WorldWideScience

Sample records for interacting-boson-approximation calculations experimental

  1. Interacting boson model: Microscopic calculations for the mercury isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; Pittel, S.; Barrett, B.R.; Duval, P.D.

    1987-05-15

    Microscopic calculations of the parameters of the proton--neutron interacting boson model (IBM-2) appropriate to the even Hg isotopes are reported. The calculations are based on the Otsuka--Arima--Iachello boson mapping procedure, which is briefly reviewed. Renormalization of the parameters due to exclusion of the l = 4 g boson is treated perturbatively. The calculations employ a semi-realistic shell-model Hamiltonian with no adjustable parameters. The calculated parameters of the IBM-2 Hamiltonian are used to generate energy spectra and electromagnetic transition probabilities, which are compared with experimental data and with the result of phenomenological fits. The overall agreement is reasonable with some notable exceptions, which are discussed. Particular attention is focused on the parameters of the Majorana interaction and on the F-spin character of low-lying levels. copyright 1987 Academic Press, Inc.

  2. The interacting boson model: Microscopic calculations for the mercury isotopes

    Science.gov (United States)

    Druce, C. H.; Pittel, S.; Barrett, B. R.; Duval, P. D.

    1987-05-01

    Microscopic calculations of the parameters of the proton-neutron interacting boson model (IBM-2) appropriate to the even Hg isotopes are reported. The calculations are based on the Otsuka-Armia-Iachello boson mapping procedure, which is briefly reviewed. Renormalization of the parameters due to exclusion of the l=4 g boson is treated perturbatively. The calculations employ a semi-realistic shell-model Hamiltonian with no adjustable parameters. The calculated parameters of the IBM-2 Hamiltonian are used to generate energy spectra and electromagnetic transition probabilities, which are compared with experimental data and with the result of phenomenological fits. The overall agreement is reasonable with some notable exceptions, which are discussed. Particular attention is focused on the parameters of the Majorana interaction and on the F-spin character of low-lying levels.

  3. Gyromagnetic ratios of excited states in 198Pt; measurements and interacting boson approximation model calculations

    Science.gov (United States)

    Stuchbery, A. E.; Ryan, C. G.; Bolotin, H. H.; Morrison, I.; Sie, S. H.

    1981-07-01

    The enhanced transient hyperfine field manifest at the nuclei of swiftly recoiling ions traversing magnetized ferromagnetic materials was utilized to measure the gyromagnetic ratios of the 2 +1, 2 +2 and 4 +1 states in 198Pt by the thin-foil technique. The states of interest were populated by Coulomb excitation using a beam of 220 MeV 58Ni ions. The results obtained were: g(2 +1) = 0.324 ± 0.026; g(2 +2) = 0.34 ± 0.06; g(4 +1) = 0.34 ± 0.06. In addition, these measurements served to discriminate between the otherwise essentially equally probable values previously reported for the E2/M1 ratio of the 2 +2 → 2 +1 transition in 198Pt. We also performed interacting boson approximation (IBA) model-based calculations in the O(6) limit symmetry, with and without inclusion of a small degree of symmetry breaking, and employed the M1 operator in both first- and second-order to obtain M1 selection rules and to calculate gyromagnetic ratios of levels. When O(6) symmetry is broken, there is a predicted departure from constancy of the g-factors which provides a good test of the nuclear wave function. Evaluative comparisons are made between these experimental and predicted g-factors.

  4. Microscopic calculation of parameters of the sdg interacting boson model for 104-110Pd isotopes

    International Nuclear Information System (INIS)

    Liu Yong

    1995-01-01

    The parameters of the sdg interacting boson model Hamiltonian are calculated for the 104-110 Pd isotopes. The calculations utilize the microscopic procedure based on the Dyson boson mapping proposed by Yang-Liu-Qi and extended to include the g boson effects. The calculated parameters reproduce those values from the phenomenological fits. The resulting spectra are compared with the experimental spectra

  5. Microscopic calculation of the Majorana parameters of the interacting boson model for the Hg isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; Barrett, B.R. (Arizona Univ., Tucson (USA). Dept. of Physics); Pittel, S. (Delaware Univ., Newark (USA). Bartol Research Foundation); Duval, P.D. (BEERS Associates, Reston, VA (USA))

    1985-07-11

    The parameters of the Majorana interaction of the neutron-proton interacting boson model are calculated for the Hg isotopes. The calculations utilize the Otsuka-Arima-Iachello mapping procedure and also lead to predictions for the other boson parameters. The resulting spectra are compared with experimental spectra and those obtained from phenomenological fits.

  6. Microscopic calculation of the Majorana parameters of the interacting boson model for the Hg isotopes

    Science.gov (United States)

    Druce, C. H.; Pittel, S.; Barrett, B. R.; Duval, P. D.

    1985-07-01

    The parameters of the Majorana interaction of the neutron-proton interacting boson model are calculated for the Hg isotopes. The calculations utilize the Otsuka-Arima-Iachello mapping procedure and also lead to predictions for the other boson parameters. The resulting spectra are compared with experimental spectra and those obtained from phenomenological fits.

  7. Inertial parameters in the interacting boson fermion approximation

    International Nuclear Information System (INIS)

    Dukelsky, J.; Lima, C.

    1986-06-01

    The Hartree-Bose-Fermi and the adiabatic approximations are used to derive analytic formulas for the moment of inertia and the decoupling parameter of the interacting boson fermion approximation for deformed systems. These formulas are applied to the SU(3) dynamical symmetry, obtaining perfect agreement with the exact results. (Authors) [pt

  8. Elements of the interacting boson approximation

    International Nuclear Information System (INIS)

    Cseh, Jozsef

    1985-01-01

    The main features of the interacting boson model family are briefly summarized. The main tool of the model is the group theory; its basic useful results (symmetry groups, spectrum generating algebra, dynamic groups and symmetries, tensor representations, broken symmetries, subgroup chains) are summarized. The emission and annihilation operators of the individual boson degrees of freedom form a U(n) algebra. Its reprezentation theory can be used to classify the basic states and energy levels of the system. A simple variant of the interacting boson model is analyzed in detail. The genealogy of different interacting boson models from vibron model to supersymmetric ones is surveyed. (D.Gy.)

  9. Calculation of ground state deformation of even-even rare-earth nuclei in sdg interacting boson model

    International Nuclear Information System (INIS)

    Wang Baolin

    1995-01-01

    The analytical calculation of the nuclear ground state deformation of the even-even isotopes in the rare-earth region is given by utilizing the intrinsic states of the sdg interacting boson model. It is compared systematically with the reported theoretical and experimental results. It is shown that the sdg interacting boson model is a reasonable scheme for the description of even-even nuclei deformation

  10. The interacting boson approximation and the spectroscopy of the even Cadmium and Tin isotopes

    International Nuclear Information System (INIS)

    Morrison, I.; Smith, R.

    1981-01-01

    Within the framework of the Interacting Boson Approximation (IBA), the authors investigate, using the even-mass isotopes Cd 108 to Cd 116 and Sn 116 to Sn 124 , whether a single two-boson interaction can describe the energy, B(E2), quadrupole moment and some inelastic nucleon scattering systematics of these nuclei

  11. Structure of Even-Even 218-230 Ra Isotopes within the Interacting Boson Approximation Model

    Directory of Open Access Journals (Sweden)

    Diab S. M.

    2008-01-01

    Full Text Available A good description of the excited positive and negative parity states of radium nuclei (Z=88, N=130-142 is achieved using the interacting boson approximation model (IBA-1. The potential energy surfaces, energy levels, parity shift, electromagnetic transition rates B(E1, B(E2 and electric monopole strength X(E0/E2 are calculated for each nucleus. The analysis of the eigenvalues of the model Hamiltonian reveals the presence of an interaction between the positive and negative parity bands. Due to this interaction the $Delta I = 1$ staggering effect, between the energies of the ground state band and the negative parity state band, is produced including beat patterns.

  12. Sdg interacting boson hamiltonian in the seniority scheme

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, N.

    1989-03-06

    The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagnoalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.

  13. sdg Interacting boson hamiltonian in the seniority scheme

    Science.gov (United States)

    Yoshinaga, N.

    1989-03-01

    The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagonalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.

  14. Study of some approximation schemes in the spin-boson problem

    International Nuclear Information System (INIS)

    Kenkre, V.M.; Giuggioli, L.

    2004-01-01

    Some approximation schemes used in the description of the evolution of the spin-boson system are studied through numerical and analytic methods. Among the procedures investigated are semiclassical approximations and the memory function approach. An infinitely large number of semiclassical approximations are discussed. Their two extreme limits are shown to be characterized, respectively, by effective energy mismatch and effective intersite transfer. The validity of the two limits is explored by explicit numerical calculations for important regions in parameter space, and it is shown that they can provide good descriptions in the so-called adiabatic and anti-adiabatic regimes, respectively. The memory function approach, which provides an excellent approximation scheme for a certain range of parameters, is shown to be connected to other approaches such as the non-interacting blip approximation. New results are derived from the memory approach in semiclassical contexts. Comments are made on thermal effects in the spin-boson problem, the discrete non-linear Schroedinger equation, and connections to the areas of dynamic localization, and quantum control

  15. Lifetimes of excited states in 196, 198Pt; Application of interacting boson approximation model to even Pt isotopes systematics

    Science.gov (United States)

    Bolotin, H. H.; Stuchbery, A. E.; Morrison, I.; Kennedy, D. L.; Ryan, C. G.; Sie, S. H.

    1981-11-01

    The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 1+ levels in 196, 198Pt were determined by the recoil-distance method (RDM). Gamma-ray angular distributions in 198Pt were also measured. These states were populated by multiple Coulomb excitation using 220 MeV 58Ni ion beams and the measurements were carried out in coincidence with back-scattered projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even 194-198Pt isotopes, are critically compared with our structure calculations employing the interacting boson approximation (IBA) model incorporating a symmetry-breaking quadrupole force; evaluative comparisons are also made with boson expansion theory (BET) calculations.

  16. Lifetimes of excited states in 196,198Pt; application of interacting boson approximation model to even Pt isotopes systematics

    International Nuclear Information System (INIS)

    Bolotin, H.H.; Stuchbery, A.E.; Morrison, I.; Kennedy, D.L.; Ryan, C.G.; Sie, S.H.

    1981-01-01

    The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 + 1 levels in sup(196, 198)Pt were determined by the recoil-distance method (RDM). Gamma-ray angular distributions in 198 Pt were also measured. These states were populated by multiple Coulomb excitation using 220 MeV 58 Ni ion beams and the measurements were carried out in coincidence with backscattering projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even sup(194-198)Pt isotopes, are critically compared with our structure calculations employing the interacting boson approximation (IBA) model incorporating a symmetry-breaking quadrupole force; evaluative comparisons are also made with boson expansion theory (BET) calculations. (orig.)

  17. Higgs-gauge boson interactions in the economical 3-3-1 model

    International Nuclear Information System (INIS)

    Phung Van Dong; Hoang Ngoc Long; Dang Van Soa

    2006-01-01

    Interactions among the standard model gauge bosons and scalar fields in the framework of the SU(3) C xSU(3) L xU(1) X gauge model with minimal (economical) Higgs content are presented. From these couplings, all scalar fields including the neutral scalar h and the Goldstone bosons can be identified and their couplings with the usual gauge bosons such as the photon, the charged W ± , and the neutral Z, without any additional conditions, are recovered. In the effective approximation, the full content of the scalar sector can be recognized. The CP-odd part of the Goldstone associated with the neutral non-Hermitian bilepton gauge boson G X 0 is decoupled, while its CP-even counterpart has the mixing in the same way in the gauge boson sector. Masses of the new neutral Higgs boson H 1 0 and the neutral non-Hermitian bilepton X 0 are dependent on a coefficient of Higgs self-coupling (λ 1 ). Similarly, masses of the singly charged Higgs boson H 2 ± and of the charged bilepton Y ± are proportional through a coefficient of Higgs self-interaction (λ 4 ). The hadronic cross section for production of this Higgs boson at the CERN LHC in the effective vector boson approximation is calculated. Numerical evaluation shows that the cross section can exceed 260 fb

  18. Mixtures of Strongly Interacting Bosons in Optical Lattices

    International Nuclear Information System (INIS)

    Buonsante, P.; Penna, V.; Giampaolo, S. M.; Illuminati, F.; Vezzani, A.

    2008-01-01

    We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of 41 K induces a significant loss of coherence in 87 Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices

  19. Interacting boson model with surface delta interaction between nucleons: Structure and interaction of bosons

    International Nuclear Information System (INIS)

    Druce, C.H.; Moszkowski, S.A.

    1986-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested

  20. Interacting boson model with surface delta interaction between nucleons: Structure and interaction of bosons

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; Moszkowski, S.A.

    1986-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested.

  1. The sdg interacting-boson model applied to 168Er

    Science.gov (United States)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1986-03-01

    The sdg interacting-boson model is applied to 168Er. Energy levels and E2 transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first Kπ=4+ band relative to that of the first Kπ=2+ one. The level scheme including the Kπ=3+ band is well reproduced and the calculated B(E2)'s are consistent with the experimental data.

  2. Ra isotopes in the sdg interacting-boson model with one f-boson

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Naotaka (Department of Physics, Saitama University (Japan)); Mizusaki, Takahiro (Department of Physics, University of Tokyo (Japan)); Otsuka, Takaharu (Department of Physics, University of Tokyo (Japan))

    1993-06-21

    We study positive- and negative-parity states in Ra isotopes in terms of the proton-neutron sdg interacting-boson model with one f-boson. The present calculation correctly reproduces the spherical to deformed phase transition. Especially, we would like to stress the importance of the g-boson for reproducing the E1 transitions which are very strong in this region. (orig.)

  3. Ra isotopes in the sdg interacting-boson model with one f-boson

    Science.gov (United States)

    Naotaka, Yoshinaga; Takahiro, Mizusaki; Takaharu, Otsuka

    1993-06-01

    We study positive- and negative-parity states in Ra isotopes in terms of the proton-neutron sdg interacting-boson model with one f-boson. The present calculation correctly reproduces the spherical to deformed phase transition. Especially, we would like to stress the importance of the g-boson for reproducing the E1 transitions which are very strong in this region.

  4. Ra isotopes in the sdg interacting-boson model with one f-boson

    International Nuclear Information System (INIS)

    Yoshinaga, Naotaka; Mizusaki, Takahiro; Otsuka, Takaharu.

    1992-01-01

    We study positive and negative parity in Ra isotopes in terms of the proton-neutron sdg interacting-boson model with one f-boson. The present calculation correctly reproduces the spherical to deformed phase transition. Especially, we would like to stress the importance of the g-boson for reproducing the E1 transitions which are very strong in this region. (author)

  5. Microscopic boson approach to the description of sd-shell nuclei

    International Nuclear Information System (INIS)

    Kuchta, R.

    1987-01-01

    A microscopic method is proposed for analyzing the properties of light nuclei with an equal number of protons and neutrons in terms of many interacting bosons. An exact boson image of the underlying shell-model Hamiltonian is derived and the dynamical behaviour of the original fermion system is studied directly in the boson picture using the mean field approximation. The resulting boson states are shown to be free from spurios components, so that the cubersome procedure of constructing the physical boson states can be avoided. The method is applied to calculating the energy spectra of 20 Ne, 24 Mg and a satisfactory agreement with experimental data is found

  6. Even zinc isotopes in the interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; McCullen, J.D.; Duval, P.D.; Barrett, B.R. (Arizona Univ., Tucson (USA). Dept. of Physics)

    1982-11-01

    The interacting boson model is applied to the even zinc isotopes /sup 62/Zn-/sup 72/Zn. Two boson configurations are used to account for the behaviour of excited O/sup +/ states; one is the usual particle boson configuration and the other a configuration representing proton excitation from the /sup 56/Ni core. The parameter variation in the model is constrained as much as possible to agree with calculations from a non-degenerate multi-shell fermion basis for the bosons. Energy levels, quadrupole moments and B(E2) values are calculated. Values obtained compare favourably with experiment and with other calculations.

  7. Quantum Glass of Interacting Bosons with Off-Diagonal Disorder

    Science.gov (United States)

    Piekarska, A. M.; Kopeć, T. K.

    2018-04-01

    We study disordered interacting bosons described by the Bose-Hubbard model with Gaussian-distributed random tunneling amplitudes. It is shown that the off-diagonal disorder induces a spin-glass-like ground state, characterized by randomly frozen quantum-mechanical U(1) phases of bosons. To access criticality, we employ the "n -replica trick," as in the spin-glass theory, and the Trotter-Suzuki method for decomposition of the statistical density operator, along with numerical calculations. The interplay between disorder, quantum, and thermal fluctuations leads to phase diagrams exhibiting a glassy state of bosons, which are studied as a function of model parameters. The considered system may be relevant for quantum simulators of optical-lattice bosons, where the randomness can be introduced in a controlled way. The latter is supported by a proposition of experimental realization of the system in question.

  8. Emerging bosons with three-body interactions from spin-1 atoms in optical lattices

    International Nuclear Information System (INIS)

    Mazza, L.; Rizzi, M.; Cirac, J. I.; Lewenstein, M.

    2010-01-01

    We study two many-body systems of bosons interacting via an infinite three-body contact repulsion in a lattice: a pairs quasicondensate induced by correlated hopping and the discrete version of the Pfaffian wave function. We propose to experimentally realize systems characterized by such interaction by means of a proper spin-1 lattice Hamiltonian: spin degrees of freedom are locally mapped into occupation numbers of emerging bosons, in a fashion similar to spin-1/2 and hardcore bosons. Such a system can be realized with ultracold spin-1 atoms in a Mott insulator with a filling factor of 1. The high versatility of these setups allows us to engineer spin-hopping operators breaking the SU(2) symmetry, as needed to approximate interesting bosonic Hamiltonians with three-body hardcore constraint. For this purpose we combine bichromatic spin-independent superlattices and Raman transitions to induce a different hopping rate for each spin orientation. Finally, we illustrate how our setup could be used to experimentally realize the first setup, that is, the transition to a pairs quasicondensed phase of the emerging bosons. We also report on a route toward the realization of a discrete bosonic Pfaffian wave function and list some open problems for reaching this goal.

  9. Popov approximation for composite bosons in the BCS-BEC crossover

    International Nuclear Information System (INIS)

    Pieri, P.; Strinati, G.C.

    2005-01-01

    Theoretical treatments of the BCS-BEC crossover need to provide as accurate as possible descriptions of the two regimes where the diluteness condition applies, either in terms of the constituent fermions (BCS limit) or of the composite bosons which form as bound-fermion pairs (BEC limit). This has to occur via a single fermionic theory that bridges across these two limiting representations. In this paper, we set up successive improvements of the fermionic theory, that result into composite bosons described at the level of either the Bogoliubov or the Popov approximations for pointlike bosons. This work bears on the recent experimental advances on the BCS-BEC crossover with trapped Fermi atoms, which show the need for accurate theoretical descriptions of the BEC side of the crossover

  10. Description of the hexadecapole deformation parameter in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Liu Yuxin; Sun Di; Wang Jiajun; Han Qizhi

    1998-01-01

    The hexadecapole deformation parameter β 4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacting boson model. An explicit relation between the geometric hexadecapole deformation parameter β 4 and the intrinsic deformation parameters ε 4 , ε 2 are obtained. The deformation parameters β 4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β 4 systematics as well as the SU(3) limit

  11. Pade approximants and the calculation of effective interactions

    International Nuclear Information System (INIS)

    Schucan, T.H.

    1975-01-01

    It is known that the series expansion of the effective interaction in nuclei diverges in practical applications due to the occurrence of low lying collective states. An approximation scheme which can be used to overcome the difficulties connected with this divergence is reviewed and it is shown that a continued fraction expansion can be used to calculate the eigenstate that has the larger overlap with the model space. An extension of this method is obtained by using Pade approximants (P.A.) which are then applied to the effective interaction, and to related matrices and matrix elements. Mathematical properties of the P.A. are discussed in light of these applications. 7 figures

  12. Localized bound states of fermions interacting via massive vector bosons

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.

    1988-11-01

    A model for composite consisting of fermions with internal degrees of freedom interacting via intermediate vector bosons (IVB) is constructed. We find highly localized, low-mass bound states in the Hartree-Fock approximation. We investigate the dependence of these states as function of the coupling constant and vector boson mass. In the limit of infinite vector boson mass the interaction is described by Fermi-type contact forces. (orig.)

  13. Particle-hole symmetry in the interacting-boson model: Fermion and boson aspects

    International Nuclear Information System (INIS)

    Johnson, A.B.; Vincent, C.M.

    1985-01-01

    We show that the S-D subspaces, which are used in the Otsuka-Arima-Iachello microscopic derivation of the interacting-boson model, form a particle-hole-symmetric family. Consequently, there exist particle-hole-symmetric prescriptions for determining the structure of the S and D pairs. This result holds independently of whether the Hamiltonian conserves generalized seniority. Nevertheless, there are deviations from particle-hole symmetry when boson matrix elements involving more than two d bosons are calculated in lowest order using the boson mapping procedure of Otsuka, Arima, and Iachello. These deviations are used to estimate the inaccuracies introduced by the lowest-order mapping

  14. Microscopic foundation of the interacting boson model

    International Nuclear Information System (INIS)

    Arima, Akito

    1994-01-01

    A microscopic foundation of the interacting boson model is described. The importance of monopole and quadrupole pairs of nucleons is emphasized. Those pairs are mapped onto the s and d bosons. It is shown that this mapping provides a good approximation in vibrational and transitional nuclei. In appendix, it is shown that the monopole pair of electrons plays possibly an important role in metal clusters. (orig.)

  15. Complete two-loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry

    International Nuclear Information System (INIS)

    Martin, Stephen P.

    2003-01-01

    I present a method for accurately calculating the pole mass of the lightest Higgs scalar boson in supersymmetric extensions of the standard model, using a mass-independent renormalization scheme. The Higgs scalar self-energies are approximated by supplementing the exact one-loop results with the second derivatives of the complete two-loop effective potential in Landau gauge. I discuss the dependence of this approximation on the choice of renormalization scale, and note the existence of particularly poor choices, which fortunately can be easily identified and avoided. For typical input parameters, the variation in the calculated Higgs boson mass over a wide range of renormalization scales is found to be of the order of a few hundred MeV or less, and is significantly improved over previous approximations

  16. Charge and transition densities of samarium isotopes in the interacting Boson model

    International Nuclear Information System (INIS)

    Moinester, M.A.; Alster, J.; Dieperink, A.E.L.

    1982-01-01

    The interacting boson approximation (IBA) model has been used to interpret the ground-state charge distributions and lowest 2 + transition charge densities of the even samarium isotopes for A = 144-154. Phenomenological boson transition densities associated with the nucleons comprising the s-and d-bosons of the IBA were determined via a least squares fit analysis of charge and transition densities in the Sm isotopes. The application of these boson trasition densities to higher excited 0 + and 2 + states of Sm, and to 0 + and 2 + transitions in neighboring nuclei, such as Nd and Gd, is described. IBA predictions for the transition densities of the three lowest 2 + levels of 154 Gd are given and compared to theoretical transition densities based on Hartree-Fock calculations. The deduced quadrupole boson transition densities are in fair agreement with densities derived previously from 150 Nd data. It is also shown how certain moments of the best fit boson transition densities can simply and sucessfully describe rms radii, isomer shifts, B(E2) strengths, and transition radii for the Sm isotopes. (orig.)

  17. Optimal auxiliary Hamiltonians for truncated boson-space calculations by means of a maximal-decoupling variational principle

    International Nuclear Information System (INIS)

    Li, C.

    1991-01-01

    A new method based on a maximal-decoupling variational principle is proposed to treat the Pauli-principle constraints for calculations of nuclear collective motion in a truncated boson space. The viability of the method is demonstrated through an application to the multipole form of boson Hamiltonians for the single-j and nondegenerate multi-j pairing interactions. While these boson Hamiltonians are Hermitian and contain only one- and two-boson terms, they are also the worst case for truncated boson-space calculations because they are not amenable to any boson truncations at all. By using auxiliary Hamiltonians optimally determined by the maximal-decoupling variational principle, however, truncations in the boson space become feasible and even yield reasonably accurate results. The method proposed here may thus be useful for doing realistic calculations of nuclear collective motion as well as for obtaining a viable interacting-boson-model type of boson Hamiltonian from the shell model

  18. The interacting boson-fermion model

    International Nuclear Information System (INIS)

    Iachello, F.; Van Isacker, P.

    1990-01-01

    The interacting boson-fermion model has become in recent years the standard model for the description of atomic nuclei with an odd number of protons and/or neutrons. This book describes the mathematical framework on which the interacting boson-fermion model is built and presents applications to a variety of situations encountered in nuclei. The book addresses both the analytical and the numerical aspects of the problem. The analytical aspect requires the introduction of rather complex group theoretic methods, including the use of graded (or super) Lie algebras. The first (and so far only) example of supersymmetry occurring in nature is also discussed. The book is the first comprehensive treatment of the subject and will appeal to both theoretical and experimental physicists. The large number of explicit formulas for level energies, electromagnetic transition rates and intensities of transfer reactions presented in the book provide a simple but detailed way to analyze experimental data. This book can also be used as a textbook for advanced graduate students

  19. Statistics in a Trilinear Interacting Stokes-Antistokes Boson System

    Science.gov (United States)

    Tänzler, W.; Schütte, F.-J.

    The statistics of a system of four boson modes is treated with simultaneous Stokes-Antistokes interaction taking place. The time evolution is calculated in full quantum manner but in short time approximation. Mean photon numbers and correlations of second order are calculated. Antibunching can be found in the laser mode and in the system of Stokes and Antistokes mode.Translated AbstractStatistik in einem trilinear wechselwirkenden Stokes-Antistokes-BosonensystemDie Statistik eines Systems von vier Bosonenmoden mit gleichzeitiger Stokes-Antistokes-Wechselwirkung wird bei vollquantenphysikalischer Beschreibung in Kurzzeitnäherung untersucht. Mittlere Photonenzahlen und Korrelationen zweiter Ordnung werden berechnet. Dabei wird Antibunching sowohl in der Lasermode allein als auch im System aus Stokes- und Antistokesmode gefunden.

  20. Interacting boson model with surface delta interaction between nucleons

    International Nuclear Information System (INIS)

    Druce, C.; Moszkowski, S.A.

    1984-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. The authors have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson proton-boson interaction for the case of degenerate orbits

  1. Description of the Hexadecapole Deformation Parameter in the sdg Interacting Boson Model

    Science.gov (United States)

    Liu, Yu-xin; Sun, Di; Wang, Jia-jun; Han, Qi-zhi

    1998-04-01

    The hexadecapole deformation parameter β4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacing boson model. An explicit relation between the geometric hexadecapole deformation parameter β4 and the intrinsic deformation parameters epsilon4, epsilon2 are obtained. The deformation parameters β4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β4 systematics as well as the SU(3) limit.

  2. The Fermion boson interaction within the linear sigma model at finite temperature

    International Nuclear Information System (INIS)

    Caldas, H.C.G.

    2000-01-01

    We study the interaction of massless bosons at finite temperature. Specifically, we calculate the self-energy of massless fermions due to interaction with massless bosons at high temperature, which is the region where thermal effects are maximal. The calculations are concentrated in the limit of vanishing fermion three momentum and after considering the effective boson dressed mass, we obtain the damping rate of the fermion. It is shown that in the limit k O 2 T + g 3 T. (author)

  3. Fermion electric dipole moments induced by P- and T-odd WWγ interactions in the minimal supersymmetric standard model and multi-Higgs-boson model

    International Nuclear Information System (INIS)

    West, T.H.

    1994-01-01

    We calculate fermion electric dipole moments generated by P- and T-odd WWγ interactions in the supersymmetry and multi-Higgs-boson models without using an approximation first introduced by Marciano and Queijeiro. In essence, this approximation consists of ignoring the details of the high energy physics responsible for the W electric dipole moment. For the minimal supersymmetry model, our more exact results are roughly three times those obtained from the simplest application of the above-mentioned approximation for gaugino masses larger than m W . However, if the gaugino masses are approx-lt m W , our results are less than would be expected from the Marciano-Queijeiro estimate. In part, because of this suppression, we discover that the experimental bounds on d n place no restrictions on either the allowed values of d W or on the permitted masses of the minimal supersymmetry model. This contradicts the findings of Vendramin who used the Marciano-Queijeiro results to deduce such prohibited regions of parameter space and mildly improves the prospects of observing a nonzero W-boson electric dipole moment in accelerator experiments. In the case of the multi-Higgs-boson model, we again find fermion electric dipole moments that are three times those expected from a simple application of the Marciano-Queijeiro technique. In addition, when this result is combined with a complete two-loop calculation of the W electric dipole moment, we find that the fermion electric dipole moments generated in this way are approximately 30 times those expected from a previous calculation by He and McKellar

  4. Experimental consequences of SU(3) symmetry in an sdg boson model

    International Nuclear Information System (INIS)

    Akiyama, Y.; Brentano, P. von; Gelberg, A.

    1987-01-01

    Energies of collective levels in 178 Hf and 234 U are compared wth predictions of the SU(3) limiz of the sdg interacting boson model. All known positive parity states of 178 Hf below 1.8 MeV (with the expection of a 0 + band) have been satisfactorily reproduced. Most of the bands in 234 U are also described by the model. However, a few predicted states have no experimental counterpart. The introduction of the g-basons strongly reduces the previously observed discrepancies between experimental B(E2)'s in 238 U and the sd-IBM calculation. (orig.)

  5. Spurious states in boson calculations - spectre of reality

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P. (Stellenbosch Univ. (South Africa). Inst. of Theoretical Nuclear Physics); Geyer, H.B. (Stellenbosch Univ. (South Africa). Inst. of Theoretical Nuclear Physics); Dobes, J. (Inst. of Nuclear Physics, Czech Academy of Sciences, Rez (Czech Republic)); Dobaczewski, J. (Warsaw Univ. (Poland). Inst. of Theoretical Physics)

    1994-03-28

    We discuss some prevailing misconceptions about the possibility that spurious states may in general contaminate boson calculations of fermion systems on either the phenomenological or microscopic level. Amongst other things we point out that the possible appearance of spurious states is not inherently a mapping problem, but rather linked to a choice of basis in the boson Fock space. This choice is mostly dictated by convenience or the aim to make direct contact with phenomenology. Furthermore, neither well established collectivity, nor the construction of boson operators in the Marumori or OAI fashion can as such serve as a guarantee against the appearance of spurious boson states. Within an SO(12) generalisation of the Ginocchio model where collective decoupling is complete, we illustrate how spurious states may appear in an IBM-type-sdg-boson analysis. We also show how these states may be identified on the boson level. This enables us to present an example of an sdg-spectrum which, although it may be reasonably correlated with experimental data, nevertheless has the first few low lying states all spurious when interpreted from the microscopic point of view. We briefly speculate about the possibility that certain types of truncation may in fact automatically circumvent the appearance of spurious states. (orig.)

  6. Spurious states in boson calculations - spectre of reality?

    International Nuclear Information System (INIS)

    Navratil, P.; Dobaczewski, J.

    1994-01-01

    We discuss some prevailing misconceptions about the possibility that spurious states may in general contaminate boson calculations of fermion systems on either the phenomenological or microscopic level. Amongst other things we point out that the possible appearance of spurious states is not inherently a mapping problem, but rather linked to a choice of basis in the boson Fock space. This choice is mostly dictated by convenience or the aim to make direct contact with phenomenology. Furthermore, neither well established collectivity, nor the construction of boson operators in the Marumori or OAI fashion can as such serve as a guarantee against the appearance of spurious boson states. Within an SO(12) generalisation of the Ginocchio model where collective decoupling is complete, we illustrate how spurious states may appear in an IBM-type-sdg-boson analysis. We also show how these states may be identified on the boson level. This enables us to present an example of an sdg-spectrum which, although it may be reasonably correlated with experimental data, nevertheless has the first few low lying states all spurious when interpreted from the microscopic point of view. We briefly speculate about the possibility that certain types of truncation may in fact automatically circumvent the appearance of spurious states. (orig.)

  7. Microscopic aspects of the Interacting Boson

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.

    1985-01-01

    A review is presented of the concept of using boson descriptions of many-fermion systems, and the IBM is introduced in a historical context. Next, the use of the IBM-2 as a phenomenological tool is investigated. The model is applied to the even zinc isotopes and the model is found to give a reasonable description of the experimental data. In the phenomenological calculations, the parameters of the IBM-2 Hamiltonian are adjusted until good agreement is obtained with the experimental data. To put the theoretical basis of the IBM-2 on firm ground, it is important to be able to calculate these parameters microscopically. A framework is developed in which such calculations can be performed for non-deformed nuclei. Results are presented for the mercury isotopes and discussed in detail. The calculated parameter values agree for the most part with the values obtained by phenomenological fit but with some exceptions. Similar calculations are performed for the platinum isotopes. The results for these isotopes are then related to the concept of F-spin multiplets. When the Surface Delta Interaction (SDI) is used, several simplifications can be made in the IBM. In certain schematic situations, the parameters of the IBM-2 Hamiltonian can be related directly to the strength of the SDI. Several interesting results are obtained whose full implication will be investigated in the future.

  8. Microscopic aspects of the Interacting Boson

    International Nuclear Information System (INIS)

    Druce, C.H.

    1985-01-01

    A review is presented of the concept of using boson descriptions of many-fermion systems, and the IBM is introduced in a historical context. Next, the use of the IBM-2 as a phenomenological tool is investigated. The model is applied to the even zinc isotopes and the model is found to give a reasonable description of the experimental data. In the phenomenological calculations, the parameters of the IBM-2 Hamiltonian are adjusted until good agreement is obtained with the experimental data. To put the theoretical basis of the IBM-2 on firm ground, it is important to be able to calculate these parameters microscopically. A framework is developed in which such calculations can be performed for non-deformed nuclei. Results are presented for the mercury isotopes and discussed in detail. The calculated parameter values agree for the most part with the values obtained by phenomenological fit but with some exceptions. Similar calculations are performed for the platinum isotopes. The results for these isotopes are then related to the concept of F-spin multiplets. When the Surface Delta Interaction (SDI) is used, several simplifications can be made in the IBM. In certain schematic situations, the parameters of the IBM-2 Hamiltonian can be related directly to the strength of the SDI. Several interesting results are obtained whose full implication will be investigated in the future

  9. Are there really any experimental limits on a light Higgs boson?

    International Nuclear Information System (INIS)

    Raby, S.; West, G.B.; Hoffman, C.M.

    1988-01-01

    The experimental evidence regarding a light Higgs boson is reviewed. It is shown that a light Higgs boson with almost any mass between 14 MeV/c 2 and 1 GeV/c 2 is still allowed by existing data. The only limit in this range comes from B decay data which, for sufficiently large values of the top quark mass, excludes a Higgs boson with a mass between 2m/sub μ/ and /approximately/700 MeV/c 2 . Discussions of light Higgs boson emission in the decays of K, π, μ, /tau/, /eta/', and Γ are also given. 29 refs., 2 figs

  10. Description of spectrum and electromagnetic transitions in 94Mo through the proton-neutron interacting boson model

    Science.gov (United States)

    Mu, ChengFu; Zhang, DaLi

    2018-01-01

    We investigated the properties of low-lying states in 94Mo within the framework of the proton-neutron interacting boson model (IBM-2), with special focus on the characteristics of mixed-symmetry states. We calculated level energies and M1 and E2 transition strengths. The IBM-2 results agree with the available quantitative and qualitative experimental data on 94Mo. The properties of mixed-symmetry states can be well described by IBM-2 given that the energy of the d proton boson is different from that of the neutron boson, especially for the transition of B( M1; 4 2 + → 4 1 + ).

  11. Experimental consequences of SU(3) symmetry in an sdg boson model

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Y.; Brentano, P. von; Gelberg, A.

    1987-05-01

    Energies of collective levels in /sup 178/Hf and /sup 234/U are compared wth predictions of the SU(3) limiz of the sdg interacting boson model. All known positive parity states of /sup 178/Hf below 1.8 MeV (with the expection of a 0/sup +/ band) have been satisfactorily reproduced. Most of the bands in /sup 234/U are also described by the model. However, a few predicted states have no experimental counterpart. The introduction of the g-basons strongly reduces the previously observed discrepancies between experimental B(E2)'s in /sup 238/U and the sd-IBM calculation.

  12. Fermion-boson scattering in ladder approximation

    International Nuclear Information System (INIS)

    Jafarov, R.G.; Hadjiev, S.A.

    1992-10-01

    A method of calculation of forward scattering amplitude for fermions and scalar bosons with exchanging of scalar particle is suggested. The Bethe-Salpeter ladder equation for the imaginary part of the amplitude is constructed and a solution in Regge asymptotical form is found and the corrections to the amplitude due to the exit from mass shell are calculated. (author). 8 refs

  13. The Fermion boson interaction within the linear sigma model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, H.C.G. [Fundacao de Ensino Superior de Sao Joao del Rei (FUNREI), MG (Brazil). Dept. de Ciencias Naturais (DCNAT)

    2000-07-01

    We study the interaction of massless bosons at finite temperature. Specifically, we calculate the self-energy of massless fermions due to interaction with massless bosons at high temperature, which is the region where thermal effects are maximal. The calculations are concentrated in the limit of vanishing fermion three momentum and after considering the effective boson dressed mass, we obtain the damping rate of the fermion. It is shown that in the limit k{sub O} <

  14. On a new approach to the microscopic substantiation of the interacting boson model-1

    International Nuclear Information System (INIS)

    Karadjov, D.; Voronov, V.V.; Kyrchev, G.; Paar, V.

    1990-01-01

    An Lie algebraic approach to the microscopic foundation of interacting boson model-1 (IBM-1) is itemized, treating on an equal footing the SU(6) governed dynamics and the accompanying SU(6) constraints. The introduction of the collective random phase approximation phonon operators as preferred pairs with subsequent enforcement of the relevant SU(6) algebra has enabled: to identify the decoupled phonon subspace as carrier space of the totally symmetric irreducible representation of SU(6); to single out from a microscopic reference Hamiltonian the fragment with the ensuing IBM-1 sd-boson form. Using this approach, the IBM-1 parameters have been calculated for the sequence of even-even 64-70 Zn isotopes. 45 refs.; 2 figs.; 5 tabs

  15. Zero-range approximation for two-component boson systems

    International Nuclear Information System (INIS)

    Sogo, T.; Fedorov, D.V.; Jensen, A.S.

    2005-01-01

    The hyperspherical adiabatic expansion method is combined with the zero-range approximation to derive angular Faddeev-like equations for two-component boson systems. The angular eigenvalues are solutions to a transcendental equation obtained as a vanishing determinant of a 3 x 3 matrix. The eigenfunctions are linear combinations of Jacobi functions of argument proportional to the distance between pairs of particles. We investigate numerically the influence of two-body correlations on the eigenvalue spectrum, the eigenfunctions and the effective hyperradial potential. Correlations decrease or increase the distance between pairs for effectively attractive or repulsive interactions, respectively. New structures appear for non-identical components. Fingerprints can be found in the nodal structure of the density distributions of the condensates. (author)

  16. Directed selective-tunneling of bosons with periodically modulated interaction

    International Nuclear Information System (INIS)

    Lu, Gengbiao; Fu, Li-Bin; Hai, Wenhua; Zou, Mingliang; Guo, Yu

    2015-01-01

    We study the tunneling dynamics of bosons with periodically modulated interaction held in a triple-well potential. In high-frequency approximation, we derive a set of reduced coupled equations and the corresponding Floquet solutions are obtained. Based on the analytical results and their numerical correspondence, the directed selective-tunneling effect of a single atom is demonstrated when all bosons are prepared in middle well initially. A scheme for separating a single atom from N bosons is presented, in which the atom can be trapped in right or left well by adjusting the modulation strength. - Highlights: • The Floquet solutions in a modulating triple-well are obtained analytically. • The directed selective-tunneling effect of a single atom is demonstrated. • We present a manipulation scheme for separating a single atom from N bosons

  17. Strongly interacting Higgs bosons

    International Nuclear Information System (INIS)

    Appelquist, T.; Bernard, C.

    1980-01-01

    The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is discussed. The gauged nonlinear sigma model, which is the limit of the linear model as the Higgs-boson mass goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the SU(2)/sub L/ x SU(2)/sub R/ symmetry of the Higgs sector is preserved, these effects are found to be small, of the order of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by the W mass. We work in the context of a simplified model with gauge group SU(2)/sub L/; the extension to SU(2)/sub L/ x U(1) is briefly discussed

  18. Boson mapping and the microscopic collective nuclear Hamiltonian

    International Nuclear Information System (INIS)

    Dobes, J.; Ivanova, S.P.; Dzholos, R.V.; Pedrosa, R.

    1990-01-01

    Starting with the mapping of the quadrupole collective states in the fermion space onto the boson space, the fermion nuclear problem is transformed into the boson one. The boson images of the bifermion operators and of the fermion Hamiltonian are found. Recurrence relations are used to obtain approximately the norm matrix which appears in the boson-fermion mapping. The resulting boson Hamiltonian contains terms which go beyond the ordinary SU(6) symmetry Hamiltonian of the interacting boson model. Calculations, however, suggest that on the phenomenological level the differences between the mapped Hamiltonian and the SU(6) Hamiltonian are not too important. 18 refs.; 2 figs

  19. The electro-magnetic transition properties in the microscopic SDG interacting boson model

    International Nuclear Information System (INIS)

    Han Guangze; Liu Yong; Sang Jianping

    1996-01-01

    A bosonic method and the corresponding fermionic one for studying the electro-magnetic transition properties of nucleus are presented in the microscopic sdg interacting boson model. The methods are applied to the nucleus 60 Ni. Detailed discussions are made with the calculated results

  20. Calculations of hyperfine interactions in transition metal compounds in the local density approximation

    International Nuclear Information System (INIS)

    Guenzburger, D.J.R.

    1982-01-01

    A survey is made of some theoretical calculations of electrostatic and magnetic hyperfine interactions in transition metal compounds and complex irons. The molecular orbital methods considered are the Multiple Scattering and Discrete Variational, in which the local Xα approximation for the exchange interaction is employed. Emphasis is given to the qualitative informations, derived from the calculations, relating the hyperfine parameters to characteristics of the chemical bonds. (Author) [pt

  1. Superfluidity of bosons on a deformable lattice

    International Nuclear Information System (INIS)

    Jackeli, G.; Ranninger, J.

    2001-01-01

    We study the superfluid properties of a system of interacting bosons on a lattice, which, moreover, are coupled to the vibrational modes of this lattice, treated here in terms of Einstein phonon modes. The ground state corresponds to two correlated condensates: that of the bosons and that of the phonons. Two competing effects determine the common collective sound-wave-like mode with sound velocity v, arising from gauge symmetry breaking. (i) The sound velocity v 0 (corresponding to a weakly interacting Bose system on a rigid lattice) in the lowest-order approximation is reduced due to reduction of the repulsive boson-boson interaction, arising from the attractive part of the phonon-mediated interaction in the static limit. (ii) The second-order correction to the sound velocity is enhanced as compared to that of bosons on a rigid lattice when the boson-phonon interaction is switched on due to the retarded nature of the phonon-mediated interaction. The overall effect is that the sound velocity is essentially unaffected by the coupling with phonons, indicating the robustness of the superfluid state. The induction of a coherent state in the phonon system driven by the condensation of the bosons could be of experimental significance, permitting spectroscopic detection of superfluid properties of bosons. Our results are based on an extension of the Beliaev-Popov formalism for a weakly interacting Bose gas on a rigid lattice to one on a deformable lattice with which it interacts

  2. On the exchange term of the interacting boson-fermion hamiltonian

    International Nuclear Information System (INIS)

    Gelberg, A.

    1983-01-01

    The exchange term of the Interacting Boson Fermion Model is investigated by using I. Talmi's method based on the shell model. A quadrupole operator of a three-proton system is formed; the protons are quadrupole-coupled to the neutron-bosons. Seniority conserving and seniority non conserving terms are considered. The particle number dependence of the parameters is investigated for the single-j shell. The relation between exchange and direct, seniority non conserving terms is examined. Approximate formulas are given for the multi-j shell. (orig.)

  3. Microscopic structure of an interacting boson model in terms of the dyson boson mapping

    International Nuclear Information System (INIS)

    Geyer, H.B.; Lee, S.Y.

    1982-01-01

    In an application of the generalized Dyson boson mapping to a shell model Hamiltonian acting in a single j shell, a clear distinction emerges between pair bosons and kinematically determined seniority bosons. As in the Otsuka-Arima-Iachello method it is found that the latter type of boson determines the structure of an interactive boson-model-like Hamiltonian for the single j-shell model. It is furthermore shown that the Dyson boson mapping formalism is equally well suited for investigating possible interactive boson-model-like structures in a multishell case, where dynamical considerations are expected to play a much more important role in determining the structure of physical bosons

  4. Stability condition of a strongly interacting boson-fermion mixture across an interspecies Feshbach resonance

    International Nuclear Information System (INIS)

    Yu Zengqiang; Zhai Hui; Zhang Shizhong

    2011-01-01

    We study the properties of dilute bosons immersed in a single-component Fermi sea across a broad boson-fermion Feshbach resonance. The stability of the mixture requires that the bare interaction between bosons exceeds a critical value, which is a universal function of the boson-fermion scattering length, and exhibits a maximum in the unitary region. We calculate the quantum depletion, momentum distribution, and the boson contact parameter across the resonance. The transition from condensate to molecular Fermi gas is also discussed.

  5. Calculation of the atomic states energies in the Thomas - Fermi approximation

    Directory of Open Access Journals (Sweden)

    S. N. Fedotkin

    2017-12-01

    Full Text Available A method for calculating the energies of levels for many-electron neutral atoms is proposed. In this case, in addition to the Coulomb field of the nucleus, an important contribution to the energy is connected with the interaction between the electrons. This interaction is taken into account approximately by perturbation theory in the framework of the Thomas - Fermi statistical model. Using the Taytz approximation for the mean potential the analytical expressions for the energies of s-states are obtained with principal quantum numbers n = 1, 2, 3, 4. The energies are calculated for the nuclear charges in the interval 1 < Z ≤ 100. A good agreement with the experimental values of the energies was obtained.

  6. Calculation of a hydrogen molecule in the adiabatic approximation

    International Nuclear Information System (INIS)

    Vukajlovich, F.R.; Mogilevskij, O.A.; Ponomarev, L.I.

    1979-01-01

    The adiabatic approximation js used for calculating the energy levels of a hydrogen molecule, i.e. of the simplest four-body system with a Coulomb interaction. The aim of this paper is the investigation of the possible use of the adiabatic method in the molecular problems. The most effective regions of its application are discussed. An infinite system of integro-differential equations is constructed, which describes the hydrogen molecule in the adiabatic approximation with the effective potentials taking into account the corrections to the nuclear motion. The energy of the first three vibrational states of the hydrogen molecule is calculated and compared with the experimental data. The convergence of the method is discussed

  7. Study on ground state energy band of even 114-124Cd isotopes under the framework of interacting boson model (IBM-1)

    International Nuclear Information System (INIS)

    Hossain, I.; Abdullah, Hewa Y.; Ahmed, I.M.; Saeed, M.A.; Ahmad, S.T.

    2012-01-01

    In this research, the ground state gamma ray bands of even 114-124 Cd isotopes are calculated using interacting boson model (IBM-1). The theoretical energy levels for Z = 48, N = 66–76 up to spin-parity 8 + have been obtained by using PHINT computer program. The values of the parameters in the IBM-1 Hamiltonian yield the best fit to the experimental energy spectrum. The calculated results of the ground state energy band are compared to the previous experimental results and the obtained theoretical calculations in IBM-1 are in good agreement with the experimental energy level. (author)

  8. Calculation of CWKB envelope in boson and fermion productions

    Indian Academy of Sciences (India)

    Abstract. We present the calculation of envelope of boson and of both low- and high- mass fermion production at the end of inflation when the coherently oscillating inflatons decay into bosons and fermions. We consider three different models of inflation and use. CWKB technique to calculate the envelope to understand the ...

  9. Effect of three body interaction in the Hamiltonian of the interacting bosons model

    International Nuclear Information System (INIS)

    Nunes, C.A.A.

    1987-01-01

    The interacting boson model algebra is analysed on the basis of group theory. Through the topological properties of the groups a geometry is associated and the fundamental state of the nucleus is obtained. Calculations were carried out for 102 Ru and 168 Er. (A.C.A.S.) [pt

  10. Particles and holes equivalence for generalized seniority and the interacting boson model

    International Nuclear Information System (INIS)

    Talmi, I.

    1982-01-01

    An apparent ambiguity was recently reported in coupling either pairs of identical fermions or hole pairs. This is explained here as due to a Hamiltonian whose lowest eigenstates do not have the structure prescribed by generalized seniority. It is shown that generalized seniority eigenstates can be equivalently constructed from correlated J = 0 and J = 2 pair states of either particles or holes. The interacting boson model parameters calculated can be unambiguously interpreted and then are of real interest to the shell model basis of interacting boson model

  11. Coupled kinetic equations for fermions and bosons in the relaxation-time approximation

    Science.gov (United States)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw

    2018-02-01

    Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.

  12. Interference effects of neutral MSSM Higgs bosons with a generalised narrow-width approximation

    International Nuclear Information System (INIS)

    Fuchs, Elina

    2014-11-01

    Mixing effects in the MSSM Higgs sector can give rise to a sizeable interference between the neutral Higgs bosons. On the other hand, factorising a more complicated process into production and decay parts by means of the narrow-width approximation (NWA) simplifies the calculation. The standard NWA, however, does not account for interference terms. Therefore, we introduce a generalisation of the NWA (gNWA) which allows for a consistent treatment of interference effects between nearly mass-degenerate particles. Furthermore, we apply the gNWA at the tree and 1-loop level to an example process where the neutral Higgs bosons h and H are produced in the decay of a heavy neutralino and subsequently decay into a fermion pair. The h-H propagator mixing is found to agree well with the approximation of Breit-Wigner propagators times finite wave-function normalisation factors, both leading to a significant interference contribution. The factorisation of the interference term based on on-shell matrix elements reproduces the full interference result within a precision of better than 1% for the considered process. The gNWA also enables the inclusion of contributions beyond the 1-loop order into the most precise prediction.

  13. Partial widths of boson resonances in the quark-gluon model of strong interactions

    International Nuclear Information System (INIS)

    Kaidalov, A.B.; Volkovitsky, P.E.

    1981-01-01

    The quark-gluon model of strong interactions based on the topological expansion and the string model ib used for the calculation of the partial widths of boson resonances in the channels with two pseudoscalar mesons. The partial widths of mesons with arbitrary spins lying on the vector and tensor Regge trajectories are expressed in terms of the only rho-meson width. The violation of SU(3) symmetry increases with the growth of the spin of the resonance. The theoretical predictions are in a good agreement with experimental data [ru

  14. Boson mapping in systems with non-degenerate shells

    International Nuclear Information System (INIS)

    Nakada, Hitoshi; Arima, Akito

    1988-01-01

    A new boson mapping, which has some aspects similar to the OAI mapping and can be applied also to a non-degenerate system, is presented in order to give a microscopic foundation of the interacting boson model. Numerical calculations of the E2 operator in a two-j system show that this mapping gives a good approximation for the seniority-changing part, and that it stays at least within the accuracy of the OAI mapping, even for the seniority-conserving part. (orig.)

  15. 'LTE-diffusion approximation' for arc calculations

    International Nuclear Information System (INIS)

    Lowke, J J; Tanaka, M

    2006-01-01

    This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on D e /W, where D e is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode

  16. Extended interacting boson model description of Pd nuclei in the A∼100 transitional region

    Directory of Open Access Journals (Sweden)

    Böyükata M.

    2014-03-01

    Full Text Available Studies of even-even nuclei in the A∼100 transitional mass region within the framework of the interacting boson model-1 (IBM-1 have been expanded down to 98Pd nuclei to compare the calculation with new experimental results from measurements obtained at the Institute of Nuclear Physics in Cologne. The low-lying energy levels and the E2 transition rates of 98−100Pd nuclei are investigated and their geometric structures are described in the present work. We have also focused on the new B(E2:21+ → 01+ values of 112,114Pd nuclei to compare with previously calculated values.

  17. Microscopy of bosonic models using Schwinger and Holstein - Primakoff bosonization techniques

    International Nuclear Information System (INIS)

    Pinto, M.E.B.

    1988-01-01

    Two kinds of bosonic expansions for the SU(2) case, one being finite (Schwinger) and the other being infinite (Holstein-Primakoff) are analysed. The existence of a transformation connecting them was discussed. Utilizing the two methods, the Two Level Model hamiltonian into the many boson space is mapped. Considering systems composed by 4, 6 and 14 particles, calculations for the eigenenergies within the ''vibrational limit'' of the model were performed. The results show that the Schwinger mapping is exact. Approximated bosonic images with the Holstein-Primakoff mapping are obtained. Indeed, the anharmonicities observed in the region between the ideal '' spherical limit'' and the ''transitional point'', were well described by the approximation containing up to quartic terms on the bosonic operators. (author) [pt

  18. The effective W boson approximation and heavy Higgs production at a photon-photon collider

    International Nuclear Information System (INIS)

    Ma, J.P.

    1995-01-01

    The inclusive production of single Higgs boson at a photon-phonon collider is studied under the effective W boson approximation. The W boson distribution in a photon is determined. The cross section is much larger than this from the photon-photon fusion and this means that a good opportunity of studying heavy Higgs boson can be provided at NLC, where photon beams may be obtained via Compton-backscattering of laser photons off the initial e + e - beams. 8 refs., 1 fig

  19. Perturbative correction to the ground-state properties of one-dimensional strongly interacting bosons in a harmonic trap

    International Nuclear Information System (INIS)

    Paraan, Francis N. C.; Korepin, Vladimir E.

    2010-01-01

    We calculate the first-order perturbation correction to the ground-state energy and chemical potential of a harmonically trapped boson gas with contact interactions about the infinite repulsion Tonks-Girardeau limit. With c denoting the interaction strength, we find that, for a large number of particles N, the 1/c correction to the ground-state energy increases as N 5/2 , in contrast to the unperturbed Tonks-Girardeau value that is proportional to N 2 . We describe a thermodynamic scaling limit for the trapping frequency that yields an extensive ground-state energy and reproduces the zero temperature thermodynamics obtained by a local-density approximation.

  20. Lifetimes of excited states in 196198Pt; application of interacting bason approximation model to even Pt isotopes systematics

    International Nuclear Information System (INIS)

    Bolotin, H.H.; Stuchbery, A.E.; Morrison, I.; Kennedy, D.L.; Ryan, C.G.; Sie, S.H.

    1981-01-01

    The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 1 + levels in 196 198 Pt were determined by the rcoil-distance method (RDM). Gamma-ray angular distributions in 198 Pt were also measured. These states were populated by multiple Coulomb excitation using 220-MeV 58 Ni ion beams and the measurements carried out in coincidence with backscattered projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even 194 - 198 Pt isotopes, are critically compared with our structure calculations employing the Interacting Boson Approximation (IBA) model incorporating a symmetry-breaking quadrupole force. Evaluative comparisons are also made with Boson Expansion Theory (BET) calculations

  1. g-Boson renormalization effects in the interacting Boson model for nondegenerate orbits

    Science.gov (United States)

    Duval, P. D.; Pittel, S.; Barrett, B. R.; Druce, C. H.

    1983-09-01

    A nonperturbative model-space truncation procedure is utilized to include the effects of a single g boson on the parameters of the neutron-proton Interacting Boson Model in the realistic case of nondegenerate single-particle orbits. Particular emphasis is given to the single-boson energies ɛdϱ (ϱ = v, π), with numerical results presented for the even isotopes of Hg. Only part of the observed renormalization is obtained. Possible sources of further renormalizations to ɛdϱ are discussed. Results are also presented for the renormalizations of the boson quadrupole parameters κ and χϱ.

  2. Seniority mappings for probing phenomenological nuclear boson models

    International Nuclear Information System (INIS)

    De Kock, E.A.

    1988-12-01

    The interacting boson model (IBM) and interacting boson-fermion model (IBFM) are discussed. The main ideas of boson mapping of fermion systems are introduced using Holstein-Primakoff and Dyson-Maleev mappings of angular momentum operators. Generalized Dyson-Maleev (GDM) and Holstein-Primakoff (GHP) mappings are included. In fermoin problems, the degrees of freedom of collective motion are described by a collective subalgebra of the complete bifermion subalgebra. GDM mapping of Sp(6) generators, the transformation to collect bosons and truncation to these bosons led to collective sd-boson realization of Sp(6) algebra. This resulted in an IBM-like description of the collective subspace. Non-hermitian and existing hermitian forms are indicated in the assumed structure of an IBM Hamiltonian Boson mapping based on seniority considerations and involving single-j shell approximations of the shell model are examined. One method utilized truncation of a shell model space to a space spanned by monopole (S) and quadrupole (D) pairs. The association between states in truncated fermion and sd-boson spaces constructs boson images of fermion operators by equating boson and fermion matrix elements. To obtain boson images with IBM-like structures, a zero-order approximation was adopted. This approximation retains only N-body terms in the images of N-body fermion operators. A similarity transformation re-expressing GDM images of single-j shell fermion operators in seniority bosons was applied to the GDM image of a general shell model Hamiltonian. Numerical results for the surface-delta interaction show that truncation to s- and d-bosons in the seniority image of a two-body operator is not allowed if N≥2. This transformation was extended to odd fermion systems and applied to the image of the quadrupole pairing interaction. 79 refs., 3 figs., 4 tabs

  3. Boson forbidden transitions and their manifestation in spherical nuclei

    International Nuclear Information System (INIS)

    Stoyanov, Ch.

    2002-01-01

    For the correct description of the 'boson forbidden' transitions it is necessary to go beyond the quasi-boson approximation and to take into account the fermion structure of the phonons. Once it done it is quantitative description of the transitions is possible within the simplest model based on the separable residual interactions. Calculations of the forbidden E1-transitions in 120 Sn, 144 Sm and 144 Nd are presented. Analysis of some low-energy M1-transitions is made using IBM-2. The discussed examples reveal the complex properties of the low-lying excited states

  4. Calculation of CWKB envelope in boson and fermion productions

    International Nuclear Information System (INIS)

    Biswas, S.; Chowdhury, I.

    2007-01-01

    We present the calculation of envelope of boson and of both low-and high-mass fermion production at the end of inflation when the coherently oscillating inflations decay into bosons and fermions. We consider three different models of inflation and use CWKB technique to calculate the envelope to understand the structure of resonance band formation. We observe that though low-mass fermion production is not effective in preheating because of Pauli blocking, it is quite probable for high-mass fermion to take part in pre heating. (author)

  5. Relativistic quasiparticle random-phase approximation calculation of total muon capture rates

    International Nuclear Information System (INIS)

    Marketin, T.; Paar, N.; Niksic, T.; Vretenar, D.

    2009-01-01

    The relativistic proton-neutron quasiparticle random phase approximation (pn-RQRPA) is applied in the calculation of total muon capture rates on a large set of nuclei from 12 C to 244 Pu, for which experimental values are available. The microscopic theoretical framework is based on the relativistic Hartree-Bogoliubov (RHB) model for the nuclear ground state, and transitions to excited states are calculated using the pn-RQRPA. The calculation is fully consistent, i.e., the same interactions are used both in the RHB equations that determine the quasiparticle basis, and in the matrix equations of the pn-RQRPA. The calculated capture rates are sensitive to the in-medium quenching of the axial-vector coupling constant. By reducing this constant from its free-nucleon value g A =1.262 by 10% for all multipole transitions, the calculation reproduces the experimental muon capture rates to better than 10% accuracy.

  6. Calculation of Resonance Interaction Effects Using a Rational Approximation to the Symmetric Resonance Line Shape Function

    International Nuclear Information System (INIS)

    Haeggblom, H.

    1968-08-01

    The method of calculating the resonance interaction effect by series expansions has been studied. Starting from the assumption that the neutron flux in a homogeneous mixture is inversely proportional to the total cross section, the expression for the flux can be simplified by series expansions. Two types of expansions are investigated and it is shown that only one of them is generally applicable. It is also shown that this expansion gives sufficient accuracy if the approximate resonance line shape function is reasonably representative. An investigation is made of the approximation of the resonance shape function with a Gaussian function which in some cases has been used to calculate the interaction effect. It is shown that this approximation is not sufficiently accurate in all cases which can occur in practice. Then, a rational approximation is introduced which in the first order approximation gives the same order of accuracy as a practically exact shape function. The integrations can be made analytically in the complex plane and the method is therefore very fast compared to purely numerical integrations. The method can be applied both to statistically correlated and uncorrelated resonances

  7. Calculation of Resonance Interaction Effects Using a Rational Approximation to the Symmetric Resonance Line Shape Function

    Energy Technology Data Exchange (ETDEWEB)

    Haeggblom, H

    1968-08-15

    The method of calculating the resonance interaction effect by series expansions has been studied. Starting from the assumption that the neutron flux in a homogeneous mixture is inversely proportional to the total cross section, the expression for the flux can be simplified by series expansions. Two types of expansions are investigated and it is shown that only one of them is generally applicable. It is also shown that this expansion gives sufficient accuracy if the approximate resonance line shape function is reasonably representative. An investigation is made of the approximation of the resonance shape function with a Gaussian function which in some cases has been used to calculate the interaction effect. It is shown that this approximation is not sufficiently accurate in all cases which can occur in practice. Then, a rational approximation is introduced which in the first order approximation gives the same order of accuracy as a practically exact shape function. The integrations can be made analytically in the complex plane and the method is therefore very fast compared to purely numerical integrations. The method can be applied both to statistically correlated and uncorrelated resonances.

  8. An introduction to the interacting boson model

    International Nuclear Information System (INIS)

    Iachello, F.

    1981-01-01

    This chapter introduces an alternative, algebraic, description of the properties of nuclei with several particles outside the closed shells. Focuses on the group theory of the interacting boson model. Discusses the group structure of the boson Hamiltonian; subalgebras; the classification of states; dynamical symmetry; electromagnetic transition rates; transitional classes; and general cases. Omits a discussion of the latest developments (e.g., the introduction of proton and neutron degrees of freedom); the spectra of odd-A nuclei; and the bosonfermion model. Concludes that the major new feature of the interacting boson model is the introduction and systematic exploitation of algebraic techniques, which allows a simple and detailed description of many nuclear properties

  9. Scanning Tunneling Spectroscopy on Electron-Boson Interactions in Superconductors

    OpenAIRE

    Schackert, Michael Peter

    2014-01-01

    This thesis describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  10. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schackert, Michael Peter

    2014-07-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  11. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    CERN Document Server

    Schackert, Michael Peter

    2015-01-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  12. On the relation between the interacting boson model of Arima and Iachello and the collective model of Bohr and Mottelson

    International Nuclear Information System (INIS)

    Assenbaum, H.J.; Weiguny, A.

    1982-01-01

    The generator coordinate method is used to relate the interacting boson model of Arima and Iachello and the collective model of Bohr and Mottelson through an isometric transformation. It associates complex parameters to the original boson operators whereas the ultimate collective variables are real. The absolute squares of the collective wave functions can be given a direct probability interpretation. The lowest order Bohr-Mottelson hamiltonian is obtained in the harmonic approximation to the interacting boson model; unharmonic coupling terms render the collective potential to be velocity-dependent. (orig.)

  13. Tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation

    Directory of Open Access Journals (Sweden)

    M Soltani

    2015-12-01

    Full Text Available In this work, we generalize the entanglement of three-qbit Bosonic systems beyond the single-mode approximation when one of the observers is accelerated. For this purpose, we review the effects of acceleration on field modes and quantum states. The single-mode approximation and beyond the single-mode approximation methods are introduced. After this brief introduction, the main problem of this paper, tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation is investigated. The tripartite entangled states have different classes with GHZ and W states being most important. Here, we choose &pi-tangle as a measure of tripartite entanglement. If the three parties share GHZ state, the corresponding &pi-tangle will increase by increasing acceleration for some Unruh modes. This phenomenon, increasing entanglement, has never been observed in the single-mode approximation for bosonic case. Moreover, the &pi-tangle dose not exhibit a monotonic behavior with increasing acceleration. In the infinite acceleration limit, the &pi-tangle goes to different nonzero values for distinct Unruh modes. Unlike GHZ state, the entanglement of the W state shows only monotonically increasing and decreasing behaviors with increasing acceleration. Also, the entanglement for all possible choices of Unruh modes approaches only 0.176 in the high acceleration limit. Therefore, according to the quantum entanglement, there is no distinction between the single-mode approximation and beyond the single-mode approximation methods in this limit.

  14. Molecular equilibrium structures from experimental rotational constants and calculated vibration-rotation interaction constants

    DEFF Research Database (Denmark)

    Pawlowski, F; Jorgensen, P; Olsen, Jeppe

    2002-01-01

    A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...

  15. Interaction Driven Interband Tunneling of Bosons in the Triple Well

    OpenAIRE

    Cao, Lushuai; Brouzos, Ioannis; Zöllner, Sascha; Schmelcher, Peter

    2010-01-01

    We study the tunneling of a small ensemble of strongly repulsive bosons in a one-dimensional triple-well potential. The usual treatment within the single-band approximation suggests suppression of tunneling in the strong interaction regime. However, we show that several windows of enhanced tunneling are opened in this regime. This enhanced tunneling results from higher band contributions, and has the character of interband tunneling. It can give rise to various tunneling processes, such as si...

  16. The interacting boson model: its formulation, application, extension and interpretation

    International Nuclear Information System (INIS)

    Barrett, B.R.

    1981-01-01

    The goal of this article is to review the present status of the Interacting Boson Model (IBM) for describing the collective properties of medium and heavy mass nuclei, with particular emphasis being given to the work on the IBM at the University of Arizona. First, a concise review of the basic phenomenological IBM, as developed by Arima and Iachello for only one kind of boson, is presented. Next, the extension of the IBM to both proton and neutron bosons is outlined. This latter model is known as the IBM-2. The application of the IBM-2 to the tungsten isotopes by the University of Arizona group is discussed, followed by their calculations for the mercury isotopes. In the case of the mercury isotopes an extended form of the IBM-2 is developed in order to treat the configuration mixing of two entirely different structures which occur in the same energy region. The relationship between the bosons and the underlying fermionic structure of the nucleus is discussed using the generalized seniority scheme of Talmi. Work by the Arizona group to calculate the phenomenological parameters of the IBM-2 using these generalized seniority ideas is described, along with their results, which agree quite well with the empirical values. Efforts by the University of Arizona group to determine the influence of terms left out of the basic IBM, such as the g boson, using second-order perturbation theory are described. In conclusion, a discussion of the limitations as well as the usefulness of the IBM is given along with its exciting possibilities for the future of nuclear structure physics. (author)

  17. Two- and four-quasiparticle states in the interacting boson model: Strong-coupling and decoupled band patterns in the SU(3) limit

    International Nuclear Information System (INIS)

    Vretenar, D.; Paar, V.; Bonsignori, G.; Savoia, M.

    1990-01-01

    An extension of the interacting boson approximation model is proposed by allowing for two- and four-quasiparticle excitations out of the boson space. The formation of band patterns based on two- and four-quasiparticle states is investigated in the SU(3) limit of the model. For hole-type (particle-type) fermions coupled to the SU(3) prolate (oblate) core, it is shown that the algebraic K-representation basis, which is the analog of the strong-coupling basis of the geometrical model, provides an appropriate description of the low-lying two-quasiparticle bands. In the case of particle-type (hole-type) fermions coupled to the SU(3) prolate (oblate) core, a new algebraic decoupling basis is derived that is equivalent in the geometrical limit to Stephens' rotation-aligned basis. Comparing the wave functions that are obtained by diagonalization of the model Hamiltonian to the decoupling basis, several low-lying two-quasiparticle bands are identified. The effects of an interaction that conserves only the total nucleon number, mixing states with different number of fermions, are investigated in both the strong-coupling and decoupling limits. All calculations are performed for an SU(3) boson core and the h11/2 fermion orbital

  18. Geometrical analysis of the interacting boson model

    International Nuclear Information System (INIS)

    Dieperink, A.E.L.

    1983-01-01

    The Interacting Boson Model is considered, in relation with geometrical models and the application of mean field techniques to algebraic models, in three lectures. In the first, several methods are reviewed to establish a connection between the algebraic formulation of collective nuclear properties in terms of the group SU(6) and the geometric approach. In the second lecture the geometric interpretation of new degrees of freedom that arise in the neutron-proton IBA is discussed, and in the third one some further applications of algebraic techniques to the calculation of static and dynamic collective properties are presented. (U.K.)

  19. An SU(3)xU(1) theory of weak-electromagnetic interactions with charged boson mixing

    International Nuclear Information System (INIS)

    Singer, M.

    1978-01-01

    An SU(3)xU(1) gauge theory of weak electromagnetic interactions is proposed in which the charged bosons mix with each other. The model naturally ensures e-μ and quark-lepton universality in couplings, and the charged boson mixing permits an equal number of leptons and quark flavours. There are no new stable leptons. All the fermions are placed in triplets and singlets and the theory is vector-like and hence free of anomalies. In addition one of the charged bosons can have a mass less than 43 GeV. Discrete symmetries and specific choices for Higgs fields are postulated to obtain the appropriate boson and fermion masses. Calculations for the decay of the tau particle, which is described as a heavy electron, are given. Multimuon events are discussed as are neutrino neutral currents. Calculations are also given for testing asymmetries in e-hadron scattering due to weak electron neutral currents along with other phenomenology of the model

  20. Configuration mixing in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Bouldjedri, A; Van Isacker, P; Zerguine, S

    2005-01-01

    A wavefunction analysis of the strong-coupling limits of the sdg interacting boson model is presented. The analysis is carried out for two-boson states and allows us to characterize the boson configuration mixing in the different limits. Based on these results and those of a shell-model analysis of the sdg IBM, qualitative conclusions are drawn about the range of applicability of each limit

  1. Configuration mixing in the sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Bouldjedri, A [Department of Physics, Faculty of Science, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria); Van Isacker, P [GANIL, BP 55027, F-14076 Caen cedex 5 (France); Zerguine, S [Department of Physics, Faculty of Science, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria)

    2005-11-01

    A wavefunction analysis of the strong-coupling limits of the sdg interacting boson model is presented. The analysis is carried out for two-boson states and allows us to characterize the boson configuration mixing in the different limits. Based on these results and those of a shell-model analysis of the sdg IBM, qualitative conclusions are drawn about the range of applicability of each limit.

  2. Superconductivity in mixed boson-fermion systems

    International Nuclear Information System (INIS)

    Ioffe, L.; Larkin, A.I.; Ovchinnikov, Yu.N.; Yu, L.

    1989-12-01

    The superconductivity of mixed boson-fermion systems is studied using a simple boson-fermion transformation model. The critical temperature of the superconducting transition is calculated over a wide range of the narrow boson band position relative to the Fermi level. The BCS scenario and boson condensation picture are recovered in two limiting cases of high and low positions of boson band, respectively, with modifications due to boson-fermion interaction. (author). 11 refs

  3. Quantum Szilard Engine with Attractively Interacting Bosons

    Science.gov (United States)

    Bengtsson, J.; Tengstrand, M. Nilsson; Wacker, A.; Samuelsson, P.; Ueda, M.; Linke, H.; Reimann, S. M.

    2018-03-01

    We show that a quantum Szilard engine containing many bosons with attractive interactions enhances the conversion between information and work. Using an ab initio approach to the full quantum-mechanical many-body problem, we find that the average work output increases significantly for a larger number of bosons. The highest overshoot occurs at a finite temperature, demonstrating how thermal and quantum effects conspire to enhance the conversion between information and work. The predicted effects occur over a broad range of interaction strengths and temperatures.

  4. Pair approximation and the OAI mapping in the deformed limit

    International Nuclear Information System (INIS)

    Yoshinaga, N.

    1989-01-01

    The pair subspaces - the SD- and SDG-subspaces - are constructed. Eigenstates for a quadrupole force and transition rates for a quadrupole operator are calculated in the single j-shell-model. The SDG-pair approximation is found to be excellent in describing the low-spin states of the ground bands compared to exact shell-model calculations. The fermion interactions are mapped onto the corresponding boson ones using the mapping procedure by Otsuka, Arima and Iachello (OAI). The OAI approximation in zeroth-order fails in reproducing the ground-state energies in the deformed limit. (orig.)

  5. Systematics of β and γ parameters of O(6)-like nuclei in the interacting boson model

    International Nuclear Information System (INIS)

    Wang Baolin

    1997-01-01

    By comparing quadrupole moments between the interacting boson model (IBM) and the collective model, a simple calculation for the triaxial deformation parameters β and γ in the O(6)-like nuclei is presented, based on the intrinsic frame in the IBM. The systematics of the β and γ are studied. The realistic cases are calculated for the even-even Xe, Ba and Ce isotopes, and the smooth dependences of the strength ratios θ 3 /κ and the effective charges e 2 on the proton and neutron boson numbers N π and N ν are discovered

  6. W-boson electric dipole moment

    International Nuclear Information System (INIS)

    He, X.; McKellar, B.H.J.

    1990-01-01

    The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4

  7. Moment of inertia and the interacting boson model

    International Nuclear Information System (INIS)

    Yoshida, N.; Sagawa, H.; Otsuka, T.; Arima, A.

    1989-01-01

    Mass-number dependence of the moment of inertia is studied in relation with the boson number in the SU(3) limit of the interacting boson model 1 (IBM-1). The analytic formula in the limit indicates the pairing correlation between nucleons is directly related to the moment of inertia in the IBM. It is shown in general that the kink of the moment of inertia coincides with the maximum boson number of each element. (author)

  8. Interaction between bosonic dark matter and stars

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos

    2016-02-01

    We provide a detailed analysis of how bosonic dark matter "condensates" interact with compact stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass mB , such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically form "breathing" configurations, where both the spacetime geometry and the field oscillate, and can interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-matter-rich environments. These composite stars oscillate at a frequency which is a multiple of f =2.5 ×1014(mBc2/eV ) Hz . Using perturbative analysis and numerical relativity techniques, we show that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star, nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories.

  9. Quadrupole collective dynamics from energy density functionals: Collective Hamiltonian and the interacting boson model

    International Nuclear Information System (INIS)

    Nomura, K.; Vretenar, D.; Niksic, T.; Otsuka, T.; Shimizu, N.

    2011-01-01

    Microscopic energy density functionals have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications, this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this paper, we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations and the interacting boson model (IBM). The two models are compared in a study of the evolution of nonaxial shapes in Pt isotopes. Starting from the binding energy surfaces of 192,194,196 Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the γ-vibration bands are compared to the corresponding sequences of experimental states.

  10. E4 properties in deformed nuclei and the sdg interacting boson model

    NARCIS (Netherlands)

    Wu, H.C.; Dieperink, A. E. L.; Scholten, O.; Harakeh, M. N.; de Leo, R.; Pignanelli, M.; Morrison, I.

    1988-01-01

    The hexadecapole transition strength distribution is measured for the deformed nucleus 150Nd using the (p,p') reaction at Ep=30 MeV. The experimental information on B(E4) values in this nucleus and in 156Gd is interpreted in the framework of the sdg interacting boson model. It is found that the main

  11. Effective γ deformation near A=130 in the interacting boson model

    International Nuclear Information System (INIS)

    Vogel, O.; Van Isacker, P.; Gelberg, A.; Brentano, P. von; Dewald, A.

    1996-01-01

    'Effective' γ-deformation parameters are derived for even-even Xe, Ba, and Ce nuclei from the matrix elements of (QxQ) 00 and (QxQxQ) 00 . Interacting boson model calculations are performed with the quadrupole operator Q determined from the E2 branching ratios of the 2 2 + decay and compared to results obtained with the rigid triaxial rotor model. copyright 1996 The American Physical Society

  12. Coulomb-Sturmian separable expansion approach: Three-body Faddeev calculations for Coulomb-like interactions

    International Nuclear Information System (INIS)

    Papp, Z.; Plessas, W.

    1996-01-01

    We demonstrate the feasibility and efficiency of the Coulomb-Sturmian separable expansion method for generating accurate solutions of the Faddeev equations. Results obtained with this method are reported for several benchmark cases of bosonic and fermionic three-body systems. Correct bound-state results in agreement with the ones established in the literature are achieved for short-range interactions. We outline the formalism for the treatment of three-body Coulomb systems and present a bound-state calculation for a three-boson system interacting via Coulomb plus short-range forces. The corresponding result is in good agreement with the answer from a recent stochastic-variational-method calculation. copyright 1996 The American Physical Society

  13. Interacting fermions and bosons with definite total momentum

    International Nuclear Information System (INIS)

    Alon, Ofir E.; Streltsov, Alexej I.; Cederbaum, Lorenz S.

    2005-01-01

    Any exact eigenstate with a definite momentum of a many-body Hamiltonian can be written as an integral over a symmetry-broken function Φ. For two particles, we exactly express Φ in terms of (single-particle) orbitals for all energy levels and any interparticle interaction. Especially for the ground state, Φ is given by the simple Hartree-Fock and Hartree Ansaetze for fermions and bosons, respectively. Implications for several and many particles as well as a numerical example for interacting bosons are provided

  14. New aspects of the interacting boson model

    International Nuclear Information System (INIS)

    Nadzakov, E.G.; Mikhajlov, I.N.

    1987-01-01

    In the framework of the boson space extension called interacting multiboson model: conserving the model basic dynamic symmetries, the s p d f boson model is considered. It does not destruct the intermediate mass nuclei simple description, and at the same time includes the number of levels and transitions, inaccessible to the usual s d boson model. Its applicability, even in a brief version, to the recently observed asymmetric nuclear shape effect in the Ra-Th-U region (and in other regions) with possible octupole and dipole deformation is demonstrated. It is done by reproducing algebraically the yrast lines of nuclei with vibrational, transitional and rotational spectra

  15. Higgs-boson masses and mixing matrices in the NMSSM. Analysis of on-shell calculations

    Energy Technology Data Exchange (ETDEWEB)

    Drechsel, Peter; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Groeber, Ramona [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; INFN, Sezione di Roma Tre (Italy); Heinemeyer, Sven [Univ. Autonoma de Madrid (UAM/CSIC) (Spain). Inst. de Fisica Teorica; Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); UAM + CSIC Campus of International Excellence, Madrid (Spain); Muehlleitner, Milada [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Theoretical Physics; Rzehak, H. [Univ. of Southern Denmark, Odense (Denmark). CP3-Origins

    2016-12-22

    We analyze the Higgs-boson masses and mixing matrices in the NMSSM based on an on-shell (OS) renormalization of the gauge-boson and Higgs-boson masses and the parameters of the top/scalar top sector. We compare the implementation of the OS calculations in the codes NMSSMCALC and NMSSM-FeynHiggs up to O(α{sub t}α{sub s}). We identify the sources of discrepancies at the one- and at the two-loop level. Finally we compare the OS and DR evaluation as implemented in NMSSMCALC. The results are important ingredients for an estimate of the theoretical precision of Higgs-boson mass calculations in the NMSSM.

  16. Higgs-boson masses and mixing matrices in the NMSSM: analysis of on-shell calculations

    Energy Technology Data Exchange (ETDEWEB)

    Drechsel, P.; Weiglein, G. [DESY, Hamburg (Germany); Groeber, R. [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); INFN, Sezione di Roma Tre, Rome (Italy); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Madrid (Spain); Universidad Autonoma de Madrid, Instituto de Fisica Teorica, (UAM/CSIC), Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Muehlleitner, M. [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Rzehak, H. [University of Southern Denmark, CP3-Origins, Odense M (Denmark)

    2017-06-15

    We analyze the Higgs-boson masses and mixing matrices in the NMSSM based on an on-shell (OS) renormalization of the gauge-boson and Higgs-boson masses and the parameters of the top/scalar top sector. We compare the implementation of the OS calculations in the codes NMSSMCALC and NMSSM-FeynHiggs up to O(α{sub t}α{sub s}). We identify the sources of discrepancies at the one- and at the two-loop level. Finally we compare the OS and DR evaluation as implemented in NMSSMCALC. The results are important ingredients for an estimate of the theoretical precision of Higgs-boson mass calculations in the NMSSM. (orig.)

  17. Pade approximants and the calculation of effective interactions

    International Nuclear Information System (INIS)

    Schucan, T.H.

    1975-01-01

    The analytic properties of the effective interaction in nuclei have become increasingly well understood in the last few years. It has been found that the corresponding series expansion diverges in most practical applications due to the occurrence of low lying collective states. It is the purpose of this paper to review and discuss an approximation scheme that has been used to rearrange this series with the aim to overcome the difficulties connected with its divergence. (orig./WL) [de

  18. Intrinsic states in the sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, N.

    1986-08-04

    We give the intrinsic states explicitly in the boson representation in the framework of the sdg interacting boson model. Although they are only valid in the large-N limit, they are useful to estimate various physical quantities in well deformed nuclei. One can compare these results with those predicted in the IBM1 or in the IBM2.

  19. Intrinsic states in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Yoshinaga, N.

    1986-01-01

    We give the intrinsic states explicitly in the boson representation in the framework of the sdg interacting boson model. Although they are only valid in the large-N limit, they are useful to estimate various physical quantities in well deformed nuclei. One can compare these results with those predicted in the IBM1 or in the IBM2. (orig.)

  20. Precision calculations for the decay of Higgs bosons in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianhui

    2009-01-21

    Precision calculations are required for the verification of the standard model (SM) and serve as a useful tool for probing and disentangling new physics beyond the SM. In this thesis we concentrate on the extension of the SM with supersymmetry, i.e. the minimal supersymmetric extension of the standard model (MSSM) and investigate the decay processes of Higgs bosons within this model. At tree-level, the light CP-even MSSM Higgs boson, h{sup 0}, becomes SM-like when the other Higgs bosons get heavy. Thus it is of particular interest to investigate the impact of higher order corrections. We present the complete one-loop electroweak radiative corrections to the decay of h{sup 0} to four fermions via gauge boson pair, the results are further improved by currently available two-loop corrections to the Higgs boson self energies. The gauge boson in the photonic one-loop diagrams can become resonant and lead to singularities that have to be regularized by its finite width. To incorporation the gauge boson width, the one-loop integrals that involve such singularities are evaluated analytically. While the one-loop electroweak corrections yield visible effects for a relatively light MSSM Higgs sector, they only give rise to negligible effects when the Higgs bosons other than h{sup 0} become heavy, even if the genuine supersymmetric particle spectrum is relatively light. Consequently it is rather difficult to distinguish the light CP-even MSSM Higgs boson from the SM one if all other MSSM Higgs bosons are heavy, even though the one-loop corrections are included. We also consider the decay of the heavy CP-even MSSM Higgs boson, H{sup 0}, to off-/on-shell gauge boson pair. The one-loop corrections turn out to be significant as the tree-level coupling of H{sup 0} to gauge bosons is usually suppressed. (orig.)

  1. Isospin invariant forms of interacting boson model (IBM)

    International Nuclear Information System (INIS)

    Evans, A.

    1989-01-01

    In the original version of the interacting boson model, IBM1, there are only two quantum numbers with exact values: the angular momentum and the number of bosons. IBM2 distinguishes between two kinds of bosons. However, the IBM2 algebra does not include the operators T± and consequently the states in the model have no good isospin, generally. IBM3 includes the isospin in the algebra and therefore the construction of states with any number of bosons and good isospin presents no problem. In this work, IBM3 is compared with the shell model. IBFM3 is also studied, which describes an odd nucleus as a system of N bosons plus a single nucleon that is a neutron with some probability and a proton with the complementary probability. The spectra obtained in the shell model, IBFM3 and IBFM2 for 45 Ti and 45 Sc are compared. (Author) [es

  2. Many-body Anderson localization of strongly interacting bosons in random lattices

    International Nuclear Information System (INIS)

    Katzer, Roman

    2015-05-01

    In the present work, we investigate the problem of many-body localization of strongly interacting bosons in random lattices within the disordered Bose-Hubbard model. This involves treating both the local Mott-Hubbard physics as well as the non-local quantum interference processes, which give rise to the phenomenon of Anderson localization, within the same theory. In order to determine the interaction induced transition to the Mott insulator phase, it is necessary to treat the local particle interaction exactly. Therefore, here we use a mean-field approach that approximates only the kinetic term of the Hamiltonian. This way, the full problem of interacting bosons on a random lattice is reduced to a local problem of a single site coupled to a particle bath, which has to be solved self-consistently. In accordance to previous works, we find that a finite disorder width leads to a reduced size of the Mott insulating regions. The transition from the superfluid phase to the Bose glass phase is driven by the non-local effect of Anderson localization. In order to describe this transition, one needs to work within a theory that is non-local as well. Therefore, here we introduce a new approach to the problem. Based on the results for the local excitation spectrum obtained within the mean-field theory, we reduce the full, interacting model to an effective, non-interacting model by applying a truncation scheme to the Hilbert space. Evaluating the long-ranged current density within this approximation, we identify the transition from the Bose glass to the superfluid phase with the Anderson transition of the effective model. Resolving this transition using the self-consistent theory of localization, we obtain the full phase diagram of the disordered Bose-Hubbard model in the regime of strong interaction and larger disorder. In accordance to the theorem of inclusions, we find that the Mott insulator and the superfluid phase are always separated by the compressible, but insulating

  3. The H boson

    CERN Document Server

    Duplantier, Bertrand; Rivasseau, Vincent

    2017-01-01

    This volume provides a detailed description of the seminal theoretical construction in 1964, independently by Robert Brout and Francois Englert, and by Peter W. Higgs, of a mechanism for short-range fundamental interactions, now called the Brout-Englert-Higgs (BEH) mechanism. It accounts for the non-zero mass of elementary particles and predicts the existence of a new particle - an elementary massive scalar boson. In addition to this the book describes the experimental discovery of this fundamental missing element in the Standard Model of particle physics. The H Boson, also called the Higgs Boson, was produced and detected in the Large Hadron Collider (LHC) of CERN near Geneva by two large experimental collaborations, ATLAS and CMS, which announced its discovery on the 4th of July 2012. This new volume of the Poincaré Seminar Series, The H Boson, corresponds to the nineteenth seminar, held on November 29, 2014, at Institut Henri Po incaré in Paris.

  4. Composite antisymmetric tensor bosons in a four-fermion interaction model

    International Nuclear Information System (INIS)

    Dmitrasinovic, V.

    2000-01-01

    We discuss the phenomenological consequences of the U A (1) symmetry-breaking two-flavour four-fermion antisymmetric (AS) Lorentz tensor interaction Lagrangians. We use the recently developed methods that respect the 'duality' symmetry of this interaction. Starting from the Fierz transform of the two-flavour 't Hooft interaction (a four-fermion Lagrangian with AS tensor interaction terms augmented by Nambu and Jona-Lasinio (NJL)-type Lorentz scalar interaction responsible for dynamical symmetry breaking and quark mass generation), we find the following. (a) Four antisymmetric tensor and four AS pseudotensor bosons exist which satisfy a mass relation previously derived for scalar and pseudoscalar mesons from the 't Hooft interaction. (b) Antisymmetric tensor bosons mix with vector bosons via one-fermion-loop effective couplings so that both kinds of bosons have their masses shifted and the fermions (quarks) acquire anomalous magnetic moment form factors that explicitly violate chiral symmetry. (c) The mixing of massive AS tensor fields with vector fields leads to two sets of spin-1 states. The second set of spin-1 mesons is heavy and has not been observed. Moreover, at least one member of this second set is tachyonic, under standard assumptions about the source and strength of the AS tensor interaction. The tachyonic state also shows up as a pole in the space-like region of the electromagnetic form factors. (d) The mixing of axial-vector fields with antisymmetric tensor bosons is proportional to the (small) isospin-breaking up-down quark mass difference, so the mixing-induced mass shift is negligible. (e) The AS tensor version of the Veneziano-Witten U A (1) symmetry-breaking interaction does not lead to tachyons, or any AS tensor field propagation to leading order in N C . (author)

  5. Higgs boson transverse momentum distribution

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will review  the recent progress in understanding Higgs boson transverse momentum distribution focusing on effects that go beyond the point-like approximation for the Higgs-glue interaction vertex.

  6. Two Higgs bosons near 125 GeV in the NMSSM: beyond the narrow width approximation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Biswaranjan; Poulose, Poulose [IIT Guwahati, Department of Physics, Guwahati, Assam (India); Moretti, Stefano [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Munir, Shoaib [Korea Institute for Advanced Study, School of Physics, Seoul (Korea, Republic of)

    2017-08-15

    In the next-to-minimal supersymmetric (NMS) Standard Model (SM), it is possible for either one of the additional singlet-like scalar and pseudoscalar Higgs bosons to be almost degenerate in mass with the ∝125 GeV SM-like Higgs state. In the real NMSSM (rNMSSM), when the mass difference between two scalar states is comparable to their individual total decay widths, the quantum mechanical interference, due to the relevant diagonal as well as off-diagonal terms in the propagator matrix, between them can become sizeable. This possibility invalidates usage of the narrow width approximation (NWA) to compute the cross section for the production of a di-photon pair with a given invariant mass via resonant Higgs boson(s) in the gluon fusion process at the Large Hadron Collider (LHC). When, motivated by the baryon asymmetry of the universe, CP-violating (CPV) phases are explicitly invoked in the Higgs sector of the NMSSM, all the interaction eigenstates mix to give five CP-indefinite physical Higgs bosons. In this scenario, the interference effects due to the off-diagonal terms in the Higgs mass matrix that mix the pseudoscalar-like state with the SM-like one can also become significant, when these two are sufficiently mass-degenerate. We perform a detailed analysis, in both the real and complex NMSSM, of these interference effects, when the full propagator matrix is taken into account, in the production of a photon pair with an invariant mass near 125 GeV through gluon fusion. We find that these effects can account for up to ∝40% of the total cross section for certain model parameter configurations. We also investigate how such mutually interfering states contributing to the ∝125 GeV signal observed at the LHC can be distinguished from a single resonance. (orig.)

  7. Bounds on dark matter interactions with electroweak gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Cotta, R. C.; Hewett, J. L.; Le, M. -P.; Rizzo, T. G.

    2013-12-01

    We investigate scenarios in which dark matter interacts with the Standard Model primarily through electroweak gauge bosons. We employ an effective field theory framework wherein the Standard Model and the dark matter particle are the only light states in order to derive model-independent bounds. Bounds on such interactions are derived from dark matter production by weak boson fusion at the LHC, indirect detection searches for the products of dark matter annihilation and from the measured invisible width of the Z 0 . We find that limits on the UV scale, Λ , reach weak scale values for most operators and values of the dark matter mass, thus probing the most natural scenarios in the weakly interacting massive particle dark matter paradigm. Our bounds suggest that light dark matter ( m χ ≲ m Z / 2 or m χ ≲ 100 – 200 GeV , depending on the operator) cannot interact only with the electroweak gauge bosons of the Standard Model, but rather requires additional operator contributions or dark sector structure to avoid overclosing the Universe.

  8. Criticality in the configuration-mixed interacting boson model: (1) U(5)-Q(χ)Q(χ) mixing

    International Nuclear Information System (INIS)

    Hellemans, V.; Van Isacker, P.; De Baerdemacker, S.; Heyde, K.

    2007-01-01

    The case of U(5)-Q(χ)Q(χ) mixing in the configuration-mixed interacting boson model is studied in its mean-field approximation. Phase diagrams with analytical and numerical solutions are constructed and discussed. Indications for first-order and second-order shape phase transitions can be obtained from binding energies and from critical exponents, respectively

  9. Massive bosons interacting with gravity: No standard solutions in Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Zecca, A.

    2009-01-01

    The problem of the interaction of boson and gravitational field is formulated in the Robertson-Walker space-time. It consist the simultaneous solution of the boson and of the Einstein field equation whose source is the energy momentum tensor of the boson field. By direct verification it is shown that the problem does not admit solutions in the class of massive standard solutions, previously determined, of the boson field equation. Also there cannot be solutions, in case of massive interacting boson, that are superpositions of standard solutions. The case of massless boson field is left open. The result is essentially due to the very special form of the Einstein tensor in Robertson-Walker metric.

  10. Calculation of the MSD two-step process with the sudden approximation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shiro [Tohoku Univ., Sendai (Japan). Dept. of Physics; Kawano, Toshihiko [Kyushu Univ., Advanced Energy Engineering Science, Kasuga, Fukuoka (Japan)

    2000-03-01

    A calculation of the two-step process with the sudden approximation is described. The Green's function which connects the one-step matrix element to the two-step one is represented in {gamma}-space to avoid the on-energy-shell approximation. Microscopically calculated two-step cross sections are averaged together with an appropriate level density to give a two-step cross section. The calculated cross sections are compared with the experimental data, however the calculation still contains several simplifications at this moment. (author)

  11. Discovery of the charged vector bosons (W+-) conveying weak interaction

    International Nuclear Information System (INIS)

    Kiss, D.

    1983-01-01

    The unified Weinberg-Salam-Glashow theory of weak and electromagnetic interactions assumes the existence of two charged (W) and one neutral (Z) intermediate vector bosons of the unified electroweak interaction. These particles were discovered at the end of 1982 with the CERN's SPS proton-antiproton colliding beams. Technical aspects of the production and detection of W and Z bosons, the first results and their importance are described in detail. (D.Gy.)

  12. Intermolecular interaction potentials of the methane dimer from the local density approximation

    International Nuclear Information System (INIS)

    Chen Xiangrong; Bai Yulin; Zhu Jun; Yang Xiangdong

    2004-01-01

    The intermolecular interaction potentials of methane (CH 4 ) dimer are calculated within the density functional theory in the local density approximation (LDA). It is found that the calculated potentials have minima when the intermolecular distance of CH 4 dimer is about 7.0 a.u., which is in good agreement with the experiment. The depth of the potential is 0.017 eV. The results obtained by our LDA calculations seem to agree well with those obtained by MP2, MP3, and CCSD from the Moeller-Plesset and coupled cluster methods by Tsuzuki et al. and with the experimental data

  13. Sphericity in the interacting boson model

    International Nuclear Information System (INIS)

    Ogata, H.

    1977-01-01

    The interacting boson model (IBM) of Arima and Iachello is examined. The transition between the rotational and vibrational modes of even-even nuclei is presented as a function of a sphericity parameter, which is determined primarily from yrast band spectra. The backbending feature is reasonably reproduced. (author)

  14. Coupled dynamics of interacting spin-1 bosons in a double-well potential

    Science.gov (United States)

    Carvalho, D. W. S.; Foerster, A.; Gusmão, M. A.

    2018-03-01

    We present a detailed analysis of dynamical processes involving two or three particles in a double-well potential. Motivated by experimental realizations of such a system with optically trapped cold atoms, we focus on spin-1 bosons with special attention on the effects of a spin-dependent interaction in addition to the usual Hubbard-like repulsive one. For a sufficiently weak tunneling amplitude in comparison to the dominant Hubbard coupling, particle motion is strongly correlated, occurring only under fine-tuned relationships between well-depth asymmetry and interactions. We highlight processes involving tunneling of coupled particle pairs and triads, emphasizing the role of the spin-dependent interaction in resonance conditions.

  15. Elimination of Power Divergences in Consistent Model for Spinless and High-Spin Particle Interactions

    International Nuclear Information System (INIS)

    Kulish, Yu.V.; Rybachuk, E.V.

    2007-01-01

    The currents for the interaction of the massive high-spin boson (J≥1) with two spinless particles are derived. These currents obey the theorem on currents and fields as well as the theorem on current asymptotics. In one-loop approximation the contributions of high-spin boson to the self-energy operator for a spinless particle are calculated. It is shown that in one loop approximation the high-spin boson contributions for any spin J and mass lead to finite self-energy operators of spinless-particle

  16. Properties of high-spin boson interaction currents and elimination of power divergences

    International Nuclear Information System (INIS)

    Kulish, Yu.V.; Rybachuk, E.V.

    2001-01-01

    The problem of the elimination of the power divergences for the interactions of the high-spin bosons (J ≥ 1) is investigated. It is proved that in the consistent theory the high-spin boson interaction currents and the field tensors must obey similar requirements. Therefore the momentum dependencies of the propagators for all the bosons are the same. The partial differential equations derived for some components include the derivatives of order 2J for the currents. Therefore the current components for the spin-J boson must decrease with the momentum Kombi scalar p v Kombi scalar → ∞ at least as Kombi scalar p v Kombi scalar -2J

  17. Development of approximate shielding calculation method for high energy cosmic radiation on LEO satellites

    International Nuclear Information System (INIS)

    Sin, M. W.; Kim, M. H.

    2002-01-01

    To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values

  18. Development of approximate shielding calculation method for high energy cosmic radiation on LEO satellites

    Energy Technology Data Exchange (ETDEWEB)

    Sin, M. W.; Kim, M. H. [Kyunghee Univ., Yongin (Korea, Republic of)

    2002-10-01

    To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values.

  19. Exclusive Double Diffractive Higgs Boson Production at LHC

    CERN Document Server

    Petrov, V; 10.1140/epjc/s2004-01972-4

    2004-01-01

    Exclusive double diffractive (EDD) Higgs boson production is analyzed in the framework of the Regge-eikonal approach. Total and differential cross-sections for the process $p+p\\to p+H+p$ are calculated. Experimental possibilities to find Higgs boson at LHC are discussed.

  20. Interacting p- Boson model with isospin

    International Nuclear Information System (INIS)

    Chen, C.H.-T.

    A description of collective states in self-conjugate nuclei is proposed, both odd-odd and even-even, in terms of an interacting isoscalar p-boson model. Within this model, two limiting cases can be identified with the anharmonic vibrator and axial rotor limits of the classical geometrical description. (Author) [pt

  1. Correlation function of weakly interacting bosons in a disordered lattice

    Energy Technology Data Exchange (ETDEWEB)

    Deissler, B; Lucioni, E; Modugno, M; Roati, G; Tanzi, L; Zaccanti, M; Inguscio, M; Modugno, G, E-mail: deissler@lens.unifi.it, E-mail: modugno@lens.unifi.it [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, 50019 Sesto Fiorentino (Italy)

    2011-02-15

    One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson localization and the realization of the disordered Bose-Hubbard model. There are, however, still questions as to how to differentiate the complex insulating phases resulting from this interplay, and how to measure the size of the superfluid fragments that these phases entail. It has been suggested that the correlation function of such a system can give new insights, but so far very little experimental investigation has been performed. Here, we show the first experimental analysis of the correlation function for a weakly interacting, bosonic system in a quasiperiodic lattice. We observe an increase in the correlation length as well as a change in the shape of the correlation function in the delocalization crossover from Anderson glass to coherent, extended state. In between, the experiment indicates the formation of progressively larger coherent fragments, consistent with a fragmented BEC, or Bose glass.

  2. Correlation function of weakly interacting bosons in a disordered lattice

    International Nuclear Information System (INIS)

    Deissler, B; Lucioni, E; Modugno, M; Roati, G; Tanzi, L; Zaccanti, M; Inguscio, M; Modugno, G

    2011-01-01

    One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson localization and the realization of the disordered Bose-Hubbard model. There are, however, still questions as to how to differentiate the complex insulating phases resulting from this interplay, and how to measure the size of the superfluid fragments that these phases entail. It has been suggested that the correlation function of such a system can give new insights, but so far very little experimental investigation has been performed. Here, we show the first experimental analysis of the correlation function for a weakly interacting, bosonic system in a quasiperiodic lattice. We observe an increase in the correlation length as well as a change in the shape of the correlation function in the delocalization crossover from Anderson glass to coherent, extended state. In between, the experiment indicates the formation of progressively larger coherent fragments, consistent with a fragmented BEC, or Bose glass.

  3. sdg interacting-boson model in the SU(3) scheme and its application to 168Er

    Science.gov (United States)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1988-07-01

    The sdg interacting-boson model is presented in the SU(3) tensor formalism. The interactions are decomposed according to their SU(3) tensor character. The existence of the SU(3)-seniority preserving operator is found to be important. The model is applied to 168Er. Energy levels and electromagnetic transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first Kπ=4+ band relative to that of the first Kπ=2+ one. E4 transitions are calculated to give different predictions from those by the quasiparticle-phonon nuclear model.

  4. Electron scattering in the interacting boson model

    NARCIS (Netherlands)

    Dieperink, AEL; Iachello, F; Rinat, A; Creswell, C

    1978-01-01

    It is suggested that the interacting boson model be used in the analysis of electron scattering data. Qualitative features of the expected behavior of the inelastic excitation of some 2 ÷ states inthe transitional Sm-Nd region are discussed

  5. Electron scattering in the interacting boson model

    International Nuclear Information System (INIS)

    Dieperink, A.E.L.; Iachello, F.; Creswell, C.

    1978-01-01

    It is suggested that the interacting boson model be used in the analysis of electron scattering data. Qualitative features of the expected behavior of the inelastic excitation of some 2 + states in the transitional Sm-Nd region are discussed. (Auth.)

  6. An introduction to the interacting boson-fermion model

    International Nuclear Information System (INIS)

    Iachello, F.

    1985-01-01

    Spectra of odd-even medium mass and heavy nuclei are rather complex since they arise from the interplay between collective and single particle degrees of freedom. Their properties can be discussed in terms of simple models only in a limited number of cases, as, for example, in spherical nuclei (where the shell model can be applied in a straight forward way), or in nuclei with a rigid axially symmetric deformation (where the deformed shell model, or Nilsson model, can be used). Neither of these models, can, however, be applied to the large majority of nuclei, those forming the transitional classes. In the last few years, a model for odd-even nuclei has been introduced which is, on one side relatively simple, but which, on the other side, is able to describe the large variety of observed spectra. In this model, the collective degrees of freedom are described by bosons, while the single particle degrees of freedom are described by fermions, hence the name interacting boson-fermion model given to it. The authors describes the basic features of the model concentrating my attention to those cases that can be solved analytically, without resorting to numerical calculations. These analytical results are obtained by making use of group theory

  7. Commutators method for boson mapping in the seniority scheme

    International Nuclear Information System (INIS)

    Bonatsos, D.; Klein, A.; Ching-Teh Li

    1984-01-01

    A new approximate method for carrying out the boson mapping in the seniority scheme is described, in which the boson expansions of the pair and multipole operators are determined by satisfying the commutation relations for the associated Lie algebra. The method is illustrated for the single-j shell-model algebra SO(2(2j + 1)). The calculation is successively carried out to lowest and to next-higher order, the latter exhibiting the necessity of including g-bosons in the calculation in order to reach algebraic consistency. Agreement with the exact result of Ginocchio for j = 3/2 is established to the order considered. (orig.)

  8. Fractional energy states of strongly-interacting bosons in one dimension

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; G. Volosniev, A.; V. Fedorov, D.

    2014-01-01

    We study two-component bosonic systems with strong inter-species and vanishing intra-species interactions. A new class of exact eigenstates is found with energies that are {\\it not} sums of the single-particle energies with wave functions that have the characteristic feature that they vanish over...... than three particles. The states can be probed using the same techniques that have recently been used for fermionic few-body systems in quasi-1D.......We study two-component bosonic systems with strong inter-species and vanishing intra-species interactions. A new class of exact eigenstates is found with energies that are {\\it not} sums of the single-particle energies with wave functions that have the characteristic feature that they vanish over...... extended regions of coordinate space. This is demonstrated in an analytically solvable model for three equal mass particles, two of which are identical bosons, which is exact in the strongly-interacting limit. We numerically verify our results by presenting the first application of the stochastic...

  9. Pentaquarks in the Jaffe-Wilczek approximation

    International Nuclear Information System (INIS)

    Narodetskii, I.M.; Simonov, Yu.A.; Trusov, M.A.; Semay, C.; Silvestre-Brac, B.

    2005-01-01

    The masses of uudds-bar, uuddd-bar, and uussd-bar pentaquarks are evaluated in a framework of both the effective Hamiltonian approach to QCD and spinless Salpeter equation using the Jaffe-Wilczek diquark approximation and the string interaction for the diquark-diquark-antiquark system. The pentaquark masses are found to be in the region above 2 GeV. That indicates that the Goldstone-boson-exchange effects may play an important role in the light pentaquarks. The same calculations yield the mass of [ud] 2 c-bar pentaquark ∼3250 MeV and [ud] 2 b-bar pentaquark ∼6509 MeV [ru

  10. Pentaquarks in the Jaffe-Wilczek Approximation

    International Nuclear Information System (INIS)

    Narodetskii, I.M.; Simonov, Yu.A.; Trusov, M.A.; Semay, C.; Silvestre-Brac, B.

    2005-01-01

    The masses of uudds-bar, uuddd-bar, and uussd-bar pentaquarks are evaluated in a framework of both the effective Hamiltonian approach to QCD and the spinless Salpeter equation using the Jaffe-Wilczek diquark approximation and the string interaction for the diquark-diquark-antiquark system. The pentaquark masses are found to be in the region above 2 GeV. That indicates that the Goldstone boson exchange effects may play an important role in the light pentaquarks. The same calculations yield the mass of [ud] 2 c-bar pentaquark ∼3250 MeV and [ud] 2 b-bar pentaquark ∼6509 MeV

  11. Electroweak boson production in Pb+Pb

    CERN Document Server

    Balestri, T; The ATLAS collaboration

    2013-01-01

    Lead-lead collisions at the LHC are capable of producing a system of deconfined quarks and gluons at unprecedented energy density and temperature. Partonic-level interactions and energy-loss mechanisms in the medium can be studied with the aid of electroweak bosons which carry important information about the properties of the medium. Electroweak bosons form a class of unique high-$p_{T}$ probes because their decay products do not interact with the strongly-coupled medium, providing a benchmark for a variety of other phenomena measured with strongly interacting particles. The ATLAS experiment measures isolated high-$p_{T}$ photons, W and Z bosons via different decay channels. New analyses of experimental data obtained at the LHC with lead-lead beams at $\\sqrt{s_{NN}}$ = 2.76 TeV. This talk will present a comprehensive study of the scaling properties of electroweak bosons showing linear proportionality of production rates to the nuclear thickness function; rapidity distributions W-decays directly sensitivity to...

  12. Spectroscopy of samarium isotopes in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1992-01-01

    Successful spectroscopic calculations for the 0 1 + , 2 1 + , and 4 1 + levels in 146-158 Sm are carried out in sdg boson space with the restriction that the s-boson number n s ≥2 and the g-boson number n g ≤2. Observed energies, quadrupole and magnetic moments, E2 and E4 transition strengths, nuclear radii, and two-nucleon transfer intensities are reproduced with a simple two-parameter Hamiltonian. For a good simultaneous description of ground, β, and γ bands, a Hamiltonian interpolating the dynamical symmetries in the sdg model is employed. Using the resulting wave functions, in 152,154 Sm, the observed B(E4;0 1 + →4 γ + ) values are well reproduced and E4 strength distributions are predicted. Moreover, a particular ratio scrR involving two-nucleon transfer strengths showing a peak at neutron number 90 is well described by the calculations

  13. Interactive boundary-layer calculations of a transonic wing flow

    Science.gov (United States)

    Kaups, Kalle; Cebeci, Tuncer; Mehta, Unmeel

    1989-01-01

    Results obtained from iterative solutions of inviscid and boundary-layer equations are presented and compared with experimental values. The calculated results were obtained with an Euler code and a transonic potential code in order to furnish solutions for the inviscid flow; they were interacted with solutions of two-dimensional boundary-layer equations having a strip-theory approximation. Euler code results are found to be in better agreement with the experimental data than with the full potential code, especially in the presence of shock waves, (with the sole exception of the near-tip region).

  14. Jets and quark fragmentations in Higgs boson decays

    International Nuclear Information System (INIS)

    Kalyniak, P.; Ng, J.N.

    1983-02-01

    We have calculated the first order QCD to the rate of the Higgs boson decaying into two heavy quarks. Our corrections are found to be numerically smaller than previously obtained. By constructing a hybrid heavy quark fragmentation model we calculated the average momentum fraction carried off by rank one and two mesons in the decay. We also found that the average charge multiplicity from Higgs boson decay is high and is estimated to be approximately 17 charged particles for a Higgs with mass of 20 GeV/c 2

  15. Sdg interacting-boson model in the SU(3) scheme and its application to /sup 168/Er

    International Nuclear Information System (INIS)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1988-01-01

    The sdg interacting-boson model is presented in the SU(3) tensor formalism. The interactions are decomposed according to their SU(3) tensor character. The existence of the SU(3)-seniority preserving operator is found to be important. The model is applied to /sup 168/Er. Energy levels and electromagnetic transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first K/sup π/ = 4 + band relative to that of the first K/sup π/ = 2 + one. E4 transitions are calculated to give different predictions from those by the quasiparticle-phonon nuclear model

  16. Collisional oscillations of trapped boson-fermion mixtures in the approach to the collapse instability

    International Nuclear Information System (INIS)

    Capuzzi, P.; Minguzzi, A.; Tosi, M.P.

    2004-01-01

    We study the collective modes of a confined gaseous cloud of bosons and fermions with mutual attractive interactions at zero temperature. The cloud consists of a Bose-Einstein condensate and a spin-polarized Fermi gas inside a spherical harmonic trap and the coupling between the two species is varied by increasing either the magnitude of the interspecies s-wave scattering length or the number of bosons. The mode frequencies are obtained in the collisional regime by solving the equations of generalized hydrodynamics and are compared with the spectra calculated in the collisionless regime within a random-phase approximation. We find that, as the mixture is driven towards the collapse instability, the frequencies of the modes of fermionic origin show a blue shift which can become very significant for large numbers of bosons. Instead the modes of bosonic origin show a softening, which becomes most pronounced in the very proximity of collapse. Explicit illustrations of these trends are given for the monopolar spectra, but similar trends are found for the dipolar and quadrupolar spectra except for the surface (n=0) modes which are essentially unaffected by the interactions

  17. A covariant open bosonic string field theory including the endpoint and middlepoint interaction

    International Nuclear Information System (INIS)

    Liu, B.G.; Northwest Univ., Xian; Chen, Y.X.

    1988-01-01

    Extending the usual endpoint and midpoint interactions, we introduce numerous kinds of interactions, labelled by a parameter λ and obtain a non-commutative and associative string field algebra by adding up all interactions. With this algebra we develop a covariant open bosonic string field theory, which reduces to Witten's open bosonic string field theory under a special string length choice. (orig.)

  18. The interacting boson model

    International Nuclear Information System (INIS)

    Iachello, F.; Arima, A.

    1987-01-01

    The book gives an account of some of the properties of the interacting boson model. The model was introduced in 1974 to describe in a unified way the collective properties of nuclei. The book presents the mathematical techniques used to analyse the structure of the model. The mathematical framework of the model is discussed in detail. The book also contains all the formulae that have been developed throughout the years to account for collective properties of nuclei. These formulae can be used by experimentalists to compare their data with the predictions of the model. (U.K.)

  19. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    Science.gov (United States)

    Devi, Y. D.; Kota, V. K. B.

    1993-07-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150Nd.

  20. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1993-01-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150 Nd

  1. Particle-hole excitations in the interacting boson model; 4, the U(5)-SU(3) coupling

    CERN Document Server

    De Coster, C; Heyde, Kris L G; Jolie, J; Lehmann, H; Wood, J L

    1999-01-01

    In the extended interacting boson model (EIBM) both particle- and hole-like bosons are incorporated to encompass multi-particle-multi-hole excitations at and near to closed shells.We apply the group theoretical concepts of the EIBM to the particular case of two coexisting systems in the same nucleus exhibiting a U(5) (for the regular configurations) and an SU(3) symmetry (for the intruder configurations).Besides the description of ``global'' symmetry aspects in terms of I-spin , also the very specific local mixing effects characteristic for the U(5)-SU(3) symmetry coupling are studied.The model is applied to the Po isotopes and a comparison with a morerealistic calculation is made.

  2. Quantum and classical behavior in interacting bosonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hertzberg, Mark P. [Institute of Cosmology & Department of Physics and Astronomy, Tufts University,Medford, MA 02155 (United States)

    2016-11-21

    It is understood that in free bosonic theories, the classical field theory accurately describes the full quantum theory when the occupancy numbers of systems are very large. However, the situation is less understood in interacting theories, especially on time scales longer than the dynamical relaxation time. Recently there have been claims that the quantum theory deviates spectacularly from the classical theory on this time scale, even if the occupancy numbers are extremely large. Furthermore, it is claimed that the quantum theory quickly thermalizes while the classical theory does not. The evidence for these claims comes from noticing a spectacular difference in the time evolution of expectation values of quantum operators compared to the classical micro-state evolution. If true, this would have dramatic consequences for many important phenomena, including laboratory studies of interacting BECs, dark matter axions, preheating after inflation, etc. In this work we critically examine these claims. We show that in fact the classical theory can describe the quantum behavior in the high occupancy regime, even when interactions are large. The connection is that the expectation values of quantum operators in a single quantum micro-state are approximated by a corresponding classical ensemble average over many classical micro-states. Furthermore, by the ergodic theorem, a classical ensemble average of local fields with statistical translation invariance is the spatial average of a single micro-state. So the correlation functions of the quantum and classical field theories of a single micro-state approximately agree at high occupancy, even in interacting systems. Furthermore, both quantum and classical field theories can thermalize, when appropriate coarse graining is introduced, with the classical case requiring a cutoff on low occupancy UV modes. We discuss applications of our results.

  3. An exact fermion-pair to boson mapping

    International Nuclear Information System (INIS)

    Johnson, C.W.

    1993-01-01

    I derive in a novel fashion exact formulas for the calculation of general matrix elements, including the overlap (norm) matrix, between states constructed from fermion pairs. Mapping the fermion pairs to bosons, I show how to construct finite and exact (in the sense of preserving matrix elements) boson representations of the norm operator and one- and two-fermion operators. This may lead to a microscopic basis for the Interacting Boson Model, as well as new truncation schemes for the nuclear shell model

  4. Search for the Standard Model Higgs boson in the $H\\rightarrow W^{+}W^{-}\\rightarrow\\ell^{+}\

    CERN Document Server

    Schmidt, Evelyn

    2013-06-06

    Modern particle physics research is dedicated to study the fundamental constituents of matter and their interactions. Scientific research findings on both theoretical and experimental sides during the past decades have been condensed in the Standard Model of particle physics. In this model, the interactions between fundamental particles are described by gauge fields and the exchange of corresponding gauge bosons. The Standard Model contains several such bosons, for example the massive and charged W bosons and a neutral Z boson, that have been observed experimentally. The simplest and most popular implementation of electroweak symmetry breaking to attribute mass to the W and Z bosons is the Higgs mechanism. This mechanism implies the existence of one additional particle, the Higgs boson, that is the only remaining particle of the Standard Model to be established experimentally. In July 2012, the discovery of a new neutral boson with a measured mass of about 126 GeV was announced by the ATLAS and CMS collaborat...

  5. Criticality in the configuration-mixed interacting boson model (1) $U(5)-\\hat{Q}(\\chi)\\cdot\\hat{Q}(\\chi)$ mixing

    CERN Document Server

    Hellemans, V; De Baerdemacker, S; Heyde, K

    2008-01-01

    The case of U(5)--$\\hat{Q}(\\chi)\\cdot\\hat{Q}(\\chi)$ mixing in the configuration-mixed Interacting Boson Model is studied in its mean-field approximation. Phase diagrams with analytical and numerical solutions are constructed and discussed. Indications for first-order and second-order shape phase transitions can be obtained from binding energies and from critical exponents, respectively.

  6. Comment on ''Spectroscopy of samarium isotopes in the sdg interacting boson model''

    International Nuclear Information System (INIS)

    Kuyucak, S.; Lac, V.

    1993-01-01

    We point out that the data used in the sdg boson model calculations by Devi and Kota [Phys. Rev. C 45, 2238 (1992)] can be equally well described by the much simpler sd boson model. We present additional data for the Sm isotopes which cannot be explained in the sd model and hence may justify such an extension to the sdg bosons. We also comment on the form of the Hamiltonian and the transition operators used in this paper

  7. Exact and approximate multiple diffraction calculations

    International Nuclear Information System (INIS)

    Alexander, Y.; Wallace, S.J.; Sparrow, D.A.

    1976-08-01

    A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation

  8. SEARCHING FOR HIGGS BOSONS AND NEW PHYSICS AT HADRON COLLIDERS

    International Nuclear Information System (INIS)

    Chung Kao

    2007-01-01

    The objectives of research activities in particle theory are predicting the production cross section and decay branching fractions of Higgs bosons and new particles at hadron colliders, developing techniques and computer software to discover these particles and to measure their properties, and searching for new phenomena and new interactions at the Fermilab Tevatron and the CERN Large Hadron Collider. The results of our project could lead to the discovery of Higgs bosons, new particles, and signatures for new physics, or we will be able to set meaningful limits on important parameters in particle physics. We investigated the prospects for the discovery at the CERN Large Hadron Collider of Higgs bosons and supersymmetric particles. Promising results are found for the CP-odd pseudoscalar (A 0 ) and the heavier CP-even scalar (H 0 ) Higgs bosons with masses up to 800 GeV. Furthermore, we study properties of the lightest neutralino (χ 0 ) and calculate its cosmological relic density in a supersymmetric U(1)(prime) model as well as the muon anomalous magnetic moment a μ = (g μ -2)/2 in a supersymmetric U(1)(prime) model. We found that there are regions of the parameter space that can explain the experimental deviation of a μ from the Standard Model calculation and yield an acceptable cold dark matter relic density without conflict with collider experimental constraints. Recently, we presented a complete next-to-leading order (NLO) calculation for the total cross section of inclusive Higgs pair production via bottom-quark fusion (b(bar b) to hh) at the CERN Large Hadron Collider (LHC) in the Standard Model and the minimal supersymmetric model. We plan to predict the Higgs pair production rate and to study the trilinear coupling among the Higgs bosons. In addition, we have made significant contributions in B physics, single top production, charged Higgs search at the Fermilab as well as in grid computing for both D0 and ATLAS

  9. Theory of dressed bosons and nuclear matter distributions

    International Nuclear Information System (INIS)

    Tomaselli, M.; Liu, L.C.; Tanihata, I.

    2002-09-01

    The structure of nuclei with large neutron or proton-neutron excess, i.e., with large isospin components, is investigated in the Boson Dynamic Correlation Model where the valence particle pairs are dressed by their interactions with the microscopic clusters of the core. The mixed-mode states of the model are the eigenstates of a set of nonlinear equations. We solve these equations in terms of the cluster factorizations that are introduced to compute the n-boson matrix elements. Our calculation of the energy levels of 18 O reveals a strong mixing between the valence and core clusters which leads to a large reduction of the spectroscopic factors as calculated in Shell-Model approximations. The coupling of valence- to core-clusters gives a new insight into the halo formation in neutron-rich nuclei, namely, the halo is also a consequence of the excitation of the core protons. The calculated matter distributions of 6 He and 6 Li exhibit strong similarities, which indicate that halo formation in nuclei with proton-neutron excess must be postulated. The matter distributions of these two isotopes reproduce well the differential cross sections obtained in the proton elastic scattering experiments performed at GSI in inverse kinematics at an energy of 0.7 GeV/u. (orig.)

  10. Microscopic determination of leading terms of the interaction Hamiltonian between sd- and g-parts in the sdg IBM

    International Nuclear Information System (INIS)

    Zhang Zhanjun; Liu Yong; Sang Jianping

    1995-01-01

    Starting from one of the microscopic sdg interacting boson approximations, the leading terms in the interaction Hamiltonian are discussed by using numerical investigations. Comparisons of both the calculated levels and the overlap of wave functions between the exact results and the approximations are made to find out negligible part in the Hamiltonian. The results show that the leading terms given may provide a way to simplify the complex calculations

  11. Calculation of the real part of the interaction potential between two heavy ions in the sudden approximation

    International Nuclear Information System (INIS)

    Ngo, H.; Ngo, C.

    1980-04-01

    We have calculated the interaction potential between two heavy ions using the energy density formalism and Fermi distributions for the nuclear densities. The experimental fusion barriers are rather well reproduced. The conditions for the observation of fusion between two heavy ions is discussed. As far as the nuclear part of the interaction potential is concerned, the proximity scaling is investigated in details. It is found that the proximity theorem is satisfied to a good extent. However, as far as the neutron excess is concerned, a disagreement with the proximity potential is observed

  12. Effect of cosine current approximation in lattice cell calculations in cylindrical geometry

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.

    1978-01-01

    It is found that one-dimensional cylindrical geometry reactor lattice cell calculations using cosine angular current approximation at spatial mesh interfaces give results surprisingly close to the results of accurate neutron transport calculations as well as experimental measurements. This is especially true for tight light water moderated lattices. Reasons for this close agreement are investigated here. By re-examining the effects of reflective and white cell boundary conditions in these calculations it is concluded that one major reason is the use of white boundary condition necessitated by the approximation of the two-dimensional reactor lattice cell by a one-dimensional one. (orig.) [de

  13. Measurements of Gauge Boson Self-Interactions at CMS

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    A critical prediction of the Standard Model electroweak theory is the existence of triple and quartic gauge-boson self-interactions. The 2010-12 LHC run has resulted in a wealth of data in this sector, which can now be probed in many different production modes, both ordinary and potentially anomalous, with a sensitivity that is world-leading. In this seminar, recent CMS results are presented for: measurements of diboson production, with associated constraints on triple gauge boson couplings; the first LHC measurement of purely electroweak production of a Z with two forward jets; and two-photon production of W pairs, with the first LHC constraints on quartic gauge couplings.

  14. A general approach to bosonization

    Indian Academy of Sciences (India)

    As the term suggests, 'bosonization' is an effort to recast theories involving ... to use this formula to calculate the Green functions of interacting systems in one ..... this picks up a contribution similar to the one suggested upon time evolution with.

  15. Inelastic scattering in a local polaron model with quadratic coupling to bosons

    DEFF Research Database (Denmark)

    Olsen, Thomas

    2009-01-01

    We calculate the inelastic scattering probabilities in the wide band limit of a local polaron model with quadratic coupling to bosons. The central object is a two-particle Green's function which is calculated exactly using a purely algebraic approach. Compared with the usual linear interaction term...... a quadratic interaction term gives higher probabilities for inelastic scattering involving a large number of bosons. As an application we consider the problem hot-electron-mediated energy transfer at surfaces and use the delta self-consistent field extension of density-functional theory to calculate...

  16. Extended Bose Hubbard model of interacting bosonic atoms in optical lattices: From superfluidity to density waves

    International Nuclear Information System (INIS)

    Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.

    2006-01-01

    For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters

  17. Boson-mediated quantum spin simulators in transverse fields: X Y model and spin-boson entanglement

    Science.gov (United States)

    Wall, Michael L.; Safavi-Naini, Arghavan; Rey, Ana Maria

    2017-01-01

    The coupling of spins to long-wavelength bosonic modes is a prominent means to engineer long-range spin-spin interactions, and has been realized in a variety of platforms, such as atoms in optical cavities and trapped ions. To date, much of the experimental focus has been on the realization of long-range Ising models, but generalizations to other spin models are highly desirable. In this work, we explore a previously unappreciated connection between the realization of an X Y model by off-resonant driving of a single sideband of boson excitation (i.e., a single-beam Mølmer-Sørensen scheme) and a boson-mediated Ising simulator in the presence of a transverse field. In particular, we show that these two schemes have the same effective Hamiltonian in suitably defined rotating frames, and analyze the emergent effective X Y spin model through a truncated Magnus series and numerical simulations. In addition to X Y spin-spin interactions that can be nonperturbatively renormalized from the naive Ising spin-spin coupling constants, we find an effective transverse field that is dependent on the thermal energy of the bosons, as well as other spin-boson couplings that cause spin-boson entanglement not to vanish at any time. In the case of a boson-mediated Ising simulator with transverse field, we discuss the crossover from transverse field Ising-like to X Y -like spin behavior as a function of field strength.

  18. Experimental W boson physics at future e+e- linear colliders

    International Nuclear Information System (INIS)

    Barklow, T.L.

    1992-04-01

    The study of triple and quartic gauge boson vertices will be the centerpiece of experimental W boson physics at the next generation e + e - linear collider. We examine the sensitivity of a √ bar s = 500 GeV e + e - linear collider to anomalous structure in the W + W - γ and W + W - Z vertices. These vertices are tested by observing the reactions e - γ → νW - , γγ → W + W - , and e +- → W + W - . We also look at W + W - rescattering in e + e - → W + W - as a means to study W + W - → W + W -

  19. Functional renormalization group approach to interacting three-dimensional Weyl semimetals

    Science.gov (United States)

    Sharma, Anand; Scammell, Arthur; Krieg, Jan; Kopietz, Peter

    2018-03-01

    We investigate the effect of long-range Coulomb interaction on the quasiparticle properties and the dielectric function of clean three-dimensional Weyl semimetals at zero temperature using a functional renormalization group (FRG) approach. The Coulomb interaction is represented via a bosonic Hubbard-Stratonovich field which couples to the fermionic density. We derive truncated FRG flow equations for the fermionic and bosonic self-energies and for the three-legged vertices with two fermionic and one bosonic external legs. We consider two different cutoff schemes—cutoff in fermionic or bosonic propagators—in order to calculate the renormalized quasiparticle velocity and the dielectric function for an arbitrary number of Weyl nodes and the interaction strength. If we approximate the dielectric function by its static limit, our results for the velocity and the dielectric function are in good agreement with that of A. A. Abrikosov and S. D. Beneslavskiĭ [Sov. Phys. JETP 32, 699 (1971)] exhibiting slowly varying logarithmic momentum dependence for small momenta. We extend their result for an arbitrary number of Weyl nodes and finite frequency by evaluating the renormalized velocity in the presence of dynamic screening and calculate the wave function renormalization.

  20. Self-interacting, boson, quantum field theory, and the thermodynamic limit in d dimensions

    International Nuclear Information System (INIS)

    Baker, G.A. Jr.

    1975-01-01

    By use of a finite volume, lattice approximation, an approximation to the analytic continuation of a polynomial, self-interacting boson quantum field theory from Minkowski space to Euclidean space was set up. The infinite volume limit for various boundary conditions is shown to exist and to be asymptotic to the perturbation expansion in the coupling constant g at g = 0. For g: phi 4 : d theory mass renormalizability is proved and it is shown how, by use of Nelson's reconstruction theorem, the corresponding Minkowski space quantum field theory can be obtained. It is discussed, at least for d greater than or equal to 4, how statistical mechanical techniques, used to analyze the Ising model in the critical region just above the critical temperature, can be used to compute the properties of quantum field theory. (U.S.)

  1. Time-dependent Gross-Pitaevskii equation for composite bosons as the strong-coupling limit of the fermionic broken-symmetry random-phase approximation

    International Nuclear Information System (INIS)

    Strinati, G.C.; Pieri, P.

    2004-01-01

    The linear response to a space- and time-dependent external disturbance of a system of dilute condensed composite bosons at zero temperature, as obtained from the linearized version of the time-dependent Gross-Pitaevskii equation, is shown to result also from the strong-coupling limit of the time-dependent BCS (or broken-symmetry random-phase) approximation for the constituent fermions subject to the same external disturbance. In this way, it is possible to connect excited-state properties of the bosonic and fermionic systems by placing the Gross-Pitaevskii equation in perspective with the corresponding fermionic approximations

  2. Component separation in harmonically trapped boson-fermion mixtures

    DEFF Research Database (Denmark)

    Nygaard, Nicolai; Mølmer, Klaus

    1999-01-01

    We present a numerical study of mixed boson-fermion systems at zero temperature in isotropic and anise tropic harmonic traps. We investigate the phenomenon of component separation as a function of the strength ut the interparticle interaction. While solving a Gross-Pitaevskii mean-field equation ...... for the boson distribution in the trap, we utilize two different methods to extract the density profile of the fermion component; a semiclassical Thomas-Fermi approximation and a quantum-mechanical Slater determinant Schrodinger equation....

  3. Collective states of even Xe isotopes in IBM+MQRPA

    Directory of Open Access Journals (Sweden)

    Efimov A. D.

    2016-01-01

    Full Text Available A modification of the Quasiparticle Random Phase Approximation (QRPA with small ground state correlations is suggested. The lowest energy phonon is used as the image of d-boson of the Interacting Boson Model 1 (IBM1 and applied to microscopical calculations of the IBM1 parameters. Results are compared with experimental data for Xe isotopes.

  4. General quadrupole shapes in the Interacting Boson Model

    International Nuclear Information System (INIS)

    Leviatan, A.

    1990-01-01

    Characteristic attributes of nuclear quadrupole shapes are investigated within the algebraic framework of the Interacting Boson Model. For each shape the Hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed and used to estimate transition matrix elements. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of the three-body interactions. 27 refs

  5. Interacting steps with finite-range interactions: Analytical approximation and numerical results

    Science.gov (United States)

    Jaramillo, Diego Felipe; Téllez, Gabriel; González, Diego Luis; Einstein, T. L.

    2013-05-01

    We calculate an analytical expression for the terrace-width distribution P(s) for an interacting step system with nearest- and next-nearest-neighbor interactions. Our model is derived by mapping the step system onto a statistically equivalent one-dimensional system of classical particles. The validity of the model is tested with several numerical simulations and experimental results. We explore the effect of the range of interactions q on the functional form of the terrace-width distribution and pair correlation functions. For physically plausible interactions, we find modest changes when next-nearest neighbor interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  6. Introduction to interacting boson model

    International Nuclear Information System (INIS)

    Goutte, D.

    1986-01-01

    A very simple presentation of the interacting boson model is first given. The two computerized models which are presented allow, with few parameters, to reproduce an impressive quantity of data characterizing the deformed nuclei. Their excitation spectra, the reduced transition probabilities, the quadrupolar moments, the two nucleon transfer experiment results, ... Then a specific application of the model is given: radial extension reproduction of nuclear functions. It is shown first how the electron inelastic scattering allows to measure observables related to these radial functions, the transition charge densities, then, on some examples, how the model allows to reproduce them [fr

  7. Universal Four-Boson System: Dimer-Atom-Atom Efimov Effect and Recombination Reactions

    International Nuclear Information System (INIS)

    Deltuva, A.

    2013-01-01

    Recent theoretical developments in the four-boson system with resonant interactions are described. Momentum-space scattering equations for the four-particle transition operators are used. The properties of unstable tetramers with approximate dimer-atom-atom structure are determined. In addition, the three- and four-cluster recombination processes in the four-boson system are studied. (author)

  8. Higgs Boson Searches at Hadron Colliders (1/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

  9. Geometry of coexistence in the interacting boson model

    International Nuclear Information System (INIS)

    Van Isacker, P.; Frank, A.; Vargas, C.E.

    2004-01-01

    The Interacting Boson Model (IBM) with configuration mixing is applied to describe the phenomenon of coexistence in nuclei. The analysis suggests that the IBM with configuration mixing, used in conjunction with a (matrix) coherent-state method, may be a reliable tool for the study of geometric aspects of shape coexistence in nuclei

  10. New method for studying the microscopic foundations of the interacting boson model

    International Nuclear Information System (INIS)

    Klein, A.; Vallieres, M.

    1981-01-01

    We describe (i) a mapping, using a multishell seniority basis, from a prescribed subspace of a shell model space to an associated boson space. (ii) A new dynamical procedure for selecting the collective variables within the boson space, based on the invariance of the trace. (iii) A comparison with exact calculations for a multi-level pairing model, to demonstrate that the method works. (orig.)

  11. Inclusive charged-current neutrino-nucleus reactions calculated with the relativistic quasiparticle random-phase approximation

    International Nuclear Information System (INIS)

    Paar, N.; Vretenar, D.; Marketin, T.; Ring, P.

    2008-01-01

    Inclusive neutrino-nucleus cross sections are calculated using a consistent relativistic mean-field theoretical framework. The weak lepton-hadron interaction is expressed in the standard current-current form, the nuclear ground state is described with the relativistic Hartree-Bogoliubov model, and the relevant transitions to excited nuclear states are calculated in the relativistic quasiparticle random-phase approximation. Illustrative test calculations are performed for charged-current neutrino reactions on 12 C, 16 O, 56 Fe, and 208 Pb, and results compared with previous studies and available data. Through the use of the experimental neutrino fluxes, the averaged cross sections are evaluated for nuclei of interest for neutrino detectors. We analyze the total neutrino-nucleus cross sections and the evolution of the contribution of the different multipole excitations as a function of neutrino energy. The cross sections for reactions of supernova neutrinos on 16 O and 208 Pb target nuclei are analyzed as functions of the temperature and chemical potential

  12. Higgs boson production by very high energy neutrinos

    International Nuclear Information System (INIS)

    Mikaelian, K.O.; Oakes, R.J.

    1978-11-01

    Higgs bosons may be produced by bremsstrahlung off a virtual W/sup +-/ or a Z 0 exchanged in a charged or neutral current neutrino interaction. The production cross sections are calculated, and it is pointed out that they cannot grow quadratically with E/sub nu/ as had been suggested earlier, and it is argued that at best they can increase like the square of ln s/M 2 /sub W,Z/ at very high energies. Using a simple approximation for the propagator effect, numerical results in the high energy regime 1 TeV less than or equal to E/sub nu/ less than or equal to 1000 TeV appropriate for DUMAND. 9 references

  13. Photons in dense nuclear matter: Random-phase approximation

    Science.gov (United States)

    Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay

    2018-04-01

    We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.

  14. Role of polarization in probing anomalous gauge interactions of the Higgs boson

    International Nuclear Information System (INIS)

    Biswal, Sudhansu S.; Godbole, Rohini M.; Choudhury, Debajyoti; Mamta

    2009-01-01

    We explore the use of polarized e + /e - beams and/or the information on final state decay lepton polarizations in probing the interaction of the Higgs boson with a pair of vector bosons. A model independent analysis of the process e + e - →ffH, where f is any light fermion, is carried out through the construction of observables having identical properties under the discrete symmetry transformations as different individual anomalous interactions. This allows us to probe an individual anomalous term independent of the others. We find that initial state beam polarization can significantly improve the sensitivity to CP-odd couplings of the Z boson with the Higgs boson (ZZH). Moreover, an ability to isolate events with a particular τ helicity, with even 40% efficiency, can improve sensitivities to certain ZZH couplings by as much as a factor of 3. In addition, the contamination from the ZZH vertex contributions present in the measurement of the trilinear Higgs-W (WWH) couplings can be reduced to a great extent by employing polarized beams. The effects of initial state radiation and beamstrahlung, which can be relevant for higher values of the beam energy are also included in the analysis.

  15. Unified theory of fermion pair to boson mappings in full and truncated spaces

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Johnson, C.W.

    1995-01-01

    After a brief review of various mappings of fermion pairs to bosons, we rigorously derive a general approach. Following the methods of Marumori and Otsuka, Arima, and Iachello, our approach begins with mapping states and constructs boson representations that preserve fermion matrix elements. In several cases these representations factor into finite, Hermitian boson images times a projection or norm operator that embodies the Pauli principle. We pay particular attention to truncated boson spaces, and describe general methods for constructing Hermitian and approximately finite boson image Hamiltonians. This method is akin to that of Otsuka, Arima, and Iachello introduced in connection with the interacting boson model, but is more rigorous, general, and systematic

  16. On the mass and thermodynamics of the Higgs boson

    Science.gov (United States)

    Fokas, A. S.; Vayenas, C. G.; Grigoriou, D. P.

    2018-02-01

    In two recent works we have shown that the masses of the W± and Zo bosons can be computed from first principles by modeling these bosons as bound relativistic gravitationally confined rotational states consisting of e±-νe pairs in the case of W± bosons and of a e+-νe-e- triplet in the case of the Zo boson. Here, we present similar calculations for the Higgs boson which we model as a bound rotational state consisting of a positron, an electron, a neutrino and an antineutrino. The model contains no adjustable parameters and the computed boson mass of 125.7 GeV/c2, is in very good agreement with the experimental value of 125.1 ± 1 GeV/c2. The thermodynamics and potential connection of this particle with the Higgs field are also briefly addressed.

  17. Comparing several boson mappings with the shell model

    International Nuclear Information System (INIS)

    Menezes, D.P.; Yoshinaga, Naotaka; Bonatsos, D.

    1990-01-01

    Boson mappings are an essential step in establishing a connection between the successful phenomenological interacting boson model and the shell model. The boson mapping developed by Bonatsos, Klein and Li is applied to a single j-shell and the resulting energy levels and E2 transitions are shown for a pairing plus quadrupole-quadrupole Hamiltonian. The results are compared to the exact shell model calculation, as well as to these obtained through use of the Otsuka-Arima-Iachello mapping and the Zirnbauer-Brink mapping. In all cases good results are obtained for the spherical and near-vibrational cases

  18. Yang Monopoles and Emergent Three-Dimensional Topological Defects in Interacting Bosons

    Science.gov (United States)

    Yan, Yangqian; Zhou, Qi

    2018-06-01

    The Yang monopole as a zero-dimensional topological defect has been well established in multiple fields in physics. However, it remains an intriguing question to understand the interaction effects on Yang monopoles. Here, we show that the collective motion of many interacting bosons gives rise to exotic topological defects that are distinct from Yang monopoles seen by a single particle. Whereas interactions may distribute Yang monopoles in the parameter space or glue them to a single giant one of multiple charges, three-dimensional topological defects also arise from continuous manifolds of degenerate many-body eigenstates. Their projections in lower dimensions lead to knotted nodal lines and nodal rings. Our results suggest that ultracold bosonic atoms can be used to create emergent topological defects and directly measure topological invariants that are not easy to access in solids.

  19. Symmetry breaking and scalar bosons

    International Nuclear Information System (INIS)

    Gildener, E.; Weinberg, S.

    1976-01-01

    There are reasons to suspect that the spontaneous breakdown of the gauge symmetries of the observed weak and electromagnetic interactions may be produced by the vacuum expectation values of massless weakly coupled elementary scalar fields. A method is described for finding the broken-symmetry solutions of such theories even when they contain arbitrary numbers of scalar fields with unconstrained couplings. In any such theory, there should exist a number of heavy Higgs bosons, with masses comparable to the intermediate vector bosons, plus one light Higgs boson, or ''scalon'' with mass of order αG/sub F/sub 1/2/. The mass and couplings of the scalon are calculable in terms of other masses, even without knowing all the details of the theory. For an SU(2) direct-product U(1) model with arbitrary numbers of scalar isodoublets, the scalon mass is greater than 5.26 GeV; a likely value is 7--10 GeV. The production and decay of the scalon are briefly considered. Some comments are offered on the relation between the mass scales associated with the weak and strong interactions

  20. Elementary Goldstone Higgs Boson and Dark Matter

    DEFF Research Database (Denmark)

    Alanne, Tommi; Gertov, Helene; Sannino, Francesco

    2015-01-01

    We investigate a perturbative extension of the Standard Model featuring elementary pseudo-Goldstone Higgs and dark matter particles. These are two of the five Goldstone bosons parametrising the SU(4)/Sp(4) coset space. They acquire masses, and therefore become pseudo-Goldstone bosons, due...... of the theory, the quantum corrections are precisely calculable. The remaining pseudo-Goldstone boson is identified with the dark matter candidate because it is neutral with respect to the Standard Model and stable. By a direct comparison with the Large Hadron Collider experiments, the model is found...... to be phenomenologically viable. Furthermore the dark matter particle leads to the observed thermal relic density while respecting the most stringent current experimental constraints....

  1. Importance of self-consistency in relativistic continuum random-phase approximation calculations

    International Nuclear Information System (INIS)

    Yang Ding; Cao Ligang; Tian Yuan; Ma Zhongyu

    2010-01-01

    A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed, where the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single-particle Green's function technique. The full consistency of the calculations is achieved that the same effective Lagrangian is adopted for the ground state and the excited states. The negative energy states in the Dirac sea are also included in the single-particle Green's function in the no-sea approximation. The currents from the vector meson and photon exchanges and the Coulomb interaction in RCRPA are treated exactly. The spin-orbit interaction is included naturally in the relativistic frame. Numerical results of the RCRPA are checked with the constrained relativistic mean-field theory. We study the effects of the inconsistency, particularly the currents and Coulomb interaction in various collective multipole excitations.

  2. Possible origin of a natural conservation of flavor in an interaction with neutral Higgs bosons

    International Nuclear Information System (INIS)

    Ural'tsev, N.G.

    1983-01-01

    In technicolor models the masses of the neutral pseudo-Goldstone bosons which interact with quarks and leptons without flavor conservation automatically acquire an order of magnitude Mapprox.(m/sub q/#betta#/sub TC/)/sup 1/2/approx.0.2--1 TeV through the Yukawa interaction. As a result, an effective Lagrangian which conserves only light Higgs bosons satisfies the condition of natural flavor conservation

  3. Correlations in charged bosons systems

    International Nuclear Information System (INIS)

    Almeida Caparica, A. de.

    1985-02-01

    The two and three-dimensional charge Bose gas have been studied. In the bidimensional case two different types of interaction were considered: l/r and l n(r). The method of self-consistent-field was applied to these systems, which takes into account the short range correlations between the bosons through a local-field correction. By using self-consistent numerical calculations, the structure factor S(k → ) was determined. The pair-correlation function, the ground-state energy, the pressure of the gas and the spectrum of elementary excitations were obtained from S (k → ). The screening density induced by a fixed charged impurity was calculated. In the high-density limit our calculations reproduce the results given by Bogoliubov's perturbation theory. In the intermediate-density region, corresponding to the strongly coupled systems, the results are in very good agreement with calculations based on HNC approximation as well as Monte Carlo method. The results are compared in several situations with RPA results showing that the self-consistent method is much more accurate. The two-dimensional systems showed to be more correlated than the three-dimensional systems showed to be more correlated than the three-dimensional one; the gas with interaction l/r is also more correlated than the logarithmic one at high densities, but it begins to be less correlated than this one in the low-density region. The thermodynamic functions of the two and three-dimensional systems at finite temperatures near absolute zero are calculated based upon the gas excitation spectra at zero temperature. (author)

  4. Interacting bosonic strings in subcritical dimensions

    International Nuclear Information System (INIS)

    Hwang, S.; Marnelius, R.

    1988-01-01

    Interaction theory for relativistic bosonic string in spacetime dimensions below the critical value 26 is formulated using BRST techniques with an extra scalar field. One-loop zero-point amplitudes for closed strings are modular invariant. For a free scalar field, vertex operators are constructed leading to, e.g., the old dual N-tachyon tree amplitudes in D < 26. The N-tachyon one-loop expressions contain closed string poles for open strings, and are modular invariant for closed strings. However, the threshold cuts are wrong in D < 25. Only for D=25 to the considered vertex operators lead to consistency. (orig.)

  5. Application of the interacting boson model to collective states in medium heavy nuclei

    International Nuclear Information System (INIS)

    Kaup, U.

    1983-01-01

    In the framework of the interacting boson model a systematic description of even-even isotopes of the medium heavy elements selenium, krypton, and strontium is given. The number of the free parameters could be kept very small by the determination of the physically relevant terms of the general model Hamiltonian. The variation of the collectivity from spherical to deformed, γ-soft nuclei could be mainly derived from the influence of the number of valence nucleons. All model parameters vary smoothly as function of the valence particle number and in qualitative agreement with predictions of a simplified microscopical model. Odd nuclei were studied in the framework of the interacting boson-fermion model. Beside the phenomenological description of odd-even rubidium, technetium, and silver isotope this part of the thesis is occupied mainly by the microscopical theory of the boson-fermion model. The effect of the antisymmetrization of the last, odd particle with the core nucleons is discussed. The microscopic theory is supplemented by the derivation of the so called Pauli term from the interaction of identical nucleons. (orig./HSI) [de

  6. General Einstein-Podolsky-Rosen-type entanglement of continuous variables for bosons

    International Nuclear Information System (INIS)

    Jiang Nianquan; Zheng Yizhuang

    2006-01-01

    We show that general Einstein-Podolsky-Rosen-type (EPR-type) entanglement of continuous variables with arbitrary eigenvalues for bosons can be yielded. For bosons of nonzero resting mass EPR-type entangled state can be achieved by the use of atomic beam splitters in particles of a position eigenstate and n-1 momentum eigenstates. For light field in which resting mass of the photon is zero, approximate EPR-type entanglement can be experimentally generated when we apply optical beam splitters to one position-squeezed coherence state and n-1 momentum-squeezed coherence states, this approximate version tends to perfect EPR entanglement in the limit of infinite squeezing

  7. Boson-fermion and boson-boson scattering in a Yang-Mills theory at high energy: Sixth-order perturbation theory

    International Nuclear Information System (INIS)

    McCoy, B.M.; Wu, T.T.

    1976-01-01

    Our previous study of Yang-Mills fields is extended by calculating the high-energy behavior of the boson-fermion and of the boson-boson amplitude in sixth-order perturbation theory. In the isovector and isoscalar channels of both these processes the behavior of the amplitude is the same as that found in fermion-fermion scattering

  8. ATLAS measurements of vector boson production

    CERN Document Server

    Levchenko, M; The ATLAS collaboration

    2014-01-01

    ATLAS measurements of vector boson production with associated jets Productions of light and heavy-flavour jets in association with a W or a Z boson in proton-proton collisions are important processes to study QCD in multi-scale environments and the proton parton content. The cross section, differential in several kinematics variables, have been measured with the ATLAS detector in 7 TeV proton-proton collisions and compared to high-order QCD calculations and Monte Carlo simulations. The results demonstrate the need for the inclusion of high-multiplicity matrix elements in the calculations of high jet multiplicities. The ratio of (Z+jets)/(W+jets) provides a precise test of QCD due to the large cancellations of theoretical and experimental uncertainties. Measurement of W+c production cross section has a unique sensitivity to the strange-quark density, which is poorly known at low x. W or Z boson production in association with b-quark jets, on the other hand, probes the b-quark density in the proton and the b-qu...

  9. Gamow-Teller resonances and a separable approximation for Skyrme tensor interactions

    Directory of Open Access Journals (Sweden)

    Severyukhin A. P.

    2012-12-01

    Full Text Available A finite rank separable approximation for the quasiparticle random phase approximation (QRPA with Skyrme interactions is applied to study properties of the Gamow-Teller (GT resonances in the neutron-rich Cd isotopes. This approximation enables one to reduce considerably the dimension of matrix that must be diagonalized to perform QRPA calculations in a very large configuration space. Our results from the SGII Skyrme interaction with the tensor interactions and the density-dependent zero-range pairing interaction show that the GT distribution is noticeably modified when the tensor correlations are taken into account. In particular, for 130Cd the dominant peak is moved 3.6 MeV downward and 10% of the GT distribution is shifted to the high excitation energy region near E=50MeV.

  10. Decay modes of two repulsively interacting bosons

    International Nuclear Information System (INIS)

    Kim, Sungyun; Brand, Joachim

    2011-01-01

    We study the decay of two repulsively interacting bosons tunnelling through a delta potential barrier by a direct numerical solution of the time-dependent Schroedinger equation. The solutions are analysed according to the regions of particle presence: both particles inside the trap (in-in), one particle in and one particle out (in-out) and both particles outside (out-out). It is shown that the in-in probability is dominated by the exponential decay, and its decay rate is predicted very well from outgoing boundary conditions. Up to a certain range of interaction strength, the decay of in-out probability is dominated by the single-particle decay mode. The decay mechanisms are adequately described by simple models.

  11. CdS_xTe_1_-_x ternary semiconductors band gaps calculation using ground state and GW approximations

    International Nuclear Information System (INIS)

    Kheloufi, Nawal; Bouzid, Abderrazak

    2016-01-01

    We present band gap calculations of zinc-blende ternary CdS_xTe_1_-_x semiconductors within the standard DFT and quasiparticle calculations employing pseudopotential method. The DFT, the local density approximation (LDA) and the Generalized Gradient Approximation (GGA) based calculations have given very poor results compared to experimental data. The quasiparticle calculations have been investigated via the one-shot GW approximation. The present paper discuses and confirms the effect of inclusion of the semicore states in the cadmium (Cd) pseudopotential. The obtained GW quasiparticle band gap using Cd"+"2"0 pseudopotential has been improved compared to the obtained results from the available pseudopotential without the treatment of semicore states. Our DFT and quasiparticle band gap results are discussed and compared to the available theoretical calculations and experimental data. - Graphical abstract: Band gaps improvement concerning the binary and ternary alloys using the GW approximation and Cd"2"0"+ pseudopotential with others levels of approximations (the LDA and GGA approximation employing the Cd"1"2"+ and the LDA within Cd"2"0"+ pseudopotential). - Highlights: • The direct Γ- Γ and indirect Γ- X and Γ- L bands gaps show a nonlinear behavior when S content is enhanced. • The quasiparticle band gap result for the investigated semiconductors is improved using the GW approximation. • All CdS_xTe_1_-_x compounds in all compositions range from 0 to 1 are direct band gap semiconductors.

  12. Upper and lower Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model

    International Nuclear Information System (INIS)

    Gerhold, Philipp Frederik Clemens

    2009-01-01

    Motivated by the advent of the Large Hadron Collider (LHC) the aim of the present work is the non-perturbative determination of the cutoff-dependent upper and lower mass bounds of the Standard Model Higgs boson based on first principle calculations, in particular not relying on additional information such as the triviality property of the Higgs- Yukawa sector or indirect arguments like vacuum stability considerations. For that purpose the lattice approach is employed to allow for a non-perturbative investigation of a chirally invariant lattice Higgs-Yukawa model, serving here as a reasonable simplification of the full Standard Model, containing only those fields and interactions which are most essential for the intended Higgs boson mass determination. These are the complex Higgs doublet as well as the top and bottom quark fields and their mutual interactions. To maintain the chiral character of the Standard Model Higgs-fermion coupling also on the lattice, the latter model is constructed on the basis of the Neuberger overlap operator, obeying then an exact global lattice chiral symmetry. Respecting the fermionic degrees of freedom in a fully dynamical manner by virtue of a PHMC algorithm appropriately adapted to the here intended lattice calculations, such mass bounds can indeed be established with the aforementioned approach. Supported by analytical calculations performed in the framework of the constraint effective potential, the lower bound is found to be approximately m low H (Λ)=80 GeV at a cutoff of Λ=1000 GeV. The emergence of a lower Higgs boson mass bound is thus a manifest property of the pure Higgs-Yukawa sector that evolves directly from the Higgs-fermion interaction for a given set of Yukawa coupling constants. Its quantitative size, however, turns out to be non-universal in the sense, that it depends on the specific form, for instance, of the Higgs boson self-interaction. The upper Higgs boson mass bound is then established in the strong coupling

  13. Academic Training Lecture: Higgs Boson Searches at Hadron Colliders

    CERN Multimedia

    HR Department

    2010-01-01

    Regular Programme 21, 22, 23 & 24 June 2010 from 11:00 to 12:00 - Main Auditorium, Bldg. 500-1-001 Higgs Boson Searches at Hadron Colliders by Dr. Karl Jakobs (University of Freiburg) In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and ...

  14. Magnetism of one-dimensional strongly repulsive spin-1 bosons with antiferromagnetic spin-exchange interaction

    International Nuclear Information System (INIS)

    Lee, J. Y.; Guan, X. W.; Batchelor, M. T.; Lee, C.

    2009-01-01

    We investigate magnetism and quantum phase transitions in a one-dimensional system of integrable spin-1 bosons with strongly repulsive density-density interaction and antiferromagnetic spin-exchange interaction via the thermodynamic Bethe ansatz method. At zero temperature, the system exhibits three quantum phases: (i) a singlet phase of boson pairs when the external magnetic field H is less than the lower critical field H c1 ; (ii) a ferromagnetic phase of atoms in the hyperfine state |F=1, m F =1> when the external magnetic field exceeds the upper critical field H c2 ; and (iii) a mixed phase of singlet pairs and unpaired atoms in the intermediate region H c1 c2 . At finite temperatures, the spin fluctuations affect the thermodynamics of the model through coupling the spin bound states to the dressed energy for the unpaired m F =1 bosons. However, such spin dynamics is suppressed by a sufficiently strong external field at low temperatures. Thus the singlet pairs and unpaired bosons may form a two-component Luttinger liquid in the strong coupling regime.

  15. On the equivalence of quadrupole phonon model and interacting boson model

    International Nuclear Information System (INIS)

    Kyrchev, G.

    1980-01-01

    A rigorous proof of the quadrupole phonon model (QPM) and the interacting boson model (IBM) equivalence (the Hamiltonians and the relevant operators of both models are identical) is presented. Within the theory of classical Lie algebras the Schwinger representation (SR) construction of SU(6)-algebra, generated by QPM collective coordinates, conjugated momenta and their commutators, is given. Having the explicit form of SU(6) generators in SR, we get the QPM collective Hamiltonian in SR (previously Holstein-Primakoff infinite Boson expansion has been applied for this Hamiltonian). The Hamiltonian of QPM thus obtained contains all Boson structures, which are present in the Hamiltonian of IBM and under definite relations between their parameters, both Hamiltonians coincide identically. The relevant operators are identical too. Thus, though QPM and IBM, being advanced independently, have been developed in a different fashion, they are essentially equivalent

  16. Hyperspherical Harmonics Expansion on Lagrange Meshes for Bosonic Systems in One Dimension

    International Nuclear Information System (INIS)

    Timofeyuk, N. K.; Baye, D.

    2017-01-01

    A one-dimensional system of bosons interacting with contact and single-Gaussian forces is studied with an expansion in hyperspherical harmonics. The hyper radial potentials are calculated using the link between the hyperspherical harmonics and the single-particle harmonic-oscillator basis while the coupled hyper radial equations are solved with the Lagrange-mesh method. Extensions of this method are proposed to achieve good convergence with small numbers of mesh points for any truncation of hyper momentum. The convergence with hyper momentum strongly depends on the range of the two-body forces: it is very good for large ranges but deteriorates as the range decreases, being the worst for the contact interaction. In all cases, the lowest-order energy is within 4.5% of the exact solution and shows the correct cubic asymptotic behaviour at large boson numbers. Details of the convergence studies are presented for 3, 5, 20 and 100 bosons. A special treatment for three bosons was found to be necessary. For single-Gaussian interactions, the convergence rate improves with increasing boson number, similar to what happens in the case of three-dimensional systems of bosons. (author)

  17. Partially composite Goldstone Higgs boson

    DEFF Research Database (Denmark)

    Alanne, Tommi; Franzosi, Diogo Buarque; Frandsen, Mads T.

    2017-01-01

    We consider a model of dynamical electroweak symmetry breaking with a partially composite Goldstone Higgs boson. The model is based on a strongly interacting fermionic sector coupled to a fundamental scalar sector via Yukawa interactions. The SU(4)×SU(4) global symmetry of these two sectors...... is broken to a single SU(4) via Yukawa interactions. Electroweak symmetry breaking is dynamically induced by condensation due to the strong interactions in the new fermionic sector which further breaks the global symmetry SU(4)→Sp(4). The Higgs boson arises as a partially composite state which is an exact...... Goldstone boson in the limit where SM interactions are turned off. Terms breaking the SU(4) global symmetry explicitly generate a mass for the Goldstone Higgs boson. The model realizes in different limits both (partially) composite Higgs and (bosonic) technicolor models, thereby providing a convenient...

  18. Production and decay channels of charged Higgs boson at high energy hadron colliders

    Science.gov (United States)

    Demirci, Alev Ezgi; ćakır, Orhan

    2018-02-01

    We have studied charged Higgs boson interactions and production cross sections within the framework of two Higgs doublet model, which is an extension of standard model and the decay processes of charged Higgs boson have been calculated. There are different scenarios which have been studied in this work and these parameters have been transferred to the event generator, and the cross sections calculations for different center of mass energies of hadron colliders have been performed.

  19. States with several particles in e+e- and γγ colliders: technique of calculation and launch of a new physics

    International Nuclear Information System (INIS)

    Lafage, V.

    1996-01-01

    The mass generation in the Standard Model of Particles Physics relies on a spontaneous symmetry breaking mechanism. Its implementation is recalled, along with its constraints, both theoretical (Naturalness, Stability, Triviality, Unitarity) and experimental (limits of direct and indirect searches, prospects). Calculation techniques for observables evaluation in Perturbative Field Theory are described, particularly Helicity Amplitude method, which is given in details: fermions and vector bosons, massless and massive. Monte-Carlo integration, and structure functions approximations (which allows non-perturbative calculations) are also detailed. With these tools, a process giving to Physics beyond the Standard Model is studied: it leads to an experimental prediction for the LEP collision ring, taking the classical background into account. Technical aspects of a future photon linear collider are reviewed. The production of heavy vector bosons, either the classical Z for the hypothetical Z' (whether it couples preferentially to quarks or not) is analysed in this environment. Finally, top quark pair production from W bosons fusion is used to look for the symmetry breaking mechanism. The study is done in an experimentally realistic environment: background isolation (by splitting the process in gauge invariants subsets), role of polarisation, tagging of non-standard symmetry breaking mechanism. (author)

  20. Analytical expressions for two-nucleon transfer spectroscopic factors in sdg interacting boson model

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1991-01-01

    Analytical expressions for two-nucleon (l = 0,2 and 4) transfer spectroscopic factors are derived in the SU sdg (3) limit of the sdg interacting boson model. In addition, large N (boson number) limit expressions for the ratio of summed l = 0 transfer strength to excited 0 + states to that of ground state are derived in all the symmetry limits of the sdg model. Some comparisons with data are made. (author)

  1. Calculation of the RPA response function of nuclei to quasi-elastic electron scattering with a density-dependent NN interaction

    International Nuclear Information System (INIS)

    Caillon, J-C.; Labarsouque, J.

    1997-01-01

    So far, the non-relativistic longitudinal and transverse functions in electron quasi-elastic scattering on the nuclei failed in reproducing satisfactorily the existent experimental data. The calculations including relativistic RPA correlations utilize until now the relativistic Hartree approximation to describe the nuclear matter. But, this provides an incompressibility module two times higher than its experimental value what is an important drawback for the calculation of realistic relativistic RPA correlations. Hence, we have determined the RPA response functions of nuclei by utilising a description of the relativistic nuclear matter leading to an incompressibility module in agreement with the empirical value. To do that we have utilized an interaction in the relativistic Hartree approximation in which we have determined the coupling constants σ-N and ω-N as a function of the density in order to reproduce the saturation curve obtained by a Dirac-Brueckner calculation. The results which we have obtained show that the longitudinal response function and the Coulomb sum generally overestimated when one utilizes the pure relativistic Hartree approximation, are here in good agreement with the experimental data for several nuclei

  2. Bosonic Spectral Function and the Electron-Phonon Interaction in HTSC Cuprates

    International Nuclear Information System (INIS)

    Maksimov, E. G.; Tamm, I. E.; Kulic, M.L.; Kulic, M.L.; Dolgov, O. V.

    2010-01-01

    In this paper we discuss experimental evidence related to the structure and origin of the bosonic spectral function a2F(ο) in high-temperature superconducting (HTSC) cuprates at and near optimal doping. Global properties of a2F(ο), such as number and positions of peaks, are extracted by combining optics, neutron scattering, ARPES and tunnelling measurements. These methods give evidence for strong electron-phonon interaction (EPI) with 1<λep <3.5 in cuprates near optimal doping. We clarify how these results are in favor of the modified Migdal-Eliashberg (ME) theory for HTSC cuprates near optimal doping. In Section 2 we discuss theoretical ingredients such as strong EPI, strong correlations which are necessary to explain the mechanism of d-wave pairing in optimally doped cuprates. These comprise the ME theory for EPI in strongly correlated systems which give rise to the forward scattering peak. The latter is supported by the long-range part of EPI due to the weakly screened Madelung interaction in the ionic-metallic structure of layered HTSC cuprates. In this approach EPI is responsible for the strength of pairing while the residual Coulomb interaction and spin fluctuations trigger the d-wave pairing.

  3. One-dimensional gas of bosons with Feshbach-resonant interactions

    International Nuclear Information System (INIS)

    Gurarie, V.

    2006-01-01

    We present a study of a gas of bosons confined in one dimension with Feshbach-resonant interactions, at zero temperature. Unlike the gas of one-dimensional bosons with non resonant interactions, which is known to be equivalent to a system of interacting spinless fermions and can be described using the Luttinger liquid formalism, the resonant gas possesses additional features. Depending on its parameters, the gas can be in one of three possible regimes. In the simplest of those, it can still be described by the Luttinger liquid theory, but its Fermi momentum cannot be larger than a certain cutoff momentum dependent on the details of the interactions. In the other two regimes, it is equivalent to a Luttinger liquid at low density only. At higher densities its excitation spectrum develops a minimum, similar to the roton minimum in helium, at momenta where the excitations are in resonance with the Fermi sea. As the density of the gas is increased further, the minimum dips below the Fermi energy, thus making the ground state unstable. At this point the standard ground state gets replaced by a more complicated one, where not only the states with momentum below the Fermi points, but also the ones with momentum close to that minimum, get filled, and the excitation spectrum develops several branches. We are unable so far to study this regime in detail due to the lack of the appropriate formalism

  4. Comparison of approximations in density functional theory calculations: Energetics and structure of binary oxides

    Science.gov (United States)

    Hinuma, Yoyo; Hayashi, Hiroyuki; Kumagai, Yu; Tanaka, Isao; Oba, Fumiyasu

    2017-09-01

    High-throughput first-principles calculations based on density functional theory (DFT) are a powerful tool in data-oriented materials research. The choice of approximation to the exchange-correlation functional is crucial as it strongly affects the accuracy of DFT calculations. This study compares performance of seven approximations, six of which are based on Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) with and without Hubbard U and van der Waals corrections (PBE, PBE+U, PBED3, PBED3+U, PBEsol, and PBEsol+U), and the strongly constrained and appropriately normed (SCAN) meta-GGA on the energetics and crystal structure of elementary substances and binary oxides. For the latter, only those with closed-shell electronic structures are considered, examples of which include C u2O , A g2O , MgO, ZnO, CdO, SnO, PbO, A l2O3 , G a2O3 , I n2O3 , L a2O3 , B i2O3 , Si O2 , Sn O2 , Pb O2 , Ti O2 , Zr O2 , Hf O2 , V2O5 , N b2O5 , T a2O5 , Mo O3 , and W O3 . Prototype crystal structures are selected from the Inorganic Crystal Structure Database (ICSD) and cation substitution is used to make a set of existing and hypothetical oxides. Two indices are proposed to quantify the extent of lattice and internal coordinate relaxation during a calculation. The former is based on the second invariant and determinant of the transformation matrix of basis vectors from before relaxation to after relaxation, and the latter is derived from shifts of internal coordinates of atoms in the unit cell. PBED3, PBEsol, and SCAN reproduce experimental lattice parameters of elementary substances and oxides well with few outliers. Notably, PBEsol and SCAN predict the lattice parameters of low dimensional structures comparably well with PBED3, even though these two functionals do not explicitly treat van der Waals interactions. SCAN gives formation enthalpies and Gibbs free energies closest to experimental data, with mean errors (MEs) of 0.01 and -0.04 eV, respectively, and root

  5. Analytical expressions for two-nucleon transfer spectroscopic factors in sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Devi, Y.D.; Kota, V.K.B. (Physical Research Lab., Ahmedabad (India))

    1991-11-01

    Analytical expressions for two-nucleon (l = 0,2 and 4) transfer spectroscopic factors are derived in the SU{sub sdg}(3) limit of the sdg interacting boson model. In addition, large N (boson number) limit expressions for the ratio of summed l = 0 transfer strength to excited 0{sup +} states to that of ground state are derived in all the symmetry limits of the sdg model. Some comparisons with data are made. (author).

  6. Effects of exotic composite bosons in the TRISTAN, SLC and LEP region

    International Nuclear Information System (INIS)

    Akama, Keiichi; Hattori, Takashi; Yasue, Masaki.

    1989-11-01

    Starting with typical dynamical composite models for exotic bosons as well as weak bosons, we derive their effective interactions, examine the restrictions from the presently known experimental results, and estimate possible effects on e + e - scattering. Some of the neutral exotics in the composite model, which decouple from neutrinos at low energies, can be as light as the order of the weak boson masses and offer the possibility of detecting sizable effects in the TRISTAN, SLC and LEP energy region. (author)

  7. Phase transitions in the $sdg$ interacting boson model

    OpenAIRE

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2009-01-01

    19 pages, 5 figures, submitted to Nuclear Physics A; A geometric analysis of the $sdg$ interacting boson model is performed. A coherent-state is used in terms of three types of deformation: axial quadrupole ($\\beta_2$), axial hexadecapole ($\\beta_4$) and triaxial ($\\gamma_2$). The phase-transitional structure is established for a schematic $sdg$ hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical ${\\rm U}(5)\\otimes{\\rm U}(9)$, the (prolate and ob...

  8. Multi-Boson Interactions at the Run 1 LHC

    Energy Technology Data Exchange (ETDEWEB)

    Green, Daniel R. [Fermilab; Meade, Patrick [YITP, Stony Brook; Pleier, Marc-Andre [Brookhaven

    2016-10-24

    This review article covers results on the production of all possible electroweak boson pairs and 2-to-1 vector boson fusion (VBF) at the CERN Large Hadron Collider (LHC) in proton-proton collisions at a center-of-mass energy of 7 TeV and 8 TeV. The data was taken between 2010 and 2012. Limits on anomalous triple gauge couplings (aTGCs) then follow. In addition, data on electroweak triple gauge boson production and 2-to-2 vector boson scattering (VBS) yield limits on anomalous quartic gauge boson couplings (aQGCs). The LHC hosts two general purpose experiments, ATLAS and CMS, which both have reported limits on aTGCs and aQGCs which are herein summarized. The interpretation of these limits in terms of an effective field theory (EFT) is reviewed, and recommendations are made for testing other types of new physics using multi-gauge boson production.

  9. Boson-fermion mixtures inside an elongated cigar-shaped trap

    International Nuclear Information System (INIS)

    Akdeniz, Z; Vignolo, P; Tosi, M P

    2005-01-01

    We present mean-field calculations of the equilibrium state in a gaseous mixture of bosonic and spin-polarized fermionic atoms with repulsive or attractive interspecies interactions, confined inside a cigar-shaped trap under conditions such that the radial thickness of the two atomic clouds is approaching the magnitude of the s-wave scattering lengths. In this regime, the kinetic pressure of the fermionic component is dominant. Full demixing under repulsive boson-fermion interactions can occur only when the number of fermions in the trap is below a threshold, and collapse under attractive interactions is suppressed within the range of validity of the mean-field model. Specific numerical illustrations are given for values of system parameters obtaining in 7 Li- 6 Li clouds

  10. First-order corrections to random-phase approximation GW calculations in silicon and diamond

    NARCIS (Netherlands)

    Ummels, R.T.M.; Bobbert, P.A.; van Haeringen, W.

    1998-01-01

    We report on ab initio calculations of the first-order corrections in the screened interaction W to the random-phase approximation polarizability and to the GW self-energy, using a noninteracting Green's function, for silicon and diamond. It is found that the first-order vertex and self-consistency

  11. Calculation of parameters of the interaction potential between excited alkali atoms and mercury atoms: The Cs*, Pr*-Hg interaction

    International Nuclear Information System (INIS)

    Glushkov, A.V.

    1994-01-01

    Based on the method of effective potential involving the new polarization interaction potential calculated from polarization diagrams of the perturbation theory in the Thomas-Fermi approximation, the main parameters of the interatomic potentials (equilibrium distances, potential well depth) are evaluated for a system consisting of an alkali atom in the ground and excited states and of a mercury atom. The results of calculations of quasi-molecular terms for the A-Hg system, where A = Na, Cs, Fr, are reported, some of which are obtained for the first time. A comparison is made with available experimental and theoretical data. 29 refs., 2 figs., 1 tab

  12. Quantum fields and Poisson processes: Interaction of a cut-off boson field with a quantum particle

    International Nuclear Information System (INIS)

    Bertrand, J.; Rideau, G.; Gaveau, B.

    1985-01-01

    The solution of the Schroedinger equation for a boson field interacting with a quantum particle is written as an expectation on a Poisson process counting the variations of the boson-occupation numbers for each momentum. An energy cut-off is needed for the expectation to be meaningful. (orig.)

  13. Nonperturbative stochastic method for driven spin-boson model

    Science.gov (United States)

    Orth, Peter P.; Imambekov, Adilet; Le Hur, Karyn

    2013-01-01

    We introduce and apply a numerically exact method for investigating the real-time dissipative dynamics of quantum impurities embedded in a macroscopic environment beyond the weak-coupling limit. We focus on the spin-boson Hamiltonian that describes a two-level system interacting with a bosonic bath of harmonic oscillators. This model is archetypal for investigating dissipation in quantum systems, and tunable experimental realizations exist in mesoscopic and cold-atom systems. It finds abundant applications in physics ranging from the study of decoherence in quantum computing and quantum optics to extended dynamical mean-field theory. Starting from the real-time Feynman-Vernon path integral, we derive an exact stochastic Schrödinger equation that allows us to compute the full spin density matrix and spin-spin correlation functions beyond weak coupling. We greatly extend our earlier work [P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.032118 82, 032118 (2010)] by fleshing out the core concepts of the method and by presenting a number of interesting applications. Methodologically, we present an analogy between the dissipative dynamics of a quantum spin and that of a classical spin in a random magnetic field. This analogy is used to recover the well-known noninteracting-blip approximation in the weak-coupling limit. We explain in detail how to compute spin-spin autocorrelation functions. As interesting applications of our method, we explore the non-Markovian effects of the initial spin-bath preparation on the dynamics of the coherence σx(t) and of σz(t) under a Landau-Zener sweep of the bias field. We also compute to a high precision the asymptotic long-time dynamics of σz(t) without bias and demonstrate the wide applicability of our approach by calculating the spin dynamics at nonzero bias and different temperatures.

  14. Eikonal Scattering in the sdg Interacting Boson Model:. Analytical Results in the SUsdg(3) Limit and Their Generalizations

    Science.gov (United States)

    Kota, V. K. B.

    General expression for the representation matrix elements in the SUsdg(3) limit of the sdg interacting boson model (sdgIBM) is derived that determine the scattering amplitude in the eikonal approximation for medium energy proton-nucleus scattering when the target nucleus is deformed and it is described by the SUsdg(3) limit. The SUsdg(3) result is generalized to two important situations: (i) when the target nucleus ground band states are described as states arising out of angular momentum projection from a general single Kπ = 0+ intrinsic state in sdg space; (ii) for rotational bands built on one-phonon excitations in sdgIBM.

  15. Entanglement in bipartite pure states of an interacting boson gas obtained by local projective measurements

    International Nuclear Information System (INIS)

    Paraan, Francis N. C.; Korepin, Vladimir E.; Molina-Vilaplana, Javier; Bose, Sougato

    2011-01-01

    We quantify the extractable entanglement of excited states of a Lieb-Liniger gas that are obtained from coarse-grained measurements on the ground state in which the boson number in one of two complementary contiguous partitions of the gas is determined. Numerically exact results obtained from the coordinate Bethe ansatz show that the von Neumann entropy of the resulting bipartite pure state increases monotonically with the strength of repulsive interactions and saturates to the impenetrable-boson limiting value. We also present evidence indicating that the largest amount of entanglement can be extracted from the most probable projected state having half the number of bosons in a given partition. Our study points to a fundamental difference between the nature of the entanglement in free-bosonic and free-fermionic systems, with the entanglement in the former being zero after projection, while that in the latter (corresponding to the impenetrable-boson limit) being nonzero.

  16. Di-boson production measurements with the ATLAS detector

    CERN Document Server

    Chevalier, Laurent

    2015-01-01

    This talk covers the results of the measurements of diboson production cross sections in proton- proton interactions at 7 TeV in 2011 and at 8 TeV in 2012, performed by the ATLAS experiment. The cross sections are measured in phase space regions defined by the decay kinematics, the detector acceptance and then extrapolated to the full phase space. Cross sections for VV (V=W, Z, γ) production in the leptonic or semileptonic channels are compared to (N)NLO predictions of the Standard Model. Kinematic spectra are used to place constraints on anomalous triple-gauge-boson couplings. All cross sections are in agreement with the Standard Model predictions. No experimental evidence is found of anomalous triple-gauge-boson couplings. PACS: 14.70.-e Gauge bosons.

  17. Weak boson emission in hadron collider processes

    International Nuclear Information System (INIS)

    Baur, U.

    2007-01-01

    The O(α) virtual weak radiative corrections to many hadron collider processes are known to become large and negative at high energies, due to the appearance of Sudakov-like logarithms. At the same order in perturbation theory, weak boson emission diagrams contribute. Since the W and Z bosons are massive, the O(α) virtual weak radiative corrections and the contributions from weak boson emission are separately finite. Thus, unlike in QED or QCD calculations, there is no technical reason for including gauge boson emission diagrams in calculations of electroweak radiative corrections. In most calculations of the O(α) electroweak radiative corrections, weak boson emission diagrams are therefore not taken into account. Another reason for not including these diagrams is that they lead to final states which differ from that of the original process. However, in experiment, one usually considers partially inclusive final states. Weak boson emission diagrams thus should be included in calculations of electroweak radiative corrections. In this paper, I examine the role of weak boson emission in those processes at the Fermilab Tevatron and the CERN LHC for which the one-loop electroweak radiative corrections are known to become large at high energies (inclusive jet, isolated photon, Z+1 jet, Drell-Yan, di-boson, tt, and single top production). In general, I find that the cross section for weak boson emission is substantial at high energies and that weak boson emission and the O(α) virtual weak radiative corrections partially cancel

  18. Relationship of field-theory based single-boson-exchange potentials to static ones

    International Nuclear Information System (INIS)

    Amghar, A.; Desplanques, B.

    2000-01-01

    It is shown that field-theory based single-boson-exchange potentials cannot be identified to those of the Yukawa or Coulomb type that are currently inserted in the Schroedinger equation. The potential which is obtained rather correspond to this current single-boson-exchange potential corrected for the probability that the system under consideration is in a two-body component, therefore missing contributions due to the interaction of these two bodies while bosons are exchanged. The role of these contributions, which involve at least two-boson exchanges, is examined. The conditions that allow one to recover the usual single-boson-exchange potential are given. It is shown that the present results have some relation: (i) to the failure of the Bethe-Salpeter equation in reproducing the Dirac or Klein-Gordon equations in the limit where one of the constituents has a large mass, (ii) to the absence of corrections of relative order α log 1/α to a full calculation of the binding energy in the case of neutral massless bosons or (iii) to large corrections of wave-functions calculated perturbatively in some light-front approaches. Refs. 48 (author)

  19. Neutron-capture gamma-ray study of levels in 135Ba and description of nuclear levels in the interacting-boson-fermion model

    International Nuclear Information System (INIS)

    Chrien, R.E.; Koene, B.K.S.; Stelts, M.L.; Meyer, R.A.; Brant, S.; Paar, V.; Lopac, V.

    1993-01-01

    We have performed neutron-capture gamma-ray studies on natural and enriched targets of 134 Ba in order to investigate the nuclear levels of 135 Ba. The low-energy level spectra were compared with the calculations using the interacting-boson-fermion model (IBFM) and the cluster-vibration model. The level densities up to 5 MeV that are calculated within the IBFM are in accordance with the constant temperature Fermi gas model. From the spin distribution we have determined the corresponding spin cutoff parameter σ and compared it to the prediction from nuclear systematics

  20. Bosons system with finite repulsive interaction: self-consistent field method

    International Nuclear Information System (INIS)

    Renatino, M.M.B.

    1983-01-01

    Some static properties of a boson system (T = zero degree Kelvin), under the action of a repulsive potential are studied. For the repulsive potential, a model was adopted consisting of a region where it is constant (r c ), and a decay as 1/r (r > r c ). The self-consistent field approximation used takes into account short range correlations through a local field corrections, which leads to an effective field. The static structure factor S(q-vector) and the effective potential ψ(q-vector) are obtained through a self-consistent calculation. The pair-correlation function g(r-vector) and the energy of the collective excitations E(q-vector) are also obtained, from the structure factor. The density of the system and the parameters of the repulsive potential, that is, its height and the size of the constant region were used as variables for the problem. The results obtained for S(q-vector), g(r-vector) and E(q-vector) for a fixed ratio r o /r c and a variable λ, indicates the raising of a system structure, which is more noticeable when the potential became more repulsive. (author)

  1. Composite weak bosons, anomalous Z decays and other consequences

    International Nuclear Information System (INIS)

    Renard, F.M.

    1984-01-01

    We first recall the motivations for considering W bosons as composite and the possible experimental tests proposed before W, Z discovery. We then present the Z → l + l - γ events and we discuss their possible interpretations (residual interaction, S, Z and l* enhancements). We propose additional tests using other Z and W decay modes like multiphoton and multifermion ones. We notice a possible similar enhancement of the crossed reactions e + e - → Zγ, qantiq → Zγ and of other 2-boson production processes

  2. Photoabsorption in sodium clusters: first principles configuration interaction calculations

    Science.gov (United States)

    Priya, Pradip Kumar; Rai, Deepak Kumar; Shukla, Alok

    2017-05-01

    We present systematic and comprehensive correlated-electron calculations of the linear photoabsorption spectra of small neutral closed- and open-shell sodium clusters (Nan, n = 2 - 6), as well as closed-shell cation clusters (Nan+, n = 3, 5). We have employed the configuration interaction (CI) methodology at the full CI (FCI) and quadruple CI (QCI) levels to compute the ground, and the low-lying excited states of the clusters. For most clusters, besides the minimum energy structures, we also consider their energetically close isomers. The photoabsorption spectra were computed under the electric-dipole approximation, employing the dipole-matrix elements connecting the ground state with the excited states of each isomer. Our calculations were tested rigorously for convergence with respect to the basis set, as well as with respect to the size of the active orbital space employed in the CI calculations. These calculations reveal that as far as electron-correlation effects are concerned, core excitations play an important role in determining the optimized ground state geometries of various clusters, thereby requiring all-electron correlated calculations. But, when it comes to low-lying optical excitations, only valence electron correlation effects play an important role, and excellent agreement with the experimental results is obtained within the frozen-core approximation. For the case of Na6, the largest cluster studied in this work, we also discuss the possibility of occurrence of plasmonic resonance in the optical absorption spectrum. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-70728-3

  3. CdS{sub x}Te{sub 1-x} ternary semiconductors band gaps calculation using ground state and GW approximations

    Energy Technology Data Exchange (ETDEWEB)

    Kheloufi, Nawal; Bouzid, Abderrazak, E-mail: a_bouzid34@hotmail.com

    2016-06-25

    We present band gap calculations of zinc-blende ternary CdS{sub x}Te{sub 1-x} semiconductors within the standard DFT and quasiparticle calculations employing pseudopotential method. The DFT, the local density approximation (LDA) and the Generalized Gradient Approximation (GGA) based calculations have given very poor results compared to experimental data. The quasiparticle calculations have been investigated via the one-shot GW approximation. The present paper discuses and confirms the effect of inclusion of the semicore states in the cadmium (Cd) pseudopotential. The obtained GW quasiparticle band gap using Cd{sup +20} pseudopotential has been improved compared to the obtained results from the available pseudopotential without the treatment of semicore states. Our DFT and quasiparticle band gap results are discussed and compared to the available theoretical calculations and experimental data. - Graphical abstract: Band gaps improvement concerning the binary and ternary alloys using the GW approximation and Cd{sup 20+} pseudopotential with others levels of approximations (the LDA and GGA approximation employing the Cd{sup 12+} and the LDA within Cd{sup 20+} pseudopotential). - Highlights: • The direct Γ- Γ and indirect Γ- X and Γ- L bands gaps show a nonlinear behavior when S content is enhanced. • The quasiparticle band gap result for the investigated semiconductors is improved using the GW approximation. • All CdS{sub x}Te{sub 1-x} compounds in all compositions range from 0 to 1 are direct band gap semiconductors.

  4. Hyperquarks and bosonic preon bound states

    International Nuclear Information System (INIS)

    Schmid, Michael L.; Buchmann, Alfons J.

    2009-01-01

    In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin-(1/2) preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular, those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on, respectively, the effective gauge groups SU(6) P and SU(9) G . This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.

  5. Control dynamics of interaction quenched ultracold bosons in periodically driven lattices

    Science.gov (United States)

    Mistakidis, Simeon; Schmelcher, Peter; Group of Fundamental Processes in Quantum Physics Team

    2016-05-01

    The out-of-equilibrium dynamics of ultracold bosons following an interaction quench upon a periodically driven optical lattice is investigated. It is shown that an interaction quench triggers the inter-well tunneling dynamics, while for the intra-well dynamics breathing and cradle-like processes can be generated. In particular, the occurrence of a resonance between the cradle and tunneling modes is revealed. On the other hand, the employed periodic driving enforces the bosons in the mirror wells to oscillate out-of-phase and to exhibit a dipole mode, while in the central well the cloud experiences a breathing mode. The dynamical behaviour of the system is investigated with respect to the driving frequency revealing a resonant behaviour of the intra-well dynamics. To drive the system in a highly non-equilibrium state an interaction quench upon the driving is performed giving rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result of the quench the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Deutsche Forschungsgemeinschaft, SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  6. Continuous approximation for interaction energy of adamantane encapsulated inside carbon nanotubes

    Science.gov (United States)

    Baowan, Duangkamon; Hill, James M.; Bacsa, Wolfgang

    2018-02-01

    The interaction energy for two adjacent adamantane molecules and that of adamantane molecules encapsulated inside carbon nanotubes are investigated considering only dipole-dipole induced interaction. The Lennard-Jones potential and the continuous approximation are utilised to derive analytical expressions for these interaction energies. The equilibrium distance 3.281 Å between two adamantane molecules is determined. The smallest carbon nanotube radius b0 that can encapsulate the adamantane molecule and the radius of the tube bmax that gives the maximum suction energy, linearly depend on the adamantane radius, are calculated. For larger diameter tubes, the off axis position has been calculated, and equilibrium distance between molecule and tube wall is found to be close to the interlayer spacing in graphene.

  7. Higgs boson phenomenology at the LHC

    International Nuclear Information System (INIS)

    Kirchner, Sebastian

    2016-01-01

    The outstanding performance of the Large Hadron Collider (LHC) led to the discovery of the Higgs boson in 2012. The paramount endeavour after this discovery is the examination of the Higgs-boson properties, amongst others the determination of its CP quantum number and total decay width. The experimental analysis of both properties requires precise theoretical input within the Standard Model of particle physics. Theoretical methods and predictions at next-to-leading-order (NLO) in perturbative Quantum Chromodynamics (QCD), addressing the CP nature and decay width of the Higgs boson, are presented in this thesis. The thesis is split in two parts: The first part addresses the Caola-Melnikov method, which is utilised to constrain the Higgs width that is experimentally not directly measurable. The method relies on cross section measurements on and far off the Higgs boson peak. Two-loop corrections via a heavy top quark to the gluon-gluon initialised Z boson pair-production are examined as an expansion about the heavy-top limit combined with a conformal mapping and Pade approximants. The impact of the full NLO QCD corrections to the signal and background cross sections, relevant for bounding the Higgs width, is investigated. The second part of this thesis examines how precisely the CP nature of the Higgs boson can be unravelled in its decay to tau lepton pairs. All subsequent major charged-prong decays of the tau leptons are included.The impact parameter method is utilised and allows to extract the CP-mixing angle of the Higgs boson from the distribution of a signed angle. NLO QCD predictions for the signal process as well as the Drell-Yan background, including a Monte Carlo simulation of measurement uncertainties, are computed. Energy and angular correlations of the charged prongs are analysed and used to suppress the Drell-Yan background contribution. In a second step, the sensitivity to the CP-mixing angle is increased by combining the impact parameter method with the

  8. From the shell model to the interacting boson model

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Johnson, C.W.

    1994-01-01

    Starting from a general, microscopic fermion-pair-to-boson mapping of a complete fermion space that preserves Hermitian conjugation, we show that the resulting infinite and non-convergent boson Hamilitonian can be factored into a finite (e.g., a 1 + 2-body fermion Hamiltonian is mapped to a 1 + 2-body boson Hamiltonian) image Hamilitonian times the norm operator, and it is the norm operator that is infinite and non-convergent. We then truncate to a collective boson space and we give conditions under which the exact boson images of finite fermion operators are also finite in the truncated basis

  9. Finite boson mappings of fermion systems

    International Nuclear Information System (INIS)

    Johnson, C.W.; Ginocchio, J.N.

    1994-01-01

    We discuss a general mapping of fermion pairs to bosons that preserves Hermitian conjugation, with an eye towards producing finite and usable boson Hamiltonians that approximate well the low-energy dynamics of a fermion Hamiltonian

  10. Monte Carlo simulation of lattice bosons in three dimensions

    International Nuclear Information System (INIS)

    Blaer, A.; Han, J.

    1992-01-01

    We present an algorithm for calculating the thermodynamic properties of a system of nonrelativistic bosons on a three-dimensional spatial lattice. The method, which maps the three-dimensional quantum system onto a four-dimensional classical system, uses Monte Carlo sampling of configurations in either the canonical or the grand canonical ensemble. Our procedure is applicable to any system of lattice bosons with arbitrary short-range interactions. We test the algorithm by computing the temperature dependence of the energy, the heat capacity, and the condensate fraction of the free Bose gas

  11. Approximate method for calculating heat conditions in the magnetic circuits of transformers and betatrons

    International Nuclear Information System (INIS)

    Loginov, V.S.

    1986-01-01

    A technique for engineering design of two-dimensional stationary temperature field of rectangular cross section blending pile with inner heat release under nonsymmetrical cooling conditions is suggested. Area of its practical application is determined on the basis of experimental data known in literature. Different methods for calculating temperature distribution in betatron magnetic circuit are compared. Graph of maximum temperature calculation error on the basis of approximated expressions with respect to exact solution is given

  12. Investigation of Trilinear Vector Boson Couplings Through W Boson Pair Production in Dilepton Decay Channels

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Paul Craig [Univ. of California, Davis, CA (United States)

    1998-03-01

    An investigation of the interactions between the $W$ boson and the $Z$ boson and photon through the pair production of bosons is presented. This has been accomplished via a study of the reaction $p\\overline{p} \\to \\ell\\overline{\

  13. sdg Interacting boson model: two nucleon transfer

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1996-01-01

    A brief overview of the sdg interacting boson model (sdg IBM) is given. The two examples: (i) spectroscopic properties (spectra, B(E2)s, B(E4)s etc) of the rotor-γ unstable transitional Os-Pt isotopes and (ii) the analytical formulation of two nucleon transfer spectroscopic factors and sum-rule quantities are described in detail. They demonstrate that sdg IBM can be employed for systematic description of spectroscopic properties of nuclei and that large number of analytical formulas, which facilitate rapid analysis of data and provide a clear insight into the underlying structures, can be derived using sdg IBM dynamical symmetries respectively. (author). 24 refs., 5 figs., 3 tabs

  14. Numerical simulation of bosonic-superconducting-string interactions

    International Nuclear Information System (INIS)

    Laguna, P.; Matzner, R.A.

    1990-01-01

    Numerical simulations show that bosonic superconducting U(1) gauge cosmic strings interact by reconnecting and chopping off in a fashion similar to nonconducting strings. Cancellation of the electromagnetic current occurs when, in one of the strings, the direction of the U(1) gauge magnetic field is opposite to the electromagnetic current flow. Electric charge accumulates on the segments of the reconnected strings where the current is discontinuous or vanishes. A virtual photon appears after the collision and intercommutation, and a bubble of electromagnetic radiation emerges as the currents in the reconnected strings equalize. These phenomena suggest new possible mechanisms for void production in the large-scale distribution of galaxies

  15. Green’s functions for spin boson systems: Beyond conventional perturbation theories

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Junjie [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Xu, Hui [Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Wu, Chang-Qin [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)

    2016-12-20

    Unraveling general properties of Green’s functions of quantum dissipative systems is of both experimental relevance and theoretical interest. Here, we study the spin-boson model as a prototype. By utilizing the Majorana-fermion representation together with the polaron transformation, we establish a theoretical approach to analyze Green’s functions of the spin-boson model. In contrast to conventional perturbation theories either in the tunneling energy or in the system-bath coupling strength, the proposed scheme gives reliable results over wide regimes of the coupling strength, bias, as well as temperature. To demonstrate the utility of the approach, we consider the susceptibility as well as the symmetrized spin correlation function (SSCF) which can be expressed in terms of Green’s functions. Thorough investigations are made on systems embedded in Ohmic or sub-Ohmic bosonic baths. We found the so-obtained SSCF is the same as that of the non-interacting blip approximation (NIBA) in unbiased systems while it is applicable for a wider range of temperature in the biased systems compared with the NIBA. We also show that a previous perturbation result is recovered as a weak coupling limit of the so-obtained SSCF. Furthermore, by studying the quantum criticality of the susceptibility, we confirm the validity of the quantum-to-classical mapping in the whole sub-Ohmic regime.

  16. On the bosonic atoms

    Science.gov (United States)

    Amusia, M. Ya.; Chernysheva, L. V.

    2018-01-01

    We investigate ground state properties of atoms, in which substitute fermions - electrons by bosons, namely π --mesons. We perform some calculations in the frame of modified Hartree-Fock (HF) equation. The modification takes into account symmetry, instead of anti-symmetry of the pair identical bosons wave function. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms "by hand". The contribution of meson-meson and meson-nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions A π - , pion atoms A π , and the number of extra bound pions ΔN π increases with the growth of nuclear charge Z. For e.g. Xe ΔN π = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.

  17. Quantum corrections to Drell-Yan production of Z bosons

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakova, Elena S.

    2011-08-15

    In this thesis, we present higher-order corrections to inclusive Z-boson hadroproduction via the Drell-Yan mechanism, h{sub 1}+h{sub 2}{yields}Z+X, at large transverse momentum (q{sub T}). Specifically, we include the QED, QCD and electroweak corrections of orders O({alpha}{sub S}{alpha}, {alpha}{sub S}{sup 2}{alpha}, {alpha}{sub S}{alpha}{sup 2}). We work in the framework of the Standard Model and adopt the MS scheme of renormalization and factorization. The cross section of Z-boson production has been precisely measured at various hadron-hadron colliders, including the Tevatron and the LHC. Our calculations will help to calibrate and monitor the luminosity and to estimate of backgrounds of the hadron-hadron interactions more reliably. Besides the total cross section, we study the distributions in the transverse momentum and the rapidity (y) of the Z boson, appropriate for Tevatron and LHC experimental conditions. Investigating the relative sizes fo the various types of corrections by means of the factor K = {sigma}{sub tot} / {sigma}{sub Born}, we find that the QCS corrections of order {alpha}{sub S}{sup 2}{alpha} are largest in general and that the electroweak corrections of order {alpha}{sub S}{alpha}{sup 2} play an important role at large values of q{sub T}, while the QED corrections at the same order are small, of order 2% or below. We also compare out results with the existing literature. We correct a few misprints in the original calculation of the QCD corrections, and find the published electroweak correction to be incomplete. Our results for the QED corrections are new. (orig.)

  18. Microscopic mean-field boson approach to the shape transition in Sm isotopes

    International Nuclear Information System (INIS)

    Kuchta, R.

    1988-01-01

    The phase transition from spherical to deformed shape in Sm 146-156 nuclei is analyzed within the mean-field approximation applied to the Dyson image of the shell-model Hamiltonian. No quasiparticle transformation is involved in the present approach and the Pauli principle in the physical boson subspace is properly taken into account. The low-lying spectra, B(E2; O 1 + →2 + ) probabilities and the corresponding densities of electromagnetic transitions are calculated. The results provide a reasonable explanation of the phase transition in the Sm isotopes. The role of bosons with different multipolarity is investigated and it is found that g-bosons (J=4) cannot be neglected in the transition region. Comparison of the present results with those of other approaches is given as well

  19. Can one really observe signatures of the weak interaction with multi-TeV colliding hadron rings

    International Nuclear Information System (INIS)

    Halzen, F.

    1977-01-01

    We discuss two possible signatures of weak interactions in multi-TeV hadron-hadron collisions: (i) production of the weak boson W/sup plus-or-minus/ and its neutral partner Z; (ii) observation of secondaries with transverse momentum so large that they cannot be electromagnetic or strong in origin. After summarizing theoretical prejudices on the properties of weak bosons and their production mechanism, we calculate their actual experimental signature, i.e., the momentum distributions of their decay lepton, as well as the competing backgrounds. Contrary to popular belief, we conclude that the weak-boson signature is not expected to be pronounced and backgrounds could be severe (especially the production of direct photons). Our calculation reinforces the case for antiproton-proton storage rings

  20. HNC variational calculations of boson matter

    International Nuclear Information System (INIS)

    Lantto, L.J.; Jackson, A.D.; Siemens, P.J.

    1977-01-01

    A simple and reliable numerical technique is given for determining the two-body distribution function which minimizes the HNC energy of boson matter. Numerical results are presented for the neutron matter homework problem and the 4 He Lennard-Jones potential. The resulting distribution function is found to have proper asymptotic behaviour and yields reasonable binding energies. (Auth.)

  1. Energy of N two-dimensional bosons with zero-range interactions

    Science.gov (United States)

    Bazak, B.; Petrov, D. S.

    2018-02-01

    We derive an integral equation describing N two-dimensional bosons with zero-range interactions and solve it for the ground state energy B N by applying a stochastic diffusion Monte Carlo scheme for up to 26 particles. We confirm and go beyond the scaling B N ∝ 8.567 N predicted by Hammer and Son (2004 Phys. Rev. Lett. 93 250408) in the large-N limit.

  2. NBI Calculations for the TJ-II Experimental discharges

    International Nuclear Information System (INIS)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2004-01-01

    Calculations for NBI losses, absorption and power deposition radial profiles, corresponding to the experimental TJ-II campaigns 2003-2004, have been fitted to simple functionals in order to allow a fast approximative evaluation for any given density. The average difference between the calculations for the individual discharges using the experimental density and temperature radial profiles and the fit predictions are between 10 and 15% and the behaviour with density is the expected one: nonotonic decrease of shine through losses and increase of absorption with incipient saturation for high densities. The fast ion birth radial profile narrows initially at low densities but later starts to widen, although, for the average line density range analysed (0.51 a 4.1x10''13 cm''-3), never are wide enough to induce an increase of direct orbit losses neither to produce hollow radial profiles. The power absorption radial profile widens nonotonically. There exist Fortran subroutines, available at the three CIEMAT computers, allowing the fast approximative evaluation of all these values. (Author) 8 refs

  3. Some approximate calculations in SU2 lattice mean field theory

    International Nuclear Information System (INIS)

    Hari Dass, N.D.; Lauwers, P.G.

    1981-12-01

    Approximate calculations are performed for small Wilson loops of SU 2 lattice gauge theory in mean field approximation. Reasonable agreement is found with Monte Carlo data. Ways of improving these calculations are discussed. (Auth.)

  4. Search for a Higgs boson produced in association with a W boson at ATLAS

    International Nuclear Information System (INIS)

    Ruckert, Benjamin

    2009-01-01

    The Large Hadron Collider at CERN the most modern proton-proton collider and data taking will start in 2009, with a centre-of-mass energy of √(s) = 7 TeV. The ATLAS detector, which is one of two multi-purpose detectors at the Large Hadron Collider, is able to detect a Standard Model Higgs boson if it exists. This is one of the main tasks of the ATLAS experiment. This thesis deals with a Standard Model Higgs boson produced in association with a W boson. The Monte Carlo study is based on physics events generated at the nominal centre-of-mass energy of the Large Hadron Collider of √(s) = 14 TeV. Large parts of this analysis have been done using the global Grid infrastructure of the Large Hadron Collider experiments. A mass range of the Higgs boson of m H = 130 - 190 GeV has been taken into account. In this mass range, the Higgs boson dominantly decays into a pair of W bosons, leading to initially three W bosons: WH→WWW. Two orthogonal analysis channels have been investigated in detailed studies of the background properties. The first channel considers the leptonic decay of two W bosons, such that the leptons are of opposite charge. The third W boson then decays hadronically. The analysis is based on one-dimensional cuts, where the best cuts found are strict cuts on the transverse momenta of the leptons, a cut on the invariant mass of the jets, as well as a cut on the transverse jet momenta and the missing transverse energy. The second decay channel studied is dedicated to the leptonic decay of all three W bosons. Again, cuts on the transverse momenta of the leptons and the jets have been proven to be efficient, as well as the use of the spatial correlation of the decay products of the Higgs boson. The invariant mass of the leptons with opposite sign has been emerged as a very efficient cut to reject dominant diboson background contributions. The discovery reach of both channels separately as well as the combination has been calculated using Bayesian methods. The

  5. Search for a Higgs boson produced in association with a W boson at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Ruckert, Benjamin

    2009-11-23

    The Large Hadron Collider at CERN the most modern proton-proton collider and data taking will start in 2009, with a centre-of-mass energy of {radical}(s) = 7 TeV. The ATLAS detector, which is one of two multi-purpose detectors at the Large Hadron Collider, is able to detect a Standard Model Higgs boson if it exists. This is one of the main tasks of the ATLAS experiment. This thesis deals with a Standard Model Higgs boson produced in association with a W boson. The Monte Carlo study is based on physics events generated at the nominal centre-of-mass energy of the Large Hadron Collider of {radical}(s) = 14 TeV. Large parts of this analysis have been done using the global Grid infrastructure of the Large Hadron Collider experiments. A mass range of the Higgs boson of m{sub H} = 130 - 190 GeV has been taken into account. In this mass range, the Higgs boson dominantly decays into a pair of W bosons, leading to initially three W bosons: WH{yields}WWW. Two orthogonal analysis channels have been investigated in detailed studies of the background properties. The first channel considers the leptonic decay of two W bosons, such that the leptons are of opposite charge. The third W boson then decays hadronically. The analysis is based on one-dimensional cuts, where the best cuts found are strict cuts on the transverse momenta of the leptons, a cut on the invariant mass of the jets, as well as a cut on the transverse jet momenta and the missing transverse energy. The second decay channel studied is dedicated to the leptonic decay of all three W bosons. Again, cuts on the transverse momenta of the leptons and the jets have been proven to be efficient, as well as the use of the spatial correlation of the decay products of the Higgs boson. The invariant mass of the leptons with opposite sign has been emerged as a very efficient cut to reject dominant diboson background contributions. The discovery reach of both channels separately as well as the combination has been calculated using

  6. Associated heavy quarks pair production with Higgs as a tool for a search for non-perturbative effects of the electroweak interaction at the LHC

    Directory of Open Access Journals (Sweden)

    B.A. Arbuzov

    2017-09-01

    Full Text Available Assuming an existence of the anomalous triple electro-weak bosons interaction being defined by coupling constant λ we calculate its contribution to interactions of the Higgs with pairs of heavy particles. Bearing in mind experimental restrictions −0.011<λ<0.011 we present results for possible effects in processes pp→W+W−H,pp→W+ZH,pp→W−ZH,pp→t¯tH, pp→b¯bH. Effects could be significant with negative sign of λ in associated heavy quarks t,b pairs production with the Higgs. In calculations we rely on results of the non-perturbative approach to a spontaneous generation of effective interactions, which defines the form-factor of the three-boson anomalous interaction.

  7. EM Transition Sum Rules Within the Framework of sdg Proton-Neutron Interacting Boson Model, Nuclear Pair Shell Model and Fermion Dynamical Symmetry Model

    Science.gov (United States)

    Zhao, Yumin

    1997-07-01

    By the techniques of the Wick theorem for coupled clusters, the no-energy-weighted electromagnetic sum-rule calculations are presented in the sdg neutron-proton interacting boson model, the nuclear pair shell model and the fermion-dynamical symmetry model. The project supported by Development Project Foundation of China, National Natural Science Foundation of China, Doctoral Education Fund of National Education Committee, Fundamental Research Fund of Southeast University

  8. Standard Model theory calculations and experimental tests

    International Nuclear Information System (INIS)

    Cacciari, M.; Hamel de Monchenault, G.

    2015-01-01

    To present knowledge, all the physics at the Large Hadron Collider (LHC) can be described in the framework of the Standard Model (SM) of particle physics. Indeed the newly discovered Higgs boson with a mass close to 125 GeV seems to confirm the predictions of the SM. Thus, besides looking for direct manifestations of the physics beyond the SM, one of the primary missions of the LHC is to perform ever more stringent tests of the SM. This requires not only improved theoretical developments to produce testable predictions and provide experiments with reliable event generators, but also sophisticated analyses techniques to overcome the formidable experimental environment of the LHC and perform precision measurements. In the first section, we describe the state of the art of the theoretical tools and event generators that are used to provide predictions for the production cross sections of the processes of interest. In section 2, inclusive cross section measurements with jets, leptons and vector bosons are presented. Examples of differential cross sections, charge asymmetries and the study of lepton pairs are proposed in section 3. Finally, in section 4, we report studies on the multiple production of gauge bosons and constraints on anomalous gauge couplings

  9. High-spin level structure and Ground-state phase transition in the odd-mass 103-109Rh isotopes in the framework of exactly solvable sdg interacting boson-fermion model

    Science.gov (United States)

    Ghapanvari, M.; Ghorashi, A. H.; Ranjbar, Z.; Jafarizadeh, M. A.

    2018-03-01

    In this article, the negative-parity states in the odd-mass 103 - 109Rh isotopes in terms of the sd and sdg interacting-boson fermion models were studied. The transitional interacting boson-fermion model Hamiltonians in sd and sdg-IBFM versions based on affine SU (1 , 1) Lie Algebra were employed to describe the evolution from the spherical to deformed gamma unstable shapes along with the chain of Rh isotopes. In this method, sdg-IBFM Hamiltonian, which is a three level pairing Hamiltonian was determined easily via the exactly solvable method. Some observables of the shape phase transitions such as energy levels, the two neutron separation energies, signature splitting of the γ-vibrational band, the α-decay and double β--decay energies were calculated and examined for these isotopes. The present calculation correctly reproduces the spherical to gamma-soft phase transition in the Rh isotopes. Some comparisons were made with sd-IBFM.

  10. ATLAS measurement of Electroweak Vector Boson production

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00453010; The ATLAS collaboration

    2017-01-01

    The measurements of the Drell-Yan production of W and Z/γ⁎ bosons at the LHC provide a benchmark of our understanding of the perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements of the double differential cross-sections as a function of the dilepton mass and rapidity. The measurements are compared to state of calculations at NNLO in QCD and constrain the photon content of the proton. The angular distributions of the Drell-Yan lepton pairs around the Z-boson mass peak probe the underlying QCD dynamics of the Z-boson production mechanisms. The complete set of angular coefficients describing these distributions is presented and compared to theoretical predictions highlighting different approaches of the QCD and EW modelling. First precise inclusive measurements of W and Z production at 13 TeV are presented. $W/Z$ and $W^{+}/W^{−}$ ratios profit from a cancellation of experimental uncertainties.

  11. Finding the Higgs boson: A status report

    International Nuclear Information System (INIS)

    Dawson, S.

    1995-01-01

    The search for the Higgs boson of the minimal Standard Model has been a major focus of experimental high energy physics for some years now. Here, the authors review the current experimental limits and discuss the prospects for finding the Higgs boson at future accelerators, such as LEPII and the LHC. They consider only the Standard Model Higgs boson. Since a null result which definitively excluded a Higgs boson below some mass scale would be extremely important, they emphasize the case where the Higgs boson is much heavier than the relevant collider energy (or where there is no Higgs boson at all). Many of the results given here are a summary of those obtained by the DPF Committee on Long Term Planning

  12. Anomalous couplings, resonances and unitarity in vector boson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sekulla, Marco

    2015-12-04

    freedoms, separately. The necessity of these additional resonance, especially for weakly coupled resonances, are manifest by comparing vector boson scattering distributions of the resonance model and of the corresponding effective field theory operators, where the resonance is integrated out. For different parameter sets, the distributions of vector boson scattering processes for the large hadron collider at center of mass energy of √(s)=14 TeV are calculated with the Monte-Carlo generator WHIZARD. As part of this thesis, the resonance model and the effective field operators including the T-matrix unitarization scheme are implemented in WHIZARD. With the WHIZARD models SSC2, SSCAltT and SMul, a tool-set is provided to study new physic in the Goldstone boson/Higgs sector within complete experimental analysis at the large hadron collider or other future colliders.

  13. Theoretical & Experimental Research in Weak, Electromagnetic & Strong Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Satyanarayan [Oklahoma State Univ., Stillwater, OK (United States); Babu, Kaladi [Oklahoma State Univ., Stillwater, OK (United States); Rizatdinova, Flera [Oklahoma State Univ., Stillwater, OK (United States); Khanov, Alexander [Oklahoma State Univ., Stillwater, OK (United States); Haley, Joseph [Oklahoma State Univ., Stillwater, OK (United States)

    2015-09-17

    The conducted research spans a wide range of topics in the theoretical, experimental and phenomenological aspects of elementary particle interactions. Theory projects involve topics in both the energy frontier and the intensity frontier. The experimental research involves energy frontier with the ATLAS Collaboration at the Large Hadron Collider (LHC). In theoretical research, novel ideas going beyond the Standard Model with strong theoretical motivations were proposed, and their experimental tests at the LHC and forthcoming neutrino facilities were outlined. These efforts fall into the following broad categories: (i) TeV scale new physics models for LHC Run 2, including left-right symmetry and trinification symmetry, (ii) unification of elementary particles and forces, including the unification of gauge and Yukawa interactions, (iii) supersummetry and mechanisms of supersymmetry breaking, (iv) superworld without supersymmetry, (v) general models of extra dimensions, (vi) comparing signals of extra dimensions with those of supersymmetry, (vii) models with mirror quarks and mirror leptons at the TeV scale, (viii) models with singlet quarks and singlet Higgs and their implications for Higgs physics at the LHC, (ix) new models for the dark matter of the universe, (x) lepton flavor violation in Higgs decays, (xi) leptogenesis in radiative models of neutrino masses, (xii) light mediator models of non-standard neutrino interactions, (xiii) anomalous muon decay and short baseline neutrino anomalies, (xiv) baryogenesis linked to nucleon decay, and (xv) a new model for recently observed diboson resonance at the LHC and its other phenomenological implications. The experimental High Energy Physics group has been, and continues to be, a successful and productive contributor to the ATLAS experiment at the LHC. Members of the group performed search for gluinos decaying to stop and top quarks, new heavy gauge bosons decaying to top and bottom quarks, and vector-like quarks

  14. Collective and boson mapping description of a system of N Josephson junctions in a resonant cavity

    International Nuclear Information System (INIS)

    Ballesteros, A.; Civitarese, O.; Herranz, F.J.; Reboiro, M.

    2003-01-01

    A system of N two-level Josephson junctions, interacting between themselves and with a single-mode cavity field, is described in terms of the superposition of fermionic and bosonic excitations. The results of the exact diagonalization are compared with the results of the Tamm-Dancoff approximation and with the results of a boson mapping. It is found that the boson mapping provides a suitable description of the spectrum, sum rules, and response function of the system. The dependence of the results upon the number of junctions, the excitation of the cavity modes, and the coupling strengths is investigated

  15. Higgs bosons in the two-doublet model with CP violation

    International Nuclear Information System (INIS)

    Akhmetzyanova, E.; Dolgopolov, M.; Dubinin, M.

    2005-01-01

    We consider the effective two-Higgs-doublet potential with complex parameters, when the CP invariance is broken both explicitly and spontaneously. The diagonal mass term in the local minimum of the potential is constructed for the physical basis of Higgs fields, keeping explicitly the limiting case of CP conservation, if the parameters are taken real. For the special case of the two-doublet Higgs sector of the minimal supersymmetric model, when CP invariance is violated by the Higgs bosons interaction with scalar quarks of the third generation, we calculate by means of the effective potential method the Higgs boson masses and evaluate the two-fermion Higgs boson decay widths and the widths of rare one-loop-mediated decays H→γγ, H→gg

  16. ATLAS measurements of vector boson production

    CERN Document Server

    Vittori, Camilla; The ATLAS collaboration

    2016-01-01

    Measurements of the Drell­Yan production of W and Z/gamma* bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center­of­mass energies of 8 and 13 TeV. In the 8 TeV data, we present recent measurements in the di­lepton mass range up to the TeV scale, double­differentially in dilepton mass and rapidity(­separation). The measurements are compared to state­of­the­art calculations at NNLO in QCD and constrain the photon content of the proton. First precise inclusive measurements of W and Z production at 13 TeV are presented. W/Z and W charge ratios profit from a cancellation of experimental uncertainties. The angular distributions of the Drell­Yan lepton pairs around the Z­boson mass peak probe the underlying QCD dynamic of the Z­boson production mechanisms. We present a measurement of the complete set of angular coefficients describing these distributions...

  17. Production of heavy neutral MSSM Higgs boson in photon-electron colliders

    International Nuclear Information System (INIS)

    Mahmoud, I.S.H.

    2004-01-01

    The production of heavy neutral Higgs boson has been studied through all the possible three out states processes by using the minimal supersymmetric standard model (MSSM) in the photon - electron colliders. The Feynman diagrams have been drawing for each possible mode of the interaction. The total cross section as a function of center of mass energy has been calculated for each process. It has been found that, the most dominant process occurs when the heavy neutral Higgs boson (Hο) produces with e-neutrino (v e ) and the negative charged Higgs boson (H - ) at centre of mass energy -√s≡ 1430 GeV at a value of the order ≅ 1.0 x 10 -4 pbarn

  18. An approximate but efficient method to calculate free energy trends by computer simulation: Application to dihydrofolate reductase-inhibitor complexes

    Science.gov (United States)

    Gerber, Paul R.; Mark, Alan E.; van Gunsteren, Wilfred F.

    1993-06-01

    Derivatives of free energy differences have been calculated by molecular dynamics techniques. The systems under study were ternary complexes of Trimethoprim (TMP) with dihydrofolate reductases of E. coli and chicken liver, containing the cofactor NADPH. Derivatives are taken with respect to modification of TMP, with emphasis on altering the 3-, 4- and 5-substituents of the phenyl ring. A linear approximation allows the encompassing of a whole set of modifications in a single simulation, as opposed to a full perturbation calculation, which requires a separate simulation for each modification. In the case considered here, the proposed technique requires a factor of 1000 less computing effort than a full free energy perturbation calculation. For the linear approximation to yield a significant result, one has to find ways of choosing the perturbation evolution, such that the initial trend mirrors the full calculation. The generation of new atoms requires a careful treatment of the singular terms in the non-bonded interaction. The result can be represented by maps of the changed molecule, which indicate whether complex formation is favoured under movement of partial charges and change in atom polarizabilities. Comparison with experimental measurements of inhibition constants reveals fair agreement in the range of values covered. However, detailed comparison fails to show a significant correlation. Possible reasons for the most pronounced deviations are given.

  19. Where Is Higgs Boson?

    CERN Multimedia

    2008-01-01

    Quantum physicists think they know the answer. Probabilistic calculations reveal than the data provided by previous experiments has been miscalculated and that the Higgs boson has in fact been discovered. Weird! The Higgs boson is the only particle predicted by the Standard Model that hasn't been discovered yet.

  20. G-Boson renormalizations and mixed symmetry states

    International Nuclear Information System (INIS)

    Scholten, O.

    1986-01-01

    In the IBA model the low-lying collective states are described in terms of a system of interacting s- and d-bosons. A boson can be interpreted as corresponding to collective J=0 or J=2 fermion pair states. As such the IBA model space can be seen as only a small subsector of the full shell model space. For medium heavy nuclei such a truncation of the model space is necessary to make calculations feasible. As is well known truncations of a model space make it necessary to renormalize the model parameters. In this work some renormalizations of the Hamiltonian and the E2 transition operator will be discussed. Special attention will be given to the implication of these renormalizations for the properties of mixed symmetry states. The effects of renormalization are obtained by considering the influence of fermion pair states that have been omitted from the model basis. Here the authors focus attention on the effect of the low-lying two particle J=4 state, referred to as g-boson or G-pair state. Renormalizations of the d-boson energy, the E2 effective charges, and symmetry force are discussed

  1. Solvable Model of a Generic Trapped Mixture of Interacting Bosons: Many-Body and Mean-Field Properties

    Science.gov (United States)

    Klaiman, S.; Streltsov, A. I.; Alon, O. E.

    2018-04-01

    A solvable model of a generic trapped bosonic mixture, N 1 bosons of mass m 1 and N 2 bosons of mass m 2 trapped in an harmonic potential of frequency ω and interacting by harmonic inter-particle interactions of strengths λ 1, λ 2, and λ 12, is discussed. It has recently been shown for the ground state [J. Phys. A 50, 295002 (2017)] that in the infinite-particle limit, when the interaction parameters λ 1(N 1 ‑ 1), λ 2(N 2 ‑ 1), λ 12 N 1, λ 12 N 2 are held fixed, each of the species is 100% condensed and its density per particle as well as the total energy per particle are given by the solution of the coupled Gross-Pitaevskii equations of the mixture. In the present work we investigate properties of the trapped generic mixture at the infinite-particle limit, and find differences between the many-body and mean-field descriptions of the mixture, despite each species being 100%. We compute analytically and analyze, both for the mixture and for each species, the center-of-mass position and momentum variances, their uncertainty product, the angular-momentum variance, as well as the overlap of the exact and Gross-Pitaevskii wavefunctions of the mixture. The results obtained in this work can be considered as a step forward in characterizing how important are many-body effects in a fully condensed trapped bosonic mixture at the infinite-particle limit.

  2. Efimov States of Heavy Impurities in a Bose-Einstein Condensate

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas

    2013-01-01

    We consider the problem of two heavy impurity particles embedded in a gas of weakly-interacting light mass bosonic particles in the condensed state. Using the Bogoliubov approach to describe the bosonic gas and the Born-Oppenheimer approximation for the three-body dynamics, we calculate the modif......We consider the problem of two heavy impurity particles embedded in a gas of weakly-interacting light mass bosonic particles in the condensed state. Using the Bogoliubov approach to describe the bosonic gas and the Born-Oppenheimer approximation for the three-body dynamics, we calculate...... the modification to the heavy-heavy two-body potential due to the presence of the condensate. For the case of resonant interaction between the light bosons and the impurities, we present (semi)-analytical results for the potential in the limit of a large condensate coherence length. In particular, we find...

  3. A nucleon-pair and boson coexistent description of nuclei

    Science.gov (United States)

    Dai, Lianrong; Pan, Feng; Draayer, J. P.

    2017-07-01

    We study a mixture of s-bosons and like-nucleon pairs with the standard pairing interaction outside an inert core. Competition between the nucleon-pairs and s-bosons is investigated in this scenario. The robustness of the BCS-BEC coexistence and crossover phenomena are examined through an analysis of pf-shell nuclei with realistic single-particle energies, in which two configurations with Pauli blocking of nucleon-pair orbits due to the formation of the s-bosons is taken into account. When the nucleon-pair orbits are considered to be independent of the s-bosons, the BCS-BEC crossover becomes smooth, with the number of the s-bosons noticeably more than that of the nucleon-pairs near the half-shell point, a feature that is demonstrated in the pf-shell for several values of the standard pairing interaction strength. As a further test of the robustness of the BCS-BEC coexistence and crossover phenomena in nuclei, results are given for values of even-even 102-130Sn with 100Sn taken as a core and valence neutron pairs confined within the 1d 5/2, 0g 7/2, 1d 3/2, 2s 1/2, 1h 11/2 orbits in the nucleon-pair orbit and the s-boson independent approximation. The results indicate that the B(E2) values are reproduced well. Supported by National Natural Science Foundation of China (11375080, 11675071), the U.S. National Science Foundation (OCI-0904874 and ACI-1516338), U. S. Department of Energy (DE-SC0005248), the Southeastern Universities Research Association, the China-U. S. Theory Institute for Physics with Exotic Nuclei (CUSTIPEN) (DE-SC0009971), and the LSU-LNNU joint research program (9961) is acknowledged

  4. Topological Edge-State Manifestation of Interacting 2D Condensed Boson-Lattice Systems in a Harmonic Trap

    Science.gov (United States)

    Galilo, Bogdan; Lee, Derek K. K.; Barnett, Ryan

    2017-11-01

    In this Letter, it is shown that interactions can facilitate the emergence of topological edge states of quantum-degenerate bosonic systems in the presence of a harmonic potential. This effect is demonstrated with the concrete model of a hexagonal lattice populated by spin-one bosons under a synthetic gauge field. In fermionic or noninteracting systems, the presence of a harmonic trap can obscure the observation of edge states. For our system with weakly interacting bosons in the Thomas-Fermi regime, we can clearly see a topological band structure with a band gap traversed by edge states. We also find that the number of edge states crossing the gap is increased in the presence of a harmonic trap, and the edge modes experience an energy shift while traversing the first Brillouin zone which is related to the topological properties of the system. We find an analytical expression for the edge-state energies and our comparison with numerical computation shows excellent agreement.

  5. Topological Edge-State Manifestation of Interacting 2D Condensed Boson-Lattice Systems in a Harmonic Trap.

    Science.gov (United States)

    Galilo, Bogdan; Lee, Derek K K; Barnett, Ryan

    2017-11-17

    In this Letter, it is shown that interactions can facilitate the emergence of topological edge states of quantum-degenerate bosonic systems in the presence of a harmonic potential. This effect is demonstrated with the concrete model of a hexagonal lattice populated by spin-one bosons under a synthetic gauge field. In fermionic or noninteracting systems, the presence of a harmonic trap can obscure the observation of edge states. For our system with weakly interacting bosons in the Thomas-Fermi regime, we can clearly see a topological band structure with a band gap traversed by edge states. We also find that the number of edge states crossing the gap is increased in the presence of a harmonic trap, and the edge modes experience an energy shift while traversing the first Brillouin zone which is related to the topological properties of the system. We find an analytical expression for the edge-state energies and our comparison with numerical computation shows excellent agreement.

  6. Precise prediction for the light MSSM Higgs-boson mass combining effective field theory and fixed-order calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, Henning; Hollik, Wolfgang [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Munich (Germany)

    2016-09-15

    In the Minimal Supersymmetric Standard Model heavy superparticles introduce large logarithms in the calculation of the lightest CP-even Higgs-boson mass. These logarithmic contributions can be resummed using effective field theory techniques. For light superparticles, however, fixed-order calculations are expected to be more accurate. To gain a precise prediction also for intermediate mass scales, the two approaches have to be combined. Here, we report on an improvement of this method in various steps: the inclusion of electroweak contributions, of separate electroweakino and gluino thresholds, as well as resummation at the NNLL level. These improvements can lead to significant numerical effects. In most cases, the lightest CP-even Higgs-boson mass is shifted downwards by about 1 GeV. This is mainly caused by higher-order corrections to the MS top-quark mass. We also describe the implementation of the new contributions in the code FeynHiggs. (orig.)

  7. Bosonization

    CERN Document Server

    1994-01-01

    Bosonization is a useful technique for studying systems of interacting fermions in low dimensions. It has applications in both particle and condensed matter physics.This book contains reprints of papers on the method as used in these fields. The papers range from the classic work of Tomonaga in the 1950's on one-dimensional electron gases, through the discovery of fermionic solitons in the 1970's, to integrable systems and bosonization on Riemann surfaces. A four-chapter pedagogical introduction by the editor should make the book accessible to graduate students and experienced researchers alik

  8. Numerical calculation of spin echo amplitude in pulsed NMR: effects of quadrupole interaction

    International Nuclear Information System (INIS)

    Sobral, R.R.

    1986-01-01

    The spin echo obtained by nuclear magnetic resonance, in systems which atomic nuclei interact with magnetic fields and electric field gradients, present oscillations in function of the time interval between two excitations pulses. Using the density matrix formalism, the amplitudes of these echo is calculated, analytically. In this work, echo amplitudes obtained under different excitation conditions for nuclei of different nuclear spin values are calculated. The numerical results are compared with disposable analytical solutions. Applications of this method to the case of electric field gradient without axial symmetry were studied. Within the used approximation limits, an expression for attnuation of oscillatory behaviour of echo amplitude in function of the time interval between experimentally observed pulses was obtained. (M.C.K.) [pt

  9. Model test of boson mappings

    International Nuclear Information System (INIS)

    Navratil, P.; Dobes, J.

    1992-01-01

    Methods of boson mapping are tested in calculations for a simple model system of four protons and four neutrons in single-j distinguishable orbits. Two-body terms in the boson images of the fermion operators are considered. Effects of the seniority v=4 states are thus included. The treatment of unphysical states and the influence of boson space truncation are particularly studied. Both the Dyson boson mapping and the seniority boson mapping as dictated by the similarity transformed Dyson mapping do not seem to be simply amenable to truncation. This situation improves when the one-body form of the seniority image of the quadrupole operator is employed. Truncation of the boson space is addressed by using the effective operator theory with a notable improvement of results

  10. Associated production of a Higgs boson decaying into bottom quarks at the LHC in full NNLO QCD

    Science.gov (United States)

    Ferrera, Giancarlo; Somogyi, Gábor; Tramontano, Francesco

    2018-05-01

    We consider the production of a Standard Model Higgs boson decaying to bottom quarks in association with a vector boson W± / Z in hadron collisions. We present a fully exclusive calculation of QCD radiative corrections both for the production cross section and for the Higgs boson decay rate up to next-to-next-to-leading order (NNLO) accuracy. Our calculation also includes the leptonic decay of the vector boson with finite-width effects and spin correlations. We consider typical kinematical cuts applied in the experimental analyses at the Large Hadron Collider (LHC) and we find that the full NNLO QCD corrections significantly decrease the accepted cross section and have a substantial impact on the shape of distributions. We point out that these additional effects are essential to obtain precise theoretical predictions to be compared with the LHC data.

  11. Photoproduction of colored pseudo-Goldstone bosons at very high energy

    International Nuclear Information System (INIS)

    Grifols, J.A.; Mendez, A.

    1982-01-01

    We estimate the photoproduction cross section of the color-octet pseudo-Goldstone bosons P 0 8 and P 3 8 in e-p collisions at very high energy. The calculated rates are within detectability limits, especially for the P 3 8 state which, besides, cannot be produced in hadron-hardon interactions

  12. Boson representations of fermion systems: Proton-neutron systems

    International Nuclear Information System (INIS)

    Sambataro, M.

    1988-01-01

    Applications of a procedure recently proposed to construct boson images of fermion Hamiltonians are shown for proton-neutron systems. First the mapping from SD fermion onto sd boson spaces is discussed and a Q/sub π/xQ/sub ν/ interaction investigated. A Hermitian one-body Q boson operator is derived and analytical expressions for its coefficients are obtained. A (Q/sub π/+Q/sub ν/)x(Q/sub π/+Q/sub ν/) interaction is, then, studied for particle-hole systems and the connections with the SU/sup */(3) dynamical symmetry of the neutron-proton interacting boson model are discussed. Finally, an example of mapping from SDG onto sdg spaces is analyzed. Fermion spectra and E2 matrix elements are well reproduced in the boson spaces

  13. Study of weak interaction with p-p colliding beam

    International Nuclear Information System (INIS)

    Arafune, Jiro; Sugawara, Hirotaka

    1975-01-01

    Weak interaction in the energy range of TRISTAN project is discussed. The cross-section of production of weak boson in p-p reaction was calculated with the parton model. The observation of weak boson may be possible. The production rate of neutral weak boson was also estimated on the basis of the Weinberg model, and was almost same as that of weak boson. The method of observation of weak boson is suggested. The direct method is the observation of lepton pair due to the decay of neutral weak boson. It is expected that the spectrum of decay products (+ -) in the decay of weak boson shows a characteristic feature, and it shows the existence of weak boson. Weak interaction makes larger contribution in case of large momentum transfer than electromagnetic interaction. When the momentum transfer is larger than 60 GeV/c, the contribution of weak interaction is dominant over the others. Therefore, the experiments at high energy will give informations concerning the relations among the interactions of elementary particles. Possibility of study on the Higgs scalar meson is also discussed. (Kato, T.)

  14. Bounding the Higgs boson width through interferometry.

    Science.gov (United States)

    Dixon, Lance J; Li, Ye

    2013-09-13

    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.

  15. Survey of experimental tests of the IBA model

    International Nuclear Information System (INIS)

    Casten, R.F.

    1980-01-01

    A survey of experimental tests of the Interacting Boson Approximation (IBA) Model is presented covering even and odd mass nuclei in the region from A approx. 80 to A approx. 230. Both positive and negative parity states with both high and low spin are discussed. Topics included concern energy levels, electromagnetic transition rates, two nucleon transfer and inelastic scattering. Special attention is given to nuclear symmetries and transitional regions. Comparison with other models is made where appropriate. The distinction between IBA-1 and IBA-2 is discussed including their respective areas of applicability

  16. Antiferromagnetism and Kondo effect in a two quantum dot system: a slave boson approach

    International Nuclear Information System (INIS)

    Hamad, I.J.; Anda, E.V.

    2012-01-01

    Full text: In a recent experiment, Jakob et. al proposed a device consisting of a cobalt atom attached to the tip of a scanning tunneling microscope (STM) which interacts with another Co atom adsorbed on a gold surface. The high capacity to tune the tip-sample distance obtained by the authors, with a sub-picometre resolution, enabled the control of the electronic interaction between the two Co atoms and allowed the access to a very rich set of physical phenomena, specifically, those associated to the interplay of the antiferromagnetic interaction between the spins of the Co atoms and the Kondo correlation with the electronic reservoir spins. As well, it is possible to carefully study the geometrical aspects of the experimental disposition creating Fano anti resonances in the differential conductance as a function of the applied potential. In order to reproduce the physics observed in such an experiment we elaborate a model consisting of two sites where the electrons are highly correlated, that simulates the two Co atoms. Each atom interacts with an electronic reservoir and between themselves by means of a directed coupling and also, indirectly, through a coupling between the two electronic reservoirs. The many- body system is solved using a Slave Boson Formalism, solving the problem in the mean field approximation for finite values of U, the Coulomb electronic repulsion at the Co sites. Unlike the NRG calculations developed in the mentioned work, which partially explain the measurements, our results carries the physics information associated to the direct coupling between the Co atoms that permits to study the different regimes and the geometrical implications on the conductance results. Our study is able to explain the experimental results in all the parameter space. (author)

  17. One-boson exchange model in the Tobocman-Chulick formalism

    International Nuclear Information System (INIS)

    Chulick, G.S.

    1988-01-01

    An alternative method to the standard techniques of field theory for the derivation of few-body dynamical equations is presented here. This new formalism gives rise to a set of coupled, three-dimensional, relativistic equations which represent one or more (coupled channel) nuclear interactive processes. The particles represented by these equations are dressed and/or are composite, with mass and vertex renormalization done in a simple, straightforward manner. The n-boson Tamm-Dancoff approximation is then used to restrict to a reasonable amount the number of coupled equations to be solved. In the one-boson Tamm-Dancoff approximation, the formalism gives rise to relativistic One-Boson Exchange time-ordered perturbation theory: i.e., the basic Bonn potential. Moreover, the formalism gives the Bonn potential a firmer theoretical basis, with physical particles, and with mass and vertex renormalization systematically taken into account. The formalism was tested numerically at two levels. First, it was tested for the simple model of elastic scalar NN scattering via the exchange of a single scalar boson. The resultant phase shifts, when compared to those for the Bethe-Salpeter equation and several of its three-dimensional reductions for the same model, were found to be reasonable. Next, the formalism was tested for the same model expanded to include non-elastic NN scattering processes. Even though the resultant scattering cross-sections were not compatible to the empirical scattering cross-sections, it was possible to discern what must be included in the model to obtain qualitative agreement

  18. Full NLO massive gauge boson pair production at the LHC

    CERN Document Server

    Baglio, Julien; Weber, Marcus M

    2013-01-01

    Electroweak gauge boson pair production is a very important process at the LHC as it probes the non-abelian structure of electroweak interactions and is a background process for many searches. We present full next-to-leading order predictions for the production cross sections and distributions of on-shell massive gauge boson pair production in the Standard Model, including both QCD and electroweak corrections. The hierarchy between the ZZ, WW and WZ channels, observed in the transverse momentum distributions, will be analyzed. We will also present a comparison with experimental data for the total cross sections including a study of the theoretical uncertainties.

  19. sdg boson model in the SU(3) scheme

    Science.gov (United States)

    Akiyama, Yoshimi

    1985-02-01

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15) ⊃ SU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the 168Er nucleus.

  20. Coherent Destruction of Tunneling of Bosons with Effective Three-Body Interactions

    International Nuclear Information System (INIS)

    Niu Zhen-Xia; Yu Zi-Fa; Xue Ju-Kui

    2015-01-01

    The tunneling dynamics of dilute boson gases with three-body interactions in a periodically driven double wells are investigated both theoretically and numerically. In our findings, when the system is with only repulsive two-body interactions or only three-body interactions, the tunneling will be suppressed; while in the case of the coupling between two- and three-body interactions, the tunneling can be either suppressed or enhanced. Particularly, when attractive three-body interactions are twice large as repulsive two-body interactions, CDT occurs at isolated points of driving force, which is similar to the linear case. Considering different interaction, the system can experience different transformation from coherent tunneling to coherent destruction of tunneling (CDT). The quasi-energy of the system as the function of the periodically driving force shows a triangular structure, which provides a deep insight into the tunneling dynamics of the system. (paper)

  1. Phenomenology of a nonstandard Higgs boson in WLWL scattering

    International Nuclear Information System (INIS)

    Koulovassilopoulos, V.; Chivukula, R.S.

    1994-01-01

    In this paper we consider the phenomenology of a nonstandard Higgs boson in longitudinal gauge boson scattering. First, we present a composite Higgs model [based on an SU(4)/Sp(4) chiral-symmetry breaking pattern] in which there is a nonstandard Higgs boson. Then we explore, in a model-independent way, the phenomenology of such a nonstandard Higgs boson by calculating the leading one-loop logarithmic corrections to longitudinal gauge boson scattering. This calculation is done using the equivalence theorem and the Higgs boson is treated as a scalar-isoscalar resonance coupled to the Goldstone bosons of the SU(2) L xSu(2) R /SU(2) V chiral symmetry breaking. We show that the most important deviation from the one-Higgs-doublet standard model is parametrized by one unknown coefficient which is related to the Higgs-boson width. The implications for future hadron colliders are discussed

  2. Atomic physics constraints on the X boson

    Science.gov (United States)

    Jentschura, Ulrich D.; Nándori, István

    2018-04-01

    Recently, a peak in the light fermion pair spectrum at invariant q2≈(16.7MeV ) 2 has been observed in the bombardment of 7Li by protons. This peak has been interpreted in terms of a protophobic interaction of fermions with a gauge boson (X boson) of invariant mass ≈16.7 MeV which couples mainly to neutrons. High-precision atomic physics experiments aimed at observing the protophobic interaction need to separate the X boson effect from the nuclear-size effect, which is a problem because of the short range of the interaction (11.8 fm), which is commensurate with a "nuclear halo." Here we analyze the X boson in terms of its consequences for both electronic atoms as well as muonic hydrogen and deuterium. We find that the most promising atomic systems where the X boson has an appreciable effect, distinguishable from a finite-nuclear-size effect, are muonic atoms of low and intermediate nuclear charge numbers.

  3. Exotic composite vector boson

    International Nuclear Information System (INIS)

    Akama, K.; Hattori, T.; Yasue, M.

    1991-01-01

    An exotic composite vector boson V is introduced in two dynamical models of composite quarks, leptons, W, and Z. One is based on four-Fermi interactions, in which composite vector bosons are regarded as fermion-antifermion bound states and the other is based on the confining SU(2) L gauge model, in which they are given by scalar-antiscalar bound states. Both approaches describe the same effective interactions for the sector of composite quarks, leptons, W, Z, γ, and V

  4. Sdg boson model in the SU(3) scheme

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Y.

    1985-02-11

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15)containsSU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the /sup 168/Er nucleus.

  5. sdg boson model in the SU(3) scheme

    International Nuclear Information System (INIS)

    Akiyama, Y.

    1985-01-01

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15)containsSU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the 168 Er nucleus. (orig.)

  6. Phase transitions in the sdg interacting boson model

    Science.gov (United States)

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2010-05-01

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ( β), axial hexadecapole ( β) and triaxial ( γ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)⊗U(9), the (prolate and oblate) deformed SU(3) and the γ-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  7. Phase transitions in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2010-01-01

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole (β 2 ), axial hexadecapole (β 4 ) and triaxial (γ 2 ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)xU(9), the (prolate and oblate) deformed SU ± (3) and the γ 2 -soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  8. Mean field limit for bosons with compact kernels interactions by Wigner measures transportation

    International Nuclear Information System (INIS)

    Liard, Quentin; Pawilowski, Boris

    2014-01-01

    We consider a class of many-body Hamiltonians composed of a free (kinetic) part and a multi-particle (potential) interaction with a compactness assumption on the latter part. We investigate the mean field limit of such quantum systems following the Wigner measures approach. We prove in particular the propagation of these measures along the flow of a nonlinear (Hartree) field equation. This enhances and complements some previous results of the same type shown in Z. Ammari and F. Nier and Fröhlich et al. [“Mean field limit for bosons and propagation of Wigner measures,” J. Math. Phys. 50(4), 042107 (2009); Z. Ammari and F. Nier and Fröhlich et al., “Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states,” J. Math. Pures Appl. 95(6), 585–626 (2011); Z. Ammari and F. Nier and Fröhlich et al., “Mean-field- and classical limit of many-body Schrödinger dynamics for bosons,” Commun. Math. Phys. 271(3), 681–697 (2007)

  9. Experimentally guided Monte Carlo calculations of the atmospheric muon flux for interdisciplinary applications

    International Nuclear Information System (INIS)

    Mitrica, B.; Brancus, I.M.; Toma, G.; Bercuci, A.; Aiftimiei, C.; Wentz, J.; Rebel, H.

    2004-01-01

    Atmospheric muons are produced in the interactions of primary cosmic rays particle with Earth's atmosphere, mainly by the decay of pions and kaons generated in hadronic interactions. They decay further in electrons and positrons and electron and muon neutrinos. Being the penetrating cosmic rays component, the muons manage to pass entirely through the atmosphere and can pass even larger absorbers before they interact with the material at the Earth's surface, and due to cosmogenic production of isotopes by atmospheric muons, information of astrophysical, environmental and material research interest can be obtained. Up to now, mainly semi-analytical approximations have been used to calculate the muon flux for estimating the cosmogenic isotope production, necessary for different applications. Our estimation of the atmospheric muon flux is based on a Monte-Carlo simulation program CORSIKA, in which we simulate the development in the atmosphere of the extensive air showers, using different models for the description of the hadronic interaction. Atmospheric muons are produced in the interactions of primary cosmic rays particle with Earth's atmosphere, mainly by the decay of pions and kaons generated in hadronic interactions. They decay further in electrons and positrons and electron and muon neutrinos. Being the penetrating cosmic rays component, the muons manage to pass entirely through the atmosphere and can pass even larger absorbers before they interact with the material at the Earth's surface, and due to cosmogenic production of isotopes by atmospheric muons, information of astrophysical, environmental and material research interest can be obtained. Up to now, mainly semi-analytical approximations have been used to calculate the muon flux for estimating the cosmogenic isotope production, necessary for different applications. Our estimation of the atmospheric muon flux is based on a Monte-Carlo simulation program CORSIKA, in which we simulates the development in the

  10. Higgs-boson and Z-boson flavor-changing neutral-current decays correlated with B-meson decays in the littlest Higgs model with T parity

    International Nuclear Information System (INIS)

    Han Xiaofang; Wang Lei; Yang Jinmin

    2008-01-01

    In the littlest Higgs model with T-parity new flavor-changing interactions between mirror fermions and the standard model (SM) fermions can induce various flavor-changing neutral-current decays for B-mesons, the Z-boson, and the Higgs boson. Since all these decays induced in the littlest Higgs with T-parity model are correlated, in this work we perform a collective study for these decays, namely, the Z-boson decay Z→bs, the Higgs-boson decay h→bs, and the B-meson decays B→X s γ, B s →μ + μ - , and B→X s μ + μ - . We find that under the current experimental constraints from the B-decays, the branching ratios of both Z→bs and h→bs can still deviate from the SM predictions significantly. In the parameter space allowed by the B-decays, the branching ratio of Z→bs can be enhanced up to 10 -7 (about one order above the SM prediction) while h→bs can be much suppressed relative to the SM prediction (about one order below the SM prediction).

  11. A new LHC search channel for a light Higgs boson and associated QCD calculations

    International Nuclear Information System (INIS)

    Rubin, Mathieu

    2010-01-01

    This thesis addresses various topics related to LHC studies and predictions. We were first interested in a boosted (p t ≥ 200 GeV) light Higgs boson at the LHC (M H ∼ 120 GeV) in the pp →WH and pp → ZH search channels with H → bb-bar. We showed how these challenging channels can be recovered as promising search channels using a subject analysis procedure in two steps: a 'mass-drop' analysis, which allows one to reduce the large QCD backgrounds, and a 'filtering' analysis, which improves the resolution on the reconstructed Higgs jet mass. Then we focused on the filtering analysis, which allows one to suppress the diffuse background from the underlying-event and pile-up, which are mainly responsible for the bad Higgs mass resolution. We optimized its parameters using semi-analytical calculations which led us to examine the structure of the non-global logarithms that appear in this problem. Finally, we studied some processes whose perturbative series converges poorly at next-to-leading (NLO) order for some observables, a property that we had noticed in the Z+jet and W+jet processes at high-p t during our Higgs analysis. This is important because it leads to questions about the reliability of the predictions resulting from perturbative calculations. It thus becomes necessary to examine higher-order corrections. The method that we developed, called 'LoopSim', consists in approximating these higher order corrections by merging different orders of perturbation theory such that all infra-red and collinear divergences are cancelled. (author)

  12. Dynamic shape transitions in the sdg boson model

    Science.gov (United States)

    Kuyucak, S.

    The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192Os.

  13. Leptons and quarks special edition commemorating the discovery of the Higgs boson

    CERN Document Server

    Okun, Lev Borisovich

    2014-01-01

    The book “Leptons and Quarks” was first published in the early 1980s, when the program of the experimental search for the intermediate bosons W and Z and Higgs boson H was formulated. The aim and scope of the present extended edition of the book, written after the experimental discovery of the Higgs boson in 2012, is to reflect the various stages of this 30+ years search. Along with the text of the first edition of “Leptons and Quarks” it contains extracts from a number of books published by World Scientific and an article from “On the concepts of vacuum and mass and the search for higgs” available from http://www.worldscientific.com/worldscinet/mpla or from http://arxiv.org/abs/1212.1031. The book is unique in communicating the Electroweak Theory at a basic level and in connecting the concept of Lorenz invariant mass with the concept of the Extended Standard Model, which includes gravitons as the carriers of gravitational interaction.

  14. The choice of optimal Discrete Interaction Approximation to the kinetic integral for ocean waves

    Directory of Open Access Journals (Sweden)

    V. G. Polnikov

    2003-01-01

    Full Text Available A lot of discrete configurations for the four-wave nonlinear interaction processes have been calculated and tested by the method proposed earlier in the frame of the concept of Fast Discrete Interaction Approximation to the Hasselmann's kinetic integral (Polnikov and Farina, 2002. It was found that there are several simple configurations, which are more efficient than the one proposed originally in Hasselmann et al. (1985. Finally, the optimal multiple Discrete Interaction Approximation (DIA to the kinetic integral for deep-water waves was found. Wave spectrum features have been intercompared for a number of different configurations of DIA, applied to a long-time solution of kinetic equation. On the basis of this intercomparison the better efficiency of the configurations proposed was confirmed. Certain recommendations were given for implementation of new approximations to the wave forecast practice.

  15. Thermodynamic aspects of light boson conjectures

    International Nuclear Information System (INIS)

    Ray, P.S.; Miller, D.E.

    1984-01-01

    Gauge theories have often led to the hypothesis for new particles (light bosons) in order to overcome their unpleasant features. Then one faces the dilemma of not observing these experimentally. We consider a many body system under thermal equilibrium which could emit the light bosons and point out the criterion for existence of the Bose-Einstein condensate for these new bosons

  16. Measurements of vector boson plus jets production with the ATLAS detector

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The production of jets of particles, including heavy-flavor, in association with a W or Z boson, provides an important test of perturbative quantum chromodynamics, and provides information on parton densities. Such events also constitute a non-negligible background for studies of the Higgs boson and searches for new phenomena. The cross sections, differential in several kinematics variables, have been measured up to high jet multiplicities and compared to new state of the art theoretical predictions including higher order QCD corrections. Non-perturbative corrections to these calculations, including effects such as multiple parton interactions, are checked using dedicated ATLAS measurements.

  17. Extended commutator method for boson mapping in the seniority scheme: Two non-degenerate-j shells with vertical strokej1-j2vertical stroke=2

    International Nuclear Information System (INIS)

    Bonatsos, D.; Klein, A.

    1987-01-01

    The commutator method of Bonatsos, Klein and Li for approximate boson mapping in the seniority scheme, previously illustrated for the single-j shell-model algebra SO(2(2j+1)), has been extended in order to be applicable to the case of many non-degenerate-j shells, and the physically interesting case of two shells with vertical strokej 1 -j 2 vertical stroke=2 has been studied in detail. The most important new feature of this work is that bosons corresponding to pairs of two fermions each of which belongs to a different shell have been included in the calculation. (These bosons had been omitted in previous work using the Otsuka-Arima-Iachello method.) The calculation is successively carried out to lowest and to next-higher order, the latter exhibiting the necessity of including f- and g-bosons (both of positive parity) in the calculation in order to reach algebraic consistency. (orig.)

  18. Inelastic multiple scattering of interacting bosons in weak random potentials

    International Nuclear Information System (INIS)

    Geiger, Tobias

    2013-01-01

    Within the present thesis we develop a diagrammatic scattering theory for interacting bosons in a three-dimensional, weakly disordered potential. Based on a microscopic N-body scattering theory, we identify the relevant diagrams including elastic and inelastic collision processes that are sufficient to describe quantum transport in the regime of weak disorder. By taking advantage of the statistical properties of the weak disorder potential, we demonstrate how the N-body dynamics can be reduced to a nonlinear integral equation of Boltzmann type for the single-particle diffusive flux. A presently available alternative description - based on the Gross-Pitaevskii equation - only includes elastic collisions. In contrast, we show that far from equilibrium the presence of inelastic collisions - even for weak interaction strength - must be accounted for and can induce the full thermalization of the single-particle current. In addition, we also determine the coherent corrections to the incoherent transport, leading to the effect of coherent backscattering. For the first time, we are able to analyze the influence of inelastic collisions on the coherent backscattering signal, which lead to an enhancement of the backscattered cone in a narrow spectral window, even for increasing non-linearity. With a short recollection of the presently available experimental techniques we furthermore show how an immediate implementation of our suggested setup with confined Bose-Einstein condensates can be accomplished. Thereby, the emergence of collective and/or thermodynamic behavior from fundamental, microscopic constituents can also be assessed experimentally. In a second part of this thesis, we present first results for light scattering off strongly interacting Rydberg atoms trapped in a one-dimensional, chain-like configuration. In order to monitor the time-dependence of this interacting many-body system, we devise a weak measurement scenario for which we derive a master equation for the

  19. Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional interacting bosonic gas

    International Nuclear Information System (INIS)

    Sun Qing; Hu Xinghua; Liu, W. M.; Xie, X. C.; Ji Anchun

    2011-01-01

    We investigate optomechanical coupling between one-dimensional interacting bosons and the electromagnetic field in a high-finesse optical cavity. We show that by tuning interatomic interactions, one can realize effective optomechanics with mechanical resonators ranging from side-mode excitations of a Bose-Einstein condensate (BEC) to particle-hole excitations of a Tonks-Girardeau (TG) gas. We propose that this unique feature can be formulated to detect the BEC-TG gas crossover and measure the sine-Gordon transition continuously and nondestructively.

  20. The interacting boson model with the high spin bosons

    International Nuclear Information System (INIS)

    Mizusaki, T.; Otsuka, T.; Yoshinaga, N.

    1991-01-01

    The phenomenological study in the Ra region was carried out from the view of the sdg-IBM2. The sdg hamiltonian whose parameters are almost kept constant for the isotopes can successfully describe the spherical-deformed phase transition of the Ra isotopes and the enhancement of the moment of inertia of the β band. We emphasize that the role of the g boson is important in the actinide region. (author)

  1. On the reduced dynamics of a subset of interacting bosonic particles

    Science.gov (United States)

    Gessner, Manuel; Buchleitner, Andreas

    2018-03-01

    The quantum dynamics of a subset of interacting bosons in a subspace of fixed particle number is described in terms of symmetrized many-particle states. A suitable partial trace operation over the von Neumann equation of an N-particle system produces a hierarchical expansion for the subdynamics of M ≤ N particles. Truncating this hierarchy with a pure product state ansatz yields the general, nonlinear coherent mean-field equation of motion. In the special case of a contact interaction potential, this reproduces the Gross-Pitaevskii equation. To account for incoherent effects on top of the mean-field evolution, we discuss possible extensions towards a second-order perturbation theory that accounts for interaction-induced decoherence in form of a nonlinear Lindblad-type master equation.

  2. Elastic and inelastic proton-nucleus scattering at 156MeV: experimental study and analysis in impulse approximation

    International Nuclear Information System (INIS)

    Comparat, Vincent.

    1975-01-01

    In this work a high spatial resolution hodoscope is described. Scattered particles are detected in the image plane of a magnetic spectrometer by a proportional chamber with 96 wires of 1mm spacing. This hodoscope has been used for elastic and inelastic scattering experiments, of 156MeV protons, on 11 targets ranging from 12 C to 209 Bi. A phenomenological optical model calculation has been carried out to analyse the experimental elastic cross sections data. The dependance of the parameters as a function of the number of mass or the incident energy has been studied. The inelastic scattering results have been interpreted within the framework of the D.W.I.A. As the final results are dependant of the nucleon model, the optical potential parameters as well as the finite range approximation, several trials have been performed. Nevertheless, the DWIA seems to give about twice the experimental values for collective excitations in light or medium nuclei. The first order optical potential derived from the impulse approximation was calculated and the results compared to the experimental elastic cross sections. Several approximations were tested as non locality, off energy shell effects and the motion of the target nucleon. The usual approximation on these quantities are justified if the momentum transfer is less than 3fm -1 . The nucleon-nucleus transition matrix is obtained by solving the Lippmann-Schwinger equation, using the moment method. The first order optical potential derived from these calculations is not realistic. The intensity of the nucleon-nucleon transition is too important, and that explained the disagreement at low momentum transfers. This study shows that the multiple scattering expansion of the Lippmann-Schwinger equation, is not a good method to obtain the exact solution. It is better to do some approximations (i.e. of shell approximation) directly on the integral equation [fr

  3. Resummation of high order corrections in Higgs boson plus jet production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Peng, E-mail: pengsun@pa.msu.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Isaacson, Joshua, E-mail: isaacs21@msu.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Yuan, C.-P., E-mail: yuan@pa.msu.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Yuan, Feng, E-mail: fyuan@lbl.gov [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-06-10

    We study the effect of multiple parton radiation to Higgs boson plus jet production at the LHC. The large logarithms arising from the small imbalance in the transverse momentum of the Higgs boson plus jet final state system are resummed to all orders in the expansion of the strong interaction coupling at the accuracy of Next-to-Leading Logarithm (NLL), by applying the transverse momentum dependent (TMD) factorization formalism. We show that the appropriate resummation scale should be the jet transverse momentum, rather than the partonic center of mass energy which has been normally used in the TMD resummation formalism. Furthermore, the transverse momentum distribution of the Higgs boson, particularly near the lower cut-off applied on the jet transverse momentum, can only be reliably predicted by the resummation calculation which is free of the so-called Sudakov-shoulder singularity problem, present in fixed-order calculations.

  4. Equilibrium and off-equilibrium trap-size scaling in one-dimensional ultracold bosonic gases

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore

    2010-01-01

    We study some aspects of equilibrium and off-equilibrium quantum dynamics of dilute bosonic gases in the presence of a trapping potential. We consider systems with a fixed number of particles and study their scaling behavior with increasing the trap size. We focus on one-dimensional bosonic systems, such as gases described by the Lieb-Liniger model and its Tonks-Girardeau limit of impenetrable bosons, and gases constrained in optical lattices as described by the Bose-Hubbard model. We study their quantum (zero-temperature) behavior at equilibrium and off equilibrium during the unitary time evolution arising from changes of the trapping potential, which may be instantaneous or described by a power-law time dependence, starting from the equilibrium ground state for an initial trap size. Renormalization-group scaling arguments and analytical and numerical calculations show that the trap-size dependence of the equilibrium and off-equilibrium dynamics can be cast in the form of a trap-size scaling in the low-density regime, characterized by universal power laws of the trap size, in dilute gases with repulsive contact interactions and lattice systems described by the Bose-Hubbard model. The scaling functions corresponding to several physically interesting observables are computed. Our results are of experimental relevance for systems of cold atomic gases trapped by tunable confining potentials.

  5. The P1approximation in the transport of beta rays

    International Nuclear Information System (INIS)

    Legarda, F.; Idoeta, R.; Herranz, M.

    1994-01-01

    A validation test for the p1 approximation to the linear transport of electrons in planar geometry has been performed. The p1 approximation is shown to be a good option for the description of the transport of beta rays with endpoint energies between 400kev and 3.5Mev through aluminium foils . This approximation together with the use of only elastic interactions of electrons with atoms has found good agreement with experimental results . A calculation has been made of the fraction of transmitted electrons through foils, solving the transport equation for planar geometry in the p1 approximation and assuming that only elastic scattering processes take place. The boundary condition at the entrance of the foil was a collimated beta source, while at the end of the foil has been adopted a vaccum boundary condition.Sources considered are those for which experimental and calculated spectrum shapes are known to agree. The calculated fractional transmission through different absorber thicknesses is found to have an exponential shape . Besides this fact the attenuation coefficients found ,when compared with those empirically obtained, agree to within 5%. 1 fig.; 4 refs. (author)

  6. Center-of-mass correction and confinement radii of the composite vector bosons

    International Nuclear Information System (INIS)

    Tadic, D.; Tadic, G.

    1985-01-01

    Describing a composite W boson by a center-of-mass--corrected bag model one finds a relation R/sub W/ 3 M/sub W/ 3 / f/sub W/ 2 approx. =R/sub rho/ 3 m/sub rho/ 3 / f/sub rho/ 2 for the confinement radii (R), masses, and coupling constants (f) of W and rho bosons. Using experimental values for f/sub rho/, m/sub rho/, and M/sub W/ and with f/sub W/ = 0.66, one obtains R/sub W//R/sub rho/approx. =2 x 10 -3 . f/sub rho/, f/sub W/, and masses can be calculated separately

  7. Limits on light Higgs bosons

    International Nuclear Information System (INIS)

    Dawson, S.

    1988-01-01

    Experimental limits on light Higgs bosons (M/sub H/ < 5 GeV) are examined. Particular attention is paid to the process K → πH. It is shown that there may be an allowed window for light Higgs bosons between about 100 and 210 MeV. 13 refs., 2 figs

  8. Phase transitions in the sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P. [Grand Accelerateur National d' Ions Lourds, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)], E-mail: isacker@ganil.fr; Bouldjedri, A.; Zerguine, S. [Department of Physics, PRIMALAB Laboratory, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria)

    2010-05-15

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ({beta}{sub 2}), axial hexadecapole ({beta}{sub 4}) and triaxial ({gamma}{sub 2}). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)xU(9), the (prolate and oblate) deformed SU{sub {+-}}(3) and the {gamma}{sub 2}-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  9. Dynamic shape transitions in the sdg boson model

    International Nuclear Information System (INIS)

    Kuyucak, S.

    1992-01-01

    The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192 Os. 13 refs., 3 figs

  10. Vector boson scattering at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, Wolfgang; Fleper, Christian [Department Physik, Universitaet Siegen, 57068 Siegen (Germany); Reuter, Juergen [DESY Theory Group, 22603 Hamburg (Germany); Sekulla, Marco [Institut fuer Theoretische Physik, Karlsruher Institut fuer Technologie, 76131 Karlsruhe (Germany)

    2016-07-01

    Linear colliders operating in a range of multiple TeV are able to investigate the details of vector boson scattering and electroweak symmetry breaking. We calculate cross sections with the Monte Carlo generator WHIZARD for vector boson scattering processes at the future linear e{sup +} e{sup -} collider CLIC. By finding suitable cuts, the vector boson scattering signal processes are isolated from the background. Finally, we are able to determine exclusion sensitivities on the non-Standard Model parameters of the relevant dimension eight operators.

  11. Superfluid and insulating phases in an interacting-boson model: mean-field theory and the RPA

    International Nuclear Information System (INIS)

    Sheshadri, K.; Pandit, R.; Krishnamurthy, H.R.; Ramakrishnan, T.V.

    1993-01-01

    The bosonic Hubbard model is studied via a simple mean-field theory. At zero temperature, in addition to yielding a phase diagram that is qualitatively correct, namely a superfluid phase for non-integer fillings and a Mott transition from a superfluid to an insulating phase for integer fillings, this theory gives results that are in good agreement with Monte Carlo simulations. In particular, the superfluid fraction obtained as a function of the interaction strength U for both integer and non-integer fillings is close to the simulation results. In all phases the excitation spectra are obtained by using the random phase approximation (RPA): the spectrum has a gap in the insulating phase and is gapless (and linear at small wave vectors) in the superfluid phase. Analytic results are presented in the limits of large U and small superfluid density. Finite-temperature phase diagrams and the Mott-insulator-normal-phase crossover are also described. (orig.)

  12. Approximate dynamic fault tree calculations for modelling water supply risks

    International Nuclear Information System (INIS)

    Lindhe, Andreas; Norberg, Tommy; Rosén, Lars

    2012-01-01

    Traditional fault tree analysis is not always sufficient when analysing complex systems. To overcome the limitations dynamic fault tree (DFT) analysis is suggested in the literature as well as different approaches for how to solve DFTs. For added value in fault tree analysis, approximate DFT calculations based on a Markovian approach are presented and evaluated here. The approximate DFT calculations are performed using standard Monte Carlo simulations and do not require simulations of the full Markov models, which simplifies model building and in particular calculations. It is shown how to extend the calculations of the traditional OR- and AND-gates, so that information is available on the failure probability, the failure rate and the mean downtime at all levels in the fault tree. Two additional logic gates are presented that make it possible to model a system's ability to compensate for failures. This work was initiated to enable correct analyses of water supply risks. Drinking water systems are typically complex with an inherent ability to compensate for failures that is not easily modelled using traditional logic gates. The approximate DFT calculations are compared to results from simulations of the corresponding Markov models for three water supply examples. For the traditional OR- and AND-gates, and one gate modelling compensation, the errors in the results are small. For the other gate modelling compensation, the error increases with the number of compensating components. The errors are, however, in most cases acceptable with respect to uncertainties in input data. The approximate DFT calculations improve the capabilities of fault tree analysis of drinking water systems since they provide additional and important information and are simple and practically applicable.

  13. Mode-coupling of interaction quenched ultracold bosons in periodically driven lattices

    Science.gov (United States)

    Mistakidis, Simeon; Schmelcher, Peter

    2016-05-01

    The out-of-equilibrium dynamics of interaction quenched finite ultracold bosonic ensembles in periodically driven one-dimensional optical lattices is investigated. As a first attempt a brief analysis of the dynamics caused exclusively by the periodically driven lattice is presented and the induced low-lying modes are introduced. It is shown that the periodic driving enforces the bosons in the outer wells to exhibit out-of-phase dipole-like modes, while in the central well the cloud experiences a local-breathing mode. The dynamical behavior of the system is investigated with respect to the driving frequency, revealing a resonant-like behavior of the intra-well dynamics. Subsequently, we drive the system to a highly non-equilibrium state by performing an interaction quench upon the periodically driven lattice. This protocol gives rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result (of the quench) the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Finally, our study reveals that the position of the resonances can be adjusted e.g. via the driving frequency or the atom number manifesting their many-body nature. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  14. Energy Level Statistics of SO(5) Limit of Super-symmetry U(6/4) in Interacting Boson-Fermion Model

    International Nuclear Information System (INIS)

    Bai Hongbo; Zhang Jinfu; Zhou Xianrong

    2005-01-01

    We study the energy level statistics of the SO(5) limit of super-symmetry U(6/4) in odd-A nucleus using the interacting boson-fermion model. The nearest neighbor spacing distribution (NSD) and the spectral rigidity (Δ 3 ) are investigated, and the factors that affect the properties of level statistics are also discussed. The results show that the boson number N is a dominant factor. If N is small, both the interaction strengths of subgroups SO B (5) and SO BF (5) and the spin play important roles in the energy level statistics, however, along with the increase of N, the statistics distribution would tend to be in Poisson form.

  15. Many-particle interference beyond many-boson and many-fermion statistics

    International Nuclear Information System (INIS)

    Tichy, Malte C; Tiersch, Markus; Mintert, Florian; Buchleitner, Andreas

    2012-01-01

    Identical particles exhibit correlations even in the absence of inter-particle interaction, due to the exchange (anti)symmetry of the many-particle wavefunction. Two fermions obey the Pauli principle and anti-bunch, whereas two bosons favor bunched, doubly occupied states. Here, we show that the collective interference of three or more particles leads to much more diverse behavior than expected from the boson–fermion dichotomy known from quantum statistical mechanics. The emerging complexity of many-particle interference is tamed by a simple law for the strict suppression of events in the Bell multiport beam splitter. The law shows that counting events are governed by widely species-independent interference, such that bosons and fermions can even exhibit identical interference signatures, while their statistical character remains subordinate. Recent progress in the preparation of tailored many-particle states of bosonic and fermionic atoms promises experimental verification and applications in novel many-particle interferometers. (paper)

  16. An approximate method to calculate ionization of LTE and non-LTE plasma

    International Nuclear Information System (INIS)

    Zhang Jun; Gu Peijun

    1987-01-01

    When matter, especially high Z element, is heated to high temperature, it will be ionized many times. The degree of ionization has a strong effect on many plasma properties. So an approximate method to calculate the mean ionization degree is needed for solving many practical problems. An analytical expression which is convenient for the approximate numerical calculation is given by fitting it to the scaling law and numerical results of the ionization potential of Thomas-Fermi statistical model. In LTE case, the ionization degree of Au calculated by using the approximate method is in agreement with that of the average ion model. By extending the approximate method to non-LTE case, the ionization degree of Au is similarly calculated according to Corona model and Collision-Radiatoin model(C-R). The results of Corona model agree with the published data quite well, while the results of C-R approach those of Corona model as the density is reduced and approach those of LTE as the density is increased. Finally, all approximately calculated results of ionization degree of Au and the comparision of them are given in figures and tables

  17. A correction to the width of heavy Higgs bosons: An addendum to radiative decay of heavy Higgs bosons

    International Nuclear Information System (INIS)

    Dicus, D.A.; Willenbrock, S.D.; Imbo, T.D.; Keung, W.Y.; Rizzo, T.G.

    1986-04-01

    We determine the width for radiative decay of heavy Higgs bosons H → W + W - γ for hard photons as a function of the Higgs boson mass and the photon-energy cutoff, and correct the result of a previous calculation

  18. An exotic composite vector boson

    International Nuclear Information System (INIS)

    Akama, Keiichi; Hattori, Takashi; Yasue, Masaki.

    1990-08-01

    An exotic composite vector boson, V, is introduced in two dynamical models of composite quarks, leptons, W and Z. One is based on four Fermi interactions, in which composite vector bosons are regarded as fermion-antifermion bound states and the other is based on the confining SU(2) L gauge model, in which they are given by scalar-antiscalar bound states. Both approaches describe the same effective interactions for the sector of composite quarks, leptons, W, Z, γ and V. (author)

  19. Level Density In Interacting Boson-Fermion-Fermion Model (IBFFM) Of The Odd-Odd Nucleus 196Au

    International Nuclear Information System (INIS)

    Kabashi, Skender; Bekteshi, Sadik

    2007-01-01

    The level density of the odd-odd nucleus 196Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM total level density is fitted by Gaussian and its tail is also fitted by Bethe formula and constant temperature Fermi gas model

  20. Measurement of W± boson mass at LEP by means of DELPHI detector

    International Nuclear Information System (INIS)

    Todorova-Nova, Sarka

    1998-01-01

    The thesis deals with measurement of the mass of the W boson at LEP2, based on the direct reconstruction of its decay products in the hadronic channel. A set of procedures necessary for the extraction of the W mass from the experimental data collected with the DELPHI detector in 1997 was developed (search of optimal variables for the event selection, development of a special method of kinematical reconstruction). The measured value of the mass was interpreted in the framework of the Standard Model, allowing to constrain the mass of the Higgs boson. A substantial part of the work is devoted to systematic effects due to the interactions between the hadronic decay products of the W bosons (colour reconnection and Bose-Einstein correlations), which may significantly influence the measurement of their mass. (author)

  1. Gamma-unstable nuclei in the sdg boson model

    Science.gov (United States)

    Kuyucak, S.; Lac, V.-S.; Morrison, I.; Barret, B. R.

    Following the recent Pt(p,p') experiments which indicated the need for high angular momentum (g) bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to the sdg bosons. It is shown that a gamma-unstable Hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the gamma-unstable nature of the Hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions to the 4(sup +) states presumed to be g boson states. Specific applications are made to the Xe and Pt isotopes.

  2. Discovery of the weak neutral intermediate vector boson Zsup(O)

    International Nuclear Information System (INIS)

    Kiss, D.

    1983-01-01

    The experimental detection and identification of the theoretically predicted new particle, the neutral intermediate vector boson of weak and electromagnetic interactions are described. Some technical details of the experiment made by CERN group led by C. Rubbia are discussed. The mass and width of Zsup(O) particle are in agreement with theoretical predictions. The importance of the new discovery is emphasized. (D.Gy.)

  3. Boson mappings for elementary excitations in fermion systems

    International Nuclear Information System (INIS)

    Geyer, H.B.

    1981-07-01

    The boson mapping formalism is presented with a dual purpose in mind. It is first demonstrated to constitute a microscopic formalism leading to the introduction of collective variables into the many-fermion problem in an exact and consistent manner. Secondly it is shown to present ideal exploring ground with a view to the reconciliation of phenomenological collective nuclear models and microscopic considerations. Of the various existing possibilities for the construction of a boson mapping, we single out the finite, non-unitary Dyson-Maleev mapping, emphasising the convenience of its finiteness, especially in investigations concerning formal aspects of the boson mapping formalism. A contribution to the theory of Dyson-Maleev mappinigs for fermion operators is made by introducing the construction of a consistent mapping for single fermion operators which is free of limitations previously imposed on such a mapping. In various fermion models studies it is shown how the Dyson-Maleev mapping can be utilized to obtain equivalent boson models which, however, can be restricted to yield information about the collective subspace only. As far as phenomenological models are concerned, some new light from a microscopic viewpiont is shed on the assumption underlying the interacting boson model as well as on the calculational procedures usually adopted in this model. The most important observation concerns the assumed structure of the IBM hamiltonian where a non-hermitian form, rather than the existing hermitian form, is indicated

  4. Microscopic boson approach to nuclear collective motion

    International Nuclear Information System (INIS)

    Kuchta, R.

    1989-01-01

    A quantum mechanical approach to the maximally decoupled nuclear collective motion is proposed. The essential idea is to transcribe the original shell-model Hamiltonian in terms of boson operators, then to isolate the collective one-boson eigenstates of the mapped Hamiltonian and to perform a canonical transformation which eliminates (up to the two-body terms) the coupling between the collective and noncollective bosons. Unphysical states arising due to the violtion of the Pauli principle in the boson space are identified and removed within a suitable approximation. The method is applied to study the low-lying collective states of nuclei which are successfully described by the exactly solvable multilevel pairing Hamiltonian (Sn, Ni, Pb). 75 refs.; 8 figs

  5. Boson-exchange nucleon-nucleon potential and nuclear structure

    International Nuclear Information System (INIS)

    Grange, Pierre.

    1976-01-01

    A fully momentum-dependent one-boson-exchange potential is derived which takes into account the mesons, π, eta, sigma, rho, ω and phi. Scattering bound states and nuclear matter properties are studied in momentum space. The use of such potential is shown to be as easy as the use of more simple phenomenological interactions. In nuclear matter the formalism of Bethe-Goldstone is chosen to compute the binding energy versus density in the approximation of two-body and three-body correlations. The three-body correlated wave function obtained is then used [fr

  6. Bosonization of free Weyl fermions

    Science.gov (United States)

    Marino, E. C.

    2017-03-01

    We generalize the method of bosonization, in its complete form, to a spacetime with 3  +  1 dimensions, and apply it to free Weyl fermion fields, which thereby, can be expressed in terms of a boson field, namely the Kalb-Ramond anti-symmetric tensor gauge field. The result may have interesting consequences both in condensed matter and in particle physics. In the former, the bosonized form of the Weyl chiral currents provides a simple explanation for the angle-dependent magneto-conductance recently observed in materials known as Weyl semimetals. In the latter, conversely, since electrons can be thought of as a combination of left and right Weyl fermions, our result suggests the possibility of a unified description of the elementary particles, which undergo the fundamental interactions, with the mediators of such interactions, namely, the gauge fields. This would fulfill the pioneering attempt of Skyrme, to unify the particles with their interaction mediators (Skyrme 1962 Nucl. Phys. 31 556).

  7. Theoretical estimation of Z´ boson mass

    International Nuclear Information System (INIS)

    Maji, Priya; Banerjee, Debika; Sahoo, Sukadev

    2016-01-01

    The discovery of Higgs boson at the LHC brings a renewed perspective in particle physics. With the help of Higgs mechanism, standard model (SM) allows the generation of particle mass. The ATLAS and CMS experiments at the LHC have predicted the mass of Higgs boson as m_H=125-126 GeV. Recently, it is claimed that the Higgs boson might interact with dark matter and there exists relation between the Higgs boson and dark matter (DM). Hertzberg has predicted a correlation between the Higgs mass and the abundance of dark matter. His theoretical result is in good agreement with current data. He has predicted the mass of Higgs boson as GeV. The Higgs boson could be coupled to the particle that constitutes all or part of the dark matter in the universe. Light Z´ boson could have important implications in dark matter phenomenology

  8. Effects of scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmakov, D.

    1983-01-01

    Expansion of the scattering cross sections into Legendre series is the usual way of solving neutron transport problems. Because of the large space gradients of the neutron flux, the effects of that approximation become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account the scattering anisotropy is presented. From the point od view of the accuracy and computing rate, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations. (author)

  9. Coefficients Calculation in Pascal Approximation for Passive Filter Design

    Directory of Open Access Journals (Sweden)

    George B. Kasapoglu

    2018-02-01

    Full Text Available The recently modified Pascal function is further exploited in this paper in the design of passive analog filters. The Pascal approximation has non-equiripple magnitude, in contrast of the most well-known approximations, such as the Chebyshev approximation. A novelty of this work is the introduction of a precise method that calculates the coefficients of the Pascal function. Two examples are presented for the passive design to illustrate the advantages and the disadvantages of the Pascal approximation. Moreover, the values of the passive elements can be taken from tables, which are created to define the normalized values of these elements for the Pascal approximation, as Zverev had done for the Chebyshev, Elliptic, and other approximations. Although Pascal approximation can be implemented to both passive and active filter designs, a passive filter design is addressed in this paper, and the benefits and shortcomings of Pascal approximation are presented and discussed.

  10. State orthogonality, boson bunching parameter and bosonic enhancement factor

    International Nuclear Information System (INIS)

    Marchewka, A.; Granot, E.

    2016-01-01

    Bosons bunching is the tendency of bosons to bunch together with respect to distinguishable particles. It is emphasized that the bunching parameter β = p_B/p_D, i.e. the ratio between the probability to measure 2 bosons and 2 distinguishable particles at the same state, is a constant of motion and depends only on the overlap between the initial wavefunctions. This ratio is equal to β = 2/(1 + l"2), where l is the overlap integral between the initial wavefunctions. That is, only when the initial wavefunctions are orthogonal this ratio is equal to 2, however, this bunching ratio can be reduced to 1, when the two wavefunctions are identical. This simple equation explains the experimental evidences of a beam splitter. A straightforward conclusion is that by measuring the local bunching parameter β (at any point in space and time) it is possible to evaluate a global parameter l (the overlap between the initial wavefunctions). The bunching parameter is then generalized to arbitrary number of particles, and in an analogy to the two-particles scenario, the well-known bosonic enhancement appears only when all states are orthogonal

  11. Higgs-boson masses and mixing matrices in the NMSSM

    DEFF Research Database (Denmark)

    Drechsel, P.; Gröber, R.; Heinemeyer, S.

    2017-01-01

    We analyze the Higgs-boson masses and mixing matrices in the NMSSM based on an on-shell (OS) renormalization of the gauge-boson and Higgs-boson masses and the parameters of the top/scalar top sector. We compare the implementation of the OS calculations in the codes NMSSMCALC and NMSSM-FeynHiggs up...... to O(αtαs). We identify the sources of discrepancies at the one- and at the two-loop level. Finally we compare the OS and DR ¯ evaluation as implemented in NMSSMCALC. The results are important ingredients for an estimate of the theoretical precision of Higgs-boson mass calculations in the NMSSM....

  12. Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Schabinger, Robert; Wells, James D.

    2005-01-01

    Little experimental data bears on the question of whether there is a spontaneously broken hidden sector that has no Standard Model quantum numbers. Here we discuss the prospects of finding evidence for such a hidden sector through renormalizable interactions of the Standard Model Higgs boson with a Higgs boson of the hidden sector. We find that the lightest Higgs boson in this scenario has smaller rates in standard detection channels, and it can have a sizeable invisible final state branching fraction. Details of the hidden sector determine whether the overall width of the lightest state is smaller or larger than the Standard Model width. We compute observable rates, total widths and invisible decay branching fractions within the general framework. We also introduce the 'A-Higgs Model', which corresponds to the limit of a hidden sector Higgs boson weakly mixing with the Standard Model Higgs boson. This model has only one free parameter in addition to the mass of the light Higgs state and it illustrates most of the generic phenomenology issues, thereby enabling it to be a good benchmark theory for collider searches. We end by presenting an analogous supersymmetry model with similar phenomenology, which involves hidden sector Higgs bosons interacting with MSSM Higgs bosons through D-terms

  13. Pair production of intermediate vector bosons

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1979-01-01

    The production of intermediate vector boson pairs W + W - , Z 0 Z 0 , W +- Z 0 and W +- γ in pp and p anti p collisions is discussed. The motivation is to detect the self-interactions among the four intermediate vector bosons

  14. A primer on Higgs boson low-energy theorems

    International Nuclear Information System (INIS)

    Dawson, S.; Haber, H.E.; California Univ., Santa Cruz, CA

    1989-05-01

    We give a pedagogical review of Higgs boson low-energy theorems and their applications in the study of light Higgs boson interactions with mesons and baryons. In particular, it is shown how to combine the chiral Lagrangian method with the Higgs low-energy theorems to obtain predictions for the interaction of Higgs bosons and pseudoscalar mesons. Finally, we discuss the relation between the low-energy theorems and a technique which makes use of the trace of the QCD energy-momentum tensor. 35 refs

  15. Molecular Model of a Quantum Dot Beyond the Constant Interaction Approximation

    Science.gov (United States)

    Temirov, Ruslan; Green, Matthew F. B.; Friedrich, Niklas; Leinen, Philipp; Esat, Taner; Chmielniak, Pawel; Sarwar, Sidra; Rawson, Jeff; Kögerler, Paul; Wagner, Christian; Rohlfing, Michael; Tautz, F. Stefan

    2018-05-01

    We present a physically intuitive model of molecular quantum dots beyond the constant interaction approximation. It accurately describes their charging behavior and allows the extraction of important molecular properties that are otherwise experimentally inaccessible. The model is applied to data recorded with a noncontact atomic force microscope on three different molecules that act as a quantum dot when attached to the microscope tip. The results are in excellent agreement with first-principles simulations.

  16. Higgs boson hunting

    International Nuclear Information System (INIS)

    Dawson, S.; Haber, H.E.; Rindani, S.D.

    1989-05-01

    This is the summary report of the Higgs Boson Working Group. We discuss a variety of search techniques for a Higgs boson which is lighter than the Z. The processes K → πH, η prime → ηH,Υ → Hγ and e + e - → ZH are examined with particular attention paid to theoretical uncertainties in the calculations. We also briefly examine new features of Higgs phenomenology in a model which contains Higgs triplets as well as the usual doublet of scalar fields. 33 refs., 6 figs., 1 tab

  17. Gauge boson/Higgs boson unification: The Higgs bosons as superpartners of massive gauge bosons

    International Nuclear Information System (INIS)

    Fayet, P.

    1984-01-01

    We show how one can use massive gauge superfields to describe, simultaneously, gauge bosons (Wsup(+-), Z, ...) and Higgs bosons (wsup(+-), z, ...) together with their spin-1/2 partners (pairs of winos, zinos, ...), despite their different electroweak properties. This provides a manifestly supersymmetric formulation of spontaneously broken supersymmetric gauge theories, and makes explicit the relations between massive gauge bosons and Higgs bosons. It raises, however, the following question: if the gauge bosons Wsup(+-) and Z and the Higgs bosons wsup(+-) and z are related by supersymmetry, how it is possible that the former couple to leptons and quarks proportionately to g or g', and the latter proportionately to gsub(F)sup(1/2) m (fermions). The paradox is solved as follows: when the Higgs bosons are described by massive gauge superfields, the lagrangian density is non-polynomial and field redefinitions have to be performed, in particular: lepton or quark field -> lepton or quark field + (approx.= Gsub(F)sup(1/2) Higgs field) (lepton or quark field). They automatically regenerate, from the lepton and quark supersymmetric mass terms, the correct Yukawa couplings of Higgs bosons proportional to fermion masses. We also apply this method to the case in which an extra U(1) group is gauged, the standard Higgs boson h 0 being then the superpartner of the new neutral gauge boson U. (orig.)

  18. Bounds from LEP on unparticle interactions with electroweak bosons

    International Nuclear Information System (INIS)

    Kathrein, Scott; Knapen, Simon; Strassler, Matthew J.

    2011-01-01

    A conformally invariant hidden sector is considered, with a scalar operator O of low dimension that couples to the electroweak gauge bosons of the standard model, via terms such as F μν F μν O. By examining single photon production at LEP, we bound the strength of these interactions. We apply our results, along with those of Delgado and Strassler [A. Delgado and M. J. Strassler, Phys. Rev. D 81, 056003(2010).] and of Caracciolo and Rychkov [F. Caracciolo and S. Rychkov, Phys. Rev. D 81, 085037 (2010).], to improve the bound on 4γ production through 'unparticle self-interactions', as proposed by Feng et al.[J. L. Feng, A. Rajaraman, and H. Tu, Phys. Rev. D 77, 075007 (2008).]. We find the maximum allowable cross section is of order a few tens of femtobarns at the 14 TeV LHC, and lies well below 1 fb for a wide range of parameters.

  19. Simulating and assessing boson sampling experiments with phase-space representations

    Science.gov (United States)

    Opanchuk, Bogdan; Rosales-Zárate, Laura; Reid, Margaret D.; Drummond, Peter D.

    2018-04-01

    The search for new, application-specific quantum computers designed to outperform any classical computer is driven by the ending of Moore's law and the quantum advantages potentially obtainable. Photonic networks are promising examples, with experimental demonstrations and potential for obtaining a quantum computer to solve problems believed classically impossible. This introduces a challenge: how does one design or understand such photonic networks? One must be able to calculate observables using general methods capable of treating arbitrary inputs, dissipation, and noise. We develop complex phase-space software for simulating these photonic networks, and apply this to boson sampling experiments. Our techniques give sampling errors orders of magnitude lower than experimental correlation measurements for the same number of samples. We show that these techniques remove systematic errors in previous algorithms for estimating correlations, with large improvements in errors in some cases. In addition, we obtain a scalable channel-combination strategy for assessment of boson sampling devices.

  20. Nonequilibrium dynamics of spin-boson models from phase-space methods

    Science.gov (United States)

    Piñeiro Orioli, Asier; Safavi-Naini, Arghavan; Wall, Michael L.; Rey, Ana Maria

    2017-09-01

    An accurate description of the nonequilibrium dynamics of systems with coupled spin and bosonic degrees of freedom remains theoretically challenging, especially for large system sizes and in higher than one dimension. Phase-space methods such as the truncated Wigner approximation (TWA) have the advantage of being easily scalable and applicable to arbitrary dimensions. In this work we adapt the TWA to generic spin-boson models by making use of recently developed algorithms for discrete phase spaces [J. Schachenmayer, A. Pikovski, and A. M. Rey, Phys. Rev. X 5, 011022 (2015), 10.1103/PhysRevX.5.011022]. Furthermore we go beyond the standard TWA approximation by applying a scheme based on the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of equations to our coupled spin-boson model. This allows us, in principle, to study how systematically adding higher-order corrections improves the convergence of the method. To test various levels of approximation we study an exactly solvable spin-boson model, which is particularly relevant for trapped-ion arrays. Using TWA and its BBGKY extension we accurately reproduce the time evolution of a number of one- and two-point correlation functions in several dimensions and for an arbitrary number of bosonic modes.

  1. γ-unstable nuclei in the sdg boson model

    International Nuclear Information System (INIS)

    Kuyucak, S.; Lac, V-S.; Morrison, I.; Barret, B.R.

    1991-01-01

    Following the recent Pt(p,p') experiments which indicated the need for g bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to the sdg bosons. It is shown that a γ-unstable Hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the γ-unstable nature of the Hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions to the 4 + states presumed to be g boson states. Specific applications are made to the Xe and Pt isotopes. 12 refs., 2 tabs., 4 figs

  2. Calculations of the Low-Lying Structures in the Even-Even Nd/Sm/Gd/Dy Isotopes

    Science.gov (United States)

    Lee, Su Youn; Lee, J. H.; Lee, Young Jun

    2018-05-01

    The nuclear structure of deformed nuclei has been studied using the interacting boson model (IBM). In this study, energy levels and E2 transition probabilities were determined for even nuclei in the Nd/Sm/Gd/Dy chains which have a transition characteristic between the rotational, SU(3) and vibrational, U(5) limits. The structure of the nuclei exhibits a slight breaking of the SU(3) symmetry in the direction of U(5), and therefore, we add the d-boson number operator n d , which is the main term of the U(5) symmetric Hamiltonian, to the SU(3) Hamiltonian of the IBM. The calculated results for low-lying energy levels and E2 transition rates in Nd/Sm/Gd/Dy isotopes are in reasonably good agreement with known experimental results.

  3. Additional neutral vector boson in the 7-dimensional theory of gravy-electro-weak interactions

    International Nuclear Information System (INIS)

    Gavrilov, V.R.

    1988-01-01

    Possibilities of manifestation of an additional neutron vector boson, the existence of which is predicted by the 7-dimensional theory of gravy-electro-weak interactions, are analyzed. A particular case of muon neutrino scattering on a muon is considered. In this case additional neutral current manifests both at high and at relatively low energies of particle collisions

  4. Experimental study of collisionless interaction between superalfven mutually penetrating plasma flows

    International Nuclear Information System (INIS)

    Antonov, V.M.; Bashurin, V.P.; Golubev, A.I.; Zhmajlo, V.A.; Zakharov, Yu.P.; Orishich, A.M.; Ponomarenko, A.G.; Posukh, V.G.; Snytnikov, V.N.

    1985-01-01

    To develop new methods of magnetic-gaseous protection of the first wall of thermonuclear reactor with inertial confainment, the processes of collisionless interaction of laser plasma expanding cloud with magnetized background at high Mach-Alfven numbers (Msub(A)>=5) are investigated. Experimental results on laboratory simulation of interaction processes of superalfvenic plasma flow with the number of particles N 1 approximately equal to 10 18 in the background plasma n approximately equal to 3x10 13 cm sup(-3) are presented. In the presence of magnetic field, when Larmour's ionic radii of the cloud and background are compared with the scale R=(3N 1 z 1 /4πn)1/3, intensive pulsetransfer from the cloud to the background in the absence of collisions was recorded. The possibility of superalfvenic flow interactions (Msub(A)> or approximately 6) at the expense of the independent from Msub(A) magnetic laminar mechanism of ion acceleration by vortex electric field is proved experimentally

  5. Bosonization of fermion operators as linked-cluster expansions

    International Nuclear Information System (INIS)

    Kishimoto, T.; Tamura, T.

    1983-01-01

    In order for a boson-expansion theory to be useful for practical purposes, it must satisfy at least two requirements: It must be in the form of a linked-cluster expansion, and the pure (ideal) boson states must be usable as basis states. Previously, we constructed such a boson theory and used it successfully for many realistic calculations. This construction, however, lacked mathematical rigor. In the present paper, we develop an entirely new approach, which results in the same boson expansions obtained earlier, but now in a mathematically rigorous fashion. The achievement of the new formalism goes beyond this. Its framework is much more general and flexible than was that of the earlier formalism, and it allows us to extend the calculations beyond what had been done in the past

  6. Kondo length in bosonic lattices

    Science.gov (United States)

    Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea

    2017-09-01

    Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.

  7. Technology of multiloop calculations for closed bosonic strings

    International Nuclear Information System (INIS)

    Ramachandran, R.

    1986-03-01

    In this article, we trace the essentials of the technology of multiloop computations in the covariant Polyakov formalism of the closed bosonic string theory in the critical dimension. We discuss how we may isolate the divergences in the multiloop vacuum amplitude and show that they are interpreted as due to tadpole diagrams in which the dilaton goes into vacuum. (author)

  8. Comments and questions about the interacting-boson model

    International Nuclear Information System (INIS)

    Rowe, D.J.; McGowan, F.; Raman, S.; Wyss, R.; Zelevinsky, V.

    1992-01-01

    The Interacting Boson Model (IBM) has had an enormous influence on nuclear physics. One of its important achievements has been to remove the mystique and psychological barriers that once surrounded the use of group theory and algebraic methods in nuclear physics. Surely no one nowadays doubts that a dynamical system can be very simple when it has an algebraic structure. The IBM has also provided a systematic classification of a wide variety of data in terms of a small number of parameters. The wide range of successful applications of the model is very impressive. If the model did nothing more, it would have served an important and useful purpose in getting theorists to look more closely at the systematics of nuclear data. It also challenges us to explain, in physical terms, the reasons for its success

  9. Exploring Interacting Quantum Many-Body Systems by Experimentally Creating Continuous Matrix Product States in Superconducting Circuits

    Directory of Open Access Journals (Sweden)

    C. Eichler

    2015-12-01

    Full Text Available Improving the understanding of strongly correlated quantum many-body systems such as gases of interacting atoms or electrons is one of the most important challenges in modern condensed matter physics, materials research, and chemistry. Enormous progress has been made in the past decades in developing both classical and quantum approaches to calculate, simulate, and experimentally probe the properties of such systems. In this work, we use a combination of classical and quantum methods to experimentally explore the properties of an interacting quantum gas by creating experimental realizations of continuous matrix product states—a class of states that has proven extremely powerful as a variational ansatz for numerical simulations. By systematically preparing and probing these states using a circuit quantum electrodynamics system, we experimentally determine a good approximation to the ground-state wave function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum system, this approach has the potential to apply to a variety of models including those involving multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring general properties of matrix product states and entanglement theory. The scheme presented here is applicable to a broad range of systems exploiting strong and tunable light-matter interactions.

  10. Duality and bosonization in Schwinger–Keldysh formulation

    International Nuclear Information System (INIS)

    Saraví, R E Gamboa; Naón, C M; Schaposnik, F A

    2014-01-01

    We present a path-integral bosonization approach for systems out of equilibrium based on a duality transformation of the original Dirac fermion theory combined with the Schwinger–Keldysh time closed contour technique, to handle the non-equilibrium situation. The duality approach to bosonization that we present is valid for D ≥ 2 space–time dimensions leading for D = 2 to exact results. In this last case we present the bosonization rules for fermion currents, calculate current–current correlation functions and establish the connection between the fermionic and bosonic distribution functions in a generic, non-equilibrium situation. (paper)

  11. Measurement of W{sup {+-}} boson mass at LEP by means of DELPHI detector; Mesure de la masse des bosons W{sup {+-}} au LEP a l`aide du detecteur DELPHI

    Energy Technology Data Exchange (ETDEWEB)

    Todorova-Nova, Sarka [Universite Louis Pasteur, Institut de Recherches Subatomiques, 67 - Strasbourg (France)

    1998-05-25

    The thesis deals with measurement of the mass of the W boson at LEP2, based on the direct reconstruction of its decay products in the hadronic channel. A set of procedures necessary for the extraction of the W mass from the experimental data collected with the DELPHI detector in 1997 was developed (search of optimal variables for the event selection, development of a special method of kinematical reconstruction). The measured value of the mass was interpreted in the framework of the Standard Model, allowing to constrain the mass of the Higgs boson. A substantial part of the work is devoted to systematic effects due to the interactions between the hadronic decay products of the W bosons (colour reconnection and Bose-Einstein correlations), which may significantly influence the measurement of their mass. (author) 53 refs., 104 figs., 33 tabs.

  12. Search for standard model Higgs bosons produced in association with W bosons.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Griso, S Pagan; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S; Group, R C

    2008-02-01

    We report on the results of a search for standard model Higgs bosons produced in association with W bosons from pp[over] collisions at sqrt[s]=1.96 TeV. The search uses a data sample corresponding to approximately 1 fb(-1) of integrated luminosity. Events consistent with the W-->lnu and H-->bb[over] signature are selected by triggering on a high-p(T) electron or muon candidate and tagging one or two of the jet candidates as having originated from b quarks. A neural network filter rejects a fraction of tagged charm and light-flavor jets, increasing the b-jet purity in the sample. We observe no excess lnubb[over] production beyond the background expectation, and we set 95% confidence level upper limits on the production cross section times branching fraction sigma(pp[over]-->WH)Br(H-->bb[over]) ranging from 3.9 to 1.3 pb, for specific Higgs boson mass hypotheses in the range 110 to 150 GeV/c2, respectively.

  13. Parton shower and NLO-matching uncertainties in Higgs boson pair production

    Science.gov (United States)

    Jones, Stephen; Kuttimalai, Silvan

    2018-02-01

    We perform a detailed study of NLO parton shower matching uncertainties in Higgs boson pair production through gluon fusion at the LHC based on a generic and process independent implementation of NLO subtraction and parton shower matching schemes for loop-induced processes in the Sherpa event generator. We take into account the full top-quark mass dependence in the two-loop virtual corrections and compare the results to an effective theory approximation. In the full calculation, our findings suggest large parton shower matching uncertainties that are absent in the effective theory approximation. We observe large uncertainties even in regions of phase space where fixed-order calculations are theoretically well motivated and parton shower effects expected to be small. We compare our results to NLO matched parton shower simulations and analytic resummation results that are available in the literature.

  14. Hunting for the intermediate-mass Higgs boson in a hadron collider

    International Nuclear Information System (INIS)

    Gunion, J.F.; Kalyniak, P.; Soldate, M.; Galison, P.

    1985-01-01

    We examine the feasibility of identifying in a hadron machine the standard, neutral Higgs boson, produced in association with a W, when the mass of the Higgs is between approximately 100 GeV and 2m/sub W/. The production cross section is calculated with quasirealistic cuts imposed under the assumption that the Higgs decays into tt-bar. Possible backgrounds arising from the continuum production of tt-bar, tb-bar, or t-barb accompanied by a W are computed as well

  15. Higgs Spin Determination and Unitarity of Vector-boson Scattering at the LHC

    CERN Document Server

    Frank, Jessica

    After the discovery of a new particle at the Large Hadron Collider (LHC), it is crucial to definitely verify or disprove whether this new 125 − 126 GeV resonance is the Higgs boson of the Standard Model (SM). Thus, its features, including its spin, have to be determined. In order to distinguish the two most likely spin hypotheses, spin-0 or spin-2, the phenomenology of light spin-2 resonances produced in different gluon-fusion and vectorboson-fusion processes at the LHC is studied. Starting from an effective model for the interaction of a spin-2 particle with SM gauge bosons, cross sections and differential distributions are calculated within the Monte Carlo program Vbfnlo. Whereas with specific model parameters, such a spin-2 resonance can mimic rates and transverse-momentum distributions of a SM Higgs boson in the main decay channels γγ, WW and ZZ, several distributions allow to separate spin-2 from spin-0, almost independently of model parameters. Since the SM Higgs boson ensures the unitarity of the S...

  16. gamma. -unstable nuclei in the sdg boson model

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, S.; Lac, V.S.; Morrison, I.; Barrett, B.R. (School of Physics, Univ. of Melbourne, Parkville (Australia))

    1991-07-18

    Following the recent Pt(p, p') experiments which indicated the need for g bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to include g bosons. It is shown that a {gamma}-unstable hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the {gamma}-unstable nature of the hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions. Applications are made to the Xe and Pt isotopes. (orig.).

  17. γ-unstable nuclei in the sdg boson model

    Science.gov (United States)

    Kuyucak, S.; Lac, V.-S.; Morrison, I.; Barrett, B. R.

    1991-07-01

    Following the recent Pt(p, p‧) experiments which indicated the need for g bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to include g bosons. It is shown that a γ-unstable hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the γ-unstable nature of the hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions. Applications are made to the Xe and Pt isotopes.

  18. Chiral bosonization on a Riemann surface

    International Nuclear Information System (INIS)

    Eguchi, Tohru; Ooguri, Hirosi

    1987-01-01

    We point out that the basic addition theorem of θ-functions, Fay's identity, implies an equivalence between bosons and chiral fermions on Riemann surfaces with arbitrary genus. We present a rule for a bosonized calculation of correlation functions. We also discuss ghost systems of n and (1-n) tensors and derive formulas for their chiral determinants. (orig.)

  19. Higgs-boson production in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider

  20. Higgs-Boson Production in Nucleus-Nucleus Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  1. Approximative calculation of transient short-circuit currents in power-systems

    Energy Technology Data Exchange (ETDEWEB)

    Heuck, K; Rosenberger, R; Dettmann, K D; Kegel, R

    1986-08-01

    The paper shows that it is approximatively possible to calculate the transient short-circuit currents for symmetrical and asymmetrical faults in power-systems. For that purpose a simple equivalent network is found. Its error of approximation is small. For the important maximum short-circuit current limits of error are pointed out compared to VDE 0102.

  2. Approximation for discrete Fourier transform and application in study of three-dimensional interacting electron gas.

    Science.gov (United States)

    Yan, Xin-Zhong

    2011-07-01

    The discrete Fourier transform is approximated by summing over part of the terms with corresponding weights. The approximation reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency with several orders without losing accuracy. As an example, we apply the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram approximation where the Green's function needs to be self-consistently solved. We present the results for the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and random-phase approximation.

  3. Filling- and interaction-driven Mott transition. Quantum cluster calculations within self-energy-functional theory

    International Nuclear Information System (INIS)

    Balzer, Matthias

    2008-01-01

    The central goal of this thesis is the examination of strongly correlated electron systems on the basis of the two-dimensional Hubbard model. We analyze how the properties of the Mott insulator change upon doping and with interaction strength. The numerical evaluation is done using quantum cluster approximations, which allow for a thermodynamically consistent description of the ground state properties. The framework of self-energy-functional theory offers great flexibility for the construction of cluster approximations. A detailed analysis sheds light on the quality and the convergence properties of different cluster approximations within the self-energy-functional theory. We use the one-dimensional Hubbard model for these examinations and compare our results with the exact solution. In two dimensions the ground state of the particle-hole symmetric model at half-filling is an antiferromagnetic insulator, independent of the interaction strength. The inclusion of short-range spatial correlations by our cluster approach leads to a considerable improvement of the antiferromagnetic order parameter as compared to dynamical mean-field theory. In the paramagnetic phase we furthermore observe a metal-insulator transition as a function of the interaction strength, which qualitatively differs from the pure mean-field scenario. Starting from the antiferromagnetic Mott insulator a filling-controlled metal-insulator transition in a paramagnetic metallic phase can be observed. Depending on the cluster approximation used an antiferromagnetic metallic phase may occur at first. In addition to long-range antiferromagnetic order, we also considered superconductivity in our calculations. The superconducting order parameter as a function of doping is in good agreement with other numerical methods, as well as with experimental results. (orig.)

  4. Electronic structure of PrBa2Cu3O7: A local-spin-density approximation with on-site Coulomb interaction

    International Nuclear Information System (INIS)

    Biagini, M.; Calandra, C.; Ossicini, S.

    1995-01-01

    Electronic structure calculations based on the local-spin-density approximation (LSDA) fail to reproduce the antiferromagnetic ground state of PrBa 2 Cu 3 O 7 (PBCO). We have performed linear muffin-tin orbital--atomic sphere approximation calculations, based on the local-spin-density approximation with on-site Coulomb correlation applied to Cu(1) and Cu(2) 3d states. We have found that inclusion of the on-site Coulomb interaction modifies qualitatively the electronic structure of PBCO with respect to the LSDA results, and gives Cu spin moments in good agreement with the experimental values. The Cu(2) upper Hubbard band lies about 1 eV above the Fermi energy, indicating a Cu II oxidation state. On the other hand, the Cu(1) upper Hubbard band is located across the Fermi level, which implies an intermediate oxidation state for the Cu(1) ion, between Cu I and Cu II . The metallic character of the CuO chains is preserved, in agreement with optical reflectivity [K. Takenaka et al., Phys. Rev. B 46, 5833 (1992)] and positron annihilation experiments [L. Hoffmann et al., Phys. Rev. Lett. 71, 4047 (1993)]. These results support the view of an extrinsic origin of the insulating character of PrBa 2 Cu 3 O 7

  5. Calculation of static characteristics of linear step motors for control rod drives of nuclear reactors - an approximate approach

    International Nuclear Information System (INIS)

    Khan, S.H.; Ivanov, A.A.

    1993-01-01

    This paper describes an approximate method for calculating the static characteristics of linear step motors (LSM), being developed for control rod drives (CRD) in large nuclear reactors. The static characteristic of such an LSM which is given by the variation of electromagnetic force with armature displacement determines the motor performance in its standing and dynamic modes. The approximate method of calculation of these characteristics is based on the permeance analysis method applied to the phase magnetic circuit of LSM. This is a simple, fast and efficient analytical approach which gives satisfactory results for small stator currents and weak iron saturation, typical to the standing mode of operation of LSM. The method is validated by comparing theoretical results with experimental ones. (Author)

  6. Exact results for the spectra of bosons and fermions with contact interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mashkevich, Stefan [Schroedinger, 120 West 45th St., New York, NY 10036 (United States)]. E-mail: mash@mashke.org; Matveenko, Sergey [Landau Institute for Theoretical Physics, Kosygina Str. 2, 119334 Moscow (Russian Federation)]. E-mail: matveen@landau.ac.ru; Ouvry, Stephane [Laboratoire de Physique Theorique et Modeles Statistiques, Unite de Recherche de l' Universite Paris 11 associee au CNRS, UMR 8626., Bat. 100, Universite Paris-Sud, 91405 Orsay (France)]. E-mail: ouvry@lptms.u-psud.fr

    2007-02-19

    An N-body bosonic model with delta-contact interactions projected on the lowest Landau level is considered. For a given number of particles in a given angular momentum sector, any energy level can be obtained exactly by means of diagonalizing a finite matrix: they are roots of algebraic equations. A complete solution of the three-body problem is presented, some general properties of the N-body spectrum are pointed out, and a number of novel exact analytic eigenstates are obtained. The FQHE N-fermion model with Laplacian-delta interactions is also considered along the same lines of analysis. New exact eigenstates are proposed, along with the Slater determinant, whose eigenvalues are shown to be related to Catalan numbers.

  7. Application of the boson expansion theory to Se and Kr isotopes

    International Nuclear Information System (INIS)

    Pedrocchi, V.G.; Tamura, T.

    1988-01-01

    The boson expansion theory is applied to even Se and Kr isotopes with neutron number N = 38-48. Energy spectra, B(E2) values and quadrupole moments are calculated and fairly good agreement with experimental data is obtained. The coupling of collective quadrupole and monopole pairing vibrational modes is also included in order to fit low-lying O 2 + states in some of the nuclei. The calculated values of the quadrupole moments indicate that both Se and Kr nuclei are in a transitional region from a prolate to an oblate shape. (author)

  8. NBI Calculations for the TJ-II Experimental Discharges

    International Nuclear Information System (INIS)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2005-01-01

    The density and electron temperature radial profiles, corresponding to the experimental TJ-II campaigns 2003-2004, with NBI, have been fitted to simple functionals in order to allow a fast approximative evaluation for any given density and injected power... The fits have been calculated, separately, for the four possibilities: ECRH and NBI Phases as well as On and Off Axis ECRH injection. The average difference between the experimental profiles for the individual discharges and the fit predictions are around 8% for the density and 10% for the temperature. The behaviour of the predicted profiles with average line density and injected power has been analysed. The central electron temperature decreases monotonically with increasing density and the ECRH phase On Axis central value is clearly higher than the Off axis one. The radial density profiles narrow with increasing density and the NBI On axis case is clearly wider than de Off one. The electron temperature profile widens slightly with increasing density and the width of the On Axix case is lesser than for the Off case in all phases. There exist Fortran subroutines, available at the three CIEMAT computers, allowing the fast approximative evaluation of all these profiles. (Author) 8 refs

  9. Discovery of the Higgs boson by the ATLAS and CMS experiments at the LHC

    CERN Document Server

    Wang, HaiChen

    2014-01-01

    The Standard Model (SM) Higgs boson was predicted by theorists in the 1960s during the development of the electroweak theory. Prior to the startup of the CERN Large Hadron Collider (LHC), experimental searches found no evidence of the Higgs boson. In July 2012, the ATLAS and CMS experiments at the LHC reported the discovery of a new boson in their searches for the SM Higgs boson. Subsequent experimental studies have revealed the spin-0 nature of this new boson and found its couplings to SM particles consistent to those of a Higgs boson. These measurements confirmed the newly discovered boson is indeed a Higgs boson. More measurements will be performed to compare the properties of the Higgs boson with the SM predictions.

  10. Spin-dependent level density in interacting Boson-Fermion-Fermion model of the Odd-Odd Nucleus 196Au

    International Nuclear Information System (INIS)

    Kabashi, S.; Bekteshi, S.; Ahmetaj, S.; Shaqiri, Z.

    2009-01-01

    The level density of the odd-odd nucleus 196 Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM spin-dependent level densities show high-spin reduction with respect to Bethe formula.This can be well accounted for by a modified spin-dependent level density formula. (authors)

  11. Anomalous vector-boson self-interactions

    International Nuclear Information System (INIS)

    Nir, Y.

    1988-03-01

    We study the possibility that vector-boson self-couplings may differ from their standard model values. We find that known constraints from loop-effects and from unitarity already imply that such deviations are of order 10 -2 or less. Consequently, even if the correct model differs from the standard model and even if the energy scale of new physics is as low as 1 TeV, a direct observation of anomalous couplings is very improbable in the LEP-200 and Tevatron experiments. (author)

  12. Stable Higgs Bosons - new candidate for cold dark matter

    International Nuclear Information System (INIS)

    Hosotani, Yutaka

    2010-01-01

    The Higgs boson is in the backbone of the standard model of electroweak interactions. It must exist in some form for achieving unification of interactions. In the gauge-Higgs unification scenario the Higgs boson becomes a part of the extra-dimensional component of gauge fields. The Higgs boson becomes absolutely stable in a class of the gauge-Higgs unification models, serving as a promising candidate for cold dark matter in the universe. The observed relic abundance of cold dark matter is obtained with the Higgs mass around 70 GeV. The Higgs-nucleon scattering cross section is found to be close to the recent CDMS II XENON10 bounds in the direct detection of dark matter. In collider experiments stable Higgs bosons are produced in a pair, appearing as missing energies momenta so that the way of detecting Higgs bosons must be altered.

  13. The microscopic structure and group theory of the interacting boson model

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1980-01-01

    The chains of groups used in calssifying states of the IBM are compared with the chains used in a composite model with j = 3/2 fermion pairs. Many similarities are found, along with differences due to Pauli principle effects in continuum fermion pairs. The classifications are shown to be characterized by several different seniority numbers, which are physically similar but formally different in the two cases because fermion pair and boson pair states used to define seniority in each model correspond to single bosons and four-fermion clusters, respectively, in the other model. The SO(6) and SO(5) groups which define boson pair seniorities in the boson sextet model are isomorphic, respectively, to SU(4) and Sp(4) which have simple physical interpretations in fermion quartet models. (orig.)

  14. Dispersive and Covalent Interactions between Graphene and Metal Surfaces from the Random Phase Approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Yan, Jun; Mortensen, Jens Jørgen

    2011-01-01

    We calculate the potential energy surfaces for graphene adsorbed on Cu(111), Ni(111), and Co(0001) using density functional theory and the random phase approximation (RPA). For these adsorption systems covalent and dispersive interactions are equally important and while commonly used approximations...... for exchange-correlation functionals give inadequate descriptions of either van der Waals or chemical bonds, RPA accounts accurately for both. It is found that the adsorption is a delicate competition between a weak chemisorption minimum close to the surface and a physisorption minimum further from the surface....

  15. Calculation of Rydberg interaction potentials

    International Nuclear Information System (INIS)

    Weber, Sebastian; Büchler, Hans Peter; Tresp, Christoph; Urvoy, Alban; Hofferberth, Sebastian; Menke, Henri; Firstenberg, Ofer

    2017-01-01

    The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence can be fine-tuned with great flexibility by choosing appropriate Rydberg states and applying external electric and magnetic fields. More and more experiments are probing this interaction at short atomic distances or with such high precision that perturbative calculations as well as restrictions to the leading dipole–dipole interaction term are no longer sufficient. In this tutorial, we review all relevant aspects of the full calculation of Rydberg interaction potentials. We discuss the derivation of the interaction Hamiltonian from the electrostatic multipole expansion, numerical and analytical methods for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source. (tutorial)

  16. Electric dipole moment of the top quark in Higgs-boson-exchange models of CP nonconservation

    International Nuclear Information System (INIS)

    Soni, A.; Xu, R.M.

    1992-01-01

    The leading contribution to the electric and the chromoelectric dipole moments of the top quark is calculated in Higgs-boson-exchange models of CP nonconservation. The dipole moments are typically of the order of 10 -20 e cm and 10 -20 g cm, respectively and arise at one-loop order through neutral-Higgs-boson exchange. Several two-loop contributions are estimated to be smaller by about 2 orders of magnitude for the electric case and about 1 order of magnitude smaller for the chromoelectric case. The q 2 dependence of the dipole moment form factor is given for possible application to experimental searches

  17. Second-order QCD effects in Higgs boson production through vector boson fusion

    Science.gov (United States)

    Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Huss, A.

    2018-06-01

    We compute the factorising second-order QCD corrections to the electroweak production of a Higgs boson through vector boson fusion. Our calculation is fully differential in the kinematics of the Higgs boson and of the final state jets, and uses the antenna subtraction method to handle infrared singular configurations in the different parton-level contributions. Our results allow us to reassess the impact of the next-to-leading order (NLO) QCD corrections to electroweak Higgs-plus-three-jet production and of the next-to-next-to-leading order (NNLO) QCD corrections to electroweak Higgs-plus-two-jet production. The NNLO corrections are found to be limited in magnitude to around ± 5% and are uniform in several of the kinematical variables, displaying a kinematical dependence only in the transverse momenta and rapidity separation of the two tagging jets.

  18. Pairing fluctuation effects on the single-particle spectra for the superconducting state

    International Nuclear Information System (INIS)

    Pieri, P.; Pisani, L.; Strinati, G.C.

    2004-01-01

    Single-particle spectra are calculated in the superconducting state for a fermionic system with an attractive interaction, as functions of temperature and coupling strength from weak to strong. The fermionic system is described by a single-particle self-energy that includes pairing-fluctuation effects in the superconducting state. The theory reduces to the ordinary BCS approximation in weak coupling and to the Bogoliubov approximation for the composite bosons in strong coupling. Several features of the single-particle spectral function are shown to compare favorably with experimental data for cuprate superconductors

  19. The XYZ chain with Dzyaloshinsky–Moriya interactions: from spin–orbit-coupled lattice bosons to interacting Kitaev chains

    International Nuclear Information System (INIS)

    Peotta, Sebastiano; Mazza, Leonardo; Fazio, Rosario; Rossini, Davide; Vicari, Ettore; Polini, Marco

    2014-01-01

    Using the density-matrix renormalization group algorithm (DMRG) and a finite-size scaling analysis, we study the properties of the one-dimensional completely anisotropic spin-1/2 XYZ model with Dzyaloshinsky-Moriya (DM) interactions. The model shows a rich phase diagram: depending on the value of the coupling constants, the system can display different kinds of ferromagnetic order and Luttinger liquid behavior. Transitions from ferromagnetic to Luttinger liquid phases are first order. We thoroughly discuss the transition between different ferromagnetic phases, which, in the absence of DM interactions, belongs to the XX universality class. We provide evidence that the DM exchange term splits this critical line into two separated Ising-like transitions and that in between a disordered phase may appear. Our study sheds light on the general problem of strongly interacting spin–orbit-coupled bosonic gases trapped in an optical lattice and can be used to characterize the topological properties of superconducting nanowires in the presence of an imposed supercurrent and of interactions. (paper)

  20. Weak interactions and exchange currents in light nuclei. Theoretical and experimental aspects

    International Nuclear Information System (INIS)

    Guichon, P.

    1980-01-01

    The influence of meson exchange currents in the nuclear weak interaction is investigated theoretically and experimentally. The hypothesis of current algebra and partial conservation of axial current are used, through Adler-Dothan theorem, to derive the one pion exchange correction to the impulse approximation. Calculations are performed for partial transitions in the 1p-shell nuclei and in 16 O. The corrections are generally small except for the (0 + →0 - ) transition in 16 O where the large correction to the time component of the axial current can show up, due to selection rules. The measurement of the muon capture rate for this transition is described and an interpretation in term of exchange currents is proposed [fr

  1. (Pseudo-Goldstone boson interaction in D=2+1 systems with a spontaneously broken internal rotation symmetry

    Directory of Open Access Journals (Sweden)

    Christoph P. Hofmann

    2016-03-01

    Full Text Available The low-temperature properties of systems characterized by a spontaneously broken internal rotation symmetry, O(N→O(N−1, are governed by Goldstone bosons and can be derived systematically within effective Lagrangian field theory. In the present study we consider systems living in two spatial dimensions, and evaluate their partition function at low temperatures and weak external fields up to three-loop order. Although our results are valid for any such system, here we use magnetic terminology, i.e., we refer to quantum spin systems. We discuss the sign of the (pseudo-Goldstone boson interaction in the pressure, staggered magnetization, and susceptibility as a function of an external staggered field for general N. As it turns out, the d=2+1 quantum XY model (N=2 and the d=2+1 Heisenberg antiferromagnet (N=3, are rather special, as they represent the only cases where the spin-wave interaction in the pressure is repulsive in the whole parameter regime where the effective expansion applies. Remarkably, the d=2+1 XY model is the only system where the interaction contribution in the staggered magnetization (susceptibility tends to positive (negative values at low temperatures and weak external field.

  2. Standard model Higgs boson-inflaton and dark matter

    International Nuclear Information System (INIS)

    Clark, T. E.; Liu Boyang; Love, S. T.; Veldhuis, T. ter

    2009-01-01

    The standard model Higgs boson can serve as the inflaton field of slow roll inflationary models provided it exhibits a large nonminimal coupling with the gravitational scalar curvature. The Higgs boson self interactions and its couplings with a standard model singlet scalar serving as the source of dark matter are then subject to cosmological constraints. These bounds, which can be more stringent than those arising from vacuum stability and perturbative triviality alone, still allow values for the Higgs boson mass which should be accessible at the LHC. As the Higgs boson coupling to the dark matter strengthens, lower values of the Higgs boson mass consistent with the cosmological data are allowed.

  3. Isoscalar compression modes in relativistic random phase approximation

    International Nuclear Information System (INIS)

    Ma, Zhong-yu; Van Giai, Nguyen.; Wandelt, A.; Vretenar, D.; Ring, P.

    2001-01-01

    Monopole and dipole compression modes in nuclei are analyzed in the framework of a fully consistent relativistic random phase approximation (RRPA), based on effective mean-field Lagrangians with nonlinear meson self-interaction terms. The large effect of Dirac sea states on isoscalar strength distribution functions is illustrated for the monopole mode. The main contribution of Fermi and Dirac sea pair states arises through the exchange of the scalar meson. The effect of vector meson exchange is much smaller. For the monopole mode, RRPA results are compared with constrained relativistic mean-field calculations. A comparison between experimental and calculated energies of isoscalar giant monopole resonances points to a value of 250-270 MeV for the nuclear matter incompressibility. A large discrepancy remains between theoretical predictions and experimental data for the dipole compression mode

  4. Effects of the scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmarkov, D.

    1983-01-01

    Expansion of the scattering cross-sections into Legendre series is the usual way of solving the neutron transport problem. Because of the large space gradients of the neutron flux, the effects of that approximations become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account scattering anisotropy is presented. From the point of view of the accuracy and computing speed, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations (author) [sr

  5. The Validity of a Paraxial Approximation in the Simulation of Laser Plasma Interactions

    International Nuclear Information System (INIS)

    Hyole, E. M.

    2000-01-01

    The design of high-power lasers such as those used for inertial confinement fusion demands accurate modeling of the interaction between lasers and plasmas. In inertial confinement fusion, initial laser pulses ablate material from the hohlraum, which contains the target, creating a plasma. Plasma density variations due to plasma motion, ablating material and the ponderomotive force exerted by the laser on the plasma disrupt smooth laser propagation, undesirably focusing and scattering the light. Accurate and efficient computational simulations aid immensely in developing an understanding of these effects. In this paper, we compare the accuracy of two methods for calculating the propagation of laser light through plasmas. A full laser-plasma simulation typically consists of a fluid model for the plasma motion and a laser propagation model. These two pieces interact with each other as follows. First, given the plasma density, one propagates the laser with a refractive index determined by this density. Then, given the laser intensities, the calculation of one time step of the plasma motion provides a new density for the laser propagation. Because this procedure repeats over many time steps, each piece must be performed accurately and efficiently. In general, calculation of the light intensities necessitates the solution of the Helmholtz equation with a variable index of refraction. The Helmholtz equation becomes extremely difficult and time-consuming to solve as the problem size increases. The size of laser-plasma problems of present interest far exceeds current capabilities. To avoid solving the full Helmholtz equation one may use a partial approximation. Generally speaking the partial approximation applies when one expects negligible backscattering of the light and only mild scattering transverse to the direction of light propagation. This approximation results in a differential equation that is first-order in the propagation direction that can be integrated

  6. Polarisation of electroweak gauge bosons at the LHC

    Directory of Open Access Journals (Sweden)

    Vryonidou Eleni

    2013-05-01

    Full Text Available We present results for the polarisation of gauge bosons produced at the LHC. Polarisation effects for W bosons manifest themselves in the angular distributions of the lepton and in the distributions of lepton transverse momentum and missing transverse energy. The polarisation is discussed for a range of different processes producing W bosons such as W+jets and W from top production. The relative contributions of the different polarisation states vary from process to process, reflecting the dynamics of the underlying hardscattering process. We also calculate the polarisation of the Z boson produced in association with QCD jets at the LHC.

  7. Anomalous photon-gauge boson coupling contribution to the exclusive vector boson pair production from two photon exchange in pp collisions at 13 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Martins, D. E.; Vilela Pereira, A.; Sá Borges, J. [Universidade do Estado do Rio de Janeiro - UERJ, Rio de Janeiro-RJ, 20550-900 (Brazil); Rebello Teles, P. [Centro Brasileiro de Pesquisas Físicas - CBPF, Rio de Janeiro-RJ, 22290-180 (Brazil)

    2015-04-10

    We study the W and Z pair production from two-photon exchange in proton-proton collisions at the LHC in order to evaluate the contributions of anomalous photon-gauge boson couplings, that simulates new particles and couplings predicted in many Standard Model (SM) extensions. The experimental results of W{sup +} W{sup −} exclusive production (pp → pW{sup +}W{sup −} p) at 7 TeV from the CMS collaboration [1] updates the experimental limits on anomalous couplings obtained at the Large Electron-Positron Collider (LEP). This motivates our present analysis hopefully anticipating the expected results using the Precision Proton Spectrometer (PPS) to be installed as part of CMS. In this work, we consider the W{sup +}W{sup −} exclusive production to present the p{sub T} distribution of the lepton pair corresponding to the SM signal with p{sub T} (e, μ) > 10 GeV. Next, we consider the photon-gauge boson anomalous couplings by calculating, from the FPMC and MadGraph event generators, the process γγ → W{sup +}W{sup −} from a model with gauge boson quartic couplings, by considering a 1 TeV scale for new physical effects. We present our results for an integrated luminosity of 5 fb{sup −1} at center-of-mass energy of 7 TeV and for an integrated luminosity of 100 fb{sup −1} at 13 TeV. We present our preliminary results for Z pair exclusive production from two-photon exchange with anomalous couplings, where the ZZγγ quartic coupling is absent in the SM. We calculate the total cross section for the exclusive process and present the four lepton invariant mass distribution. Finally we present an outlook for the present analysis.

  8. Complete tree-level calculation of the reaction e+e-→μ+μ-b anti b and the Higgs boson signal at LEP200 and NLC energies

    International Nuclear Information System (INIS)

    Boos, E.

    1993-07-01

    A complete tree-level calculation of the reaction e + e - →μ + μ - b anti b in the electroweak standard theory for the energy range of LEP200 and the Next Linear Collider is presented. The matrix elements have been calculated by employing the computer program CompHEP, the phase space integrals by the Monte Carlo integrator and event generator BASES/SPRING. The dependence of the 4-fermion cross section on energy, Higgs boson mass and Higgs width is studied in detail. Interference contributions between the various diagrams are found not to alter significantly the production and decay distributions of the Higgs boson. It is shown that already the counting rate of the reaction e + e - →μ + μ - b anti b at LEP200 can provide evidence for the existence of the Higgs boson. The dependence of the μ + μ - b anti b cross section on the Higgs width will allow to extract information on this width in particular at LEP200 energies. (orig.)

  9. An approximate method for calculating electron-phonon matrix element of a disordered transition metal and relevant comments on superconductivity

    International Nuclear Information System (INIS)

    Zhang, L.

    1981-08-01

    A method based on the tight-binding approximation is developed to calculate the electron-phonon matrix element for the disordered transition metals. With the method as a basis the experimental Tsub(c) data of the amorphous transition metal superconductors are re-analysed. Some comments on the superconductivity of the disordered materials are given

  10. γ-decay of {}_{8}^{16}{{\\rm{O}}}_{8}\\,{and}\\,{}_{7}^{16}{{\\rm{N}}}_{9} in proton-neutron Tamm-Dancoff and random phase approximations with optimized surface δ interaction

    Science.gov (United States)

    Pahlavani, M. R.; Firoozi, B.

    2016-09-01

    γ-ray transitions from excited states of {}16{{N}} and {}16{{O}} isomers that appear in the γ spectrum of the {}616{{{C}}}10\\to {}716{{{N}}}9\\to {}816{{{O}}}8 beta decay chain are investigated. The theoretical approach used in this research starts with a mean-field potential consisting of a phenomenological Woods-Saxon potential including spin-orbit and Coulomb terms (for protons) in order to obtain single-particle energies and wave functions for nucleons in a nucleus. A schematic residual surface delta interaction is then employed on the top of the mean field and is treated within the proton-neutron Tamm-Dancoff approximation (pnTDA) and the proton-neutron random phase approximation. The goal is to use an optimized surface delta interaction interaction, as a residual interaction, to improve the results. We have used artificial intelligence algorithms to establish a good agreement between theoretical and experimental energy spectra. The final results of the ‘optimized’ calculations are reasonable via this approach.

  11. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    International Nuclear Information System (INIS)

    Artem’ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10 -7 –10 -3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder

  12. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    Science.gov (United States)

    Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  13. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    Energy Technology Data Exchange (ETDEWEB)

    Artem’ev, V. A., E-mail: niitm@inbox.ru [Research Institute of Materials Technology (Russian Federation); Nezvanov, A. Yu. [Moscow State Industrial University (Russian Federation); Nesvizhevsky, V. V. [Institut Max von Laue—Paul Langevin (France)

    2016-01-15

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10{sup -7}–10{sup -3} eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  14. Ruling out a strongly interacting standard Higgs model

    International Nuclear Information System (INIS)

    Riesselmann, K.; Willenbrock, S.

    1997-01-01

    Previous work has suggested that perturbation theory is unreliable for Higgs- and Goldstone-boson scattering, at energies above the Higgs-boson mass, for relatively small values of the Higgs quartic coupling λ(μ). By performing a summation of nonlogarithmic terms, we show that perturbation theory is in fact reliable up to relatively large coupling. This eliminates the possibility of a strongly interacting standard Higgs model at energies above the Higgs-boson mass, complementing earlier studies which excluded strong interactions at energies near the Higgs-boson mass. The summation can be formulated in terms of an appropriate scale in the running coupling, μ=√(s)/e∼√(s)/2.7, so it can be incorporated easily in renormalization-group-improved tree-level amplitudes as well as higher-order calculations. copyright 1996 The American Physical Society

  15. Search for a charged Higgs boson in $\\tau\

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00011001; Gallinaro, Michele

    The Large Hadron Collider (LHC) started the first proton-proton collisions at a center-of-mass energy of 7 TeV in 2010. Soon thereafter, the experiments started collecting data and were able to rediscover the Standard Model (SM) in a few months, thanks to the very good understanding of the detectors, and their already precise calibrations. The LHC took data at $\\sqrt{s}=7$~TeV and 8~TeV in the years 2010-2011 and 2012, respectively: the peak of his intensive data taking has been, in 2012, the discovery, by the CMS and ATLAS experiment s, of a neutral boson with a mass of approximately 125\\unit{\\GeV}. The properties of the new boson are consistent with those predicted for the Standard Model (SM) Higgs boson, and models with an extended Higgs sector are constrained by the measured properties of the new boson: the discovery of another scalar boson, neutral or charged, would represent unambig uous evidence for the presence of physics beyond the SM. Charged Higgs bosons are predicted in models consisting of at...

  16. Proton-neutron sdg boson model and spherical-deformed phase transition

    Science.gov (United States)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-12-01

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing+quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.

  17. Proton-neutron sdg boson model and spherical-deformed phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-12-15

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing + quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.

  18. GOE-TYPE ENERGY-LEVEL STATISTICS AND REGULAR CLASSICAL DYNAMICS FOR ROTATIONAL NUCLEI IN THE INTERACTING BOSON MODEL

    NARCIS (Netherlands)

    PAAR, [No Value; VORKAPIC, D; DIERPERINK, AEL

    1992-01-01

    We study the fluctuation properties of 0+ levels in rotational nuclei using the framework of SU(3) dynamical symmetry of the interacting boson model. Computations of Poincare sections for SU(3) dynamical symmetry and its breaking confirm the expected relation between dynamical symmetry and classical

  19. Higgs boson production in γγ collision

    International Nuclear Information System (INIS)

    Najima, Ryuichi

    1995-01-01

    We calculate the QCD corrections to the processes γγ → H for all mass range of the Higgs boson with m top = 174GeV. For a heavy Higgs boson (m H >> m t ), the QCD corrections become very large (50-100%), while for a lighter one (m H ≤ m t ), the corrections are negligible. (author)

  20. Parquet theory of finite temperature boson systems

    International Nuclear Information System (INIS)

    He, H.W.

    1992-01-01

    In this dissertation, the author uses the parquet summation for the two-body vertex as the framework for a perturbation theory of finite-temperature homogeneous boson systems. The present formalism is a first step toward a full description of the thermodynamic behavior of a finite temperature boson system through parquet summation. The current approximation scheme focuses on a system below the Bose-Einstein condensation temperature and considers only the contribution from Bogoliubov excitations out of a boson condensate. Comparison with the finite temperature variational theory by Campbell et al. shows strong similarities between variational theory and the current theory. Numerical results from a 4 He system and a nuclear system are discussed

  1. β4 systematics in rare-earth and actinide nuclei: sdg interacting boson model description

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1992-01-01

    The observed variation of hexadecupole deformation parameter β 4 with mass number A in rare-earth and actinide nuclei is studied in the sdg interacting boson model (IBM) using single j-shell Otsuka-Arima-Iachello mapped and IBM-2 to IBM-1 projected hexadecupole transition operator together with SU sdg (3) and SU sdg (5) coherent states. The SU sdg (3) limit is found to provide a good description of data

  2. Low-lying (K π= 0+) states of gadolinium isotopes

    Indian Academy of Sciences (India)

    The sd-interacting boson approximation (sd-IBA) and the df-interacting boson approximation (df-IBA) can be related to each other and the states of the interacting boson approximation model can be identified with the fully symmetric states in the sdf interacting boson approximation model. A systematic study of the sdf-IBA ...

  3. Description of superdeformed nuclear states in the interacting boson model

    International Nuclear Information System (INIS)

    Liu, Y.; Zhao, E.; Liu, Y.; Song, J.; Liu, Y.; Sun, H.; Zhao, E.; Liu, Y.; Sun, H.

    1997-01-01

    We show in this paper that the superdeformed nuclear states can be described with a four parameter formula in the spirit of the perturbated SU(3) limit of the sdg IBM. The E2 transition γ-ray energies, the dynamical moments of inertia of the lowest superdeformed (SD) bands in even-even Hg, Pb, Gd, and Dy isotopes, and the energy differences ΔE γ -ΔE γ ref of the SD band 1 of 194 Hg are calculated. The calculated results agree with experimental data well. This indicates that the SD states are governed by a rotational interaction plus a perturbation with SO sdg (5) symmetry. The perturbation causing the ΔI=4 bifurcation to emerge in the ΔI=2 superdeformed rotational band may then possess SO sdg (5) symmetry. copyright 1997 The American Physical Society

  4. Calculations of standard-Higgs-boson production cross sections in e+e- collisions by means of a reasonable set of parameters

    International Nuclear Information System (INIS)

    Biyajima, M.; Shirane, K.; Terazawa, O.

    1987-01-01

    We calculate cross sections for production of the standard Higgs boson in e + e - collisions and compare our results with those of several authors. It is found that there are appreciable differences among them which can be attributed to the coupling constants used, α(0) ( = (1/137) and G/sub F/. We also observe that cross sections depend on the magnitudes of the total width of the Z particle. The use of a reasonable set of parameters in calculations is emphasized

  5. Vacancy-rearrangement theory in the first Magnus approximation

    International Nuclear Information System (INIS)

    Becker, R.L.

    1984-01-01

    In the present paper we employ the first Magnus approximation (M1A), a unitarized Born approximation, in semiclassical collision theory. We have found previously that the M1A gives a substantial improvement over the first Born approximation (B1A) and can give a good approximation to a full coupled channels calculation of the mean L-shell vacancy probability per electron, p/sub L/, when the L-vacancies are accompanied by a K-shell vacancy (p/sub L/ is obtained experimentally from measurements of K/sub α/-satellite intensities). For sufficiently strong projectile-electron interactions (sufficiently large Z/sub p/ or small v) the M1A ceases to reproduce the coupled channels results, but it is accurate over a much wider range of Z/sub p/ and v than the B1A. 27 references

  6. Nuclei: a superfluid condensate of α-particles. A study within the interacting boson model

    International Nuclear Information System (INIS)

    Gambhir, Y.K.; Ring, P.; Schuck, P.

    1983-08-01

    We study the question whether pairs of neutrons and pairs of protons of the usual superfluid phases do not form a bound state to give rise to a superfluid condensate of ''α-particles''. We indeed find indications for this to be the case from a BCS like study for bosons using the proton-neutron IBM as well as from an even-odd effect in the number of pairs using experimental binding energies

  7. Higgs boson as a top-mode pseudo-Nambu-Goldstone boson

    Science.gov (United States)

    Fukano, Hidenori S.; Kurachi, Masafumi; Matsuzaki, Shinya; Yamawaki, Koichi

    2014-09-01

    In the spirit of the top-quark condensation, we propose a model which has a naturally light composite Higgs boson, "tHiggs" (ht0), to be identified with the 126 GeV Higgs discovered at the LHC. The tHiggs, a bound state of the top quark and its flavor (vectorlike) partner, emerges as a pseudo-Nambu-Goldstone boson (NGB), "top-mode pseudo-Nambu-Goldstone boson," together with the exact NGBs to be absorbed into the W and Z bosons as well as another (heavier) top-mode pseudo-Nambu-Goldstone bosons (CP-odd composite scalar, At0). Those five composite (exact/pseudo-) NGBs are dynamically produced simultaneously by a single supercritical four-fermion interaction having U(3)×U(1) symmetry which includes the electroweak symmetry, where the vacuum is aligned by a small explicit breaking term so as to break the symmetry down to a subgroup, U(2)×U(1)', in a way not to retain the electroweak symmetry, in sharp contrast to the little Higgs models. The explicit breaking term for the vacuum alignment gives rise to a mass of the tHiggs, which is protected by the symmetry and hence naturally controlled against radiative corrections. Realistic top-quark mass is easily realized similarly to the top-seesaw mechanism by introducing an extra (subcritical) four-fermion coupling which explicitly breaks the residual U(2)'×U(1)' symmetry with U(2)' being an extra symmetry besides the above U(3)L×U(1). We present a phenomenological Lagrangian of the top-mode pseudo-Nambu-Goldstone bosons along with the Standard Model particles, which will be useful for the study of the collider phenomenology. The coupling property of the tHiggs is shown to be consistent with the currently available data reported from the LHC. Several phenomenological consequences and constraints from experiments are also addressed.

  8. Quasiparticle interaction in nuclear matter

    International Nuclear Information System (INIS)

    Poggioli, R.S.; Jackson, A.D.

    1975-07-01

    A microscopic calculation of the quasiparticle interaction in nuclear matter is detailed. In order to take especial care of the contributions from the low momentum states, a model space is introduced. Excluded from the model space, the high momentum states are absorbed into the model interaction. Brueckner theory suggests the choice of a truncated G-matrix as a good approximation for this model interaction. A simple perturbative approach is attempted within the model space. The calculated quasiparticle interaction is consistent with experimental results. (11 tables, 14 figures)

  9. Screened Coulomb interactions in metallic alloys. I. Universal screening in the atomic-sphere approximation

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt

    2002-01-01

    We have used the locally self-consistent Green's-function (LSGF) method in supercell calculations to establish the distribution of the net charges assigned to the atomic spheres of the alloy components in metallic alloys with different compositions and degrees of order. This allows us to determine......-site local interaction zone. We demonstrate that the basic mechanism that governs the charge distribution is the screening of the net charges of the alloy components that makes the direct Coulomb interactions short ranged. In the atomic-sphere approximation, this screening appears to be almost independent...

  10. Experimental and theoretical investigations of soil-structure interaction effect at HDR-reactor-building

    International Nuclear Information System (INIS)

    Wassermann, K.

    1983-01-01

    Full-scale dynamic testing on intermediate and high levels was performed at the Heissdampfreaktor (HDR) in 1979. Various types of dynamic forces were applied and response of the reactor containment structure and internal components was measured. Precalculations of dynamic behaviour and response of the structure were made through different mathematical models for the structure and the underlying soil. Soil-Structure Interaction effects are investigated and different theoretical models are compared with experimental results. In each model, the soil is represented by springs attached to the structural model. Stiffnesses of springs are calculated by different finite-element idealizations and half-space approximations. Eigenfrequencies and damping values related to interaction effects (translation, rocking, torsion) are identified from test results. The comparisons of dynamic characteristic of the soil-structure system between precalculations and test results show good agreement in general. (orig.)

  11. W Boson Polarisation at LEP2

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Couchman, J.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    Elements of the spin density matrix for W bosons in e+e- -> W+W- -> qqln events are measured from data recorded by the OPAL detector at LEP. This information is used calculate polarised differential cross-sections and to search for CP-violating effects. Results are presented for W bosons produced in e+e- collisions with centre-of-mass energies between 183 GeV and 209 GeV. The average fraction of W bosons that are longitudinally polarised is found to be (23.9 +- 2.1 +- 1.1)% compared to a Standard Model prediction of (23.9 +- 0.1)%. All results are consistent with CP conservation.

  12. Statistical benchmark for BosonSampling

    International Nuclear Information System (INIS)

    Walschaers, Mattia; Mayer, Klaus; Buchleitner, Andreas; Kuipers, Jack; Urbina, Juan-Diego; Richter, Klaus; Tichy, Malte Christopher

    2016-01-01

    Boson samplers—set-ups that generate complex many-particle output states through the transmission of elementary many-particle input states across a multitude of mutually coupled modes—promise the efficient quantum simulation of a classically intractable computational task, and challenge the extended Church–Turing thesis, one of the fundamental dogmas of computer science. However, as in all experimental quantum simulations of truly complex systems, one crucial problem remains: how to certify that a given experimental measurement record unambiguously results from enforcing the claimed dynamics, on bosons, fermions or distinguishable particles? Here we offer a statistical solution to the certification problem, identifying an unambiguous statistical signature of many-body quantum interference upon transmission across a multimode, random scattering device. We show that statistical analysis of only partial information on the output state allows to characterise the imparted dynamics through particle type-specific features of the emerging interference patterns. The relevant statistical quantifiers are classically computable, define a falsifiable benchmark for BosonSampling, and reveal distinctive features of many-particle quantum dynamics, which go much beyond mere bunching or anti-bunching effects. (fast track communication)

  13. Stability of boson stars

    International Nuclear Information System (INIS)

    Gleiser, M.

    1988-01-01

    Boson stars are gravitationally bound, spherically symmetric equilibrium configurations of cold, free, or interacting complex scalar fields phi. As these equilibrium configurations naturally present local anisotropy, it is sensible to expect departures from the well-known stability criteria for fluid stars. With this in mind, I investigate the dynamical instability of boson stars against charge-conserving, small radial perturbations. Following the method developed by Chandrasekhar, a variational base for determining the eigenfrequencies of the perturbations is found. This approach allows one to find numerically an upper bound for the central density where dynamical instability occurs. As applications of the formalism, I study the stability of equilibrium configurations obtained both for the free and for the self-interacting [with V(phi) = (λ/4)chemical bondphichemical bond 4 ] massive scalar field phi. Instabilities are found to occur not for the critical central density as in fluid stars but for central densities considerably higher. The departure from the results for fluid stars is sensitive to the coupling λ; the higher the value of λ, the more the stability properties of boson stars approach those of a fluid star. These results are linked to the fractional anisotropy at the radius of the configuration

  14. Two-dimensional thermofield bosonization

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2005-01-01

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized

  15. Discovery of SM Higgs Boson in ATLAS Experiment

    Indian Academy of Sciences (India)

    IAS Admin

    ics, Higgs boson, particle detec- tors, trigger, grid computing. Discovery of SM Higgs Boson in ATLAS Experiment. Prafulla Kumar Behera. Prafulla Kumar Behera is an experimental high energy physicist at the. IITM, Chennai. He has participated in many large-scale collider experiments namely. BELLE at Japan, BABAR.

  16. Study of Jets Production Association with a Z boson in pp Collision at 7 and 8 TeV with the CMS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Kovitanggoon, Kittitkul [Texas Tech Univ., Lubbock, TX (United States)

    2014-05-01

    This study presents the measurement of the rapidity distributions in events containing a Z boson and a jet in proton-proton collisions at a center-of-mass energy of 7 TeV. The data correspond to an integrated luminosity of approximately 5 fb-11, recorded by the CMS detector at the Large Hadron Collider (LHC). The measured angular distributions are compared with the predictions from next-to-leading order perturbative QCD calculations and two generator programs that combine tree-level matrix element calculations with parton showers. We also present a measurement of jet production rates in association with a Z boson using data recorded at a center-of-mass energy of 8 TeV and with an integrated luminosity of 19.8 fb-1. This measurement provides a stringent test of perturbative QCD calculations, and the result is compared with predictions from theoretical calculations.

  17. The properties of W-boson condensation induced by fermion density at finite temperatures

    International Nuclear Information System (INIS)

    Perez Rojas, H.; Kalashnikov, O.K.

    1987-01-01

    Bose-Einstein condensation of W bosons induced by fermion density is discussed within models of unified interactions at T ≠ 0. We study in detail the Weinberg-Salam model in wich chemical potentials related to lepton number, electric charge and weak neutral charge are introduced. The one-loop thermodynamic potential is calculated and a set of equations representing the necessary condition for condensation is solved thogether with the corresponding chemical equilibrium conditions. The boundary of the condensate phase is established and estimations for the critical lepton density are given. It is found that for small lepton density W-boson condensation exists only in the finite temperature region, evaporating when T goes to zero. (orig.)

  18. Proton-neutron sdg boson model and spherical-deformed phase transition

    International Nuclear Information System (INIS)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-01-01

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing + quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects. (orig.)

  19. The Eddington approximation calculation of radiation flux in the atmosphere–ocean system

    International Nuclear Information System (INIS)

    Shi, Chong; Nakajima, Teruyuki

    2015-01-01

    An analytical approximation method is presented to calculate the radiation flux in the atmosphere–ocean system using the Eddington approximation when the upwelling radiation from the ocean body is negligibly small. Numerical experiments were carried out to investigate the feasibility of the method in two cases: flat and rough ocean surfaces. The results show good consistency for the reflectivity at the top of atmosphere and transmissivity just above the ocean surface, in comparison with the exact values calculated by radiative transfer models in each case. Moreover, an obvious error might be introduced for the calculation of radiation flux at larger solar zenith angles when the roughness of the ocean surface is neglected. - Highlights: • The Eddington approximation method is extended to the atmosphere–ocean system. • The roughness of ocean surface cannot be neglected at lager solar zenith angles. • Unidirectional reflectivity for rough ocean surface is proposed

  20. Ab-initio calculation of EuO doped with 5% of (Ti, V, Cr and Fe): GGA and SIC approximation

    Science.gov (United States)

    Rouchdi, M.; Salmani, E.; Bekkioui, N.; Ez-Zahraouy, H.; Hassanain, N.; Benyoussef, A.; Mzerd, A.

    2017-12-01

    In this research, a simple theoretical method is proposed to investigate the electronic, magnetic and optical properties of Europium oxide (EuO) doped with 5% of (Ti, V, Cr and Fe). For a basic understanding of these properties, we employed Density-Functional Theory (DFT) based calculations with the Korringa-Kohn-Rostoker code (KKR) combined with the Coherent Potential Approximation (CPA). Also we investigated the half-metallic ferromagnetic behavior of EuO doped with 5% of (Ti, V, Cr and Fe) within the self-interaction-corrected Generalized Gradient Approximation (GGA-SIC). Our calculated results revealed that the Eu0.95TM0.05O is ferromagnetic with a high transition temperature. Moreover, the optical absorption spectra revealed that the half metallicity has been also predicted.

  1. The Higgs Boson Search and Discovery

    CERN Document Server

    Bernardi, Gregorio

    2016-01-01

    We present a brief account of the search for the Higgs boson at the three major colliders that have operated over the last three decades: LEP, the Tevatron, and the LHC. The experimental challenges encountered stemmed from the distinct event phenomenology as determined by the colliders energy and the possible values for the Higgs boson mass, and from the capability of these colliders to deliver as much collision data as possible to fully explore the mass spectrum within their reach. Focusing more on the hadron collider searches during the last decade, we discuss how the search for the Higgs boson was advanced through mastering the experimental signatures of standard theory backgrounds, through the comprehensive utilization of the features of the detectors involved in the searches, and by means of advanced data analysis techniques. The search culminated in 2012 with the discovery, by the ATLAS and CMS collaborations, of a Higgs-like particle with mass close to 125 GeV, confirmed more recently to have propertie...

  2. Fermion to boson mappings revisited

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Johnson, C.W.

    1996-01-01

    We briefly review various mappings of fermion pairs to bosons, including those based on mapping operators, such as Belyaev-Zelevinskii, and those on mapping states, such as Marumori; in particular we consider the work of Otsuka-Arima-Iachello, aimed at deriving the Interacting Boson Model. We then give a rigorous and unified description of state-mapping procedures which allows one to systematically go beyond Otsuka-Arima-Iachello and related approaches, along with several exact results. (orig.)

  3. Quark parton model with logarithmic scaling violation and high energy neutrino interactions

    International Nuclear Information System (INIS)

    Isaev, P.S.; Kovalenko, S.G.

    1979-01-01

    In the framework of the proposed earlier quark parton model with logarithmic scaling violation the cross sections of deep inelastic ν(anti ν)N interactions are calculated, the contribution of the charmed particle production are evaluated. The kinematical mass corrections to scaling violations and threshold effects are taken into account. Joint analysis of the experimental data on deep inelastic ep, ed scattering and charged current neutrino interaction are performed by using the unique set of free parameters of the model. Evaluations of the c-quark and W-boson masses are obtained. Neutral current data as well are analysed. The analysis is performed with taken into account scaling violation effects. The obtained estimations of the charmed quark mass Msub(c)=3.0+-1.2 GeV. W-boson mass Mw=50+-10 GeV, and the Weinberg angle SINsup(2)THETAsub(w)=0.26+-0.04 are within errors in agreement with the generally accepted ones

  4. Atomic structure calculations using the relativistic random phase approximation

    International Nuclear Information System (INIS)

    Cheng, K.T.; Johnson, W.R.

    1981-01-01

    A brief review is given for the relativistic random phase approximation (RRPA) applied to atomic transition problems. Selected examples of RRPA calculations on discrete excitations and photoionization are given to illustrate the need of relativistic many-body theories in dealing with atomic processes where both relativity and correlation are important

  5. Use of Two-Body Correlated Basis Functions with van der Waals Interaction to Study the Shape-Independent Approximation for a Large Number of Trapped Interacting Bosons

    Science.gov (United States)

    Lekala, M. L.; Chakrabarti, B.; Das, T. K.; Rampho, G. J.; Sofianos, S. A.; Adam, R. M.; Haldar, S. K.

    2017-05-01

    We study the ground-state and the low-lying excitations of a trapped Bose gas in an isotropic harmonic potential for very small (˜ 3) to very large (˜ 10^7) particle numbers. We use the two-body correlated basis functions and the shape-dependent van der Waals interaction in our many-body calculations. We present an exhaustive study of the effect of inter-atomic correlations and the accuracy of the mean-field equations considering a wide range of particle numbers. We calculate the ground-state energy and the one-body density for different values of the van der Waals parameter C6. We compare our results with those of the modified Gross-Pitaevskii results, the correlated Hartree hypernetted-chain equations (which also utilize the two-body correlated basis functions), as well as of the diffusion Monte Carlo for hard sphere interactions. We observe the effect of the attractive tail of the van der Waals potential in the calculations of the one-body density over the truly repulsive zero-range potential as used in the Gross-Pitaevskii equation and discuss the finite-size effects. We also present the low-lying collective excitations which are well described by a hydrodynamic model in the large particle limit.

  6. Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase.

    Science.gov (United States)

    Nascimento, Érica C M; Oliva, Mónica; Andrés, Juan

    2018-05-01

    In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.

  7. Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase

    Science.gov (United States)

    Nascimento, Érica C. M.; Oliva, Mónica; Andrés, Juan

    2018-05-01

    In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.

  8. Conformal complex singlet extension of the Standard Model: scenario for dark matter and a second Higgs boson

    Science.gov (United States)

    Wang, Zhi-Wei; Steele, T. G.; Hanif, T.; Mann, R. B.

    2016-08-01

    We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. The global U(1) symmetry of the complex singlet can be either broken or unbroken and we study each scenario. In the unbroken case, the global U(1) symmetry protects the complex singlet from decaying, leading to an ideal cold dark matter candidate with approximately 100 GeV mass along with a significant proportion of thermal relic dark matter abundance. In the broken case, we have developed a renormalization-scale optimization technique to significantly narrow the parameter space and in some situations, provide unique predictions for all the model's couplings and masses. We have found there exists a second Higgs boson with a mass of approximately 550 GeV that mixes with the known 125 GeV Higgs with a large mixing angle sin θ ≈ 0.47 consistent with current experimental limits. The imaginary part of the complex singlet in the broken case could provide axion dark matter for a wide range of models. Upon including interactions of the complex scalar with an additional vector-like fermion, we explore the possibility of a diphoton excess in both the unbroken and the broken cases. In the unbroken case, the model can provide a natural explanation for diphoton excess if extra terms are introduced providing extra contributions to the singlet mass. In the broken case, we find a set of coupling solutions that yield a second Higgs boson of mass 720 GeV and an 830 GeV extra vector-like fermion F , which is able to address the 750 GeV LHC diphoton excess. We also provide criteria to determine the symmetry breaking pattern in both the Higgs and hidden sectors.

  9. Conformal complex singlet extension of the Standard Model: scenario for dark matter and a second Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi-Wei; Steele, T.G. [Department of Physics and Engineering Physics, University of Saskatchewan,116 Science Place, Saskatoon, SK, S7N 5E2 (Canada); Hanif, T. [Department of Theoretical Physics, University of Dhaka,Dhaka-1000 (Bangladesh); Mann, R.B. [Department of Physics, University of Waterloo,Waterloo, ON, N2L 3G1 (Canada)

    2016-08-09

    We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. The global U(1) symmetry of the complex singlet can be either broken or unbroken and we study each scenario. In the unbroken case, the global U(1) symmetry protects the complex singlet from decaying, leading to an ideal cold dark matter candidate with approximately 100 GeV mass along with a significant proportion of thermal relic dark matter abundance. In the broken case, we have developed a renormalization-scale optimization technique to significantly narrow the parameter space and in some situations, provide unique predictions for all the model’s couplings and masses. We have found there exists a second Higgs boson with a mass of approximately 550 GeV that mixes with the known 125 GeV Higgs with a large mixing angle sin θ≈0.47 consistent with current experimental limits. The imaginary part of the complex singlet in the broken case could provide axion dark matter for a wide range of models. Upon including interactions of the complex scalar with an additional vector-like fermion, we explore the possibility of a diphoton excess in both the unbroken and the broken cases. In the unbroken case, the model can provide a natural explanation for diphoton excess if extra terms are introduced providing extra contributions to the singlet mass. In the broken case, we find a set of coupling solutions that yield a second Higgs boson of mass 720 GeV and an 830 GeV extra vector-like fermion F, which is able to address the 750 GeV LHC diphoton excess. We also provide criteria to determine the symmetry breaking pattern in both the Higgs and hidden sectors.

  10. Interacting sp-boson model with isospin: an unified description of giant multipole resonances and other collective motions

    International Nuclear Information System (INIS)

    Chen, C.H.-T.

    1980-10-01

    A unified description of the following classes of nuclear collective states in terms of an interacting sp-boson model is proposed: (i) Low-lying collective states in the light nuclei, both odd-odd and even-even; (ii) Giant multipole resonances (GMR), and (iii) pairing collective motions. (Author) [pt

  11. Casimir energy for twisted piecewise uniform bosonic strings

    International Nuclear Information System (INIS)

    Lu, J.; Huang, B.; Shanghai, Teachers Univ.

    1998-01-01

    The Casimir energy for the transverse oscillations of piecewise uniform bosonic strings with either untwisted or twisted continuous conditions is discussed. After calculating the analytic values of zeros of the dispersion function under certain conditions, is obtained the Casimir energy for both open and closed bosonic strings composed of two or three segments

  12. Lowest vibrational states of 4He3He+: Non-Born-Oppenheimer calculations

    International Nuclear Information System (INIS)

    Stanke, Monika; Bubin, Sergiy; Kedziera, Dariusz; Molski, Marcin; Adamowicz, Ludwik

    2007-01-01

    Very accurate quantum mechanical calculations of the first five vibrational states of the 4 He 3 He + molecular ion are reported. The calculations have been performed explicitly including the coupling of the electronic and nuclear motions [i.e., without assuming the Born-Oppenheimer (BO) approximation]. The nonrelativistic non-BO wave functions were used to calculate the α 2 relativistic mass velocity, Darwin, and spin-spin interaction corrections. For the lowest vibrational transition, whose experimental energy is established with high precision, the calculated and the experimental results differ by only 0.16 cm -1

  13. Quantum Monte Carlo simulations of the Fermi-polaron problem and bosons with Gaussian interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, Peter Michael

    2017-02-01

    This thesis deals with the application of current Quantum Monte Carlo algorithms to many-body systems of fermionic and bosonic species. The first part applies the diagrammatic Monte Carlo method to the Fermi polaron problem, a system of an impurity interacting resonantly with a homogeneous Fermi bath. It is numerically shown that the three particle-hole diagrams do not contribute significantly to the final answer in a quasi-two-dimensional setup, thus demonstrating a nearly perfect destructive interference of contributions in subspaces with higher-order particle-hole lines. Consequently, for strong-enough confinement in the third direction, the transition between the polaron and the molecule ground state is found to be in good agreement with the pure two-dimensional case and agrees very well with the one found by the wave-function approach in the two-particle-hole subspace. In three-dimensional Fermi-polaron systems with mass imbalance of impurity and bath atoms, polaron energy and quasiparticle residue can be accurately determined over a broad range of impurity masses. Furthermore, the spectral function of an imbalanced polaron demonstrates the stability of the quasiparticle and also allows us to locate the repulsive polaron as an excited state. The quantitative exactness of two-particle-hole wave functions is investigated, resulting in a relative lowering of polaronic energies in the mass-imbalance phase diagram. Tan's contact coefficient for the mass-balanced polaron system is found to be in good agreement with variational methods. Mass-imbalanced systems can be studied experimentally by ultracold atom mixtures such as {sup 6}Li-{sup 40}K. In the second part of the thesis, the ground state of a two-dimensional system of Bose particles of spin zero, interacting via a repulsive Gaussian-Core potential, is investigated by means of path integral Monte Carlo simulations. The quantum phase diagram is qualitatively identical to that of two-dimensional Yukawa

  14. Metastable He (n=2) - Ne potential interaction calculation

    International Nuclear Information System (INIS)

    Rahal, H.

    1983-10-01

    Diabatic potential terms corresponding to He (2 1 S)-Ne and He (2 3 S)-Ne interactions are calculated. These potentials reproduce the experimental results thermal metastable atom elastic scattering on Ne target. A model which reduces the interaction to a one-electron problem is proposed: the He excited electron. Its interaction with the He + center is reproduced by a ''l'' dependent potential model with a 1/2 behaviour at short range. The electron interaction facing the Ne is described by a l-dependent pseudopotential reproducing with accuracy the electron elastic scattering on a Ne atom. The importance of the corrective term related to the Ne polarizations by the electron and the He + ion is showed in this work. In the modelling problems, the accuracy cannot be better than 0.1 MeV [fr

  15. Induced supersolidity in a mixture of normal and hard-core bosons

    International Nuclear Information System (INIS)

    Mishra, Tapan; Das, B. P.; Pai, Ramesh V.

    2010-01-01

    We present a scenario where a supersolid is induced in one of the components of a mixture of two species bosonic atoms where there are no long-range interactions. We study a system of normal and hard-core boson mixture with only the former possessing long-range interactions. We consider three cases: the first where the total density is commensurate and the other two where it is incommensurate to the lattice. By suitable choices of the densities of normal and hard-core bosons and the interaction strengths between them, we predict that the charge density wave and the supersolid orders can be induced in the hard-core species as a result of the competing interatomic interactions.

  16. Zeroth order regular approximation approach to electric dipole moment interactions of the electron

    Science.gov (United States)

    Gaul, Konstantin; Berger, Robert

    2017-07-01

    A quasi-relativistic two-component approach for an efficient calculation of P ,T -odd interactions caused by a permanent electric dipole moment of the electron (eEDM) is presented. The approach uses a (two-component) complex generalized Hartree-Fock and a complex generalized Kohn-Sham scheme within the zeroth order regular approximation. In applications to select heavy-elemental polar diatomic molecular radicals, which are promising candidates for an eEDM experiment, the method is compared to relativistic four-component electron-correlation calculations and confirms values for the effective electric field acting on the unpaired electron for RaF, BaF, YbF, and HgF. The calculations show that purely relativistic effects, involving only the lower component of the Dirac bi-spinor, are well described by treating only the upper component explicitly.

  17. The geometric content of the interacting boson model for molecular spectra

    International Nuclear Information System (INIS)

    Levit, S.; Smilansky, U.

    1981-12-01

    The recently proposed algebraic model for collective spectra of diatomic molecules is analysed in terms of conventional geometrical degrees of freedom. We present a mapping of the algebraic Hamiltonian onto an exactly solvable geometrical Hamiltonian with the Morse potential. This mapping explains the success of the algebraic model in reproducing the low lying part of molecular spectra. At the same time the mapping shows that the expression for the dipole transition operator in terms of boson operators differs from the simplest IBM expression and in general must include many-body boson terms. The study also provides an insight into the problem of possible interpretations of the bosons in the nuclear IBM. (author)

  18. Second RPA calculations with the Skyrme and Gogny interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gambacurta, Danilo [Horia Hulubei National Institute for Physics and Nuclear Engineering, Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Magurele, Jud. Ilfov (Romania); Grasso, Marcella [Universite Paris-Sud, IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France)

    2016-07-15

    The Second Random Phase Approximation (SRPA) is a natural extension of RPA where more general excitation operators are introduced. These operators contain, in addition to the one particle-one hole configurations already considered in RPA, also two particle-two hole excitations. Only in the last years, large-scale SRPA calculations have been performed, showing the merits and limits of this approach. In the first part of this paper, we present an overview of recent applications of the SRPA based on the Skyrme and Gogny interactions. Giant resonances in {sup 16}O will be studied and their properties discussed by using different models. In particular, we will present the first applications of the SRPA model with the finite-range Gogny interaction, discussing the advantages and drawbacks of using such an interaction in this type of calculations. After that, some more recent results, obtained by using a subtraction procedure to overcome double-counting in the SRPA, will be discussed. We will show that this procedure leads to results that are weakly cutoff dependent and that a strong reduction of the SRPA downwards shift with respect to the RPA spectra is found. Moreover, applying this procedure for the first time in the Gogny-SRPA framework, we will show that this method is able to reduce the anomalous shift found in previous calculations and related to some proton-neutron matrix elements of the residual interaction. (orig.)

  19. Higgs boson search at ATLAS

    International Nuclear Information System (INIS)

    Hanninger, Guilherme Nunes

    2012-01-01

    Full text: The Standard Model of particle physics (SM) has been extremely successful describing the elementary particles and their interactions. It also features a theory describing the origin of particle masses: the 'Higgs mechanism', which postulates the existence of a new particle called the 'Higgs boson'. In 2011 and 2012, tantalising hints of the Higgs boson were reported by the experiments at the Large Hadron Collider (LHC). The results of the search for the Standard Model Higgs Boson with the ATLAS detector in proton-proton collisions at the LHC at 7 and 8 TeV center-of-mass energies are presented. A large number of the Higgs Boson decay channels, such as photon, tau, W and Z pairs, as well as for combined channels in the mass range from 110 GeV to 600 GeV are reviewed and discussed. The combined upper limits on the production cross section as a function of the Higgs Boson mass are derived. Practical methods to estimate the backgrounds using control samples in real data are discussed. Validation of some of the data driven background estimation methods using the early 7 TeV ATLAS data at the LHC is also presented. In addition, searches for Higgs Bosons in scenarios beyond the Standard Model (BSM) lead to improved constraints on the Higgs sector of BSM theories such as Supersymmetry. (author)

  20. Cross section formulae on single W and Z boson productions in electron-positron collisions

    International Nuclear Information System (INIS)

    Katuya, Mituaki

    1987-01-01

    The formulae are given for the transverse momentum distributions and total cross sections for the single W boson and Z boson productions in electron-positron collisions by using the equivalent photon approximation. (author)

  1. Weak interaction contribution to the energy spectrum of two-lepton system

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1995-01-01

    The contribution of neutral currents to the weak interaction quasi-potential of two leptons is investigated. The exact expression for the weak interaction operator of the system for arbitrary biding energies in one-boson approximation is obtained. The weak interaction contribution to the S-levels displacement of hydrogen-like atom. 14 refs

  2. Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence.

    Science.gov (United States)

    Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T

    2016-07-01

    We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.

  3. Discovering approximate-associated sequence patterns for protein-DNA interactions

    KAUST Repository

    Chan, Tak Ming

    2010-12-30

    Motivation: The bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) are fundamental protein-DNA interactions in transcriptional regulation. Extensive efforts have been made to better understand the protein-DNA interactions. Recent mining on exact TF-TFBS-associated sequence patterns (rules) has shown great potentials and achieved very promising results. However, exact rules cannot handle variations in real data, resulting in limited informative rules. In this article, we generalize the exact rules to approximate ones for both TFs and TFBSs, which are essential for biological variations. Results: A progressive approach is proposed to address the approximation to alleviate the computational requirements. Firstly, similar TFBSs are grouped from the available TF-TFBS data (TRANSFAC database). Secondly, approximate and highly conserved binding cores are discovered from TF sequences corresponding to each TFBS group. A customized algorithm is developed for the specific objective. We discover the approximate TF-TFBS rules by associating the grouped TFBS consensuses and TF cores. The rules discovered are evaluated by matching (verifying with) the actual protein-DNA binding pairs from Protein Data Bank (PDB) 3D structures. The approximate results exhibit many more verified rules and up to 300% better verification ratios than the exact ones. The customized algorithm achieves over 73% better verification ratios than traditional methods. Approximate rules (64-79%) are shown statistically significant. Detailed variation analysis and conservation verification on NCBI records demonstrate that the approximate rules reveal both the flexible and specific protein-DNA interactions accurately. The approximate TF-TFBS rules discovered show great generalized capability of exploring more informative binding rules. © The Author 2010. Published by Oxford University Press. All rights reserved.

  4. Self-interaction corrected local spin density calculations of actinides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z

    2010-01-01

    We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration...... of the actinide ions in these compounds from first principles. Here we review a number of applications, ranging from electronic structure calculations of actinide metals, nitrides and carbides to the behaviour under pressure of intermetallics, and O vacancies in PuO2....

  5. Isotropization in Bianchi type-I cosmological model with fermions and bosons interacting via Yukawa potential

    International Nuclear Information System (INIS)

    Ribas, M O; Samojeden, L L; Devecchi, F P; Kremer, G M

    2015-01-01

    In this work we investigate a model for the early Universe in a Bianchi type-I metric, where the sources of the gravitational field are a fermionic and a bosonic field, interacting through a Yukawa potential, following the standard model of elementary particles. It is shown that the fermionic field has a negative pressure, while the boson has a small positive pressure. The fermionic field is the responsible for an accelerated regime at early times, but since the total pressure tends to zero for large times, a transition to a decelerated regime occurs. Here the Yukawa potential answers for the duration of the accelerated regime, since by decreasing the value of its coupling constant the transition accelerated–decelerated occurs in later times. The isotropization which occurs for late times is due to the presence of the fermionic field as one of the sources of the gravitational field. (paper)

  6. New particle-hole symmetries and the extended interacting boson model

    CERN Document Server

    De Coster, C; Decroix, B; Heyde, Kris L G; Oros, A M

    1998-01-01

    We describe shape coexistence and intruder many-particle-hole (mp-nh)excitations in the extended interacting boson model EIBM and EIBM-2,combining both the particle-hole and the charge degree of freedom.Besides the concept of I-spin multiplets and subsequently $SU(4)$ multiplets, we touch upon the existence of particle-hole mixed symmetry states. We furthermore describe regular and intrudermany-particle-hole excitations in one nucleus on an equal footing, creating (annihilating) particle-hole pairs using the K-spin operatorand studying possible mixing between these states. As a limiting case,we treat the coupling of two IBM-1 Hamiltonians, each decribing the regular and intruder excitations respectively, in particular lookingat the $U(5)$-$SU(3)$ dynamical symmetry coupling. We apply such coupling scheme to the Po isotopes.

  7. Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes.

    Science.gov (United States)

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Luyckx, S; Ochesanu, S; Roland, B; Rougny, R; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Heracleous, N; Kalogeropoulos, A; Keaveney, J; Kim, T J; Lowette, S; Maes, M; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Favart, L; Gay, A P R; Léonard, A; Marage, P E; Mohammadi, A; Perniè, L; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Crucy, S; Dildick, S; Garcia, G; Klein, B; Lellouch, J; Mccartin, J; Ocampo Rios, A A; Ryckbosch, D; Salva Diblen, S; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jez, P; Komm, M; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; Martins, T; Pol, M E; Aldá Júnior, W L; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Malek, M; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santaolalla, J; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Genchev, V; Iaydjiev, P; Marinov, A; Piperov, S; Rodozov, M; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Chen, M; Du, R; Jiang, C H; Liang, D; Liang, S; Meng, X; Plestina, R; Tao, J; Wang, X; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, Y; Li, Q; Li, W; Liu, S; Mao, Y; Qian, S J; Wang, D; Zhang, L; Zou, W; Avila, C; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Morovic, S; Tikvica, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Bodlak, M; Finger, M; Finger, M; Assran, Y; Elgammal, S; Ellithi Kamel, A; Mahmoud, M A; Mahrous, A; Radi, A; Kadastik, M; Müntel, M; Murumaa, M; Raidal, M; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Nayak, A; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Busson, P; Charlot, C; Daci, N; Dahms, T; Dalchenko, M; Dobrzynski, L; Filipovic, N; Florent, A; Granier de Cassagnac, R; Mastrolorenzo, L; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sauvan, J B; Sirois, Y; Veelken, C; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Juillot, P; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Boudoul, G; Brochet, S; Carrillo Montoya, C A; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Ruiz Alvarez, J D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Tsamalaidze, Z; Autermann, C; Beranek, S; Bontenackels, M; Calpas, B; Edelhoff, M; Feld, L; Hindrichs, O; Klein, K; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Olschewski, M; Padeken, K; Papacz, P; Reithler, H; Schmitz, S A; Sonnenschein, L; Teyssier, D; Thüer, S; Weber, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Lingemann, J; Nowack, A; Nugent, I M; Perchalla, L; Pooth, O; Stahl, A; Asin, I; Bartosik, N; Behr, J; Behrenhoff, W; Behrens, U; Bell, A J; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Garay Garcia, J; Geiser, A; Grebenyuk, A; Gunnellini, P; Habib, S; Hauk, J; Hellwig, G; Hempel, M; Horton, D; Jung, H; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Krämer, M; Krücker, D; Lange, W; Leonard, J; Lipka, K; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Naumann-Emme, S; Novgorodova, O; Nowak, F; Ntomari, E; Perrey, H; Petrukhin, A; Pitzl, D; Placakyte, R; Raspereza, A; Ribeiro Cipriano, P M; Riedl, C; Ron, E; Sahin, M Ö; Salfeld-Nebgen, J; Saxena, P; Schmidt, R; Schoerner-Sadenius, T; Schröder, M; Stein, M; Vargas Trevino, A D R; Walsh, R; Wissing, C; Aldaya Martin, M; Blobel, V; Centis Vignali, M; Enderle, H; Erfle, J; Garutti, E; Goebel, K; Görner, M; Gosselink, M; Haller, J; Höing, R S; Kirschenmann, H; Klanner, R; Kogler, R; Lange, J; Lapsien, T; Lenz, T; Marchesini, I; Ott, J; Peiffer, T; Pietsch, N; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Seidel, M; Sibille, J; Sola, V; Stadie, H; Steinbrück, G; Troendle, D; Usai, E; Vanelderen, L; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Guthoff, M; Hartmann, F; Hauth, T; Held, H; Hoffmann, K H; Husemann, U; Katkov, I; Kornmayer, A; Kuznetsova, E; Lobelle Pardo, P; Martschei, D; Mozer, M U; Müller, Th; Niegel, M; Nürnberg, A; Oberst, O; Quast, G; Rabbertz, K; Ratnikov, F; Röcker, S; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Wolf, R; Zeise, M; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kesisoglou, S; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Psallidas, A; Topsis-Giotis, I; Gouskos, L; Panagiotou, A; Saoulidou, N; Stiliaris, E; Aslanoglou, X; Evangelou, I; Flouris, G; Foudas, C; Jones, J; Kokkas, P; Manthos, N; Papadopoulos, I; Paradas, E; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Molnar, J; Palinkas, J; Szillasi, Z; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Swain, S K; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Kalsi, A K; Kaur, M; Mittal, M; Nishu, N; Sharma, A; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Singh, A P; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Chatterjee, R M; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Banerjee, S; Dewanjee, R K; Dugad, S; Arfaei, H; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Jafari, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Grunewald, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; My, S; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, G; Radogna, R; Selvaggi, G; Silvestris, L; Singh, G; Venditti, R; Verwilligen, P; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gallo, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Ferro, F; Lo Vetere, M; Musenich, R; Robutti, E; Tosi, S; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Dosselli, U; Galanti, M; Gasparini, F; Gasparini, U; Giubilato, P; Gozzelino, A; Kanishchev, K; Lacaprara, S; Lazzizzera, I; Margoni, M; Meneguzzo, A T; Passaseo, M; Pazzini, J; Pegoraro, M; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zotto, P; Zucchetta, A; Zumerle, G; Gabusi, M; Ratti, S P; Riccardi, C; Salvini, P; Vitulo, P; Biasini, M; Bilei, G M; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Romeo, F; Saha, A; Santocchia, A; Spiezia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Moon, C S; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Vernieri, C; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Grassi, M; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Rovelli, C; Soffi, L; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Degano, A; Demaria, N; Finco, L; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Ortona, G; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Montanino, D; Schizzi, A; Umer, T; Zanetti, A; Chang, S; Kim, T Y; Nam, S K; Kim, D H; Kim, G N; Kim, J E; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Park, H; Sakharov, A; Son, D C; Kim, J Y; Kim, Zero J; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, Y; Lee, B; Lee, K S; Park, S K; Roh, Y; Choi, M; Kim, J H; Park, C; Park, I C; Park, S; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kwon, E; Lee, J; Seo, H; Yu, I; Juodagalvis, A; Komaragiri, J R; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Martínez-Ortega, J; Sanchez-Hernandez, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Krofcheck, D; Butler, P H; Doesburg, R; Reucroft, S; Ahmad, A; Ahmad, M; Asghar, M I; Butt, J; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Wolszczak, W; Bargassa, P; Beirão Da Cruz E Silva, C; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Varela, J; Vischia, P; Golutvin, I; Gorbunov, I; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Savina, M; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Spiridonov, A; Stolin, V; Vlasov, E; Zhokin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Ershov, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Willmott, C; Albajar, C; de Trocóniz, J F; Missiroli, M; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Graziano, A; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Bondu, O; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Christiansen, T; Coarasa Perez, J A; Colafranceschi, S; D'Alfonso, M; d'Enterria, D; Dabrowski, A; David, A; De Guio, F; De Roeck, A; De Visscher, S; Dobson, M; Dupont-Sagorin, N; Elliott-Peisert, A; Eugster, J; Franzoni, G; Funk, W; Giffels, M; Gigi, D; Gill, K; Giordano, D; Girone, M; Giunta, M; Glege, F; Gomez-Reino Garrido, R; Gowdy, S; Guida, R; Hammer, J; Hansen, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Karavakis, E; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Magini, N; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Mulders, M; Musella, P; Orsini, L; Palencia Cortezon, E; Pape, L; Perez, E; Perrozzi, L; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Plagge, M; Racz, A; Reece, W; Rolandi, G; Rovere, M; Sakulin, H; Santanastasio, F; Schäfer, C; Schwick, C; Sekmen, S; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Steggemann, J; Stieger, B; Stoye, M; Treille, D; Tsirou, A; Veres, G I; Vlimant, J R; Wöhri, H K; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Bortignon, P; Buchmann, M A; Casal, B; Chanon, N; Deisher, A; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Grab, C; Hits, D; Lustermann, W; Mangano, B; Marini, A C; Martinez Ruiz Del Arbol, P; Meister, D; Mohr, N; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pandolfi, F; Pauss, F; Peruzzi, M; Quittnat, M; Rebane, L; Ronga, F J; Rossini, M; Starodumov, A; Takahashi, M; Theofilatos, K; Wallny, R; Weber, H A; Amsler, C; Canelli, M F; Chiochia, V; De Cosa, A; Hinzmann, A; Hreus, T; Ivova Rikova, M; Kilminster, B; Millan Mejias, B; Ngadiuba, J; Robmann, P; Snoek, H; Taroni, S; Verzetti, M; Yang, Y; Cardaci, M; Chen, K H; Ferro, C; Kuo, C M; Li, S W; Lin, W; Lu, Y J; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Liu, Y F; Lu, R-S; Majumder, D; Petrakou, E; Shi, X; Shiu, J G; Tzeng, Y M; Wang, M; Wilken, R; Asavapibhop, B; Srimanobhas, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Karapinar, G; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Bahtiyar, H; Barlas, E; Cankocak, K; Günaydin, Y O; Vardarlı, F I; Yücel, M; Levchuk, L; Sorokin, P; Aggleton, R; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Senkin, S; Smith, V J; Williams, T; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Ilic, J; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Womersley, W J; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Burton, D; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Dunne, P; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Dittmann, J; Hatakeyama, K; Kasmi, A; Liu, H; Scarborough, T; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Heister, A; Lawson, P; Lazic, D; Richardson, C; Rohlf, J; Sperka, D; St John, J; Sulak, L; Alimena, J; Bhattacharya, S; Christopher, G; Cutts, D; Demiragli, Z; Ferapontov, A; Garabedian, A; Heintz, U; Jabeen, S; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Segala, M; Sinthuprasith, T; Speer, T; Swanson, J; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Ko, W; Kopecky, A; Lander, R; Miceli, T; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Rutherford, B; Searle, M; Shalhout, S; Smith, J; Squires, M; Tripathi, M; Wilbur, S; Yohay, R; Andreev, V; Cline, D; Cousins, R; Erhan, S; Everaerts, P; Farrell, C; Felcini, M; Hauser, J; Ignatenko, M; Jarvis, C; Rakness, G; Takasugi, E; Valuev, V; Weber, M; Babb, J; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Jandir, P; Lacroix, F; Liu, H; Long, O R; Luthra, A; Malberti, M; Nguyen, H; Shrinivas, A; Sturdy, J; Sumowidagdo, S; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Evans, D; Holzner, A; Kelley, R; Kovalskyi, D; Lebourgeois, M; Letts, J; Macneill, I; Padhi, S; Palmer, C; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bradmiller-Feld, J; Campagnari, C; Danielson, T; Dishaw, A; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Incandela, J; Justus, C; Magaña Villalba, R; Mccoll, N; Pavlunin, V; Richman, J; Rossin, R; Stuart, D; To, W; West, C; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Di Marco, E; Duarte, J; Kcira, D; Mott, A; Newman, H B; Pena, C; Rogan, C; Spiropulu, M; Timciuc, V; Wilkinson, R; Xie, S; Zhu, R Y; Azzolini, V; Calamba, A; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Drell, B R; Ford, W T; Gaz, A; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Chu, J; Eggert, N; Gibbons, L K; Hopkins, W; Khukhunaishvili, A; Kreis, B; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kaadze, K; Klima, B; Kwan, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Mishra, K; Mrenna, S; Musienko, Y; Nahn, S; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Ratnikova, N; Sexton-Kennedy, E; Sharma, S; Soha, A; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitbeck, A; Whitmore, J; Wu, W; Yang, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Cheng, T; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Field, R D; Fisher, M; Fu, Y; Furic, I K; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Rinkevicius, A; Shchutska, L; Skhirtladze, N; Snowball, M; Yelton, J; Zakaria, M; Gaultney, V; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Yumiceva, F; Adams, M R; Apanasevich, L; Bazterra, V E; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kurt, P; Moon, D H; O'Brien, C; Silkworth, C; Turner, P; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Dilsiz, K; Duru, F; Haytmyradov, M; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Rahmat, R; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Gritsan, A V; Maksimovic, P; Martin, C; Swartz, M; Baringer, P; Bean, A; Benelli, G; Gray, J; Kenny, R P; Murray, M; Noonan, D; Sanders, S; Sekaric, J; Stringer, R; Wang, Q; Wood, J S; Barfuss, A F; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Saini, L K; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Baden, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Bauer, G; Busza, W; Cali, I A; Chan, M; Di Matteo, L; Dutta, V; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Klute, M; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Ma, T; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Stöckli, F; Sumorok, K; Velicanu, D; Veverka, J; Wyslouch, B; Yang, M; Yoon, A S; Zanetti, M; Zhukova, V; Dahmes, B; De Benedetti, A; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Singovsky, A; Tambe, N; Turkewitz, J; Acosta, J G; Cremaldi, L M; Kroeger, R; Oliveros, S; Perera, L; Sanders, D A; Summers, D; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Gonzalez Suarez, R; Keller, J; Knowlton, D; Kravchenko, I; Lazo-Flores, J; Malik, S; Meier, F; Snow, G R; Dolen, J; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Rappoccio, S; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Massironi, A; Nash, D; Orimoto, T; Trocino, D; Wang, R J; Wood, D; Zhang, J; Anastassov, A; Hahn, K A; Kubik, A; Lusito, L; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Velasco, M; Won, S; Berry, D; Brinkerhoff, A; Chan, K M; Drozdetskiy, A; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Kolb, J; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Planer, M; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Smith, G; Vuosalo, C; Winer, B L; Wolfe, H; Wulsin, H W; Berry, E; Elmer, P; Halyo, V; Hebda, P; Hunt, A; Jindal, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Raval, A; Saka, H; Stickland, D; Tully, C; Werner, J S; Zenz, S C; Zuranski, A; Brownson, E; Lopez, A; Mendez, H; Ramirez Vargas, J E; Alagoz, E; Benedetti, D; Bolla, G; Bortoletto, D; De Mattia, M; Everett, A; Hu, Z; Jha, M K; Jones, M; Jung, K; Kress, M; Leonardo, N; Lopes Pegna, D; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shipsey, I; Silvers, D; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Yoo, H D; Zablocki, J; Zheng, Y; Parashar, N; Stupak, J; Adair, A; Akgun, B; Ecklund, K M; Geurts, F J M; Li, W; Michlin, B; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Miner, D C; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Rekovic, V; Robles, J; Salur, S; Schnetzer, S; Seitz, C; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Rose, K; Spanier, S; Yang, Z C; York, A; Bouhali, O; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Krutelyov, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Rose, A; Safonov, A; Sakuma, T; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kovitanggoon, K; Kunori, S; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Johns, W; Maguire, C; Mao, Y; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Wood, J; Gollapinni, S; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Belknap, D A; Borrello, L; Carlsmith, D; Cepeda, M; Dasu, S; Duric, S; Friis, E; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Levine, A; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ross, I; Sarangi, T; Savin, A; Smith, W H; Woods, N

    A search for invisible decays of Higgs bosons is performed using the vector boson fusion and associated ZH production modes. In the ZH mode, the Z boson is required to decay to a pair of charged leptons or a [Formula: see text] quark pair. The searches use the 8 [Formula: see text] pp collision dataset collected by the CMS detector at the LHC, corresponding to an integrated luminosity of up to 19.7 [Formula: see text]. Certain channels include data from 7 [Formula: see text] collisions corresponding to an integrated luminosity of 4.9 [Formula: see text]. The searches are sensitive to non-standard-model invisible decays of the recently observed Higgs boson, as well as additional Higgs bosons with similar production modes and large invisible branching fractions. In all channels, the observed data are consistent with the expected standard model backgrounds. Limits are set on the production cross section times invisible branching fraction, as a function of the Higgs boson mass, for the vector boson fusion and ZH production modes. By combining all channels, and assuming standard model Higgs boson cross sections and acceptances, the observed (expected) upper limit on the invisible branching fraction at [Formula: see text] [Formula: see text] is found to be 0.58 (0.44) at 95 % confidence level. We interpret this limit in terms of a Higgs-portal model of dark matter interactions.

  8. Microscopic bosonization of band structures: x-ray processes beyond the Fermi edge

    Science.gov (United States)

    Snyman, Izak; Florens, Serge

    2017-11-01

    Bosonization provides a powerful analytical framework to deal with one-dimensional strongly interacting fermion systems, which makes it a cornerstone in quantum many-body theory. However, this success comes at the expense of using effective infrared parameters, and restricting the description to low energy states near the Fermi level. We propose a radical extension of the bosonization technique that overcomes both limitations, allowing computations with microscopic lattice Hamiltonians, from the Fermi level down to the bottom of the band. The formalism rests on the simple idea of representating the fermion kinetic term in the energy domain, after which it can be expressed in terms of free bosonic degrees of freedom. As a result, one- and two-body fermionic scattering processes generate anharmonic boson-boson interactions, even in the forward channel. We show that up to moderate interaction strengths, these non-linearities can be treated analytically at all energy scales, using the x-ray emission problem as a showcase. In the strong interaction regime, we employ a systematic variational solution of the bosonic theory, and obtain results that agree quantitatively with an exact diagonalization of the original one-particle fermionic model. This provides a proof of the fully microscopic character of bosonization, on all energy scales, for an arbitrary band structure. Besides recovering the known x-ray edge singularity at the emission threshold, we find strong signatures of correlations even at emission frequencies beyond the band bottom.

  9. Our dear boson – and so what?

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    A long-sought particle finally found. On Wednesday 4 July, enthusiasm spread from CERN to the worldwide media. But a question legitimately arises: why is this particle attracting so much interest? In other words, how is it different from all the others? (And, by the way, what is a boson?).   CERN, 4 July 2012: a long-sought particle finally found. Strictly speaking, we cannot even call it the “Higgs” boson yet. Only after careful checking of its properties will physicists be able to say if the new boson corresponds to the particle that theorists predicted in 1964. However, the experimental data we have so far already tells us, unambiguously, that this new particle is different from all the other elementary particles we know. “Every particle is either a boson or a fermion,” explains John Ellis, former CERN theorist and currently professor at King's College in London. “All known particles spin like small tops, with the known bosons tha...

  10. Gyromagnetic ratios of low-lying excited states in the even 192-198Pt isotopes; experimental measurements and theoretical predictions

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, C.G.; Morrison, I.; Bolotin, H.H.

    1981-01-01

    The gyromagnetic ratios of the 2 2 + and 4 1 + states in 196 Pt were measured relative to that of its 2 1 + level. The thin-foil IMPAC technique was employed utilizing the enhanced transient hyperfine magnetic field present at the nuclei of swiftly recoiling ions traversing magnetized ferromagetic materials. The states of interest were populated by Coulomb excitation using beams of 220-MeV 58 Ni ions. For g(2 1 + ) taken as 0.326+-0.014, the present measurements yielded g(2 2 + ) = 0.30+-0.06 and g(4 1 + ) 0.30+-0.05. These results and those reported by prior workers for the g-factors of corresponding levels in 192 Pt, 194 Pt, 198 Pt are used to trace the systematics of the magnetic moments of these low-lying levels in the even 192 - 198 Pt isotopes. Interacting Boson Approximation model-based calculations of the g-factors of these states were also carried out. The experimental theoretical results are compared

  11. Disentangling phase transitions and critical points in the proton–neutron interacting boson model by catastrophe theory

    Directory of Open Access Journals (Sweden)

    J.E. García-Ramos

    2014-09-01

    Full Text Available We introduce the basic concepts of catastrophe theory needed to derive analytically the phase diagram of the proton–neutron interacting boson model (IBM-2. Previous studies [1–3] were based on numerical solutions. We here explain the whole IBM-2 phase diagram including the precise order of the phase transitions in terms of the cusp catastrophe.

  12. Mean energy of some interacting bosonic systems derived by virtue of the generalized Hellmann-Feynman theorem

    Science.gov (United States)

    Fan, Hong-yi; Xu, Xue-xiang

    2009-06-01

    By virtue of the generalized Hellmann-Feynman theorem [H. Y. Fan and B. Z. Chen, Phys. Lett. A 203, 95 (1995)], we derive the mean energy of some interacting bosonic systems for some Hamiltonian models without proceeding with diagonalizing the Hamiltonians. Our work extends the field of applications of the Hellmann-Feynman theorem and may enrich the theory of quantum statistics.

  13. Who will catch the Higgs boson?

    International Nuclear Information System (INIS)

    Colas, P.; Tuchming, B.

    2004-01-01

    The Higgs boson was theoretically created about 40 years ago by a Scott Peter Higgs who wanted to explain why some particles get a mass. Since then the Higgs boson has taken consistency and has become an important point of the standard model theory. Its experimental discovery would be a milestone of modern physics. The search for the Higgs boson is an international challenge that takes place around 2 huge machines: the Tevatron near Chicago and the LHC (large hadron collider) that is being built in CERN. The Tevatron is in fact the upgrading of an old particle accelerator, it is a proton collider and its narrow range of energy is compensated by a low background noise. On the other hand the LHC will begin operating only in 2007 and its full power will be reached a few years later, the energy available to create particles will be then 7 times higher than for the Tevatron. Both machines have chance of succeeding by being the first to detect the Higgs boson. Time plays in favor of the Tevatron but in any case if the Higgs boson exists it will be detected at LHC because this equipment covers completely the energy range in which the Higgs boson is suspected to exist. (A.C.)

  14. Derivative interactions and perturbative UV contributions in N Higgs doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Kikuta, Yohei [KEK Theory Center, KEK, Tsukuba (Japan); The Graduate University for Advanced Studies, Department of Particle and Nuclear Physics, Tsukuba (Japan); Yamamoto, Yasuhiro [Universidad de Granada, Deportamento de Fisica Teorica y del Cosmos, Facultad de Ciencias and CAFPE, Granada (Spain)

    2016-05-15

    We study the Higgs derivative interactions on models including arbitrary number of the Higgs doublets. These interactions are generated by two ways. One is higher order corrections of composite Higgs models, and the other is integration of heavy scalars and vectors. In the latter case, three point couplings between the Higgs doublets and these heavy states are the sources of the derivative interactions. Their representations are constrained to couple with the doublets. We explicitly calculate all derivative interactions generated by integrating out. Their degrees of freedom and conditions to impose the custodial symmetry are discussed. We also study the vector boson scattering processes with a couple of two Higgs doublet models to see experimental signals of the derivative interactions. They are differently affected by each heavy field. (orig.)

  15. Bosonization and entanglement spectrum for one-dimensional polar bosons on disordered lattices

    International Nuclear Information System (INIS)

    Deng, Xiaolong; Santos, Luis; Citro, Roberta; Orignac, Edmond; Minguzzi, Anna

    2013-01-01

    Ultra cold polar bosons in a disordered lattice potential, described by the extended Bose–Hubbard model, display a rich phase diagram. In the case of uniform random disorder one finds two insulating quantum phases—the Mott-insulator and the Haldane insulator—in addition to a superfluid and a Bose glass phase. In the case of a quasiperiodic potential, further phases are found, e.g. the incommensurate density wave, adiabatically connected to the Haldane insulator. For the case of weak random disorder we determine the phase boundaries using a perturbative bosonization approach. We then calculate the entanglement spectrum for both types of disorder, showing that it provides a good indication of the various phases. (paper)

  16. Associated production of a top pair and a Higgs boson beyond NLO

    Energy Technology Data Exchange (ETDEWEB)

    Broggio, Alessandro [Paul Scherrer Institut,CH-5232 Villigen PSI (Switzerland); Physik Department T31, Technische Universität München,James Franck-Straße 1, D-85748 Garching (Germany); Ferroglia, Andrea [Physics Department, New York City College of Technology,300 Jay St, Brooklyn, NY 11201 (United States); The Graduate School and University Center, The City University of New York,365 5th Ave, New York, NY 10016 (United States); Pecjak, Ben D. [Institute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics,Department of Physics, University of Durham, Science Laboratories,South Rd, Durham DH1 3LE (United Kingdom); Signer, Adrian [Paul Scherrer Institut,CH-5232 Villigen PSI (Switzerland); Physik-Institut, Universität Zürich,Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Yang, Li Lin [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University,No. 5 Yiheyuan Road, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,Beijing (China); Center for High Energy Physics, Peking University,No. 5 Yiheyuan Road, Beijing 100871 (China)

    2016-03-17

    We consider soft gluon emission corrections to the production of a top-antitop pair in association with a Higgs boson at hadron colliders. In particular, we present a soft-gluon resummation formula for this production process and gather all elements needed to evaluate it at next-to-next-to-leading logarithmic order. We employ these results to obtain approximate next-to-next-to-leading order (NNLO) formulas, and implement them in a bespoke parton-level Monte Carlo program which can be used to calculate the total cross section along with arbitrary differential distributions. We use this tool to study the phenomenological impact of the approximate NNLO corrections, finding that they increase the total cross section and the differential distributions which we evaluated in this work.

  17. Crossing Over from Attractive to Repulsive Interactions in a Tunneling Bosonic Josephson Junction.

    Science.gov (United States)

    Spagnolli, G; Semeghini, G; Masi, L; Ferioli, G; Trenkwalder, A; Coop, S; Landini, M; Pezzè, L; Modugno, G; Inguscio, M; Smerzi, A; Fattori, M

    2017-06-09

    We explore the interplay between tunneling and interatomic interactions in the dynamics of a bosonic Josephson junction. We tune the scattering length of an atomic ^{39}K Bose-Einstein condensate confined in a double-well trap to investigate regimes inaccessible to other superconducting or superfluid systems. In the limit of small-amplitude oscillations, we study the transition from Rabi to plasma oscillations by crossing over from attractive to repulsive interatomic interactions. We observe a critical slowing down in the oscillation frequency by increasing the strength of an attractive interaction up to the point of a quantum phase transition. With sufficiently large initial oscillation amplitude and repulsive interactions, the system enters the macroscopic quantum self-trapping regime, where we observe coherent undamped oscillations with a self-sustained average imbalance of the relative well population. The exquisite agreement between theory and experiments enables the observation of a broad range of many body coherent dynamical regimes driven by tunable tunneling energy, interactions and external forces, with applications spanning from atomtronics to quantum metrology.

  18. Boson-triboson Scattering with Yamaguchi potential. 2. Inclusion of additional p-wave component for the 3+1-subamplitude

    International Nuclear Information System (INIS)

    Matsui, Yoshiko

    1999-01-01

    In order to investigate the p-wave contribution from the 3+1-subamplitude in the S-wave phase shift for boson-triboson elastic scattering when the Yamaguchi potential for the two-body interaction is assumed, the Faddeev-Osborn equation for a system of four identical bosons in solved numerically by extending the previous calculation to include the p-wave component for the 3+1-subamplitude. The results obtained closely resemble the previous results. The calculated phase shift generally has the standard behavior of the two-body phase shift for a loosely bound state and has further characteristic behavior represented by a valley witha peak as fine structure. The phase shift obtained in the present calculation has a higher peak and a deeper valley than the previous one, while the positions of the peak and the valley in the two sets of results agree precisely. Thus the calculated resonance energies are the same as those obtained in the previous result. (author)

  19. Self-consistent embedded-cluster calculations of the electronic structure of alkaline earth fluorides in the Hartree-Fock-Slater approximation

    International Nuclear Information System (INIS)

    Amaral, N.C.; Maffeo, B.; Guenzburger, D.J.R.

    1982-01-01

    Molecular orbitals calculations were performed for clusters representing the CaF 2 , SrF 2 and BaF 2 ionic crystals. The discrete variational method was employed, with the Xα approximation for the exchange interaction; a detailed investigation of different models for embedding the clusters in the solids led to a realistic description of the effect of neighbour ions in the infinite crystal. The results obtained were used to interpret optical and photoelectron data reported in the literature. In the case of CaF 2 , comparisons were made with existing band structure calculations. (Author) [pt

  20. Threshold region for Higgs boson production in gluon fusion.

    Science.gov (United States)

    Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni

    2012-09-07

    We provide a quantitative determination of the effective partonic kinematics for Higgs boson production in gluon fusion in terms of the collider energy at the LHC. We use the result to assess, as a function of the Higgs boson mass, whether the large m(t) approximation is adequate and Sudakov resummation advantageous. We argue that our results hold to all perturbative orders. Based on our results, we conclude that the full inclusion of finite top mass corrections is likely to be important for accurate phenomenology for a light Higgs boson with m(H)~125 GeV at the LHC with √s=14 TeV.

  1. Real-space, mean-field algorithm to numerically calculate long-range interactions

    Science.gov (United States)

    Cadilhe, A.; Costa, B. V.

    2016-02-01

    Long-range interactions are known to be of difficult treatment in statistical mechanics models. There are some approaches that introduce a cutoff in the interactions or make use of reaction field approaches. However, those treatments suffer the illness of being of limited use, in particular close to phase transitions. The use of open boundary conditions allows the sum of the long-range interactions over the entire system to be done, however, this approach demands a sum over all degrees of freedom in the system, which makes a numerical treatment prohibitive. Techniques like the Ewald summation or fast multipole expansion account for the exact interactions but are still limited to a few thousands of particles. In this paper we introduce a novel mean-field approach to treat long-range interactions. The method is based in the division of the system in cells. In the inner cell, that contains the particle in sight, the 'local' interactions are computed exactly, the 'far' contributions are then computed as the average over the particles inside a given cell with the particle in sight for each of the remaining cells. Using this approach, the large and small cells limits are exact. At a fixed cell size, the method also becomes exact in the limit of large lattices. We have applied the procedure to the two-dimensional anisotropic dipolar Heisenberg model. A detailed comparison between our method, the exact calculation and the cutoff radius approximation were done. Our results show that the cutoff-cell approach outperforms any cutoff radius approach as it maintains the long-range memory present in these interactions, contrary to the cutoff radius approximation. Besides that, we calculated the critical temperature and the critical behavior of the specific heat of the anisotropic Heisenberg model using our method. The results are in excellent agreement with extensive Monte Carlo simulations using Ewald summation.

  2. Measurement of $Z$-boson production cross sections at $\\sqrt{s}$ = 13 TeV and $t\\bar{t}$ to $Z$-boson cross-section ratios with the ATLAS detector at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00443845; Schleper, Peter

    2018-02-21

    The measurement of $Z$-boson production cross sections in $pp$ collisions at centre-of-mass energy of $\\sqrt{s}$ = 13 TeV is presented. Results are based on data corresponding to an integrated luminosity of 3.16 $\\text{fb}^{−1}$ recorded with the ATLAS detector in 2015 at the LHC operating with the 25 ns bunch spacing configuration. The selection criteria of the measurement are optimized to be consistent with the new measurement of the $t\\bar{t}$ production cross section to maximize elimination of the experimental and theoretical systematic uncertainties for the ratio of the top-quark pair to Z-boson cross sections. Single ratios at the centre-of-mass energy of 13 TeV and double ratios at different centre-of-mass energies, including published ATLAS results for $Z$-boson and $t\\bar{t}$ production at $\\sqrt{s}$ = 7 TeV and 8 TeV, are reported. The results are compared to the predictions of perturbative quantum chromodynamics calculations at next-to-next-to-leading order using various sets of parton distributi...

  3. Goldstone bosons in a crystalline chiral phase

    International Nuclear Information System (INIS)

    Schramm, Marco

    2017-01-01

    The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.

  4. Goldstone bosons in a crystalline chiral phase

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, Marco

    2017-07-24

    The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.

  5. Boson symmetries in exotic N∼Z nuclei

    International Nuclear Information System (INIS)

    Van Isacker, P.

    1996-01-01

    Heavy N ∼ Z nuclei provide an ideal testing ground for various symmetries such as isospin and isospin-spin or SU(4) symmetry. The associated quantum numbers of orbital angular momentum L, isospin T, spin S AND SU(4) labels (λμnu)can be carried over onto appropriate versions of the interacting boson model (IBM). Symmetries allow to relate the boson model to the shell model; the composite character of the bosons permits a broader application of the concept of symmetry in IBM. The discussion then focuses on IBM-3 (which includes T = 1 bosons only) and IBM-4 (with T = 0 and T = 1 bosons). A connection is established between them which relies on an IBM-4 classification that breaks Wigner's SU(4) symmetry. The resulting generalised IBM-4 is relevant for studying the competition between T = 0 and T = 1 pairing in N ∼ Z nuclei. An application to odd-odd self-conjugate nuclei is presented. (author). 20 refs., 2 tabs

  6. Signature for g bosons from medium energy proton scattering experiments

    International Nuclear Information System (INIS)

    Kuyucak, S.

    1993-01-01

    We apply the recently developed algebraic (1/N expansion) scattering formalism to medium energy proton scattering from 154 Sm and 176 Yb. The nuclear structure effects in this formalism are described by the interacting boson model generalized to arbitrary interactions and types of bosons i.e. s,d,g, etc. We find that, in the sd boson model, a consistent description of cross sections is possible only for the 0 + and 2 + states. The failure of the model with regard to the 4 + states indicates that the effective hexadecapole operator used in the sd model is inadequate. In contrast, the data for scattering to the 0 + , 2 + and 4 + states could be consistently described in the sdg boson model. The spectroscopic data for the low-lying levels usually can not distinguish between the sd and sdg models due to renormalization of parameters, and one has to look at high spin or energy data for evidence of g bosons. The inelastic proton scattering experiments, on the other hand, directly probe the wave functions, and hence could provide a signature for g bosons even in the ground band states

  7. Unintegrated sea quark at small x and vector boson production

    CERN Document Server

    Hautmann, F; Jung, H

    2012-01-01

    Parton-shower event generators that go beyond the collinear-ordering approximation at small x have so far included only gluon and valence quark channels at transverse momentum dependent level. In this contribution we provide a denition of a transverse momentum depend (TMD) sea quark distribution valid in the small x region, which is based on the TMD gluon-to-quark splitting function. As an example process we consider vector boson production in the forward direction of one of the protons. The qq ! Z matrix element (with one o-shell quark) is calculated in an explicit gauge invariant way, making use of high energy factorization.

  8. Calculation of helium-like ion dipole susceptibility with account for electron interaction

    International Nuclear Information System (INIS)

    Pal'chikov, V.G.; Tkachev, A.N.

    1989-01-01

    Numerical estimations of electron interaction effects are carried out for helium-like ions inserted in a homogeneous electric field. Statistical dipole polarizations and hyperpolarizations are calculated for the main state taking into account corrections of the first order to approximation of noninteracting electrons. Summation according to the full spectrum of intermediate states is carried out by the method of Coulomb-Green functions (CGF), that permitted to use analytical methods to calculate matrix elements of correlation diagrams. When calculating polarizations, relativistic corrections ∼(αZ) 2 , where α - the constant of a fine structure, Z-nucleus charge, are taken into account

  9. Precision calculations for γγ → 4 fermions and H → WW/ZZ → 4 fermions

    International Nuclear Information System (INIS)

    Bredenstein, A.

    2006-02-01

    In this work we provide precision calculations for the processes γγ → 4 fermions and H → WW/ZZ → 4 fermions. At a γγ collider precise theoretical predictions are needed for the γγ → WW → 4f processes because of their large cross section. These processes allow a measurement of the gauge-boson couplings γWW and γγWW. Furthermore, the reaction γγ → H → WW/ZZ → 4f arises through loops of virtual charged, massive particles. Thus, the coupling γγH can be measured and Higgs bosons with a relatively large mass could be produced. For masses M H >or #sim# 135 GeV the Higgs boson predominantly decays into W- or Z-boson pairs and subsequently into four leptons. The kinematical reconstruction of these decays is influenced by quantum corrections, especially real photon radiation. Since off-shell effects of the gauge bosons have to be taken into account below M H ∼ 2M W/Z , the inclusion of the decays of the gauge bosons is important. In addition, the spin and the CP properties of the Higgs boson can be determined by considering angular and energy distributions of the decay fermions. For a comparison of theoretical predictions with experimental data Monte Carlo generators are useful tools. We construct such programs for the processes γγ → WW → 4f and H → WW/ZZ → 4f. On the one hand, they provide the complete predictions at lowest order of perturbation theory. On the other hand, they contain quantum corrections, which ca be classified into real corrections, connected with photons bremsstrahlung, and virtual corrections. Whereas the virtual quantum corrections to γγ → WW → 4f are calculated in the double-pole approximation, i.e. only doubly-resonant contributions are taken into account, we calculate the complete O(α) corrections for the H → WW/ZZ → 4f processes. The infrared (soft and collinear) divergences in the virtual and real corrections are treated either with the dipole-subtraction method or with the phase-space slicing

  10. Investigations of interactions mediated by neutral currents

    International Nuclear Information System (INIS)

    Witek, M.

    2007-03-01

    The report is devoted to four-fermion interactions mediated by the neutral currents. The results from the second phase of LEP are presented, when the production of two massive bosons was possible with the increased energy of the e + e - collisions. It enabled for a direct test of nonabelian structure of the electroweak theory. The results concern the four-fermion production of the pairs of the ZZ bosons, single Z and Zγ * production as well as search for anomalous gauge bosons couplings. The large part of the report is devoted to experimental techniques, physics analyses and discussion of results. (author)

  11. NLO QCD corrections to Higgs boson production plus three jets in gluon fusion

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Deurzen, H. van; Greiner, N.; Luisoni, G.; Mirabella, E.; Peraro, T. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Mastrolia, P. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padova Univ. (Italy). Dipt. di Fisica e Astronomia; INFN, Sezione di Padova (Italy); Ossola, G. [New York Univ., NY (United States). New York City College of Technology; New York Univ., NY (United States). The Graduate School and University Center; Tramontano, F. [Napoli Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Napoli (Italy)

    2013-07-15

    We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD corrections, we observe a strong reduction in the scale dependence of the result, and an increased steepness in the transverse momentum distributions of both the Higgs and the leading jets. The results are obtained with the combined use of GoSam, Sherpa, and the MadDipole/MadEvent framework.

  12. Mixed boson-fermion description of correlated electrons: Fluctuation corrections in the symmetric treatment

    International Nuclear Information System (INIS)

    Vicente Alvarez, J.J.; Balseiro, C.A.; Ceccatto, H.A.

    1995-07-01

    We consider the introduction of fluctuation corrections to saddle- point results in the symmetric treatment of a mixed pseudofermion-boson representation of correlated electrons. In our calculations we avoid the complications of working in the discrete imaginary-time formulation of the functional integral, a procedure recently advocated in the literature as mandatory for this problem. For a simple two-site model our approach leads to approximate results in remarkable agreement with the exact ones, and without the spurious nonanalyticities of other similar treatments. (author). 14 refs, 2 figs

  13. Boson sampling with integrated optical circuits

    International Nuclear Information System (INIS)

    Bentivegna, M.

    2014-01-01

    Simulating the evolution of non-interacting bosons through a linear transformation acting on the system’s Fock state is strongly believed to be hard for a classical computer. This is commonly known as the Boson Sampling problem, and has recently got attention as the first possible way to demonstrate the superior computational power of quantum devices over classical ones. In this paper we describe the quantum optics approach to this problem, highlighting the role of integrated optical circuits.

  14. Leptophobic Boson Signals with Leptons, Jets and Missing Energy

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A.

    2015-06-14

    Color-singlet gauge bosons with renormalizable couplings to quarks but not to leptons must interact with additional fermions (''anomalons'') required to cancel the gauge anomalies. Analyzing the decays of such leptophobic bosons into anomalons, I show that they produce final states involving leptons at the LHC. Resonant production of a flavor-universal leptophobic Z' boson leads to cascade decays via anomalons, whose signatures include a leptonically decaying Z, missing energy and several jets. A Z' boson that couples to the right-handed quarks of the first and second generations undergoes cascade decays that violate lepton universality and include signals with two leptons and jets, or with a Higgs boson, a lepton, a W and missing energy.

  15. Vector boson scattering and electroweak production of two like-charge W bosons and two jets at the current and future ATLAS detector

    International Nuclear Information System (INIS)

    Schnoor, Ulrike

    2015-01-01

    The scattering of electroweak gauge bosons is closely connected to the electroweak gauge symmetry and its spontaneous breaking through the Brout-Englert-Higgs mechanism. Since it contains triple and quartic gauge boson vertices, the measurement of this scattering process allows to probe the self-interactions of weak bosons. The contribution of the Higgs boson to the weak boson scattering amplitude ensures unitarity of the scattering matrix. Therefore, the scattering of massive electroweak gauge bosons is sensitive to deviations from the Standard Model prescription of the electroweak interaction and of the properties of the Higgs boson. At the Large Hadron Collider (LHC), the scattering of massive electroweak gauge bosons is accessible through the measurement of purely electroweak production of two jets and two gauge bosons. No such process has been observed before. Being the channel with the least amount of background from QCD-mediated production of the same final state, the most promising channel for the first measurement of a process containing massive electroweak gauge boson scattering is the one with two like-charge W bosons and two jets in the final state. This thesis presents the first measurement of electroweak production of two jets and two identically charged W bosons, which yields the first observation of a process with contributions from quartic gauge interactions of massive electroweak gauge bosons. An overview of the most important issues in Monte Carlo simulation of vector boson scattering processes with current Monte Carlo generators is given in this work. The measurement of the final state of two jets and two leptonically decaying same-charge W bosons is conducted based on proton-proton collision data with a center-of-mass energy of √(s)=8 TeV, taken in 2012 with the ATLAS experiment at the LHC. The cross section of electroweak production of two jets and two like-charge W bosons is measured with a significance of 3.6 standard deviations to be

  16. Attractive electron-electron interactions within robust local fitting approximations.

    Science.gov (United States)

    Merlot, Patrick; Kjærgaard, Thomas; Helgaker, Trygve; Lindh, Roland; Aquilante, Francesco; Reine, Simen; Pedersen, Thomas Bondo

    2013-06-30

    An analysis of Dunlap's robust fitting approach reveals that the resulting two-electron integral matrix is not manifestly positive semidefinite when local fitting domains or non-Coulomb fitting metrics are used. We present a highly local approximate method for evaluating four-center two-electron integrals based on the resolution-of-the-identity (RI) approximation and apply it to the construction of the Coulomb and exchange contributions to the Fock matrix. In this pair-atomic resolution-of-the-identity (PARI) approach, atomic-orbital (AO) products are expanded in auxiliary functions centered on the two atoms associated with each product. Numerical tests indicate that in 1% or less of all Hartree-Fock and Kohn-Sham calculations, the indefinite integral matrix causes nonconvergence in the self-consistent-field iterations. In these cases, the two-electron contribution to the total energy becomes negative, meaning that the electronic interaction is effectively attractive, and the total energy is dramatically lower than that obtained with exact integrals. In the vast majority of our test cases, however, the indefiniteness does not interfere with convergence. The total energy accuracy is comparable to that of the standard Coulomb-metric RI method. The speed-up compared with conventional algorithms is similar to the RI method for Coulomb contributions; exchange contributions are accelerated by a factor of up to eight with a triple-zeta quality basis set. A positive semidefinite integral matrix is recovered within PARI by introducing local auxiliary basis functions spanning the full AO product space, as may be achieved by using Cholesky-decomposition techniques. Local completion, however, slows down the algorithm to a level comparable with or below conventional calculations. Copyright © 2013 Wiley Periodicals, Inc.

  17. Effect of g-boson on spectra of high-spin states in 100Pd nucleus

    International Nuclear Information System (INIS)

    Zhao Xingzhi; Ni Shaoyong; Tong Hong; Shi Zhuyi; Second Northwest Inst. for Minority, Yinchuan; Shi Zhuya

    2007-01-01

    By using a microscopic sdgIBM-2 approach which is the accomplishment of the phenomenological sdgIBM theory and the experimental single-particle energies, the levels of the more complex ground-state band and the high-angular momentum states of y-band on 100 Pd nucleus are successfully reproduced. The ground-state band and γ-band are described well up to J π =16 + and E x =7.00 MeV, and that is larger than that J π 6 + -8 + , E x =2.00 MeV can be successfully reproduced in IBM theory. It has been proved that its yrast states up to the 16 + state are ground states, there may not exist any broken pair quasi-particle state by boson in yrast states. Theoretical analysis and numerical calculation show that to describe successfully spectra on 100 Pd nucleus under the boson approach in IBM theory, it is impossible that the g-boson has been not considered in one. According to the microscopic sdgIBM-2 approach, the 14 1 + state is understood as a result that a neutron g-boson transites into a neutron d-boson and a pair of photos is radiated at same time, and the 14 2 + state is the decoupling state of the 16 1 + state, while the 14 3 + state is the actual ground state. (authors)

  18. Polarization effects in W+- and Z0-bosons production with γe-colliding beams

    International Nuclear Information System (INIS)

    Koval'chuk, V.A.; Stoletnij, I.V.

    1984-01-01

    The helicity amplitudes and differential cross sections of the processes γe → Ze and γe → Wνsub(e) are obtained as well as the density matrix for the vector boson produced, the anomalous magnetic moment of the W boson being arbitrary. It is shown that if √S approximately 100 - 140 GeV, the Z boson yield exceeds that of W bosons even at a small angle between the photon and the produced vector boson momenta. The right-handed polarized photons are found to provide larger cross sections for the above processes as compared with the left-handed ones, but the latter are more suitable for measuring the anomalous magnetic moment of the W boson

  19. Latest results on Z boson production from LHCb

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Recent measurements of Z boson production using data collected at a center-of-mass energy of 7 TeV by the LHCb experiment are presented. These measurements test QCD and electroweak theory and can provide constraints on the proton parton distribution functions. Inclusive and differential cross-section measurements for Z bosons, decaying into di-muon, di-electron, and di-tau final states, and a measurement of the production of jets of particles in association with a Z boson are presented. The results are found to be in agreement with theoretical predictions with recently calculated parton distribution functions.

  20. Constraints on anomalous Higgs boson couplings in production and decay $\\mathrm{H}\\to4\\ell$

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The study of the anomalous interactions of the recently discovered Higgs boson is performed using the decay information $\\mathrm{H}\\to 4\\ell$ and information from associated production of two quark jets, originating either from vector boson fusion or associated vector boson. The full dataset recorded by the CMS experiment during 2016 of the LHC $\\mathrm{Run~2}$ is used, corresponding to an integrated luminosity of $35.9\\,\\mathrm{fb}^{-1}$ at $13\\,\\mathrm{TeV}$. Novel techniques are used for the study of associated VBF and VH production and its combination with analysis of decay information using optimal approaches based on matrix element techniques. The tensor structure of the interactions of the spin-zero Higgs boson with two vector bosons either in production or in decay is investigated and constraints are set on anomalous HVV interactions. All observations are consistent with the expectations for the standard model Higgs boson.