detecting fires quickly and suppressing those fires that occur. In this paper, we described the fire suppression system only. The fire suppression system capacity for fire hydrant, the water mist system, sprinkler system and clean agent system is calculated and designed in compliance with the applicable Korean Acts that are applicable to fire protection and the NFSC code
Zhan, W.; Sun, Y.
2015-12-01
High frequency strong motion data, especially near field acceleration data, have been recorded widely through different observation station systems among the world. Due to tilting and a lot other reasons, recordings from these seismometers usually have baseline drift problems when big earthquake happens. It is hard to obtain a reasonable and precision co-seismic displacement through simply double integration. Here presents a combined method using wavelet transform and several simple liner procedures. Owning to the lack of dense high rate GNSS data in most of region of the world, we did not contain GNSS data in this method first but consider it as an evaluating mark of our results. This semi-automatic method unpacks a raw signal into two portions, a summation of high ranks and a low ranks summation using a cubic B-spline wavelet decomposition procedure. Independent liner treatments are processed against these two summations, which are then composed together to recover useable and reasonable result. We use data of 2008 Wenchuan earthquake and choose stations with a near GPS recording to validate this method. Nearly all of them have compatible co-seismic displacements when compared with GPS stations or field survey. Since seismometer stations and GNSS stations from observation systems in China are sometimes quite far from each other, we also test this method with some other earthquakes (1999 Chi-Chi earthquake and 2011 Tohoku earthquake). And for 2011 Tohoku earthquake, we will introduce GPS recordings to this combined method since the existence of a dense GNSS systems in Japan.
McMullan, Miriam; Jones, Ray; Lea, Susan
2011-06-01
Nurses need to be competent and confident in performing drug calculations to ensure patient safety. The purpose of this study is to compare an interactive e-drug calculations package, developed using Cognitive Load Theory as its theoretical framework, with traditional handout learning support on nursing students' drug calculation ability, self-efficacy and support material satisfaction. A cluster randomised controlled trial comparing the e-package with traditional handout learning support was conducted with a September cohort (n=137) and a February cohort (n=92) of second year diploma nursing students. Students from each cohort were geographically dispersed over 3 or 4 independent sites. Students from each cohort were invited to participate, halfway through their second year, before and after a 12 week clinical practice placement. During their placement the intervention group received the e-drug calculations package while the control group received traditional 'handout' support material. Drug calculation ability and self-efficacy tests were given to the participants pre- and post-intervention. Participants were given the support material satisfaction scale post-intervention. Students in both cohorts randomised to e-learning were more able to perform drug calculations than those receiving the handout (September: mean 48.4% versus 34.7%, p=0.027; February: mean 47.6% versus 38.3%, p=0.024). February cohort students using the e-package were more confident in performing drug calculations than those students using handouts (self-efficacy mean 56.7% versus 45.8%, p=0.022). There was no difference in improved self-efficacy between intervention and control for students in the September cohort. Students who used the package were more satisfied with its use than the students who used the handout (mean 29.6 versus 26.5, p=0.001), particularly with regard to the package enhancing their learning (p=0.023), being an effective way to learn (p=0.005), providing practice and
Allag , Hicham
2010-01-01
The passive magnetic suspensions operate using attractive or repulsive forces exerted between permanent magnets. After giving an overview of different possible configurations of magnetic suspensions, the calculation of interactions between permanent magnets was developed. The calculations are realised for parallelepipeds magnets, where the magnetization is represented by distributions of charges or poles (Coulombian approach). All interactions (energy, forces, torques, etc ....) was calculate...
International Nuclear Information System (INIS)
Guenzburger, D.J.R.
1982-01-01
A survey is made of some theoretical calculations of electrostatic and magnetic hyperfine interactions in transition metal compounds and complex irons. The molecular orbital methods considered are the Multiple Scattering and Discrete Variational, in which the local Xα approximation for the exchange interaction is employed. Emphasis is given to the qualitative informations, derived from the calculations, relating the hyperfine parameters to characteristics of the chemical bonds. (Author) [pt
DEFF Research Database (Denmark)
Pawlowski, F; Jorgensen, P; Olsen, Jeppe
2002-01-01
A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...
Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions
Energy Technology Data Exchange (ETDEWEB)
Padda, H.; King, M.; Gray, R. J.; Powell, H. W.; Gonzalez-Izquierdo, B.; Wilson, R.; Dance, R. J.; MacLellan, D. A.; Butler, N. M. H.; Capdessus, R.; McKenna, P., E-mail: paul.mckenna@strath.ac.uk [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Stockhausen, L. C. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja s/n. 37185 Villamayor, Salamanca (Spain); Carroll, D. C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Yuan, X. H. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Borghesi, M. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Neely, D. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom)
2016-06-15
Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.
International Nuclear Information System (INIS)
Efremenko, Dmitry S.; Loyola, Diego G.; Spurr, Robert J.D.; Doicu, Adrian
2014-01-01
In the independent pixel approximation (IPA), radiative transfer computations involving cloudy scenes require two separate calls to the radiative transfer model (RTM), one call for a clear sky scenario, the other for an atmosphere containing clouds. In this paper, clouds are considered as an optically homogeneous layer. We present two novel methods for RTM performance enhancement with particular application to trace gas retrievals under cloudy conditions. Both methods are based on reusing results from clear-sky RTM calculations to speed up corresponding calculations for the cloud-filled scenario. The first approach is numerically exact, and has been applied to the discrete-ordinate with matrix exponential (DOME) RTM. Results from the original clear sky computation can be saved in the memory and reused for the non-cloudy layers in the second computation. In addition, for the whole-atmosphere boundary-value approach to the determination of the intensity field, we can exploit a ’telescoping technique’ to reduce the dimensionality (and hence the computational effort for the solution) of the boundary value problem in the absence of Rayleigh scattering contributions for higher azimuthal components of the radiation field. The second approach is (for the cloudy scenario) to generate a spectral correction applied to the radiation field from a fast two-stream RTM. This correction is based on the use of principal-component analysis (PCA) applied to a given window of spectral optical property data, in order to exploit redundancy in the data and confine the number of full-stream multiple scatter computations to the first few EOFs (Empirical Orthogonal Functions) arising from the PCA. This method has been applied to the LIDORT RTM; although the method involves some approximation, it provides accuracy better than 0.2%, and a speed-up factor of approximately 2 compared with two calls of RTM. -- Highlights: • Reusing results from clear-sky computations for a model with a
Dey, T.; Rodrigue, P.
2015-07-01
We aim to evaluate the Intel Xeon Phi coprocessor for acceleration of 3D Positron Emission Tomography (PET) image reconstruction. We focus on the sensitivity map calculation as one computational intensive part of PET image reconstruction, since it is a promising candidate for acceleration with the Many Integrated Core (MIC) architecture of the Xeon Phi. The computation of the voxels in the field of view (FoV) can be done in parallel and the 103 to 104 samples needed to calculate the detection probability of each voxel can take advantage of vectorization. We use the ray tracing kernels of the Embree project to calculate the hit points of the sample rays with the detector and in a second step the sum of the radiological path taking into account attenuation is determined. The core components are implemented using the Intel single instruction multiple data compiler (ISPC) to enable a portable implementation showing efficient vectorization either on the Xeon Phi and the Host platform. On the Xeon Phi, the calculation of the radiological path is also implemented in hardware specific intrinsic instructions (so-called `intrinsics') to allow manually-optimized vectorization. For parallelization either OpenMP and ISPC tasking (based on pthreads) are evaluated.Our implementation achieved a scalability factor of 0.90 on the Xeon Phi coprocessor (model 5110P) with 60 cores at 1 GHz. Only minor differences were found between parallelization with OpenMP and the ISPC tasking feature. The implementation using intrinsics was found to be about 12% faster than the portable ISPC version. With this version, a speedup of 1.43 was achieved on the Xeon Phi coprocessor compared to the host system (HP SL250s Gen8) equipped with two Xeon (E5-2670) CPUs, with 8 cores at 2.6 to 3.3 GHz each. Using a second Xeon Phi card the speedup could be further increased to 2.77. No significant differences were found between the results of the different Xeon Phi and the Host implementations. The examination
International Nuclear Information System (INIS)
Dey, T.; Rodrigue, P.
2015-01-01
We aim to evaluate the Intel Xeon Phi coprocessor for acceleration of 3D Positron Emission Tomography (PET) image reconstruction. We focus on the sensitivity map calculation as one computational intensive part of PET image reconstruction, since it is a promising candidate for acceleration with the Many Integrated Core (MIC) architecture of the Xeon Phi. The computation of the voxels in the field of view (FoV) can be done in parallel and the 10 3 to 10 4 samples needed to calculate the detection probability of each voxel can take advantage of vectorization. We use the ray tracing kernels of the Embree project to calculate the hit points of the sample rays with the detector and in a second step the sum of the radiological path taking into account attenuation is determined. The core components are implemented using the Intel single instruction multiple data compiler (ISPC) to enable a portable implementation showing efficient vectorization either on the Xeon Phi and the Host platform. On the Xeon Phi, the calculation of the radiological path is also implemented in hardware specific intrinsic instructions (so-called 'intrinsics') to allow manually-optimized vectorization. For parallelization either OpenMP and ISPC tasking (based on pthreads) are evaluated.Our implementation achieved a scalability factor of 0.90 on the Xeon Phi coprocessor (model 5110P) with 60 cores at 1 GHz. Only minor differences were found between parallelization with OpenMP and the ISPC tasking feature. The implementation using intrinsics was found to be about 12% faster than the portable ISPC version. With this version, a speedup of 1.43 was achieved on the Xeon Phi coprocessor compared to the host system (HP SL250s Gen8) equipped with two Xeon (E5-2670) CPUs, with 8 cores at 2.6 to 3.3 GHz each. Using a second Xeon Phi card the speedup could be further increased to 2.77. No significant differences were found between the results of the different Xeon Phi and the Host implementations. The
Energy Technology Data Exchange (ETDEWEB)
Hassanzadeh, M. [Nuclear Science and Technology Research Institute, AEOI, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Feghhi, S.A.H., E-mail: a_feghhi@sbu.ac.ir [Department of Radiation Application, Shahid Beheshti University, G.C., Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Khalafi, H. [Nuclear Science and Technology Research Institute, AEOI, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)
2013-09-15
Highlights: • All reactor kinetic parameters are importance weighted quantities. • MCNIC method has been developed for calculating neutron importance in ADSRs. • Mean generation time has been calculated in spallation driven systems. -- Abstract: The difference between non-weighted neutron generation time (Λ) and the weighted one (Λ{sup †}) can be quite significant depending on the type of the system. In the present work, we will focus on developing MCNIC method for calculation of the neutron importance (Φ{sup †}) and importance weighted neutron generation time (Λ{sup †}) in accelerator driven systems (ADS). Two hypothetic bare and graphite reflected spallation source driven system have been considered as illustrative examples for this means. The results of this method have been compared with those obtained by MCNPX code. According to the results, the relative difference between Λ and Λ{sup †} is within 36% and 24,840% in bare and reflected illustrative examples respectively. The difference is quite significant in reflected systems and increases with reflector thickness. In Conclusion, this method may be used for better estimation of kinetic parameters rather than the MCNPX code because of using neutron importance function.
International Nuclear Information System (INIS)
Hassanzadeh, M.; Feghhi, S.A.H.; Khalafi, H.
2013-01-01
Highlights: • All reactor kinetic parameters are importance weighted quantities. • MCNIC method has been developed for calculating neutron importance in ADSRs. • Mean generation time has been calculated in spallation driven systems. -- Abstract: The difference between non-weighted neutron generation time (Λ) and the weighted one (Λ † ) can be quite significant depending on the type of the system. In the present work, we will focus on developing MCNIC method for calculation of the neutron importance (Φ † ) and importance weighted neutron generation time (Λ † ) in accelerator driven systems (ADS). Two hypothetic bare and graphite reflected spallation source driven system have been considered as illustrative examples for this means. The results of this method have been compared with those obtained by MCNPX code. According to the results, the relative difference between Λ and Λ † is within 36% and 24,840% in bare and reflected illustrative examples respectively. The difference is quite significant in reflected systems and increases with reflector thickness. In Conclusion, this method may be used for better estimation of kinetic parameters rather than the MCNPX code because of using neutron importance function
International Nuclear Information System (INIS)
Bahreyni Toossi, M.T.; Hashemi, S.M.; Momen Nezhad, M.
2008-01-01
In recent decades, cancer has been one of the main ever increasing causes of death in developed countries. In order to fulfill the aforementioned considerations different techniques have been used, one of which is Monte Carlo simulation technique. High accuracy of the Monte Carlo simulation has been one of the main reason for its wide spread application. In this study, MCNP-4C code was employed to simulate electron mode of the Neptun 10 PC Linac, dosimetric quantities for conventional fields have also been both measured and calculated. Although Neptun 10 PC Linac is no longer licensed for installation in European and some other countries but regrettably nearly 10 of them have been installed in different centers around the country and are in operation. Therefore, in this circumstance, to improve the accuracy of treatment planning, Monte Carlo simulation for Neptun 10 PC was recognized as a necessity. Simulated and measured values of depth dose curves, off axis dose distributions for 6 , 8 and 10 MeV electrons applied for four different size fields, 6 x 6 cm 2 , 10 x 10 cm 2 , 15 x 15 cm 2 and 20 x 20 cm 2 were obtained. The measurements were carried out by a Welhofer-Scanditronix dose scanning system, Semiconductor Detector and Ionization Chamber. The results of this study have revealed that the values of two main dosimetric quantities depth dose curves and off axis dose distributions, acquired by MCNP-4C simulation and the corresponding values achieved by direct measurements are in a very good agreement (within 1% to 2% difference). In general, very good consistency of simulated and measured results, is a good proof that the goal of this work has been accomplished. In other word where measurements of some parameters are not practically achievable, MCNP-4C simulation can be implemented confidently. (author)
The calculation of nucleus-nucleus interaction cross sections at high energy in the Glauber approach
International Nuclear Information System (INIS)
Gal'perin, A.G.; Uzhinskij, V.V.
1994-01-01
Total, inelastic and elastic cross sections of nucleus-nucleus (AA)-interactions at high energy (HE) are calculated on the base of Glauber approach. The calculation scheme is realized as a set of routines. The statistical average method is used in calculations. Program runs in an interactive regime. User is prompted about charge and mass numbers of nuclei and NN-interaction characters at the energy he is interested in: total cross section, the slope parameter of differential cross section of elastic scattering and ratio of real part to imaginary part of elastic scattering amplitude at zero momentum transfer. These data can be extracted from proper compilations. Results of calculations are displayed and are written on user defined output file. The program runs on PC. 21 refs., 1 tab
Electron self-injection and acceleration in the bubble regime of laser-plasma interaction
International Nuclear Information System (INIS)
Kostyukov, I.; Nerush, E.
2010-01-01
Complete text of publication follows. The intense laser-plasma and beam-plasma interactions are highly nonlinear-phenomena, which besides being of fundamental interest, attract a great attention due to a number of important applications. One of the key applications is particle acceleration based on excitation of the strong plasma wakefield by laser pulse. In the linear regime of interaction when the laser intensity is low the plasma wake is the linear plasma wave. Moreover, the ponderomotive force of the laser pulse pushes out the plasma electrons from high intensity region leaving behind the laser pulse the plasma cavity - bubble, which is almost free from the plasma electrons. This is the bubble the laser-plasma interaction. Although the bubble propagates with velocity, which is close to speed of light, the huge charge of unshielded ions inside the plasma cavity can trap the cold plasma electrons. Moreover, the electrons are trapped in the accelerated phase of the bubble plasma field thereby leading to efficient electron acceleration. The electron self-injection is an important advantage of the plasma-based acceleration, which allows to exclude the beam loading system requiring accurate synchronization and additional space. The recent experiments have demonstrated high efficiency of the electron self-injection. The beam quality is often of crucial importance in many applications ranging from inertial confinement fusion to the x-ray free electron lasers. Despite a great interest there is still a little theory for relativistic electron dynamics in the plasma wake in multidimensional geometry including electron self-injection. The dynamics of the self-injected electrons can be roughly divided into three stage: (i) electron scattering by the laser pulse, (ii) electron trapping by the bubble, (iii) electron acceleration in the bubble. We developed two analytical models for electron dynamics in the bubble field and verify them by direct measurements of model parameters
Energy Technology Data Exchange (ETDEWEB)
El-Maaref, A.A., E-mail: ahmed.maaref@azhar.edu.eg; Saddeek, Y.B.; Abou halaka, M.M.
2017-02-15
Highlights: • Fine-structure calculations of sulfurlike Mn have been performed using configuration interaction technique, CI. • The relativistic effects, Breit-Pauli Hameltonian, have been correlated to the CI calculations. • Excitation rates by electron impact of the Mn X ion have been evaluated up to ionization potential. - Abstract: Fine-structure calculations of energies and transition parameters have been performed using the configuration interaction technique (CI) as implemented in CIV3 code for sulfurlike manganese, Mn X. The calculations are executed in an intermediate coupling scheme using the Breit-Pauli Hamiltonian. As well as, energy levels and oscillator strengths are calculated using LANL code, where the calculations by LANL have been used to estimate the accuracy of the present CI calculations. The calculated energy levels, oscillator strengths, and lifetimes are in reasonable agreement with the published experimental and theoretical values. Electron impact excitation rates of the transitions emit soft X-ray and extreme ultraviolet (EUV) wavelengths have been evaluated. The level population densities are calculated using the collisional radiative model (CRM), as well. The collisional excitation rates and collision strengths have been calculated in the electron temperature range ≤ the ionization potential, ∼1–250 eV.
First principles calculations for interaction of tyrosine with (ZnO)3 cluster
Singh, Satvinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.
2018-04-01
First Principles Calculations have been performed to study interactions of Phenol ring of Tyrosine (C6H5OH) with (ZnO)3 atomic cluster. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/C6H5OH have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations. The compatibility of the results with previous studies has been presented here.
[Experiment studies of electron-positron interactions at the Stanford Linear Accelerator Center
International Nuclear Information System (INIS)
Hertzbach, S.S.; Kofler, R.R.
1993-01-01
The High Energy Physics group at the University of Massachusetts has continued its' program of experimental studies of electron-positron interactions at the Stanford Linear Accelerator Center (SLAC). The group activities have included: analysis of data taken between 1982 and 1990 with the TPC detector at the PEP facility, continuing data collection and data analysis using the SLC/SLD facility, planning for the newly approved B-factory at SLAC, and participation in design studies for future high energy linear colliders. This report will briefly summarize these activities
Enhanced proton acceleration by ultrashort laser pulse interaction with nanostructured thin films
International Nuclear Information System (INIS)
Mondal, Angana; Dalui, Malay; Tata, Sheroy; Sarkar, Subhrangshu; Jha, Jagannath; Lad, Amit; Krishnamurthy, M.; Ayyub, P.; Wang, W m; Sheng, Z m
2015-01-01
Enhancement of local electromagnetic field in nanostructured targets as opposed to plain polished targets has been experimentally observed and studied. This increase in field strength leads to enhanced hot electron generation, which gives rise to highly energetic ions through Target Normal Sheath Acceleration. As the laser energy coupled to the electrons increases, the sheath magnitude is expected to increase, leading to an enhancement in ion acceleration. We investigate energy enhancements in ions generated as a result of intense femtosecond laser interaction with nanostructured thin film targets, comprising 2 μm Ta foil coated with 100-200 nm diameter Ta clusters. The optimum nanoparticle size of 100 nm corresponding to maximum laser energy absorption has been predetermined through PIC simulations. The accelerated ions have been studied using Thompson parabola spectrometer at a laser intensity of 15 x 10 19 W/cm 2 at the TIFR high contrast 100 TW Ti:Sapphire laser facility. The proton cut-off energy is observed to increase rapidly with increasing cluster density till a saturation is reached. The enhancement in the proton cut-off energy is observed to be three-fold as compared to the proton cut-off energy for unstructured foils. (author)
The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose
Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.
2018-01-01
The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay γ-quanta by the residuals in the activated structures and scoring the prompt doses of these γ-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and against experimental data from the CERF facility at CERN, and FermiCORD showed reasonable agreement with these. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.
The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose
Energy Technology Data Exchange (ETDEWEB)
Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.
2018-01-01
The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay gamma-quanta by the residuals in the activated structures and scoring the prompt doses of these gamma-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and showed a good agreement. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.
Nikolskiy, V. P.; Stegailov, V. V.
2018-01-01
Metal nanoparticles (NPs) serve as important tools for many modern technologies. However, the proper microscopic models of the interaction between ultrashort laser pulses and metal NPs are currently not very well developed in many cases. One part of the problem is the description of the warm dense matter that is formed in NPs after intense irradiation. Another part of the problem is the description of the electromagnetic waves around NPs. Description of wave propagation requires the solution of Maxwell’s equations and the finite-difference time-domain (FDTD) method is the classic approach for solving them. There are many commercial and free implementations of FDTD, including the open source software that supports graphics processing unit (GPU) acceleration. In this report we present the results on the FDTD calculations for different cases of the interaction between ultrashort laser pulses and metal nanoparticles. Following our previous results, we analyze the efficiency of the GPU acceleration of the FDTD algorithm.
International Nuclear Information System (INIS)
Bruinsma, J.; Wageningen, R. van
1977-01-01
Nucleon-deuteron breakup calculations at a nucleon bombarding energy of 22.7 MeV have been performed with separable interactions including a tensor force and P-wave interactions. Differential cross sections and a selection of polarization quantities have been computed for special regions of the phase space. The influence of a tensor force and P-wave interactions on the differential cross section is of the order of 20%. Large discrepancies between theory and experiment occur for the vector analyzing powers, both for the kinematically complete and for the incomplete situation. The calculations show that there are kinematical situations in which the differential cross sections and the tensor analyzing powers are sufficiently large to make measurements feasible. (Auth.)
International Nuclear Information System (INIS)
Paredes G, L.C.; Balcazar G, M.; Francois L, J.L.; Azorin N, J.
2008-01-01
The results of the neutrons yield in different components of the bolster of an accelerator Varian Clinac 2100C of 18 MV for radiotherapy are presented, which contribute to the radiation of flight of neutrons in the patient and bolster planes. For the calculation of the neutrons yield, a simplified geometric model of spherical cell for the armor-plating of the bolster with Pb and W was used. Its were considered different materials for the Bremsstrahlung production and of neutrons produced through the photonuclear reactions and of electro disintegration, in function of the initial energy of the electron. The theoretical result of the total yield of neutrons is of 1.17x10 -3 n/e, considering to the choke in position of closed, in the patient plane with a distance source-surface of 100 cm; of which 15.73% corresponds to the target, 58.72% to the primary collimator, 4.53% to the levelled filter of Fe, 4.87% to the levelled filter of Ta and 16.15% to the closed choke. For an initial energy of the electrons of 18 MeV, a half energy of the neutrons of 2 MeV was obtained. The calculated values for radiation of experimental neutrons flight are inferior to the maxima limit specified in the NCRP-102 and IEC-60601-201.Ed.2.0 reports. The absorbed dose of neutrons determined through the measurements with TLD dosemeters in the isocenter to 100 cm of the target when the choke is closed one, is approximately 3 times greater that the calculated for armor-plating of W and 1.9 times greater than an armor-plating of Pb. (Author)
International Nuclear Information System (INIS)
Rubin, Yu.V.; Belous, L.F.
2012-01-01
Self-associates of nucleic acid components (stacking trimers and tetramers of the base pairs of nucleic acids) and short fragments of nucleic acids are nanoparticles (linear sizes of these particles are more than 10 A). Modern quantum-mechanical methods and softwares allow one to perform ab initio calculations of the systems consisting of 150-200 atoms with enough large basis sets (for example, 6-31G * ). The aim of this work is to reveal the peculiarities of molecular and electronic structures, as well as the energy features of nanoparticles of nucleic acid components. We had carried out ab initio calculations of the molecular structure and interactions in the stacking dimer, trimer, and tetramer of nucleic base pairs and in the stacking (TpG)(ApC) dimer and (TpGpC) (ApCpG) trimer of nucleotides, which are small DNA fragments. The performed calculations of molecular structures of dimers and trimers of nucleotide pairs showed that the interplanar distance in the structures studied is equal to 3.2 A on average, and the helical angle in a trimer is approximately equal to 30 o : The distance between phosphor atoms in neighboring chains is 13.1 A. For dimers and trimers under study, we calculated the horizontal interaction energies. The analysis of interplanar distances and angles between nucleic bases and their pairs in the calculated short oligomers of nucleic acid base pairs (stacking dimer, trimer, and tetramer) has been carried out. Studies of interactions in the calculated short oligomers showed a considerable role of the cross interaction in the stabilization of the structures. The contribution of cross interactions to the horizontal interactions grows with the length of an oligomer. Nanoparticle components get electric charges in nanoparticles. Longwave low-intensity bands can appear in the electron spectra of nanoparticles.
Calculation of contribution of multiple interactions and efficiency of neutron detectors
International Nuclear Information System (INIS)
Androsenko, A.A.; Androsenko, P.A.; Kazakov, L.E.; Kononov, V.N.; Poletaev, E.D.
1986-01-01
Results of calculation of multiple neutron interactions contribution to efficiency of detectors with 6 Li glass and 10 B plate in the energy range of 0.01-1 MeV are given. The calculation was performed by the Monte-Carlo method using BRAND program complex. It is shown that a correction value for multiple neutron interaction in 6 Li glass of 1 mm thickness constitutes 4.5 % at energy of up to 100 keV and at higher energies has a complex energy dependence reaching 25 % at 440 keV
International Nuclear Information System (INIS)
Larcher, A.M.; Bonet Duran, S.M.
1998-01-01
Full text: Medical electron accelerators operating above 10 MeV produce radiation beams that are contaminated with neutrons. Therefore, shielding design for high energy accelerator rooms must consider the neutron component of the radiation field. In this paper a semiempirical method is presented to calculate doses due to neutrons and capture gamma rays inside the room and the maze. The calculation method is based on the knowledge of the neutron yield Q (neutrons/Gy of photons at isocenter) and the average energy of the primary beam of neutrons Eo (MeV). The method constitutes an appropriate tool for shielding facilities evaluation. The accuracy of the method has been contrasted with data obtained from the literature and an excellent correlation among the calculations and the measured values was achieved. In addition, the method has been used in the verification of experimental data corresponding to a 15 MeV linear accelerator installed in the country with similar results. (author) [es
Model calculations of the interaction of two parallel antiaromatic 4n π-electron systems
Böhm, Michael C.; Bickert, Peter; Hafner, Klaus; Boekelheide, V.
1984-01-01
The nature of the interaction between decks of a pentalene dimer and an s-indacene dimer has been studied by semi-empirical MNDO/1 and MINDO/3 calculations for distances between decks of from 5 Å to 2 Å. In contradiction to qualitative predictions from a frontier orbital analysis, it is found that the 4n-4n π-electron interaction between decks for such dimers is destabilizing for distances exceeding about 2.5 Å. PMID:16593458
Calculation of helium-like ion dipole susceptibility with account for electron interaction
International Nuclear Information System (INIS)
Pal'chikov, V.G.; Tkachev, A.N.
1989-01-01
Numerical estimations of electron interaction effects are carried out for helium-like ions inserted in a homogeneous electric field. Statistical dipole polarizations and hyperpolarizations are calculated for the main state taking into account corrections of the first order to approximation of noninteracting electrons. Summation according to the full spectrum of intermediate states is carried out by the method of Coulomb-Green functions (CGF), that permitted to use analytical methods to calculate matrix elements of correlation diagrams. When calculating polarizations, relativistic corrections ∼(αZ) 2 , where α - the constant of a fine structure, Z-nucleus charge, are taken into account
Energy Technology Data Exchange (ETDEWEB)
Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)
2014-05-15
Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR
Ding, E. J.
2015-06-01
The time-independent lattice Boltzmann algorithm (TILBA) is developed to calculate the hydrodynamic interactions between two particles in a Stokes flow. The TILBA is distinguished from the traditional lattice Boltzmann method in that a background matrix (BGM) is generated prior to the calculation. The BGM, once prepared, can be reused for calculations for different scenarios, and the computational cost for each such calculation will be significantly reduced. The advantage of the TILBA is that it is easy to code and can be applied to any particle shape without complicated implementation, and the computational cost is independent of the shape of the particle. The TILBA is validated and shown to be accurate by comparing calculation results obtained from the TILBA to analytical or numerical solutions for certain problems.
International Nuclear Information System (INIS)
Glushkov, A.V.
1994-01-01
Based on the method of effective potential involving the new polarization interaction potential calculated from polarization diagrams of the perturbation theory in the Thomas-Fermi approximation, the main parameters of the interatomic potentials (equilibrium distances, potential well depth) are evaluated for a system consisting of an alkali atom in the ground and excited states and of a mercury atom. The results of calculations of quasi-molecular terms for the A-Hg system, where A = Na, Cs, Fr, are reported, some of which are obtained for the first time. A comparison is made with available experimental and theoretical data. 29 refs., 2 figs., 1 tab
Ab initio calculation atomics ground state wave function for interactions Ion- Atom
International Nuclear Information System (INIS)
Shojaee, F.; Bolori zadeh, M. A.
2007-01-01
Ab initio calculation atomics ground state wave function for interactions Ion- Atom Atomic wave function expressed in a Slater - type basis obtained within Roothaan- Hartree - Fock for the ground state of the atoms He through B. The total energy is given for each atom.
Numerical Calculation of the Phase Space Density for the Strong-Strong Beam-Beam Interaction
International Nuclear Information System (INIS)
Sobol, A.; Ellison, J.A.
2003-01-01
We developed a parallel code to calculate the evolution of the 4D phase space density of two colliding beams, which are coupled via the collective strong-strong beam-beam interaction, in the absence of diffusion and damping, using the Perron-Frobenius (PF) operator technique
Energy Technology Data Exchange (ETDEWEB)
Filwett, R. J.; Desai, M. I. [University of Texas at San Antonio, San Antonio, TX (United States); Dayeh, M. A.; Broiles, T. W. [Southwest Research Institute, San Antonio, TX (United States)
2017-03-20
We have analyzed the ∼20–320 keV nucleon{sup −1} suprathermal (ST) heavy ion abundances in 41 corotating interaction regions (CIRs) observed by the Wind spacecraft from 1995 January to 2008 December. Our results are: (1) the CIR Fe/CNO and NeS/CNO ratios vary with the sunspot number, with values being closer to average solar energetic particle event values during solar maxima and lower than nominal solar wind values during solar minima. The physical mechanism responsible for the depleted abundances during solar minimum remains an open question. (2) The Fe/CNO increases with energy in the 6 events that occurred during solar maximum, while no such trends are observed for the 35 events during solar minimum. (3) The Fe/CNO shows no correlation with the average solar wind speed. (4) The Fe/CNO is well correlated with the corresponding upstream ∼20–320 keV nucleon{sup −1} Fe/CNO and not with the solar wind Fe/O measured by ACE in 31 events. Using the correlations between the upstream ∼20–40 keV nucleon{sup −1} Fe/CNO and the ∼20–320 keV nucleon{sup −1} Fe/CNO in CIRs, we estimate that, on average, the ST particles traveled ∼2 au along the nominal Parker spiral field line, which corresponds to upper limits for the radial distance of the source or acceleration location of ∼1 au beyond Earth orbit. Our results are consistent with those obtained from recent surveys, and confirm that CIR ST heavy ions are accelerated more locally, and are at odds with the traditional viewpoint that CIR ions seen at 1 au are bulk solar wind ions accelerated between 3 and 5 au.
International Nuclear Information System (INIS)
Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.; Sanuki, T.
2007-01-01
Using the 'modified DPMJET-III' model explained in the previous paper [T. Sanuki et al., preceding Article, Phys. Rev. D 75, 043005 (2007).], we calculate the atmospheric neutrino flux. The calculation scheme is almost the same as HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).], but the usage of the 'virtual detector' is improved to reduce the error due to it. Then we study the uncertainty of the calculated atmospheric neutrino flux summarizing the uncertainties of individual components of the simulation. The uncertainty of K-production in the interaction model is estimated using other interaction models: FLUKA'97 and FRITIOF 7.02, and modifying them so that they also reproduce the atmospheric muon flux data correctly. The uncertainties of the flux ratio and zenith angle dependence of the atmospheric neutrino flux are also studied
International Nuclear Information System (INIS)
Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.
2011-01-01
We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita et al., Radiation Measurements 41, 1080 (2006).]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).] a little better than DPMJET-III[S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1 GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 75, 043005 (2007).][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, 043006 (2007).]. Some improvements in the calculation of atmospheric neutrino flux are also reported.
International Nuclear Information System (INIS)
Artem’ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.
2016-01-01
We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10 -7 –10 -3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder
Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.
2016-01-01
We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.
Energy Technology Data Exchange (ETDEWEB)
Artem’ev, V. A., E-mail: niitm@inbox.ru [Research Institute of Materials Technology (Russian Federation); Nezvanov, A. Yu. [Moscow State Industrial University (Russian Federation); Nesvizhevsky, V. V. [Institut Max von Laue—Paul Langevin (France)
2016-01-15
We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10{sup -7}–10{sup -3} eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.
Exact calculation of three-body contact interaction to second order
International Nuclear Information System (INIS)
Kaiser, N.
2012-01-01
For a system of fermions with a three-body contact interaction the second-order contributions to the energy per particle anti E(k f ) are calculated exactly. The three-particle scattering amplitude in the medium is derived in closed analytical form from the corresponding two-loop rescattering diagram. We compare the (genuine) second-order three-body contribution to anti E(k f )∝k f 10 with the second-order term due to the density-dependent effective two-body interaction, and find that the latter term dominates. The results of the present study are of interest for nuclear many-body calculations where chiral three-nucleon forces are treated beyond leading order via a density-dependent effective two-body interaction. (orig.)
Convergence acceleration for partitioned simulations of the fluid-structure interaction in arteries
Radtke, Lars; Larena-Avellaneda, Axel; Debus, Eike Sebastian; Düster, Alexander
2016-06-01
We present a partitioned approach to fluid-structure interaction problems arising in analyses of blood flow in arteries. Several strategies to accelerate the convergence of the fixed-point iteration resulting from the coupling of the fluid and the structural sub-problem are investigated. The Aitken relaxation and variants of the interface quasi-Newton -least-squares method are applied to different test cases. A hybrid variant of two well-known variants of the interface quasi-Newton-least-squares method is found to perform best. The test cases cover the typical boundary value problem faced when simulating the fluid-structure interaction in arteries, including a strong added mass effect and a wet surface which accounts for a large part of the overall surface of each sub-problem. A rubber-like Neo Hookean material model and a soft-tissue-like Holzapfel-Gasser-Ogden material model are used to describe the artery wall and are compared in terms of stability and computational expenses. To avoid any kind of locking, high-order finite elements are used to discretize the structural sub-problem. The finite volume method is employed to discretize the fluid sub-problem. We investigate the influence of mass-proportional damping and the material model chosen for the artery on the performance and stability of the acceleration strategies as well as on the simulation results. To show the applicability of the partitioned approach to clinical relevant studies, the hemodynamics in a pathologically deformed artery are investigated, taking the findings of the test case simulations into account.
Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils
International Nuclear Information System (INIS)
Allen, M
2004-01-01
The discovery that ultra-intense laser pulses (I > 10 18 W/cm 2 ) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 10 18 W/cm 2 ), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by U p = ([1 + Iλ 2 /1.3 x 10 18 ] 1/2 - 1) m o c 2 , where Iλ 2 is the irradiance in W (micro)m 2 /cm 2 and m o c 2 is the electron rest mass. At laser irradiance of Iλ 2 ∼ 10 20 W (micro)m 2 /cm 2 , the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target. In this thesis we present several experiments that study the accelerated ions by affecting the contamination layer from which they originate. Radiative heating was employed as a method of removing contamination from palladium targets doped
Study of cosmic ray interaction model based on atmospheric muons for the neutrino flux calculation
International Nuclear Information System (INIS)
Sanuki, T.; Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.
2007-01-01
We have studied the hadronic interaction for the calculation of the atmospheric neutrino flux by summarizing the accurately measured atmospheric muon flux data and comparing with simulations. We find the atmospheric muon and neutrino fluxes respond to errors in the π-production of the hadronic interaction similarly, and compare the atmospheric muon flux calculated using the HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).] code with experimental measurements. The μ + +μ - data show good agreement in the 1∼30 GeV/c range, but a large disagreement above 30 GeV/c. The μ + /μ - ratio shows sizable differences at lower and higher momenta for opposite directions. As the disagreements are considered to be due to assumptions in the hadronic interaction model, we try to improve it phenomenologically based on the quark parton model. The improved interaction model reproduces the observed muon flux data well. The calculation of the atmospheric neutrino flux will be reported in the following paper [M. Honda et al., Phys. Rev. D 75, 043006 (2007).
You, Y.; Yan, M. F.
2013-05-01
C and N atoms are the most frequent foreign interstitial atoms (FIAs), and often incorporated into the surface layers of steels to enhance their properties by thermochemical treatments. Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb and Mo are the most common alloying elements in steels, also can be called foreign substitutional atoms (FSAs). The FIA and FSA interactions play an important role in the diffusion of C and N atoms, and the microstructures and mechanical properties of surface modified layers. Ab initio calculations based on the density functional theory are carried out to investigate FIA interactions with FSA in ferromagnetic bcc iron. The FIA-FSA interactions are analyzed systematically from five aspects, including interaction energies, density of states (DOS), bond populations, electron density difference maps and local magnetic moments.
Yang, Tzuhsiung; Berry, John F
2018-06-04
The computation of nuclear second derivatives of energy, or the nuclear Hessian, is an essential routine in quantum chemical investigations of ground and transition states, thermodynamic calculations, and molecular vibrations. Analytic nuclear Hessian computations require the resolution of costly coupled-perturbed self-consistent field (CP-SCF) equations, while numerical differentiation of analytic first derivatives has an unfavorable 6 N ( N = number of atoms) prefactor. Herein, we present a new method in which grid computing is used to accelerate and/or enable the evaluation of the nuclear Hessian via numerical differentiation: NUMFREQ@Grid. Nuclear Hessians were successfully evaluated by NUMFREQ@Grid at the DFT level as well as using RIJCOSX-ZORA-MP2 or RIJCOSX-ZORA-B2PLYP for a set of linear polyacenes with systematically increasing size. For the larger members of this group, NUMFREQ@Grid was found to outperform the wall clock time of analytic Hessian evaluation; at the MP2 or B2LYP levels, these Hessians cannot even be evaluated analytically. We also evaluated a 156-atom catalytically relevant open-shell transition metal complex and found that NUMFREQ@Grid is faster (7.7 times shorter wall clock time) and less demanding (4.4 times less memory requirement) than an analytic Hessian. Capitalizing on the capabilities of parallel grid computing, NUMFREQ@Grid can outperform analytic methods in terms of wall time, memory requirements, and treatable system size. The NUMFREQ@Grid method presented herein demonstrates how grid computing can be used to facilitate embarrassingly parallel computational procedures and is a pioneer for future implementations.
Energy Technology Data Exchange (ETDEWEB)
Wang, Y; Mazur, T; Green, O; Hu, Y; Wooten, H; Yang, D; Zhao, T; Mutic, S; Li, H [Washington University School of Medicine, St. Louis, MO (United States)
2015-06-15
Purpose: To build a fast, accurate and easily-deployable research platform for Monte-Carlo dose calculations. We port the dose calculation engine PENELOPE to C++, and accelerate calculations using GPU acceleration. Simulations of a Co-60 beam model provided by ViewRay demonstrate the capabilities of the platform. Methods: We built software that incorporates a beam model interface, CT-phantom model, GPU-accelerated PENELOPE engine, and GUI front-end. We rewrote the PENELOPE kernel in C++ (from Fortran) and accelerated the code on a GPU. We seamlessly integrated a Co-60 beam model (obtained from ViewRay) into our platform. Simulations of various field sizes and SSDs using a homogeneous water phantom generated PDDs, dose profiles, and output factors that were compared to experiment data. Results: With GPU acceleration using a dated graphics card (Nvidia Tesla C2050), a highly accurate simulation – including 100*100*100 grid, 3×3×3 mm3 voxels, <1% uncertainty, and 4.2×4.2 cm2 field size – runs 24 times faster (20 minutes versus 8 hours) than when parallelizing on 8 threads across a new CPU (Intel i7-4770). Simulated PDDs, profiles and output ratios for the commercial system agree well with experiment data measured using radiographic film or ionization chamber. Based on our analysis, this beam model is precise enough for general applications. Conclusions: Using a beam model for a Co-60 system provided by ViewRay, we evaluate a dose calculation platform that we developed. Comparison to measurements demonstrates the promise of our software for use as a research platform for dose calculations, with applications including quality assurance and treatment plan verification.
International Nuclear Information System (INIS)
Wang, Y; Mazur, T; Green, O; Hu, Y; Wooten, H; Yang, D; Zhao, T; Mutic, S; Li, H
2015-01-01
Purpose: To build a fast, accurate and easily-deployable research platform for Monte-Carlo dose calculations. We port the dose calculation engine PENELOPE to C++, and accelerate calculations using GPU acceleration. Simulations of a Co-60 beam model provided by ViewRay demonstrate the capabilities of the platform. Methods: We built software that incorporates a beam model interface, CT-phantom model, GPU-accelerated PENELOPE engine, and GUI front-end. We rewrote the PENELOPE kernel in C++ (from Fortran) and accelerated the code on a GPU. We seamlessly integrated a Co-60 beam model (obtained from ViewRay) into our platform. Simulations of various field sizes and SSDs using a homogeneous water phantom generated PDDs, dose profiles, and output factors that were compared to experiment data. Results: With GPU acceleration using a dated graphics card (Nvidia Tesla C2050), a highly accurate simulation – including 100*100*100 grid, 3×3×3 mm3 voxels, <1% uncertainty, and 4.2×4.2 cm2 field size – runs 24 times faster (20 minutes versus 8 hours) than when parallelizing on 8 threads across a new CPU (Intel i7-4770). Simulated PDDs, profiles and output ratios for the commercial system agree well with experiment data measured using radiographic film or ionization chamber. Based on our analysis, this beam model is precise enough for general applications. Conclusions: Using a beam model for a Co-60 system provided by ViewRay, we evaluate a dose calculation platform that we developed. Comparison to measurements demonstrates the promise of our software for use as a research platform for dose calculations, with applications including quality assurance and treatment plan verification
International Nuclear Information System (INIS)
Shutt, R.P.; Rehak, M.L.
1990-01-01
For superconducting magnets, one needs many bellows for connection of various helium cooling transfer lines in addition to beam tube bellows. There could be approximately 10,000 magnet interconnection bellows in the SSC exposed to an internal pressure. When axially compressed or internally pressurized, bellows can become unstable, leading to gross distortion or complete failure. If several bellows are contained in an assembly, failure modes might interact. If designed properly, large bellows can be a very feasible possibility for connecting the large tubular shells that support the magnet iron yokes and superconducting coils and contain supercritical helium for magnet cooling. We present here (1) a spring-supported bellows model, in order to develop necessary design features for bellows and end supports so that instabilities will not occur in the bellows pressure operating region, including some margin, (2) a model of three superconducting accelerator magnets connected by two large bellows, in order to ascertain that support requirements are satisfied and in order to study interaction effects between the two bellows. Reliability of bellows for our application will be stressed. 3 refs., 4 figs
Kumar, Vishwajeet; Kumar, Aarti; Ghosh, Amit Kumar; Samphel, Rigzin; Yadav, Ranjanaa; Yeung, Diana; Darmstadt, Gary L
2015-08-01
Despite significant advancements in the scientific evidence base of interventions to improve newborn survival, we have not yet been able to "bend the curve" to markedly accelerate global rates of reduction in newborn mortality. The ever-widening gap between discovery of scientific best practices and their mass adoption by families (the evidence-practice gap) is not just a matter of improving the coverage of health worker-community interactions. The design of the interactions themselves must be guided by sound behavioral science approaches such that they lead to mass adoption and impact at a large scale. The main barrier to the application of scientific approaches to behavior change is our inability to "unbox" the "black box" of family health behaviors in community settings. The authors argue that these are not black boxes, but in fact thoughtfully designed community systems that have been designed and upheld, and have evolved over many years keeping in mind a certain worldview and a common social purpose. An empathetic understanding of these community systems allows us to deconstruct the causal pathways of existing behaviors, and re-engineer them to achieve desired outcomes. One of the key reasons for the failure of interactions to translate into behavior change is our failure to recognize that the content, context, and process of interactions need to be designed keeping in mind an organized community system with a very different worldview and beliefs. In order to improve the adoption of scientific best practices by communities, we need to adapt them to their culture by leveraging existing beliefs, practices, people, context, and skills. The authors present a systems approach for community-centric design of interactions, highlighting key principles for achieving intrinsically motivated, sustained change in social norms and family health behaviors, elucidated with progressive theories from systems thinking, management sciences, cross-cultural psychology, learning
International Nuclear Information System (INIS)
Papp, Z.; Plessas, W.
1996-01-01
We demonstrate the feasibility and efficiency of the Coulomb-Sturmian separable expansion method for generating accurate solutions of the Faddeev equations. Results obtained with this method are reported for several benchmark cases of bosonic and fermionic three-body systems. Correct bound-state results in agreement with the ones established in the literature are achieved for short-range interactions. We outline the formalism for the treatment of three-body Coulomb systems and present a bound-state calculation for a three-boson system interacting via Coulomb plus short-range forces. The corresponding result is in good agreement with the answer from a recent stochastic-variational-method calculation. copyright 1996 The American Physical Society
Large-scale ab initio configuration interaction calculations for light nuclei
International Nuclear Information System (INIS)
Maris, Pieter; Potter, Hugh; Vary, James P; Aktulga, H Metin; Ng, Esmond G; Yang Chao; Caprio, Mark A; Çatalyürek, Ümit V; Saule, Erik; Oryspayev, Dossay; Sosonkina, Masha; Zhou Zheng
2012-01-01
In ab-initio Configuration Interaction calculations, the nuclear wavefunction is expanded in Slater determinants of single-nucleon wavefunctions and the many-body Schrodinger equation becomes a large sparse matrix problem. The challenge is to reach numerical convergence to within quantified numerical uncertainties for physical observables using finite truncations of the infinite-dimensional basis space. We discuss strategies for constructing and solving the resulting large sparse matrix eigenvalue problems on current multicore computer architectures. Several of these strategies have been implemented in the code MFDn, a hybrid MPI/OpenMP Fortran code for ab-initio nuclear structure calculations that can scale to 100,000 cores and more. Finally, we will conclude with some recent results for 12 C including emerging collective phenomena such as rotational band structures using SRG evolved chiral N3LO interactions.
Energy Technology Data Exchange (ETDEWEB)
Bross, David H.; Parmar, Payal; Peterson, Kirk A., E-mail: kipeters@wsu.edu [Department of Chemistry, Washington State University, Pullman, Washington 99164-4630 (United States)
2015-11-14
The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP{sub 3} through IP{sub 6}.
Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings
Azadi, Sam; Kühne, T. D.
2018-05-01
The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.
GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI.
Chi, Jieru; Liu, Feng; Weber, Ewald; Li, Yu; Crozier, Stuart
2011-06-01
The analysis of high-field RF field-tissue interactions requires high-performance finite-difference time-domain (FDTD) computing. Conventional CPU-based FDTD calculations offer limited computing performance in a PC environment. This study presents a graphics processing unit (GPU)-based parallel-computing framework, producing substantially boosted computing efficiency (with a two-order speedup factor) at a PC-level cost. Specific details of implementing the FDTD method on a GPU architecture have been presented and the new computational strategy has been successfully applied to the design of a novel 8-element transceive RF coil system at 9.4 T. Facilitated by the powerful GPU-FDTD computing, the new RF coil array offers optimized fields (averaging 25% improvement in sensitivity, and 20% reduction in loop coupling compared with conventional array structures of the same size) for small animal imaging with a robust RF configuration. The GPU-enabled acceleration paves the way for FDTD to be applied for both detailed forward modeling and inverse design of MRI coils, which were previously impractical.
Real-space, mean-field algorithm to numerically calculate long-range interactions
Cadilhe, A.; Costa, B. V.
2016-02-01
Long-range interactions are known to be of difficult treatment in statistical mechanics models. There are some approaches that introduce a cutoff in the interactions or make use of reaction field approaches. However, those treatments suffer the illness of being of limited use, in particular close to phase transitions. The use of open boundary conditions allows the sum of the long-range interactions over the entire system to be done, however, this approach demands a sum over all degrees of freedom in the system, which makes a numerical treatment prohibitive. Techniques like the Ewald summation or fast multipole expansion account for the exact interactions but are still limited to a few thousands of particles. In this paper we introduce a novel mean-field approach to treat long-range interactions. The method is based in the division of the system in cells. In the inner cell, that contains the particle in sight, the 'local' interactions are computed exactly, the 'far' contributions are then computed as the average over the particles inside a given cell with the particle in sight for each of the remaining cells. Using this approach, the large and small cells limits are exact. At a fixed cell size, the method also becomes exact in the limit of large lattices. We have applied the procedure to the two-dimensional anisotropic dipolar Heisenberg model. A detailed comparison between our method, the exact calculation and the cutoff radius approximation were done. Our results show that the cutoff-cell approach outperforms any cutoff radius approach as it maintains the long-range memory present in these interactions, contrary to the cutoff radius approximation. Besides that, we calculated the critical temperature and the critical behavior of the specific heat of the anisotropic Heisenberg model using our method. The results are in excellent agreement with extensive Monte Carlo simulations using Ewald summation.
Nuclear structure calculations in $^{20}$Ne with No-Core Configuration-Interaction model
Konieczka, Maciej; Satuła, Wojciech
2016-01-01
Negative parity states in $^{20}$Ne and Gamow-Teller strength distribution for the ground-state beta-decay of $^{20}$Na are calculated for the very first time using recently developed No-Core Configuration-Interaction model. The approach is based on multi-reference density functional theory involving isospin and angular-momentum projections. Advantages and shortcomings of the method are briefly discussed.
Configuration interaction calculations of positron binding to Be({sup 3}P )
Energy Technology Data Exchange (ETDEWEB)
Bromley, M.W.J. [Department of Physics, San Diego State University, San Diego, CA 92182 (United States)]. E-mail: mbromley@physics.sdsu.edu; Mitroy, J. [Faculty of Technology, Charles Darwin University, Darwin, NT 0909 (Australia)]. E-mail: jxm107@rsphysse.anu.edu.au
2006-06-15
The configuration interaction method is applied to investigate the possibility of positron binding to the metastable beryllium (1s{sup 2}2s2p {sup 3}P ) state. The largest calculation obtained an estimated energy that was unstable by 0.00014 Hartree with respect to the Ps + Be{sup +}(2s) lowest dissociation channel. It is likely that positron binding to parent states with non-zero angular momentum is inhibited by centrifugal barriers.
Plastid-Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae.
Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K
2016-06-27
Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid-nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (dN) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Plastid–Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae
Weng, Mao-Lun; Ruhlman, Tracey A.; Jansen, Robert K.
2016-01-01
Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid–nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (dN) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits. PMID:27190001
Emergence of the mass discrepancy-acceleration relation from dark matter-baryon interactions
Famaey, Benoit; Khoury, Justin; Penco, Riccardo
2018-03-01
The observed tightness of the mass discrepancy-acceleration relation (MDAR) poses a fine-tuning challenge to current models of galaxy formation. We propose that this relation could arise from collisional interactions between baryons and dark matter (DM) particles, without the need for modification of gravity or ad hoc feedback processes. We assume that these interactions satisfy the following three conditions: (i) the relaxation time of DM particles is comparable to the dynamical time in disk galaxies; (ii) DM exchanges energy with baryons due to elastic collisions; (iii) the product between the baryon-DM cross section and the typical energy exchanged in a collision is inversely proportional to the DM number density. As a proof of principle, we present an example of a particle physics model that gives a DM-baryon cross section with the desired density and velocity dependence. For consistency with direct detection constraints, our DM particles must be either very light (m ll mb) or very heavy (mgg mb), corresponding respectively to heating and cooling of DM by baryons. In both cases, our mechanism applies and an equilibrium configuration can in principle be reached. In this exploratory paper, we focus on the heavy DM/cooling case because it is technically simpler, since the average energy exchanged turns out to be approximately constant throughout galaxies. Under these assumptions, we find that rotationally-supported disk galaxies could naturally settle to equilibrium configurations satisfying a MDAR at all radii without invoking finely tuned feedback processes. We also discuss issues related to the small scale clumpiness of baryons, as well as predictions for pressure-supported systems. We argue in particular that galaxy clusters do not follow the MDAR despite being DM-dominated because they have not reached their equilibrium configuration. Finally, we revisit existing phenomenological, astrophysical and cosmological constraints on baryon-DM interactions in light
International Nuclear Information System (INIS)
Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Nagashima, T.; Takano, M.; Barada, D.; Ma, Y. Y.
2016-01-01
A collimated ion beam is generated through the interaction between ultra-intense laser pulse and a double layer plasma. The maximum energy is above 1 GeV and the total charge of high energy protons is about several tens of nC/μm. The double layer plasma is combined with an underdense plasma and a thin overdense one. The wakefield traps and accelerates a bunch of electrons to high energy in the first underdense slab. When the well collimated electron beam accelerated by the wakefield penetrates through the second overdense slab, it enhances target normal sheath acceleration (TNSA) and breakout after-burner (BOA) regimes. The mechanism is simulated and analyzed by 2.5 dimensional Particle-in-cell code. Compared with single target TNSA or BOA, both the acceleration gradient and energy transfer efficiency are higher in the double layer regime. (paper)
Nascimento, Érica C M; Oliva, Mónica; Andrés, Juan
2018-05-01
In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.
Nascimento, Érica C. M.; Oliva, Mónica; Andrés, Juan
2018-05-01
In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.
Large-dimension configuration-interaction calculations of positron binding to the group-II atoms
International Nuclear Information System (INIS)
Bromley, M. W. J.; Mitroy, J.
2006-01-01
The configuration-interaction (CI) method is applied to the calculation of the structures of a number of positron binding systems, including e + Be, e + Mg, e + Ca, and e + Sr. These calculations were carried out in orbital spaces containing about 200 electron and 200 positron orbitals up to l=12. Despite the very large dimensions, the binding energy and annihilation rate converge slowly with l, and the final values do contain an appreciable correction obtained by extrapolating the calculation to the l→∞ limit. The binding energies were 0.00317 hartree for e + Be, 0.0170 hartree for e + Mg, 0.0189 hartree for e + Ca, and 0.0131 hartree for e + Sr
International Nuclear Information System (INIS)
Green, Anne M.
2002-01-01
Competitive limits on the weakly interacting massive particle (WIMP) spin-independent scattering cross section are currently being produced by 76 Ge detectors originally designed to search for neutrinoless double beta decay, such as the Heidelberg-Moscow and IGEX experiments. In the absence of background subtraction, limits on the WIMP interaction cross section are set by calculating the upper confidence limit on the theoretical event rate, given the observed event rate. The standard analysis technique involves calculating the 90% upper confidence limit on the number of events in each bin, and excluding any set of parameters (WIMP mass and cross section) which produces a theoretical event rate for any bin which exceeds the 90% upper confidence limit on the event rate for that bin. We show that, if there is more than one energy bin, this produces exclusion limits that are actually at a lower degree of confidence than 90%, and are hence erroneously tight. We formulate criteria which produce true 90% confidence exclusion limits in these circumstances, including calculating the individual bin confidence limit for which the overall probability that no bins exceed this confidence limit is 90% and calculating the 90% minimum confidence limit on the number of bins which exceed their individual bin 90% confidence limits. We then compare the limits on the WIMP cross section produced by these criteria with those found using the standard technique, using data from the Heidelberg-Moscow and IGEX experiments
Hydrogen interaction with ferrite/cementite interface: ab initio calculations and thermodynamics
Mirzoev, A. A.; Verkhovykh, A. V.; Okishev, K. Yu.; Mirzaev, D. A.
2018-02-01
The paper presents the results of ab initio modelling of the interaction of hydrogen atoms with ferrite/cementite interfaces in steels and thermodynamic assessment of the ability of interfaces to trap hydrogen atoms. Modelling was performed using the density functional theory with generalised gradient approximation (GGA'96), as implemented in WIEN2k package. An Isaichev-type orientation relationship between the two phases was accepted, with a habit plane (101)c ∥ (112)α. The supercell contained 64 atoms (56 Fe and 8 C). The calculated formation energies of ferrite/cementite interface were 0.594 J/m2. The calculated trapping energy at cementite interstitial was 0.18 eV, and at the ferrite/cementite interface - 0.30 eV. Considering calculated zero-point energy, the trapping energies at cementite interstitial and ferrite/cementite interface become 0.26 eV and 0.39 eV, respectively. The values are close to other researchers' data. These results were used to construct a thermodynamic description of ferrite/cementite interface-hydrogen interaction. Absorption calculations using the obtained trapping energy values showed that even thin lamellar ferrite/cementite mixture with an interlamellar spacing smaller than 0.1 μm has noticeable hydrogen trapping ability at a temperature below 400 K.
Effectiveness of personalized and interactive health risk calculators: a randomized trial.
Harle, Christopher A; Downs, Julie S; Padman, Rema
2012-01-01
Risk calculators are popular websites that provide individualized disease risk assessments to the public. Little is known about their effect on risk perceptions and health behavior. This study sought to test whether risk calculator features-namely, personalized estimates of one's disease risk and feedback about the effects of risk-mitigating behaviors-improve risk perceptions and motivate healthy behavior. A web-based experimental study using simple randomization was conducted to compare the effects of 3 prediabetes risk communication websites. Setting The study was conducted in the context of ongoing health promotion activities sponsored by a university's human resources office. Patients Participants were adult university employees. Intervention The control website presented nonindividualized risk information. The personalized noninteractive website presented individualized risk calculations. The personalized interactive website presented individualized risk calculations and feedback about the effects of hypothetical risk-mitigating behaviors. Measurements Pre- and postintervention risk perceptions were measured in absolute and relative terms. Health behavior was measured by assessing participant interest in follow-up preventive health services. On average, risk perceptions decreased by 2%. There was no general effect of personalization or interactivity in aligning subjective risk perceptions with objective risk calculations or in increasing healthy behaviors. However, participants who previously overestimated their risk reduced their perceptions by 16%. This was a significantly larger change than the 2% increase by participants who underestimated their risk. Limitations Results may not generalize to different populations, different diseases, or longer-term outcomes. Compared to nonpersonalized information, individualized risk calculators had little positive effect on prediabetes risk perception accuracy or health behavior. Risk perception accuracy was improved in
International Nuclear Information System (INIS)
Coddington, P.; Fishlock, T.P.; Jakeman, D.
1976-01-01
The possible consequences of molten fuel sodium interactions are calculated using various modelling assumptions and key parameters. And the significance of the choice of assumptions and parameters are discussed. As for subassembly geometry, the results of one-dimensional code EXPEL are compared with the solutions of the one-dimensional Lagrangian equations of a compressible fluid (TOPAL was used). The adequacy of acoustic approximation used in EXPEL is discussed here. The effects of heat transfer time constant on the behaviour of peak pressure are also analyzed by parametric surveys. Other items investigated are the length and position of the interacting zone, the existence of a non-condensable gas volume, and the vapour condensation on cold clad. As for whole core geometry, a simple dynamical model of arc expanding spherical interacting zone immersed in a semi-infinite sea of cold liquid was used (SHORE code). Within the interacting zone a simple heat transfer model (including a heat transfer time and a fragmentation time) was adopted. Vapour blanketing was considered in a number of ways. Representative results of the calculations are given in a table. Containment studies were also performed for ''ducted'' design and ''open pool'' design. The development of new codes in the U.K. for these analysis are also briefly described. (Aoki, K.)
Calculation of the hyperfine interaction using an effective-operator form of many-body theory
International Nuclear Information System (INIS)
Garpman, S.; Lindgren, I.; Lindgren, J.; Morrison, J.
1975-01-01
The effective-operator form of many-body theory is reviewed and applied to the calculation of the hyperfine structure. Numerical results are given for the 2p, 3p, and 4p excited states of Li and the 3p state of Na. This is the first complete calculation of the hyperfine structure using an effective-operator form of perturbation theory. As in the Brueckner-Goldstone form of many-body theory, the various terms in the perturbation expansion are represented by Feynman diagrams which correspond to basic physical processes. The angular part of the perturbation diagrams are evaluated by taking advantage of the formal analogy between the Feynman diagrams and the angular-momentum diagrams, introduced by Jucys et al. The radial part of the diagrams is calculated by solving one- and two-particle equations for the particular linear combination of excited states that contribute to the Feynman diagrams. In this way all second- and third-order effects are accurately evaluated without explicitly constructing the excited orbitals. For the 2p state of Li our results are in agreement with the calculations of Nesbet and of Hameed and Foley. However, our quadrupole calculation disagrees with the work of Das and co-workers. The many-body results for Li and Na are compared with semiempirical methods for evaluating the quadrupole moment from the hyperfine interaction, and a new quadrupole moment of 23 Na is given
Dissolved organic carbon--contaminant interaction descriptors found by 3D force field calculations.
Govers, H A J; Krop, H B; Parsons, J R; Tambach, T; Kubicki, J D
2002-03-01
Enthalpies of transfer at 300 K of various partitioning processes were calculated in order to study the suitability of 3D force fields for the calculation of partitioning constants. A 3D fulvic acid (FA) model of dissolved organic carbon (DOC) was built in a MM+ force field using AMI atomic charges and geometrical optimization (GO). 3,5-Dichlorobiphenyl (PCB14), 4,4'-dichlorobiphenyl (PCB15), 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)-ethane (PPDDT) and 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (Atrazine) were inserted into different sites and their interaction energies with FA were calculated. Energies of hydration were calculated and subtracted from FA-contaminant interactions of selected sites. The resulting values for the enthalpies of transfer from water to DOC were 2.8, -1.4, -6.4 and 0.0 kcal/mol for PCB 14, PCB15, PPDDT and Atrazine, respectively. The value of PPDDT compared favorably with the experimental value of -5.0 kcal/mol. Prior to this, the method was studied by the calculation of the enthalpies of vaporization and aqueous solution using various force fields. In the MM + force field GO predicted enthalpies of vaporization deviated by +0.7 (PCB14), +3.6 (PCB15) and -0.7 (PPDDT)kcal/mol from experimental data, whereas enthalpies of aqueous solution deviated by -3.6 (PCB14), +5.8 (PCB15) and +3.7 (PPDDT) kcal/mol. Only for PCB14 the wrong sign of this enthalpy value was predicted. Potential advantages and limitations of the approach were discussed.
On nonlocally interacting metrics, and a simple proposal for cosmic acceleration
Vardanyan, Valeri; Akrami, Yashar; Amendola, Luca; Silvestri, Alessandra
2018-03-01
We propose a simple, nonlocal modification to general relativity (GR) on large scales, which provides a model of late-time cosmic acceleration in the absence of the cosmological constant and with the same number of free parameters as in standard cosmology. The model is motivated by adding to the gravity sector an extra spin-2 field interacting nonlocally with the physical metric coupled to matter. The form of the nonlocal interaction is inspired by the simplest form of the Deser-Woodard (DW) model, α R1/squareR, with one of the Ricci scalars being replaced by a constant m2, and gravity is therefore modified in the infrared by adding a simple term of the form m21/squareR to the Einstein-Hilbert term. We study cosmic expansion histories, and demonstrate that the new model can provide background expansions consistent with observations if m is of the order of the Hubble expansion rate today, in contrast to the simple DW model with no viable cosmology. The model is best fit by w0~‑1.075 and wa~0.045. We also compare the cosmology of the model to that of Maggiore and Mancarella (MM), m2R1/square2R, and demonstrate that the viable cosmic histories follow the standard-model evolution more closely compared to the MM model. We further demonstrate that the proposed model possesses the same number of physical degrees of freedom as in GR. Finally, we discuss the appearance of ghosts in the local formulation of the model, and argue that they are unphysical and harmless to the theory, keeping the physical degrees of freedom healthy.
SHOCK-CLOUD INTERACTION AND PARTICLE ACCELERATION IN THE SOUTHWESTERN LIMB OF SN 1006
Energy Technology Data Exchange (ETDEWEB)
Miceli, M.; Orlando, S.; Bocchino, F. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Acero, F. [ORAU/NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Dubner, G. [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Decourchelle, A., E-mail: miceli@astropa.unipa.it [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, F-91191 Gif-sur-Yvette (France)
2014-02-20
The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment despite interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentation in the southwestern part of the shock front and the H I maps show an isolated (southwestern) cloud, having the same velocity as the northwestern cloud, whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive H I data, obtained by combining single-dish and interferometric observations. We found that the best-fit value of N {sub H} derived from the X-ray spectra significantly increases in regions corresponding to the southwestern cloud, while the cutoff energy of the synchrotron emission decreases. The N {sub H} variation corresponds perfectly with the H I column density of the southwestern cloud, as measured from the radio data. The decrease in the cutoff energy at the indentation clearly reveals that the back side of the cloud is actually interacting with the remnant. The southwestern limb therefore presents a unique combination of efficient particle acceleration and high ambient density, thus being the most promising region for γ-ray hadronic emission in SN 1006. We estimate that such emission will be detectable with the Fermi telescope within a few years.
SHOCK-CLOUD INTERACTION AND PARTICLE ACCELERATION IN THE SOUTHWESTERN LIMB OF SN 1006
International Nuclear Information System (INIS)
Miceli, M.; Orlando, S.; Bocchino, F.; Acero, F.; Dubner, G.; Decourchelle, A.
2014-01-01
The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment despite interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentation in the southwestern part of the shock front and the H I maps show an isolated (southwestern) cloud, having the same velocity as the northwestern cloud, whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive H I data, obtained by combining single-dish and interferometric observations. We found that the best-fit value of N H derived from the X-ray spectra significantly increases in regions corresponding to the southwestern cloud, while the cutoff energy of the synchrotron emission decreases. The N H variation corresponds perfectly with the H I column density of the southwestern cloud, as measured from the radio data. The decrease in the cutoff energy at the indentation clearly reveals that the back side of the cloud is actually interacting with the remnant. The southwestern limb therefore presents a unique combination of efficient particle acceleration and high ambient density, thus being the most promising region for γ-ray hadronic emission in SN 1006. We estimate that such emission will be detectable with the Fermi telescope within a few years
Attractive PHHP interactions revealed by state-of-the-art ab initio calculations.
Yourdkhani, Sirous; Jabłoński, Mirosław; Echeverría, Jorge
2017-10-25
We report in this work a combined structural and state-of-the-art computational study of homopolar P-HH-P intermolecular contacts. Database surveys have shown the abundance of such surprisingly unexplored contacts, which are usually accompanied by other weak interactions in the solid state. By means of a detailed theoretical study utilizing SAPT(DFT), MP2, SCS-MP2, MP2C and CCSD(T) methods and both aug-cc-pVXZ and aug-cc-pCVXZ (X = D, T, Q, 5) basis sets as well as extrapolation to the CBS limit, we have shown that P-HH-P contacts are indeed attractive and considerably strong. SAPT(DFT) calculations have revealed the dispersive nature of the P-HH-P interaction with only minor contribution of the inductive term, whereas the first-order electrostatic term is clearly overbalanced by the first-order exchange energy. In general the computed interaction energies follow the trend: E ≈ E < E < E. Our results have also shown that the aug-cc-pVDZ (or aug-cc-pCVDZ) basis set is not yet well balanced and that the second-order dispersion energy term is the slowest converging among all SAPT(DFT) energy components. Compared to aug-cc-pVXZ basis sets, their core-correlation counterparts have a modest influence on all supermolecular interaction energies and a negligible influence on both the SAPT(DFT) interaction energy and its components.
Calculation of the dispersion-dipole coefficients for interactions between H, He, and H2
International Nuclear Information System (INIS)
Bishop, D.M.; Pipin, J.
1993-01-01
Collisions between atoms and molecules create an induced dipole moment which, at long range separations, stems, in part, from the van der Waals interactions between the colliding species. This contribution is known as the dispersion dipole moment and is of the order R -7 , where R is the separation between particles. Although there have been several approximate calculations of the dispersion-dipole coefficients which govern this contribution, and are the counterparts to the van der Waals dispersion-energy coefficients, there have been few ab initio calculations. In this article we present highly accurate results, based on explicitly electron-correlated wave functions, for the dispersion-dipole coefficients pertaining to interactions between pairs chosen from H, He, and H 2 . We also obtain values with some of the currently used approximate formulas. A comparison shows that these values differ, in general, by a significant amount (∼20--∼40 %) from the accurate ones. We also tabulate values of the dipole--dipole-quadrupole polarizability tensor (B) for imaginary frequency (iω) for a range of frequencies appropriate to a 64-point Gauss--Legendre quadrature for H, He, and H 2 . These values were used in certain numerical integrations we made to verify our original results which had been obtained by analytic integration---they may, however, be useful in other contexts. For H--H 2 and H 2 --H 2 , these are the only ab initio calculations of the dispersion-dipole coefficients of which we are aware
International Nuclear Information System (INIS)
Wieslander, Elinore; Knoeoes, Tommy
2006-01-01
By introducing Monte Carlo (MC) techniques to the verification procedure of dose calculation algorithms in treatment planning systems (TPSs), problems associated with conventional measurements can be avoided and properties that are considered unmeasurable can be studied. The aim of the study is to implement a virtual accelerator, based on MC simulations, to evaluate the performance of a dose calculation algorithm for electron beams in a commercial TPS. The TPS algorithm is MC based and the virtual accelerator is used to study the accuracy of the algorithm in water phantoms. The basic test of the implementation of the virtual accelerator is successful for 6 and 12 MeV (γ < 1.0, 0.02 Gy/2 mm). For 18 MeV, there are problems in the profile data for some of the applicators, where the TPS underestimates the dose. For fields equipped with patient-specific inserts, the agreement is generally good. The exception is 6 MeV where there are slightly larger deviations. The concept of the virtual accelerator is shown to be feasible and has the potential to be a powerful tool for vendors and users
Influence of six-quark bags on the NN interaction in a resonating group scattering calculation
International Nuclear Information System (INIS)
Zhang Zongye; Braeuer, K.; Faessler, A.; Shimizu, K.
1985-01-01
The influence of six-quark bags oin the nucleon-nucleon (NN) interaction is studied in a dynamical calculation of the NN scattering process. The NN interaction is described by the exchange of gluons and pions between quarks and a phenomenological sigma-meson exchange between nucleons. The quark wave functions are harmonic oscillators and the relative wave function between the two nucleons is determined by the resonating group method. At short distances the NN system is allowed to fuse to a six-quark bag where all six quarks are in a ground state or where two quarks are in excited Op states. The sizes of these six-quark bags are dynamical parameters in the resonating group calculation allowing for spatial polarisation effects during the interaction. The S-wave NN scattering data can be reproduced by adjusting the sigma-coupling strength. The main result is that the six-quark bags with an increased radius have a large influence on the NN scattering process. (orig.)
Ring-diagram calculations of normal and spin-polarized 3He using the Aziz interactions
International Nuclear Information System (INIS)
Heyer, J.; Kiang, L.L.; Jiang, M.F.; Kuo, T.T.S.
1991-01-01
The authors calculate the ground-state energy of normal and spin-polarized 3 He within a model-space ring diagram framework where the particle-particle hole-hole (pphh) ring diagrams of the ground-state energy shift are summed up to all orders. The Aziz HFDHE2 and HFD-B(HE) interactions are employed. They first calculate a model space reaction matrix (G M ) whose intermediate states are required to be outside the chosen model space. The pphh ring diagrams with G M -matrix vertices are then summed within the model space by way of an RPA-type secular equation. The continuous single-particle spectrum of Mahaux is chosen. It is found that the inclusion of pphh ring diagrams gives a significant increase in the binding energy per particle (BE/A) as compared with Brueckner-Hartree-Fock calculations. For normal and spin-polarized 3 He their calculated values for BE/A and saturation densities are respectively (1.86 K, 0.72 angstrom -1 ) and (1.59 K, 0.91 angstrom -1 ), while the corresponding experimental values for normal 3 He are (2.47 K, 0.785 angstrom -1 ). 53 refs
Calculations of core concrete interaction using MELCOR 1.8.5
Energy Technology Data Exchange (ETDEWEB)
Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2005-07-01
OECD/MCCI project is scheduled for 4 years from 2002. 1 to 2005. 12 to perform a series of tests through which the data for cooling the molten core spread out at the reactor cavity and for the long-term CCI (Core Concrete Interaction) are secured. This paper deals with the transient calculations of the 2-D CCI tests performed under the OECD/MCCI project by using a well-known severe accident analysis code, MELCOR 1.8.5. The CCI test was performed at the rectangular geometry with one ablative bottom wall and two ablative and two non-ablative side walls. Since the MELCOR 1.8.5 can only accommodate a cylindrical geometry, an appropriate scaling methodology was applied to adjust the geometrical difference between the CCI test and the MELCOR calculations. The default heat transfer models contained in the CORCON-Mod3 module of MELCOR 1.8.5 were used for the base case calculation. The key parameters of the CCI phenomena such as the melt temperature, concrete ablation, cavity shape, gas generation, heat transfer rate, etc. were calculated and compared with the test results. In addition, sensitivity studies with the change of the inputs and character variables of MELCOR were also included.
A program for calculating and plotting soft x-ray optical interaction coefficients for molecules
International Nuclear Information System (INIS)
Thomas, M.M.; Davis, J.C.; Jacobsen, C.J.; Perera, R.C.C.
1989-08-01
Comprehensive tables for atomic scattering factor components, f1 and f2, were compiled by Henke et al. for the extended photon region 50 - 10000 eV. Accurate calculations of optical interaction coefficients for absorption, reflection and scattering by material systems (e.g. filters, multi-layers, etc...), which have widespread application, can be based simply upon the atomic scattering factors for the elements comprising the material, except near the absorption threshold energies. These calculations based upon the weighted sum of f1 and f2 for each atomic species present can be very tedious if done by hand. This led us to develop a user friendly program to perform these calculations on an IBM PC or compatible computer. By entering the chemical formula, density and thickness of up to six molecules, values of the f1, f2, mass absorption transmission efficiencies, attenuation lengths, mirror reflectivities and complex indices of refraction can be calculated and plotted as a function of energy or wavelength. This program will be available distribution. 7 refs., 1 fig
International Nuclear Information System (INIS)
Hopkins, D.B.; Clay, H.W.; Stallard, B.W.; Throop, A.L.; Listvinsky, G.; Makowski, M.A.
1989-01-01
Linear induction accelerators (LIAs) operating at beam energies of a few million electron volts and currents of a few thousand amperes are suitable drivers for free-electron lasers (FELs). Such lasers are capable of producing gigawatts of peak power and megawatts of average power at microwave frequencies. Such devices are being studied as possible power sources for future high-gradient accelerators and are being constructed for plasma heating applications. At high power levels, the engineering design of the interaction waveguide presents a challenge. This paper discusses several concerns, including electrical breakdown and metal fatigue limits, choice of material, and choice of operating propagation mode. 13 refs., 3 figs
Numerical calculation of spin echo amplitude in pulsed NMR: effects of quadrupole interaction
International Nuclear Information System (INIS)
Sobral, R.R.
1986-01-01
The spin echo obtained by nuclear magnetic resonance, in systems which atomic nuclei interact with magnetic fields and electric field gradients, present oscillations in function of the time interval between two excitations pulses. Using the density matrix formalism, the amplitudes of these echo is calculated, analytically. In this work, echo amplitudes obtained under different excitation conditions for nuclei of different nuclear spin values are calculated. The numerical results are compared with disposable analytical solutions. Applications of this method to the case of electric field gradient without axial symmetry were studied. Within the used approximation limits, an expression for attnuation of oscillatory behaviour of echo amplitude in function of the time interval between experimentally observed pulses was obtained. (M.C.K.) [pt
International Nuclear Information System (INIS)
Bozoian, M.; Arthur, E.D.; Perry, R.T.; Wilson, W.B.; Young, P.G.
1988-01-01
Activation problems associated with particle accelerators are commonly dominated by reactions of secondary neutrons produced in reactions of beam particles with accelerator or beam stop materials. Measured values of neutron-activation cross sections above a few MeV are sparse. Calculations with the GNASH code have been made for neutrons incident on all stable nuclides of a range of elements common to accelerator materials. These elements include B, C, N, O, Ne, Mg, Al, Si, P, S, Ar, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Nd, and Sm. Calculations were made for a grid of incident neutron energies extending to 100 MeV. Cross sections leading to the direct production of as many as 87 activation products for each of 84 target nuclide were tabulated on this grid of neutron energies, each beginning with the threshold for the product nuclide's formation. Multigrouped values of these cross sections have been calculated and are being integrated into the cross-section library of the REAC-2 neutron activation code. Illustrative cross sections are presented. 20 refs., 6 figs., 1 tab
Interaction and collective effects in classical-equations-of-motion calculations
International Nuclear Information System (INIS)
Bodmer, A.R.
1981-01-01
We discuss results obtained with the classical-equations-of-motion (CEOM) approach, with particular reference to interaction (potential energy) and collective effects in central collisions of equal mass nuclei. The essence of the CEOM approach is the classical calculation of all A = A/sub P/ + A/sub T/ trajectories using a 2-body potential V between all pairs of nucleons; V = V/sub short/ + V/sub long/ has a short range repulsion and a longer range attractive tail. In contrast to hydrodynamics, the CEOM approach is microscopic and includes transparency and nonequilibrium effects
Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.
1980-01-01
Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.
Ab Initio Calculation of Hyperfine Interaction Parameters: Recent Evolutions, Recent Examples
International Nuclear Information System (INIS)
Cottenier, Stefaan; Vanhoof, Veerle; Torumba, Doru; Bellini, Valerio; Cakmak, Mehmet; Rots, Michel
2004-01-01
For some years already, ab initio calculations based on Density Functional Theory (DFT) belong to the toolbox of the field of hyperfine interaction studies. In this paper, the standard ab initio approach is schematically sketched. New features, methods and possibilities that broke through during the past few years are listed, and their relation to the standard approach is explained. All this is illustrated by some highlights of recent ab initio work done by the Nuclear Condensed Matter Group at the K.U.Leuven.
Energy Technology Data Exchange (ETDEWEB)
Dohet-Eraly, Jeremy [F.R.S.-FNRS (Belgium); Sparenberg, Jean-Marc; Baye, Daniel, E-mail: jdoheter@ulb.ac.be, E-mail: jmspar@ulb.ac.be, E-mail: dbaye@ulb.ac.be [Physique Nucleaire et Physique Quantique, CP229, Universite Libre de Bruxelles (ULB), B-1050 Brussels (Belgium)
2011-09-16
The elastic phase shifts for the {alpha} + {alpha} and {alpha} + {sup 3}He collisions are calculated in a cluster approach by the Generator Coordinate Method coupled with the Microscopic R-matrix Method. Two interactions are derived from the realistic Argonne potentials AV8' and AV18 with the Unitary Correlation Operator Method. With a specific adjustment of correlations on the {alpha} + {alpha} collision, the phase shifts for the {alpha} + {alpha} and {alpha} + {sup 3}He collisions agree rather well with experimental data.
Spin-orbit interaction effects in zincblende semiconductors: Ab initio pseudopotential calculations
International Nuclear Information System (INIS)
Li, Ming-Fu; Surh, M.P.; Louie, S.G.
1988-06-01
Ab initio band structure calculations have been performed for the spin-orbit interaction effects at the top of the valence bands for GaAs and InSb. Relativistic, norm-conserving pseudopotentials are used with no correction made for the gaps from the local density approximation. The spin-orbit splitting at Γ and linear terms in the /rvec char/k dependence of the splitting are found to be in excellent agreement with existing experiments and previous theoretical results. The effective mass and the cubic splitting terms are also examined. 6 refs., 1 fig., 2 tabs
An interactive computer code for calculation of gas-phase chemical equilibrium (EQLBRM)
Pratt, B. S.; Pratt, D. T.
1984-01-01
A user friendly, menu driven, interactive computer program known as EQLBRM which calculates the adiabatic equilibrium temperature and product composition resulting from the combustion of hydrocarbon fuels with air, at specified constant pressure and enthalpy is discussed. The program is developed primarily as an instructional tool to be run on small computers to allow the user to economically and efficiency explore the effects of varying fuel type, air/fuel ratio, inlet air and/or fuel temperature, and operating pressure on the performance of continuous combustion devices such as gas turbine combustors, Stirling engine burners, and power generation furnaces.
Calculated isotropic Raman spectra from interacting H2-rare-gas pairs
International Nuclear Information System (INIS)
Gustafsson, M; Głaz, W; Bancewicz, T; Godet, J-L; Maroulis, G; Haskapoulos, A
2014-01-01
We report on a theoretical study of the H 2 -He and H 2 -Ar pair trace-polarizability and the corresponding isotropic Raman spectra. The conventional quantum mechanical approach for calculations of interaction-induced spectra, which is based on an isotropic interaction potential, is employed. This is compared with a close-coupling approach, which allows for inclusion of the full, anisotropic potential. It is established that the anisotropy of the potential plays a minor role for these spectra. The computed isotropic collision-induced Raman intensity, which is due to dissimilar pairs in H 2 -He and H 2 -Ar gas mixtures, is comparable to the intensities due to similar pairs (H 2 -H 2 , He-He, and Ar-Ar), which have been studied previously
Exchange interaction in the heavy rare-earth metals calculated from energy bands
International Nuclear Information System (INIS)
Lindgard, P.A.; Liu, S.H.
1973-01-01
The exchange interaction in the ordered phases was calculated and found to be significantly influenced by the magnetic perturbation of the conduction electron states. The exchange interaction is intrinsically temperature dependent and is anisotropic. The effect explains how it is possible to have a spiral phase of Tb, although spin wave measurements show no maximum in J/sub q/ for q not equal to 0. The energy difference between the ferromagnetic and spiral phases is of correct order of magnitude to be counterbalanced by the magnetoelastic energy. The wave vector dependent matrix element is found to be similar for Gd, Tb, Dy, and Er with a narrow central conduction electron contribution and a flat region. (U.S.)
Meijer, Gert J; van den Berg, Hetty A; Hurkmans, Coen W; Stijns, Pascal E; Weterings, Jan H
2006-09-01
To compare the dosimetrical results of an interactive planning procedure and a procedure based on dynamic dose calculation for permanent prostate brachytherapy. Between 6/2000 and 11/2005, 510 patients underwent (125)I implants for T1-T2 prostate cancer. Before 4/2003, 187 patients were treated using an interactive technique that included needle updating. After that period, 323 patients were treated with a more refined dynamic technique that included constant updating of the deposited seed position. The comparison is based on postimplant dose - volume parameters such as the V(100) and d(90) for the target, V(100)(r) for the rectum and d(10)(u) for the urethra. Furthermore, the target volume ratios (TVR identical with V(100)(body)/V(100)), and the homogeneity indices (HI identical with [V(100)-V(150)]/V(100)) were calculated as additional quality parameters. The dose outside the target volume was significantly reduced, the V(100)(r) decreased from 1.4 cm(3) for the interactive technique to 0.6 cm(3) for the dynamic technique. Similarly the mean TVR reduced from 1.66 to 1.44. In addition, the mean V(100) increased from 92% for the interactive procedure to 95% for the dynamic procedure. More importantly, the percentage of patients with a V(100) < 80% reduced from 5% to 1%. A slight decline was observed with regard to the d(10)(u) (136% vs. 140%) and the HI (0.58 vs. 0.51). The dynamic implant procedure resulted in improved implants. Almost ideal dose coverage was achieved, while minimizing the dose outside the prostate.
Dosimetric comparison of interactive planned and dynamic dose calculated prostate seed brachytherapy
International Nuclear Information System (INIS)
Meijer, Gert J.; Berg, Hetty A. van den; Hurkmans, Coen W.; Stijns, Pascal E.; Weterings, Jan H.
2006-01-01
Purpose: To compare the dosimetrical results of an interactive planning procedure and a procedure based on dynamic dose calculation for permanent prostate brachytherapy. Materials and methods: Between 6/2000 and 11/2005, 510 patients underwent 125 I implants for T1-T2 prostate cancer. Before 4/2003, 187 patients were treated using an interactive technique that included needle updating. After that period, 323 patients were treated with a more refined dynamic technique that included constant updating of the deposited seed position. The comparison is based on postimplant dose-volume parameters such as the V 100 and d 90 for the target, V 100 r for the rectum and d 10 u for the urethra. Furthermore, the target volume ratios (TVR=V 100 body /V 100 ), and the homogeneity indices (HI=[V 100 -V 150 ]/V 100 ) were calculated as additional quality parameters. Results: The dose outside the target volume was significantly reduced, the V 100 r decreased from 1.4cm 3 for the interactive technique to 0.6cm 3 for the dynamic technique. Similarly the mean TVR reduced from 1.66 to 1.44. In addition, the mean V 100 increased from 92% for the interactive procedure to 95% for the dynamic procedure. More importantly, the percentage of patients with a V 100 10 u (136% vs. 140%) and the HI (0.58 vs. 0.51). Conclusion: The dynamic implant procedure resulted in improved implants. Almost ideal dose coverage was achieved, while minimizing the dose outside the prostate
Ruiz, Elia; Ferro, Victor R; Palomar, Jose; Ortega, Juan; Rodriguez, Juan Jose
2013-06-20
The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs. This interaction is strengthened by the presence of an acidic cation and an anion with dispersed charge and non-HB acceptor character in the IL. COSMO-RS predictions indicated that gas-liquid and vapor-liquid equilibrium data for IL-acetone systems can be finely tuned by the IL selection, that is, acting on the intermolecular interactions between the molecular and ionic species in the liquid phase. NMR measurements for IL-acetone mixtures at different concentrations were also carried out. Quantum-chemical calculations by using molecular clusters of acetone and IL species were finally performed. These results provided additional evidence of the main role played by hydrogen bonding in the behavior of systems containing ILs and HB acceptor compounds, such as acetone.
Fluid-structure-interaction analysis for welded pipes with flow-accelerated corrosion wall thinning
Energy Technology Data Exchange (ETDEWEB)
Sun, L.; Ding, Y., E-mail: lan.sun@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)
2016-06-15
The flow-accelerated corrosion (FAC) entrance effect results in enhanced wall thinning immediately downstream of a weld if the weld connects an upstream FAC-resistant material with a downstream less resistant material. The weld regions, especially those with local repairs, are susceptible to cracking due to the high residual stresses induced by fabrication. The combined effects of the FAC entrance effect and high stresses at a weld might compromise the structural integrity of the piping and lead to a failure. Weld degradation by FAC entrance effect has been observed at nuclear and fossil power plants. This paper describes an application using fluid-structure-interaction (FSI) modelling to study the combined effects of FAC wall thinning, weld residual stresses, and in-service loads on welded structures. Simplified cases analyzed were based on CANDU outlet feeder conditions. The analysis includes the flow and mass transfer modelling of the FAC entrance effect using computational fluid dynamics (CFD) and nonlinear structural analyses of the welded structures with wall thinning and an assumed weld residual stress and strain distribution. The FSI analyses were performed using ANSYS Workbench, an integrated platform that enables the coupling of CFD and structural analysis solutions. The obtained results show that the combination of FAC, weld residual stresses, in-service loads (including the internal pressure) and (or) extreme loads could cause high stresses and affect the integrity of the welded pipes. The present work demonstrated that the FSI modelling can be used as an effective approach to assess the integrity of welded structures. (author)
Schwadron, N.
2017-12-01
Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence - an astrophysical case-history of the successful evolution of life in a habitable system. The Interstellar Boundary Explorer (IBEX) was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies ( 5-55 keV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. The global structure of the heliosphere is highly complex and influenced by competing factors ranging from the local interstellar magnetic field, suprathermal populations both within and beyond the heliopause, and the detailed flow properties of the LISM. Global heliospheric structure and microphysics in turn influences the acceleration of energetic particles and creates feedbacks that modify the interstellar interaction as a whole. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics and probe the acceleration of suprathermal and higher energy particles at a time when the space environment is rapidly evolving. IMAP ultimately connects the acceleration processes observed directly at 1 AU with unprecedented sensitivity and temporal resolution with the global structure of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. IMAP, like ACE before it, will be a keystone of the Heliophysics System Observatory by providing comprehensive energetic particle, pickup ion, suprathermal ion, neutral atom, solar wind, solar wind heavy ion, and magnetic field observations to diagnose
International Nuclear Information System (INIS)
Haeggblom, H.
1968-08-01
The method of calculating the resonance interaction effect by series expansions has been studied. Starting from the assumption that the neutron flux in a homogeneous mixture is inversely proportional to the total cross section, the expression for the flux can be simplified by series expansions. Two types of expansions are investigated and it is shown that only one of them is generally applicable. It is also shown that this expansion gives sufficient accuracy if the approximate resonance line shape function is reasonably representative. An investigation is made of the approximation of the resonance shape function with a Gaussian function which in some cases has been used to calculate the interaction effect. It is shown that this approximation is not sufficiently accurate in all cases which can occur in practice. Then, a rational approximation is introduced which in the first order approximation gives the same order of accuracy as a practically exact shape function. The integrations can be made analytically in the complex plane and the method is therefore very fast compared to purely numerical integrations. The method can be applied both to statistically correlated and uncorrelated resonances
Energy Technology Data Exchange (ETDEWEB)
Haeggblom, H
1968-08-15
The method of calculating the resonance interaction effect by series expansions has been studied. Starting from the assumption that the neutron flux in a homogeneous mixture is inversely proportional to the total cross section, the expression for the flux can be simplified by series expansions. Two types of expansions are investigated and it is shown that only one of them is generally applicable. It is also shown that this expansion gives sufficient accuracy if the approximate resonance line shape function is reasonably representative. An investigation is made of the approximation of the resonance shape function with a Gaussian function which in some cases has been used to calculate the interaction effect. It is shown that this approximation is not sufficiently accurate in all cases which can occur in practice. Then, a rational approximation is introduced which in the first order approximation gives the same order of accuracy as a practically exact shape function. The integrations can be made analytically in the complex plane and the method is therefore very fast compared to purely numerical integrations. The method can be applied both to statistically correlated and uncorrelated resonances.
International Nuclear Information System (INIS)
Gregersen, A.W.
1977-01-01
A comparison is made between matrix elements calculated using the uncoupled channel Sussex approach to second order in DWBA and matrix elements calculated using a square well potential. The square well potential illustrated the problem of the determining parameter independence balanced with the concept of phase shift difference. The super-soft core potential was used to discuss the systematics of the Sussex approach as a function of angular momentum as well as the relation between Sussex generated and effective interaction matrix elements. In the uncoupled channels the original Sussex method of extracting effective interaction matrix elements was found to be satisfactory. In the coupled channels emphasis was placed upon the 3 S 1 -- 3 D 1 coupled channel matrix elements. Comparison is made between exactly calculated matrix elements, and matrix elements derived using an extended formulation of the coupled channel Sussex method. For simplicity the potential used is a nonseparable cut-off oscillator. The eigenphases of this potential can be made to approximate the realistic nucleon--nucleon phase shifts at low energies. By using the cut-off oscillator test potential, the original coupled channel Sussex method of determining parameter independence was shown to be incapable of accurately reproducing the exact cut-off oscillator matrix elements. The extended Sussex method was found to be accurate to within 10 percent. The extended method is based upon more general coupled channel DWBA and a noninfinite oscillator wave function solution to the cut-off oscillator auxiliary potential. A comparison is made in the coupled channels between matrix elements generated using the original Sussex method and the extended method. Tables of matrix elements generated using the original uncoupled channel Sussex method and the extended coupled channel Sussex method are presented for all necessary angular momentum channels
Self-interaction corrected density functional calculations of molecular Rydberg states
International Nuclear Information System (INIS)
Gudmundsdóttir, Hildur; Zhang, Yao; Weber, Peter M.; Jónsson, Hannes
2013-01-01
A method is presented for calculating the wave function and energy of Rydberg excited states of molecules. A good estimate of the Rydberg state orbital is obtained using ground state density functional theory including Perdew-Zunger self-interaction correction and an optimized effective potential. The total energy of the excited molecule is obtained using the Delta Self-Consistent Field method where an electron is removed from the highest occupied orbital and placed in the Rydberg orbital. Results are presented for the first few Rydberg states of NH 3 , H 2 O, H 2 CO, C 2 H 4 , and N(CH 3 ) 3 . The mean absolute error in the energy of the 33 molecular Rydberg states presented here is 0.18 eV. The orbitals are represented on a real space grid, avoiding the dependence on diffuse atomic basis sets. As in standard density functional theory calculations, the computational effort scales as NM 2 where N is the number of orbitals and M is the number of grid points included in the calculation. Due to the slow scaling of the computational effort with system size and the high level of parallelism in the real space grid approach, the method presented here makes it possible to estimate Rydberg electron binding energy in large molecules
International Nuclear Information System (INIS)
Suo, Bingbing; Yu, Yan-Mei; Han, Huixian
2015-01-01
We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for Ω = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of Ω = 1/2, which is highly mixed with 4 Σ − and 2 Π states in Λ − S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm −1 above, respectively. The equilibrium bond length 1.712 Å and the harmonic vibrational frequency 903 cm −1 of the 5/2 state are close to the experimental measurement of 1.724 Å and 909 cm −1 , which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for Ω = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths
International Nuclear Information System (INIS)
Yang, Bo; Qiu, Rui; Li, JunLi; Lu, Wei; Wu, Zhen; Li, Chunyan
2017-01-01
When a strong laser beam irradiates a solid target, a hot plasma is produced and high-energy electrons are usually generated (the so-called “hot electrons”). These energetic electrons subsequently generate hard X-rays in the solid target through the Bremsstrahlung process. To date, only limited studies have been conducted on this laser-induced radiological protection issue. In this study, extensive literature reviews on the physics and properties of hot electrons have been conducted. On the basis of these information, the photon dose generated by the interaction between hot electrons and a solid target was simulated with the Monte Carlo code FLUKA. With some reasonable assumptions, the calculated dose can be regarded as the upper boundary of the experimental results over the laser intensity ranging from 10 19 to 10 21 W/cm 2 . Furthermore, an equation to estimate the photon dose generated from ultraintense laser–solid interactions based on the normalized laser intensity is derived. The shielding effects of common materials including concrete and lead were also studied for the laser-driven X-ray source. The dose transmission curves and tenth-value layers (TVLs) in concrete and lead were calculated through Monte Carlo simulations. These results could be used to perform a preliminary and fast radiation safety assessment for the X-rays generated from ultraintense laser–solid interactions. - Highlights: • The laser–driven X-ray ionizing radiation source was analyzed in this study. • An equation to estimate the photon dose based on the laser intensity is given. • The shielding effects of concrete and lead were studied for this new X-ray source. • The aim of this study is to analyze and mitigate the laser–driven X-ray hazard.
Czech Academy of Sciences Publication Activity Database
Kraus, M.; Pitoňák, Michal; Hobza, Pavel; Urban, M.; Neogrady, P.
2012-01-01
Roč. 112, č. 4 (2012), s. 948-959 ISSN 0020-7608 R&D Projects: GA MŠk LC512 Grant - others:Slovak Research and Development Agency(SK) APVV-20-018405; Slovak Grant Agency VEGA(SK) 1/0428/09; Slovak Grant Agency VEGA(SK) 1/0520/10 Institutional research plan: CEZ:AV0Z40550506 Keywords : OVOS * FNO * nocovalent interactions * hydrogen bonding * ctacking Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.306, year: 2012
International Nuclear Information System (INIS)
Fabry, Thomas
2014-01-01
radiation. Several industrial and scientific procedures give rise to facilities with ionizing radiation. Most technical and scientific facilities also need maintenance operations. In the spirit of ALARA, these interventions need to be optimized in terms of the exposure of the maintenance workers to ionizing radiation. This optimization cannot be automated since the feasibility of the intervention tasks requires human assessment. The intervention planning could however be facilitated by technical-scientific means, e.g. software tools. In the context sketched above, this thesis provides technical-scientific considerations and the development of technical-scientific methodologies and software tools for the implementation of radiation protection.In particular, this thesis addresses the need for an interactive visual intervention planning tool in the context of high energy particle accelerator facilities. (author)
Local structure theory: calculation on hexagonal arrays, and interaction of rule and lattice
International Nuclear Information System (INIS)
Gutowitz, H.A.; Victor, J.D.
1989-01-01
Local structure theory calculations are applied to the study of cellular automata on the two-dimensional hexagonal lattice. A particular hexagonal lattice rule denoted (3422) is considered in detail. This rule has many features in common with Conway's Life. The local structure theory captures many of the statistical properties of this rule; this supports hypotheses raised by a study of Life itself. As in Life, the state of a cell under (3422) depends only on the state of the cell itself and the sum of states in its neighborhood at the previous time step. This property implies that evolution rules which operate in the same way can be studied on different lattices. The differences between the behavior of these rules on different lattices are dramatic. The mean field theory cannot reflect these differences. However, a generalization of the mean field theory, the local structure theory, does account for the rule-lattice interaction
Two- and three-nucleon chiral interactions in quantum Monte Carlo calculations for nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Lynn, Joel [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Tews, Ingo [Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195 (United States); Carlson, Joseph; Gandolfi, Stefano [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Gezerlis, Alexandros [Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Schmidt, Kevin [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Schwenk, Achim [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany)
2016-07-01
I present our recent work on Green's function Monte Carlo calculations of light nuclei using local two- and three-nucleon interactions derived from chiral effective field theory up to next-to-next-to-leading order (N{sup 2}LO). I discuss the choice of observables we make to fit the two low-energy constants which enter in the three-nucleon sector at N{sup 2}LO: the {sup 4}He binding energy and n-α elastic scattering P-wave phase shifts. I then show some results for light nuclei. I also show our results for the energy per neutron in pure neutron matter using the auxiliary-field diffusion Monte Carlo method and discuss regulator choices. Finally I discuss some exciting future projects which are now possible.
International Nuclear Information System (INIS)
Su, L.; Du, X.; Liu, T.; Xu, X. G.
2013-01-01
An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous EnviRonments - is being developed at Rensselaer Polytechnic Institute as a software test-bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs (Graphics Processing Units). This paper presents the preliminary code development and the testing involving radiation dose related problems. In particular, the paper discusses the electron transport simulations using the class-II condensed history method. The considered electron energy ranges from a few hundreds of keV to 30 MeV. As for photon part, photoelectric effect, Compton scattering and pair production were simulated. Voxelized geometry was supported. A serial CPU (Central Processing Unit)code was first written in C++. The code was then transplanted to the GPU using the CUDA C 5.0 standards. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. The code was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and later dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6*10 6 electron histories were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively. On-going work continues to test the code for different medical applications such as radiotherapy and brachytherapy. (authors)
Stuchbery, A. E.; Ryan, C. G.; Bolotin, H. H.; Morrison, I.; Sie, S. H.
1981-07-01
The enhanced transient hyperfine field manifest at the nuclei of swiftly recoiling ions traversing magnetized ferromagnetic materials was utilized to measure the gyromagnetic ratios of the 2 +1, 2 +2 and 4 +1 states in 198Pt by the thin-foil technique. The states of interest were populated by Coulomb excitation using a beam of 220 MeV 58Ni ions. The results obtained were: g(2 +1) = 0.324 ± 0.026; g(2 +2) = 0.34 ± 0.06; g(4 +1) = 0.34 ± 0.06. In addition, these measurements served to discriminate between the otherwise essentially equally probable values previously reported for the E2/M1 ratio of the 2 +2 → 2 +1 transition in 198Pt. We also performed interacting boson approximation (IBA) model-based calculations in the O(6) limit symmetry, with and without inclusion of a small degree of symmetry breaking, and employed the M1 operator in both first- and second-order to obtain M1 selection rules and to calculate gyromagnetic ratios of levels. When O(6) symmetry is broken, there is a predicted departure from constancy of the g-factors which provides a good test of the nuclear wave function. Evaluative comparisons are made between these experimental and predicted g-factors.
First-principles calculations of the interaction between hydrogen and 3d alloying atom in nickel
Energy Technology Data Exchange (ETDEWEB)
Liu, Wenguan, E-mail: liuwenguan@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Qian, Yuan; Zhang, Dongxun [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Wei, E-mail: liuwei@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Han, Han [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China)
2015-10-15
Knowledge of the behavior of hydrogen (H) in Ni-based alloy is essential for the prediction of Tritium behavior in Molten Salt Reactor. First-principles calculations were performed to investigate the interaction between H and 3d transition metal (TM) alloying atom in Ni-based alloy. H prefers the octahedral interstitial site to the tetrahedral interstitial site energetically. Most of the 3d TM elements (except Zn) attract H. The attraction to H in the Ni–TM–H system can be mainly attributed to the differences in electronegativity. With the large electronegativity, H and Ni gain electrons from the other TM elements, resulting in the enhanced Ni–H bonds which are the source of the attraction to H in the Ni–TM–H system. The obviously covalent-like Cr–H and Co–H bindings are also beneficial to the attraction to H. On the other hand, the repulsion to H in the Ni–Zn–H system is due to the stable electronic configuration of Zn. We mainly utilize the results calculated in 32-atom supercell which corresponds to the case of a relatively high concentration of hydrogen. Our results are in good agreement with the experimental ones.
FOOD II: an interactive code for calculating concentrations of radionuclides in food products
International Nuclear Information System (INIS)
Zach, R.
1978-11-01
An interactive code, FOOD II, has been written in FORTRAN IV for the PDP 10 to allow calculation of concentrations of radionuclides in food products and internal doses to man under chronic release conditions. FOOD II uses models unchanged from a previous code, FOOD, developed at Battelle, Pacific Northwest Laboratories. The new code has different input and output features than FOOD and a number of options have been added to increase flexibility. Data files have also been updated. FOOD II takes into account contamination of vegetation by air and irrigation water containing radionuclides. Contamination can occur simultaneously by air and water. Both direct deposition of radionuclides on leaves, and their uptake from soil are possible. Also, animals may be contaminated by ingestion of vegetation and drinking water containing radionuclides. At present, FOOD II provides selection of 14 food types, 13 diets and numerous radionuclides. Provisions have been made to expand all of these categories. Six additional contaminated food products can also be entered directly into the dose model. Doses may be calculated for the total body and six internal organs. Summaries of concentrations in food products and internal doses to man can be displayed at a local terminal or at an auxiliary high-speed printer. (author)
Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei
2015-03-01
Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.
International Nuclear Information System (INIS)
Wang, Y; Mazur, T; Green, O; Hu, Y; Li, H; Rodriguez, V; Wooten, H; Yang, D; Zhao, T; Mutic, S; Li, H
2016-01-01
Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: We first translated PENELOPE from FORTRAN to C++ and validated that the translation produced equivalent results. Then we adapted the C++ code to CUDA in a workflow optimized for GPU architecture. We expanded upon the original code to include voxelized transport boosted by Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, we incorporated the vendor-provided MRIdian head model into the code. We performed a set of experimental measurements on MRIdian to examine the accuracy of both the head model and gPENELOPE, and then applied gPENELOPE toward independent validation of patient doses calculated by MRIdian’s KMC. Results: We achieve an average acceleration factor of 152 compared to the original single-thread FORTRAN implementation with the original accuracy preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen (1), mediastinum (1) and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: We developed a Monte Carlo simulation platform based on a GPU-accelerated version of PENELOPE. We validated that both the vendor provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems.
Energy Technology Data Exchange (ETDEWEB)
Wang, Y; Mazur, T; Green, O; Hu, Y; Li, H; Rodriguez, V; Wooten, H; Yang, D; Zhao, T; Mutic, S; Li, H [Washington University School of Medicine, Saint Louis, MO (United States)
2016-06-15
Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: We first translated PENELOPE from FORTRAN to C++ and validated that the translation produced equivalent results. Then we adapted the C++ code to CUDA in a workflow optimized for GPU architecture. We expanded upon the original code to include voxelized transport boosted by Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, we incorporated the vendor-provided MRIdian head model into the code. We performed a set of experimental measurements on MRIdian to examine the accuracy of both the head model and gPENELOPE, and then applied gPENELOPE toward independent validation of patient doses calculated by MRIdian’s KMC. Results: We achieve an average acceleration factor of 152 compared to the original single-thread FORTRAN implementation with the original accuracy preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen (1), mediastinum (1) and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: We developed a Monte Carlo simulation platform based on a GPU-accelerated version of PENELOPE. We validated that both the vendor provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems.
Energy Technology Data Exchange (ETDEWEB)
Chavda, Bhavin R., E-mail: chavdabhavin9@gmail.com; Dubey, Rahul P.; Patel, Urmila H. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat (India); Gandhi, Sahaj A. [Bhavan’s Shri I.L. Pandya Arts-Science and Smt. J.M. shah Commerce College, Dakar, Anand -388001, Gujarat, Indian (India); Barot, Vijay M. [P. G. Center in Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat 383 215 (India)
2016-05-06
The novel chalcone derivatives have widespread applications in material science and medicinal industries. The density functional theory (DFT) is used to optimized the molecular structure of the three chalcone derivatives (M-I, II, III). The observed discrepancies between the theoretical and experimental (X-ray data) results attributed to different environments of the molecules, the experimental values are of the molecule in solid state there by subjected to the intermolecular forces, like non-bonded hydrogen bond interactions, where as isolated state in gas phase for theoretical studies. The lattice energy of all the molecules have been calculated using PIXELC module in Coulomb –London –Pauli (CLP) package and is partitioned into corresponding coulombic, polarization, dispersion and repulsion contributions. Lattice energy data confirm and strengthen the finding of the X-ray results that the weak but significant intermolecular interactions like C-H…O, Π- Π and C-H… Π plays an important role in the stabilization of crystal packing.
Ibarra, Ignacio L; Melo, Francisco
2010-07-01
Dynamic programming (DP) is a general optimization strategy that is successfully used across various disciplines of science. In bioinformatics, it is widely applied in calculating the optimal alignment between pairs of protein or DNA sequences. These alignments form the basis of new, verifiable biological hypothesis. Despite its importance, there are no interactive tools available for training and education on understanding the DP algorithm. Here, we introduce an interactive computer application with a graphical interface, for the purpose of educating students about DP. The program displays the DP scoring matrix and the resulting optimal alignment(s), while allowing the user to modify key parameters such as the values in the similarity matrix, the sequence alignment algorithm version and the gap opening/extension penalties. We hope that this software will be useful to teachers and students of bioinformatics courses, as well as researchers who implement the DP algorithm for diverse applications. The software is freely available at: http:/melolab.org/sat. The software is written in the Java computer language, thus it runs on all major platforms and operating systems including Windows, Mac OS X and LINUX. All inquiries or comments about this software should be directed to Francisco Melo at fmelo@bio.puc.cl.
International Nuclear Information System (INIS)
Christoforou, S.; Hoogenboom, J. E.
2009-01-01
We have used Boltzmann entropy in order to test whether a zero-variance based scheme can speed up the fission source convergence in a Monte Carlo calculation. It is shown that the choice of the initial source distribution significantly influences the evolution of the source, even leading to cases where the source does not converge at all throughout the calculation. The results from a loosely coupled system based on the NEA/OECD source convergence benchmarks indicate that, when using a biasing scheme such as the one we have developed, there can be significant improvement in the convergence, up to 3 times faster, which coupled with an figure of merit improvement of 1.5 leads to more efficient calculations. (authors)
International Nuclear Information System (INIS)
Balzer, Matthias
2008-01-01
The central goal of this thesis is the examination of strongly correlated electron systems on the basis of the two-dimensional Hubbard model. We analyze how the properties of the Mott insulator change upon doping and with interaction strength. The numerical evaluation is done using quantum cluster approximations, which allow for a thermodynamically consistent description of the ground state properties. The framework of self-energy-functional theory offers great flexibility for the construction of cluster approximations. A detailed analysis sheds light on the quality and the convergence properties of different cluster approximations within the self-energy-functional theory. We use the one-dimensional Hubbard model for these examinations and compare our results with the exact solution. In two dimensions the ground state of the particle-hole symmetric model at half-filling is an antiferromagnetic insulator, independent of the interaction strength. The inclusion of short-range spatial correlations by our cluster approach leads to a considerable improvement of the antiferromagnetic order parameter as compared to dynamical mean-field theory. In the paramagnetic phase we furthermore observe a metal-insulator transition as a function of the interaction strength, which qualitatively differs from the pure mean-field scenario. Starting from the antiferromagnetic Mott insulator a filling-controlled metal-insulator transition in a paramagnetic metallic phase can be observed. Depending on the cluster approximation used an antiferromagnetic metallic phase may occur at first. In addition to long-range antiferromagnetic order, we also considered superconductivity in our calculations. The superconducting order parameter as a function of doping is in good agreement with other numerical methods, as well as with experimental results. (orig.)
International Nuclear Information System (INIS)
Cometto, M.
2003-01-01
This thesis discusses the question of partitioning and transmutation of actinides and some long-lived fission products as a way of reducing the mass and radio-toxicity of wastes from nuclear power facilities. Numerical benchmarking and computational exercises carried out in related projects are discussed and the quantitative assessment of the advantages and drawbacks of various transmutation strategies are discussed, as is the role of Accelerator-Driven Systems (ADS) and Advanced Fast Reactors (FR) in advanced nuclear fuel cycles. According to the author, the study allows three main options in nuclear waste management - open cycle, plutonium recycling and the recycling of all actinides - to be compared. The last part of the dissertation is dedicated to two phase-out schemes employing either ASDs or critical reactors
International Nuclear Information System (INIS)
Warsa, James S.; Wareing, Todd A.; Morel, Jim E.
2004-01-01
A loss in the effectiveness of diffusion synthetic acceleration (DSA) schemes has been observed with certain S N discretizations on two-dimensional Cartesian grids in the presence of material discontinuities. We will present more evidence supporting the conjecture that DSA effectiveness will degrade for multidimensional problems with discontinuous total cross sections, regardless of the particular physical configuration or spatial discretization. Fourier analysis and numerical experiments help us identify a set of representative problems for which established DSA schemes are ineffective, focusing on diffusive problems for which DSA is most needed. We consider a lumped, linear discontinuous spatial discretization of the S N transport equation on three-dimensional, unstructured tetrahedral meshes and look at a fully consistent and a 'partially consistent' DSA method for this discretization. The effectiveness of both methods is shown to degrade significantly. A Fourier analysis of the fully consistent DSA scheme in the limit of decreasing cell optical thickness supports the view that the DSA itself is failing when material discontinuities are present in a problem. We show that a Krylov iterative method, preconditioned with DSA, is an effective remedy that can be used to efficiently compute solutions for this class of problems. We show that as a preconditioner to the Krylov method, a partially consistent DSA method is more than adequate. In fact, it is preferable to a fully consistent method because the partially consistent method is based on a continuous finite element discretization of the diffusion equation that can be solved relatively easily. The Krylov method can be implemented in terms of the original S N source iteration coding with only slight modification. Results from numerical experiments show that replacing source iteration with a preconditioned Krylov method can efficiently solve problems that are virtually intractable with accelerated source iteration
Watanabe, Takashi
2013-01-01
The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors. PMID:24282442
van Gent, P. L.; Schrijer, F. F. J.; van Oudheusden, B. W.
2018-04-01
Pseudo-tracking refers to the construction of imaginary particle paths from PIV velocity fields and the subsequent estimation of the particle (material) acceleration. In view of the variety of existing and possible alternative ways to perform the pseudo-tracking method, it is not straightforward to select a suitable combination of numerical procedures for its implementation. To address this situation, this paper extends the theoretical framework for the approach. The developed theory is verified by applying various implementations of pseudo-tracking to a simulated PIV experiment. The findings of the investigations allow us to formulate the following insights and practical recommendations: (1) the velocity errors along the imaginary particle track are primarily a function of velocity measurement errors and spatial velocity gradients; (2) the particle path may best be calculated with second-order accurate numerical procedures while ensuring that the CFL condition is met; (3) least-square fitting of a first-order polynomial is a suitable method to estimate the material acceleration from the track; and (4) a suitable track length may be selected on the basis of the variation in material acceleration with track length.
International Nuclear Information System (INIS)
Crosbie, E.A.
1985-01-01
As a long range goal for the production of high intensity neutrons, Argonne National Laboratory has proposed the construction of a 1.5 GeV FFAG Spiral Sector Accelerator called ASPUN. The 500-MeV injector for this proposed accelerator is a smaller FFAG Spiral Sector Accelerator named Mini-ASPUN. Until such a time as the larger machine could be built, it was planned that Mini-ASPUN would replace the present RCS now being used for the IPNS program at Argonne. In order to obtain an accurate estimation of the orbits and betatron oscillations in such a machine, it is necessary that realistic field values be used in the equations of motion. Obtaining these fields from 3-dimensional relaxation calculations is both time consuming and costly. However, because of the required scaling of the machine, the field-generating potential of three variables can be separated into a known function of the radius and a function of two variables. The second order differential equation satisfied by this function can be solved by ordinary relaxation methods. The fields generated from a mesh of values for this function will be accurate except for the extreme inside and outside orbits, which will be affected by the necessary termination of the inside and outside ends of the magnet. 2 refs., 4 figs., 1 tab
Boulday, Gwénola; Hamann, Jörg; Soulillou, Jean-Paul; Charreau, Béatrice
2002-01-01
Background. Effective improvement in xenograft survival is achieved using transplants from transgenic pigs expressing human complement (C) regulatory proteins, including decay-accelerating factor (DAF), CD59, and CD46 on endothelial cells (ECs). The aim of this study was to investigate whether human
Energy Technology Data Exchange (ETDEWEB)
Kittimanapun, K., E-mail: kritsadak@slri.or.th [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Synchrotron Light Research Institute (SLRI), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000 (Thailand); Baumann, T.M.; Lapierre, A.; Schwarz, S. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Bollen, G. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Facility for Rare Isotope Beams (FRIB), Michigan State University, 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States)
2015-11-11
The ReA post-accelerator at the National Superconducting Cyclotron Laboratory (NSCL) employs an electron beam ion trap (EBIT) as a charge breeder. A Monte-Carlo simulation code was developed to calculate the transverse acceptance phase space of the EBIT for continuously injected ion beams and to determine the capture efficiency in dependence of the transverse beam emittance. For this purpose, the code records the position and time of changes in charge state of injected ions, leading either to capture or loss of ions. To benchmark and validate the code, calculated capture efficiencies were compared with results from a geometrical model and measurements. The results of the code agree with the experimental findings within a few 10%. The code predicts a maximum total capture efficiency of 50% for EBIT parameters readily achievable and an efficiency of up to 80% for an electron beam current density of 1900 A/cm{sup 2}.
Self-consistent RPA calculations with Skyrme-type interactions: The skyrme_rpa program
Colò, Gianluca; Cao, Ligang; Van Giai, Nguyen; Capelli, Luigi
2013-01-01
Random Phase Approximation (RPA) calculations are nowadays an indispensable tool in nuclear physics studies. We present here a complete version implemented with Skyrme-type interactions, with the spherical symmetry assumption, that can be used in cases where the effects of pairing correlations and of deformation can be ignored. The full self-consistency between the Hartree-Fock mean field and the RPA excitations is enforced, and it is numerically controlled by comparison with energy-weighted sum rules. The main limitations are that charge-exchange excitations and transitions involving spin operators are not included in this version. Program summaryProgram title: skyrme_rpa (v 1.00) Catalogue identifier: AENF_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5531 No. of bytes in distributed program, including test data, etc.: 39435 Distribution format: tar.gz Programming language: FORTRAN-90/95; easily downgradable to FORTRAN-77. Computer: PC with Intel Celeron, Intel Pentium, AMD Athlon and Intel Core Duo processors. Operating system: Linux, Windows. RAM: From 4 MBytes to 150 MBytes, depending on the size of the nucleus and of the model space for RPA. Word size: The code is written with a prevalent use of double precision or REAL(8) variables; this assures 15 significant digits. Classification: 17.24. Nature of problem: Systematic observations of excitation properties in finite nuclear systems can lead to improved knowledge of the nuclear matter equation of state as well as a better understanding of the effective interaction in the medium. This is the case of the nuclear giant resonances and low-lying collective excitations, which can be described as small amplitude collective motions in the framework of
International Nuclear Information System (INIS)
Liu, T.; Xu, X.G.; Carothers, C.D.
2013-01-01
Hardware accelerators are currently becoming increasingly important in boosting high performance computing systems. In this study, we tested the performance of two accelerator models, NVIDIA Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor, using a new Monte Carlo photon transport package called ARCHER-CT we have developed for fast CT imaging dose calculation. The package contains three code variants, ARCHER-CT(CPU), ARCHER-CT(GPU) and ARCHER-CT(COP) to run in parallel on the multi-core CPU, GPU and coprocessor architectures respectively. A detailed GE LightSpeed Multi-Detector Computed Tomography (MDCT) scanner model and a family of voxel patient phantoms were included in the code to calculate absorbed dose to radiosensitive organs under specified scan protocols. The results from ARCHER agreed well with those from the production code Monte Carlo N-Particle eXtended (MCNPX). It was found that all the code variants were significantly faster than the parallel MCNPX running on 12 MPI processes, and that the GPU and coprocessor performed equally well, being 2.89-4.49 and 3.01-3.23 times faster than the parallel ARCHER-CT(CPU) running with 12 hyper-threads. (authors)
Liu, Tianyu; Xu, X. George; Carothers, Christopher D.
2014-06-01
Hardware accelerators are currently becoming increasingly important in boosting high performance computing sys- tems. In this study, we tested the performance of two accelerator models, NVIDIA Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor, using a new Monte Carlo photon transport package called ARCHER-CT we have developed for fast CT imaging dose calculation. The package contains three code variants, ARCHER - CTCPU, ARCHER - CTGPU and ARCHER - CTCOP to run in parallel on the multi-core CPU, GPU and coprocessor architectures respectively. A detailed GE LightSpeed Multi-Detector Computed Tomography (MDCT) scanner model and a family of voxel patient phantoms were included in the code to calculate absorbed dose to radiosensitive organs under specified scan protocols. The results from ARCHER agreed well with those from the production code Monte Carlo N-Particle eXtended (MCNPX). It was found that all the code variants were significantly faster than the parallel MCNPX running on 12 MPI processes, and that the GPU and coprocessor performed equally well, being 2.89~4.49 and 3.01~3.23 times faster than the parallel ARCHER - CTCPU running with 12 hyperthreads.
International Nuclear Information System (INIS)
Svarny, J.; Mikolas, P.
1999-01-01
The first stage of ATW neutronic benchmark (without an external source), based on the simple modelling of two component concept is presented. The simple model of two component concept of the ATW (graphite + molten salt system) was found. The main purpose of this benchmark is not only to provide the basic characteristics of given ADS but also to test codes in calculations of the rate of transmutation waste and to evaluate basic kinetics parameters and reactivity effects. (author)
International Nuclear Information System (INIS)
1991-01-01
This report discusses research in high energy physics on the following topics: rare b decays; flavor changing top decays;neutrino physics; standard model; cp violation; heavy ion collisions; electron-positron interactions; electron-hadron interactions; hadron-hadron interactions; deep inelastic scattering; and grand unified models
Energy Technology Data Exchange (ETDEWEB)
Murphy, R. J. [Code 7650, Naval Research Laboratory, Washington, DC 20375 (United States); Kozlovsky, B. [Tel Aviv University, Tel Aviv (Israel); Share, G. H., E-mail: murphy@ssd5.nrl.navy.mil, E-mail: benz@wise.tau.ac.il, E-mail: share@astro.umd.edu [University of Maryland, College Park, MD 20742 (United States)
2016-12-20
The {sup 3}He abundance in impulsive solar energetic particle (SEP) events is enhanced up to several orders of magnitude compared to its photospheric value of [{sup 3}He]/[{sup 4}He] = 1–3 × 10{sup −4}. Interplanetary magnetic field and timing observations suggest that these events are related to solar flares. Observations of {sup 3}He in flare-accelerated ions would clarify the relationship between these two phenomena. Energetic {sup 3}He interactions in the solar atmosphere produce gamma-ray nuclear-deexcitation lines, both lines that are also produced by protons and α particles and lines that are essentially unique to {sup 3}He. Gamma-ray spectroscopy can, therefore, reveal enhanced levels of accelerated {sup 3}He. In this paper, we identify all significant deexcitation lines produced by {sup 3}He interactions in the solar atmosphere. We evaluate their production cross sections and incorporate them into our nuclear deexcitation-line code. We find that enhanced {sup 3}He can affect the entire gamma-ray spectrum. We identify gamma-ray line features for which the yield ratios depend dramatically on the {sup 3}He abundance. We determine the accelerated {sup 3}He/ α ratio by comparing these ratios with flux ratios measured previously from the gamma-ray spectrum obtained by summing the 19 strongest flares observed with the Solar Maximum Mission Gamma-Ray Spectrometer. All six flux ratios investigated show enhanced {sup 3}He, confirming earlier suggestions. The {sup 3}He/ α weighted mean of these new measurements ranges from 0.05 to 0.3 (depending on the assumed accelerated α /proton ratio) and has a <1 × 10{sup −3} probability of being consistent with the photospheric value. With the improved code, we can now exploit the full potential of gamma-ray spectroscopy to establish the relationship between flare-accelerated ions and {sup 3}He-rich SEPs.
International Nuclear Information System (INIS)
Genta, Philippe; Millet, Francois; Vezin, Robert.
1975-01-01
Bernstein simplifying hypotheses are used to describe the FOCUS plasma producing nuclear reactions, by means of two populations: the accelerated deuterons described by the space-time mean value of their single velocity distribution f 1 (E(d), theta(d)); and a beam of target deuterons with a kinetic energy E(T). The neutron spectrum S(M)(P 0 ,E,theta(n)) being obtained by a time-of-flight measurement, a possible determination of the function f 1 (E(d), theta(d)) giving the same spectrum is developed. When theta(n) is not zero, the Gauss-Legendre two-step method used for the programming allows a precise computation for the infinite branches. There is no difficulty in the case where theta(n)=0,π. A discrete solution is developed from two or three different values of theta(n) and a ten energy values with 100keV steps. The minimization leads to solving a linear system by the Gauss-Seidel method [fr
International Nuclear Information System (INIS)
Lundh, O.; Rechatin, C.; Faure, J.; Ben-Ismaïl, A.; Lim, J.; De Wagter, C.; De Neve, W.; Malka, V.
2012-01-01
Purpose: To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. Methods: In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. Results: It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. Conclusions: The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research.
Lundh, O; Rechatin, C; Faure, J; Ben-Ismaïl, A; Lim, J; De Wagter, C; De Neve, W; Malka, V
2012-06-01
To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research. © 2012 American Association of Physicists in Medicine.
Esposito, A.; Frasciello, O.; Pelliccioni, M.
2017-09-01
ELI-NP will be a new international research infrastructure facility for laser-based Nuclear Physics to be built in Magurele, south west of Bucharest, Romania. For the machine to operate as an intense γ rays' source based on Compton back-scattering, electron beams are employed, undergoing a two stage acceleration to 320 MeV and 740 MeV (and, with an eventual energy upgrade, also to 840 MeV) beam energies. In order to assess the radiation safety issues, concerning the effectiveness of the dumps in absorbing the primary electron beams, the generated prompt radiation field and the residual dose rates coming from the activation of constituent materials, as well as the shielding of the adjacent environments against both prompt and residual radiation fields, an extensive design study by means of Monte Carlo simulations with FLUKA code was performed, for both low energy 320 MeV and high energy 720 MeV (840 MeV) beam dumps. For the low energy dump we discuss also the rational of the choice to place it in the building basement, instead of installing it in one of the shielding wall at the machine level, as it was originally conceived. Ambient dose equivalent rate constraints, according to the Rumenian law in force in radiation protection matter were 0.1 /iSv/h everywhere outside the shielding walls and 1.4 μiSv/h outside the high energy dump area. The dumps' placements and layouts are shown to be fully compliant with the dose constraints and environmental impact.
International Nuclear Information System (INIS)
Albright, Brian J.; Yin, Lin; Hegelich, Bjoorn M.; Bowers, Kevin J.; Huang, Chengkun; Fernandez, Juan C.; Flippo, Kirk A.; Gaillard, Sandrine; Kwan, Thomas J.T.; Henig, Andreas; Habs, Dieter
2009-01-01
A simple model has been derived for the expansion of a thin (up to 100s of nm thickness), solid-density target driven by an u.ltraintense laser. In this regime, new ion acceleration mechanisms, such as the Break-Out Afterburner (BOA) (1), emerge with the potential to dramatically improve energy, efficiency, and energy spread of laser-driven ion beams. Such beams have been proposed (2) as drivers for fast ignition inertial confinement fusion (3). Analysis of kinetic simulations of the BOA shows two dislinct times that bound the period of enhanced acceleration: t 1 , when the target becomes relativistically transparent to the laser, and t 2 , when the target becomes classically underdense and the enhanced acceleration terminates. A silllple dynamical model for target expansion has been derived that contains both the early, one-dimensional (lD) expansion of the target as well as three-dimensional (3D) expansion of the plasma at late times, The model assumes that expansion is slab-like at the instantaneous ion sound speed and requires as input target composition, laser intensity, laser spot area, and the efficiency of laser absorption into electron thermal energy.
International Nuclear Information System (INIS)
Albright, B J; Yin, L; Hegelich, B M; Bowers, K J; Huang, C; Fernandez, J C; Flippo, K A; Gaillard, S A; Kwan, T J T; Henig, A; Tajima, T; Habs, D; Yan, X Q
2010-01-01
A simple model has been derived for expansion of a thin (up to 100s of nm thickness) target initially of solid density irradiated by an ultraintense laser. In this regime, ion acceleration mechanisms, such as the Break-Out Afterburner (BOA) [1], emerge with the potential for dramatically improved energy, efficiency, and energy spread. Ion beams have been proposed [2] as drivers for fast ignition inertial confinement fusion [3]. Analysis of kinetic simulations of the BOA shows the period of enhanced acceleration occurs between times t 1 , when the target becomes relativistically transparent to the laser, and t 2 , when the target becomes classically underdense and the enhanced acceleration terminates. A simple model for target expansion has been derived that contains early, one-dimensional (1D) expansion of the target and three-dimensional (3D) expansion at late times. The model assumes expansion is slab-like at the instantaneous ion sound speed and requires as input target composition, laser intensity, laser spot area, and the efficiency of laser absorption into electron thermal energy.
Scisciò, M; Migliorati, M; Mostacci, A; Palumbo, L; Papaphilippou, Y; Antici, P
2016-01-01
In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupo...
International Nuclear Information System (INIS)
Zach, Reto.
1980-07-01
A flexible and interactive code, NEPTUN, has been written in FORTRAN IV for the PDP-10 computer to assess the impact on man of radionuclides in aquatic food chains. NEPTUN is based on an equilibrium model of the linear-chain type, and calculates aquatic food concentrations and doses to man. A decay term is included for the holdup time of the various food types. A total of seven food types can be selected, which include drinking water, freshwater and salt-water plants, inverebrates and fish. Thirty different diets can be implemented and five different dose factor files can be chosen. These include dose conversion factors for infants and adults based on ICRP 2 and ICRP 26 methodologies. All dose factors involve a dose commitment of 50 years, or equivalently, 50 years of chronic exposure. To date, only stochastic ICRP 26 dose caluclations have been implemented. The basic concentration factor file contains data for 211 different radionuclides; the dose factor files are less comprehensive. However, all files can be readily expanded. The output includes tables of concentrations and doses for individual radionuclides, as well as summaries for groups of radionuclides. Existing aquatic food chain models and the sources of currently-used generic concentration factors are briefly reviewed, and dose factors based on ICRP 2 and ICRP 26 methodologies are contrasted. (auth)
Large calculated electron-phonon interactions in La2-xMxCuO4
International Nuclear Information System (INIS)
Krakauer, H.; Pickett, W.E.; Cohen, R.E.
1993-01-01
Results of self-consistent linearized-augmented-plane-wave calculations within the local-density-functional approximation (LDA) are presented of the electron-phonon-induced linewidths and interaction strength of selected phonons in La 2-xMx CuO 4 at x=0.15. Through the use of a supercell geometry, rigid-ion-type approximations are avoided and the full electron-phonon matrix elements are determined from finite differences of the LDA potentials corresponding to frozen-in phonon at Γ X, and Z. At the X point, all fully symmetric A g modes (i.e., having the symmetry of the oxygen planar-breathing mode) as well as three modes having B 3g symmetry are examined. Small linewidths were found for the three B 3g modes, and moderate linewidths for the A g modes, the largest corresponding to ratios γ q,ν /ω q,ν =0.02 for the oxygen breathing and axial modes
Soil-structure interaction - a general method to calculate soil impedance
International Nuclear Information System (INIS)
Farvacque, M.; Gantenbein, F.
1983-01-01
A correct analysis of the seismic response of nuclear power plant buildings needs to take into account the soil structure interaction. The most classical and simple method consists in characterizing the soil by a stiffness and a damping function for each component of the translation and rotation of the foundation. In a more exact way an impedance function of the frequency may be introduced. Literature provides data to estimate these coefficients for simple soil and foundation configurations and using linear hypothesis. This paper presents a general method to calculate soil impedances which is based on the computation of the impulsive response of the soil using an axisymmetric 2D finite element Code (INCA). The Fourier transform of this response is made in the time interval before the return of the reflected waves on the boundaries of the F.E. domain. This procedure which limits the perturbing effects of the reflections is improved by introducing absorbing boundary elements. A parametric study for homogeneous and layered soils has been carried out using this method. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Grigorev, Petr [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000 Gent (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Bakaev, Alexander; Terentyev, Dmitry [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Van Oost, Guido; Noterdaeme, Jean-Marie [Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000 Gent (Belgium); Zhurkin, Evgeny E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation)
2017-02-15
The interaction of H and He interstitial atoms with ½〈1 1 1〉 and 〈1 0 0〉 loops in tungsten (W) was studied by means of Molecular Static and Molecular Dynamics simulations. A recently developed interatomic potential was benchmarked using data for dislocation loops obtained earlier with two other W potentials available in literature. Molecular Static calculations demonstrated that ½〈1 1 1〉 loops feature a wide spectrum of the binding energy with a maximum value of 1.1 eV for H and 1.93 eV for He as compared to 0.89 eV and 1.56 eV for a straight ½〈1 1 1〉{1 1 0} edge dislocation. For 〈1 0 0〉 loops, the values of the binding energy were found to be 1.63 eV and 2.87 eV for H and He, respectively. These results help to better understand the role played by dislocation loops in H/He retention in tungsten. Based on the obtained results, a contribution of the considered dislocation loops to the trapping and retention under plasma exposure is discussed.
International Nuclear Information System (INIS)
Ott, O.J.; Lotter, M.; Sauer, R.; Strnad, V.
2007-01-01
Purpose: To describe relative skin dose estimations and their impact on cosmetic outcome in interstitial multicatheter accelerated partial-breast irradiation (APBI). Patients and Methods: Between April 2001 and January 2005, 105 consecutive patients with early breast cancer were recruited in Erlangen, Germany, for this substudy of the German-Austrian APBI phase II trial. 51% (54/105) received pulsed-dose-rate (PDR), and 49% (51/105) high-dose-rate (HDR) brachytherapy. Prescribed reference dose for HDR brachytherapy was 32 Gy in eight fractions of 4 Gy, twice daily. Prescribed reference dose in PDR brachytherapy was 49.8 Gy in 83 consecutive fractions of 0.6 Gy every hour. Total treatment time was 3-4 days. With a wire cross on the skin surface during the brachytherapy-planning procedure the minimal, mean and maximal relative skin doses (SD min% , SD max% , SD mean% ) were recorded. Endpoint of this evaluation was the cosmetic outcome in relation to the relative skin doses. Results: Median follow-up time was 38 months (range, 19-65 months). Cosmetic results for all patients were excellent in 57% (60/105), good in 36% (38/105), and fair in 7% (7/105). The SD min% (27.0% vs. 31.7%; p = 0.032), SD mean% (34.2% vs. 38.1%; p 0.008), and SD max% (38.2% vs. 46.4%; p 0.003) were significantly lower for patients with excellent cosmetic outcome compared to patients with a suboptimal outcome. SD mean% (37.6% vs. 34.2%; p = 0.026) and SD max% (45.4% vs. 38.2%; p = 0.008) were significantly higher for patients with good cosmetic outcome compared with the patients with excellent results. Conclusion: The appraisal of skin doses has been shown to be relevant to the achievement of excellent cosmetic outcome. Further investigations are necessary, especially on the basis of CT-based brachytherapy planning, to further improve the treatment results of multicatheter APBI. (orig.)
Singh Ghotra, Harjit; Kant, Niti
2018-06-01
We examine the electron dynamics during laser-cluster interaction. In addition to the electrostatic field of an individual cluster and laser field, we consider an external transverse wiggler magnetic field, which plays a pivotal role in enhancing the electron acceleration. Single-particle simulation has been presented with a short pulse linearly polarized as well as circularly polarized laser pulses for electron acceleration in a cluster. The persisting Coulomb field allows the electron to absorb energy from the laser field. The stochastically heated electron finds a weak electric field at the edge of the cluster from where it is ejected. The wiggler magnetic field connects the regions of the stochastically heated, ejected electron from the cluster and high energy gain by the electron from the laser field outside the cluster. This increases the field strength and hence supports the electron to meet the phase of the laser field for enhanced acceleration. A long duration resonance appears with an optimized magnetic wiggler field of about 3.4 kG. Hence, the relativistic energy gain by the electron is enhanced up to a few 100 MeV with an intense short pulse laser with an intensity of about 1019 W cm‑2 in the presence of a wiggler magnetic field.
Analytical calculation of the vibrator-rotor transition in the sdg interacting boson model
International Nuclear Information System (INIS)
Wang Baolin
1992-01-01
Analytical calculation of the vibrator-rotor transition is given by utilizing the 1/N expansion technique in the sdg IBM. The phase transition of low-lying energy spectrum and E2 transition for Sm isotopes are calculated
International Nuclear Information System (INIS)
Liu, T.; Xu, X.G.; Carothers, C.D.
2015-01-01
Highlights: • A new Monte Carlo photon transport code ARCHER-CT for CT dose calculations is developed to execute on the GPU and coprocessor. • ARCHER-CT is verified against MCNP. • The GPU code on an Nvidia M2090 GPU is 5.15–5.81 times faster than the parallel CPU code on an Intel X5650 6-core CPU. • The coprocessor code on an Intel Xeon Phi 5110p coprocessor is 3.30–3.38 times faster than the CPU code. - Abstract: Hardware accelerators are currently becoming increasingly important in boosting high performance computing systems. In this study, we tested the performance of two accelerator models, Nvidia Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor, using a new Monte Carlo photon transport package called ARCHER-CT we have developed for fast CT imaging dose calculation. The package contains three components, ARCHER-CT CPU , ARCHER-CT GPU and ARCHER-CT COP designed to be run on the multi-core CPU, GPU and coprocessor architectures respectively. A detailed GE LightSpeed Multi-Detector Computed Tomography (MDCT) scanner model and a family of voxel patient phantoms are included in the code to calculate absorbed dose to radiosensitive organs under user-specified scan protocols. The results from ARCHER agree well with those from the production code Monte Carlo N-Particle eXtended (MCNPX). It is found that all the code components are significantly faster than the parallel MCNPX run on 12 MPI processes, and that the GPU and coprocessor codes are 5.15–5.81 and 3.30–3.38 times faster than the parallel ARCHER-CT CPU , respectively. The M2090 GPU performs better than the 5110p coprocessor in our specific test. Besides, the heterogeneous computation mode in which the CPU and the hardware accelerator work concurrently can increase the overall performance by 13–18%
Accelerating Robot Development through Integral Analysis of Human-Robot Interaction
Kooijmans, T.; Kanda, T.; Bartneck, C.; Ishiguro, H.; Hagita, N.
2007-01-01
The development of interactive robots is a complicated process, involving a plethora of psychological, technical, and contextual influences. To design a robot capable of operating "intelligently" in everyday situations, one needs a profound understanding of human-robot interaction (HRI). We propose
Directory of Open Access Journals (Sweden)
V. Génot
2004-06-01
Full Text Available Investigating the process of electron acceleration in auroral regions, we present a study of the temporal evolution of the interaction of Alfvén waves (AW with a plasma inhomogeneous in a direction transverse to the static magnetic field. This type of inhomogeneity is typical of the density cavities extended along the magnetic field in auroral acceleration regions. We use self-consistent Particle In Cell (PIC simulations which are able to reproduce the full nonlinear evolution of the electromagnetic waves, as well as the trajectories of ions and electrons in phase space. Physical processes are studied down to the ion Larmor radius and electron skin depth scales. We show that the AW propagation on sharp density gradients leads to the formation of a significant parallel (to the magnetic field electric field (E-field. It results from an electric charge separation generated on the density gradients by the polarization drift associated with the time varying AW E-field. Its amplitude may reach a few percents of the AW E-field. This parallel component accelerates electrons up to keV energies over a distance of a few hundred Debye lengths, and induces the formation of electron beams. These beams trigger electrostatic plasma instabilities which evolve toward the formation of nonlinear electrostatic structures (identified as electron holes and double layers. When the electrostatic turbulence is fully developed we show that it reduces the further wave/particle exchange. This sequence of mechanisms is analyzed with the program WHAMP, to identify the instabilities at work and wavelet analysis techniques are used to characterize the regime of energy conversions (from electromagnetic to electrostatic structures, from large to small length scales. This study elucidates a possible scenario to account for the particle acceleration and the wave dissipation in inhomogeneous plasmas. It would consist of successive phases of acceleration along the magnetic field
International Nuclear Information System (INIS)
Caballero G, C. A.; Plascencia, J. C.; Vargas V, M. X.; Toledo J, P.
2010-09-01
The helicoid tomo therapy is an external radiotherapy system of modulated intensity, guided by image, in which the radiation is imparted to the patient using a narrow radiation beam in helicoid form, in a similar way to the scanning process with a computerized tomography. The tomo therapy equipment (Tomo Therapy Hi-Art) consists in an electrons linear accelerator with acceleration voltages of 6 MV for treatment and 3.5 MV for image, coupled to a ring that turn around the patient as this is transferred through this ring in perpendicular sense to the radiation beam. The radiation beam is narrow because has the maximum size of 5 x 40 cm 2 in the isocenter. The intensity modulation of the beam is carried out with a binary dynamic collimator of 64 crisscross sheets, and the guide by image though a system of megavoltage computerized tomography. Opposed to the radiation beam, also coupled to the rotational ring, a group of lead plates exists with a total thickness of 13 cm that acts as barrier of the primary radiation beam. The special configuration of the tomography equipment makes to have the following characteristics: 1) the presence of the lead barrier of the equipment reduces the intensity of the primary beam that reaches the bunker walls in considerable way, 2) the disperse and leakage radiations are increased with regard to a conventional accelerator due to the increase in the necessary irradiation time to produce modulated intensity fields by means of the narrow radiation beam. These special characteristics of the tomo therapy equipment make that particularities exist in the application of the formulations for structural shielding calculations that appears in the NCRP reports 49, NCRP 151 and IAEA-SRS-47. For this reason, several researches have development analytic models based on geometric considerations of continuous rotation of the equipment ring to determine the shielding requirements for the primary beam, the dispersed and leakage radiation in tomo therapy
Energy Technology Data Exchange (ETDEWEB)
Wang, Yuhe; Mazur, Thomas R.; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H. Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H. Harold, E-mail: hli@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110 (United States)
2016-07-15
Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: PENELOPE was first translated from FORTRAN to C++ and the result was confirmed to produce equivalent results to the original code. The C++ code was then adapted to CUDA in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gPENELOPE as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gPENELOPE. Ultimately, gPENELOPE was applied toward independent validation of patient doses calculated by MRIdian’s KMC. Results: An acceleration factor of 152 was achieved in comparison to the original single-thread FORTRAN implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: A Monte Carlo simulation platform was developed based on a GPU- accelerated version of PENELOPE. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this
International Nuclear Information System (INIS)
Wang, Yuhe; Mazur, Thomas R.; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H. Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H. Harold
2016-01-01
Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: PENELOPE was first translated from FORTRAN to C++ and the result was confirmed to produce equivalent results to the original code. The C++ code was then adapted to CUDA in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gPENELOPE as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gPENELOPE. Ultimately, gPENELOPE was applied toward independent validation of patient doses calculated by MRIdian’s KMC. Results: An acceleration factor of 152 was achieved in comparison to the original single-thread FORTRAN implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: A Monte Carlo simulation platform was developed based on a GPU- accelerated version of PENELOPE. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this
Wang, Yuhe; Mazur, Thomas R; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H Harold
2016-07-01
The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on penelope and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. penelope was first translated from fortran to c++ and the result was confirmed to produce equivalent results to the original code. The c++ code was then adapted to cuda in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gpenelope highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gpenelope as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gpenelope. Ultimately, gpenelope was applied toward independent validation of patient doses calculated by MRIdian's kmc. An acceleration factor of 152 was achieved in comparison to the original single-thread fortran implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gpenelope with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). A Monte Carlo simulation platform was developed based on a GPU- accelerated version of penelope. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and
Makri, Nancy
2014-10-07
The real-time path integral representation of the reduced density matrix for a discrete system in contact with a dissipative medium is rewritten in terms of the number of blips, i.e., elementary time intervals over which the forward and backward paths are not identical. For a given set of blips, it is shown that the path sum with respect to the coordinates of all remaining time points is isomorphic to that for the wavefunction of a system subject to an external driving term and thus can be summed by an inexpensive iterative procedure. This exact decomposition reduces the number of terms by a factor that increases exponentially with propagation time. Further, under conditions (moderately high temperature and/or dissipation strength) that lead primarily to incoherent dynamics, the "fully incoherent limit" zero-blip term of the series provides a reasonable approximation to the dynamics, and the blip series converges rapidly to the exact result. Retention of only the blips required for satisfactory convergence leads to speedup of full-memory path integral calculations by many orders of magnitude.
International Nuclear Information System (INIS)
Clough, S.A.
1993-01-01
In the present study we are studying the effects of including carbon dioxide, ozone, methane, and the halocarbons in addition to water vapor in the radiating atmosphere. The study has focused on two principal issues: the effect on the spectral fluxes and cooling rates of carbon dioxide, ozone and the halocarbons at 1990 concentration levels and the change in fluxes and cooling rates as a consequence of the anticipated ten year change in the profiles of these species. For the latter study the water vapor profiles have been taken as invariant in time. The radiative line-by-line calculations using LBLRTM (Line-By-Line Radiative Transfer Model) have been performed for tropical (TRP), mid-latitude winter (MLW) and mid-latitude summer (MLS) model atmospheres. The halocarbons considered in the present study are CCl 4 , CFC-11, CFC-12 and CFC-22. In addition to considering the radiative effects of carbon dioxide at 355 ppM, the assumed current level, we have also obtained results for doubled carbon dioxide at 710 ppM. An important focus of the current research effort is the effect of the ozone depletion profile on atmospheric radiative effects
High-performance modeling of plasma-based acceleration and laser-plasma interactions
Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri
2016-10-01
Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.
Cavalli, F.; Naimzada, A.; Pecora, N.
2017-10-01
In the present paper, we investigate the dynamics of a model in which the real part of the economy, described within a multiplier-accelerator framework, interacts with a financial market with heterogeneous speculators, in order to study the channels through which the two sectors influence each other. Employing analytical and numerical tools, we investigate stability conditions as well as bifurcations and possible periodic, quasi-periodic, and chaotic dynamics, enlightening how the degree of market interaction, together with the accelerator parameter and the intervention of the fiscal authority, may affect the business cycle and the course of the financial market. In particular, we show that even if the steady state is locally stable, multistability phenomena can occur, with several and complex dynamic structures coexisting with the steady state. Finally, simulations reveal that the proposed model is able to explain several statistical properties and stylized facts observed in real financial markets, including persistent high volatility, fat-tailed return distributions, volatility clustering, and positive autocorrelation of absolute returns.
International Nuclear Information System (INIS)
Uehara, Yasushi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Koshizuka, Seiichi
2009-01-01
In order to predict and mitigate flow accelerated corrosion (FAC) of carbon steel piping in PWR and BWR secondary systems, computer program packages for evaluating FAC have been developed by coupling one through three dimensional (1-3D) computational flow dynamics (CFD) models and corrosion models. To evaluate corrosive conditions, e.g., oxygen concentration and electrochemical corrosion potential (ECP) along the flow path, flow pattern and temperature in each elemental volume were obtained with 1D computational flow dynamics (CFD) codes. Precise flow turbulence and mass transfer coefficients at the structure surface were calculated with 3D CFD codes to determine wall thinning rates. One of the engineering options is application of k-ε calculation as a 3D CFD code, which has limitation of detail evaluation of flow distribution at very surface of large scale piping. A combination of k-ε calculation and wall function was proposed to evaluate precise distribution of mass transfer coefficients with reasonable CPU volume and computing time and, at the same time, reasonable accuracy. (author)
International Nuclear Information System (INIS)
Grudzevich, O.D.; Zelenetskij, A.V.; Pashchenko, A.B.
1986-01-01
The last version of the KOP program for calculating cross sections of neutron and charged particle interaction with atomic nuclei within the scope of the optical model is described. The structure and program organization, library of total parameters of the optical potential, program identificators and peculiarities of its operation, input of source data and output of calculational results for printing are described in detail. The KOP program is described in Fortran- and adapted for EC-1033 computer
International Nuclear Information System (INIS)
Wang Baolin
1995-01-01
The analytical calculation of the nuclear ground state deformation of the even-even isotopes in the rare-earth region is given by utilizing the intrinsic states of the sdg interacting boson model. It is compared systematically with the reported theoretical and experimental results. It is shown that the sdg interacting boson model is a reasonable scheme for the description of even-even nuclei deformation
Energy Technology Data Exchange (ETDEWEB)
Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp
2017-07-15
The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1 eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. - Highlights: • Effect of van der Waals (vdW) interaction in ELNES calculation is investigated. • The vdW interaction influences more to the excited state owing to the presence of excited electron. • The vdW interaction makes spectral shift to lower energy side by 0.1–0.01 eV. • The vdW interaction is negligible in gaseous materials due to long intermolecular distance.
Elkington, S. R.; Alam, S. S.; Chan, A. A.; Albert, J.; Jaynes, A. N.; Baker, D. N.; Wiltberger, M. J.
2017-12-01
Global simulations of radiation belt dynamics are often undertaken using either a transport formalism (e.g. Fokker-Plank), or via test particle simulations in model electric and magnetic fields. While transport formalisms offer computational efficiency and the ability to deal with a wide range of wave-particle interactions, they typically rely on simplified background fields, and often are limited to empirically-specified stochastic (diffusive) wave-particle interactions. On the other hand, test particle simulations may be carried out in global MHD simulations that include realistic physical effects such as magnetopause shadowing, convection, and substorm injections, but lack the ability to handle physics outside the MHD approximation in the realm of higher frequency (kHz) wave populations.In this work we introduce a comprehensive simulation framework combining global MHD/test particle techniques to provide realistic background fields and radial transport processes, with a Stochastic Differential Equation (SDE) method for addressing high frequency wave-particle interactions. We examine the March 17, 2013 storm-time acceleration period, an NSF-GEM focus challenge event, and use the framework to examine the relative importance of physical effects such as magnetopause shadowing, diffusive and advective transport processes, and wave-particle interactions through the various phases of the storm.
Grewal, Manpreet Kaur; Chandrapala, Jayani; Donkor, Osaana; Apostolopoulos, Vasso; Vasiljevic, Todor
2017-01-01
Accelerated shelf-life testing is applied to a variety of products to estimate keeping quality over a short period of time. The industry has not been successful in applying this approach to ultra-high temperature (UHT) milk because of chemical and physical changes in the milk proteins that take place during processing and storage. We investigated these protein changes, applying accelerated shelf-life principles to UHT milk samples with different fat levels and using native- and sodium dodecyl sulfate-PAGE. Samples of UHT skim and whole milk were stored at 20, 30, 40, and 50°C for 28d. Irrespective of fat content, UHT treatment had a similar effect on the electrophoretic patterns of milk proteins. At the start of testing, proteins were bonded mainly through disulfide and noncovalent interactions. However, storage at and above 30°C enhanced protein aggregation via covalent interactions. The extent of aggregation appeared to be influenced by fat content; whole milk contained more fat than skim milk, implying aggregation via melted or oxidized fat, or both. Based on reduction in loss in absolute quantity of individual proteins, covalent crosslinking in whole milk was facilitated mainly by products of lipid oxidation and increased access to caseins for crosslinking reactions. Maillard and dehydroalanine products were the main contributors involved in protein changes in skim milk. Protein crosslinking appeared to follow a different pathway at higher temperatures (≥40°C) than at lower temperatures, making it very difficult to extrapolate these changes to protein interactions at lower temperatures. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Parallel multireference configuration interaction calculations on mini-β-carotenes and β-carotene
Kleinschmidt, Martin; Marian, Christel M.; Waletzke, Mirko; Grimme, Stefan
2009-01-01
We present a parallelized version of a direct selecting multireference configuration interaction (MRCI) code [S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999)]. The program can be run either in ab initio mode or as semiempirical procedure combined with density functional theory (DFT/MRCI). We have investigated the efficiency of the parallelization in case studies on carotenoids and porphyrins. The performance is found to depend heavily on the cluster architecture. While the speed-up on the older Intel Netburst technology is close to linear for up to 12-16 processes, our results indicate that it is not favorable to use all cores of modern Intel Dual Core or Quad Core processors simultaneously for memory intensive tasks. Due to saturation of the memory bandwidth, we recommend to run less demanding tasks on the latter architectures in parallel to two (Dual Core) or four (Quad Core) MRCI processes per node. The DFT/MRCI branch has been employed to study the low-lying singlet and triplet states of mini-n-β-carotenes (n =3, 5, 7, 9) and β-carotene (n =11) at the geometries of the ground state, the first excited triplet state, and the optically bright singlet state. The order of states depends heavily on the conjugation length and the nuclear geometry. The B1u+ state constitutes the S1 state in the vertical absorption spectrum of mini-3-β-carotene but switches order with the 2 A1g- state upon excited state relaxation. In the longer carotenes, near degeneracy or even root flipping between the B1u+ and B1u- states is observed whereas the 3 A1g- state is found to remain energetically above the optically bright B1u+ state at all nuclear geometries investigated here. The DFT/MRCI method is seen to underestimate the absolute excitation energies of the longer mini-β-carotenes but the energy gaps between the excited states are reproduced well. In addition to singlet data, triplet-triplet absorption energies are presented. For β-carotene, where these transition
Kleinschmidt, Martin; Marian, Christel M; Waletzke, Mirko; Grimme, Stefan
2009-01-28
We present a parallelized version of a direct selecting multireference configuration interaction (MRCI) code [S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999)]. The program can be run either in ab initio mode or as semiempirical procedure combined with density functional theory (DFT/MRCI). We have investigated the efficiency of the parallelization in case studies on carotenoids and porphyrins. The performance is found to depend heavily on the cluster architecture. While the speed-up on the older Intel Netburst technology is close to linear for up to 12-16 processes, our results indicate that it is not favorable to use all cores of modern Intel Dual Core or Quad Core processors simultaneously for memory intensive tasks. Due to saturation of the memory bandwidth, we recommend to run less demanding tasks on the latter architectures in parallel to two (Dual Core) or four (Quad Core) MRCI processes per node. The DFT/MRCI branch has been employed to study the low-lying singlet and triplet states of mini-n-beta-carotenes (n=3, 5, 7, 9) and beta-carotene (n=11) at the geometries of the ground state, the first excited triplet state, and the optically bright singlet state. The order of states depends heavily on the conjugation length and the nuclear geometry. The (1)B(u) (+) state constitutes the S(1) state in the vertical absorption spectrum of mini-3-beta-carotene but switches order with the 2 (1)A(g) (-) state upon excited state relaxation. In the longer carotenes, near degeneracy or even root flipping between the (1)B(u) (+) and (1)B(u) (-) states is observed whereas the 3 (1)A(g) (-) state is found to remain energetically above the optically bright (1)B(u) (+) state at all nuclear geometries investigated here. The DFT/MRCI method is seen to underestimate the absolute excitation energies of the longer mini-beta-carotenes but the energy gaps between the excited states are reproduced well. In addition to singlet data, triplet-triplet absorption energies are
Montecarlo calculation for a benchmark on interactive effects of Gadolinium poisoned pins in BWRs
International Nuclear Information System (INIS)
Borgia, M.G.; Casali, F.; Cepraga, D.
1985-01-01
K infinite and burn-up calculations have been done in the frame of a benchmark organized by Physic Reactor Committee of NEA. The calculations, performed by the Montecarlo code KIM, concerned BWR lattices having UO*L2 fuel rodlets with and without gadolinium oxide
Whalen, Matthew A; Aquilino, Kristin M; Stachowicz, John J
2016-08-01
Environmental heterogeneity contributes to coexistence by allowing species with different traits to persist when different species perform best at different times or places. This interaction between niche differences and environmental variability may also help explain relationships between biodiversity and ecosystem functioning, but few data are available to rigorously evaluate this hypothesis. We assessed how a biologically relevant aspect of environmental heterogeneity interacts with species diversity to determine ecosystem processes in a natural rocky intertidal community. We used field removals to factorially manipulate biogenic habitat heterogeneity (barnacles, bare rock, and plots that were 50/50 mixes of the two habitat types) and gastropod grazer species richness and then tracked algal community succession and recovery over the course of 1 yr. We found that herbivore diversity, substrate heterogeneity, and their interaction played unique roles in the peak abundance and timing of occurrence of different algal functional groups. Early successional microalgae were most heavily grazed in diverse herbivore assemblages and those with barnacles present, which was likely due to complementary feeding strategies among all three grazers. In contrast, late successional macroalgae were strongly influenced by the presence of a habitat generalist limpet. In this herbivore's absence, heterogeneous habitats (i.e., mixtures of bare rock and barnacles) experienced the greatest algal accumulation, which was partly a result of complementary habitat use by the remaining herbivores. The complex way habitat identity and heterogeneity altered grazer-algal interactions in our study suggests species' differences and environmental heterogeneity both separately and interactively contribute to the relationship between biodiversity and ecosystem functions. © 2016 by the Ecological Society of America.
Neveu, Emilie; Ritchie, David W; Popov, Petr; Grudinin, Sergei
2016-09-01
Docking prediction algorithms aim to find the native conformation of a complex of proteins from knowledge of their unbound structures. They rely on a combination of sampling and scoring methods, adapted to different scales. Polynomial Expansion of Protein Structures and Interactions for Docking (PEPSI-Dock) improves the accuracy of the first stage of the docking pipeline, which will sharpen up the final predictions. Indeed, PEPSI-Dock benefits from the precision of a very detailed data-driven model of the binding free energy used with a global and exhaustive rigid-body search space. As well as being accurate, our computations are among the fastest by virtue of the sparse representation of the pre-computed potentials and FFT-accelerated sampling techniques. Overall, this is the first demonstration of a FFT-accelerated docking method coupled with an arbitrary-shaped distance-dependent interaction potential. First, we present a novel learning process to compute data-driven distant-dependent pairwise potentials, adapted from our previous method used for rescoring of putative protein-protein binding poses. The potential coefficients are learned by combining machine-learning techniques with physically interpretable descriptors. Then, we describe the integration of the deduced potentials into a FFT-accelerated spherical sampling provided by the Hex library. Overall, on a training set of 163 heterodimers, PEPSI-Dock achieves a success rate of 91% mid-quality predictions in the top-10 solutions. On a subset of the protein docking benchmark v5, it achieves 44.4% mid-quality predictions in the top-10 solutions when starting from bound structures and 20.5% when starting from unbound structures. The method runs in 5-15 min on a modern laptop and can easily be extended to other types of interactions. https://team.inria.fr/nano-d/software/PEPSI-Dock sergei.grudinin@inria.fr. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e
Energy Technology Data Exchange (ETDEWEB)
Xantheas, Sotiris S.
2004-05-01
The modeling of the macroscopic properties of homogeneous and inhomogeneous systems via atomistic simulations such as molecular dynamics (MD) or Monte Carlo (MC) techniques is based on the accurate description of the relevant solvent-solute and solvent-solvent intermolecular interactions. The total energy (U) of an n-body molecular system can be formally written as [1,2,3
International Nuclear Information System (INIS)
Le Thanh Xuan; Nguyen Thi Cam Thu; Tran Van Nghia; Truong Thi Hong Loan; Vo Thanh Nhon
2015-01-01
The dose distribution calculation is one of the major steps in radiotherapy. In this paper the Monte Carlo code MCNP5 has been applied for simulation 15 MV photon beams emitted from linear accelerator in a case of lung cancer of the General Hospital of Kien Giang. The settings for beam directions, field sizes and isocenter position used in MCNP5 must be the same as those in treatment plan at the hospital to ensure the results from MCNP5 are accurate. We also built a program CODIM by using MATLAB® programming software. This program was used to construct patient model from lung CT images obtained from cancer treatment cases at the General Hospital of Kien Giang and then MCNP5 code was used to simulate the delivered dose in the patient. The results from MCNP5 show that there is a difference of 5% in comparison with Prowess Panther program - a semi-empirical simulation program which is being used for treatment planning in the General Hospital of Kien Giang. The success of the work will help the planners to verify the patient dose distribution calculated from the treatment planning program being used at the hospital. (author)
Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G
2013-12-01
This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.
Flare particle acceleration in the interaction of twisted coronal flux ropes
Threlfall, J.; Hood, A. W.; Browning, P. K.
2018-03-01
Aim. The aim of this work is to investigate and characterise non-thermal particle behaviour in a three-dimensional (3D) magnetohydrodynamical (MHD) model of unstable multi-threaded flaring coronal loops. Methods: We have used a numerical scheme which solves the relativistic guiding centre approximation to study the motion of electrons and protons. The scheme uses snapshots from high resolution numerical MHD simulations of coronal loops containing two threads, where a single thread becomes unstable and (in one case) destabilises and merges with an additional thread. Results: The particle responses to the reconnection and fragmentation in MHD simulations of two loop threads are examined in detail. We illustrate the role played by uniform background resistivity and distinguish this from the role of anomalous resistivity using orbits in an MHD simulation where only one thread becomes unstable without destabilising further loop threads. We examine the (scalable) orbit energy gains and final positions recovered at different stages of a second MHD simulation wherein a secondary loop thread is destabilised by (and merges with) the first thread. We compare these results with other theoretical particle acceleration models in the context of observed energetic particle populations during solar flares.
Calculation of the Ruderman-Kittel interaction and magnetic ordering in copper
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Wang, X.-W.; Harmon, B. N.
1986-01-01
Using first principles energy bands and wave functions the authors find the Rudermann-Kittel interaction having a more predominant nearest neighbour coupling than expected for free electrons. Using the correlation theory and including dipolar interactions they find the most probable structure to ...
International Nuclear Information System (INIS)
Parizot, Etienne
1997-01-01
This research thesis reports the development of a general model for the study of the propagation and interaction of energetic particles (cosmic rays, and so on) in the interstellar medium (ISM). The first part addresses the development of theoretical and numerical tools. The author presents cosmic rays and energetic particles, presents and describes the various processes related to high-energy particles (matter ionisation, synchrotron and Bremsstrahlung radiation, Compton scattering, nuclear processes), addresses the transport and acceleration of energetic particles (plasmas, magnetic fields and energetic particles, elements of kinetic theory, transport and acceleration of energetic particles), and describes the general model of production of γ nuclear lines and of secondary nuclei. The second part addresses the gamma signature of a massive star in a dense medium: presentation and description of massive stars and of the circumstellar medium, life, death and gamma resurrection of a massive star at the heart of a cloud. The third part addresses the case of the gamma emission by Orion, and more particularly presents a theoretical model of this emission. Some generalities and perspectives (theoretical as well as observational) are then stated [fr
Simulation of wire-compensation of long range beam beam interaction in high energy accelerators
International Nuclear Information System (INIS)
Dorda, U.; )
2006-01-01
Full text: We present weak-strong simulation results for the effect of long-range beam-beam (LRBB) interaction in LHC as well as for proposed wire compensation schemes or wire experiments, respectively. In particular, we discuss details of the simulation model, instability indicators, the effectiveness of compensation, the difference between nominal and PACMAN bunches for the LHC, beam experiments, and wire tolerances. The simulations are performed with the new code BBTrack. (author)
Inovenkov, I. N.; Echkina, E. Yu.; Nefedov, V. V.; Ponomarenko, L. S.
2017-12-01
In this paper we discuss how a particles-in-cell computation code can be combined with methods of multicriterion optimization (in particular the Pareto optimal solutions of the multicriterion optimization problem) and a hierarchy of computational models approach to create an efficient tool for solving a wide array of problems related to the laser-plasma interaction. In case of the computational experiment the multicriterion optimization can be applied as follows: the researcher defines the objectives of the experiment - some computable scalar values (i.e. high kinetic energy of the ions leaving the domain, least possible number of electrons leaving domain in the given direction, etc). After that the parameters of the experiment which can be varied to achieve these objectives and the constrains on these parameters are chosen (e.g. amplitude and wave-length of the laser radiation, dimensions of the plasma slab(s)). The Pareto optimality of the vector of the parameters can be seen as this: x 0 is Pareto optimal if there exists no vector which would improve some criterion without causing a simultaneous degradation in at least one other criterion. These efficient set of parameter and constrains can be selected based on the preliminary calculations in the simplified models (one or two-dimensional) either analytical or numerical. The multistage computation of the Pareto set radically reduces the number of variants which are to be evaluated to achieve the given accuracy. During the final stage we further improve the results by recomputing some of the optimal variants on the finer grids, with more particles and/or in the frame of a more detailed model. As an example we have considered the ion acceleration caused by interaction of very intense and ultra-short laser pulses with plasmas and have calculated the optimal set of experiment parameters for optimizing number and average energy of high energy ions leaving the domain in the given direction and minimizing the expulsion
A finite element method for a time dependence soil-structure interactions calculations
International Nuclear Information System (INIS)
Ni, X.M.; Gantenbein, F.; Petit, M.
1989-01-01
The method which is proposed is based on a finite element modelisation for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method will be presented, then applications will be given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior will be described [fr
International Nuclear Information System (INIS)
Moody, K.J.; Shaughnessy, D.A.; Gostic, J.M.
2011-01-01
for evaluation of homolog chemical properties. CAMS also offers an environment for testing these systems 'online' by incorporating automated chemical systems into the beamline so that tracers can be created, transported, and chemically separated all on the shorter timescales required for transactinide experiments. Even though CAMS is limited in the types and energies of ions they can accelerate, there are still a wide variety of reactions that can be performed there with commercially available target materials. The half-lives of these isotopes vary over a range that could be used for both online chemistry (where shorter half-lives are required) and benchtop tracers studies (where longer lived isotopes are preferred). In this document, they present a summary of tracer production reactions that could be performed at CAMS, specifically for online, automated chemical studies. They are from chemical groups four through seven, 13, and 14, which would be appropriate for studies of elements 104-107, 113, and 114. Reactions were selected that had (a) commercially available target material, (b) half-lives long enough for transport from a target chamber to an automated chemistry system, and (c) cross-sections at CAMS available projectile energies that were large enough to produce enough atoms to result in a statistically relevant signal after losses for transport and chemistry were considered. In addition, the resulting product atoms had to decay with an observable gamma-ray using standard Ge gamma-ray detectors. The table includes calculations performed for both metal targets and their corresponding oxides.
Energy Technology Data Exchange (ETDEWEB)
Moody, K J; Shaughnessy, D A; Gostic, J M
2011-11-29
for evaluation of homolog chemical properties. CAMS also offers an environment for testing these systems 'online' by incorporating automated chemical systems into the beamline so that tracers can be created, transported, and chemically separated all on the shorter timescales required for transactinide experiments. Even though CAMS is limited in the types and energies of ions they can accelerate, there are still a wide variety of reactions that can be performed there with commercially available target materials. The half-lives of these isotopes vary over a range that could be used for both online chemistry (where shorter half-lives are required) and benchtop tracers studies (where longer lived isotopes are preferred). In this document, they present a summary of tracer production reactions that could be performed at CAMS, specifically for online, automated chemical studies. They are from chemical groups four through seven, 13, and 14, which would be appropriate for studies of elements 104-107, 113, and 114. Reactions were selected that had (a) commercially available target material, (b) half-lives long enough for transport from a target chamber to an automated chemistry system, and (c) cross-sections at CAMS available projectile energies that were large enough to produce enough atoms to result in a statistically relevant signal after losses for transport and chemistry were considered. In addition, the resulting product atoms had to decay with an observable gamma-ray using standard Ge gamma-ray detectors. The table includes calculations performed for both metal targets and their corresponding oxides.
International Nuclear Information System (INIS)
Trevin, Stephane; Moutrille, Marie-Pierre; Qiu, Gonghao; Miller, Cecile; Mellin, Nicolas
2012-09-01
EDF has developed during these 15 last years a software called BRT-CICERO TM for the surveillance of the secondary piping system of its Pressurized Water Reactors (PWRs). This software enables the operator to calculate the FAC wear rates taking into account all the influencing parameters such as: pipe isometrics, chromium content of the steel, chemical conditioning and operating parameters of the secondary circuit (temperature, pressure, etc.). This is a major tool for the operators to organize the maintenance and to plan the inspections. In the framework of the French pressure vessel law issued on March 15, 2000, the software BRT-CICERO TM has been recognized by the French authority for the FAC surveillance on the secondary pressure piping lines of the EDF 58 NPPs. It takes advantage of the experience feedback of EDF's fleet, of the R and D improvements (especially from the laboratory tests conducted on EDF's CIROCO loop) and is frequently updated. Kinetics calculations made with BRT-CICERO TM are highly dependent of chromium, copper and molybdenum contents of steel. These values are measured on site by X-ray portable fluorescence. EDF elaborated a measurement procedure with a validation process and verification of the measurement devices using certified blocks standard. This procedure enables EDF and service provider companies to measure more than 6 thousand components per year. These values are input in BRT-CICERO TM and the flow accelerated corrosion kinetic is calculated with a higher accuracy than before alloy contents measurement. The next version of BRT-CICERO will take into account chromium, copper and molybdenum contents. The actual version is using only chromium contents. This paper describes the X-Ray fluorescence and the procedure used at EDF. The advantage and drawbacks of this technique are discussed. According to research and development studies, the future algorithm for FAC calculation with these 3 alloys contents is described. Because of
Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu
2017-07-01
The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. Copyright © 2016 Elsevier B.V. All rights reserved.
Recoilless fractions calculated with the nearest-neighbour interaction model by Kagan and Maslow
Kemerink, G. J.; Pleiter, F.
1986-08-01
The recoilless fraction is calculated for a number of Mössbauer atoms that are natural constituents of HfC, TaC, NdSb, FeO, NiO, EuO, EuS, EuSe, EuTe, SnTe, PbTe and CsF. The calculations are based on a model developed by Kagan and Maslow for binary compounds with rocksalt structure. With the exception of SnTe and, to a lesser extent, PbTe, the results are in reasonable agreement with the available experimental data and values derived from other models.
Sun, Taoxiang; Duan, Wuhua; Wang, Yaxing; Hu, Shaowen; Wang, Shuao; Chen, Jing; Shen, Xinghai
2017-11-01
Bis(trifluoromethylsulfonyl)imide (NTf2-) and hexafluorophosphate (PF6-) are the most frequently used anions for hydrophobic ionic liquids (ILs) which have been considered as promising solvents in the extraction of cesium ions. The interactions of NTf2- and PF6- with Cs+ were explored in this work. The results of DFT calculation indicated that both Cs+ and Cs(18C6)+ prefer to interact with two NTf2- or PF6- anions in gas phase, where 18C6 is 18-crown-6. The complex of Cs(NTf2)2- was observed in electrospray ionization mass spectrometry (ESI-MS), and the complexes of [Cs(18C6)NTf2]2 and [Cs(18C6)PF6]2 were crystallized in which Cs(18C6)+ interacted with two anions. The interactions of NTf2- with cesium resulted in a synergistic effect between dicyclohexano-18-crown-6 (DCH18C6) and NTf2- in the extraction of Cs+ using n-octanol as diluent. However, DFT calculation revealed that the complex Cs(DCH18C6)+ interacted with one NTf2- anion was more thermodynamically stable than that with two anions in organic phase, different from that in gas phase.
International Nuclear Information System (INIS)
Ngo, H.; Ngo, C.
1980-04-01
We have calculated the interaction potential between two heavy ions using the energy density formalism and Fermi distributions for the nuclear densities. The experimental fusion barriers are rather well reproduced. The conditions for the observation of fusion between two heavy ions is discussed. As far as the nuclear part of the interaction potential is concerned, the proximity scaling is investigated in details. It is found that the proximity theorem is satisfied to a good extent. However, as far as the neutron excess is concerned, a disagreement with the proximity potential is observed
Energy Technology Data Exchange (ETDEWEB)
Garcia, M.; Sanz, J.; Garcia, N.; Cabellos, O. [Madrid Univ. Politecnica, C/ Jose Gutierrez Abascal, lnstituto de Fusion Nuclear (Spain); Sauvan, R. [Universidad Nacional de Educacion a Distancia (UNED), Madrid (Spain); Moreno, C.; Sedano, L.A. [CIEMAT-Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Association Euratom-CIEMAT, Madrid (Spain)
2007-07-01
Full text of publication follows: The IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based DLi neutron source designed to test fusion reactor candidate materials for high fluence neutrons. Before deciding IFMIF construction, an engineering design and associated experimental data acquisition, defined as EVEDA, has been proposed. Along the EVEDA accelerator, deuteron beam losses collide with the accelerator materials, producing activation and consequent radiations responsible of dose. Calculation of the dose rates in the EVEDA accelerator room is necessary in order to analyze the feasibility for manual maintenance. Dose rates due to the activation produced by the deuteron beam losses interaction with the accelerator materials, will be calculated with the ACAB activation code, using EAF2007 library for deuteron activation cross-sections. Also, dose rates from the activation induced by the neutron source produced by the interaction of deuteron beam losses with the accelerator materials and the deuterium implanted in the structural lattice, will be calculated with the SRIM2006, TMAP7, DROSG2000/NEUYIE, MCNPX and ACAB codes. All calculations will be done for the EVEDA accelerator with the room temperature DTL structure, which is based on copper cavities for the DTL. Some calculations will be done for the superconducting DTL structure, based on niobium cavities for the DTL working at cryogenic temperature. Final analysis will show the dominant mechanisms and major radionuclides contributing to the surface dose rates. (authors)
Ab initio calculation of the bcc Fe-Al phase diagram including magnetic interactions
International Nuclear Information System (INIS)
Gonzales-Ormeno, Pablo Guillermo; Petrilli, Helena Maria; Schoen, Claudio Geraldo
2006-01-01
The metastable phase diagram of the body-centered cubic-based ordering equilibria in the Fe-Al system has been calculated by the cluster expansion method, through the combination of the full potential-linear augmented plane wave and cluster variation methods. The results are discussed with reference to the effect of including the spin polarizations of Fe in the thermodynamic model
Fačkovec, Boris; Vondrášek, Jiří
2012-10-25
Although a contact is an essential measurement for the topology as well as strength of non-covalent interactions in biomolecules and their complexes, there is no general agreement in the definition of this feature. Most of the definitions work with simple geometric criteria which do not fully reflect the energy content or ability of the biomolecular building blocks to arrange their environment. We offer a reasonable solution to this problem by distinguishing between "productive" and "non-productive" contacts based on their interaction energy strength and properties. We have proposed a method which converts the protein topology into a contact map that represents interactions with statistically significant high interaction energies. We do not prove that these contacts are exclusively stabilizing, but they represent a gateway to thermodynamically important rather than geometry-based contacts. The process is based on protein fragmentation and calculation of interaction energies using the OPLS force field and relies on pairwise additivity of amino acid interactions. Our approach integrates the treatment of different types of interactions, avoiding the problems resulting from different contributions to the overall stability and the different effect of the environment. The first applications on a set of homologous proteins have shown the usefulness of this classification for a sound estimate of protein stability.
Watanabe, Noriya; Sakagami, Masamichi; Haruno, Masahiko
2013-03-06
Learning does not only depend on rationality, because real-life learning cannot be isolated from emotion or social factors. Therefore, it is intriguing to determine how emotion changes learning, and to identify which neural substrates underlie this interaction. Here, we show that the task-independent presentation of an emotional face before a reward-predicting cue increases the speed of cue-reward association learning in human subjects compared with trials in which a neutral face is presented. This phenomenon was attributable to an increase in the learning rate, which regulates reward prediction errors. Parallel to these behavioral findings, functional magnetic resonance imaging demonstrated that presentation of an emotional face enhanced reward prediction error (RPE) signal in the ventral striatum. In addition, we also found a functional link between this enhanced RPE signal and increased activity in the amygdala following presentation of an emotional face. Thus, this study revealed an acceleration of cue-reward association learning by emotion, and underscored a role of striatum-amygdala interactions in the modulation of the reward prediction errors by emotion.
International Nuclear Information System (INIS)
Schmid, G.; Willms, G.; Huh, Y.; Gibhardt, M.
1988-12-01
SSI 2D/3D is a computer programm to calculate dynamic stiffness matrices for soil-structure-interaction problems in frequency domain. It is applicable to two- or three-dimensional situations. The present report is a detailed manual for the use of the computer code written in FORTRAN 77. In addition it gives a survey of the possibilities of the Boundary Element Method applied to dynamic problems in infinite domains. (orig.) [de
May, Joshua Joseph
The continued development of the chirped pulse amplification technique has allowed for the development of lasers with powers of in excess of 10 15W, for pulse lengths with durations of between .01 and 10 picoseconds, and which can be focused to energy densities greater than 100 giga-atmospheres. When such lasers are focused onto material targets, the possibility of creating particle beams with energy fluxes of comparable parameters arises. Such interactions have a number of theorized applications. For instance, in the Fast Ignition concept for Inertial Confinement Fusion [1], a high-intensity laser efficiently transfers its energy into an electron beam with an appropriate spectra which is then transported into a compressed target and initiate a fusion reaction. Another possible use is the so called Radiation Pressure Acceleration mechanism, in which a high-intensity, circularly polarized laser is used to create a mono-energetic ion beam which could then be used for medical imaging and treatment, among other applications. For this latter application, it is important that the laser energy is transferred to the ions and not to the electrons. However the physics of such high energy-density laser-matter interactions is highly kinetic and non-linear, and presently not fully understood. In this dissertation, we use the Particle-in-Cell code OSIRIS [2, 3] to explore the generation and transport of relativistic particle beams created by high intensity lasers focused onto solid density matter at normal incidence. To explore the generation of relativistic electrons by such interactions, we use primarily one-dimensional (1D) and two-dimensional (2D), and a few three-dimensional simulations (3D). We initially examine the idealized case of normal incidence of relatively short, plane-wave lasers on flat, sharp interfaces. We find that in 1D the results are highly dependent on the initial temperature of the plasma, with significant absorption into relativistic electrons only
Rohrer, Brandon
2010-12-01
Measuring progress in the field of Artificial General Intelligence (AGI) can be difficult without commonly accepted methods of evaluation. An AGI benchmark would allow evaluation and comparison of the many computational intelligence algorithms that have been developed. In this paper I propose that a benchmark for natural world interaction would possess seven key characteristics: fitness, breadth, specificity, low cost, simplicity, range, and task focus. I also outline two benchmark examples that meet most of these criteria. In the first, the direction task, a human coach directs a machine to perform a novel task in an unfamiliar environment. The direction task is extremely broad, but may be idealistic. In the second, the AGI battery, AGI candidates are evaluated based on their performance on a collection of more specific tasks. The AGI battery is designed to be appropriate to the capabilities of currently existing systems. Both the direction task and the AGI battery would require further definition before implementing. The paper concludes with a description of a task that might be included in the AGI battery: the search and retrieve task.
2012-10-24
of the atoms in a chemical system , at the maximal peak of the energy surface separating reactants from products . In the transition state every normal...Hada, M. Ehara, K. Toyota , R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda , O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E...calculations of ground state resonance structure associated with water complexes of Mg and the interaction of these complexes with Ozone using DFT. The
International Nuclear Information System (INIS)
Flocard, H.
1975-04-01
Hartree-Fock results concerning the ground state properties of some S-D shell nuclei are discussed. Two different Skyrme interactions have been used. They both lead to good agreement with the experimental total binding energies, charge radii and multipole moments. In particular the observed prolate-oblate transitions occuring in the S-D shell are reproduced. The calculated spectroscopic factors are also shown to be consistent with experimental data [fr
International Nuclear Information System (INIS)
Nabi, Jameel-Un
2010-01-01
An accurate estimate of the neutrino cooling rates is required in order to study the various stages of stellar evolution of massive stars. Neutrino losses from proto-neutron stars play a crucial role in deciding whether these stars would be crushed into black holes or explode as supernovae. Both pure leptonic and weak-interaction processes contribute to the neutrino energy losses in stellar matter. At low temperatures and densities, the characteristics of the early phase of presupernova evolution, cooling through neutrinos produced via the weak interaction, are important. Proton-neutron quasi-particle random phase approximation (pn-QRPA) theory has recently been used with success for the calculation of stellar weak-interaction rates of fp-shell nuclide. The lepton-to-baryon ratio (Y e ) during early phases of stellar evolution of massive stars changes substantially, mainly due to electron captures on 56 Ni. The stellar matter is transparent to the neutrinos produced during the presupernova evolution of massive stars. These neutrinos escape the site and assist the stellar core in maintaining a lower entropy. Here, an expanded calculation of weak-interaction-mediated neutrino and antineutrino cooling rates due to 56 Ni in stellar matter using the pn-QRPA theory is presented. This detailed scale is appropriate for interpolation purposes and is of greater utility for simulation codes. The calculated rates are compared with earlier calculations. During the relevant temperature and density regions of stellar matter the reported rates show few differences compared with the shell model rates and might contribute in fine-tuning of the lepton-to-baryon ratio during the presupernova phases of stellar evolution of massive stars.
International Nuclear Information System (INIS)
Raseev, G.
1980-01-01
This program calculates the one-centre expansion of a two-centre wave function of a diatomic molecule and also the multipole expansion of its static interaction with a point charge. It is an extension to some classes of open-shell targets of the previous versions and it provides both the wave function and the potential in a form suitable for use in an electron-molecule scattering program. (orig./HSI)
Statistical analysis of simulation calculation of sputtering for two interaction potentials
International Nuclear Information System (INIS)
Shao Qiyun
1992-01-01
The effects of the interaction potentials (Moliere potential and Universal potential) are presented on computer simulation results of sputtering via Monte Carlo simulation based on the binary collision approximation. By means of Wilcoxon two-Sample paired sign rank test, the statistically significant difference for the above results is obtained
Ultra high energy interaction models for Monte Carlo calculations: what model is the best fit
Energy Technology Data Exchange (ETDEWEB)
Stanev, Todor [Bartol Research Institute, University of Delaware, Newark DE 19716 (United States)
2006-01-15
We briefly outline two methods for extension of hadronic interaction models to extremely high energy. Then we compare the main characteristics of representative computer codes that implement the different models and give examples of air shower parameters predicted by those codes.
Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications
Czech Academy of Sciences Publication Activity Database
Řezáč, Jan; Hobza, Pavel
2016-01-01
Roč. 116, č. 9 (2016), s. 5038-5071 ISSN 0009-2665 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : density functional theory * coupled cluster theory * intermolecular interaction energies Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 47.928, year: 2016
Anguiano, M.; Lallena, A. M.; Co', G.; De Donno, V.
2014-02-01
In this work we test the validity of a Hartree-Fock plus Bardeen-Cooper-Schrieffer model in which a finite-range interaction is used in the two steps of the calculation by comparing the results obtained to those found in fully self-consistent Hartree-Fock-Bogoliubov calculations using the same interaction. Specifically, we consider the Gogny-type D1S and D1M forces. We study a wide range of spherical nuclei, far from the stability line, in various regions of the nuclear chart, from oxygen to tin isotopes. We calculate various quantities related to the ground state properties of these nuclei, such as binding energies, radii, charge and density distributions, and elastic electron scattering cross sections. The pairing effects are studied by direct comparison with the Hartree-Fock results. Despite its relative simplicity, in most cases, our model provides results very close to those of the Hartree-Fock-Bogoliubov calculations, and it reproduces the empirical evidence of pairing effects rather well in the nuclei investigated.
International Nuclear Information System (INIS)
Sahai, Aakash A.
2014-01-01
We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a 0 >1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary
International Nuclear Information System (INIS)
Cheng, K.T.; Chen, M.H.; Johnson, W.R.
1994-04-01
A new relativistic configuration-interaction (CI) method using B-spline basis functions has been developed to study the correlation energies of two-electron heliumlike ions. Based on the relativistic no-pair Hamiltonian, the CI equation leads to a symmetric eigenvalue problem involving large, dense matrices. Davidson's method is used to obtain the lowest few eigenenergies and eigenfunctions. Results on transition energies and finite structure splittings for heliumlike ions are in very good agreement with experiment throughout the periodic table
Monte Carlo calculation of the total probability for gamma-Ray interaction in toluene
International Nuclear Information System (INIS)
Grau Malonda, A.; Garcia-Torano, E.
1983-01-01
Interaction and absorption probabilities for gamma-rays with energies between 1 and 1000 KeV have been computed and tabulated. Toluene based scintillator solution has been assumed in the computation. Both, point sources and homogeneously dispersed radioactive material have been assumed. These tables may be applied to cylinders with radii between 1.25 cm and 0.25 cm and heights between 4.07 cm and 0.20 cm. (Author) 26 refs
Calculation of fluid-structure interaction for reactor safety with the Cassiopee code
International Nuclear Information System (INIS)
Graveleau, J.L.; Louvet, P.D.
1979-01-01
The cassiopee code is an eulerian-lagrangian coupled code for computations where the hydrodynamic is coupled with structural domains. It is completely explicit. The fluid zones may be computed either in lagrangian or in eulerian coordinates; thin shells can be computed wih their flexural behaviour; elastic plastic zones must be calculated in a lagrangian way. This code is under development in Cadarache. Its purpose is to compute the hypothetical core disruptive accident of a LMFBR when lagrangian codes are not sufficient. This paper contains a description of the code and two examples of computations, one of which has been compared with experimental results
International Nuclear Information System (INIS)
Beres, D.A.; Hull, A.P.
1991-12-01
DEPDOSE is an interactive, menu driven, microcomputer based program designed to rapidly calculate committed dose from radionuclides deposited on the ground. The program is designed to require little or no computer expertise on the part of the user. The program consisting of a dose calculation section and a library maintenance section. These selections are available to the user from the main menu. The dose calculation section provides the user with the ability to calculate committed doses, determine the decay time needed to reach a particular dose, cross compare deposition data from separate locations, and approximate a committed dose based on a measured exposure rate. The library maintenance section allows the user to review and update dose modifier data as well as to build and maintain libraries of radionuclide data, dose conversion factors, and default deposition data. The program is structured to provide the user easy access for reviewing data prior to running the calculation. Deposition data can either be entered by the user or imported from other databases. Results can either be displayed on the screen or sent to the printer
Hydrodynamic calculations of 20-TeV beam interactions with the SSC beam dump
International Nuclear Information System (INIS)
Wilson, D.C.; Wingate, C.A.; Goldstein, J.C.; Godwin, R.P.; Mokhov, N.V.
1993-01-01
The 300μs, 400 MJ SSC proton beam must be contained when extracted to the external beam dump. The current design for the SSC beam dump can tolerate the beat load produced if the beam is deflected into a raster scan over the face of the dump. If the high frequency deflecting magnet were to fail, the beam would scan a single strip across the dump face resulting in higher local energy deposition. This could vaporize some material and lead to high pressures. Since the beam duration is comparable to the characteristic time of expected hydrodynamic motions, we have combined the static energy deposition capability of the MARS computer code with the two- and three-dimensional hydrodynamics of the MBA and SPHINX codes. EOS data suggest an energy deposition threshold of 15 kJ/g, below which hydrodynamic effects are minimal. Above this our 2D calculations show a hole boring rate of 7 cm/μs for the nominal beam, and pressures of a few kbar. Scanning the nominal beam faster than 0.08 cm/μs should minimize hydrodynamic effects. 3D calculations support this
Methodes de calcul des forces aerodynamiques pour les etudes des interactions aeroservoelastiques
Biskri, Djallel Eddine
L'aeroservoelasticite est un domaine ou interagissent la structure flexible d'un avion, l'aerodynamique et la commande de vol. De son cote, la commande du vol considere l'avion comme une structure rigide et etudie l'influence du systeme de commande sur la dynamique de vol. Dans cette these, nous avons code trois nouvelles methodes d'approximation de forces aerodynamiques: Moindres carres corriges, Etat minimal corrige et Etats combines. Dans les deux premieres methodes, les erreurs d'approximation entre les forces aerodynamiques approximees par les methodes classiques et celles obtenues par les nouvelles methodes ont les memes formes analytiques que celles des forces aerodynamiques calculees par LS ou MS. Quant a la troisieme methode, celle-ci combine les formulations des forces approximees avec les methodes standards LS et MS. Les vitesses et frequences de battement et les temps d'executions calcules par les nouvelles methodes versus ceux calcules par les methodes classiques ont ete analyses.
Non-orthogonal configuration interaction for the calculation of multielectron excited states
Energy Technology Data Exchange (ETDEWEB)
Sundstrom, Eric J., E-mail: eric.jon.sundstrom@berkeley.edu; Head-Gordon, Martin [Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2014-03-21
We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.
Saravanan, A. V. Sai; Abishek, B.; Anantharaj, R.
2018-04-01
The fundamental natures of the molecular level interaction and charge transfer between specific radioactive elements and ionic liquids of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([BMIM]+[NTf2]-), 1-Butyl-3-methylimidazolium ethylsulfate ([BMIM]+[ES]-) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]+[BF4]-) were investigated utilising HF theory and B3LYP hybrid DFT. The ambiguity in reaction mechanism of the interacting species dictates to employ Effective Core Potential (ECP) basis sets such as UGBS, SDD, and SDDAll to account for the relativistic effects of deep core electrons in the system involving potential, heavy and hazardous radioactive elements present in nuclear waste. The SCF energy convergence of each system validates the characterisation of the molecular orbitals as a linear combination of atomic orbitals utilising fixed MO coefficients and the optimized geometry of each system is visualised based on which Mulliken partial charge analysis is carried out to account for the polarising behaviour of the radioactive element and charge transfer between the IL phase by comparison with the bare IL species.
Interactive three-dimensional visualization and creation of geometries for Monte Carlo calculations
International Nuclear Information System (INIS)
Theis, C.; Buchegger, K.H.; Brugger, M.; Forkel-Wirth, D.; Roesler, S.; Vincke, H.
2006-01-01
The implementation of three-dimensional geometries for the simulation of radiation transport problems is a very time-consuming task. Each particle transport code supplies its own scripting language and syntax for creating the geometries. All of them are based on the Constructive Solid Geometry scheme requiring textual description. This makes the creation a tedious and error-prone task, which is especially hard to master for novice users. The Monte Carlo code FLUKA comes with built-in support for creating two-dimensional cross-sections through the geometry and FLUKACAD, a custom-built converter to the commercial Computer Aided Design package AutoCAD, exists for 3D visualization. For other codes, like MCNPX, a couple of different tools are available, but they are often specifically tailored to the particle transport code and its approach used for implementing geometries. Complex constructive solid modeling usually requires very fast and expensive special purpose hardware, which is not widely available. In this paper SimpleGeo is presented, which is an implementation of a generic versatile interactive geometry modeler using off-the-shelf hardware. It is running on Windows, with a Linux version currently under preparation. This paper describes its functionality, which allows for rapid interactive visualization as well as generation of three-dimensional geometries, and also discusses critical issues regarding common CAD systems
Karthick, N. K.; Kumbharkhane, A. C.; Joshi, Y. S.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.
2017-05-01
Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) Csbnd H ⋯ Odbnd C (EA), (EA) methylene Csbnd H ⋯ π electrons (CBZ) and (EA) methyl Csbnd H ⋯ Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (εE) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association.
To the calculation of differential and total cross sections of γπ interactions
International Nuclear Information System (INIS)
Duplij, S.A.
1980-01-01
The differential and total cross sections of different charge channels of the γπ→ππ process are calculated. At the threshold energies the vector dominance model predicts twice as large values of the total cross sections than the current algebra. In resonance the total cross section of photoproduction on a neutral pion is 10-50 μb, on a charged pion - 5-10μb, at near-threshold energies (Esub(γ)=300-600 MeV) both cross sections are of the 20-40 nb order. For the γπ→ππ process the differential cross sections according to the invariant mass of two pions are obtained for different charge channels. At the threshold energies the total cross sections of the γπ→ππ process is of the 0.1-1 nb order
International Nuclear Information System (INIS)
Monteiro, E.
2004-01-01
The aimed of this work consists of evaluating the influence of the secondary contributions of dose (thermal neutrons dose, epithermal neutrons dose, fast neutrons dose and photon dose) in treatment planning with BNCT. MCNP4B Code was used to calculate RBE-Gy doses through the irradiation of the modified Snyder head head phantom.A reduction of the therapeutical gain of monoenergetic neutron beans was observed in non invasive treatments, provoked for the predominance of the fast neutron dose component in the skin, showing that the secondary contributions of dose can contribute more in the direction to raise the dose in the fabric healthy that in the tumor, thus reducing the treatment efficiency. (author)
An intranuclear cascade calculation of high-energy heavy-ion interactions
International Nuclear Information System (INIS)
Yariv, Y.; Fraenkel, Z.
1979-01-01
The intranuclear cascade model of Chen is extended to high-energy reactions between two heavy ions. The results of the calculations are compared with experimental results for the inclusive proton and pion cross sections, two-particle correlations, particle multiplicity distributions and spallation cross section distributions from light ( 12 C+ 12 C) to heavy( 40 Ar + 238 U) projectile-target systems in the laboratory bombarding energy range E/A=250-1000 MeV. The comparison shows that the model is fairly successful in reproducing the various aspects of high-energy reactions between heavy ions. It is also shown that the assumption that high particle multiplicities are indicative of ''central'' (small impact parameter) collisions are well founded for heavy projectile-target systems. (B.G.)
Coupled-Cluster and Configuration-Interaction Calculations for Heavy Nuclei
International Nuclear Information System (INIS)
Horoi, M.; Gour, J. R.; Wloch, M.; Lodriguito, M. D.; Brown, B. A.; Piecuch, P.
2007-01-01
We compare coupled-cluster (CC) and configuration-interaction (CI) results for 56 Ni obtained in the pf-shell basis, focusing on practical CC approximations that can be applied to systems with dozens or hundreds of correlated fermions. The weight of the reference state and the strength of correlation effects are controlled by the gap between the f 7/2 orbit and the f 5/2 , p 3/2 , p 1/2 orbits. Independent of the gap, the CC method with 1p-1h and 2p-2h clusters and a noniterative treatment of 3p-3h clusters is as accurate as the more demanding CI approach truncated at the 4p-4h level
Relevance of d-D interactions on neutron and tritium production in IFMIF-EVEDA accelerator prototype
International Nuclear Information System (INIS)
Mayoral, A.; Sanz, J.; Sauvan, P.; Lopez, D.; Garcia, M.; Ogando, F.
2011-01-01
In the IFMIF-EVEDA accelerator prototype, deuterium is implanted in the components due to beam losses and in the beam dump, where the beam is stopped. The interaction of the deuterons with the deuterium previously implanted leads to the production of neutrons and tritium, which are important issues for radioprotection and safety analysis. A methodology to assess these production pathways in more realistic approach has been developed. The new tools and their main achievement are: (i) an 'effective diffusivity coefficient' (deduced from available experimental data) that enables simulation of the diffusion phase, and (ii) the MCUNED code (able to handle deuteron transport libraries) allows to simulate the transport-slowdown of deuteron/tritium (to get the concentration profiles) and the neutron/tritium productions from d-Cu and d-D for up to 9 MeV incident deuteron. The results with/without theses tools are presented and their effect on the relevance of d-D sources versus d-Cu is evaluated.
Energy Technology Data Exchange (ETDEWEB)
Ruhl, Hartmut [Munich Univ. (Germany). Chair for Computational and Plasma Physics
2016-11-01
Since the installation of SuperMUC phase 2 the 9216 nodes of phase 1 are more easily available for large scale runs allowing for the thin foil and AWAKE simulations. Besides phase 2 could be used in parallel for high throughput of the ion acceleration simulations. Challenging to our project were the full-volume checkpoints required by PIC that strained the I/O-subsystem of SuperMUC to its limits. New approaches considered for the next generation system, like burst buffers could overcome this bottleneck. Additionally, as the FDTD solver in PIC is strongly bandwidth bound, PSC will benefit profoundly from high-bandwidth memory (HBM) that most likely will be available in future HPC machines. This will be of great advantage as in 2018 phase II of AWAKE should begin, with a longer plasma channel further increasing the need for additional computing resources. Last but not least, it is expected that our methods used in plasma physics (many body interaction with radiation) will be more and more adapted for medical diagnostics and treatments. For this research field we expect centimeter sized volumes with necessary resolutions of tens of micro meters resulting in boxes of >10{sup 12} voxels (100-200 TB) on a regular basis. In consequence the demand for computing time and especially for data storage and data handling capacities will also increase significantly.
Sikora, M; Dohm, O; Alber, M
2007-08-07
A dedicated, efficient Monte Carlo (MC) accelerator head model for intensity modulated stereotactic radiosurgery treatment planning is needed to afford a highly accurate simulation of tiny IMRT fields. A virtual source model (VSM) of a mini multi-leaf collimator (MLC) (the Elekta Beam Modulator (EBM)) is presented, allowing efficient generation of particles even for small fields. The VSM of the EBM is based on a previously published virtual photon energy fluence model (VEF) (Fippel et al 2003 Med. Phys. 30 301) commissioned with large field measurements in air and in water. The original commissioning procedure of the VEF, based on large field measurements only, leads to inaccuracies for small fields. In order to improve the VSM, it was necessary to change the VEF model by developing (1) a method to determine the primary photon source diameter, relevant for output factor calculations, (2) a model of the influence of the flattening filter on the secondary photon spectrum and (3) a more realistic primary photon spectrum. The VSM model is used to generate the source phase space data above the mini-MLC. Later the particles are transmitted through the mini-MLC by a passive filter function which significantly speeds up the time of generation of the phase space data after the mini-MLC, used for calculation of the dose distribution in the patient. The improved VSM model was commissioned for 6 and 15 MV beams. The results of MC simulation are in very good agreement with measurements. Less than 2% of local difference between the MC simulation and the diamond detector measurement of the output factors in water was achieved. The X, Y and Z profiles measured in water with an ion chamber (V = 0.125 cm(3)) and a diamond detector were used to validate the models. An overall agreement of 2%/2 mm for high dose regions and 3%/2 mm in low dose regions between measurement and MC simulation for field sizes from 0.8 x 0.8 cm(2) to 16 x 21 cm(2) was achieved. An IMRT plan film verification
International Nuclear Information System (INIS)
Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela
2011-01-01
The interaction between fisetin, an antioxidant and neuroprotective flavonoid, and human serum albumin (HSA) is investigated by means of fluorescence (steady-state, synchronous, time-resolved) and circular dichroism (CD) spectroscopy. The formation of a 1:1 complex with a constant of about 10 5 M -1 was evidenced. Foerster's resonance energy transfer and competitive binding with site markers warfarin and ibuprofen were considered and discussed. Changes in the CD band of HSA indicate a decrease in the α-helix content upon binding. An induced CD signal for bound fisetin was observed and rationalized in terms of density functional theory calculations. - Highlights: → Fisetin-BSA system was studied by fluorescence spectroscopy. → Binding parameters, association constant and number of sites were estimated. → Binding site of fisetin was identified by competitive experiments. → Conformational changes in HSA and fisetin were evidenced by circular dichroism. → TDDFT calculated CD spectra supported the experimental data.
Energy Technology Data Exchange (ETDEWEB)
Matei, Iulia; Ionescu, Sorana [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania); Hillebrand, Mihaela, E-mail: mihh@gw-chimie.math.unibuc.ro [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania)
2011-08-15
The interaction between fisetin, an antioxidant and neuroprotective flavonoid, and human serum albumin (HSA) is investigated by means of fluorescence (steady-state, synchronous, time-resolved) and circular dichroism (CD) spectroscopy. The formation of a 1:1 complex with a constant of about 10{sup 5} M{sup -1} was evidenced. Foerster's resonance energy transfer and competitive binding with site markers warfarin and ibuprofen were considered and discussed. Changes in the CD band of HSA indicate a decrease in the {alpha}-helix content upon binding. An induced CD signal for bound fisetin was observed and rationalized in terms of density functional theory calculations. - Highlights: > Fisetin-BSA system was studied by fluorescence spectroscopy. > Binding parameters, association constant and number of sites were estimated. > Binding site of fisetin was identified by competitive experiments. > Conformational changes in HSA and fisetin were evidenced by circular dichroism. > TDDFT calculated CD spectra supported the experimental data.
Energy Technology Data Exchange (ETDEWEB)
Aktulga, Hasan Metin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2014-08-14
Obtaining highly accurate predictions on the properties of light atomic nuclei using the configuration interaction (CI) approach requires computing a few extremal Eigen pairs of the many-body nuclear Hamiltonian matrix. In the Many-body Fermion Dynamics for nuclei (MFDn) code, a block Eigen solver is used for this purpose. Due to the large size of the sparse matrices involved, a significant fraction of the time spent on the Eigen value computations is associated with the multiplication of a sparse matrix (and the transpose of that matrix) with multiple vectors (SpMM and SpMM-T). Existing implementations of SpMM and SpMM-T significantly underperform expectations. Thus, in this paper, we present and analyze optimized implementations of SpMM and SpMM-T. We base our implementation on the compressed sparse blocks (CSB) matrix format and target systems with multi-core architectures. We develop a performance model that allows us to understand and estimate the performance characteristics of our SpMM kernel implementations, and demonstrate the efficiency of our implementation on a series of real-world matrices extracted from MFDn. In particular, we obtain 3-4 speedup on the requisite operations over good implementations based on the commonly used compressed sparse row (CSR) matrix format. The improvements in the SpMM kernel suggest we may attain roughly a 40% speed up in the overall execution time of the block Eigen solver used in MFDn.
Colaïtis, A.; Chapman, T.; Strozzi, D.; Divol, L.; Michel, P.
2018-03-01
A three-dimensional laser propagation model for computation of laser-plasma interactions is presented. It is focused on indirect drive geometries in inertial confinement fusion and formulated for use at large temporal and spatial scales. A modified tesselation-based estimator and a relaxation scheme are used to estimate the intensity distribution in plasma from geometrical optics rays. Comparisons with reference solutions show that this approach is well-suited to reproduce realistic 3D intensity field distributions of beams smoothed by phase plates. It is shown that the method requires a reduced number of rays compared to traditional rigid-scale intensity estimation. Using this field estimator, we have implemented laser refraction, inverse-bremsstrahlung absorption, and steady-state crossed-beam energy transfer with a linear kinetic model in the numerical code Vampire. Probe beam amplification and laser spot shapes are compared with experimental results and pf3d paraxial simulations. These results are promising for the efficient and accurate computation of laser intensity distributions in holhraums, which is of importance for determining the capsule implosion shape and risks of laser-plasma instabilities such as hot electron generation and backscatter in multi-beam configurations.
Calculation of effective Coulomb interaction in PrCoO3
Dutta, Paromita; Lal, Sohan; Pandey, Sudhir K.
2018-04-01
It is very essential to know the suitable value of effective coulomb interaction (Ueff) which will be material specific, if one wants to learn about various physical features of strongly correlated systems in an extensive manner. In present work, the constrained density function theory (DFT) method has been used to evaluate the suitable Ueff value between the localized electrons for 3d and 4f orbitals in strongly correlated system. For the evaluation of suitable Ueff, the d/f-linearization energy (Ed/f) is very important and is found to be >= 44 eV above Fermi level. The Ueff is predicted by local density approximation (LDA) functional for both the impurity atoms separately are found to be Co (3d electrons) ˜ 6.3 eV and Pr (4f electrons) ˜ 7.0 eV for Ed/f ˜ 44 eV above Fermi level. The Ueff value for Pr (4f electrons) is higher than Co (3d electrons). This indicates that Pr 4f electrons is more localized than Co 3d electrons in PrCoO3 compound.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Jun, E-mail: phyjiang@yeah.net [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Cheng, Yongjun, E-mail: cyj83mail@gmail.com [School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080 (China); Bromley, M.W.J., E-mail: brom@physics.uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4075 (Australia)
2015-01-15
Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C{sub 6}, C{sub 8} and C{sub 10} atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations.
International Nuclear Information System (INIS)
Jiang, Jun; Mitroy, J.; Cheng, Yongjun; Bromley, M.W.J.
2015-01-01
Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C 6 , C 8 and C 10 atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations
Aghajani, M.; Hadipour, H.; Akhavan, M.
2018-05-01
Pressure dependence of the onsite Coulomb interactions of the BaFe2As2 has been studied by employing the constrained random phase approximation within first-principle calculations. Analyzing total and projected density of states, a pseudogap is found for dxy band at the energy roughly 0.25 eV higher than the Fermi level. Also, by applying pressure the spectral weight of the dxy orbital vanishes while other orbitals remain metallic. The different screening channels, as discussed in four different models, affect significantly on the Hubbard U while the Hund J remains almost unchanged. The average onsite bare and partially and fully screened Coulomb interactions increase with different rates upon compression. These different rates can be explained by competition between the electronic screening and reduction of bond lengths.
International Nuclear Information System (INIS)
Park, Jong Min; Shin, Kyung Hwan; Wu, Hong-Gyun; Kim, Jung-in; Park, So-Yeon; Kim, Jin Ho; Jeon, Seung Hyuck; Choi, Noorie
2018-01-01
To investigate and to prevent irradiation outside the treatment field caused by an electron stream in the air generated by the magnetic field during magnetic resonance image-guided accelerated partial breast irradiation (APBI). In all, 20 patients who received APBI with a magnetic resonance image-guided radiation therapy (MR-IGRT) system were prospectively studied. The prescription dose was 38.5 Gy in 10 fractions of 3.85 Gy and delivered with a tri-cobalt system (the ViewRay system). For each patient, primary plans were delivered for the first five fractions and modified plans with different gantry angles from those of the primary plan (in-treatment plans) were delivered for the remaining five fractions to reduce the skin dose. A 1 cm thick bolus was placed in front of the patient's jaw, ipsilateral shoulder, and arm to shield them from the electron stream. Radiochromic EBT3 films were attached to the front (towards the breast) and back (towards the head) of the bolus during treatment. Correlations between the measured values and the tumor locations, treatment times, and tumor sizes were investigated. For a single fraction delivery, the average areas of the measured isodoses of 14% (0.54 Gy), 12% (0.46 Gy), and 10% (0.39 Gy) at the front of the boluses were as large as 3, 10.4, and 21.4 cm 2 , respectively, whereas no significant dose could be measured at the back of the boluses. Statistically significant but weak correlations were observed between the measured values and the treatment times. During radiotherapy for breast cancer with an MR-IGRT system, the patient must be shielded from electron streams in the air generated by the interaction of the magnetic field with the beams of the three-cobalt treatment unit to avoid unwanted irradiation of the skin outside the treatment field. (orig.) [de
Lefebvre, Corentin; Khartabil, Hassan; Boisson, Jean-Charles; Contreras-García, Julia; Piquemal, Jean-Philip; Hénon, Eric
2018-03-19
Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGM is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient-based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa-coordinated carbon atom, and β-thioaminoacrolein. It will be shown how a bond-by-bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy Technology Data Exchange (ETDEWEB)
Rusanov, A V; Yershov, S V [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)
1998-12-31
The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.
Atomistic calculations of hydrogen interactions with Ni3Al grain boundaries and Ni/Ni3Al interfaces
International Nuclear Information System (INIS)
Baskes, M.I.; Angelo, J.E.; Moody, N.R.
1995-01-01
Embedded Atom Method (EAM) potentials have been developed for the Ni/Al/H system. The potentials have been fit to numerous properties of this system. For example, these potentials represent the structural and elastic properties of bulk Ni, Al, Ni 3 Al, and NiAl quite well. In addition the potentials describe the solution and migration behavior of hydrogen in both nickel and aluminum. A number of calculations using these potentials have been performed. It is found that hydrogen strongly prefers sites in Ni 3 Al that are surrounded by 6 Ni atoms. Calculations of the trapping of hydrogen to a number of grain boundaries in Ni 3 Al have been performed as a function of hydrogen chemical potential at room temperature. The failure of these bicrystals under tensile stress has been examined and will be compared to the failure of pure Ni 3 Al boundaries. Boundaries containing a preponderance of nickel are severely weakened by hydrogen. In order to investigate the potential embrittlement of γ/γ' alloys, trapping of hydrogen to a spherical Ni 3 Al precipate in nickel as a function of chemical potential at room temperature has been calculated. It appears that the boundary is not a strong trap for hydrogen, hence embrittlement in these alloys is not primarily due to interactions of hydrogen with the γ/γ interface
Energy Technology Data Exchange (ETDEWEB)
Rusanov, A.V.; Yershov, S.V. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)
1997-12-31
The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.
Density functional theory calculations of the water interactions with ZrO2 nanoparticles Y2O3 doped
Subhoni, Mekhrdod; Kholmurodov, Kholmirzo; Doroshkevich, Aleksandr; Asgerov, Elmar; Yamamoto, Tomoyuki; Lyubchyk, Andrei; Almasan, Valer; Madadzada, Afag
2018-03-01
Development of a new electricity generation techniques is one of the most relevant tasks, especially nowadays under conditions of extreme growth in energy consumption. The exothermic heterogeneous electrochemical energy conversion to the electric energy through interaction of the ZrO2 based nanopowder system with atmospheric moisture is one of the ways of electric energy obtaining. The questions of conversion into the electric form of the energy of water molecules adsorption in 3 mol% Y2O3 doped ZrO2 nanopowder systems were investigated using the density functional theory calculations. The density functional theory calculations has been realized as in the Kohn-Sham formulation, where the exchange-correlation potential is approximated by a functional of the electronic density. The electronic density, total energy and band structure calculations are carried out using the all-electron, full potential, linear augmented plane wave method of the electronic density and related approximations, i.e. the local density, the generalized gradient and their hybrid approximations.
Kajiya, Daisuke; Saitow, Ken-ichi
2013-08-07
Carbonyl compounds are solutes that are highly soluble in supercritical CO2 (scCO2). Their solubility governs the efficiency of chemical reactions, and is significantly increased by changing a chromophore. To effectively use scCO2 as solvent, it is crucial to understand the high solubility of carbonyl compounds, the solvation structure, and the solute-solvent intermolecular interactions. We report Raman spectroscopic data, for three prototypical ketones dissolved in scCO2, and four theoretical analyses. The vibrational Raman spectra of the C=O stretching modes of ketones (acetone, acetophenone, and benzophenone) were measured in scCO2 along the reduced temperature Tr = T∕Tc = 1.02 isotherm as a function of the reduced density ρr = ρ∕ρc in the range 0.05-1.5. The peak frequencies of the C=O stretching modes shifted toward lower energies as the fluid density increased. The density dependence was analyzed by using perturbed hard-sphere theory, and the shift was decomposed into attractive and repulsive energy components. The attractive energy between the ketones and CO2 was up to nine times higher than the repulsive energy, and its magnitude increased in the following order: acetone attractive energy and optimized the relative configuration between each solute and CO2. According to theoretical calculations for the dispersion energy, the dipole-induced-dipole interaction energy, and the frequency shift due to their interactions, the experimentally determined attractive energy differences in the three solutes were attributed to the dispersion energies that depended on a chromophore attached to the carbonyl groups. It was found that the major intermolecular interaction with the attractive shift varied from dipole-induced dipole to dispersion depending on the chromophore in the ketones in scCO2. As the common conclusion for the Raman spectral measurements and the four theoretical calculations, solute polarizability, modified by the chromophore, was at the core of
International Nuclear Information System (INIS)
MacCracken, M.C.; Walton, J.J.
1984-12-01
Several theoretical studies with numerical models have shown that substantial land-surface cooling can occur if very large amounts (approx. 100 x 10 12 = 100 Tg) of highly absorbing sooty-particles are injected high into the troposphere and spread instantaneously around the hemisphere (Turco et al., 1983; Covey et al. 1984; MacCracken, 1983). A preliminary step beyond these initial calculations has been made by interactively coupling the two-layer, three-dimensional Oregon State University general circulation model (GCM) to the three-dimensional GRANTOUR trace species model developed at the Lawrence Livermore National Laboratory. The GCM simulation includes treatment of tropospheric dynamics and thermodynamics and the effect of soot on solar radiation. The GRANTOUR simulation includes treatment of particle transport and scavenging by precipitation, although no satisfactory verification of the scavenging algorithm has yet been possible. We have considered the climatic effects of 150 Tg (i.e., the 100 Mt urban war scenario from Turco et al., 1983) and of 15 Tg of smoke from urban fires over North America and Eurasia. Starting with a perpetual July atmospheric situation, calculation of the climatic effects as 150 Tg of smoke are spread slowly by the winds, rather than instantaneously dispersed as in previous calculations, leads to some regions of greater cooling under the denser parts of the smoke plumes and some regions of less severe cooling where smoke arrival is delayed. As for the previous calculations, mid-latitude decreases of land surface air temperature for the 150 Tg injection are greater than 15 0 C after a few weeks. For a 15 Tg injection, however, cooling of more than several degrees centigrade only occurs in limited regions under the dense smoke plumes present in the first few weeks after the injection. 10 references, 9 figures
Energy Technology Data Exchange (ETDEWEB)
Horn, Paul R., E-mail: prhorn@berkeley.edu; Mao, Yuezhi; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley, California 94720 (United States)
2016-03-21
In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms for test cases that include the neon dimer, ammonia borane, water-Na{sup +}, water-Cl{sup −}, and the naphthalene dimer.
Li, Amanda; Muddana, Hari S; Gilson, Michael K
2014-04-08
Quantum mechanical (QM) calculations of noncovalent interactions are uniquely useful as tools to test and improve molecular mechanics force fields and to model the forces involved in biomolecular binding and folding. Because the more computationally tractable QM methods necessarily include approximations, which risk degrading accuracy, it is essential to evaluate such methods by comparison with high-level reference calculations. Here, we use the extensive Benchmark Energy and Geometry Database (BEGDB) of CCSD(T)/CBS reference results to evaluate the accuracy and speed of widely used QM methods for over 1200 chemically varied gas-phase dimers. In particular, we study the semiempirical PM6 and PM7 methods; density functional theory (DFT) approaches B3LYP, B97-D, M062X, and ωB97X-D; and symmetry-adapted perturbation theory (SAPT) approach. For the PM6 and DFT methods, we also examine the effects of post hoc corrections for hydrogen bonding (PM6-DH+, PM6-DH2), halogen atoms (PM6-DH2X), and dispersion (DFT-D3 with zero and Becke-Johnson damping). Several orders of the SAPT expansion are also compared, ranging from SAPT0 up to SAPT2+3, where computationally feasible. We find that all DFT methods with dispersion corrections, as well as SAPT at orders above SAPT2, consistently provide dimer interaction energies within 1.0 kcal/mol RMSE across all systems. We also show that a linear scaling of the perturbative energy terms provided by the fast SAPT0 method yields similar high accuracy, at particularly low computational cost. The energies of all the dimer systems from the various QM approaches are included in the Supporting Information, as are the full SAPT2+(3) energy decomposition for a subset of over 1000 systems. The latter can be used to guide the parametrization of molecular mechanics force fields on a term-by-term basis.
Park, Jong Min; Shin, Kyung Hwan; Kim, Jung-In; Park, So-Yeon; Jeon, Seung Hyuck; Choi, Noorie; Kim, Jin Ho; Wu, Hong-Gyun
2018-01-01
To investigate and to prevent irradiation outside the treatment field caused by an electron stream in the air generated by the magnetic field during magnetic resonance image-guided accelerated partial breast irradiation (APBI). In all, 20 patients who received APBI with a magnetic resonance image-guided radiation therapy (MR-IGRT) system were prospectively studied. The prescription dose was 38.5 Gy in 10 fractions of 3.85 Gy and delivered with a tri-cobalt system (the ViewRay system). For each patient, primary plans were delivered for the first five fractions and modified plans with different gantry angles from those of the primary plan (in-treatment plans) were delivered for the remaining five fractions to reduce the skin dose. A 1 cm thick bolus was placed in front of the patient's jaw, ipsilateral shoulder, and arm to shield them from the electron stream. Radiochromic EBT3 films were attached to the front (towards the breast) and back (towards the head) of the bolus during treatment. Correlations between the measured values and the tumor locations, treatment times, and tumor sizes were investigated. For a single fraction delivery, the average areas of the measured isodoses of 14% (0.54 Gy), 12% (0.46 Gy), and 10% (0.39 Gy) at the front of the boluses were as large as 3, 10.4, and 21.4 cm 2 , respectively, whereas no significant dose could be measured at the back of the boluses. Statistically significant but weak correlations were observed between the measured values and the treatment times. During radiotherapy for breast cancer with an MR-IGRT system, the patient must be shielded from electron streams in the air generated by the interaction of the magnetic field with the beams of the three-cobalt treatment unit to avoid unwanted irradiation of the skin outside the treatment field.
International Nuclear Information System (INIS)
Savukov, I. M.; Filin, D. V.
2014-01-01
Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreement with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions
Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Fani, Najme; Keyhanfar, Mehrnaz
2013-11-01
The interaction of diacetylcurcumin (DAC), as a novel synthetic derivative of curcumin, with bovine β-casein (an abundant milk protein that is highly amphiphilic and self assembles into stable micellar nanoparticles in aqueous solution) was investigated using fluorescence quenching experiments, Forster energy transfer measurements and molecular docking calculations. The fluorescence quenching measurements revealed the presence of a single binding site on β-casein for DAC with the binding constant value equals to (4.40 ± 0.03) × 104 M-1. Forster energy transfer measurements suggested that the distance between bound DAC and Trp143 residue is higher than the respective critical distance, hence, the static quenching is more likely responsible for fluorescence quenching other than the mechanism of non-radiative energy transfer. Our results from molecular docking calculations indicated that binding of DAC to β-casein predominantly occurred through hydrophobic contacts in the hydrophobic core of protein. Additionally, in vitro investigation of the cytotoxicity of free DAC and DAC-β-casein complex in human breast cancer cell line MCF7 revealed the higher cytotoxic effect of DAC-β-casein complex.
Minezawa, Noriyuki; Kato, Shigeki
2007-02-07
The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.
Directory of Open Access Journals (Sweden)
K. D. Xiao
2016-01-01
Full Text Available Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum proton energy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstrated that by employing this advanced target scheme, the scaling of the proton energy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA case.
Energy Technology Data Exchange (ETDEWEB)
Guida, Mateus Rodrigues; Alves Filho, Hermes; Barros, Ricardo C., E-mail: mguida@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-Graduacao em Modelagem Computacional
2015-07-01
The scattering source iterative (SI) scheme is applied traditionally to converge fine-mesh numerical solutions to fixed-source discrete ordinates (S{sub N}) neutron transport problems with linearly anisotropic scattering. The SI scheme is very simple to implement under a computational viewpoint. However, the SI scheme may show very slow convergence rate, mainly for diffusive media (low absorption) with several mean free paths in extent. In this work we describe two acceleration techniques based on improved initial guesses for the SI scheme, wherein we initialize the scattering source distribution within the slab using the P{sub 1} and P{sub 3} approximations. In order to estimate these initial guesses, we use the coarse-mesh solution of the PN equations with special boundary conditions to account for the classical S{sub N} prescribed boundary conditions, including vacuum boundary conditions. To apply this coarse-mesh P{sub N} solution for the accelerated scheme, we first perform within-node spatial reconstruction, and then we determine the fine-mesh average scalar flux and total current for initializing the linearly anisotropic scattering source terms for the SI scheme. We consider a number of numerical experiments to illustrate the efficiency of the offered P{sub N} synthetic acceleration (P{sub N}SA) technique based on initial guess. (author)
International Nuclear Information System (INIS)
Scott, G G; Brenner, C M; Clarke, R J; Green, J S; Heathcote, R I; Rusby, D R; McKenna, P; Neely, D; Bagnoud, V; Zielbauer, B; Gonzalez-Izquierdo, B; Powell, H W
2017-01-01
It is shown for the first time that the spatial and temporal distribution of laser accelerated protons can be used as a diagnostic of Weibel instability presence and evolution in the rear surface scale lengths of a solid density target. Numerical modelling shows that when a fast electron beam is injected into a decreasing density gradient on the target rear side, a magnetic instability is seeded with an evolution which is strongly dependent on the density scale length. This is manifested in the acceleration of a filamented proton beam, where the degree of filamentation is also found to be dependent on the target rear scale length. Furthermore, the energy dependent spatial distribution of the accelerated proton beam is shown to provide information on the instability evolution on the picosecond timescale over which the protons are accelerated. Experimentally, this is investigated by using a controlled prepulse to introduce a target rear scale length, which is varied by altering the time delay with respect to the main pulse, and similar trends are measured. This work is particularly pertinent to applications using laser pulse durations of tens of picoseconds, or where a micron level density scale length is present on the rear of a solid target, such as proton-driven fast ignition, as the resultant instability may affect the uniformity of fuel energy coupling. (paper)
Energy Technology Data Exchange (ETDEWEB)
Xie, M. [Lawrence Berkeley Lab., CA (United States)
1995-12-31
I present an exact calculation of free-electron-laser (FEL) eigenmodes (fundamental as well as higher order modes) in the exponential-gain regime. These eigenmodes specify transverse profiles and exponential growth rates of the laser field, and they are self-consistent solutions of the coupled Maxwell-Vlasov equations describing the FEL interaction taking into account the effects due to energy spread, emittance and betatron oscillations of the electron beam, and diffraction and guiding of the laser field. The unperturbed electron distribution is assumed to be of Gaussian shape in four dimensional transverse phase space and in the energy variable, but uniform in longitudinal coordinate. The focusing of the electron beam is assumed to be matched to the natural wiggler focusing in both transverse planes. With these assumptions the eigenvalue problem can be reduced to a numerically manageable integral equation and solved exactly with a kernel iteration method. An approximate, but more efficient solution of the integral equation is also obtained for the fundamental mode by a variational technique, which is shown to agree well with the exact results. Furthermore, I present a handy formula, obtained from interpolating the numerical results, for a quick calculation of FEL exponential growth rate. Comparisons with simulation code TDA will also be presented. Application of these solutions to the design and multi-dimensional parameter space optimization for an X-ray free electron laser driven by SLAC linac will be demonstrated. In addition, a rigorous analysis of transverse mode degeneracy and hence the transverse coherence of the X-ray FEL will be presented based on the exact solutions of the higher order guided modes.
Energy Technology Data Exchange (ETDEWEB)
Park, Jong Min [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Seoul National University Hospital, Biomedical Research Institute, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Advanced Institutes of Convergence Technology, Robotics Research Laboratory for Extreme Environments, Suwon (Korea, Republic of); Shin, Kyung Hwan; Wu, Hong-Gyun [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Seoul National University Hospital, Biomedical Research Institute, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiation Oncology, Seoul (Korea, Republic of); Kim, Jung-in; Park, So-Yeon; Kim, Jin Ho [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Seoul National University Hospital, Biomedical Research Institute, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Jeon, Seung Hyuck [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Choi, Noorie [Seoul National University College of Medicine, Department of Radiation Oncology, Seoul (Korea, Republic of)
2018-01-15
To investigate and to prevent irradiation outside the treatment field caused by an electron stream in the air generated by the magnetic field during magnetic resonance image-guided accelerated partial breast irradiation (APBI). In all, 20 patients who received APBI with a magnetic resonance image-guided radiation therapy (MR-IGRT) system were prospectively studied. The prescription dose was 38.5 Gy in 10 fractions of 3.85 Gy and delivered with a tri-cobalt system (the ViewRay system). For each patient, primary plans were delivered for the first five fractions and modified plans with different gantry angles from those of the primary plan (in-treatment plans) were delivered for the remaining five fractions to reduce the skin dose. A 1 cm thick bolus was placed in front of the patient's jaw, ipsilateral shoulder, and arm to shield them from the electron stream. Radiochromic EBT3 films were attached to the front (towards the breast) and back (towards the head) of the bolus during treatment. Correlations between the measured values and the tumor locations, treatment times, and tumor sizes were investigated. For a single fraction delivery, the average areas of the measured isodoses of 14% (0.54 Gy), 12% (0.46 Gy), and 10% (0.39 Gy) at the front of the boluses were as large as 3, 10.4, and 21.4 cm{sup 2}, respectively, whereas no significant dose could be measured at the back of the boluses. Statistically significant but weak correlations were observed between the measured values and the treatment times. During radiotherapy for breast cancer with an MR-IGRT system, the patient must be shielded from electron streams in the air generated by the interaction of the magnetic field with the beams of the three-cobalt treatment unit to avoid unwanted irradiation of the skin outside the treatment field. (orig.) [German] Beim Einsatz eines Magnetresonanztomographie(MRT)-gefuehrten Bestrahlungsgeraets kann durch die Wechselwirkung von Magnetfeld und Strahlenquelle unerwuenscht
Directory of Open Access Journals (Sweden)
M. Bouhram
2002-03-01
Full Text Available The Interball-2 spacecraft travels at altitudes extending up to 20 000 km, and becomes positively charged due to the low-plasma densities encountered and the photoemission on its sunlit surface. Therefore, a knowledge of the spacecraft potential Fs is required for correcting accurately thermal ion measurements on Interball-2. The determination of Fs is based on the balance of currents between escaping photoelectrons and incoming plasma electrons. A three-dimensional model of the potential structure surrounding Interball-2, including a realistic geometry and neglecting the space-charge densities, is used to find, through particle simulations, current-voltage relations of impacting plasma electrons Ie (Fs and escaping photoelectrons Iph (Fs . The inferred relations are compared to analytic relationships in order to quantify the effects of the spacecraft geometry, the ambient magnetic field B0 and the electron temperature Te . We found that the complex geometry has a weak effect on the inferred currents, while the presence of B0 tends to decrease their values. Providing that the photoemission saturation current density Jph0 is known, a relation between Fs and the plasma density Ne can be derived by using the current balance. Since Jph0 is critical to this process, simultaneous measurements of Ne from Z-mode observations in the plasmapause, and data on the potential difference Fs - Fp between the spacecraft and an electric probe (p are used in order to reverse the process. A value Jph0 ~ = 32 µAm-2 is estimated, close to laboratory tests, but less than typical measurements in space. Using this value, Ne and Fs can be derived systematically from electric field measurements without any additional calculation. These values are needed for correcting the distributions of low-energy ions measured by the Hyperboloid experiment on Interball-2. The effects of the potential structure on ion trajectories reaching Hyperboloid are discussed
Directory of Open Access Journals (Sweden)
Yujie Huang
2015-01-01
Full Text Available This paper theoretically investigates interactions between a template and functional monomer required for synthesizing an efficient molecularly imprinted polymer (MIP. We employed density functional theory (DFT to compute geometry, single-point energy, and binding energy (ΔE of an MIP system, where spermidine (SPD and methacrylic acid (MAA were selected as template and functional monomer, respectively. The geometry was calculated by using B3LYP method with 6-31+(d basis set. Furthermore, 6-311++(d, p basis set was used to compute the single-point energy of the above geometry. The optimized geometries at different template to functional monomer molar ratios, mode of bonding between template and functional monomer, changes in charge on natural bond orbital (NBO, and binding energy were analyzed. The simulation results show that SPD and MAA form a stable complex via hydrogen bonding. At 1 : 5 SPD to MAA ratio, the binding energy is minimum, while the amount of transferred charge between the molecules is maximum; SPD and MAA form a stable complex at 1 : 5 molar ratio through six hydrogen bonds. Optimizing structure of template-functional monomer complex, through computational modeling prior synthesis, significantly contributes towards choosing a suitable pair of template-functional monomer that yields an efficient MIP with high specificity and selectivity.
Das, Tridip
Understanding of the vacancy formation, interaction, increasing its concentration and diffusion, and controlling its chemical strain will advance the design of mixed ionic and electronic conductor (MIEC) materials via element doping and strain engineering. This is especially central to improve the performance of the solid oxide fuel cell (SOFC), an energy conversion device for sustainable future. The oxygen vacancy concentration grows exponentially with the temperature at dilute vacancy concentration but not at higher concentration, or even decreases due to oxygen vacancy interaction and vacancy ordered phase change. This limits the ionic conductivity. Using density functional theory (DFT), we provided fundamental understanding on how oxygen vacancy interaction originates in one of the typical MIEC, La1-xSrxFeO3-delta (LSF). The vacancy interaction is determined by the interplay of the charge state of multi-valence ion (Fe), aliovalent doping (La/Sr ratio), the crystal structure, and the oxygen vacancy concentration and/or nonstoichiometry (delta). It was found excess electrons left due to the formation of a neutral oxygen vacancy get distributed to Fe directly connected to the vacancy or to the second nearest neighboring Fe, based on crystal field splitting of Fe 3d orbital in different Fe-O polyhedral coordination. The progressively larger polaron size and anisotropic shape changes with increasing Sr-content resulted in increasing oxygen vacancy interactions, as indicated by an increase in the oxygen vacancy formation energy above a critical delta threshold. This was consistent with experimental results showing that Sr-rich LSF and highly oxygen deficient compositions are prone to oxygen-vacancy-ordering-induced phase transformations, while Sr-poor and oxygen-rich LSF compositions are not. Since oxygen vacancy induced phase transformations, cause a decrease in the mobile oxygen vacancy site fraction (X), both delta and X were predicted as a function of
International Nuclear Information System (INIS)
Santos, Frederico P.; Xavier, Vinicius S.; Alves Filho, Hermes; Barros, Ricardo C.
2011-01-01
The scattering source iterative (SI) scheme is traditionally applied to converge fine-mesh numerical solutions to fixed-source discrete ordinates (S N ) neutron transport problems. The SI scheme is very simple to implement under a computational viewpoint. However, the SI scheme may show very slow convergence rate, mainly for diffusive media (low absorption) with several mean free paths in extent. In this work we describe an acceleration technique based on an improved initial guess for the scattering source distribution within the slab. In other words, we use as initial guess for the fine-mesh scattering source, the coarse-mesh solution of the neutron diffusion equation with special boundary conditions to account for the classical S N prescribed boundary conditions, including vacuum boundary conditions. Therefore, we first implement a spectral nodal method that generates coarse-mesh diffusion solution that is completely free from spatial truncation errors, then we reconstruct this coarse-mesh solution within each spatial cell of the discretization grid, to further yield the initial guess for the fine-mesh scattering source in the first S N transport sweep (μm > 0 and μm < 0, m = 1:N) across the spatial grid. We consider a number of numerical experiments to illustrate the efficiency of the offered diffusion synthetic acceleration (DSA) technique. (author)
Accelerator shielding benchmark problems
International Nuclear Information System (INIS)
Hirayama, H.; Ban, S.; Nakamura, T.
1993-01-01
Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)
International Nuclear Information System (INIS)
Russell, C.M.
1988-01-01
The purpose of this study was twofold. The first part was to describe the development and evaluation of an interactive videodisc system to train radiation therapy technology students how to treat malignancies using a Linear Accelerator. The second part of the study was to evaluate the effectiveness of the interactive videodisc system as a simulation. The Gagne-Briggs instructional model was adapted to develop the interactive videodisc system. A model emerged as part of the project to conduct the formative evaluation of the prototype. A quasiexperimental research design was used to conduct the summative evaluation with two groups of first-year Radiation Therapy Technology students who entered the program in consecutive years. All testing and evaluation instruments were developed for the study with the exception of the clinical evaluation form. This latter form was already being used at the clinical sites. T-tests were used to analyze all data. A significant difference in cognitive achievement was evidenced between students exposed to the interactive videodisc system and students who were not exposed to the system. There was no significant difference found in clinical performance achievement and in attitude toward the clinical experience between both sets of participants. Instructor time was reduced by 1 and 1/2 hours for students on the interactive videodisc system. In conclusion, the interactive videodisc system was found to be more effective as an instructional method for cognitive achievement and as equally an effective method preparing students for clinical performance
International Nuclear Information System (INIS)
Wu, Hui-Chun; Hegelich, B.M.; Fernandez, J.C.; Shah, R.C.; Palaniyappan, S.; Jung, D.; Yin, L.; Albright, B.J.; Bowers, K.; Kwan, T.J.
2012-01-01
Two new experimental technologies enabled realization of Break-out afterburner (BOA) - High quality Trident laser and free-standing C nm-targets. VPIC is an powerful tool for fundamental research of relativistic laser-matter interaction. Predictions from VPIC are validated - Novel BOA and Solitary ion acceleration mechanisms. VPIC is a fully explicit Particle In Cell (PIC) code: models plasma as billions of macro-particles moving on a computational mesh. VPIC particle advance (which typically dominates computation) has been optimized extensively for many different supercomputers. Laser-driven ions lead to realization promising applications - Ion-based fast ignition; active interrogation, hadron therapy.
Can Accelerators Accelerate Learning?
International Nuclear Information System (INIS)
Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.
2009-01-01
The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.
Can Accelerators Accelerate Learning?
Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.
2009-03-01
The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.
Relativistic Shock Acceleration
International Nuclear Information System (INIS)
Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.
1999-01-01
In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Deng, Banglin, E-mail: banglindeng@yahoo.cn [Department of Applied Physics, Chengdu University of Technology, Chengdu 610059, Sichuan (China); Jiang, Gang [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, Sichuan (China); Zhang, Chuanyu [Department of Applied Physics, Chengdu University of Technology, Chengdu 610059, Sichuan (China)
2014-09-15
In this work, the multi-configuration Dirac–Fock and relativistic configuration-interaction methods have been used to calculate the transition wavelengths, electric dipole transition probabilities, line strengths, and absorption oscillator strengths for the 2s–3p, 2p–3s, and 2p–3d transitions in Li-like ions with nuclear charge Z=7–30. Our calculated values are in good agreement with previous experimental and theoretical results. We took the contributions from Breit interaction, finite nuclear mass corrections, and quantum electrodynamics corrections to the initial and final levels into account, and also found that the contributions from Breit interaction, self-energy, and vacuum polarization grow fast with increasing nuclear charge for a fixed configuration. The ratio of the velocity to length form of the transition rate (A{sub v}/A{sub l}) was used to estimate the accuracy of our calculations.
International Nuclear Information System (INIS)
Hellmann, Robert
2009-01-01
Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)
International Nuclear Information System (INIS)
Grandemange, Pierre
2013-01-01
The Gravitational Behaviour of Anti-hydrogen at Rest experiment - GBAR - is designed to perform a direct measurement of the weak equivalence principle on antimatter by measuring the acceleration (g-bar) of anti-hydrogen atoms in free fall. Its originality is to produce H-bar + ions and use sympathetic cooling to achieve μK temperature. H-bar + ions are produced by the reactions: p-bar + Ps → H-bar + e - , and H-bar + Ps → H-bar + + e - , where p-bar is an antiproton, Ps stands for positronium (the bound-state of a positron and an electron), H-bar is the anti-hydrogen and H-bar + the anti-ion associated. To produce enough Ps atoms, 2*10 10 positrons must be impinged on a porous SiO 2 target within 100 ns. Such an intense flux requires the accumulation (collection and cooling) of the positrons in a particle trap. This thesis describes the injector being commissioned at CEA Saclay for GBAR. It consists of a Penning-Malmberg trap (moved from RIKEN) fed by a slow positron beam. A 4.3 MeV linear accelerator shooting electrons on a tungsten target produces the pulsed positron beam, which is moderated by a multi-grid tungsten moderator. The slow positron flux is 10 4 e + /pulse, or 2*10 6 e + /s at 200 Hz. This work presents the first ever accumulation of low-energy positrons produced by an accelerator (rather than a radioactive source) and their cooling by a prepared reservoir of 2*10 10 cold electrons. (author) [fr
International Nuclear Information System (INIS)
Svarny, J.; Mikolas, P.
1999-01-01
The simple model of two component concept of the ATW (graphite + molten salt system) was found. The main purpose of this benchmark will be not only to provide the basic characteristics of given ADS but also to test codes in calculations of the rate of transmutation waste and to evaluate basic kinetics parameters and reactivity effects. (Authors)
International Nuclear Information System (INIS)
Bingham, R.; Angelis, U. de; Johnston, T.W.
1991-01-01
Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)
Energy Technology Data Exchange (ETDEWEB)
Torres Pozas, S.; Monja Rey, P. de la; Sanchez Carrasca, M.; Yanez Lopez, D.; Macias Verde, D.; Martin Oliva, R.
2011-07-01
In recent years, the progress experienced in cancer treatment with ionizing radiation can deliver higher doses to smaller volumes and better shaped, making it necessary to take into account new aspects in the calculation of structural barriers. Furthermore, given that forecasts suggest that in the near future will install a large number of accelerators, or existing ones modified, we believe a useful tool to estimate the thickness of the structural barriers of treatment rooms. The shielding calculation methods are based on standard DIN 6847-2 and the recommendations given by the NCRP 151. In our experience we found only estimates originated from the DIN. Therefore, we considered interesting to develop an application that incorporates the formulation suggested by the NCRP, together with previous work based on the rules DIN allow us to establish a comparison between the results of both methods. (Author)
International Nuclear Information System (INIS)
Vretenar, M
2014-01-01
The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics
Energy Technology Data Exchange (ETDEWEB)
Jaidane, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-04-01
These two methods allow the determination of the shape of the poles in magnets, for a given field distribution in the air-gap. First method: The principle of the method consists to create the desired law of field by means of current sheets in which one can adjust the density given in a polynomial form. For the right distribution of these currents, the equipotential corresponding to the magnetic potential of the excitation coils is calculated. The pole profile of the H or C magnet identified with this equipotential line will finally take the place of the distribution of the current sheets used in the calculation. Steel permeability is assumed to be infinite and Foucault current effects are neglected in the case of variable fields. Second method: It consists to find a conformal representation that maps the pole profile plane upon the upper half of another plane where the equipotentials are two half straight lines, and where the field problems are easier to solve. Steel permeability is also considered to be infinite and the coils far from the pole faces. This known method has been applied to be compared with the first one. (author) [French] Ces deux methodes consistent a determiner la forme des pieces polaires d'aimants pour une distribution de champ determinee a l'avance dans l'entrefer. Premiere methode: Le principe de la methode consiste a creer la loi de champ desiree par l'intermediaire de nappes de courant dont on peut ajuster la densite exprimee sous une forme polynominale. Pour une distribution convenable de ces courants, on calcule l'equipotentielle correspondant au potentiel magnetique des bobines d'excitation. Le profil polaire d'un aimant en H ou C identifie a l'equipotentielle se substitue finalement a la repartition des nappes de courant utilisee dans la methode de calcul. La permeabilite de l'acier est supposee infinie et les courants de Foucault sont negliges dans le cas des champs variables. Seconde methode: Elle consiste a trouver une transformation
International Nuclear Information System (INIS)
Waroquier, M.E.L.
1982-01-01
The Hartree-Fock-Bogolyubov formalism is extended for 3 body interactions and applied to spherical nuclei. The structure of the proposed extension of the Skyrme-type interaction is given, together with the analytical expression of the corresponding Hartree-Fock differential equation. The Skyrme-force parameters are modified in order to be able to reproduce the ground state properties. The problem of the spin-stability of the proposed interaction is treated. The Skyrme-interaction is applied as particle-hole interaction and saturation properties are studied. Structure of the charge, neutron density distributions and changes introduced by adding protons or neutrons are treated. (MDC)
Directory of Open Access Journals (Sweden)
J. Ferri
2016-10-01
Full Text Available Petawatt, picosecond laser pulses offer rich opportunities in generating synchrotron x-rays. This paper concentrates on the regimes accessible with the PETAL laser, which is a part of the Laser Megajoule (LMJ facility. We explore two physically distinct scenarios through Particle-in-Cell simulations. The first one realizes in a dense plasma, such that the period of electron Langmuir oscillations is much shorter than the pulse duration. Hallmarks of this regime are longitudinal breakup (“self-modulation” of the picosecond-scale laser pulse and excitation of a rapidly evolving broken plasma wake. It is found that electron beams with a charge of several tens of nC can be obtained, with a quasi-Maxwellian energy distribution extending to a few-GeV level. In the second scenario, at lower plasma densities, the pulse is shorter than the electron plasma period. The pulse blows out plasma electrons, creating a single accelerating cavity, while injection on the density downramp creates a nC quasi-monoenergetic electron bunch within the cavity. This bunch accelerates without degradation beyond 1 GeV. The x-ray sources in the self-modulated regime offer a high number of photons (∼10^{12} with the slowly decaying energy spectra extending beyond 60 keV. In turn, quasimonoenergetic character of the electron beam in the blowout regime results in the synchrotron-like spectra with the critical energy around 10 MeV and a number of photons >10^{9}. Yet, much smaller source duration and transverse size increase the x-ray brilliance by more than an order of magnitude against the self-modulated case, also favoring high spatial and temporal resolution in x-ray imaging. In all explored cases, accelerated electrons emit synchrotron x-rays of high brilliance, B>10^{20} photons/s/mm^{2}/mrad^{2}/0.1%BW. Synchrotron sources driven by picosecond kilojoule lasers may thus find an application in x-ray diagnostics on such facilities such as the LMJ or National
Energy Technology Data Exchange (ETDEWEB)
Osswald, F.; Roumie, M.; Frick, G.; Heusch, B.
1994-11-01
Calculations have been made to increase the high voltage performance of some components and to explain electrical failures of the Vivitron. These involve simulations of static stresses and transient over voltages, especially on insulating boards and electrodes occurring before or during breakdowns. Developments made to the structure of the machine over the last years and new ideas to improve the static and dynamic behaviour are presented. The application of this study and HV tests led recently to a nominal potential near 20 MV without sparks. (author). 49 refs., 25 figs., 2 tabs.
International Nuclear Information System (INIS)
Osswald, F.; Roumie, M.; Frick, G.; Heusch, B.
1994-11-01
Calculations have been made to increase the high voltage performance of some components and to explain electrical failures of the Vivitron. These involve simulations of static stresses and transient over voltages, especially on insulating boards and electrodes occurring before or during breakdowns. Developments made to the structure of the machine over the last years and new ideas to improve the static and dynamic behaviour are presented. The application of this study and HV tests led recently to a nominal potential near 20 MV without sparks. (author). 49 refs., 25 figs., 2 tabs
Directory of Open Access Journals (Sweden)
Esposito A.
2017-01-01
Full Text Available ELI-NP will be a new international research infrastructure facility for laser-based Nuclear Physics to be built in Magurele, south west of Bucharest, Romania. For the machine to operate as an intense γ rays’ source based on Compton back-scattering, electron beams are employed, undergoing a two stage acceleration to 320 MeV and 740 MeV (and, with an eventual energy upgrade, also to 840 MeV beam energies. In order to assess the radiation safety issues, concerning the effectiveness of the dumps in absorbing the primary electron beams, the generated prompt radiation field and the residual dose rates coming from the activation of constituent materials, as well as the shielding of the adjacent environments against both prompt and residual radiation fields, an extensive design study by means of Monte Carlo simulations with FLUKA code was performed, for both low energy 320 MeV and high energy 720 MeV (840 MeV beam dumps. For the low energy dump we discuss also the rational of the choice to place it in the building basement, instead of installing it in one of the shielding wall at the machine level, as it was originally conceived. Ambient dose equivalent rate constraints, according to the Rumenian law in force in radiation protection matter were 0.1 /iSv/h everywhere outside the shielding walls and 1.4 μiSv/h outside the high energy dump area. The dumps’ placements and layouts are shown to be fully compliant with the dose constraints and environmental impact.