WorldWideScience

Sample records for interacting quantum fields

  1. Quantum principles in field interactions

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1986-01-01

    The concept of quantum principle is intruduced as a principle whosee formulation is based on specific quantum ideas and notions. We consider three such principles, viz. those of quantizability, local gauge symmetry, and supersymmetry, and their role in the development of the quantum field theory (QFT). Concerning the first of these, we analyze the formal aspects and physical contents of the renormalization procedure in QFT and its relation to ultraviolet divergences and the renorm group. The quantizability principle is formulated as an existence condition of a self-consistent quantum version with a given mechanism of the field interaction. It is shown that the consecutive (from a historial point of view) use of these quantum principles puts still larger limitations on possible forms of field interactions

  2. Relativistic quantum information in detectors–field interactions

    International Nuclear Information System (INIS)

    Hu, B L; Lin, Shih-Yuin; Louko, Jorma

    2012-01-01

    We review Unruh–DeWitt detectors and other models of detector–field interaction in a relativistic quantum field theory setting as a tool for extracting detector–detector, field–field and detector–field correlation functions of interest in quantum information science, from entanglement dynamics to quantum teleportation. In particular, we highlight the contrast between the results obtained from linear perturbation theory which can be justified provided switching effects are properly accounted for, and the nonperturbative effects from available analytic expressions which incorporate the backreaction effects of the quantum field on the detector behavior. (paper)

  3. Quantum gravity. On the entity of gravitation generating interacting fields and the elementary fields of quantum electrodynamics

    International Nuclear Information System (INIS)

    Bencivinni, Daniele

    2011-01-01

    The chapters about the propagation of the electromagnetic field, its properties in view of the propagation in space, the accompanying momentum, its kinetic energy and its mass-equivalent distribution of the total energy coupled to the relativistic mass represent today known and scientifically for a long time acknowledged as well as proved description of each phenomena. They are successively in a mathematically simple way formally listed and explained. The fundamental results of quantum mechanics, the quantum-mechanical momentum, Planck's action quantum etc. are also presented in a simplified way. Also the essential forms of special relativity theory concerning the propagation of energy and momentum are presented. In a last setpit is checked, whether a possible common entity between the listed scientific experiences can be established. Possible explanation approaches on the described connections and the subsequent results are presented. If the gravitational waves are interpreted as quantized electromagnetic quantum waves, as matter waves, which can be assigned to a mass in the sense of Louis de Broglie and are for instance detectable as electron waves, by means of the relativistic quantum-mechanical spatial radiation gravitation could be described. So the ''quantum-mechanical wave'' could be responsible for the generation of mass via the interaction of elementary quantum fields. The propagation of one of these as mass appearing interaction of bound quantum fields can carry a conventional momentum because of its kinetic energy. The interaction in the Bose-Einstein condensate shows that the cooled rest mass exhibits the picture of a standing wave, the wave front of which propagates into the space. Because of the massive superposition of interference pattern warns the gravitational respectively matter wave can no more be isolated. A spatial radiation is however possible. Matter can generate a radiation in front of the inertial mass (quantum waves). If it succeeds to

  4. Quantum field theory of photon—Dirac fermion interacting system in graphene monolayer

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha; Nguyen, Van Hieu

    2016-01-01

    The purpose of the present work is to elaborate quantum field theory of interacting systems comprising Dirac fermion fields in a graphene monolayer and the electromagnetic field. Since the Dirac fermions are confined in a two-dimensional plane, the interaction Hamiltonian of this system contains the projection of the electromagnetic field operator onto the plane of a graphene monolayer. Following the quantization procedure in traditional quantum electrodynamics we chose to work in the gauge determined by the weak Lorentz condition imposed on the state vectors of all physical states of the system. The explicit expression of the two-point Green function of the projection onto a graphene monolayer of a free electromagnetic field is derived. This two-point Green function and the expression of the interaction Hamiltonian together with the two-point Green functions of free Dirac fermion fields established in our previous work form the basics of the perturbation theory of the above-mentioned interacting field system. As an example, the perturbation theory is applied to the study of two-point Green functions of this interacting system of quantum fields. (paper)

  5. Two interacting spins in external fields and application to quantum computation

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Gitman, D.M.; Bagrov, V.G.

    2009-01-01

    We study the four-level system given by two quantum dots immersed in a time-dependent magnetic field, which are coupled to each other by an effective Heisenberg-type interaction. We describe the construction of the corresponding evolution operator in a special case of different time-dependent parallel external magnetic fields. We find a relation between the external field and the effective interaction function. The obtained results are used to analyze the theoretical implementation of a universal quantum gate

  6. Lagrangian model of conformal invariant interacting quantum field theory

    International Nuclear Information System (INIS)

    Lukierski, J.

    1976-01-01

    A Lagrangian model of conformal invariant interacting quantum field theory is presented. The interacting Lagrangian and free Lagrangian are derived replacing the canonical field phi by the field operator PHIsub(d)sup(c) and introducing the conformal-invariant interaction Lagrangian. It is suggested that in the conformal-invariant QFT with the dimensionality αsub(B) obtained from the bootstrep equation, the normalization constant c of the propagator and the coupling parametery do not necessarily need to satisfy the relation xsub(B) = phi 2 c 3

  7. Theory of interacting quantum fields

    International Nuclear Information System (INIS)

    Rebenko, Alexei L.

    2012-01-01

    This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.

  8. Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field

    DEFF Research Database (Denmark)

    Orlof, A.; Shylau, Artsem; Zozoulenko, I. V.

    2015-01-01

    We study the effect of electron-electron interaction in graphene quantum dots defined by an external electrostatic potential and a high magnetic field. To account for the electron-electron interaction, we use the Thomas-Fermi approximation and find that electron screening causes the formation...... of compressible strips in the potential profile and the electron density. We numerically solve the Dirac equations describing the electron dynamics in quantum dots, and we demonstrate that compressible strips lead to the appearance of plateaus in the electron energies as a function of the magnetic field. Finally...

  9. A Formulation of Quantum Field Theory Realizing a Sea of Interacting Dirac Particles

    Science.gov (United States)

    Finster, Felix

    2011-08-01

    In this survey article, we explain a few ideas behind the fermionic projector approach and summarize recent results which clarify the connection to quantum field theory. The fermionic projector is introduced, which describes the physical system by a collection of Dirac states, including the states of the Dirac sea. Formulating the interaction by an action principle for the fermionic projector, we obtain a consistent description of interacting quantum fields which reproduces the results of perturbative quantum field theory. We find a new mechanism for the generation of boson masses and obtain small corrections to the field equations which violate causality.

  10. Renormalization and Interaction in Quantum Field Theory

    International Nuclear Information System (INIS)

    RATSIMBARISON, H.M.

    2008-01-01

    This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr

  11. Quantum fields and Poisson processes: Interaction of a cut-off boson field with a quantum particle

    International Nuclear Information System (INIS)

    Bertrand, J.; Rideau, G.; Gaveau, B.

    1985-01-01

    The solution of the Schroedinger equation for a boson field interacting with a quantum particle is written as an expectation on a Poisson process counting the variations of the boson-occupation numbers for each momentum. An energy cut-off is needed for the expectation to be meaningful. (orig.)

  12. Study of interacting fields in a canonical formalism in Heisenberg picture of quantum field theory

    International Nuclear Information System (INIS)

    RANAIVOSON, R.T.R.

    2011-01-01

    In this work, we have made a study on the canonical formalism of the quantum field theory. Our contribution has been the development of a study using the Heisenberg picture. We showed that this approach may be useful for the description of quantum dynamics of interacting fields in bounded states. Our approach is to start from the lagrangian density of a classical theory from which one deduce the classical evolution equations of the fields via Euler-Lagrange equation for fields and establish the expression of conserved quantities characterizing the dynamics using the Noether theorem. Passing to the canonical quantization, fields and quantities characterizing the dynamics become quantum operators and evolution equations become operatorial evolution equations in Heisenberg picture. Expressions of quantum observable are also deduced from the expressions of classical conserved quantities. After, we showed that using the properties of fields operators and quantum states vectors, one can deduce from the operatorial evolution equations, the evolution equations for the wave functions of fermions and the evolution equations of expectation values of boson fields. For the illustration, various studies were conducted: the case of electrodynamics, the case of a general gauge theory and the case of the Standard Model. [fr

  13. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1993-01-01

    The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs

  14. Noether charges for self-interacting quantum field theories in curved spacetimes with a Killing-vector

    International Nuclear Information System (INIS)

    Hollands, S.

    2001-01-01

    We consider a self-interacting, perturbative Klein-Gordon quantum field in a curved spacetime admitting a Killing vector field. We show that the action of this spacetime symmetry on interacting field operators can be implemented by a Noether charge which arises, in a certain sense, as a surface integral over the time-component of some interacting Noether current-density associated with the Killing field. The proof of this involves the demonstration of a corresponding set of Ward identities. Our work is based on the perturbative construction by Brunetti and Fredenhagen (Commun. Math. Phys. 208 (2000) 623-661) of self-interacting quantum field theories in general globally hyperbolic spacetimes. (orig.)

  15. Electron interaction and spin effects in quantum wires, quantum dots and quantum point contacts: a first-principles mean-field approach

    International Nuclear Information System (INIS)

    Zozoulenko, I V; Ihnatsenka, S

    2008-01-01

    We have developed a mean-field first-principles approach for studying electronic and transport properties of low dimensional lateral structures in the integer quantum Hall regime. The electron interactions and spin effects are included within the spin density functional theory in the local density approximation where the conductance, the density, the effective potentials and the band structure are calculated on the basis of the Green's function technique. In this paper we present a systematic review of the major results obtained on the energetics, spin polarization, effective g factor, magnetosubband and edge state structure of split-gate and cleaved-edge overgrown quantum wires as well as on the conductance of quantum point contacts (QPCs) and open quantum dots. In particular, we discuss how the spin-resolved subband structure, the current densities, the confining potentials, as well as the spin polarization of the electron and current densities in quantum wires and antidots evolve when an applied magnetic field varies. We also discuss the role of the electron interaction and spin effects in the conductance of open systems focusing our attention on the 0.7 conductance anomaly in the QPCs. Special emphasis is given to the effect of the electron interaction on the conductance oscillations and their statistics in open quantum dots as well as to interpretation of the related experiments on the ultralow temperature saturation of the coherence time in open dots

  16. Computational strong-field quantum dynamics. Intense light-matter interactions

    International Nuclear Information System (INIS)

    Bauer, Dieter

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  17. Computational strong-field quantum dynamics. Intense light-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dieter (ed.) [Rostock Univ. (Germany). Inst. fuer Physik

    2017-09-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  18. Computational strong-field quantum dynamics intense light-matter interactions

    CERN Document Server

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  19. Quantum fields in curved space

    International Nuclear Information System (INIS)

    Birrell, N.D.; Davies, P.C.W.

    1982-01-01

    The book presents a comprehensive review of the subject of gravitational effects in quantum field theory. Quantum field theory in Minkowski space, quantum field theory in curved spacetime, flat spacetime examples, curved spacetime examples, stress-tensor renormalization, applications of renormalization techniques, quantum black holes and interacting fields are all discussed in detail. (U.K.)

  20. Quantum theory for magnons and phonons interactions under time-varying magnetic fields

    International Nuclear Information System (INIS)

    Guerreiro, S.C.

    1971-01-01

    The magnon-fonon interaction in a ferromagnetic material submited to a time-varying magnetic field is studied by quantum methods. This problem has already been solved by semi-classical methods, and one of its results is that under certain conditions a state of lattice vibrations may be completely converted into spin oscillations. The main proporties of magnetoelastic waves in static magnetic fields and extend the quantum treatment for the time varying magnetic field case is revised. Field operators whose equations of motion are analogous to the classical ones are introduced. Their equations, which appear as a linear system of first order coupled equations, are converted into equations for complex functions by an expansion of the field operators in a time t as linear combinations of the same operators in a time t 0 prior to the variation of the magnetic field. The quantity g vector obtained from the classical solution is quantized and shown to be the linear momentum density of the magnetoelastic system, the quantum field spin density operator is deduced for the two interacting fields, and finally the results are used to study the magnetization and lattice displacement vector fields in the case of a system described by a coherent state of one of its normal modes

  1. From quantum gravity to quantum field theory via noncommutative geometry

    International Nuclear Information System (INIS)

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2014-01-01

    A link between canonical quantum gravity and fermionic quantum field theory is established in this paper. From a spectral triple construction, which encodes the kinematics of quantum gravity, we construct semi-classical states which, in a semi-classical limit, give a system of interacting fermions in an ambient gravitational field. The emergent interaction involves flux tubes of the gravitational field. In the additional limit, where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. (paper)

  2. Gravitational self-interactions of a degenerate quantum scalar field

    Science.gov (United States)

    Chakrabarty, Sankha S.; Enomoto, Seishi; Han, Yaqi; Sikivie, Pierre; Todarello, Elisa M.

    2018-02-01

    We develop a formalism to help calculate in quantum field theory the departures from the description of a system by classical field equations. We apply the formalism to a homogeneous condensate with attractive contact interactions and to a homogeneous self-gravitating condensate in critical expansion. In their classical descriptions, such condensates persist forever. We show that in their quantum description, parametric resonance causes quanta to jump in pairs out of the condensate into all modes with wave vector less than some critical value. We calculate, in each case, the time scale over which the homogeneous condensate is depleted and after which a classical description is invalid. We argue that the duration of classicality of inhomogeneous condensates is shorter than that of homogeneous condensates.

  3. Coherence and fluctuations in the interaction between moving atoms and a quantum field

    International Nuclear Information System (INIS)

    Hu, B.L.; Raval, A.

    1998-01-01

    Mesoscopic physics deals with three fundamental issues: quantum coherence, fluctuations and correlations. Here we analyze these issues for atom optics, using a simplified model of an assembly of atoms (or detectors, which are particles with some internal degree of freedom) moving in arbitrary trajectories in a quantum field. Employing the influence functional formalism, we study the self-consistent effect of the field on the atoms, and their mutual interactions via coupling to the field. We derive the coupled Langevin equations for the atom assemblage and analyze the relation of dissipative dynamics of the atoms (detectors) with the correlation and fluctuations of the quantum field. This provides a useful theoretical framework for analysing the coherent properties of atom-field systems. (author)

  4. Quantum symmetries in particle interactions

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1983-01-01

    The concept of a quantum symmetry is introduced as a symmetry in the formulation of which quantum representations and specific quantum notions are used essentially. Three quantum symmetry principles are discussed: the principle of renormalizability (possibly super-renormalizability), the principle of local gauge symmetry, and the principle of supersymmetry. It is shown that these principles play a deterministic role in the development of quantum field theory. Historically their use has led to ever stronger restrictions on the interaction mechanism of quantum fields

  5. Interacting Electrons and Holes in Quasi-2D Quantum Dots in Strong Magnetic Fields

    Science.gov (United States)

    Hawrylak, P.; Sheng, W.; Cheng, S.-J.

    2004-09-01

    Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and of excitonic quantum Hall droplets at a filling factorν=2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons.

  6. Interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields

    International Nuclear Information System (INIS)

    Hawrylak, P.; Sheng, W.; Cheng, S.-J.

    2004-01-01

    Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and excitonic quantum Hall droplets at a filling factor υ = 2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons. (author)

  7. Testing the master constraint programme for loop quantum gravity: V. Interacting field theories

    International Nuclear Information System (INIS)

    Dittrich, B; Thiemann, T

    2006-01-01

    This is the fifth and final paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. Here we consider interacting quantum field theories, specifically we consider the non-Abelian Gauss constraints of Einstein-Yang-Mills theory and 2 + 1 gravity. Interestingly, while Yang-Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background-independent quantum field theories such as loop quantum gravity (LQG) this might become possible by working in a new, background-independent representation. While for the Gauss constraint the master constraint can be solved explicitly, for the 2 + 1 theory we are only able to rigorously define the master constraint operator. We show that the, by other methods known, physical Hilbert is contained in the kernel of the master constraint, however, to systematically derive it by only using spectral methods is as complicated as for 3 + 1 gravity and we therefore leave the complete analysis for 3 + 1 gravity

  8. Quantum fields interacting with colliding plane waves: the stress-energy tensor and backreaction

    International Nuclear Information System (INIS)

    Dorca, M.; Verdaguer, E.

    1997-01-01

    Following a previous work on the quantization of a massless scalar field in a space-time representing the head on collision of two plane waves which focus into a Killing-Cauchy horizon, we compute the renormalized expectation value of the stress-energy tensor of the quantum field near that horizon in the physical state which corresponds to the Minkowski vacuum before the collision of the waves. It is found that for minimally coupled and conformally coupled scalar fields the respective stress-energy tensors are unbounded in the horizon. The specific form of the divergences suggests that when the semiclassical Einstein equations describing the backreaction of the quantum fields on the space-time geometry are taken into account, the horizon will acquire a curvature singularity. Thus the Killing-Cauchy horizon which is known to be unstable under ''generic'' classical perturbations is also unstable by vacuum polarization. The calculation is done following the point-splitting regularization technique. The dynamical colliding wave space-time has four quite distinct space-time regions, namely, one flat region, two single plane wave regions, and one interaction region. Exact mode solutions of the quantum field equation cannot be found exactly, but the blueshift suffered by the initial modes in the plane wave and interaction regions makes the use of the WKB expansion a suitable method of solution. To ensure the correct regularization of the stress-energy tensor, the initial flat modes propagated into the interaction region must be given to a rather high adiabatic order of approximation. (orig.)

  9. Introduction to quantum field theory

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1988-01-01

    The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs

  10. Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction

    International Nuclear Information System (INIS)

    Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.

    2004-01-01

    It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition to calculate C is cumbersome in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method is used to calculate the C operator in quantum field theory. The C operator is a time-independent observable in PT-symmetric quantum field theory

  11. Elementary quantum field theory

    International Nuclear Information System (INIS)

    Thirring, W.; Henley, E.M.

    1975-01-01

    The first section of the book deals with the mathematical and physical description of a quantum field with the Bose-Einstein statistics and discusses observables, invariants of the field, and inner symmetries. The second section develops further methods for solvable interactions of a quantum field with static source. Section 3 explains with the aid of the Chew-Low model especially pion-nucleon scattering, static properties of nucleons, electromagnetic phenomena, and nuclear forces. (BJ/LN) [de

  12. Self-interacting, boson, quantum field theory, and the thermodynamic limit in d dimensions

    International Nuclear Information System (INIS)

    Baker, G.A. Jr.

    1975-01-01

    By use of a finite volume, lattice approximation, an approximation to the analytic continuation of a polynomial, self-interacting boson quantum field theory from Minkowski space to Euclidean space was set up. The infinite volume limit for various boundary conditions is shown to exist and to be asymptotic to the perturbation expansion in the coupling constant g at g = 0. For g: phi 4 : d theory mass renormalizability is proved and it is shown how, by use of Nelson's reconstruction theorem, the corresponding Minkowski space quantum field theory can be obtained. It is discussed, at least for d greater than or equal to 4, how statistical mechanical techniques, used to analyze the Ising model in the critical region just above the critical temperature, can be used to compute the properties of quantum field theory. (U.S.)

  13. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Kalpana, P.; Merwyn, A.; Nithiananthi, P.; Jayakumar, K., E-mail: kjkumar-gri@rediffmail.com [Nanostructure Lab, Department of Physics, Gandhigram Rural University, Gandhigram-624302 (India); Reuben, Jasper D. [Department of Physics, School of Engineering, Saveetha University, Thandalam, Chennai- 600104 (India)

    2015-06-24

    The Coulomb interaction of holes in a Semimagnetic Cd{sub 1-x}Mn{sub x}Te / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  14. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    Science.gov (United States)

    Kalpana, P.; Merwyn, A.; Reuben, Jasper D.; Nithiananthi, P.; Jayakumar, K.

    2015-06-01

    The Coulomb interaction of holes in a Semimagnetic Cd1-xMnxTe / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  15. Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies

    CERN Document Server

    D'Amico, Guido; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.

  16. Exact spinor-scalar bound states in a quantum field theory with scalar interactions

    International Nuclear Information System (INIS)

    Shpytko, Volodymyr; Darewych, Jurij

    2001-01-01

    We study two-particle systems in a model quantum field theory in which scalar particles and spinor particles interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green's functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown to have Dirac and Klein-Gordon one-particle limits. Analytical solutions for the bound state energy spectrum are obtained for the case of massless mediating fields

  17. Self-dual gauge field, its quantum fluctuations, and interacting fermions

    International Nuclear Information System (INIS)

    Flory, C.A.

    1983-01-01

    The quantum fluctuations about a self-dual background field in SU(2) are computed. The background field consists of parallel and equal uniform chromomagnetic and chromoelectric fields. Determination of the gluon fluctuations about this field yields zero modes, which are naturally regularized by the introduction of massless fermions. This regularization makes the integrals over all fluctuations convergent, and allows a simple computation of the vacuum energy which is shown to be lower than the energy of the configuration of zero field strength. The regularization of the zero modes also facilitates the introduction of heavy test charges which can interact with the classical background field and also exchange virtual quanta. The formalism for introducing these heavy test charges could be a good starting point for investigating the relevant physics of the self-dual background field beyond the classical level

  18. String-localized quantum fields

    International Nuclear Information System (INIS)

    Mund, Jens; Santos, Jose Amancio dos; Silva, Cristhiano Duarte; Oliveira, Erichardson de

    2009-01-01

    Full text. The principles of physics admit (unobservable) quantum fields which are localized not on points, but on strings in the sense of Mandelstam: a string emanates from a point in Minkowski space and extends to infinity in some space-like direction. This type of localization might permit the construction of new models, for various reasons: (a) in general, weaker localization implies better UV behaviour. Therefore, the class of renormalizable interactions in the string-localized has a chance to be larger than in the point-localized case; (b) for certain particle types, there are no point-localized (free) quantum fields - for example Anyons in d = 2 + 1, and Wigner's massless 'infinite spin' particles. For the latter, free string-localized quantum fields have been constructed; (c) in contrast to the point-localized case, string-localization admits covariant vector/tensor potentials for fotons and gravitons in a Hilbert space representation with positive energy. We shall present free string-localized quantum fields for various particle types, and some ideas about the perturbative construction of interacting string-localized fields. A central point will be an analogue of gauge theories, completely within a Hilbert space and without ghosts, trading gauge dependence with dependence on the direction of the localization string. In order to discuss renormalizability (item (a)), methods from microlocal analysis (wave front set and scaling degree) are needed. (author)

  19. Knots, topology and quantum field theories

    International Nuclear Information System (INIS)

    Lusanna, L.

    1989-01-01

    The title of the workshop, Knots, Topology and Quantum Field Theory, accurate reflected the topics discussed. There have been important developments in mathematical and quantum field theory in the past few years, which had a large impact on physicist thinking. It is historically unusual and pleasing that these developments are taking place as a result of an intense interaction between mathematical physicists and mathematician. On the one hand, topological concepts and methods are playing an increasingly important lead to novel mathematical concepts: for instance, the study of quantum groups open a new chapter in the deformation theory of Lie algebras. These developments at present will lead to new insights into the theory of elementary particles and their interactions. In essence, the talks dealt with three, broadly defined areas of theoretical physics. One was topological quantum field theories, the other the problem of quantum groups and the third one certain aspects of more traditional field theories, such as, for instance, quantum gravity. These topics, however, are interrelated and the general theme of the workshop defies rigid classification; this was evident from the cross references to be found in almo all the talks

  20. Perturbative algebraic quantum field theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Falk

    2013-08-15

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  1. Perturbative algebraic quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Lindner, Falk

    2013-08-01

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  2. 1. Vienna central european seminar on particle physics and quantum field theory. Advances in quantum field theory. Program

    International Nuclear Information System (INIS)

    Hueffel, H.

    2004-01-01

    The new seminar series 'Vienna central European seminar on particle physics and quantum field theory' has been created 2004 and is intended to provide interactions between leading researchers and junior physicists. This year 'Advances in quantum field theory' has been chosen as subject and is centred on field theoretic aspects of string dualities. The lectures mainly focus on these aspects of string dualities. Further lectures regarding supersymmetric gauge theories, quantum gravity and noncommutative field theory are presented. The vast field of research concerning string dualities justifies special attention to their effects on field theory. (author)

  3. Quantum solitons and their relation with fermion fields for the (sin phi)sub(2)-interaction

    International Nuclear Information System (INIS)

    Pogrebkov, A.K.; Sushko, V.N.

    1976-01-01

    Schema of canonical quantization of the/sin phi/sub(2)-self-interaction is developed systematically, which takes into account from the very beginning the existence of solitons in corresponding classical dynamical system. Correct definition of quantum soliton is given. The connection between the descriptions of quantum solitons on the basis of the proposed quantization schema and in terms of fermion fields is demonstrated

  4. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.

    Science.gov (United States)

    Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel

    2013-01-30

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  5. Bell-type quantum field theories

    International Nuclear Information System (INIS)

    Duerr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghi, Nino

    2005-01-01

    In his paper (1986 Beables for quantum field theory Phys. Rep. 137 49-54) John S Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a vertical bar Ψ vertical bar 2 -distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; we call such processes Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the Markov processes, the efficient calculation of jump rates, how to obtain the process from the processes corresponding to the free and interaction Hamiltonian alone, and how to obtain the free process from the free Hamiltonian or, alternatively, from the one-particle process by a construction analogous to 'second quantization'. As an example, we consider the process for a second quantized Dirac field in an external electromagnetic field. (topical review)

  6. Relativistic quantum mechanics of leptons and fields

    International Nuclear Information System (INIS)

    Grandy, W.T. Jr.

    1991-01-01

    This book serves as an advanced text on the Dirac theory, and provides a monograph summarizing the description of relativistic quantum mechanics and quantum electrodynamics as classical field theories. It presents a broad, detailed, and up-to-date exposition of relativistic quantum mechanics, including the two-body problem. It also demonstrates the extent to which the behavior of stable particles and their interactions can be understood without introducing operator (second-quantized) fields. The subsequent difficulties are studied in detail and possible resolutions are presented through quantum field theory

  7. Decision making based on optical excitation transfer via near-field interactions between quantum dots

    International Nuclear Information System (INIS)

    Naruse, Makoto; Nomura, Wataru; Ohtsu, Motoichi; Aono, Masashi; Sonnefraud, Yannick; Drezet, Aurélien; Huant, Serge; Kim, Song-Ju

    2014-01-01

    Optical near-field interactions between nanostructured matters, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation, which can be controlled by engineering the dissipation processes and exploited to realize intelligent capabilities such as solution searching and decision making. Here, we experimentally demonstrate the ability to solve a decision making problem on the basis of optical excitation transfer via near-field interactions by using colloidal quantum dots of different sizes, formed on a geometry-controlled substrate. We characterize the energy transfer behavior due to multiple control light patterns and experimentally demonstrate the ability to solve the multi-armed bandit problem. Our work makes a decisive step towards the practical design of nanophotonic systems capable of efficient decision making, one of the most important intellectual attributes of the human brain.

  8. Decision making based on optical excitation transfer via near-field interactions between quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Makoto, E-mail: naruse@nict.go.jp [Photonic Network Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795 (Japan); Nomura, Wataru; Ohtsu, Motoichi [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Aono, Masashi [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguru-ku, Tokyo 152-8550 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012 (Japan); Sonnefraud, Yannick; Drezet, Aurélien; Huant, Serge [Université Grenoble Alpes, Inst. NEEL, F-38000 Grenoble (France); CNRS, Inst. NEEL, F-38042 Grenoble (France); Kim, Song-Ju [WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-21

    Optical near-field interactions between nanostructured matters, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation, which can be controlled by engineering the dissipation processes and exploited to realize intelligent capabilities such as solution searching and decision making. Here, we experimentally demonstrate the ability to solve a decision making problem on the basis of optical excitation transfer via near-field interactions by using colloidal quantum dots of different sizes, formed on a geometry-controlled substrate. We characterize the energy transfer behavior due to multiple control light patterns and experimentally demonstrate the ability to solve the multi-armed bandit problem. Our work makes a decisive step towards the practical design of nanophotonic systems capable of efficient decision making, one of the most important intellectual attributes of the human brain.

  9. Metric quantum field theory: A preliminary look

    International Nuclear Information System (INIS)

    Watson, W.N.

    1988-01-01

    Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature? This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics

  10. Quantum phenomena in gravitational field

    Science.gov (United States)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  11. Quantum phenomena in gravitational field

    International Nuclear Information System (INIS)

    Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.

    2010-01-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  12. Evolution of the field quantum entropy and entanglement in a system of multimode light field interacting resonantly with a two-level atom through N_j-degenerate N~Σ-photon process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The time evolution of the field quantum entropy and entanglement in a system of multi-mode coherent light field resonantly interacting with a two-level atom by de-generating the multi-photon process is studied by utilizing the Von Neumann re-duced entropy theory,and the analytical expressions of the quantum entropy of the multimode field and the numerical calculation results for three-mode field inter-acting with the atom are obtained. Our attention focuses on the discussion of the influences of the initial average photon number,the atomic distribution angle and the phase angle of the atom dipole on the evolution of the quantum field entropy and entanglement. The results obtained from the numerical calculation indicate that: the stronger the quantum field is,the weaker the entanglement between the quan-tum field and the atom will be,and when the field is strong enough,the two sub-systems may be in a disentangled state all the time; the quantum field entropy is strongly dependent on the atomic distribution angle,namely,the quantum field and the two-level atom are always in the entangled state,and are nearly stable at maximum entanglement after a short time of vibration; the larger the atomic dis-tribution angle is,the shorter the time for the field quantum entropy to evolve its maximum value is; the phase angles of the atom dipole almost have no influences on the entanglement between the quantum field and the two-level atom. Entangled states or pure states based on these properties of the field quantum entropy can be prepared.

  13. Quantum and classical behavior in interacting bosonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hertzberg, Mark P. [Institute of Cosmology & Department of Physics and Astronomy, Tufts University,Medford, MA 02155 (United States)

    2016-11-21

    It is understood that in free bosonic theories, the classical field theory accurately describes the full quantum theory when the occupancy numbers of systems are very large. However, the situation is less understood in interacting theories, especially on time scales longer than the dynamical relaxation time. Recently there have been claims that the quantum theory deviates spectacularly from the classical theory on this time scale, even if the occupancy numbers are extremely large. Furthermore, it is claimed that the quantum theory quickly thermalizes while the classical theory does not. The evidence for these claims comes from noticing a spectacular difference in the time evolution of expectation values of quantum operators compared to the classical micro-state evolution. If true, this would have dramatic consequences for many important phenomena, including laboratory studies of interacting BECs, dark matter axions, preheating after inflation, etc. In this work we critically examine these claims. We show that in fact the classical theory can describe the quantum behavior in the high occupancy regime, even when interactions are large. The connection is that the expectation values of quantum operators in a single quantum micro-state are approximated by a corresponding classical ensemble average over many classical micro-states. Furthermore, by the ergodic theorem, a classical ensemble average of local fields with statistical translation invariance is the spatial average of a single micro-state. So the correlation functions of the quantum and classical field theories of a single micro-state approximately agree at high occupancy, even in interacting systems. Furthermore, both quantum and classical field theories can thermalize, when appropriate coarse graining is introduced, with the classical case requiring a cutoff on low occupancy UV modes. We discuss applications of our results.

  14. Near-field strong coupling of single quantum dots.

    Science.gov (United States)

    Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert

    2018-03-01

    Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.

  15. Nonlocal quantum field theory

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1976-01-01

    The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version

  16. Fab Four self-interaction in quantum regime

    Science.gov (United States)

    Arbuzov, A. B.; Latosh, B. N.

    2017-10-01

    Quantum behavior of the John Lagrangian from the Fab Four class of covariant Galileons is studied. We consider one-loop corrections to the John interaction due to cubic scalar field interaction. Counter terms are calculated, one appears because of massless scalar field theory infrared issues, another one lies in the George class, and the rest of them can be reduced to the initial Lagrangian up to surface terms. The role of quantum corrections in the context of cosmological applications is discussed.

  17. Fab Four self-interaction in quantum regime

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, A.B.; Latosh, B.N. [JINR, Bogoliubov Laboratory for Theoretical Physics, Dubna (Russian Federation); Dubna State University, Dubna, Moscow Region (Russian Federation)

    2017-10-15

    Quantum behavior of the John Lagrangian from the Fab Four class of covariant Galileons is studied. We consider one-loop corrections to the John interaction due to cubic scalar field interaction. Counter terms are calculated, one appears because of massless scalar field theory infrared issues, another one lies in the George class, and the rest of them can be reduced to the initial Lagrangian up to surface terms. The role of quantum corrections in the context of cosmological applications is discussed. (orig.)

  18. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  19. Quantum Brownian motion in a bath of parametric oscillators: A model for system-field interactions

    International Nuclear Information System (INIS)

    Hu, B.L.; Matacz, A.

    1994-01-01

    The quantum Brownian motion paradigm provides a unified framework where one can see the interconnection of some basic quantum statistical processes such as decoherence, dissipation, particle creation, noise, and fluctuation. The present paper continues the investigation begun in earlier papers on the quantum Brownian motion in a general environment via the influence functional formalism. Here, the Brownian particle is coupled linearly to a bath of the most general time-dependent quadratic oscillators. This bath of parametric oscillators minics a scalar field, while the motion of the Brownian particle modeled by a single oscillator could be used to depict the behavior of a particle detector, a quantum field mode, or the scale factor of the Universe. An important result of this paper is the derivation of the influence functional encompassing the noise and dissipation kernels in terms of the Bogolubov coefficients, thus setting the stage for the influence functional formalism treatment of problems in quantum field theory in curved spacetime. This method enables one to trace the source of statistical processes such as decoherence and dissipation to vacuum fluctuations and particle creation, and in turn impart a statistical mechanical interpretation of quantum field processes. With this result we discuss the statistical mechanical origin of quantum noise and thermal radiance from black holes and from uniformly accelerated observers in Minkowski space as well as from the de Sitter universe discovered by Hawking, Unruh, and Gibbons and Hawking. We also derive the exact evolution operator and master equation for the reduced density matrix of the system interacting with a parametric oscillator bath in an initial squeezed thermal state. These results are useful for decoherence and back reaction studies for systems and processes of interest in semiclassical cosmology and gravity. Our model and results are also expected to be useful for related problems in quantum optics

  20. Three-dimensional loop quantum gravity: towards a self-gravitating quantum field theory

    International Nuclear Information System (INIS)

    Noui, Karim

    2007-01-01

    In a companion paper, we have emphasized the role of the Drinfeld double DSU(2) in the context of three-dimensional Riemannian loop quantum gravity coupled to massive spinless point particles. We make use of this result to propose a model for a self-gravitating quantum field theory (massive spinless non-causal scalar field) in three-dimensional Riemannian space. We start by constructing the Fock space of the free self-gravitating field: the vacuum is the unique DSU(2) invariant state, one-particle states correspond to DSU(2) unitary irreducible simple representations and any multi-particles states are obtained as the symmetrized tensor product between simple representations. The associated quantum field is defined by the usual requirement of covariance under DSU(2). Then, we introduce a DSU(2)-invariant self-interacting potential (the obtained model is a group field theory) and explicitly compute the lowest order terms (in the self-interaction coupling constant λ) of the propagator and of the three-point function. Finally, we compute the lowest order quantum gravity corrections (in the Newton constant G) to the propagator and to the three-point function

  1. Quantum fields and Poisson processes. Pt. 2

    International Nuclear Information System (INIS)

    Bertrand, J.; Gaveau, B.; Rideau, G.

    1985-01-01

    Quantum field evolutions are written as expectation values with respect to Poisson processes in two simple models; interaction of two boson fields (with conservation of the number of particles in one field) and interaction of a boson with a fermion field. The introduction of a cutt-off ensures that the expectation values are well-defined. (orig.)

  2. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1989-01-01

    Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)

  3. Quantum field model of strong-coupling binucleon

    International Nuclear Information System (INIS)

    Amirkhanov, I.V.; Puzynin, I.V.; Puzynina, T.P.; Strizh, T.A.; Zemlyanaya, E.V.; Lakhno, V.D.

    1996-01-01

    The quantum field binucleon model for the case of the nucleon spot interaction with the scalar and pseudoscalar meson fields is considered. It is shown that the nonrelativistic problem of the two nucleon interaction reduces to the one-particle problem. For the strong coupling limit the nonlinear equations describing two nucleons in the meson field are developed [ru

  4. Particles and quantum fields

    CERN Document Server

    Kleinert, Hagen

    2016-01-01

    This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordin...

  5. Structural aspects of quantum field theory and noncommutative geometry

    CERN Document Server

    Grensing, Gerhard

    2013-01-01

    This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...

  6. Manipulating novel quantum phenomena using synthetic gauge fields

    Science.gov (United States)

    Zhang, Shao-Liang; Zhou, Qi

    2017-11-01

    The past few years have seen fascinating progress in the creation and utilization of synthetic gauge fields for charge-neutral ultracold atoms. Whereas the synthesis of gauge fields in itself is readily interesting, it is more exciting to explore the new era that will be brought by the interplay between synthetic gauge fields and many other degrees of freedom of highly tunable ultracold atoms. This topical review surveys recent developments in using synthetic gauge fields to manipulate novel quantum phenomena that are not easy to access in other systems. We first summarize current experimental methods of creating synthetic gauge fields, including the use of Raman schemes, shaken lattices, and Raman-dressed lattices. We then discuss how synthetic gauge fields bring new physics to non-interacting systems, including degenerate single-particle ground states, quartic dispersions, topological band structures in lattices, and synthetic dimensions. As for interacting systems, we focus on novel quantum many-body states and quantum macroscopic phenomena induced by interactions in the presence of unconventional single-particle dispersions. For bosons, we discuss how a quartic dispersion leads to non-condensed bosonic states at low temperatures and at the ground state. For fermions, we discuss chiral superfluids in the presence of attractive s-wave interaction, where high partial-wave interactions are not required. Finally, we discuss the challenges in current experiments, and conclude with an outlook for what new exciting developments synthetic gauge fields may bring us in the near future.

  7. A strongly interacting polaritonic quantum dot

    Science.gov (United States)

    Jia, Ningyuan; Schine, Nathan; Georgakopoulos, Alexandros; Ryou, Albert; Clark, Logan W.; Sommer, Ariel; Simon, Jonathan

    2018-06-01

    Polaritons are promising constituents of both synthetic quantum matter1 and quantum information processors2, whose properties emerge from their components: from light, polaritons draw fast dynamics and ease of transport; from matter, they inherit the ability to collide with one another. Cavity polaritons are particularly promising as they may be confined and subjected to synthetic magnetic fields controlled by cavity geometry3, and furthermore they benefit from increased robustness due to the cavity enhancement in light-matter coupling. Nonetheless, until now, cavity polaritons have operated only in a weakly interacting mean-field regime4,5. Here we demonstrate strong interactions between individual cavity polaritons enabled by employing highly excited Rydberg atoms as the matter component of the polaritons. We assemble a quantum dot composed of approximately 150 strongly interacting Rydberg-dressed 87Rb atoms in a cavity, and observe blockaded transport of photons through it. We further observe coherent photon tunnelling oscillations, demonstrating that the dot is zero-dimensional. This work establishes the cavity Rydberg polariton as a candidate qubit in a photonic information processor and, by employing multiple resonator modes as the spatial degrees of freedom of a photonic particle, the primary ingredient to form photonic quantum matter6.

  8. Spin texturing in quantum wires with Rashba and Dresselhaus spin–orbit interactions and in-plane magnetic field

    International Nuclear Information System (INIS)

    Gisi, B; Sakiroglu, S; Sokmen, İ

    2016-01-01

    In this work, we investigate the effects of interplay of spin–orbit interaction and in-plane magnetic fields on the electronic structure and spin texturing of parabolically confined quantum wire. Numerical results reveal that the competing effects between Rashba and Dresselhaus spin–orbit interactions and the external magnetic field lead to a complicated energy spectrum. We find that the spin texturing owing to the coupling between subbands can be modified by the strength of spin–orbit couplings as well as the magnitude and the orientation angle of the external magnetic field. (paper)

  9. A Cohomological Perspective on Algebraic Quantum Field Theory

    Science.gov (United States)

    Hawkins, Eli

    2018-05-01

    Algebraic quantum field theory is considered from the perspective of the Hochschild cohomology bicomplex. This is a framework for studying deformations and symmetries. Deformation is a possible approach to the fundamental challenge of constructing interacting QFT models. Symmetry is the primary tool for understanding the structure and properties of a QFT model. This perspective leads to a generalization of the algebraic quantum field theory framework, as well as a more general definition of symmetry. This means that some models may have symmetries that were not previously recognized or exploited. To first order, a deformation of a QFT model is described by a Hochschild cohomology class. A deformation could, for example, correspond to adding an interaction term to a Lagrangian. The cohomology class for such an interaction is computed here. However, the result is more general and does not require the undeformed model to be constructed from a Lagrangian. This computation leads to a more concrete version of the construction of perturbative algebraic quantum field theory.

  10. A Cohomological Perspective on Algebraic Quantum Field Theory

    Science.gov (United States)

    Hawkins, Eli

    2018-02-01

    Algebraic quantum field theory is considered from the perspective of the Hochschild cohomology bicomplex. This is a framework for studying deformations and symmetries. Deformation is a possible approach to the fundamental challenge of constructing interacting QFT models. Symmetry is the primary tool for understanding the structure and properties of a QFT model. This perspective leads to a generalization of the algebraic quantum field theory framework, as well as a more general definition of symmetry. This means that some models may have symmetries that were not previously recognized or exploited. To first order, a deformation of a QFT model is described by a Hochschild cohomology class. A deformation could, for example, correspond to adding an interaction term to a Lagrangian. The cohomology class for such an interaction is computed here. However, the result is more general and does not require the undeformed model to be constructed from a Lagrangian. This computation leads to a more concrete version of the construction of perturbative algebraic quantum field theory.

  11. Cold quantum gases with resonant interactions

    NARCIS (Netherlands)

    Marcelis, B.

    2008-01-01

    We study ultracold gases of alkali-metal atoms in the quantum degenerate regime. The interatomic interactions in these type of systems can be tuned using resonances induced by magnetic or electric fields. The tunability of the interactions, together with the possibility of confining the atoms with

  12. A new way of visualising quantum fields

    Science.gov (United States)

    Linde, Helmut

    2018-05-01

    Quantum field theory (QFT) is the basis of some of the most fundamental theories in modern physics, but it is not an easy subject to learn. In the present article we intend to pave the way from quantum mechanics to QFT for students at early graduate or advanced undergraduate level. More specifically, we propose a new way of visualising the wave function Ψ of a linear chain of interacting quantum harmonic oscillators, which can be seen as a model for a simple one-dimensional bosonic quantum field. The main idea is to draw randomly chosen classical states of the chain superimposed upon each other and use a grey scale to represent the value of Ψ at the corresponding coordinates of the quantised system. Our goal is to establish a better intuitive understanding of the mathematical objects underlying quantum field theories and solid state physics.

  13. Quantum Field Theory

    CERN Document Server

    Zeidler, Eberhard

    This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...

  14. Open quantum systems and the two-level atom interacting with a single mode of the electromagnetic field

    International Nuclear Information System (INIS)

    Sandulescu, A.; Stefanescu, E.

    1987-07-01

    On the basis of Lindblad theory of open quantum systems we obtain new optical equations for the system of two-level atom interacting with a single mode of the electromagnetic field. The conventional Block equations in a generalized form with field phases are obtained in the hypothesis that all the terms are slowly varying in the rotating frame.(authors)

  15. Contribution from the interaction Hamiltonian to the expectation value of particle number with the non-equilibrium quantum field theory

    International Nuclear Information System (INIS)

    Hotta, Ryuuichi; Morozumi, Takuya; Takata, Hiroyuki

    2012-01-01

    We develop the method analyzing particle number non-conserving phenomena with non-equilibrium quantum field-theory. In this study, we consider a CP violating model with interaction Hamiltonian that breaks particle number conservation. To derive the quantum Boltzmann equation for the particle number, we solve Schwinger-Dyson equation, which are obtained from two particle irreducible closed-time-path (2PI CTP) effective action. In this calculation, we show the contribution from interaction Hamiltonian to the time evolution of expectation value of particle number.

  16. A relativistic theory for continuous measurement of quantum fields

    International Nuclear Information System (INIS)

    Diosi, L.

    1990-04-01

    A formal theory for the continuous measurement of relativistic quantum fields is proposed. The corresponding scattering equations were derived. The proposed formalism reduces to known equations in the Markovian case. Two recent models for spontaneous quantum state reduction have been recovered in the framework of this theory. A possible example of the relativistic continuous measurement has been outlined in standard Quantum Electrodynamics. The continuous measurement theory possesses an alternative formulation in terms of interacting quantum and stochastic fields. (author) 23 refs

  17. Stark interaction of identical particles with the vacuum electromagnetic field as quantum Poisson process suppressing collective spontaneous emission

    International Nuclear Information System (INIS)

    Basharov, A. M.

    2011-01-01

    The effective Hamiltonian describing resonant interaction of an ensemble of identical quantum particles with a photon-free vacuum electromagnetic field has been obtained with allowance for terms of second order in the coupling constant (the Stark interaction) by means of the perturbation theory on the basis of the unitary transformation of the system quantum state. It has been shown that in the Markov approximation the effective Hamiltonian terms of first order in the coupling constant are represented by the quantum Wiener process, whereas terms of second order are expressed by the quantum Poisson process. During the course of the investigation, it was established that the Stark interaction played a significant role in the ensemble dynamics, thus influencing the collective spontaneous decay of the ensemble of an appreciably high number of identical particles. Fundamental effects have been discovered, i.e., the excitation conservation in a sufficiently dense ensemble of identical particles and superradiance suppression in the collective decaying process of an excited ensemble with a determined number of particles.

  18. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    Science.gov (United States)

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  19. Zero field spin splitting in asymmetric quantum wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    Spin splitting of asymmetric quantum wells is theoretically investigated in the absence of any electric field, including the contribution of interface-related Rashba spin-orbit interaction as well as linear and cubic Dresselhaus spin-orbit interaction. The effect of interface asymmetry on three types of spin-orbit interaction is discussed. The results show that interface-related Rashba and linear Dresselhaus spin-orbit interaction can be increased and cubic Dresselhaus spin-orbit interaction can be decreased by well structure design. For wide quantum wells, the cubic Dresselhaus spin-orbit interaction dominates under certain conditions, resulting in decreased spin relaxation time.

  20. Quantum phase transition of light as a control of the entanglement between interacting quantum dots

    NARCIS (Netherlands)

    Barragan, Angela; Vera-Ciro, Carlos; Mondragon-Shem, Ian

    We study coupled quantum dots arranged in a photonic crystal, interacting with light which undergoes a quantum phase transition. At the mean-field level for the infinite lattice, we compute the concurrence of the quantum dots as a measure of their entanglement. We find that this quantity smoothly

  1. Spin interactions in InAs quantum dots

    Science.gov (United States)

    Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)

  2. Relativistic quantum mechanics and introduction to field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica

    1996-12-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.

  3. Relativistic quantum mechanics and introduction to field theory

    International Nuclear Information System (INIS)

    Yndurain, F.J.

    1996-01-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources

  4. Entanglement and Zeeman interaction in diluted magnetic semiconductor quantum dot

    International Nuclear Information System (INIS)

    Hichri, A.; Jaziri, S.

    2004-01-01

    We present theoretically the Zeeman coupling and exchange-induced swap action in spin-based quantum dot quantum computer models in the presence of magnetic field. We study the valence and conduction band states in a double quantum dots made in diluted magnetic semiconductor. The latter have been proven to be very useful in building an all-semiconductor platform for spintronics. Due to a strong p-d exchange interaction in diluted magnetic semiconductor (Cd 0.57 Mn 0.43 Te), the relative contribution of this component is strongly affected by an external magnetic field, a feature that is absent in nonmagnetic double quantum dots. We determine the energy spectrum as a function of magnetic field within the Hund-Mulliken molecular-orbit approach and by including the Coulomb interaction. Since we show that the ground state of the two carriers confined in a vertically coupled quantum dots provide a possible realization for a gate of a quantum computer, the crossing between the lowest states, caused by the giant spin splitting, can be observed as a pronounced jump in the magnetization of small magnetic field amplitude. Finally, we determine the swap time as a function of magnetic field and the inter dot distance. We estimate quantitatively swap errors caused by the field, establishing that error correction would, in principle, be possible in the presence of nonuniform magnetic field in realistic structures

  5. Interacting adiabatic quantum motor

    Science.gov (United States)

    Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix

    2018-05-01

    We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.

  6. Self field electromagnetism and quantum phenomena

    Science.gov (United States)

    Schatten, Kenneth H.

    1994-07-01

    Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.

  7. Collisionless reconnection: magnetic field line interaction

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2012-10-01

    Full Text Available Magnetic field lines are quantum objects carrying one quantum Φ0 = 2πh/e of magnetic flux and have finite radius λm. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two anti-parallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.

  8. Quantum field theory

    International Nuclear Information System (INIS)

    Ryder, L.H.

    1985-01-01

    This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity

  9. Electron Raman scattering in semiconductor quantum wire in external magnetic field: Froehlich interaction

    International Nuclear Information System (INIS)

    Betancourt-Riera, Ri.; Nieto Jalil, J.M.; Betancourt-Riera, Re.; Riera, R.

    2009-01-01

    The differential cross-section for an electron Raman scattering process in a semiconductor quantum wire in the presence of an external magnetic field perpendicular to the plane of confinement regarding phonon-assisted transitions, is calculated. We assume single parabolic conduction band and present a description of the phonon modes of cylindrical structures embedded in another material using the Froehlich phonon interaction. To illustrate the theory we use a GaAs/Al 0.35 Ga 0.75 As system. The emission spectra are discussed for different scattering configurations and the selection rules for the processes are also studied. The magnetic field distribution is considered constant with value B 0 inside of the wire, and zero outside.

  10. Group field theory formulation of 3D quantum gravity coupled to matter fields

    International Nuclear Information System (INIS)

    Oriti, Daniele; Ryan, James

    2006-01-01

    We present a new group field theory describing 3D Riemannian quantum gravity coupled to matter fields for any choice of spin and mass. The perturbative expansion of the partition function produces fat graphs coloured with SU(2) algebraic data, from which one can reconstruct at once a three-dimensional simplicial complex representing spacetime and its geometry, like in the Ponzano-Regge formulation of pure 3D quantum gravity, and the Feynman graphs for the matter fields. The model then assigns quantum amplitudes to these fat graphs given by spin foam models for gravity coupled to interacting massive spinning point particles, whose properties we discuss

  11. Quantum optical measurements with undetected photons through vacuum field indistinguishability.

    Science.gov (United States)

    Lee, Sun Kyung; Yoon, Tai Hyun; Cho, Minhaeng

    2017-07-26

    Quantum spectroscopy and imaging with undetected idler photons have been demonstrated by measuring one-photon interference between the corresponding entangled signal fields from two spontaneous parametric down conversion (SPDC) crystals. In this Report, we present a new quantum optical measurement scheme utilizing three SPDC crystals in a cascading arrangement; here, neither the detection of the idler photons which interact with materials of interest nor their conjugate signal photons which do not interact with the sample is required. The coherence of signal beams in a single photon W-type path-entangled state is induced and modulated by indistinguishabilities of the idler beams and crucially the quantum vacuum fields. As a result, the optical properties of materials or objects interacting with the idler beam from the first SPDC crystal can be measured by detecting second-order interference between the signal beams generated by the other two SPDC crystals further down the set-up. This gedankenexperiment illustrates the fundamental importance of vacuum fields in generating an optical tripartite entangled state and thus its crucial role in quantum optical measurements.

  12. Models of Quantum Space Time: Quantum Field Planes

    OpenAIRE

    Mack, G.; Schomerus, V.

    1994-01-01

    Quantum field planes furnish a noncommutative differential algebra $\\Omega$ which substitutes for the commutative algebra of functions and forms on a contractible manifold. The data required in their construction come from a quantum field theory. The basic idea is to replace the ground field ${\\bf C}$ of quantum planes by the noncommutative algebra ${\\cal A}$ of observables of the quantum field theory.

  13. Atoms and light. Matter radiation interaction. DEA in quantum physics, year 2003. 2nd year Master: Fundamental concepts in Physics, Cursus: Quantum Physics. Year 2006-2007

    International Nuclear Information System (INIS)

    Fabre, Claude

    2003-01-01

    This document contains two nearly identical courses on the interaction between matter and electromagnetic radiation. The second one addresses a few more issues in sub-paragraphs, but follows the same organisation and plan. A first part addresses tools in quantum optics. It presents phenomenological approaches (the Lorentz and Einstein models), the semi-conventional approach (isolated atom, effect of the environment with the Bloch equations, interaction with a non-monochromatic field, oscillator force), the quantum description of the free electromagnetic field (corpuscular aspect of the thermal radiation field, decomposition of the conventional electromagnetic field into modes, quantification of free radiation, radiation kinetic moment and pulse, radiation stationary states, value of the electric field in a quantum state), the interaction between atom and quantum field (interaction Hamiltonian, interaction process, photo-detection). The second part addresses some phenomena of quantum optics such as spontaneous emission, quasi-resonant interactions in two-level systems, three-level systems, fluctuations and correlations in the matter-radiation interaction. Appendices contain elements on atom structure, and on the density matrix

  14. Local relativistic invariant flows for quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krahn, R.; Sirugue, M.

    1983-01-01

    For quantum fields with trigonometric interaction in arbitrary space dimension we construct a representation of the Lorentz group by automorphisms on a Banach space generated by the Weyl algebra. (orig.)

  15. Schroedinger representation in quantum field theory

    International Nuclear Information System (INIS)

    Luescher, M.

    1985-01-01

    Until recently, the Schroedinger representation in quantum field theory had not received much attention, even more so because there were reasons to believe that in the presence of interactions it did not exist in a mathematically well-defined sense. When Symanzik set out to solve this problem, he was motivated by a special 2-dimensional case, the relativistic string model, in which the Schroedinger wave functionals are the primary objects of physical interest. Also, he knew that if it were possible to demonstrate the existence of the Schroedinger representation, the (then unproven) ultraviolet finiteness of the Casimir force in renormalizable quantum field theories would probably follow. (orig./HSI)

  16. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    Science.gov (United States)

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  17. Dynamics of a quantum two-level system under the action of phase-diffusion field

    Energy Technology Data Exchange (ETDEWEB)

    Sobakinskaya, E.A. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Pankratov, A.L., E-mail: alp@ipm.sci-nnov.ru [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Vaks, V.L. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation)

    2012-01-09

    We study a behavior of quantum two-level system, interacting with noisy phase-diffusion field. The dynamics is shown to split into two regimes, determined by the coherence time of the phase-diffusion field. For both regimes we present a model of quantum system behavior and discuss possible applications of the obtained effect for spectroscopy. In particular, the obtained analytical formula for the macroscopic polarization demonstrates that the phase-diffusion field does not affect the absorption line shape, which opens up an intriguing possibility of noisy spectroscopy, based on broadband sources with Lorentzian line shape. -- Highlights: ► We study dynamics of quantum system interacting with noisy phase-diffusion field. ► At short times the phase-diffusion field induces polarization in the quantum system. ► At long times the noise leads to polarization decay and heating of a quantum system. ► Simple model of interaction is derived. ► Application of the described effects for spectroscopy is discussed.

  18. Quantum field theory a tourist guide for mathematicians

    CERN Document Server

    Folland, Gerald B

    2008-01-01

    Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theor...

  19. Is string interaction the origin of quantum mechanics?

    Energy Technology Data Exchange (ETDEWEB)

    Bars, Itzhak, E-mail: bars@usc.edu; Rychkov, Dmitry

    2014-12-12

    String theory was developed by demanding consistency with quantum mechanics. In this paper we wish to reverse the reasoning. We pretend that open string field theory is a fully consistent definition of the theory – it is at least a self-consistent sector. Then we find in its structure that the rules of quantum mechanics emerge from the non-commutative nature of the basic string joining/splitting interactions. Thus, rather than assuming the quantum commutation rules among the usual canonical variables we derive them from the physical process of string interactions. Morally we could apply such an argument to M-theory to cover quantum mechanics for all physics. If string or M-theory really underlies all physics, it seems that the door has been opened to an explanation of the origins of quantum mechanics from the physical processes point of view.

  20. Diagonalization of propagators in thermo field dynamics for relativistic quantum fields

    International Nuclear Information System (INIS)

    Henning, P.A.; Umezawa, H.

    1992-09-01

    Two-point functions for interacting quantum fields in statistical systems can be diagnolized by matrix transformations. It is shown, that within the framework of time-dependent Thermo Field Dynamics this diagonalization can be understood as a thermal Bogoliubov transformation to non-interacting statistical quasi-particles. The condition for their unperturbed propagation relates these states to the thermodynamic properties of the system: It requires global equilibrium for stationary situations, or specifies the time evolution according to a kinetic equation. (orig.)

  1. The functional renormalization group for interacting quantum systems with spin-orbit interaction

    International Nuclear Information System (INIS)

    Grap, Stephan Michael

    2013-01-01

    We studied the influence of spin-orbit interaction (SOI) in interacting low dimensional quantum systems at zero temperature within the framework of the functional renormalization group (fRG). Among the several types of spin-orbit interaction the so-called Rashba spin-orbit interaction is especially intriguing for future spintronic applications as it may be tuned via external electric fields. We investigated its effect on the low energy physics of an interacting quantum wire in an applied Zeeman field which is modeled as a generalization of the extended Hubbard model. To this end we performed a renormalization group study of the two particle interaction, including the SOI and the Zeeman field exactly on the single particle level. Considering the resulting two band model, we formulated the RG equations for the two particle vertex keeping the full band structure as well as the non trivial momentum dependence of the low energy two particle scattering processes. In order to solve these equations numerically we defined criteria that allowed us to classify whether a given set of initial conditions flows towards the strongly coupled regime. We found regions in the models parameter space where a weak coupling method as the fRG is applicable and it is possible to calculate additional quantities of interest. Furthermore we analyzed the effect of the Rashba SOI on the properties of an interacting multi level quantum dot coupled to two semi in nite leads. Of special interest was the interplay with a Zeeman field and its orientation with respect to the SOI term. We found a renormalization of the spin-orbit energy which is an experimental quantity used to asses SOI effects in transport measurements, as well as renormalized effective g factors used to describe the Zeeman field dependence. In particular in asymmetrically coupled systems the large parameter space allows for rich physics which we studied by means of the linear conductance obtained via the generalized Landauer

  2. Quantum dynamics of a BEC interacting with a single-mode quantized field in the presence of interatom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemian, E. [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Tavassoly, M.K., E-mail: mktavassoly@yazd.ac.ir [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Photonics Research Group, Engineering Research Center, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of)

    2016-09-23

    In this paper, we consider a model in which N two-level atoms in a Bose–Einstein condensate (BEC) interact with a single-mode quantized laser field. Our goal is to investigate the quantum dynamics of atoms in the BEC in the presence of interatom interactions. To achieve the purpose, at first, using the collective angular momentum operators, we try to reduce the dynamical Hamiltonian of the system to a well-known Jaynes–Cummings like model (JCM). We also use the Dicke model to construct the state of atomic subsystem, by which the analytical solution of the system may be obtained. Then, we analyze the atomic population inversion, the degree of entanglement between the “atoms in BEC” and the “field” as well as the Mandel parameter. Numerical results show that, the atomic population inversion, atom-field entanglement and quantum statistics of photons are very sensitive to the evolved parameters in the model (and so can be well-adjusted), such as the number of atoms in BEC, the intensity of initial field, the interatom coupling constant and detuning. To investigate the entanglement properties, we pay attention to the entropy and linear entropy. It is shown that, oscillations in the two entropy criteria may be seen, with some maxima of entanglement at some moments of time. Finally, looking for the quantum statistics, we evaluate the Mandel parameter, by which we demonstrate the sub-Poissonian statistics and so the nonclassical characteristics of the field state of system. Collapse-revival phenomenon, which is a distinguishable nonclassical characteristic of the system, can be apparently observed in the atomic population inversion and the Mandel parameter. - Highlights: • N two-level atoms in a BEC interacting with a laser field in the presence of interatom interactions is considered. • The atomic population inversion, degree of entanglement between the “atoms in BEC” and the “field” and the Mandel parameter are investigated. • Collapse

  3. Some stochastic techniques in quantization, new developments in Markov fields and quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Zegarlinski, B.

    1990-01-01

    In these lectures we intend to discuss a few recent developments in the area of interactions between quantum fields and Markow fields in which we have been involved. We stress particularly developments involving techniques of stochastic analysis and where mathematical results have been obtained. In sections 1 and 2 we discuss recent developments in the study and applications of the theory of Dirichlet forms in its relations with quantum mechanics and quantum field theory. In our opinion, this theory provides a natural setting for the study of the singular stochastic processes associated with quantum theory. In section 3 we discuss a recent rigorous construction of a convergent simplicial approximation to quantum fields. We look upon these developments as a first step towards a mathematical realization, at least in 2 space-time dimensions, of a convergent 'Regge-calculus', and as first steps to the mathematical control of more general models (like e.g. models involving actions of Chern-Simons type) in the continuum. In Sect. 4 we discuss applications of some stochastic techniques to the study of gauge fields and Higgs fields, mainly in 2 space time dimensions and certain non linear electromagnetic-type fields in 4-space-time dimensions. (orig./HSI)

  4. Scalar and electromagnetic fields in the Kazner metric. Interaction as a mechanism of isotronization

    International Nuclear Information System (INIS)

    Krechet, V.G.; Shikin, G.N.

    1981-01-01

    Within the framework of the Willer-de Vitt superspatial quantization the quantum anisotropic cosmological model with interacting, scalar and electromagnetic fields is considered. It is shown that as a result of direct interaction of the scalar and electromagnetic fields isotropization of the model occurs as in the classical case. While comparing the classical and quantum approaches the conclusion is made that in the quantum approach there are states without initial singularity, that fails in the classical approach; both in the quantum and classical approaches there is isotropization of evolution of the interacting field system (in the quantum approach in α, and β), and in both approaches this process is a consequence of direct interaction of the scalar and electromagnetic fields; in the quantum approach, unlike the classical one, there exists isotropization of the considered model at an infinite growth of the scalar field [ru

  5. Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field

    International Nuclear Information System (INIS)

    Liu, Xiaobao; Tian, Zehua; Wang, Jieci; Jing, Jiliang

    2016-01-01

    In the framework of open quantum systems, we study the dynamics of a static polarizable two-level atom interacting with a bath of fluctuating vacuum electromagnetic field and explore under which conditions the coherence of the open quantum system is unaffected by the environment. For both a single-qubit and two-qubit systems, we find that the quantum coherence cannot be protected from noise when the atom interacts with a non-boundary electromagnetic field. However, with the presence of a boundary, the dynamical conditions for the insusceptible of quantum coherence are fulfilled only when the atom is close to the boundary and is transversely polarizable. Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction. -- Highlights: •We study the dynamics of a two-level atom interacting with a bath of fluctuating vacuum electromagnetic field. •For both a single and two-qubit systems, the quantum coherence cannot be protected from noise without a boundary. •The insusceptible of the quantum coherence can be fulfilled only when the atom is close to the boundary and is transversely polarizable. •Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction.

  6. Differentiability and continuity of quantum fields on a lattice

    International Nuclear Information System (INIS)

    deLyra, J.L.; Foong, S.K.; Gallivan, T.E.

    1991-01-01

    The differentiability and continuity properties of quantized bosonic fields on a lattice are examined. It is shown for free fields that, in the continuum limit, the dominant configurations in the functional integral become discontinuous when the spacetime dimension is greater than 1. It is argued that the same is true for interacting fields. This is unlike the one-dimensional case of quantum mechanics, in which the dominant configurations are continuous but not differentiable. As a consequence of this discontinuity, classically equivalent actions may produce inequivalent quantum field theories upon functional-integral quantization

  7. Algebraic quantum field theory, perturbation theory, and the loop expansion

    International Nuclear Information System (INIS)

    Duetsch, M.; Fredenhagen, K.

    2001-01-01

    The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A (n) of observables ''up to n loops'', where A (0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. (orig.)

  8. Quantum interaction. Proceedings

    International Nuclear Information System (INIS)

    Bruza, Peter; Rijsbergen, Keith van

    2009-01-01

    This book constitutes the refereed proceedings of the Third International Symposium on Quantum Interaction, QI 2009, held in Saarbruecken, Germany, in March 2009. The 21 revised full papers presented together with the 3 position papers were carefully reviewed and selected from numerous submissions. The papers show the cross-disciplinary nature of quantum interaction covering topics such as computation, cognition, decision theory, information retrieval, information systems, social interaction, computational linguistics and finance. (orig.)

  9. Quantum interaction. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bruza, Peter [Queensland Univ. of Technology, Brisbane (Australia). Faculty of Science and Technology; Sofge, Donald [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States). Naval Research Lab.; Lawless, William [Paine Coll., Augusta, GA (United States); Rijsbergen, Keith van [Glasgow Univ. (United Kingdom). Dept. of Computing Science; Klusch, Matthias (eds.) [German Research Center for Artificial Intelligence, Saarbruecken (Germany)

    2009-07-01

    This book constitutes the refereed proceedings of the Third International Symposium on Quantum Interaction, QI 2009, held in Saarbruecken, Germany, in March 2009. The 21 revised full papers presented together with the 3 position papers were carefully reviewed and selected from numerous submissions. The papers show the cross-disciplinary nature of quantum interaction covering topics such as computation, cognition, decision theory, information retrieval, information systems, social interaction, computational linguistics and finance. (orig.)

  10. Quantum field theory of fluids.

    Science.gov (United States)

    Gripaios, Ben; Sutherland, Dave

    2015-02-20

    The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.

  11. Towards experimental quantum-field tomography with ultracold atoms.

    Science.gov (United States)

    Steffens, A; Friesdorf, M; Langen, T; Rauer, B; Schweigler, T; Hübener, R; Schmiedmayer, J; Riofrío, C A; Eisert, J

    2015-07-03

    The experimental realization of large-scale many-body systems in atomic-optical architectures has seen immense progress in recent years, rendering full tomography tools for state identification inefficient, especially for continuous systems. To work with these emerging physical platforms, new technologies for state identification are required. Here we present first steps towards efficient experimental quantum-field tomography. Our procedure is based on the continuous analogues of matrix-product states, ubiquitous in condensed-matter theory. These states naturally incorporate the locality present in realistic physical settings and are thus prime candidates for describing the physics of locally interacting quantum fields. To experimentally demonstrate the power of our procedure, we quench a one-dimensional Bose gas by a transversal split and use our method for a partial quantum-field reconstruction of the far-from-equilibrium states of this system. We expect our technique to play an important role in future studies of continuous quantum many-body systems.

  12. Coherent confinement of plasmonic field in quantum dot-metallic nanoparticle molecules.

    Science.gov (United States)

    Sadeghi, S M; Hatef, A; Fortin-Deschenes, Simon; Meunier, Michel

    2013-05-24

    Interaction of a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle (MNP) with a laser beam can replace the intrinsic plasmonic field of the MNP with a coherently normalized field (coherent-plasmonic or CP field). In this paper we show how quantum coherence effects in such a hybrid system can form a coherent barrier (quantum cage) that spatially confines the CP field. This allows us to coherently control the modal volume of this field, making it significantly smaller or larger than that of the intrinsic plasmonic field of the MNP. We investigate the spatial profiles of the CP field and discuss how the field barrier depends on the collective states of the hybrid system.

  13. Energy levels and electron g-factor of spherical quantum dots with Rashba spin-orbit interaction

    International Nuclear Information System (INIS)

    Vaseghi, B.; Rezaei, G.; Malian, M.

    2011-01-01

    We have studied simultaneous effects of Rashba spin-orbit interaction and external electric and magnetic fields on the subbands energy levels and electron g-factor of spherical quantum dots. It is shown that energy eigenvalues strongly depend on the combined effects of external electric and magnetic fields and spin-orbit interaction strength. The more the spin-orbit interaction strength increase, the more the energy eigenvalues increase. Also, we found that the electron g-factor sensitively differers from the bulk value due to the confinement effects. Furthermore, external fields and spin-orbit interaction have a great influence on this important quantity. -- Highlights: → Energy of spherical quantum dots depends on the spin-orbit interaction strength in external electric and magnetic fields. → Spin-orbit interaction shifts the energy levels. → Electron g-factor differs from the bulk value in spherical quantum dots due to the confinement effects. → Electron g-factor strongly depends on the spin-orbit interaction strength in external electric and magnetic fields.

  14. Charge-field formulation of quantum electrodynamics (QEMED)

    International Nuclear Information System (INIS)

    Leiter, D.

    1980-01-01

    By expressing classical electron theory in terms of 'charge-field' functional structures, it is shown that a finite formulation of the classical electrodynamics of point charges emerges in a simple and elegant fashion. This is used to construct a 'charge-field' quantum electrodynamic theory. It is found that interacting photon states are generated as a secondary manifestation of electron-positron quantization, and do not require the usual 'free' canonical quantization scheme. The possibility is discussed that this approach may lead to a better formulation of quantum electrodynamics in the Heisenberg picture and suggests a crucial experimental test to distinguish this new 'charge-field' quantum electrodynamics 'QEMED' from the standard QED formulation. Specifically QEMED predicts that the 'Einstein principle of separability' should be found to be valid for correlated photon polarization measurements, in which the polarizers are changed more rapidly than a characteristic photon travel time. Such an experiment (Aspect 1976) can distinguish between QEMED and QED in a complete and clear-cut fashion. (U.K.)

  15. Decoherence and thermalization of a pure quantum state in quantum field theory.

    Science.gov (United States)

    Giraud, Alexandre; Serreau, Julien

    2010-06-11

    We study the real-time evolution of a self-interacting O(N) scalar field initially prepared in a pure, coherent quantum state. We present a complete solution of the nonequilibrium quantum dynamics from a 1/N expansion of the two-particle-irreducible effective action at next-to-leading order, which includes scattering and memory effects. We demonstrate that, restricting one's attention (or ability to measure) to a subset of the infinite hierarchy of correlation functions, one observes an effective loss of purity or coherence and, on longer time scales, thermalization. We point out that the physics of decoherence is well described by classical statistical field theory.

  16. Unification of General Relativity with Quantum Field Theory

    International Nuclear Information System (INIS)

    Ni Jun

    2011-01-01

    In the frame of quantum field theory, instead of using the action principle, we deduce the Einstein equation from purely the general covariant principle and the homogeneity of spacetime. The Einstein equation is shown to be the gauge equation to guarantee the local symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field theory, only electroweak-strong interactions should be considered with the curved spacetime metric determined by the Einstein equation. (general)

  17. Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics

    Science.gov (United States)

    Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.

    2018-05-01

    We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.

  18. Nonperturbative calculation of symmetry breaking in quantum field theory

    OpenAIRE

    Bender, Carl M.; Milton, Kimball A.

    1996-01-01

    A new version of the delta expansion is presented, which, unlike the conventional delta expansion, can be used to do nonperturbative calculations in a self-interacting scalar quantum field theory having broken symmetry. We calculate the expectation value of the scalar field to first order in delta, where delta is a measure of the degree of nonlinearity in the interaction term.

  19. Quantum mechanical force field for water with explicit electronic polarization.

    Science.gov (United States)

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  20. Quaternionic quantum field theory

    International Nuclear Information System (INIS)

    Adler, S.L.

    1986-01-01

    In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics

  1. Studies in quantum field theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Mandula, J.E.; Shrauner, J.E.

    1982-01-01

    Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD

  2. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    Science.gov (United States)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  3. Universal quantum entanglement between an oscillator and continuous fields

    International Nuclear Information System (INIS)

    Miao Haixing; Danilishin, Stefan; Chen Yanbei

    2010-01-01

    Quantum entanglement has been actively sought in optomechanical and electromechanical systems. The simplest system is a mechanical oscillator interacting with a coherent optical field, while the oscillator also suffers from thermal decoherence. With a rigorous functional analysis, we develop a mathematical framework for treating quantum entanglement that involves infinite degrees of freedom. We show that the quantum entanglement is always present between the oscillator and continuous optical field--even when the environmental temperature is high and the oscillator is highly classical. Such a universal entanglement is also shown to be able to survive more than one mechanical oscillation period if the characteristic frequency of the optomechanical interaction is larger than that of the thermal noise. In addition, we introduce effective optical modes that are ordered by the entanglement strength to better understand the entanglement structure, analogously to the energy spectrum of an atomic system. In particular, we derive the optical mode that is maximally entangled with the mechanical oscillator, which will be useful for future quantum computing and encoding information into mechanical degrees of freedom.

  4. Quantum paradoxes, entanglement and their explanation on the basis of quantization of fields

    Science.gov (United States)

    Melkikh, A. V.

    2017-01-01

    Quantum entanglement is discussed as a consequence of the quantization of fields. The inclusion of quantum fields self-consistently explains some quantum paradoxes (EPR and Hardy’s paradox). The definition of entanglement was introduced, which depends on the maximum energy of the interaction of particles. The destruction of entanglement is caused by the creation and annihilation of particles. On this basis, an algorithm for quantum particle evolution was formulated.

  5. Long-range interactions in antiferromagnetic quantum spin chains

    Science.gov (United States)

    Bravo, B.; Cabra, D. C.; Gómez Albarracín, F. A.; Rossini, G. L.

    2017-08-01

    We study the role of long-range dipolar interactions on antiferromagnetic spin chains, from the classical S →∞ limit to the deep quantum case S =1 /2 , including a transverse magnetic field. To this end, we combine different techniques such as classical energy minima, classical Monte Carlo, linear spin waves, bosonization, and density matrix renormalization group (DMRG). We find a phase transition from the already reported dipolar ferromagnetic region to an antiferromagnetic region for high enough antiferromagnetic exchange. Thermal and quantum fluctuations destabilize the classical order before reaching magnetic saturation in both phases, and also close to zero field in the antiferromagnetic phase. In the extreme quantum limit S =1 /2 , extensive DMRG computations show that the main phases remain present with transition lines to saturation significatively shifted to lower fields, in agreement with the bosonization analysis. The overall picture maintains a close analogy with the phase diagram of the anisotropic XXZ spin chain in a transverse field.

  6. Nonequilibrium quantum field theories

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1988-01-01

    Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)

  7. A quantum annealing architecture with all-to-all connectivity from local interactions.

    Science.gov (United States)

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-10-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.

  8. A quantum annealing architecture with all-to-all connectivity from local interactions

    Science.gov (United States)

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-01-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is—in the spirit of topological quantum memories—redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems. PMID:26601316

  9. Constructions of quantum fields with anyonic statistics

    International Nuclear Information System (INIS)

    Plaschke, M.

    2015-01-01

    . Using again implementable multiplication operators one can obtain a field net localized on intervals on the universal covering space of the circle. These field operators then have anyonic commutation relations depending on the winding number of the localization region and real-valued spin. By taking the tensor product with a local covariant quantum field theory on R^(2+1) it is possible to obtain an (interacting) anyon-like field net in three dimensions which is localized in paths of cones and covariant under translations and rotations. (author) [de

  10. On the scaling limits in the Euclidean (quantum) field theory

    International Nuclear Information System (INIS)

    Gielerak, R.

    1983-01-01

    The author studies the concept of scaling limits in the context of the constructive field theory. He finds that the domain of attraction of a free massless Euclidean scalar field in the two-dimensional space time contains almost all Euclidean self-interacting models of quantum fields so far constructed. The renormalized scaling limit of the Wick polynomials of several self-interacting Euclidean field theory models are shown to be the same as in the free field theory. (Auth.)

  11. Introduction to quantum field theory

    CERN Document Server

    Alvarez-Gaumé, Luís

    1994-01-01

    The purpose of this lecture is to review some elementary aspects of Quantum Field Theory. From the necessity to introduce quantum fields once quantum mechanics and special relativity are put together, to some of the basic practical computational tools in the subject, including the canonical quantization of simple field theories, the derivation of Feynman rules, computation of cross sections and decay rates, some introductory remarks on the treatment of unstable states and the possible realization of symmetries in a general field theory. The audience is required to have a working knowledge of quantum mechanics and special relativity and it would also be desirable to know the rudiments of relativistic quantum mechanics.

  12. In praise of quantum fields

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1989-08-01

    A comprehensive discussion of several topics vital for the structure of a modern Quantum Field Theory are discussed, namely: physical content of the notion of a Quantum Field; meaning of infinite renormalization; renormalizability as quantizability; the influence of several principles of quantum nature (quantizability, gauge dynamics, supersymmetry) on quantum fields dynamics; main trends of QFT evolution; present status of QFT and its frontier role in physics. (author). 15 refs, 1 fig

  13. An introduction to some mathematical aspects of scattering theory in models of quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.

    1974-01-01

    An elementary introduction is given to some results, problems and methods of the recent study of scattering in models developed in connection with constructive quantum field theory. A deliberate effort has been made to be understandable also for mathematicians having some notions of non-relativistic quantum mechanics but no specific previous knowledge of quantum field theory. The Fock space, the free fields and the free Hamiltonian are introduced and the singular perturbation problem posed by local relativistic interaction is discussed. Scattering theory is first discussed for the simplified cases of space cut-off interactions and of translation invariant interactions with persistent vacuum. The Wightman-Haag-Ruelle axiomatic framework is given as a guide for the construction of models with local, relativistic interactions and of the corresponding scattering theory. The verification of the axioms is carried through in a class of models with local relativistic interactions in two-dimensional space-time. (Auth.)

  14. Hyperfine-Interaction-Driven Suppression of Quantum Tunneling at Zero Field in a Holmium(III) Single-Ion Magnet.

    Science.gov (United States)

    Chen, Yan-Cong; Liu, Jun-Liang; Wernsdorfer, Wolfgang; Liu, Dan; Chibotaru, Liviu F; Chen, Xiao-Ming; Tong, Ming-Liang

    2017-04-24

    An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm -1 . The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from 165 Ho (I=7/2) with a natural abundance of 100 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quantum dynamics modeled by interacting trajectories

    Science.gov (United States)

    Cruz-Rodríguez, L.; Uranga-Piña, L.; Martínez-Mesa, A.; Meier, C.

    2018-03-01

    We present quantum dynamical simulations based on the propagation of interacting trajectories where the effect of the quantum potential is mimicked by effective pseudo-particle interactions. The method is applied to several quantum systems, both for bound and scattering problems. For the bound systems, the quantum ground state density and zero point energy are shown to be perfectly obtained by the interacting trajectories. In the case of time-dependent quantum scattering, the Eckart barrier and uphill ramp are considered, with transmission coefficients in very good agreement with standard quantum calculations. Finally, we show that via wave function synthesis along the trajectories, correlation functions and energy spectra can be obtained based on the dynamics of interacting trajectories.

  16. On the cluster propagator in quantum field theory

    International Nuclear Information System (INIS)

    Mogilevskij, O.A.

    1983-01-01

    The problem is discussed whether it is possible to describe the multiple production processes within the framework of nonlocal quantum field theory. The interaction between the cluster field and the field of scalar particles is introduced. By means of summing up a definite class of Feynman diagrams the cluster propagator with the decreasing imaginary part containing the information about the hadron mass spectrum is obtained

  17. Quantum fields and dissipation

    International Nuclear Information System (INIS)

    Henning, P.

    1996-06-01

    The description of thermal or non-equilibrium systems necessitates a quantum field theory which differs from the usual approach in two aspects: 1. The Hilbert space is doubled; 2. Stable quasi-particles do not exist in interacting systems. A mini-review of these two aspects is given from a practical viewpoint including two applications. For thermal states it is shown how infrared divergences occuring in perturbative quasi-particle theories are avoided, whereas for non-equilibrium states a memory effect is shown to arise in the thermalization. (orig.)

  18. Proceedings of quantum field theory, quantum mechanics, and quantum optics

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man; ko, V.I.

    1991-01-01

    This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups

  19. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  20. Quantum groups, quantum categories and quantum field theory

    CERN Document Server

    Fröhlich, Jürg

    1993-01-01

    This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.

  1. Mass Charge Interactions for Visualizing the Quantum Field

    Science.gov (United States)

    Baer, Wolfgang

    Our goal is to integrate the objective and subjective aspects of our personal experience into a single complete theory of reality. To further this endeavor we replace elementary particles with elementary events as the building blocks of an event oriented description of that reality. The simplest event in such a conception is an adaptation of A. Wheeler's primitive explanatory--measurement cycle between internal observations experienced by an observer and their assumed physical causes. We will show how internal forces between charge and mass are required to complete the cyclic sequence of activity. This new formulation of internal material is easier to visualize and map to cognitive experiences than current formulations of sub-atomic physics. In our formulation, called Cognitive Action Theory, such internal forces balance the external forces of gravity-inertia and electricity-magnetism. They thereby accommodate outside influences by adjusting the internal structure of material from which all things are composed. Such accommodation is interpreted as the physical implementation of a model of the external physical world in the brain of a cognitive being or alternatively the response mechanism to external influences in the material of inanimate objects. We adopt the deBroglie-Bohm causal interpretation of QT to show that the nature of space in our model is mathematically equivalent to a field of clocks. Within this field small oscillations form deBroglie waves. This interpretation allows us to visualize the underlying structure of empty space with a charge-mass separation field in equilibrium, and objects appearing in space with quantum wave disturbances to that equilibrium occurring inside material. Space is thereby associated with the internal structure of material and quantum mechanics is shown to be, paraphrasing Heisenberg, the physics of the material that knows the world.

  2. Nonlocal quantum field theory and stochastic quantum mechanics

    International Nuclear Information System (INIS)

    Namsrai, K.

    1986-01-01

    This volume presents a systematic development of the implications to both quantum mechanics and quantum field theory of the hypothesis of a stochastic structure of space-time. Some applications to elementary particle physics are also considered. Part 1 is concerned with nonlocal quantum field theory and, among other topics, deals with quantized fields, electromagnetic and weak processes, the Schroedinger equation, and functional methods and their applications. Part 2 presents an introduction to stochastic mechanics and many specific problems of interest are discussed. (Auth.)

  3. Probing different regimes of strong field light-matter interaction with semiconductor quantum dots and few cavity photons

    Science.gov (United States)

    Hargart, F.; Roy-Choudhury, K.; John, T.; Portalupi, S. L.; Schneider, C.; Höfling, S.; Kamp, M.; Hughes, S.; Michler, P.

    2016-12-01

    In this work we present an extensive experimental and theoretical investigation of different regimes of strong field light-matter interaction for cavity-driven quantum dot (QD) cavity systems. The electric field enhancement inside a high-Q micropillar cavity facilitates exceptionally strong interaction with few cavity photons, enabling the simultaneous investigation for a wide range of QD-laser detuning. In case of a resonant drive, the formation of dressed states and a Mollow triplet sideband splitting of up to 45 μeV is measured for a mean cavity photon number ≤slant 1. In the asymptotic limit of the linear AC Stark effect we systematically investigate the power and detuning dependence of more than 400 QDs. Some QD-cavity systems exhibit an unexpected anomalous Stark shift, which can be explained by an extended dressed 4-level QD model. We provide a detailed analysis of the QD-cavity systems properties enabling this novel effect. The experimental results are successfully reproduced using a polaron master equation approach for the QD-cavity system, which includes the driving laser field, exciton-cavity and exciton-phonon interactions.

  4. Braided quantum field theories and their symmetries

    International Nuclear Information System (INIS)

    Sasai, Yuya; Sasakura, Naoki

    2007-01-01

    Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)

  5. Quantum fields in a big-crunch-big-bang spacetime

    International Nuclear Information System (INIS)

    Tolley, Andrew J.; Turok, Neil

    2002-01-01

    We consider quantum field theory on a spacetime representing the big-crunch-big-bang transition postulated in ekpyrotic or cyclic cosmologies. We show via several independent methods that an essentially unique matching rule holds connecting the incoming state, in which a single extra dimension shrinks to zero, to the outgoing state in which it reexpands at the same rate. For free fields in our construction there is no particle production from the incoming adiabatic vacuum. When interactions are included the particle production for fixed external momentum is finite at the tree level. We discuss a formal correspondence between our construction and quantum field theory on de Sitter spacetime

  6. Hyperfine-interaction-driven suppression of quantum tunneling at zero field in a holmium(III) single-ion magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan-Cong; Liu, Jun-Liang; Chen, Xiao-Ming; Tong, Ming-Liang [Key Lab. of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen Univ., Guangzhou (China); Wernsdorfer, Wolfgang [Institut Neel, CNRS and Universite Joseph Fournier, Grenoble (France); Institute of Nanotechnology, Karlsruhe Institute of Technology (Germany); Physikalisches Institut, Karlsruhe Institute of Technology (Germany); Liu, Dan; Chibotaru, Liviu F. [Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven (Belgium)

    2017-04-24

    An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm{sup -1}. The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from {sup 165}Ho (I=7/2) with a natural abundance of 100 %. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Quantum theory of nonrelativistic particles interacting with gravity

    International Nuclear Information System (INIS)

    Anastopoulos, C.

    1996-01-01

    We investigate the effects of the gravitational field on the quantum dynamics of nonrelativistic particles. We consider N nonrelativistic particles, interacting with the linearized gravitational field. Using the Feynman-Vernon influence functional technique, we trace out the graviton field to obtain a master equation for the system of particles to first order in G. The effective interaction between the particles as well as the self-interaction is in general non-Markovian. We show that the gravitational self-interaction cannot be held responsible for decoherence of microscopic particles due to the fast vanishing of the diffusion function. For macroscopic particles though, it leads to diagonalization to the energy eigenstate basis, a desirable feature in gravity-induced collapse models. We finally comment on possible applications. copyright 1996 The American Physical Society

  8. Electron-electron interaction in p-SiGe/Ge quantum wells

    International Nuclear Information System (INIS)

    Roessner, Benjamin; Kaenel, Hans von; Chrastina, Daniel; Isella, Giovanni; Batlogg, Bertram

    2005-01-01

    The temperature dependent magnetoresistance of high mobility p-SiGe/Ge quantum wells is studied with hole densities ranging from 1.7 to 5.9 x 10 11 cm -2 . At magnetic fields below the onset of quantum oscillations that reflect the high mobility values (up to 75000 cm 2 /Vs), we observe the clear signatures of electron-electron interaction. We compare our experiment with the theory of electron-electron interaction including the Zeeman band splitting. The observed magnetoresistance is well explained as a superposition of band structure induced positive magnetoresistance and the negative magntoresistance due to the electron-electron interaction effect

  9. Quantum field theory in gravitational background

    International Nuclear Information System (INIS)

    Narnhofer, H.

    1986-01-01

    The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space

  10. Quantum Field Theory A Modern Perspective

    CERN Document Server

    Parameswaran Nair, V

    2005-01-01

    Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...

  11. Magnetization and susceptibility of a parabolic InAs quantum dot with electron–electron and spin–orbit interactions in the presence of a magnetic field at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D. Sanjeev, E-mail: sanjeevchs@gmail.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, Soma [Department of Physics, CMR College of Engineering and Technology, Hyderabad (India); Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2016-11-15

    The magnetization and susceptibility of a two-electron parabolic quantum dot are studied in the presence of electron–electron and spin–orbit interactions as a function of magnetic field and temperature. The spin–orbit interactions are treated by a unitary transformation and an exactly soluble parabolic interaction model is considered to mimic the electron–electron interaction. The theory is finally applied to an InAs quantum dot. Magnetization and susceptibility are calculated using canonical ensemble approach. Our results show that Temperature has no effect on magnetization and susceptibility in the diamagnetic regime whereas electron–electron interaction reduces them. The temperature however reduces the height of the paramagnetic peak. The Rashba spin–orbit interaction is shown to shift the paramagnetic peak towards higher magnetic fields whereas the Dresselhaus spin–orbit interaction shifts it to the lower magnetic field side. Spin–orbit interaction has no effect on magnetization and susceptibility at larger temperatures. - Highlights: • Temperature has no effect on magnetization and susceptibility in the diamagnetic regime but reduces the height of the paramagnetic peak. • Electron-electron interaction reduces magnetization and susceptibility in the diamagnetic region. • Rashba spin–orbit interaction shifts the paramagnetic peak towards higher magnetic fields. • Dresselhaus spin–orbit interaction shifts the paramagnetic peak towards lower magnetic fields. • Spin–orbit interaction has no effect on magnetization and susceptibility at larger temperatures.

  12. Near-field light design with colloidal quantum dots for photonics and plasmonics.

    Science.gov (United States)

    Kress, Stephan J P; Richner, Patrizia; Jayanti, Sriharsha V; Galliker, Patrick; Kim, David K; Poulikakos, Dimos; Norris, David J

    2014-10-08

    Colloidal quantum-dots are bright, tunable emitters that are ideal for studying near-field quantum-optical interactions. However, their colloidal nature has hindered their facile and precise placement at desired near-field positions, particularly on the structured substrates prevalent in plasmonics. Here, we use high-resolution electro-hydrodynamic printing (quantum dots on both flat and structured substrates with a few nanometer precision. We also demonstrate that the autofocusing capability of the printing method enables placement of quantum dots preferentially at plasmonic hot spots. We exploit this control and design diffraction-limited photonic and plasmonic sources with arbitrary wavelength, shape, and intensity. We show that simple far-field illumination can excite these near-field sources and generate fundamental plasmonic wave-patterns (plane and spherical waves). The ability to tailor subdiffraction sources of plasmons with quantum dots provides a complementary technique to traditional scattering approaches, offering new capabilities for nanophotonics.

  13. [Studies in quantum field theory

    International Nuclear Information System (INIS)

    1990-01-01

    During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity

  14. Quantum field theory

    International Nuclear Information System (INIS)

    Mancini, F.

    1986-01-01

    Theoretical physicists, coming from different countries, working on different areas, gathered at Positano: the Proceedings contain all the lectures delivered as well as contributed papers. Many areas of physics are represented, elementary particles in high energy physics, quantum relativity, quantum geometry, condensed matter physics, statistical mechanics; but all works are concerned with the use of the methods of quantum field theory. The first motivation of the meeting was to pay homage to a great physicist and a great friend; it was also an occasion in which theoretical physicists got together to discuss and to compare results in different fields. The meeting was very intimate; the relaxed atmosphere allowed constructive discussions and contributed to a positive exchange of ideas. (orig.)

  15. Controlling electron quantum dot qubits by spin-orbit interactions

    International Nuclear Information System (INIS)

    Stano, P.

    2007-01-01

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  16. Controlling electron quantum dot qubits by spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Stano, P.

    2007-01-15

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  17. Measurement of gravity and gauge fields using quantum mechanical probes

    International Nuclear Information System (INIS)

    Anandan, J.

    1986-01-01

    The author considers the question of which quantities are observed when the gravitational and gauge fields are measured by a quantum mechanical probe. The motion of a quantum mechanical particle can be constructed, via Huyghens' principle, by the interference of secondary wavelets. Three types of interference phenomena are considered: interference of two coherent beams separated in space-time during part of their motion; interference of two coherent beams which are in the same region in spacetime but differ in energy or mass; and the Josphson effect and its generalization. The author shows how to determine the gravitational field by means of quantum interference. The corresponding problem for gauge fields is treated and a simple proof of the previously proved theorem for the reconstruction of the connection from the holonomy transformations is presented. A heuristic principle for the gravitational interaction of two quantum mechanical particles is formulated which implies the equivalence of inertial and active gravitational masses

  18. Algebraic quantum field theory

    International Nuclear Information System (INIS)

    Foroutan, A.

    1996-12-01

    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  19. Non standard analysis, polymer models, quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.

    1984-01-01

    We give an elementary introduction to non standard analysis and its applications to the theory of stochastic processes. This is based on a joint book with J.E. Fenstad, R. Hoeegh-Krohn and T. Lindstroeem. In particular we give a discussion of an hyperfinite theory of Dirichlet forms with applications to the study of the Hamiltonian for a quantum mechanical particle in the potential created by a polymer. We also discuss new results on the existence of attractive polymer measures in dimension d 1 2 phi 2 2 )sub(d)-model of interacting quantum fields. (orig.)

  20. Hyperfunction quantum field theory

    International Nuclear Information System (INIS)

    Nagamachi, S.; Mugibayashi, N.

    1976-01-01

    The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not contain C infinitely functios with compact support. In spite of this defect the support concept of H-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory. (orig.) [de

  1. Sampling general N-body interactions with auxiliary fields

    Science.gov (United States)

    Körber, C.; Berkowitz, E.; Luu, T.

    2017-09-01

    We present a general auxiliary field transformation which generates effective interactions containing all possible N-body contact terms. The strength of the induced terms can analytically be described in terms of general coefficients associated with the transformation and thus are controllable. This transformation provides a novel way for sampling 3- and 4-body (and higher) contact interactions non-perturbatively in lattice quantum Monte Carlo simulations. As a proof of principle, we show that our method reproduces the exact solution for a two-site quantum mechanical problem.

  2. Interaction of solitons with a string of coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijendra, E-mail: vsmedphysics@gmail.com; Swami, O. P., E-mail: omg1789@gmail.com; Nagar, A. K., E-mail: ajaya.nagar@gmail.com [Department of Physics, Govt. Dungar College, Bikaner, Rajasthan 334001 (India); Taneja, S., E-mail: sachintaneja9@gmail.com [Department of Radiotherapy, CHAF Bangalore, Karnataka 560007 (India)

    2016-05-06

    In this paper, we develop a theory for discrete solitons interaction with a string of coupled quantum dots in view of the local field effects. Discrete nonlinear Schrodinger (DNLS) equations are used to describe the dynamics of the string. Numerical calculations are carried out and results are analyzed with the help of matlab software. With the help of numerical solutions we demonstrate that in the quantum dots string, Rabi oscillations (RO) are self trapped into stable bright Rabi solitons. The Rabi oscillations in different types of nanostructures have potential applications to the elements of quantum logic and quantum memory.

  3. The quantum double in integrable quantum field theory

    International Nuclear Information System (INIS)

    Bernard, D.; LeClair, A.

    1993-01-01

    Various aspects of recent works on affine quantum group symmetry of integrable 2D quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. The S-matrix is identified with the universal R-matrix. Multiplicative presentations of the yangian double are analyzed. (orig.)

  4. Quantum interaction. Selected papers

    Energy Technology Data Exchange (ETDEWEB)

    Atmanspacher, Harald [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Haven, Emmanuel [Leicester Univ. (United Kingdom). School of Management; Kitto, Kirsty [Queensland Univ. of Technology, Brisbane, QLD (Australia); Raine, Derek (ed.) [Leicester Univ. (United Kingdom). Centre for Interdisciplinary Science

    2014-07-01

    This book constitutes the refereed proceedings of the 7th International Conference on Quantum Interaction, QI 2013, held in Leicester, UK, in July 2013. The 31 papers presented in this book were carefully selected from numerous submissions. The papers cover various topics on quantum interaction and revolve around four themes: information processing/retrieval/semantic representation and logic; cognition and decision making; finance/economics and social structures and biological systems.

  5. Quantum interaction. Selected papers

    International Nuclear Information System (INIS)

    Atmanspacher, Harald; Haven, Emmanuel; Raine, Derek

    2014-01-01

    This book constitutes the refereed proceedings of the 7th International Conference on Quantum Interaction, QI 2013, held in Leicester, UK, in July 2013. The 31 papers presented in this book were carefully selected from numerous submissions. The papers cover various topics on quantum interaction and revolve around four themes: information processing/retrieval/semantic representation and logic; cognition and decision making; finance/economics and social structures and biological systems.

  6. Quantum phenomena in gravitational field; Phenomenes quantiques dans le champ gravitationnel

    Energy Technology Data Exchange (ETDEWEB)

    Bourdel, Th. [Laboratoire Charles-Fabry de l' Institut d' Optique, CNRS, Univ. Paris-Sud, Campus Polytechnique RD128, 91127 Palaiseau (France); Doser, M. [CERN, Geneva 23, CH-1211 (Switzerland); Ernest, A.D. [Faculty of Science, Charles Sturt University, Wagga Wagga (Australia); Voronin, A.Y. [Lebedev Institute, 53 Leninskii pr., Moscow, RU-119991 (Russian Federation); Voronin, V.V. [PNPI, Orlova Roscha, Gatchina, RU-188300 (Russian Federation)

    2010-10-15

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  7. Spin-orbit interaction in multiple quantum wells

    International Nuclear Information System (INIS)

    Hao, Ya-Fei

    2015-01-01

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices

  8. Spin-orbit interaction in multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ya-Fei, E-mail: haoyafei@zjnu.cn [Physics Department, Zhejiang Normal University, Zhejiang 321004 (China)

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  9. Quantum Field Theory in (0 + 1) Dimensions

    Science.gov (United States)

    Boozer, A. D.

    2007-01-01

    We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…

  10. Numerical Investigation of Ultrafast interaction between THz Fields and Crystalline Materials

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Clark, Stewart J.; Jepsen, Peter Uhd

    2014-01-01

    We present a quantum - mechanical molecular dynamics investigation of the interaction between strong single - cyc le THz pulses and ionic crystals . We find nonlinearities in the response of the CsI crystals at field strengths higher than 10 MV/cm.......We present a quantum - mechanical molecular dynamics investigation of the interaction between strong single - cyc le THz pulses and ionic crystals . We find nonlinearities in the response of the CsI crystals at field strengths higher than 10 MV/cm....

  11. Covariance operator of functional measure in P(φ)2-quantum field theory

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.; Zhidkov, E.P.

    1988-01-01

    Functional integration measure in the Euclidean quantum field theory with polynomial interactions of boson fields with zero spin in two-dimensional space-time is investigated. The representation for the kernal of the measure covariance operator is obtained in the form of expansion over the eigenfunctions of some boundary problem for the heat equation. Two cases of the integration domains with different configurations are considered. Some trends and perspectives of employing the functional integration method in quantum field theory are also discussed. 43 refs

  12. DFR Perturbative Quantum Field Theory on Quantum Space Time, and Wick Reduction

    Science.gov (United States)

    Piacitelli, Gherardo

    We discuss the perturbative approach à la Dyson to a quantum field theory with nonlocal self-interaction :φ⋆···⋆φ, according to Doplicher, Fredenhagen and Roberts (DFR). In particular, we show that the Wick reduction of nonlocally time-ordered products of Wick monomials can be performed as usual, and we discuss a very simple Dyson diagram.

  13. Features of finite quantum field theories

    International Nuclear Information System (INIS)

    Boehm, M.; Denner, A.

    1987-01-01

    We analyse general features of finite quantum field theories. A quantum field theory is considered to be finite, if the corresponding renormalization constants evaluated in the dimensional regularization scheme are free from divergences in all orders of perturbation theory. We conclude that every finite renormalizable quantum field theory with fields of spin one or less must contain both scalar fields and fermion fields and nonabelian gauge fields. Some secific nonsupersymmetric models are found to be finite at the one- and two-loop level. (orig.)

  14. Modular groups in quantum field theory

    International Nuclear Information System (INIS)

    Borchers, H.-J.

    2000-01-01

    The author discusses the connection of Lagrangean quantum field theory, perturbation theory, the Lehmann-Symanzik-Zimmermann theory, Wightman's quantum field theory, the Euclidean quantum field theory, and the Araki-Haag-Kastler theory of local observables with modular groups. In this connection he considers the PCT-theorem, and the tensor product decomposition. (HSI)

  15. A philosophical approach to quantum field theory

    CERN Document Server

    Öttinger, Hans Christian

    2015-01-01

    This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.

  16. Progress in the axiomatic quantum field theory

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Polivanov, M.K.

    1975-01-01

    The authors consider the development of mathematical methods of solving quantum field theory problems from attempts of simple perfection of usual methods of quantum mechanics by elaborating the methods of perturbation theory and S-matrix, by working out the perturbation theory for quantum electrodynamics, and by applying dispersion relations and S-matrix for strong interactions. The method of dispersion relations results in the majority of radically new ways of describing the scattering amplitude. The grave disadvantage of all the methods is that they little define the dynamics of processes. The dynamic theory in the Heisenberg representation may be constructed on the basis of the axiomatic theory of S-matrix with the casuality condition. Another axiomatic direction has been recently developed; that is the so-called algebraic axiomatics which makes use of methods of Csup(*)-algebras

  17. Specific heat of parabolic quantum dot with Dresselhaus spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sanjeev Kumar, D., E-mail: sanjeevchs@gmail.com; Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad, India - 500046 (India); Mukhopadhyay, Soma [DVR College of Engineering & Technology, Kashipur, Medak, India - 502285 (India)

    2016-04-13

    The heat capacity of a two electron quantum dot with parabolic confinement in magnetic field in the presence of electron-electron interaction, Dresselhaus spin-orbit interaction (DSOI) has been studied. The electron-electron interaction has been treated by a model potential which makes the Hamiltonian to be soluble exactly. The RSOI has been treated by a unitary transformation and the terms up to second order in DSOI constants have been considered. The heat capacity is obtained by canonical averaging. So far no study has been reported in literature on the effect of DSOI on the heat capacity of quantum dot.

  18. Towards Noncommutative Topological Quantum Field Theory: New invariants for 3-manifolds

    International Nuclear Information System (INIS)

    Zois, I.P.

    2016-01-01

    We present some ideas for a possible Noncommutative Topological Quantum Field Theory (NCTQFT for short) and Noncommutative Floer Homology (NCFH for short). Our motivation is two-fold and it comes both from physics and mathematics: On the one hand we argue that NCTQFT is the correct mathematical framework for a quantum field theory of all known interactions in nature (including gravity). On the other hand we hope that a possible NCFH will apply to practically every 3-manifold (and not only to homology 3-spheres as ordinary Floer Homology currently does). The two motivations are closely related since, at least in the commutative case, Floer Homology Groups constitute the space of quantum observables of (3+1)-dim Topological Quantum Field Theory. Towards this goal we define some new invariants for 3-manifolds using the space of taut codim-1 foliations modulo coarse isotopy along with various techniques from noncommutative geometry. (paper)

  19. Towards quantum gravity via quantum field theory. Problems and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Fredenhagen, Klaus [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)

    2016-07-01

    General Relativity is a classical field theory; the standard methods for constructing a corresponding quantum field theory, however, meet severe difficulties, in particular perturbative non-renormalizability and the problem of background independence. Nevertheless, modern approaches to quantum field theory have significantly lowered these obstacles. On the side of non-renormalizability, this is the concept of effective theories, together with indications for better non-perturbative features of the renormalization group flow. On the side of background independence the main progress comes from an improved understanding of quantum field theories on generic curved spacetimes. Combining these informations, a promising approach to quantum gravity is an expansion around a classical solution which then is a quantum field theory on a given background, augmented by an identity which expresses independence against infinitesimal shifts of the background. The arising theory is expected to describe small corrections to classical general relativity. Inflationary cosmology is expected to arise as a lowest order approximation.

  20. Noncommutative time in quantum field theory

    International Nuclear Information System (INIS)

    Salminen, Tapio; Tureanu, Anca

    2011-01-01

    We analyze, starting from first principles, the quantization of field theories, in order to find out to which problems a noncommutative time would possibly lead. We examine the problem in the interaction picture (Tomonaga-Schwinger equation), the Heisenberg picture (Yang-Feldman-Kaellen equation), and the path integral approach. They all indicate inconsistency when time is taken as a noncommutative coordinate. The causality issue appears as the key aspect, while the unitarity problem is subsidiary. These results are consistent with string theory, which does not admit a time-space noncommutative quantum field theory as its low-energy limit, with the exception of lightlike noncommutativity.

  1. Quantum Phase Shift of a Moving Dipole under a Magnetic Field at a Distance

    Science.gov (United States)

    Lee, Kang-Ho; Kim, Young-Wan; Kang, Kicheon

    2018-03-01

    We predict a quantum phase shift of a moving electric dipole in the presence of an external magnetic field at a distance. On the basis of the Lorentz-covariant field interaction approach, we show that a phase shift appears in the internal dipole state under the condition that the dipole is moving in the field-free region, which is distinct from the topological He-McKellar-Wilkens phase generated by a direct overlap of the dipole and the field. We discuss the experimental feasibility of detecting this phase with atomic interferometry and argue that detection of this phase will resolve the question of the locality in quantum electromagnetic interaction.

  2. Moessbauer neutrinos in quantum mechanics and quantum field theory

    International Nuclear Information System (INIS)

    Kopp, Joachim

    2009-01-01

    We demonstrate the correspondence between quantum mechanical and quantum field theoretical descriptions of Moessbauer neutrino oscillations. First, we compute the combined rate Γ of Moessbauer neutrino emission, propagation, and detection in quantum field theory, treating the neutrino as an internal line of a tree level Feynman diagram. We include explicitly the effect of homogeneous line broadening due to fluctuating electromagnetic fields in the source and detector crystals and show that the resulting formula for Γ is identical to the one obtained previously [1] for the case of inhomogeneous line broadening. We then proceed to a quantum mechanical treatment of Moessbauer neutrinos and show that the oscillation, coherence, and resonance terms from the field theoretical result can be reproduced if the neutrino is described as a superposition of Lorentz-shaped wave packet with appropriately chosen energies and widths. On the other hand, the emission rate and the detection cross section, including localization and Lamb-Moessbauer terms, cannot be predicted in quantum mechanics and have to be put in by hand.

  3. Quantum dynamics of quantum bits

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha

    2011-01-01

    The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)

  4. The localized quantum vacuum field

    International Nuclear Information System (INIS)

    Dragoman, D

    2008-01-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles

  5. The localized quantum vacuum field

    Energy Technology Data Exchange (ETDEWEB)

    Dragoman, D [Physics Department, University of Bucharest, PO Box MG-11, 077125 Bucharest (Romania)], E-mail: danieladragoman@yahoo.com

    2008-03-15

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  6. Mathematical aspects of quantum field theory

    CERN Document Server

    de Faria, Edson

    2010-01-01

    Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.

  7. Quantum-optical magnets with competing short- and long-range interactions: Rydberg-dressed spin lattice in an optical cavity

    Directory of Open Access Journals (Sweden)

    Jan Gelhausen, Michael Buchhold, Achim Rosch, Philipp Strack

    2016-10-01

    Full Text Available The fields of quantum simulation with cold atoms [1] and quantum optics [2] are currently being merged. In a set of recent pathbreaking experiments with atoms in optical cavities [3,4] lattice quantum many-body systems with both, a short-range interaction and a strong interaction potential of infinite range -mediated by a quantized optical light field- were realized. A theoretical modelling of these systems faces considerable complexity at the interface of: (i spontaneous symmetry-breaking and emergent phases of interacting many-body systems with a large number of atoms $N\\rightarrow\\infty$, (ii quantum optics and the dynamics of fluctuating light fields, and (iii non-equilibrium physics of driven, open quantum systems. Here we propose what is possibly the simplest, quantum-optical magnet with competing short- and long-range interactions, in which all three elements can be analyzed comprehensively: a Rydberg-dressed spin lattice [5] coherently coupled to a single photon mode. Solving a set of coupled even-odd sublattice Master equations for atomic spin and photon mean-field amplitudes, we find three key results. (R1: Superradiance and a coherent photon field can coexist with spontaneously broken magnetic translation symmetry. The latter is induced by the short-range nearest-neighbor interaction from weakly admixed Rydberg levels. (R2: This broken even-odd sublattice symmetry leaves its imprint in the light via a novel peak in the cavity spectrum beyond the conventional polariton modes. (R3: The combined effect of atomic spontaneous emission, drive, and interactions can lead to phases with anomalous photon number oscillations. Extensions of our work include nano-photonic crystals coupled to interacting atoms and multi-mode photon dynamics in Rydberg systems.

  8. Quantum field theory

    CERN Document Server

    Mandl, Franz

    2010-01-01

    Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic

  9. Quantum field theory in flat Robertson-Walker space-time functional Schrodinger picture

    International Nuclear Information System (INIS)

    Pi, S.Y.

    1990-01-01

    Quantum field theory in Robertson-Walker space-time is intrinsically time-dependent and the functional Schrodinger picture provides a useful description. This paper discusses free and self-interacting bosonic quantum field theories: Schrodinger picture quantization, time-dependent Gaussian approximations based on variational principles describing time evolution of pure and mixed states, and renormalizability of the Schrodinger picture. The technique introduced can be used to study various dynamical questions in early universe processes

  10. Quantum field theory in flat Robertson-Walker space-time functional Schroedinger picture

    International Nuclear Information System (INIS)

    Pi, S.Y.

    1989-01-01

    Quantum field theory in Robertson-Walker space-time is intrinsically time-dependent and the functional Schroedinger picture provides a useful description. We discuss free and self-interacting bosonic quantum field theories: Schroedinger picture quantization, time-dependent Gaussian approximations based on variational principles describing time evolution of pure and mixed states, and renormalizability of the Schroedinger picture. The techniques introduced can be used to study various dynamical questions in early universe processes. (author)

  11. Interactions of heavy quarks in quantum chromodynamics

    International Nuclear Information System (INIS)

    Dine, M.

    1978-01-01

    The interactions of heavy quarks in quantum chromodynamics (QCD) are analyzed in detail. The problem of extracting instantaneous interaction potentials from quantum field theory is first reviewed, in the context of simple models. How such a potential for a fermion-antifermion system may be extracted is indicated. After a review of the quantization of non-Abelian gauge theories in Coulomb gauge, the interaction of a heavy quark-antiquark (Q anti Q) pair is considered. A Ward identity relating the Coulomb-gluon-fermion vertex to the fermion self-energy is derived. This identity is used to prove the mass independence of the static potential. The potential is shown to be infrared finite through two loops, and its general structure in perturbation theory is indicated. At three loops, divergences associated with long-lived intermediate states appear. A method to resolve this problem for static sources is given, but the result cannot readily be identified as a potential appropriate to the description of a Q anti Q bound state. This problem is discussed in detail. Then the spin-dependent interactions in these systems are analyzed. It is shown that the spin-dependent potentials depend in a nontrivial way on the quark mass. The phenomenological implications of these results are considered. In conclusion, the implications of the results for nonperturbative attacks on the potential problem are discussed. The importance of source-field correlations is stressed. The limitations of schemes introduced recently to compute spin-dependent forces due to instantons are illustrated

  12. Nonequilibrium fermion production in quantum field theory

    International Nuclear Information System (INIS)

    Pruschke, Jens

    2010-01-01

    The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio

  13. Nonequilibrium fermion production in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Pruschke, Jens

    2010-06-16

    The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio

  14. Axiomatics of Galileo-invariant quantum field theory

    International Nuclear Information System (INIS)

    Dadashev, L.A.

    1986-01-01

    The aim of this paper is to construct the axiomatics of Galileo-invariant quantum field theory. The importance of this problem is demonstrated from various points of view: general properties that the fields and observables must satisfy are considered; S-matrix nontriviality of one such model is proved; and the differences from the relativistic case are discussed. The proposed system of axioms is in many respects analogous to Wightman axiomatics, but is less general. The main result is contained in theorems which describe the admissible set of initial fields and total Hamiltonians, i.e., precisely the two entities that completely determine interacting fields. The author considers fields that prove the independence of some axioms

  15. Quantum fermions and quantum field theory from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, Christof

    2012-01-01

    An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schrödinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.

  16. Statistical approach to quantum field theory. An introduction

    International Nuclear Information System (INIS)

    Wipf, Andreas

    2013-01-01

    Based on course-tested notes and pedagogical in style. Authored by a leading researcher in the field. Contains end-of-chapter problems and listings of short, useful computer programs. Authored by a leading researcher in the field. Contains end-of-chapter problems and listings of short, useful computer programs. Contains end-of-chapter problems and listings of short, useful computer programs. Over the past few decades the powerful methods of statistical physics and Euclidean quantum field theory have moved closer together, with common tools based on the use of path integrals. The interpretation of Euclidean field theories as particular systems of statistical physics has opened up new avenues for understanding strongly coupled quantum systems or quantum field theories at zero or finite temperatures. Accordingly, the first chapters of this book contain a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics. The resulting high-dimensional integrals can be estimated with the help of Monte Carlo simulations based on Markov processes. The most commonly used algorithms are presented in detail so as to prepare the reader for the use of high-performance computers as an ''experimental'' tool for this burgeoning field of theoretical physics. Several chapters are then devoted to an introduction to simple lattice field theories and a variety of spin systems with discrete and continuous spins, where the ubiquitous Ising model serves as an ideal guide for introducing the fascinating area of phase transitions. As an alternative to the lattice formulation of quantum field theories, variants of the flexible renormalization group methods are discussed in detail. Since, according to our present-day knowledge, all fundamental interactions in nature are described by gauge theories, the remaining chapters of the book deal with gauge theories without and with matter. This text is based on course-tested notes for graduate students and, as

  17. The pure phases, the irreducible quantum fields, and dynamical symmetry breaking in Symanzik--Nelson positive quantum field theories

    International Nuclear Information System (INIS)

    Frohlich, J.

    1976-01-01

    We prove that a Symanzik--Nelson positive quantum field theory, i.e., a quantum field theory derived from a Euclidean field theory, has a unique decomposition into pure phases which preserves Symanzik--Nelson positivity and Poincare covariance. We derive useful sufficient conditions for the breakdown of an internal symmetry of such a theory in its pure phases, for the self-adjointness and nontrivially (in the sense of Borchers classes) of its quantum fields, and the existence of time-ordered and retarded products. All these general results are then applied to the P (phi) 2 and the phi 3 4 quantum field models

  18. Learning quantum field theory from elementary quantum mechanics

    International Nuclear Information System (INIS)

    Gosdzinsky, P.; Tarrach, R.

    1991-01-01

    The study of the Dirac delta potentials in more than one dimension allows the introduction within the framework of elementary quantum mechanics of many of the basic concepts of modern quantum field theory: regularization, renormalization group, asymptotic freedom, dimensional transmutation, triviality, etc. It is also interesting, by itself, as a nonstandard quantum mechanical problem

  19. Quantum processes: A Whiteheadian interpretation of quantum field theory

    Science.gov (United States)

    Bain, Jonathan

    Quantum processes: A Whiteheadian interpretation of quantum field theory is an ambitious and thought-provoking exercise in physics and metaphysics, combining an erudite study of the very complex metaphysics of A.N. Whitehead with a well-informed discussion of contemporary issues in the philosophy of algebraic quantum field theory. Hättich's overall goal is to construct an interpretation of quantum field theory. He does this by translating key concepts in Whitehead's metaphysics into the language of algebraic quantum field theory. In brief, this Hättich-Whitehead (H-W, hereafter) interpretation takes "actual occasions" as the fundamental ontological entities of quantum field theory. An actual occasion is the result of two types of processes: a "transition process" in which a set of initial possibly-possessed properties for the occasion (in the form of "eternal objects") is localized to a space-time region; and a "concrescence process" in which a subset of these initial possibly-possessed properties is selected and actualized to produce the occasion. Essential to these processes is the "underlying activity", which conditions the way in which properties are initially selected and subsequently actualized. In short, under the H-W interpretation of quantum field theory, an initial set of possibly-possessed eternal objects is represented by a Boolean sublattice of the lattice of projection operators determined by a von Neumann algebra R (O) associated with a region O of Minkowski space-time, and the underlying activity is represented by a state on R (O) obtained by conditionalizing off of the vacuum state. The details associated with the H-W interpretation involve imposing constraints on these representations motivated by principles found in Whitehead's metaphysics. These details are spelled out in the three sections of the book. The first section is a summary and critique of Whitehead's metaphysics, the second section introduces the formalism of algebraic quantum field

  20. Carrier-phonon interaction in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Seebeck, Jan

    2009-03-10

    In recent years semiconductor quantum dots have been studied extensively due to their wide range of possible applications, predominantly for light sources. For successful applications, efficient carrier scattering processes as well as a detailed understanding of the optical properties are of central importance. The aims of this thesis are theoretical investigations of carrier scattering processes in InGaAs/GaAs quantum dots on a quantum-kinetic basis. A consistent treatment of quasi-particle renormalizations and carrier kinetics for non-equilibrium conditions is presented, using the framework of non-equilibrium Green's functions. The focus of our investigations is the interaction of carriers with LO phonons. Important for the understanding of the scattering mechanism are the corresponding quasi-particle properties. Starting from a detailed study of quantum-dot polarons, scattering and dephasing processes are discussed for different temperature regimes. The inclusion of polaron and memory effects turns out to be essential for the description of the carrier kinetics in quantum-dot systems. They give rise to efficient scattering channels and the obtained results are in agreement with recent experiments. Furthermore, a consistent treatment of the carrier-LO-phonon and the carrier-carrier interaction is presented for the optical response of semiconductor quantum dots, both giving rise to equally important contributions to the dephasing. Beside the conventional GaAs material system, currently GaN based light sources are of high topical interest due to their wide range of possible emission frequencies. In this material additionally intrinsic properties like piezoelectric fields and strong band-mixing effects have to be considered. For the description of the optical properties of InN/GaN quantum dots a procedure is presented, where the material properties obtained from an atomistic tight-binding approach are combined with a many-body theory for non

  1. Explicit polarization: a quantum mechanical framework for developing next generation force fields.

    Science.gov (United States)

    Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel

    2014-09-16

    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples

  2. CP1 model with Hopf interaction: the quantum theory

    International Nuclear Information System (INIS)

    Chakraborty, B.; Ghosh, Subir; Malik, R.P.

    2001-01-01

    The CP 1 model with Hopf interaction is quantised following the Batalin-Tyutin (BT) prescription. In this scheme, extra BT fields are introduced which allow for the existence of only commuting first-class constraints. Explicit expression for the quantum correction to the expectation value of the energy density and angular momentum in the physical sector of this model is derived. The result shows, in the particular operator ordering prescription we have chosen to work with, that the quantum effect has the usual divergent contribution of O(ℎ 2 ) in the energy expectation value. But, interestingly the Hopf term, though topological in nature, can have a finite O(ℎ) contribution to energy density in the homotopically nontrivial topological sector. The angular momentum operator, however, is found to have no quantum correction at O(ℎ), indicating the absence of any fractional spin even at this quantum level. Finally, the extended Lagrangian incorporating the BT auxiliary fields is computed in the conventional framework of BRST formalism exploiting Faddeev-Popov technique of path integral method

  3. Tsallis’ quantum q-fields

    Science.gov (United States)

    Plastino, A.; Rocca, M. C.

    2018-05-01

    We generalize several well known quantum equations to a Tsallis’ q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields’ logarithms.

  4. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  5. Non equilibrium quantum fields in cosmology

    International Nuclear Information System (INIS)

    Paz, J.P.

    1991-01-01

    The authors discuss the general framework used to construct a quantum mechanical model of the inflationary phase transition. The emer-gence of classical behavior in the longwavelength modes of the inflation is one of the facts that these models should address. For some toy examples (in which the inflation interacts with an environment consti-tuted by other fields) decoherence is shown of the modes with physical wavelength greater than the horizon. The authors use an approach based on a master equation. They take advantage of the similarities that exist between the master equation for the toy cosmological models and the one for the simple Quantum Brownian Motion. Recent results are discussed obtained for the general QBM problem (in which the environment has a generic spectral density). (author). 10 refs

  6. A simple solvable model of quantum field theory of open strings

    International Nuclear Information System (INIS)

    Kazakov, V.A.; AN SSSR, Moscow

    1990-01-01

    A model of quantum field theory of open strings without any embedding (D=0) is solved. The world sheets of interacting strings are represented by dynamical planar graphs with dynamical holes of arbitrary sizes. The phenomenon of spontaneous tearing of the world sheet is noticed, which gives a singularity at zero coupling constant of string interaction. This phenomenon can be considered as a nonperturbative effect, similar to renormalons in planar field theories and is closely related to the α' → 0 limit of string field theories. (orig.)

  7. Quantum centipedes: collective dynamics of interacting quantum walkers

    International Nuclear Information System (INIS)

    Krapivsky, P L; Luck, J M; Mallick, K

    2016-01-01

    We consider the quantum centipede made of N fermionic quantum walkers on the one-dimensional lattice interacting by means of the simplest of all hard-bound constraints: the distance between two consecutive fermions is either one or two lattice spacings. This composite quantum walker spreads ballistically, just as the simple quantum walk. However, because of the interactions between the internal degrees of freedom, the distribution of its center-of-mass velocity displays numerous ballistic fronts in the long-time limit, corresponding to singularities in the empirical velocity distribution. The spectrum of the centipede and the corresponding group velocities are analyzed by direct means for the first few values of N . Some analytical results are obtained for arbitrary N by exploiting an exact mapping of the problem onto a free-fermion system. We thus derive the maximal velocity describing the ballistic spreading of the two extremal fronts of the centipede wavefunction, including its non-trivial value in the large- N limit. (paper)

  8. Pair interactions of heavy vortices in quantum fluids

    Science.gov (United States)

    Pshenichnyuk, Ivan A.

    2018-02-01

    The dynamics of quantum vortex pairs carrying heavy doping matter trapped inside their cores is studied. The nonlinear classical matter field formalism is used to build a universal mathematical model of a heavy vortex applicable to different types of quantum mixtures. It is shown how the usual vortex dynamics typical for undoped pairs qualitatively changes when heavy dopants are used: heavy vortices with opposite topological charges (chiralities) attract each other, while vortices with the same charge are repelled. The force responsible for such behavior appears as a result of superposition of vortices velocity fields in the presence of doping substance and can be considered as a special realization of the Magnus effect. The force is evaluated quantitatively and its inverse proportionality to the distance is demonstrated. The mechanism described in this paper gives an example of how a light nonlinear classical field may realize repulsive and attractive interactions between embedded heavy impurities.

  9. Interaction-aided continuous time quantum search

    International Nuclear Information System (INIS)

    Bae, Joonwoo; Kwon, Younghun; Baek, Inchan; Yoon, Dalsun

    2005-01-01

    The continuous quantum search algorithm (based on the Farhi-Gutmann Hamiltonian evolution) is known to be analogous to the Grover (or discrete time quantum) algorithm. Any errors introduced in Grover algorithm are fatal to its success. In the same way the Farhi-Gutmann Hamiltonian algorithm has a severe difficulty when the Hamiltonian is perturbed. In this letter we will show that the interaction term in quantum search Hamiltonian (actually which is in the generalized quantum search Hamiltonian) can save the perturbed Farhi-Gutmann Hamiltonian that should otherwise fail. We note that this fact is quite remarkable since it implies that introduction of interaction can be a way to correct some errors on the continuous time quantum search

  10. Quantum correlations between each two-level system in a pair of atoms and general coherent fields

    Directory of Open Access Journals (Sweden)

    S. Abdel-Khalek

    Full Text Available The quantitative description of the quantum correlations between each two-level system in a two-atom system and the coherent fields initially defined in a coherent state in the framework of power-law potentials (PLPCSs is considered. Specifically, we consider two atoms locally interacting with PLPCSs and take into account the different terms of interactions, the entanglement and quantum discord are studied including the time-dependent coupling and photon transition effects. Using the monogamic relation between the entanglement of formation and quantum discord in tripartite systems, we show that the control and preservation of the different kinds of quantum correlations greatly benefit from the combination of the choice of the physical quantities. Finally, we explore the link between the dynamical behavior of quantum correlations and nonclassicality of the fields with and without atomic motion effect. Keywords: Quantum correlations, Monogamic relation, Coherent states, Power-law potentials, Wehrl entropy

  11. Progress in the axiomatic quantum field theory. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Vladimirov, V S; Polivanov, M K

    1975-01-01

    The authors consider the development of mathematical methods of solving quantum field theory problems from attempts of simple perfection of usual methods of quantum mechanics by elaborating the methods of perturbation theory and S-matrix, by working out the perturbation theory for quantum electrodynamics, and by applying dispersion relations and S-matrix for strong interactions. The method of dispersion relations results in the majority of radically new ways of describing the scattering amplitude. The grave disadvantage of all the methods is that they little define the dynamics of processes. The dynamic theory in the Heisenberg representation may be constructed on the basis of the axiomatic theory of S-matrix with the casuality condition. Another axiomatic direction has been recently developed; that is the so-called algebraic axiomatics which makes use of methods of Csup(*)-algebras.

  12. Repeated interactions in open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Bruneau, Laurent, E-mail: laurent.bruneau@u-cergy.fr [Laboratoire AGM, Université de Cergy-Pontoise, Site Saint-Martin, BP 222, 95302 Cergy-Pontoise (France); Joye, Alain, E-mail: Alain.Joye@ujf-grenoble.fr [Institut Fourier, UMR 5582, CNRS-Université Grenoble I, BP 74, 38402 Saint-Martin d’Hères (France); Merkli, Marco, E-mail: merkli@mun.ca [Department of Mathematics and Statistics Memorial University of Newfoundland, St. John' s, NL Canada A1C 5S7 (Canada)

    2014-07-15

    Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.

  13. Interaction between classical and quantum systems

    International Nuclear Information System (INIS)

    Sherry, T.N.; Sudarshan, E.C.G.

    1977-10-01

    An unconventional approach to the measurement problem in quantum mechanics is considered--the apparatus is treated as a classical system, belonging to the macro-world. In order to have a measurement the apparatus must interact with the quantum system. As a first step, the classical apparatus is embedded into a large quantum mechanical structure, making use of a superselection principle. The apparatus and system are coupled such that the apparatus remains classical (principle of integrity), and unambiguous information of the values of a quantum observable are transferred to the variables of the apparatus. Further measurement of the classical apparatus can be done, causing no problems of principle. Thus interactions causing pointers to move (which are not treated) can be added. The restrictions placed by the principle of integrity on the form of the interaction between classical and quantum systems are examined and illustration is given by means of a simple example in which one sees the principle of integrity at work

  14. Strong field QED in lepton colliders and electron/laser interactions

    Science.gov (United States)

    Hartin, Anthony

    2018-05-01

    The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the

  15. Non-perturbative aspects of quantum field theory. From the quark-gluon plasma to quantum gravity

    International Nuclear Information System (INIS)

    Christiansen, Nicolai

    2015-01-01

    In this dissertation we investigate several aspects of non-perturbative quantum field theory. Two main parts of the thesis are concerned with non-perturbative renormalization of quantum gravity within the asymptotic safety scenario. This framework is based on a non-Gaussian ultraviolet fixed point and provides a well-defined theory of quantized gravity. We employ functional renormalization group (FRG) techniques that allow for the study of quantum fields even in strongly coupled regimes. We construct a setup for the computation of graviton correlation functions and analyze the ultraviolet completion of quantum gravity in terms of the properties of the two- and three point function of the graviton. Moreover, the coupling of gravity to Yang-Mills theories is discussed. In particular, we study the effects of graviton induced interactions on asymptotic freedom on the one hand, and the role of gluonic fluctuations in the gravity sector on the other hand. The last subject of this thesis is the physics of the quark-gluon plasma. We set-up a general non-perturbative strategy for the computation of transport coefficients in non-Abelian gauge theories. We determine the viscosity over entropy ratio η/s in SU(3) Yang-Mills theory as a function of temperature and estimate its behavior in full quantum chromodynamics (QCD).

  16. Quantum mean-field theory of collective dynamics and tunneling

    International Nuclear Information System (INIS)

    Negele, J.W.

    1981-01-01

    A fundamental problem in quantum many-body theory is formulation of a microscopic theory of collective motion. For self-bound, saturating systems like finite nuclei described in the context of nonrelativistic quantum mechanics with static interactions, the essential problem is how to formulate a systematic quantal theory in which the relevant collective variables and their dynamics arise directly and naturally from the Hamiltonian and the system under consideration. Significant progress has been made recently in formulating the quantum many-body problem in terms of an expansion about solutions to time-dependent mean-field equations. The essential ideas, principal results, and illustrative examples are summarized. An exact expression for an observable of interest is written using a functional integral representation for the evolution operator, and tractable time-dependent mean field equations are obtained by application of the stationary-phase approximation (SPA) to the functional integral. Corrections to the lowest-order theory may be systematically enumerated. 6 figures

  17. 3D quantum gravity and effective noncommutative quantum field theory.

    Science.gov (United States)

    Freidel, Laurent; Livine, Etera R

    2006-06-09

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.

  18. Anisotropic universal conductance fluctuations in disordered quantum wires with Rashba and Dresselhaus spin–orbit interaction and an applied in-plane magnetic field

    International Nuclear Information System (INIS)

    Scheid, Matthias; Adagideli, İnanç; Richter, Klaus; Nitta, Junsaku

    2009-01-01

    We investigate the transport properties of narrow quantum wires realized in disordered two-dimensional electron gases in the presence of k-linear Rashba and Dresselhaus spin–orbit interaction, and an applied in-plane magnetic field. Building on previous work (Scheid et al 2008 Phys. Rev. Lett. 101 266401), we find that in addition to the conductance, the universal conductance fluctuations also feature anisotropy with respect to the magnetic field direction. This anisotropy can be explained solely from the symmetries exhibited by the Hamiltonian as well as the relative strengths of the Rashba and Dresselhaus spin–orbit interaction and thus can be utilized to detect this ratio from purely electrical measurements

  19. Quantum effects in strong fields

    International Nuclear Information System (INIS)

    Roessler, Lars

    2014-01-01

    This work is devoted to quantum effects for photons in spatially inhomogeneous fields. Since the purely analytical solution of the corresponding equations is an unsolved problem even today, a main aspect of this work is to use the worldline formalism for scalar QED to develop numerical algorithms for correlation functions beyond perturbative constructions. In a first step we take a look at the 2-Point photon correlation function, in order to understand effects like vacuum polarization or quantum reflection. For a benchmark test of the numerical algorithm we reproduce analytical results in a constant magnetic background. For inhomogeneous fields we calculate for the first time local refractive indices of the quantum vacuum. In this way we find a new de-focusing effect of inhomogeneous magnetic fields. Furthermore the numerical algorithm confirms analytical results for quantum reflection obtained within the local field approximation. In a second step we take a look at higher N-Point functions, with the help of our numerical algorithm. An interesting effect at the level of the 3-Point function is photon splitting. First investigations show that the Adler theorem remains also approximately valid for inhomogeneous fields.

  20. Particles, fields and quantum theory

    International Nuclear Information System (INIS)

    Bongaarts, P.J.M.

    1982-01-01

    The author gives an introduction to the development of gauge theories of the fundamental interactions. Starting from classical mechanics and quantum mechanics the development of quantum electrodynamics and non-abelian gauge theories is described. (HSI)

  1. Quantum transport in topological semimetals under magnetic fields

    Science.gov (United States)

    Lu, Hai-Zhou; Shen, Shun-Qing

    2017-06-01

    Topological semimetals are three-dimensional topological states of matter, in which the conduction and valence bands touch at a finite number of points, i.e., the Weyl nodes. Topological semimetals host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces. We review our recent works on quantum transport in topological semimetals, according to the strength of the magnetic field. At weak magnetic fields, there are competitions between the positive magnetoresistivity induced by the weak anti-localization effect and negative magnetoresistivity related to the nontrivial Berry curvature. We propose a fitting formula for the magnetoconductivity of the weak anti-localization. We expect that the weak localization may be induced by inter-valley effects and interaction effect, and occur in double-Weyl semimetals. For the negative magnetoresistance induced by the nontrivial Berry curvature in topological semimetals, we show the dependence of the negative magnetoresistance on the carrier density. At strong magnetic fields, specifically, in the quantum limit, the magnetoconductivity depends on the type and range of the scattering potential of disorder. The high-field positive magnetoconductivity may not be a compelling signature of the chiral anomaly. For long-range Gaussian scattering potential and half filling, the magnetoconductivity can be linear in the quantum limit. A minimal conductivity is found at the Weyl nodes although the density of states vanishes there.

  2. Multipole interactions of charged particles with the electromagnetic field

    International Nuclear Information System (INIS)

    Burzynski, A.

    1982-01-01

    The full multipole expansion for the lagrangian and hamiltonian of a system of point charges interacting with the electromagnetic field is studied in detail. Both classical and quantum theory are described for external and dynamical fields separately. One improvement with respect to the known Fiutak's paper is made. (author)

  3. Quantum interaction. Revised selected papers

    International Nuclear Information System (INIS)

    Song, Dawei; Zhang, Peng; Wang, Lei; Arafat, Sachi

    2011-01-01

    This book constitutes the thoroughly refereed post-conference proceedings of the 5th International Symposium on Quantum Interaction, QI 2011, held in Aberdeen, UK, in June 2011. The 26 revised full papers and 6 revised poster papers, presented together with 1 tutorial and 1 invited talk were carefully reviewed and selected from numerous submissions during two rounds of reviewing and improvement. The papers show the cross-disciplinary nature of quantum interaction covering topics such as computation, cognition, mechanics, social interaction, semantic space and information representation and retrieval. (orig.)

  4. Quantum interaction. Revised selected papers

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dawei; Zhang, Peng; Wang, Lei [Aberdeen Univ. (United Kingdom). School of Computing; Melucci, Massimo [Padua Univ., Padova (Italy). Dept. of Information Engineering; Frommholz, Ingo [Bedfordshire Univ. (United Kingdom); Arafat, Sachi (eds.) [Glasgow Univ. (United Kingdom). School of Computing Science

    2011-07-01

    This book constitutes the thoroughly refereed post-conference proceedings of the 5th International Symposium on Quantum Interaction, QI 2011, held in Aberdeen, UK, in June 2011. The 26 revised full papers and 6 revised poster papers, presented together with 1 tutorial and 1 invited talk were carefully reviewed and selected from numerous submissions during two rounds of reviewing and improvement. The papers show the cross-disciplinary nature of quantum interaction covering topics such as computation, cognition, mechanics, social interaction, semantic space and information representation and retrieval. (orig.)

  5. Quantum chemical analysis explains hemagglutinin peptide-MHC Class II molecule HLA-DRβ1*0101 interactions

    International Nuclear Information System (INIS)

    Cardenas, Constanza; Villaveces, Jose Luis; Bohorquez, Hugo; Llanos, Eugenio; Suarez, Carlos; Obregon, Mateo; Patarroyo, Manuel Elkin

    2004-01-01

    We present a new method to explore interactions between peptides and major histocompatibility complex (MHC) molecules using the resultant vector of the three principal multipole terms of the electrostatic field expansion. Being that molecular interactions are driven by electrostatic interactions, we applied quantum chemistry methods to better understand variations in the electrostatic field of the MHC Class II HLA-DRβ1*0101-HA complex. Multipole terms were studied, finding strong alterations of the field in Pocket 1 of this MHC molecule, and weak variations in other pockets, with Pocket 1 >> Pocket 4 > Pocket 9 ∼ Pocket 7 > Pocket 6. Variations produced by 'ideal' amino acids and by other occupying amino acids were compared. Two types of interactions were found in all pockets: a strong unspecific one (global interaction) and a weak specific interaction (differential interaction). Interactions in Pocket 1, the dominant pocket for this allele, are driven mainly by the quadrupole term, confirming the idea that aromatic rings are important in these interactions. Multipolar analysis is in agreement with experimental results, suggesting quantum chemistry methods as an adequate methodology to understand these interactions

  6. Spin relaxation in quantum dots: Role of the phonon modulated spin-orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.

    2010-01-01

    We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.

  7. Yb-based heavy fermion compounds and field tuned quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Eundeok [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The motivation of this dissertation was to advance the study of Yb-based heavy fermion (HF) compounds especially ones related to quantum phase transitions. One of the topics of this work was the investigation of the interaction between the Kondo and crystalline electric field (CEF) energy scales in Yb-based HF systems by means of thermoelectric power (TEP) measurements. In these systems, the Kondo interaction and CEF excitations generally give rise to large anomalies such as maxima in ρ(T) and as minima in S(T). The TEP data were use to determine the evolution of Kondo and CEF energy scales upon varying transition metals for YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) compounds and applying magnetic fields for YbAgGe and YbPtBi. For YbT2Zn20 and YbPtBi, the Kondo and CEF energy scales could not be well separated in S(T), presumably because of small CEF level splittings. A similar effect was observed for the magnetic contribution to the resistivity. For YbAgGe, S(T) has been successfully applied to determine the Kondo and CEF energy scales due to the clear separation between the ground state and thermally excited CEF states. The Kondo temperature, TK, inferred from the local maximum in S(T), remains finite as magnetic field increases up to 140 kOe. In this dissertation we have examined the heavy quasi-particle behavior, found near the field tuned AFM quantum critical point (QCP), with YbAgGe and YbPtBi. Although the observed nFL behaviors in the vicinity of the QCP are different between YbAgGe and YbPtBi, the constructed H-T phase diagram including the two crossovers are similar. For both YbAgGe and YbPtBi, the details of the quantum criticality turn out to be complicated. We expect that YbPtBi will provide an additional example of field tuned quantum criticality, but clearly there are further experimental investigations left and more ideas needed to understand the basic physics of field-induced quantum

  8. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    Science.gov (United States)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  9. Quantum fields and processes a combinatorial approach

    CERN Document Server

    Gough, John

    2018-01-01

    Wick ordering of creation and annihilation operators is of fundamental importance for computing averages and correlations in quantum field theory and, by extension, in the Hudson-Parthasarathy theory of quantum stochastic processes, quantum mechanics, stochastic processes, and probability. This book develops the unified combinatorial framework behind these examples, starting with the simplest mathematically, and working up to the Fock space setting for quantum fields. Emphasizing ideas from combinatorics such as the role of lattice of partitions for multiple stochastic integrals by Wallstrom-Rota and combinatorial species by Joyal, it presents insights coming from quantum probability. It also introduces a 'field calculus' which acts as a succinct alternative to standard Feynman diagrams and formulates quantum field theory (cumulant moments, Dyson-Schwinger equation, tree expansions, 1-particle irreducibility) in this language. Featuring many worked examples, the book is aimed at mathematical physicists, quant...

  10. Quantum fields and processes a combinatorial approach

    CERN Document Server

    Gough, John

    2018-01-01

    Wick ordering of creation and annihilation operators is of fundamental importance for computing averages and correlations in quantum field theory and, by extension, in the Hudson–Parthasarathy theory of quantum stochastic processes, quantum mechanics, stochastic processes, and probability. This book develops the unified combinatorial framework behind these examples, starting with the simplest mathematically, and working up to the Fock space setting for quantum fields. Emphasizing ideas from combinatorics such as the role of lattice of partitions for multiple stochastic integrals by Wallstrom–Rota and combinatorial species by Joyal, it presents insights coming from quantum probability. It also introduces a 'field calculus' which acts as a succinct alternative to standard Feynman diagrams and formulates quantum field theory (cumulant moments, Dyson–Schwinger equation, tree expansions, 1-particle irreducibility) in this language. Featuring many worked examples, the book is aimed at mathematical physicists,...

  11. Numerical stabilization of entanglement computation in auxiliary-field quantum Monte Carlo simulations of interacting many-fermion systems.

    Science.gov (United States)

    Broecker, Peter; Trebst, Simon

    2016-12-01

    In the absence of a fermion sign problem, auxiliary-field (or determinantal) quantum Monte Carlo (DQMC) approaches have long been the numerical method of choice for unbiased, large-scale simulations of interacting many-fermion systems. More recently, the conceptual scope of this approach has been expanded by introducing ingenious schemes to compute entanglement entropies within its framework. On a practical level, these approaches, however, suffer from a variety of numerical instabilities that have largely impeded their applicability. Here we report on a number of algorithmic advances to overcome many of these numerical instabilities and significantly improve the calculation of entanglement measures in the zero-temperature projective DQMC approach, ultimately allowing us to reach similar system sizes as for the computation of conventional observables. We demonstrate the applicability of this improved DQMC approach by providing an entanglement perspective on the quantum phase transition from a magnetically ordered Mott insulator to a band insulator in the bilayer square lattice Hubbard model at half filling.

  12. Mean field dynamics of some open quantum systems.

    Science.gov (United States)

    Merkli, Marco; Rafiyi, Alireza

    2018-04-01

    We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of [Formula: see text]. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit [Formula: see text], of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.

  13. Mean field dynamics of some open quantum systems

    Science.gov (United States)

    Merkli, Marco; Rafiyi, Alireza

    2018-04-01

    We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of √{N }. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit N →∞ , of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.

  14. Topics in quantum field theory

    International Nuclear Information System (INIS)

    Svaiter, N.F.

    2006-11-01

    This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method

  15. Bound states in quantum field theory and coherent states: A fresh look

    International Nuclear Information System (INIS)

    Misra, S.P.

    1986-09-01

    We consider here bound state equations in quantum field theory where the state explicitly includes radiation quanta as constituents with the number of such quanta not fixed. The fully interacting system is dealt with through equal time commutators/anticommutators of field operators. The multiparticle channel for the radiation field is approximated through coherent state representations. (author)

  16. Search for unity: notes for a history of quantum field theory

    International Nuclear Information System (INIS)

    Weinberg, S.

    1977-01-01

    The essential points of quantum field theory are recounted without using mathematics. The foundations of the theory, the initial states, the problem of infinities, the revival of the theory, and weak and strong interactions, are described. 72 references

  17. Particles, fields, quanta. From quantum mechanics to the Standard Model of particle physics; Teilchen, Felder, Quanten. Von der Quantenmechanik zum Standardmodell der Teilchenphysik

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Gerhard [Wien Univ. (Austria). Fakultaet fuer Physik

    2017-07-01

    The following topics are dealt with: Physics around 1900, the way to quantum mechanics, quantum field theory with quantum electrodynamics as prototype, the crisis of quantum field theory, from the beta decay to the electroweak gauge theory, quantum chromodynamics as quantum field theory of the strong nuclear force, the standard model of the fundamental interactions, physics beyond the standard model. (HSI)

  18. Generalized quantum mean-field systems and their application to ultracold atoms

    International Nuclear Information System (INIS)

    Trimborn-Witthaut, Friederike Annemarie

    2011-01-01

    Strongly interacting many-body systems consisting of a large number of indistinguishable particles play an important role in many areas of physics. Though such systems are hard to deal with theoretically since the dimension of the respective Hilbert space increases exponentially both in the particle number and in the number of system modes. Therefore, approximations are of considerable interest. The mean-field approximation describes the behaviour in the macroscopic limit N→∞, which leads to an effective nonlinear single-particle problem. Although this approximation is widely used, rigorous results on the applicability and especially on finite size corrections are extremely rare. One prominent example of strongly interacting many-body systems are ultracold atoms in optical lattices, which are a major subject of this thesis. Typically these systems consist of a large but well-defined number of particles, such that corrections to the mean-field limit can be systematically studied. This thesis is divided into two parts: In the first part we study generalized quantum mean-field systems in a C * -algebraic framework. These systems are characterized by their intrinsic permutation symmetry. In the limit of infinite system size, N→∞, the intensive observables converge to the commutative algebra of weak * -continuous functions on the single particle state space. To quantify the deviations from the meanfield prediction for large but finite N, we establish a differential calculus for state space functions and provide a generalized Taylor expansion around the mean-field limit. Furthermore, we introduce the algebra of macroscopic fluctuations around the mean-field limit and prove a quantum version of the central limit theorem. On the basis of these results, we give a detailed study of the finite size corrections to the ground state energy and establish bounds, for both the quantum and the classical case. Finally, we restrict ourselves to the subspace of Bose

  19. Dual field theories of quantum computation

    International Nuclear Information System (INIS)

    Vanchurin, Vitaly

    2016-01-01

    Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N+1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N

  20. Test of quantum thermalization in the two-dimensional transverse-field Ising model.

    Science.gov (United States)

    Blaß, Benjamin; Rieger, Heiko

    2016-12-01

    We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems.

  1. Quantum corrections to scalar field dynamics in a slow-roll space-time

    Energy Technology Data Exchange (ETDEWEB)

    Herranen, Matti [Niels Bohr International Academy and Discovery Center, Niels Bohr Institute,University of Copenhagen,Blegdamsvej 17, 2100 Copenhagen (Denmark); Markkanen, Tommi [Helsinki Institute of Physics and Department of Physics,P.O. Box 64, FI-00014, University of Helsinki (Finland); Tranberg, Anders [Faculty of Science and Technology, University of Stavanger, 4036 Stavanger (Norway)

    2014-05-07

    We consider the dynamics of a quantum scalar field in the background of a slow-roll inflating Universe. We compute the one-loop quantum corrections to the field and Friedmann equation of motion, in both a 1PI and a 2PI expansion, to leading order in slow-roll. Generalizing the works of http://dx.doi.org/10.1016/j.nuclphysb.2006.04.029, http://dx.doi.org/10.1103/PhysRevLett.107.191103, http://dx.doi.org/10.1103/PhysRevD.76.103507 and http://dx.doi.org/10.1016/j.nuclphysb.2006.04.010, we then solve these equations to compute the effect on the primordial power spectrum, for the case of a self-interacting inflaton and a self-interacting spectator field. We find that for the inflaton the corrections are negligible due to the smallness of the coupling constant despite the large IR enhancement of the loop contributions. For a curvaton scenario, on the other hand, we find tension in using the 1PI loop corrections, which may indicate that the quantum corrections could be non-perturbatively large in this case, thus requiring resummation.

  2. Observer dependence of quantum states in relativistic quantum field theories

    International Nuclear Information System (INIS)

    Malin, S.

    1982-01-01

    Quantum states can be understood as either (i) describing quantum systems or (ii) representing observers' knowledge about quantum systems. These different meanings are shown to imply different transformation properties in relativistic field theories. The rules for the reduction of quantum states and the transformation properties of quantum states under Lorentz transformations are derived for case (ii). The results obtained are applied to a quantum system recently presented and analyzed by Aharonov and Albert. It is shown that the present results, combined with Aharonov and Albert's, amount to a proof of Bohr's view that quantum states represent observers' knowledge about quantum systems

  3. A new formulation of quantum field theory on S4

    International Nuclear Information System (INIS)

    Harris, B.A.; Joshi, G.C.

    1993-01-01

    Recent developments in quantum gravity suggest that wormholes may influence the observed values of the constants of nature. The Euclidean formulation of quantum gravity predicts that wormholes induce a probability distribution in the space of possible fundamentals constants. In particular, the effective action on a large spherical space may lead to the vanishing of the cosmological constant and possibly determine the values of other constants of nature. The ability to perform calculations involving interacting quantum fields, particularly non-Abelian models, on a four-sphere is vital if one is to investigate this possibility. In this paper, a new formulation of field theory on a four-sphere is presented using the angular momentum space representation of SO(5). A review of field theory on a sphere is given and then show how a matrix element prescription in angular momentum space and a new summation technique based on the complex l-plane, overcome previous limitations in calculation techniques. The standard one-loop graphs of QED are given as examples. 13 refs., 3 figs

  4. Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.

    Science.gov (United States)

    Yi, Hangmo

    2015-01-01

    I investigate the quantum phase transition of the transverse-field quantum Ising model in which nearest neighbors are defined according to the connectivity of scale-free networks. Using a continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, I identify the quantum critical point and study its scaling characteristics. For the degree exponent λ=6, I obtain results that are consistent with the mean-field theory. For λ=4.5 and 4, however, the results suggest that the quantum critical point belongs to a non-mean-field universality class. Further simulations indicate that the quantum critical point remains mean-field-like if λ>5, but it continuously deviates from the mean-field theory as λ becomes smaller.

  5. Quantum field theory in spaces with closed time-like curves

    International Nuclear Information System (INIS)

    Boulware, D.G.

    1992-01-01

    Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27π. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon

  6. Introduction to classical and quantum field theory

    International Nuclear Information System (INIS)

    Ng, Tai-Kai

    2009-01-01

    This is the first introductory textbook on quantum field theory to be written from the point of view of condensed matter physics. As such, it presents the basic concepts and techniques of statistical field theory, clearly explaining how and why they are integrated into modern quantum (and classical) field theory, and includes the latest developments. Written by an expert in the field, with a broad experience in teaching and training, it manages to present such substantial topics as phases and phase transitions or solitons and instantons in an accessible and concise way. Divided into three parts, the first part covers fundamental physics and the mathematics background needed by students in order to enter the field, while the second part introduces more advanced concepts and techniques. Part III discusses applications of quantum field theory to a few basic problems. The emphasis here lies on how modern concepts of quantum field theory are embedded in these approaches, and also on the limitations of standard quantum field theory techniques in facing, 'real' physics problems. Throughout there are numerous end-of-chapter problems, and a free solutions manual is available for lecturers. (orig.)

  7. Mathematical aspects of field quantization. Quantum electrodynamics

    International Nuclear Information System (INIS)

    Bongaarts, P.J.M.

    1983-01-01

    Fundamental mathematical aspects of quantum field theory are discussed. A brief review of various approaches to mathematical problems of quantum electrodynamics is given, preceded by a more extensive account of the development of ideas on the mathematical nature of quantum fields in general, providing an appropriate historical context. (author)

  8. Topological field theories and quantum mechanics on commutative space

    International Nuclear Information System (INIS)

    Lefrancois, M.

    2005-12-01

    In particle physics, the Standard Model describes the interactions between fundamental particles. However, it was not able till now to unify quantum field theory and general relativity. This thesis focuses on two different unification approaches, though they might show some compatibility: topological field theories and quantum mechanics on non-commutative space. Topological field theories have been introduced some twenty years ago and have a very strong link to mathematics: their observables are topological invariants of the manifold they are defined on. In this thesis, we first give interest to topological Yang-Mills. We develop a superspace formalism and give a systematic method for the determination of the observables. This approach allows, once projected on a particular super gauge (of Wess-Zumino type), to recover the existing results but it also gives a generalisation to the case of an unspecified super-gauge. We have then be able to show that the up-to-now known observables correspond to the most general form of the solutions. This superspace formalism can be applied to more complex models; the case of topological gravity is given here in example. Quantum mechanics on noncommutative space provides an extension of the Heisenberg algebra of ordinary quantum mechanics. What differs here is that the components of the position or momentum operators do not commute with each other anymore. This implies to introduce a fundamental length. The second part of this thesis focuses on the description of the commutation algebra. Applications are made to low-dimensional quantum systems (Landau system, harmonic oscillator...) and to supersymmetric systems. (author)

  9. Influence of the Rashba and Dresselhaus spin-orbit interactions of equal strength on the electron states in the circular quantum dot in the presence of a magnetic field

    International Nuclear Information System (INIS)

    Kudryashov, V.V.; Baran, A.V.

    2012-01-01

    The solutions of the Schrodinger equation are obtained for an electron at a two-dimensional circular semiconductor quantum dot in the presence of both an external magnetic field and the Rashba and Dresselhaus spin-orbit interactions of equal strength. Confinement is simulated by a realistic potential well of finite depth. The dependence of energy levels on a magnetic field and a strength of spin-orbit interaction is presented. (authors)

  10. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers [Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)

    2016-06-07

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.

  11. Wilson lines in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Cherednikov, Igor Olegovich [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Mertens, Tom; Veken, Frederik F. van der [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.

    2014-07-01

    Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.

  12. Wilson lines in quantum field theory

    International Nuclear Information System (INIS)

    Cherednikov, Igor Olegovich; Joint Institute of Nuclear Research, Moscow; Mertens, Tom; Veken, Frederik F. van der

    2014-01-01

    Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.

  13. Electric and magnetic field modulated energy dispersion, conductivity and optical response in double quantum wire with spin-orbit interactions

    Science.gov (United States)

    Karaaslan, Y.; Gisi, B.; Sakiroglu, S.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-02-01

    We study the influence of electric field on the electronic energy band structure, zero-temperature ballistic conductivity and optical properties of double quantum wire. System described by double-well anharmonic confinement potential is exposed to a perpendicular magnetic field and Rashba and Dresselhaus spin-orbit interactions. Numerical results show up that the combined effects of internal and external agents cause the formation of crossing, anticrossing, camel-back/anomaly structures and the lateral, downward/upward shifts in the energy dispersion. The anomalies in the energy subbands give rise to the oscillation patterns in the ballistic conductance, and the energy shifts bring about the shift in the peak positions of optical absorption coefficients and refractive index changes.

  14. Classical field approach to quantum weak measurements.

    Science.gov (United States)

    Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco

    2014-03-21

    By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.

  15. Longitudinal wave function control in single quantum dots with an applied magnetic field

    Science.gov (United States)

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-01

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018

  16. Longitudinal wave function control in single quantum dots with an applied magnetic field.

    Science.gov (United States)

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-27

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.

  17. The role of operator ordering in quantum field theory

    International Nuclear Information System (INIS)

    Suzuki, Tsuneo; Hirshfeld, A.C.; Leschke, H.

    1980-01-01

    We study the role of operator ordering in quantum field theory. Operator ordering techniques discussed in our previous papers in the quantum mechanical context are extended to field theory. In this case formally infinite terms appear which must be given a meaning in the framework of some definite regularization scheme. Different orderings for the non-commuting operators in the interaction Hamiltonian lead in general to different expressions for the Dyson-Wick expansion of the S-matrix, implying different Feynman rules. Different orderings correspond to different assignments for the initially undetermined values of the contractions occurring in closed-loop diagrams. Combining a special class of ordering schemes (u-ordering, a generalization of Weyl-ordering) with dimensional regularization leads to important simplifications, and in this case manipulations in which ordering complications are neglected may be justified. We use our methods to discuss gauge invariance in scalar electrodynamics, and the equivalent theorem for a reducible field theoretical model. (author)

  18. Quantum Butterfly Effect in Weakly Interacting Diffusive Metals

    Directory of Open Access Journals (Sweden)

    Aavishkar A. Patel

    2017-09-01

    Full Text Available We study scrambling, an avatar of chaos, in a weakly interacting metal in the presence of random potential disorder. It is well known that charge and heat spread via diffusion in such an interacting disordered metal. In contrast, we show within perturbation theory that chaos spreads in a ballistic fashion. The squared anticommutator of the electron-field operators inherits a light-cone-like growth, arising from an interplay of a growth (Lyapunov exponent that scales as the inelastic electron scattering rate and a diffusive piece due to the presence of disorder. In two spatial dimensions, the Lyapunov exponent is universally related at weak coupling to the sheet resistivity. We are able to define an effective temperature-dependent butterfly velocity, a speed limit for the propagation of quantum information that is much slower than microscopic velocities such as the Fermi velocity and that is qualitatively similar to that of a quantum critical system with a dynamical critical exponent z>1.

  19. Spectral methods in quantum field theory

    International Nuclear Information System (INIS)

    Graham, Noah; Quandt, Markus; Weigel, Herbert

    2009-01-01

    This concise text introduces techniques from quantum mechanics, especially scattering theory, to compute the effects of an external background on a quantum field in general, and on the properties of the quantum vacuum in particular. This approach can be succesfully used in an increasingly large number of situations, ranging from the study of solitons in field theory and cosmology to the determination of Casimir forces in nano-technology. The method introduced and applied in this book is shown to give an unambiguous connection to perturbation theory, implementing standard renormalization conditions even for non-perturbative backgrounds. It both gives new theoretical insights, for example illuminating longstanding questions regarding Casimir stresses, and also provides an efficient analytic and numerical tool well suited to practical calculations. Last but not least, it elucidates in a concrete context many of the subtleties of quantum field theory, such as divergences, regularization and renormalization, by connecting them to more familiar results in quantum mechanics. While addressed primarily at young researchers entering the field and nonspecialist researchers with backgrounds in theoretical and mathematical physics, introductory chapters on the theoretical aspects of the method make the book self-contained and thus suitable for advanced graduate students. (orig.)

  20. Measurement and Ontology: What Kind of Evidence Can We Have for Quantum Fields?

    Science.gov (United States)

    Falkenburg, Brigitte

    In the following, I deal with the ontology of quantum field theory (QFT) from a Kantian point of view, in terms of parts of empirical reality and their relations. In contradistinction to a formal ontology of QFT that is based primarily on the formal structure of the theory, I focus on the ways in which quantum fields can be measured, and on the structural features of empirical reality to which these measurements give rise. To approach the ontology of quantum fields in terms of measurement results in two paradoxes. First, ontology is about the structure of independent entities which belong to the furniture of the world, but measurements rely on interaction. Second, experimental evidence for quantum field theories is mainly based on particle tracks and other local phenomena. Thus, what kind of evidence can we have for the field structure of quantum fields? My paper attempts to unravel these paradoxes in the following steps. First, I give a rough sketch of the appearances of particle physics, the kinds of experimental evidence which count as tests of quantum electrodynamcs (QED) and the standard model of particle physics (1). In an intermezzo on Kant's view of scientific experience, I explain in which terms we might conceive of empirical reality beyond the claims of strict empiricism (2). Finally, I apply these ideas to the appearances of particle physics and suggest that they commit us to a relational ontology of QFT (3).

  1. Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction

    International Nuclear Information System (INIS)

    He, Peng; Jiang, Yuzhu; Guan, Xiwen; He, Jinyu

    2015-01-01

    Quantum criticality of strongly attractive Fermi gas with SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations. The phase transitions driven by the chemical potential μ, effective magnetic field H 1 , H 2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the TBA equations in the zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2 and correlation length exponent ν=1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multicomponent Fermi gases with SU(N) symmetry. (paper)

  2. Spin-orbit interaction in a dual gated InAs/GaSb quantum well

    Science.gov (United States)

    Beukman, Arjan J. A.; de Vries, Folkert K.; van Veen, Jasper; Skolasinski, Rafal; Wimmer, Michael; Qu, Fanming; de Vries, David T.; Nguyen, Binh-Minh; Yi, Wei; Kiselev, Andrey A.; Sokolich, Marko; Manfra, Michael J.; Nichele, Fabrizio; Marcus, Charles M.; Kouwenhoven, Leo P.

    2017-12-01

    The spin-orbit interaction is investigated in a dual gated InAs/GaSb quantum well. Using an electric field, the quantum well can be tuned between a single-carrier regime with exclusively electrons as carriers and a two-carrier regime where electrons and holes coexist. The spin-orbit interaction in both regimes manifests itself as a beating in the Shubnikov-de Haas oscillations. In the single-carrier regime the linear Dresselhaus strength is characterized by β =28.5 meV Å and the Rashba coefficient α is tuned from 75 to 53 meV Å by changing the electric field. In the two-carrier regime a quenching of the spin splitting is observed and attributed to a crossing of spin bands.

  3. Cubic Dresselhaus interaction parameter from quantum corrections to the conductivity in the presence of an in-plane magnetic field

    Science.gov (United States)

    Marinescu, D. C.

    2017-09-01

    We evaluate the quantum corrections to the conductivity of a two-dimensional electron system with competing Rashba (R) and linear and cubic Dresselhaus (D) spin-orbit interactions in the presence of an in-plane magnetic field B . Within a perturbative approximation, we investigate the interplay between the spin-orbit coupling and the magnetic field in determining the transport regime in two different limiting scenarios: when only one of the linear terms, either Rashba or Dresselhaus, dominates, and at equal linear couplings, when the cubic Dresselhaus breaks the spin symmetry. In each instance, we find that for B higher than a critical value, the antilocalization correction is suppressed and the effective dephasing time saturates to a constant value determined only by the spin-orbit interaction. At equal R-D linear couplings, this value is directly proportional with the cubic Dresselhaus contribution. In the same regime, the magnetoconductivity is expressed as a simple logarithmic function dependent only on the cubic Dresselhaus constant.

  4. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics.

    Science.gov (United States)

    Kockum, Anton Frisk; Johansson, Göran; Nori, Franco

    2018-04-06

    In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2^{N} states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.

  5. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics

    Science.gov (United States)

    Kockum, Anton Frisk; Johansson, Göran; Nori, Franco

    2018-04-01

    In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2N states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.

  6. Quantum field theory

    CERN Document Server

    Sadovskii, Michael V

    2013-01-01

    This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.

  7. Irregular Aharonov–Bohm effect for interacting electrons in a ZnO quantum ring

    International Nuclear Information System (INIS)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk

    2017-01-01

    The electronic states and optical transitions of a ZnO quantum ring containing few interacting electrons in an applied magnetic field are found to be very different from those in a conventional semiconductor system, such as a GaAs ring. The strong Zeeman interaction and the Coulomb interaction of the ZnO system, two important characteristics of the electron system in ZnO, exert a profound influence on the electron states and on the optical properties of the ring. In particular, our results indicate that the Aharonov–Bohm (AB) effect in a ZnO quantum ring strongly depends on the electron number. In fact, for two electrons in the ZnO ring, the AB oscillations become aperiodic, while for three electrons (interacting) the AB oscillations completely disappear. Therefore, unlike in conventional quantum ring topology, here the AB effect (and the resulting persistent current) can be controlled by varying the electron number. (paper)

  8. On single-time reduction in quantum field theory

    International Nuclear Information System (INIS)

    Arkhipov, A.A.

    1984-01-01

    It is shown, how the causality and spectrality properties in qUantum field theory may help one to carry out a single-time reduction of the Bethe-Salpeter wave fUnction. The single-time reduction technique is not based on any concrete model of the quantum field theory. Axiomatic formulations underline the quantum field theory

  9. Half-metal phases in a quantum wire with modulated spin-orbit interaction

    Science.gov (United States)

    Cabra, D. C.; Rossini, G. L.; Ferraz, A.; Japaridze, G. I.; Johannesson, H.

    2017-11-01

    We propose a spin filter device based on the interplay of a modulated spin-orbit interaction and a uniform external magnetic field acting on a quantum wire. Half-metal phases, where electrons with only a selected spin polarization exhibit ballistic conductance, can be tuned by varying the magnetic field. These half-metal phases are proven to be robust against electron-electron repulsive interactions. Our results arise from a combination of explicit band diagonalization, bosonization techniques, and extensive density matrix renormalization group computations.

  10. From classical to quantum fields

    CERN Document Server

    Baulieu, Laurent; Sénéor, Roland

    2017-01-01

    Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a re...

  11. Free field theories of spin-mass trajectories and quantum electrodynamics in the null plane

    Energy Technology Data Exchange (ETDEWEB)

    Bart, G.R.; Fenster, S.

    1976-06-01

    The ten generators of the Poincare algebra for quantum electrodynamics and other gauge theories are given in the null plane. The explicit correspondence of their field-theoretic form to the Bacry-Chang group-theoretic form in the free case is pointed out. It is then noticed that the forms are independent of the spin and allow inclusion of charge quantum numbers at will, which indicates that they represent an advantageous free-particle starting point for a hadron theory with positive spin-mass trajectories (SMT) and with interaction. The internal oscillator content is extracted for both gauge theories and dual resonance models. Interactions are cubic and quartic in the fields. In the dual model they encompass the SMT, whereas no straightforward extension to SMT is possible for the manifestly covariant theories. The requirements of a field-theoretic SMT interaction are spelled out in an algebraic form which guarantees Poincare invariance; however no such interaction is yet known. The approach indicates how a realistic spectrum might be achieved without composite hadrons and incorporating full Poincare invariance.

  12. Free field theories of spin-mass trajectories and quantum electrodynamics in the null plane

    International Nuclear Information System (INIS)

    Bart, G.R.; Fenster, S.

    1976-06-01

    The ten generators of the Poincare algebra for quantum electrodynamics and other gauge theories are given in the null plane. The explicit correspondence of their field-theoretic form to the Bacry-Chang group-theoretic form in the free case is pointed out. It is then noticed that the forms are independent of the spin and allow inclusion of charge quantum numbers at will, which indicates that they represent an advantageous free-particle starting point for a hadron theory with positive spin-mass trajectories (SMT) and with interaction. The internal oscillator content is extracted for both gauge theories and dual resonance models. Interactions are cubic and quartic in the fields. In the dual model they encompass the SMT, whereas no straightforward extension to SMT is possible for the manifestly covariant theories. The requirements of a field-theoretic SMT interaction are spelled out in an algebraic form which guarantees Poincare invariance; however no such interaction is yet known. The approach indicates how a realistic spectrum might be achieved without composite hadrons and incorporating full Poincare invariance

  13. Quantum-field theories as representations of a single $^\\ast$-algebra

    OpenAIRE

    Raab, Andreas

    2013-01-01

    We show that many well-known quantum field theories emerge as representations of a single $^\\ast$-algebra. These include free quantum field theories in flat and curved space-times, lattice quantum field theories, Wightman quantum field theories, and string theories. We prove that such theories can be approximated on lattices, and we give a rigorous definition of the continuum limit of lattice quantum field theories.

  14. Axiomatic Quantum Field Theory in Terms of Operator Product Expansions: General Framework, and Perturbation Theory via Hochschild Cohomology

    Directory of Open Access Journals (Sweden)

    Stefan Hollands

    2009-09-01

    Full Text Available In this paper, we propose a new framework for quantum field theory in terms of consistency conditions. The consistency conditions that we consider are ''associativity'' or ''factorization'' conditions on the operator product expansion (OPE of the theory, and are proposed to be the defining property of any quantum field theory. Our framework is presented in the Euclidean setting, and is applicable in principle to any quantum field theory, including non-conformal ones. In our framework, we obtain a characterization of perturbations of a given quantum field theory in terms of a certain cohomology ring of Hochschild-type. We illustrate our framework by the free field, but our constructions are general and apply also to interacting quantum field theories. For such theories, we propose a new scheme to construct the OPE which is based on the use of non-linear quantized field equations.

  15. Test of quantum thermalization in the two-dimensional transverse-field Ising model

    Science.gov (United States)

    Blaß, Benjamin; Rieger, Heiko

    2016-01-01

    We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems. PMID:27905523

  16. Quantum coherence and quantum phase transition in the XY model with staggered Dzyaloshinsky-Moriya interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Ning-Ju [Department of Applied Physics, Xi' an University of Technology, Xi' an 710054 (China); Xu, Yang-Yang; Wang, Jicheng; Zhang, Yixin [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China); Hu, Zheng-Da, E-mail: huyuanda1112@jiangnan.edu.cn [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China)

    2017-04-01

    We investigate the properties of geometric quantum coherence in the XY spin-1/2 chain with staggered Dzyaloshinsky-Moriya interaction via the quantum renormalization-group approach. It is shown that the geometric quantum coherence and its coherence susceptibility are effective to detect the quantum phase transition. In the thermodynamic limit, the geometric quantum coherence exhibits a sudden jump. The coherence susceptibilities versus the anisotropy parameter and the Dzyaloshinsky-Moriya interaction are infinite and vanishing, respectively, illustrating the distinct roles of the anisotropy parameter and the Dzyaloshinsky-Moriya interaction in quantum phase transition. Moreover, we also explore the finite-size scaling behaviors of the coherence susceptibilities. For a finite-size chain, the coherence susceptibility versus the phase-transition parameter is always maximal at the critical point, indicating the dramatic quantum fluctuation. Besides, we show that the correlation length can be revealed by the scaling exponent for the coherence susceptibility versus the Dzyaloshinsky-Moriya interaction.

  17. Spin-orbit interaction in quantum dots and quantum wires of correlated electrons - a way to spintronics?

    International Nuclear Information System (INIS)

    Birkholz, Jens Eiko

    2008-01-01

    We study the influence of the spin-orbit interaction on the electronic transport through quantum dots and quantum wires of correlated electrons. Starting with a one-dimensional infinite continuum model without Coulomb interaction, we analyze the interplay of the spin-orbit interaction, an external magnetic field, and an external potential leading to currents with significant spin-polarization in appropriate parameter regimes. Since lattice models are known to often be superior to continuum models in describing the experimental situation of low-dimensional mesoscopic systems, we construct a lattice model which exhibits the same low-energy physics in terms of energy dispersion and spin expectation values. Confining the lattice to finite length and connecting it to two semi-infinite noninteracting Fermi liquid leads, we calculate the zero temperature linear conductance using the Landauer-Bttiker formalism and show that spin-polarization effects also evolve for the lattice model by adding an adequate potential structure and can be controlled by tuning the overall chemical potential of the system (quantum wire and leads). Next, we allow for a finite Coulomb interaction and use the functional renormalization group (fRG) method to capture correlation effects induced by the Coulomb interaction. The interacting system is thereby transformed into a noninteracting system with renormalized system parameters. For short wires (∝100 lattice sites), we show that the energy regime in which spin polarization is found is strongly affected by the Coulomb interaction. For long wires (>1000 lattice sites), we find the power-law suppression of the total linear conductance on low energy scales typical for inhomogeneous Luttinger liquids while the degree of spin polarization stays constant. Considering quantum dots which consist of two lattice sites, we observe the well-known Kondo effect and analyze, how the Kondo temperature is affected by the spin-orbit interaction. Moreover, we show

  18. Mathematical aspects of quantum field theories

    CERN Document Server

    Strobl, Thomas

    2015-01-01

    Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...

  19. Quantum field theory of point particles and strings

    CERN Document Server

    Hatfield, Brian

    1992-01-01

    The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.

  20. Nonequilibrium forces between neutral atoms mediated by a quantum field

    International Nuclear Information System (INIS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2010-01-01

    We study forces between two neutral atoms, modeled as three-dimensional harmonic oscillators, arising from mutual influences mediated by an electromagnetic field but not from their direct interactions. We allow as dynamical variables the center-of-mass motion of the atom, its internal degrees of freedom, and the quantum field treated relativistically. We adopt the method of nonequilibrium quantum field theory which can provide a first-principles, systematic, and unified description including the intrinsic and induced dipole fluctuations. The inclusion of self-consistent back-actions makes possible a fully dynamical description of these forces valid for general atom motion. In thermal equilibrium we recover the known forces--London, van der Waals, and Casimir-Polder--between neutral atoms in the long-time limit. We also reproduce a recently reported force between atoms when the system is out of thermal equilibrium at late times. More noteworthy is the discovery of the existence of a type of (or identification of the source of some known) interatomic force which we call the ''entanglement force,'' originating from the quantum correlations of the internal degrees of freedom of entangled atoms.

  1. General treatment of quantum and classical spinning particles in external fields

    Science.gov (United States)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2017-11-01

    We develop the general theory of spinning particles with electric and magnetic dipole moments moving in arbitrary electromagnetic, inertial, and gravitational fields. Both the quantum-mechanical and classical dynamics is investigated. We start from the covariant Dirac equation extended to a spin-1/2 fermion with anomalous magnetic and electric dipole moments and then perform the relativistic Foldy-Wouthuysen transformation. This transformation allows us to obtain the quantum-mechanical equations of motion for the physical operators in the Schrödinger form and to establish the classical limit of relativistic quantum mechanics. The results obtained are then compared to the general classical description of the spinning particle interacting with electromagnetic, inertial and gravitational fields. The complete agreement between the quantum mechanics and the classical theory is proven in the general case. As an application of the results obtained, we consider the dynamics of a spinning particle in a gravitational wave and analyze the prospects of using the magnetic resonance setup to find possible manifestations of the gravitational wave on spin.

  2. First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction

    International Nuclear Information System (INIS)

    Zhao Xiu-Qin; Liu Ni; Liang Jiu-Qing

    2017-01-01

    In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model’s ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength. (paper)

  3. Finite quantum field theories

    International Nuclear Information System (INIS)

    Lucha, W.; Neufeld, H.

    1986-01-01

    We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)

  4. On the embedding of quantum field theory on curved spacetimes into loop quantum gravity

    International Nuclear Information System (INIS)

    Stottmeister, Alexander

    2015-01-01

    The main theme of this thesis is an investigation into possible connections between loop quantum gravity and quantum field theory on curved spacetimes: On the one hand, we aim for the formulation of a general framework that allows for a derivation of quantum field theory on curved spacetimes in a semi-classical limit. On the other hand, we discuss representation-theoretical aspects of loop quantum gravity and quantum field theory on curved spacetimes as both of the latter presumably influence each other in the aforesaid semi-classical limit. Regarding the first point, we investigate the possible implementation of the Born-Oppenheimer approximation in the sense of space-adiabatic perturbation theory in models of loop quantum gravity-type. In the course of this, we argue for the need of a Weyl quantisation and an associated symbolic calculus for loop quantum gravity, which we then successfully define, at least to a certain extent. The compactness of the Lie groups, which models a la loop quantum gravity are based on, turns out to be a main obstacle to a fully satisfactory definition of a Weyl quantisation. Finally, we apply our findings to some toy models of linear scalar quantum fields on quantum cosmological spacetimes and discuss the implementation of space-adiabatic perturbation theory therein. In view of the second point, we start with a discussion of the microlocal spectrum condition for quantum fields on curved spacetimes and how it might be translated to a background-independent Hamiltonian quantum theory of gravity, like loop quantum gravity. The relevance of this lies in the fact that the microlocal spectrum condition selects a class of physically relevant states of the quantum matter fields and is, therefore, expected to play an important role in the aforesaid semi-classical limit of gravity-matter systems. Following this, we switch our perspective and analyse the representation theory of loop quantum gravity. We find some intriguing relations between the

  5. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.

    Science.gov (United States)

    He, Yong; Zhu, Ka-Di

    2017-06-20

    In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  6. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    Directory of Open Access Journals (Sweden)

    Yong He

    2017-06-01

    Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  7. Realization of vector fields for quantum groups as pseudodifferential operators on quantum spaces

    International Nuclear Information System (INIS)

    Chu, Chong-Sun; Zumino, B.

    1995-01-01

    The vector fields of the quantum Lie algebra are described for the quantum groups GL q (n), SL q (N) and SO q (N) as pseudodifferential operators on the linear quantum spaces covariant under the corresponding quantum group. Their expressions are simple and compact. It is pointed out that these vector fields satisfy certain characteristic polynomial identities. The real forms SU q (N) and SO q (N,R) are discussed in detail

  8. Quantum field theory in a semiotic perspective

    International Nuclear Information System (INIS)

    Dosch, H.G.

    2005-01-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)

  9. Quantum field theory in a semiotic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)

    2005-07-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)

  10. Quantum Field Theory in a Semiotic Perspective

    CERN Document Server

    Günter Dosch, Hans; Sieroka, Norman

    2005-01-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...

  11. Exciton-plasmon quantum metastates: self-induced oscillations of plasmon fields in the absence of decoherence in nanoparticle molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, S. M., E-mail: seyed.sadeghi@uah.edu [University of Alabama in Huntsville, Department of Physics and Nano and Mirco Device Center (United States)

    2016-02-15

    We investigate formation of unique quantum states (metastates) in quantum dot-metallic nanoparticle systems via self-induced coherent dynamics generated by interaction of these systems with a visible and an infrared laser fields. In such metastates, the quantum decoherence rates of the quantum dots can become zero and even negative while they start to rapidly change with time. Under these conditions, the energy dissipation rates and plasmon fields of the nanoparticle systems undergo undamped oscillations with gigahertz frequency, while the amplitudes of both visible and the infrared laser fields are considered to be time-independent. These dynamics also lead to variation of the plasmon absorption of the metallic nanoparticles between high and nearly zero values, forming electromagnetically induced transparency oscillations. We show that under these conditions, the effective transition energies and broadening of the quantum dots undergo oscillatory dynamics, highlighting the unique aspects of the metastates. These results extend the horizon for investigation of light-matter interaction in the presence of zero or negative polarization dephasing rates with strong time dependency.

  12. Generalized quantum sine-Gordon equation and its relation to the Thirring model in quantum field theory

    International Nuclear Information System (INIS)

    Skagerstam, B.K.

    1976-01-01

    We discuss a generalization of the conventional sine-Gordon quantum field theory by using methods recently developed by Coleman. As a result we can argue that the equivalence between the sine-Gordon theory and the massive Thirring model is unaffected if we perturb the sine-Gordon Hamiltonian by a bounded perturbation consisting of a continuous sum of sine-Gordon type interactions

  13. Reality, Causality, and Probability, from Quantum Mechanics to Quantum Field Theory

    Science.gov (United States)

    Plotnitsky, Arkady

    2015-10-01

    These three lectures consider the questions of reality, causality, and probability in quantum theory, from quantum mechanics to quantum field theory. They do so in part by exploring the ideas of the key founding figures of the theory, such N. Bohr, W. Heisenberg, E. Schrödinger, or P. A. M. Dirac. However, while my discussion of these figures aims to be faithful to their thinking and writings, and while these lectures are motivated by my belief in the helpfulness of their thinking for understanding and advancing quantum theory, this project is not driven by loyalty to their ideas. In part for that reason, these lectures also present different and even conflicting ways of thinking in quantum theory, such as that of Bohr or Heisenberg vs. that of Schrödinger. The lectures, most especially the third one, also consider new physical, mathematical, and philosophical complexities brought in by quantum field theory vis-à-vis quantum mechanics. I close by briefly addressing some of the implications of the argument presented here for the current state of fundamental physics.

  14. Quantum fields on manifolds: an interplay between quantum theory, statistical thermodynamics and general relativity

    International Nuclear Information System (INIS)

    Sewell, G.L.

    1986-01-01

    The author shows how the basic axioms of quantum field theory, general relativity and statistical thermodynamics lead, in a model-independent way, to a generalized Hawking-Unruh effect, whereby the gravitational fields carried by a class of space-time manifolds with event horizons thermalize ambient quantum fields. The author is concerned with a quantum field on a space-time x containing a submanifold X' bounded by event horizons. The objective is to show that, for a wide class of space-times, the global vacuum state of the field reduces, in X', to a thermal state, whose temperature depends on the geometry. The statistical thermodynaical, geometrical, and quantum field theoretical essential ingredients for the reduction of the vacuum state are discussed

  15. Quantum field inspired model of decision making: Asymptotic stabilization of belief state via interaction with surrounding mental environment

    OpenAIRE

    Bagarello, Fabio; Basieva, Irina; Khrennikov, Andrei

    2017-01-01

    This paper is devoted to justification of quantum-like models of the process of decision making based on the theory of open quantum systems, i.e. decision making is considered as decoherence. This process is modeled as interaction of a decision maker, Alice, with a mental (information) environment ${\\cal R}$ surrounding her. Such an interaction generates "dissipation of uncertainty" from Alice's belief-state $\\rho(t)$ into ${\\cal R}$ and asymptotic stabilization of $\\rho(t)$ to a steady belie...

  16. Relativistic quantum chaos-An emergent interdisciplinary field.

    Science.gov (United States)

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics-all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  17. Relativistic quantum chaos—An emergent interdisciplinary field

    Science.gov (United States)

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics—all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  18. A calculational scheme for nonequilibrium quantum field system

    International Nuclear Information System (INIS)

    Yamanaka, Y.

    1991-01-01

    A new calculational scheme is presented for interacting nonequi-librium time dependent quantum field systems within the framework of thermo field dynamics (TFD), taking account of the fact that the thermal vacuum should go through many inequivalent state vector spaces. A para-meter parametrizing various state vector spaces has to be introduced and plays a role of new time-variable. Thus we have double-time TFD. The 2 requirements in this double-time TFD are imposed to establish a quasi-particle picture to get an attainable scheme of perturbative calculation : the existence of the spectral representation for the full propagator and the diagonalization of the quasi-particle Hamiltonian. The 1st condition turns out to amount to the existence of local-time tempera-ture. The 2nd condition leads to the master equation for the number density. This formalism is applied to high-energy heavy ion collision process. The very fundamental question is then how the thermodynamical properties such as heat and temperature appear in such an isolated system. This double-time TFD, suitable for isolated thermal systems of quantum fields, can handle the situation from the beginning of the process. (author). 24 refs.; 1 fig

  19. Quantum Szilard Engine with Attractively Interacting Bosons

    Science.gov (United States)

    Bengtsson, J.; Tengstrand, M. Nilsson; Wacker, A.; Samuelsson, P.; Ueda, M.; Linke, H.; Reimann, S. M.

    2018-03-01

    We show that a quantum Szilard engine containing many bosons with attractive interactions enhances the conversion between information and work. Using an ab initio approach to the full quantum-mechanical many-body problem, we find that the average work output increases significantly for a larger number of bosons. The highest overshoot occurs at a finite temperature, demonstrating how thermal and quantum effects conspire to enhance the conversion between information and work. The predicted effects occur over a broad range of interaction strengths and temperatures.

  20. Quantum chaos and thermalization in isolated systems of interacting particles

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, F., E-mail: fausto.borgonovi@unicatt.it [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Universitá Cattolica, via Musei 41, 25121 Brescia, and INFN, Sezione di Pavia (Italy); Izrailev, F.M., E-mail: felix.izrailev@gmail.com [Instituto de Física, Universidad Autónoma de Puebla, Apt. Postal J-48, Puebla, Pue., 72570 (Mexico); NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); Santos, L.F., E-mail: lsantos2@yu.edu [Department of Physics, Yeshiva University, 245 Lexington Ave, New York, NY 10016 (United States); Zelevinsky, V.G., E-mail: Zelevins@nscl.msu.edu [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2016-04-15

    This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.

  1. Quantum fields at finite temperature and density

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1991-01-01

    These lectures are an elementary introduction to standard many-body techniques applied to the study of quantum fields at finite temperature and density: perturbative expansion, linear response theory, quasiparticles and their interactions, etc... We emphasize the usefulness of the imaginary time formalism in a wide class of problems, as opposed to many recent approaches based on real time. Properties of elementary excitations in an ultrarelativistic plasma at high temperature or chemical potential are discussed, and recent progresses in the study of the quark-gluon plasma are briefly reviewed

  2. Quantum computer based on activated dielectric nanoparticles selectively interacting with short optical pulses

    International Nuclear Information System (INIS)

    Gadomskii, Oleg N; Kharitonov, Yu Ya

    2004-01-01

    The operation principle of a quantum computer is proposed based on a system of dielectric nanoparticles activated with two-level atoms - cubits, in which electric dipole transitions are excited by short intense optical pulses. It is proved that the logical operation (logical operator) CNOT (controlled NOT) is performed by means of time-dependent transfer of quantum information over 'long' (of the order of 10 4 nm) distances between spherical nanoparticles owing to the delayed interaction between them in the optical radiation field. It is shown that one-cubit and two-cubit logical operators required for quantum calculations can be realised by selectively exciting dielectric particles with short optical pulses. (quantum calculations)

  3. Quantum field in η-ξ spacetime

    International Nuclear Information System (INIS)

    Gui, Y.

    1990-01-01

    A new spacetime, η-ξ spacetime, is constructed. The quantum field in η-ξ spacetime is discussed. It is shown that the vacuum state of quantum field in η-ξ spacetime is a thermal state for an inertial observer in Minkowski spacetime, and the vacuum Green's functions in η-ξ spacetime are just the thermal Green's functions in usual statistical mechanics

  4. Antenna–load interactions at optical frequencies: impedance matching to quantum systems

    International Nuclear Information System (INIS)

    Olmon, R L; Raschke, M B

    2012-01-01

    The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of, e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true optical antenna would, on a qualitatively new level, control the light–matter interaction on the nanoscale for controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the RF, where exact design rules for antennas, waveguides, and antenna–load matching in terms of their impedances are well established, substantial physical differences limit the simple extension of the RF concepts into the optical regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals, metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational, electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is currently challenged at all the levels of design, fabrication, and characterization. Here we generalize the ideal antenna–load interaction at optical frequencies, characterized by three main steps: (i) far-field reception of a propagating mode exciting an

  5. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.

    Science.gov (United States)

    Olmon, R L; Raschke, M B

    2012-11-09

    The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of, e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true optical antenna would, on a qualitatively new level, control the light-matter interaction on the nanoscale for controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the RF, where exact design rules for antennas, waveguides, and antenna-load matching in terms of their impedances are well established, substantial physical differences limit the simple extension of the RF concepts into the optical regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals, metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational, electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is currently challenged at all the levels of design, fabrication, and characterization. Here we generalize the ideal antenna-load interaction at optical frequencies, characterized by three main steps: (i) far-field reception of a propagating mode exciting an antenna

  6. BOOK REVIEW: Quantum Field Theory in a Nutshell (2nd edn) Quantum Field Theory in a Nutshell (2nd edn)

    Science.gov (United States)

    Peskin, Michael E.

    2011-04-01

    Anthony Zee is not only a leading theoretical physicist but also an author of popular books on both physics and non-physics topics. I recommend especially `Swallowing Clouds', on Chinese cooking and its folklore. Thus, it is not surprising that his textbook has a unique flavor. Derivations end, not with `QED' but with exclamation points. At the end of one argument, we read `Vive Cauchy!', in another `the theorem practically exudes generality'. This is quantum field theory taught at the knee of an eccentric uncle; one who loves the grandeur of his subject, has a keen eye for a slick argument, and is eager to share his repertoire of anecdotes about Feynman, Fermi, and all of his heroes. A one-page section entitled `Electric Charge' illustrates the depth and tone of the book. In the previous section, Zee has computed the Feynman diagram responsible for vacuum polarization, in which a photon converts briefly to a virtual electron-positron pair. In the first paragraph, he evaluates this expression, giving a concrete formula for the momentum-dependence of the electric charge, an important effect of quantum field theory. Next, he dismisses other possible diagrams that could affect the value of the electric charge. Most authors would give an explicit argument that these diagrams cancel, but for Zee it is more important to make the point that this result is expected and, from the right point of view, obvious. Finally, he discusses the implications for the relative size of the charges of the electron and the proton. If the magnitudes of charges are affected by interactions, and the proton has strong interactions but the electron does not, can it make sense that the charges of the proton and the electron are exactly equal and opposite? The answer is yes, and also that this was the real point of the whole derivation. The book takes on the full range of topics covered in typical graduate course in quantum field theory, and many additional topics: magnetic monopoles, solitons

  7. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    Science.gov (United States)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical

  8. Strongly interacting matter in magnetic fields

    CERN Document Server

    Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung

    2013-01-01

    The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...

  9. A New Finslerian Unified Field Theory of Physical Interactions

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2009-10-01

    Full Text Available In this work, we shall present the foundational structure of a new unified field theory of physical interactions in a geometric world-space endowed with a new kind of Finslerian metric. The intrinsic non-metricity in the structure of our world-geometry may have direct, genuine connection with quantum mechanics, which is yet to be fully explored at present. Building upon some of the previous works of the Author, our ultimate aim here is yet another quantum theory of gravity (in just four space-time dimensions. Our resulting new theory appears to present us with a novel Eulerian (intrinsically motion-dependent world-geometry in which the physical fields originate.

  10. Field dependence of the electron spin relaxation in quantum dots.

    Science.gov (United States)

    Calero, Carlos; Chudnovsky, E M; Garanin, D A

    2005-10-14

    The interaction of the electron spin with local elastic twists due to transverse phonons is studied. The universal dependence of the spin-relaxation rate on the strength and direction of the magnetic field is obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid. The theory contains no unknown parameters and it can be easily tested in experiment. At high magnetic field it provides a parameter-free lower bound on the electron spin relaxation in quantum dots.

  11. Processes of arbitrary order in quantum electrodynamics with a pair-creating external field

    International Nuclear Information System (INIS)

    Gitman, D.M.

    1977-01-01

    Dyson's perturbation theory analogue for quantum electrodynamical processes with arbitrary initial and final states in an external field creating pairs is discussed. The interaction with the field is taken into account exactly. The possibility of using Feynman diagrams, together with modified correspondence rules, for the representation of the above mentioned processes is demonstrated. (author)

  12. Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology

    CERN Document Server

    Barvinsky, A O

    2015-01-01

    This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter stage of cosmological evolution at an arbitrary value of $\\varLambda$ -- a model of dark energy with its scale played by the dynamical variable that can be fixed by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of gravity theory mediated by a scala...

  13. Designing learning environments to teach interactive Quantum Physics

    NARCIS (Netherlands)

    Gómez Puente, S.M.; Swagten, H.J.M.

    2012-01-01

    This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and

  14. Numerical calculations in quantum field theories

    International Nuclear Information System (INIS)

    Rebbi, C.

    1984-01-01

    Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references

  15. Interaction Induced Quantum Valley Hall Effect in Graphene

    Directory of Open Access Journals (Sweden)

    E. C. Marino

    2015-03-01

    Full Text Available We use pseudo-quantum electrodynamics in order to describe the full electromagnetic interaction of the p electrons in graphene in a consistent 2D formulation. We first consider the effect of this interaction in the vacuum polarization tensor or, equivalently, in the current correlator. This allows us to obtain the T→0 conductivity after a smooth zero-frequency limit is taken in Kubo’s formula. Thereby, we obtain the usual expression for the minimal conductivity plus corrections due to the interaction that bring it closer to the experimental value. We then predict the onset of an interaction-driven spontaneous quantum valley Hall effect below an activation temperature of the order of 2 K. The transverse (Hall valley conductivity is evaluated exactly and shown to coincide with the one in the usual quantum Hall effect. Finally, by considering the effects of pseudo-quantum electrodynamics, we show that the electron self-energy is such that a set of P- and T-symmetric gapped electron energy eigenstates are dynamically generated, in association with the quantum valley Hall effect.

  16. Generating functionals for quantum field theories with random potentials

    International Nuclear Information System (INIS)

    Jain, Mudit; Vanchurin, Vitaly

    2016-01-01

    We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include cosmological systems in context of the string theory landscape (e.g. cosmic inflation) or condensed matter systems with quenched disorder (e.g. spin glass). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.

  17. Decoherence of quantum fields: Pointer states and predictability

    International Nuclear Information System (INIS)

    Anglin, J.R.; Zurek, W.H.

    1996-01-01

    We study environmentally induced decoherence of an electromagnetic field in a homogeneous, linear, dielectric medium. We derive an independent oscillator model for such an environment, which is sufficiently realistic to encompass essentially all linear physical optics. Applying the open-quote open-quote predictability sieve close-quote close-quote to the quantum field, and introducing the concept of a open-quote open-quote quantum halo,close-quote close-quote we recover the familiar dichotomy between background field configurations and photon excitations around them. We are then able to explain why a typical linear environment for the electromagnetic field will effectively render the former classically distinct, but leave the latter fully quantum mechanical. Finally, we suggest how and why quantum matter fields should suffer a very different form of decoherence. copyright 1996 The American Physical Society

  18. Quantum ring with the Rashba spin-orbit interaction in the regime of strong light-matter coupling

    Science.gov (United States)

    Kozin, V. K.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.

    2018-04-01

    We developed the theory of electronic properties of semiconductor quantum rings with the Rashba spin-orbit interaction irradiated by an off-resonant high-frequency electromagnetic field (dressing field). Within the Floquet theory of periodically driven quantum systems, it is demonstrated that the dressing field drastically modifies all electronic characteristics of the rings, including spin-orbit coupling, effective electron mass, and optical response. In particular, the present effect paves the way to controlling the spin polarization of electrons with light in prospective ring-shaped spintronic devices.

  19. Quantum noise in the mirror–field system: A field theoretic approach

    International Nuclear Information System (INIS)

    Hsiang, Jen-Tsung; Wu, Tai-Hung; Lee, Da-Shin; King, Sun-Kun; Wu, Chun-Hsien

    2013-01-01

    We revisit the quantum noise problem in the mirror–field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror’s displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation–dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror. - Highlights: ► The quantum noise problem in the mirror–field system is re-visited by a field-theoretic approach. ► Other than the shot noise and radiation pressure noise, we show there are new sources of noise and correlation between them. ► The noise correlations can be used to suppress the overall quantum noise on the mirror.

  20. Quantum noise in the mirror-field system: A field theoretic approach

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang, Jen-Tsung, E-mail: cosmology@gmail.com [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); Wu, Tai-Hung [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); Lee, Da-Shin, E-mail: dslee@mail.ndhu.edu.tw [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); King, Sun-Kun [Institutes of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan, ROC (China); Wu, Chun-Hsien [Department of Physics, Soochow University, Taipei, Taiwan, ROC (China)

    2013-02-15

    We revisit the quantum noise problem in the mirror-field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror's displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation-dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror. - Highlights: Black-Right-Pointing-Pointer The quantum noise problem in the mirror-field system is re-visited by a field-theoretic approach. Black-Right-Pointing-Pointer Other than the shot noise and radiation pressure noise, we show there are new sources of noise and correlation between them. Black-Right-Pointing-Pointer The noise

  1. Pilot-wave approaches to quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Struyve, Ward, E-mail: Ward.Struyve@fys.kuleuven.be [Institute of Theoretical Physics, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Institute of Philosophy, K.U.Leuven, Kardinaal Mercierplein 2, B-3000 Leuven (Belgium)

    2011-07-08

    The purpose of this paper is to present an overview of recent work on pilot-wave approaches to quantum field theory. In such approaches, systems are not only described by their wave function, as in standard quantum theory, but also by some additional variables. In the non-relativistic pilot-wave theory of deBroglie and Bohm those variables are particle positions. In the context of quantum field theory, there are two natural choices, namely particle positions and fields. The incorporation of those variables makes it possible to provide an objective description of nature in which rather ambiguous notions such as 'measurement' and 'observer' play no fundamental role. As such, the theory is free of the conceptual difficulties, such as the measurement problem, that plague standard quantum theory.

  2. Magnetization of a parabolic quantum dot in the presence of Rashba and Dresselhaus spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D. Sanjeev, E-mail: sanjeevchs@gmail.com; Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, Soma [Department of Physics, DVR College of Engineering and Technology, Kashipur, Sangareddy Mandal, Hyderabad 502 285 (India)

    2015-05-15

    The magnetization of a parabolic quantum dot has been studied as a function of temperature and external magnetic field in the presence of Rashba, Dresselhaus Spin Orbit Interactions (SOI) and the electron-electron interactions. By the introduction of a simple and physically reasonable model potential, the problem has been solved exactly up to second order in both the SOI terms. Both the SOI found to be showing considerable effects on the magnetization of the quantum dot. The effect of electron-electron interaction on the magnetization also has been studied.

  3. Magnetization of a parabolic quantum dot in the presence of Rashba and Dresselhaus spin-orbit interactions

    International Nuclear Information System (INIS)

    Kumar, D. Sanjeev; Chatterjee, Ashok; Mukhopadhyay, Soma

    2015-01-01

    The magnetization of a parabolic quantum dot has been studied as a function of temperature and external magnetic field in the presence of Rashba, Dresselhaus Spin Orbit Interactions (SOI) and the electron-electron interactions. By the introduction of a simple and physically reasonable model potential, the problem has been solved exactly up to second order in both the SOI terms. Both the SOI found to be showing considerable effects on the magnetization of the quantum dot. The effect of electron-electron interaction on the magnetization also has been studied

  4. Quantum field theory and the standard model

    CERN Document Server

    Schwartz, Matthew D

    2014-01-01

    Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...

  5. Quantum field theory for the gifted amateur

    CERN Document Server

    Lancaster, Tom

    2014-01-01

    Quantum field theory is arguably the most far-reaching and beautiful physical theory ever constructed, with aspects more stringently tested and verified to greater precision than any other theory in physics. Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in ...

  6. Coulomb effects on the transport properties of quantum dots in strong magnetic field

    International Nuclear Information System (INIS)

    Moldoveanu, V.; Aldea, A.; Manolescu, A.; Nita, M.

    2000-08-01

    We investigate the transport properties of quantum dots placed in strong magnetic field using a quantum-mechanical approach based on the 2D tight-binding Hamiltonian with direct Coulomb interaction and the Landauer-Buettiker (LB) formalism. The electronic transmittance and the Hall resistance show Coulomb oscillations and also prove multiple addition processes. We identify this feature as the 'bunching' of electrons observed in recent experiments and give an elementary explanation in terms of spectral characteristics of the dot. The spatial distribution of the added electrons may distinguish between edge and bulk states and it has specific features for bunched electrons. The dependence of the charging energy on the number of electrons is discussed for strong magnetic field. The crossover from the tunneling to quantum Hall regime is analyzed in terms of dot-lead coupling. (author)

  7. open-quotes Interaction-freeclose quotes measurements of quantum objects?

    International Nuclear Information System (INIS)

    White, A.G.; Kwiat, P.G.; James, D.F.

    1999-01-01

    It is now well established that the presence of an opaque classical object can be unambiguously determined by an open-quotes interaction-freeclose quotes measurement (IFM), where the object and the probe never directly interact. For quantum objects, we examine open-quotes interaction-freeclose quotes measurement (the object wavefunction is unchanged) and open-quotes interaction-freeclose quotes preparation (the object wavefunction is changed without physical interaction) and find that in general, neither is possible. We propose using high efficiency IFM close-quote s as a quantum information bus to connect disjoint quantum systems. copyright 1999 American Institute of Physics

  8. A Dirac sea pilot-wave model for quantum field theory

    International Nuclear Information System (INIS)

    Colin, S; Struyve, W

    2007-01-01

    We present a pilot-wave model for quantum field theory in which the Dirac sea is taken seriously. The model ascribes particle trajectories to all the fermions, including the fermions filling the Dirac sea. The model is deterministic and applies to the regime in which fermion number is superselected. This work is a further elaboration of work by Colin, in which a Dirac sea pilot-wave model is presented for quantum electrodynamics. We extend his work to non-electromagnetic interactions, we discuss a cut-off regularization of the pilot-wave model and study how it reproduces the standard quantum predictions. The Dirac sea pilot-wave model can be seen as a possible continuum generalization of a lattice model by Bell. It can also be seen as a development and generalization of the ideas by Bohm, Hiley and Kaloyerou, who also suggested the use of the Dirac sea for the development of a pilot-wave model for quantum electrodynamics

  9. Probing a quantum field in a photon box

    International Nuclear Information System (INIS)

    Raimond, J M; Meunier, T; Bertet, P; Gleyzes, S; Maioli, P; Auffeves, A; Nogues, G; Brune, M; Haroche, S

    2005-01-01

    Einstein often performed thought experiments with 'photon boxes', storing fields for unlimited times. This is yet but a dream. We can nevertheless store quantum microwave fields in superconducting cavities for billions of periods. Using circular Rydberg atoms, it is possible to probe in a very detailed way the quantum state of these trapped fields. Cavity quantum electrodynamics tools can be used for a direct determination of the Husimi Q and Wigner quasi-probability distributions. They provide a very direct insight into the classical or non-classical nature of the field

  10. Boundaries immersed in a scalar quantum field

    International Nuclear Information System (INIS)

    Actor, A.A.; Bender, I.

    1996-01-01

    We study the interaction between a scalar quantum field φ(x), and many different boundary configurations constructed from (parallel and orthogonal) thin planar surfaces on which φ(x) is constrained to vanish, or to satisfy Neumann conditions. For most of these boundaries the Casimir problem has not previously been investigated. We calculate the canonical and improved vacuum stress tensors left angle T μv (x) right angle and left angle direct difference μv (x) right angle of φ(x) for each example. From these we obtain the local Casimir forces on all boundary planes. For massless fields, both vacuum stress tensors yield identical attractive local Casimir forces in all Dirichlet examples considered. This desirable outcome is not a priori obvious, given the quite different features of left angle T μv (x) right angle and left angle direct difference μv (x) right angle. For Neumann conditions, left angle T μv (x) right angle and left angle direct difference μv (x) right angle lead to attractive Casimir stresses which are not always the same. We also consider Dirichlet and Neumann boundaries immersed in a common scalar quantum field, and find that these repel. The extensive catalogue of worked examples presented here belongs to a large class of completely solvable Casimir problems. Casimir forces previously unknown are predicted, among them ones which might be measurable. (orig.)

  11. Quantum rings in magnetic fields and spin current generation.

    Science.gov (United States)

    Cini, Michele; Bellucci, Stefano

    2014-04-09

    We propose three different mechanisms for pumping spin-polarized currents in a ballistic circuit using a time-dependent magnetic field acting on an asymmetrically connected quantum ring at half filling. The first mechanism works thanks to a rotating magnetic field and produces an alternating current with a partial spin polarization. The second mechanism works by rotating the ring in a constant field; like the former case, it produces an alternating charge current, but the spin current is dc. Both methods do not require a spin-orbit interaction to achieve the polarized current, but the rotating ring could be used to measure the spin-orbit interaction in the ring using characteristic oscillations. On the other hand, the last mechanism that we propose depends on the spin-orbit interaction in an essential way, and requires a time-dependent magnetic field in the plane of the ring. This arrangement can be designed to pump a purely spin current. The absence of a charge current is demonstrated analytically. Moreover, a simple formula for the current is derived and compared with the numerical results.

  12. Relativistic n-body wave equations in scalar quantum field theory

    International Nuclear Information System (INIS)

    Emami-Razavi, Mohsen

    2006-01-01

    The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields

  13. Model of Dirac field interacting with material plane within Symanzik’s approach

    Directory of Open Access Journals (Sweden)

    Pismak Yu. M.

    2016-01-01

    Full Text Available The model for the interaction of a spinor field with a material plane is constructed in the framework of the Symanzik’s approach. The characteristics of scattering process of Dirac particles on the plane are calculated. The bounced states localized near the plane are investigated.The model can find application to a wide class of phenomena arising by the interaction of quantum electrodynamics fields with two-dimensional materials.

  14. Field-emission from quantum-dot-in-perovskite solids.

    Science.gov (United States)

    García de Arquer, F Pelayo; Gong, Xiwen; Sabatini, Randy P; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-03-24

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 10 12 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission.

  15. Quantum field theory in a nutshell

    CERN Document Server

    Zee, A

    2010-01-01

    Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading

  16. Morse theory interpretation of topological quantum field theories

    International Nuclear Information System (INIS)

    Labastida, J.M.F.

    1989-01-01

    Topological quantum field theories are interpreted as a generalized form of Morse theory. This interpretation is applied to formulate the simplest topological quantum field theory: Topological quantum mechanics. The only non-trivial topological invariant corresponding to this theory is computed and identified with the Euler characteristic. Using field theoretical methods this topological invariant is calculated in different ways and in the process a proof of the Gauss-Bonnet-Chern-Avez formula as well as some results of degenerate Morse theory are obtained. (orig.)

  17. Early germs of quantum field theory in the history of quantum physics

    International Nuclear Information System (INIS)

    Hund, F.

    1983-01-01

    The main concepts of quantum electrodynamics: duality of fields and particles, field quanta, antiparticles, creation and annihilation of particles, reactions based on a coupling, these concepts are common for all quantum field theory. Roots and germs of them we find already in the early history of quantum physics. Up to creation and physical understanding of quantum mechanics (1927) we can distinguish three steps. The first, ranging from black body radiation to specific heat (1900-1913) was essentially low temperature physics; h became the natural unity for counting cases in statistics. The second step was search for atomic mechanics (19131925): it was guided by a special law of atomic spectra, the combination principle ν=F (n,1...) - F (n',1'...); The third step (1923-1927), De Broglie's transfer of duality from light to matter, Schrodinger's equation, the concept of probability amplitudes, led to a general mathematical formalism and its physical understanding. During the first of these historical steps duality of light was detected and a sort of quantization of the light field took place; during the second step this duality remained in the background; during the third step duality of light and matter were seen as the center of quantum physics

  18. Designing Learning Environments to Teach Interactive Quantum Physics

    Science.gov (United States)

    Puente, Sonia M. Gomez; Swagten, Henk J. M.

    2012-01-01

    This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small…

  19. Game Theoretic Interaction and Decision: A Quantum Analysis

    Directory of Open Access Journals (Sweden)

    Ulrich Faigle

    2017-11-01

    Full Text Available An interaction system has a finite set of agents that interact pairwise, depending on the current state of the system. Symmetric decomposition of the matrix of interaction coefficients yields the representation of states by self-adjoint matrices and hence a spectral representation. As a result, cooperation systems, decision systems and quantum systems all become visible as manifestations of special interaction systems. The treatment of the theory is purely mathematical and does not require any special knowledge of physics. It is shown how standard notions in cooperative game theory arise naturally in this context. In particular, states of general interaction systems are seen to arise as linear superpositions of pure quantum states and Fourier transformation to become meaningful. Moreover, quantum games fall into this framework. Finally, a theory of Markov evolution of interaction states is presented that generalizes classical homogeneous Markov chains to the present context.

  20. A model of adaptive decision-making from representation of information environment by quantum fields

    Science.gov (United States)

    Bagarello, F.; Haven, E.; Khrennikov, A.

    2017-10-01

    We present the mathematical model of decision-making (DM) of agents acting in a complex and uncertain environment (combining huge variety of economical, financial, behavioural and geopolitical factors). To describe interaction of agents with it, we apply the formalism of quantum field theory (QTF). Quantum fields are a purely informational nature. The QFT model can be treated as a far relative of the expected utility theory, where the role of utility is played by adaptivity to an environment (bath). However, this sort of utility-adaptivity cannot be represented simply as a numerical function. The operator representation in Hilbert space is used and adaptivity is described as in quantum dynamics. We are especially interested in stabilization of solutions for sufficiently large time. The outputs of this stabilization process, probabilities for possible choices, are treated in the framework of classical DM. To connect classical and quantum DM, we appeal to Quantum Bayesianism. We demonstrate the quantum-like interference effect in DM, which is exhibited as a violation of the formula of total probability, and hence the classical Bayesian inference scheme. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  1. A model of adaptive decision-making from representation of information environment by quantum fields.

    Science.gov (United States)

    Bagarello, F; Haven, E; Khrennikov, A

    2017-11-13

    We present the mathematical model of decision-making (DM) of agents acting in a complex and uncertain environment (combining huge variety of economical, financial, behavioural and geopolitical factors). To describe interaction of agents with it, we apply the formalism of quantum field theory (QTF). Quantum fields are a purely informational nature. The QFT model can be treated as a far relative of the expected utility theory, where the role of utility is played by adaptivity to an environment (bath). However, this sort of utility-adaptivity cannot be represented simply as a numerical function. The operator representation in Hilbert space is used and adaptivity is described as in quantum dynamics. We are especially interested in stabilization of solutions for sufficiently large time. The outputs of this stabilization process, probabilities for possible choices, are treated in the framework of classical DM. To connect classical and quantum DM, we appeal to Quantum Bayesianism. We demonstrate the quantum-like interference effect in DM, which is exhibited as a violation of the formula of total probability, and hence the classical Bayesian inference scheme.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).

  2. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

    Science.gov (United States)

    Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

    2007-04-01

    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

  3. Optimising stochastic trajectories in exact quantum jump approaches of interacting systems

    International Nuclear Information System (INIS)

    Lacroix, D.

    2004-11-01

    The standard methods used to substitute the quantum dynamics of two interacting systems by a quantum jump approach based on the Stochastic Schroedinger Equation (SSE) are described. It turns out that for a given situation, there exists an infinite number of SSE reformulation. This fact is used to propose general strategies to optimise the stochastic paths in order to reduce the statistical fluctuations. In this procedure, called the 'adaptative noise method', a specific SSE is obtained for which the noise depends explicitly on both the initial state and on the properties of the interaction Hamiltonian. It is also shown that this method can be further improved by the introduction of a mean-field dynamics. The different optimisation procedures are illustrated quantitatively in the case of interacting spins. A significant reduction of the statistical fluctuations is obtained. Consequently, a much smaller number of trajectories is needed to accurately reproduce the exact dynamics as compared to the standard SSE method. (author)

  4. Detection and Control of Spin-Orbit Interactions in a GaAs Hole Quantum Point Contact

    Science.gov (United States)

    Srinivasan, A.; Miserev, D. S.; Hudson, K. L.; Klochan, O.; Muraki, K.; Hirayama, Y.; Reuter, D.; Wieck, A. D.; Sushkov, O. P.; Hamilton, A. R.

    2017-04-01

    We investigate the relationship between the Zeeman interaction and the inversion-asymmetry-induced spin-orbit interactions (Rashba and Dresselhaus SOIs) in GaAs hole quantum point contacts. The presence of a strong SOI results in the crossing and anticrossing of adjacent spin-split hole subbands in a magnetic field. We demonstrate theoretically and experimentally that the anticrossing energy gap depends on the interplay between the SOI terms and the highly anisotropic hole g tensor and that this interplay can be tuned by selecting the crystal axis along which the current and magnetic field are aligned. Our results constitute the independent detection and control of the Dresselhaus and Rashba SOIs in hole systems, which could be of importance for spintronics and quantum information applications.

  5. Exploring Interacting Quantum Many-Body Systems by Experimentally Creating Continuous Matrix Product States in Superconducting Circuits

    Directory of Open Access Journals (Sweden)

    C. Eichler

    2015-12-01

    Full Text Available Improving the understanding of strongly correlated quantum many-body systems such as gases of interacting atoms or electrons is one of the most important challenges in modern condensed matter physics, materials research, and chemistry. Enormous progress has been made in the past decades in developing both classical and quantum approaches to calculate, simulate, and experimentally probe the properties of such systems. In this work, we use a combination of classical and quantum methods to experimentally explore the properties of an interacting quantum gas by creating experimental realizations of continuous matrix product states—a class of states that has proven extremely powerful as a variational ansatz for numerical simulations. By systematically preparing and probing these states using a circuit quantum electrodynamics system, we experimentally determine a good approximation to the ground-state wave function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum system, this approach has the potential to apply to a variety of models including those involving multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring general properties of matrix product states and entanglement theory. The scheme presented here is applicable to a broad range of systems exploiting strong and tunable light-matter interactions.

  6. Field emission from finite barrier quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Biswas Sett, Shubhasree, E-mail: shubhasree24@gmail.com [The Institution of Engineers - India, 8, Gokhale Road, Kolkata 700 020 (India); Bose, Chayanika, E-mail: chayanikab@ieee.org [Electronics and Telecommunication Engg. Dept., Jadavpur University, Kolkata 700 032 (India)

    2014-10-01

    We study field emission from various finite barrier quasi-low dimensional structures, taking image force into account. To proceed, we first formulate an expression for field emission current density from a quantum dot. Transverse dimensions of the dot are then increased in turn, to obtain current densities respectively from quantum wire and quantum well with infinite potential energy barriers. To find out field emission from finite barrier structures, the above analysis is followed with a correction in the energy eigen values. In course, variations of field emission current density with strength of the applied electric field and structure dimensions are computed considering n-GaAs and n-GaAs/Al{sub x}Ga{sub 1−x}As as the semiconductor materials. In each case, the current density is found to increase exponentially with the applied field, while it oscillates with structure dimensions. The magnitude of the emission current is less when the image force is not considered, but retains the similar field dependence. In all cases, the field emission from infinite barrier structures exceeds those from respective finite barrier ones.

  7. Some comments on rigorous quantum field path integrals in the analytical regularization scheme

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Luiz C.L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Matematica Aplicada]. E-mail: botelho.luiz@superig.com.br

    2008-07-01

    Through the systematic use of the Minlos theorem on the support of cylindrical measures on R{sup {infinity}}, we produce several mathematically rigorous path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of the Laplacian operator. (author)

  8. Some comments on rigorous quantum field path integrals in the analytical regularization scheme

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    2008-01-01

    Through the systematic use of the Minlos theorem on the support of cylindrical measures on R ∞ , we produce several mathematically rigorous path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of the Laplacian operator. (author)

  9. Dirac, Jordan and quantum fields

    International Nuclear Information System (INIS)

    Darrigol, O.

    1985-01-01

    The case of two principal physicists of quantum mechanics is specially chose: Paul Dirac and Pascual Jordan. They gave a signification and an importance very different to the notion of quantum field, and in particular to the quantized matter wave one. Through their formation and motivation differences, such as they are expressed in their writings, this deep difference is tentatively understood [fr

  10. Magnetic quantum tunneling: key insights from multi-dimensional high-field EPR.

    Science.gov (United States)

    Lawrence, J; Yang, E-C; Hendrickson, D N; Hill, S

    2009-08-21

    Multi-dimensional high-field/frequency electron paramagnetic resonance (HFEPR) spectroscopy is performed on single-crystals of the high-symmetry spin S = 4 tetranuclear single-molecule magnet (SMM) [Ni(hmp)(dmb)Cl](4), where hmp(-) is the anion of 2-hydroxymethylpyridine and dmb is 3,3-dimethyl-1-butanol. Measurements performed as a function of the applied magnetic field strength and its orientation within the hard-plane reveal the four-fold behavior associated with the fourth order transverse zero-field splitting (ZFS) interaction, (1/2)B(S + S), within the framework of a rigid spin approximation (with S = 4). This ZFS interaction mixes the m(s) = +/-4 ground states in second order of perturbation, generating a sizeable (12 MHz) tunnel splitting, which explains the fast magnetic quantum tunneling in this SMM. Meanwhile, multi-frequency measurements performed with the field parallel to the easy-axis reveal HFEPR transitions associated with excited spin multiplets (S spin s = 1 Ni(II) ions within the cluster, as well as a characterization of the ZFS within excited states. The combined experimental studies support recent work indicating that the fourth order anisotropy associated with the S = 4 state originates from second order ZFS interactions associated with the individual Ni(II) centers, but only as a result of higher-order processes that occur via S-mixing between the ground state and higher-lying (S spin multiplets. We argue that this S-mixing plays an important role in the low-temperature quantum dynamics associated with many other well known SMMs.

  11. Non-local charges in local quantum field theory

    International Nuclear Information System (INIS)

    Buchholz, D.; Lopuszanski, J.T.; Rabsztyn, S.

    1985-05-01

    Non-local charges are studied in the general setting of local quantum field theory. It is shown, that these charges can be represented as polynomials in the incoming respectively outgoing fields with coefficients (kernels) which are subject to specific constraints. For the restricted class of models of a scalar, massive, self interacting particle in four dimensions, a more detailed analysis shows that all non-local charges of the generic type (genus 2) are products of generators of the Poincare group. This analysis, which is based on the macroscopic causality properties of the S-matrix, seems to indicate that less trivial examples of non-local charges can only exist in two dimensions. (orig.)

  12. Coarse grainings and irreversibility in quantum field theory

    International Nuclear Information System (INIS)

    Anastopoulos, C.

    1997-01-01

    In this paper we are interested in studying coarse graining in field theories using the language of quantum open systems. Motivated by the ideas of Hu and Calzetta on correlation histories we employ the Zwanzig projection technique to obtain evolution equations for relevant observables in self-interacting scalar field theories. Our coarse-graining operation consists in concentrating solely on the evolution of the correlation functions of degree less than n, a treatment which corresponds to the familiar truncation of the BBKGY hierarchy at the nth level. We derive the equations governing the evolution of mean-field and two-point functions thus identifying the terms corresponding to dissipation and noise. We discuss possible applications of our formalism, the emergence of classical behavior, and the connection to the decoherent histories framework. copyright 1997 The American Physical Society

  13. Spin interactions in InAs quantum dots and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Doty, M.F.; Ware, M.E.; Stinaff, E.A.; Scheibner, M.; Bracker, A.S.; Ponomarev, I.V.; Badescu, S.C.; Reinecke, T.L.; Gammon, D. [Naval Research Lab, Washington, DC 20375 (United States); Korenev, V.L. [A.F. Ioffe Physical Technical Institute, St. Petersburg 194021 (Russian Federation)

    2006-12-15

    Spin interactions between particles in quantum dots or quantum dot molecules appear as fine structure in the photoluminescence spectra. Using the understanding of exchange interactions that has been developed from single dot spectra, we analyze the spin signatures of coupled quantum dots separated by a wide barrier such that inter-dot interactions are negligible. We find that electron-hole exchange splitting is directly evident. In dots charged with an excess hole, an effective hole-hole interaction can be turned on through tunnel coupling. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Field induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion in a quantum antiferromagnet.

    Science.gov (United States)

    Hong, Tao; Qiu, Y; Matsumoto, M; Tennant, D A; Coester, K; Schmidt, K P; Awwadi, F F; Turnbull, M M; Agrawal, H; Chernyshev, A L

    2017-05-05

    The notion of a quasiparticle, such as a phonon, a roton or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C 9 H 18 N 2 CuBr 4 . Compared with the non-interacting linear spin-wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum.

  15. The conceptual framework of quantum field theory

    CERN Document Server

    Duncan, Anthony

    2012-01-01

    The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...

  16. Thermal quantum discord of spins in an inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Guo Jinliang; Mi Yingjuan; Zhang Jian; Song Heshan

    2011-01-01

    In contrast with the thermal entanglement, we study the quantum discord and classical correlation in a two-qubit Heisenberg XXZ model with an inhomogeneous magnetic field. It is shown that the effects of the external magnetic fields, including the uniform and inhomogeneous magnetic fields, on the thermal entanglement, quantum discord and classical correlation behave differently in various aspects, which depend on system temperature and model type. We can tune the inhomogeneous magnetic field to enhance the entanglement or classical correlation and meanwhile decrease the quantum discord. In addition, taking into account the inhomogeneous magnetic field, the sudden change in the behaviour of quantum discord still survives, which can detect the critical points of quantum phase transitions at finite temperature, but not for a uniform magnetic field.

  17. Progress in nano-electro optics characterization of nano-optical materials and optical near-field interactions

    CERN Document Server

    Ohtsu, Motoichi

    2005-01-01

    This volume focuses on the characterization of nano-optical materials and optical-near field interactions. It begins with the techniques for characterizing the magneto-optical Kerr effect and continues with methods to determine structural and optical properties in high-quality quantum wires with high spatial uniformity. Further topics include: near-field luminescence mapping in InGaN/GaN single quantum well structures in order to interpret the recombination mechanism in InGaN-based nano-structures; and theoretical treatment of the optical near field and optical near-field interactions, providing the basis for investigating the signal transport and associated dissipation in nano-optical devices. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.

  18. Quantum electrodynamics in strong external fields

    International Nuclear Information System (INIS)

    Mueller, B.; Rafelski, J.; Kirsch, J.

    1981-05-01

    We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.)

  19. Field-matter interaction in atomic and plasma physics, from fluctuations to the strongly nonlinear regime

    International Nuclear Information System (INIS)

    Benisti, D.

    2011-01-01

    This manuscript provides a theoretical description, sometimes illustrated by experimental results, of several examples of field-matter interaction in various domains of physics, showing how the same basic concepts and theoretical methods may be used in very different physics situations. The issues addressed here are nonlinear field-matter interaction in plasma physics within the framework of classical mechanics (with a particular emphasis on wave-particle interaction), the linear analysis of beam-plasma instabilities in the relativistic regime, and the quantum description of laser-atom interaction, including quantum electrodynamics. Novel methods are systematically introduced in order to solve some very old problems, like the nonlinear counterpart of the Landau damping rate in plasma physics, for example. Moreover, our results directly apply to inertial confinement fusion, laser propagation in an atomic vapor, ion acceleration in a magnetized plasma and the physics of the Reversed Field Pinch for magnetic fusion. (author)

  20. Conformal invariant quantum field theory and composite field operators

    International Nuclear Information System (INIS)

    Kurak, V.

    1976-01-01

    The present status of conformal invariance in quantum field theory is reviewed from a non group theoretical point of view. Composite field operators dimensions are computed in some simple models and related to conformal symmetry

  1. Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons

    Directory of Open Access Journals (Sweden)

    Yuichi Otsuka

    2016-03-01

    Full Text Available The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.

  2. Quantum integrable models of field theory

    International Nuclear Information System (INIS)

    Faddeev, L.D.

    1979-01-01

    Fundamental features of the classical method of the inverse problem have been formulated in the form which is convenient for its quantum reformulation. Typical examples are studied which may help to formulate the quantum method of the inverse problem. Examples are considered for interaction with both attraction and repulsion at a final density. The sine-Gordon model and the XYZ model from the quantum theory of magnetics are examined in short. It is noted that all the achievements of the one-dimensional mathematical physics as applied to exactly solvable quantum models may be put to an extent within the framework of the quantum method of the inverse problem. Unsolved questions are enumerated and perspectives of applying the inverse problem method are shown

  3. Quantum uncertainty in critical systems with three spins interaction

    International Nuclear Information System (INIS)

    Carrijo, Thiago M; Avelar, Ardiley T; Céleri, Lucas C

    2015-01-01

    In this article we consider two spin-1/2 chains described, respectively, by the thermodynamic limit of the XY model with the usual two site interaction, and an extension of this model (without taking the thermodynamics limit), called XYT, were a three site interaction term is presented. To investigate the critical behaviour of such systems we employ tools from quantum information theory. Specifically, we show that the local quantum uncertainty, a quantity introduced in order to quantify the minimum quantum share of the variance of a local measurement, can be used to indicate quantum phase transitions presented by these models at zero temperature. Due to the connection of this quantity with the quantum Fisher information, the results presented here may be relevant for quantum metrology and quantum thermodynamics. (paper)

  4. Discussion of the duality in three dimensional quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chen-Te, E-mail: yefgst@gmail.com

    2017-05-10

    We discuss the duality in three dimensional quantum field theory at infrared limit. The starting point is to use a conjecture of a duality between the free fermion and the interacting scalar field theories at the Wilson–Fisher fixed point. The conjecture is useful for deriving various dualities in three dimensions to obtain a duality web. The study is also interesting for understanding the dualities, or equivalence of different theories from the perspective of the renormalization group flow. We first discuss the “derivation” without losing the holonomy. Furthermore, we also derive these dualities from the mean-field study, and consider the extension of the conjecture or dualities at finite temperature.

  5. Perspective: Quantum Hamiltonians for optical interactions

    Science.gov (United States)

    Andrews, David L.; Jones, Garth A.; Salam, A.; Woolley, R. Guy

    2018-01-01

    The multipolar Hamiltonian of quantum electrodynamics is extensively employed in chemical and optical physics to treat rigorously the interaction of electromagnetic fields with matter. It is also widely used to evaluate intermolecular interactions. The multipolar version of the Hamiltonian is commonly obtained by carrying out a unitary transformation of the Coulomb gauge Hamiltonian that goes by the name of Power-Zienau-Woolley (PZW). Not only does the formulation provide excellent agreement with experiment, and versatility in its predictive ability, but also superior physical insight. Recently, the foundations and validity of the PZW Hamiltonian have been questioned, raising a concern over issues of gauge transformation and invariance, and whether observable quantities obtained from unitarily equivalent Hamiltonians are identical. Here, an in-depth analysis of theoretical foundations clarifies the issues and enables misconceptions to be identified. Claims of non-physicality are refuted: the PZW transformation and ensuing Hamiltonian are shown to rest on solid physical principles and secure theoretical ground.

  6. Relativistic quantum mechanics an introduction to relativistic quantum fields

    CERN Document Server

    Maiani, Luciano

    2016-01-01

    Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.

  7. Quantum treatment of field propagation in a fiber near the zero dispersion wavelength

    Science.gov (United States)

    Safaei, A.; Bassi, A.; Bolorizadeh, M. A.

    2018-05-01

    In this report, we present a quantum theory describing the propagation of the electromagnetic radiation in a fiber in the presence of the third order dispersion coefficient. We obtained the quantum photon-polariton field, hence, we provide herein a coupled set of operator forms for the corresponding nonlinear Schrödinger equations when the third order dispersion coefficient is included. Coupled stochastic nonlinear Schrödinger equations were obtained by applying a positive P-representation that governs the propagation and interaction of quantum solitons in the presence of the third-order dispersion term. Finally, to reduce the fluctuations near solitons in the first approximation, we developed coupled stochastic linear equations.

  8. The Global Approach to Quantum Field Theory

    International Nuclear Information System (INIS)

    Folacci, Antoine; Jensen, Bruce

    2003-01-01

    Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi i defined on a given spacetime M, the set of all varphi i (x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the formalism of quantum field

  9. Quantum gravitational optics in the field of a gravitomagnetic monopole

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, N [Department of Physics, North Karegar Avenue, University of Tehran, P O Box 14395-547, Tehran (Iran, Islamic Republic of); Khoeini-Moghaddam, S [Department of Physics, Sharif University of Technology, P O Box 19365-9161, Tehran (Iran, Islamic Republic of); Nouri-Zonoz, M [Department of Physics, North Karegar Avenue, University of Tehran, P O Box 14395-547, Tehran (Iran, Islamic Republic of)

    2007-05-15

    Vacuum polarization in QED in a background gravitational field induces interactions which effectively modify the classical picture of light rays as the null geodesies of spacetime. After a short introduction on the main aspects of the quantum gravitational optics, as a nontrivial example, we study this effect in the background of NUT space characterizing the spacetime of a spherical mass endowed with a gravitomagnetic monopole charge, the so called NUT factor.

  10. Correlation inequalities for the Yukawa2 quantum field theory

    International Nuclear Information System (INIS)

    Rosen, L.

    1981-01-01

    Correlation inequalities have been useful in statistical mechanics and quantum field theory. In particular, in the case of strongly coupled bose quantum field models such as P(phi) 2 , correlation inequalities provide the best control of the infinite volume limit. The author reports on work in which the FKG inequality was established in the Yukawa 2 quantum field theory. An elementary proof of the first Griffiths inequality is also given. (Auth.)

  11. Introduction to nonequilibrium statistical mechanics with quantum field theory

    International Nuclear Information System (INIS)

    Kita, Takafumi

    2010-01-01

    In this article, we present a concise and self-contained introduction to nonequilibrium statistical mechanics with quantum field theory by considering an ensemble of interacting identical bosons or fermions as an example. Readers are assumed to be familiar with the Matsubara formalism of equilibrium statistical mechanics such as Feynman diagrams, the proper self-energy, and Dyson's equation. The aims are threefold: (1) to explain the fundamentals of nonequilibrium quantum field theory as simple as possible on the basis of the knowledge of the equilibrium counterpart; (2) to elucidate the hierarchy in describing nonequilibrium systems from Dyson's equation on the Keldysh contour to the Navier-Stokes equation in fluid mechanics via quantum transport equations and the Boltzmann equation; (3) to derive an expression of nonequilibrium entropy that evolves with time. In stage (1), we introduce nonequilibrium Green's function and the self-energy uniquely on the round-trip Keldysh contour, thereby avoiding possible confusions that may arise from defining multiple Green's functions at the very beginning. We try to present the Feynman rules for the perturbation expansion as simple as possible. In particular, we focus on the self-consistent perturbation expansion with the Luttinger-Ward thermodynamic functional, i.e., Baym's Φ-derivable approximation, which has a crucial property for nonequilibrium systems of obeying various conservation laws automatically. We also show how the two-particle correlations can be calculated within the Φ-derivable approximation, i.e., an issue of how to handle the 'Bogoliubov-Born-Green-Kirkwood-Yvons (BBGKY) hierarchy'. Aim (2) is performed through successive reductions of relevant variables with the Wigner transformation, the gradient expansion based on the Groenewold-Moyal product, and Enskog's expansion from local equilibrium. This part may be helpful for convincing readers that nonequilibrium systems can be handled microscopically with

  12. Mean Field Analysis of Quantum Annealing Correction.

    Science.gov (United States)

    Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A

    2016-06-03

    Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p-body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p=2, where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p≥3, where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder.

  13. Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations

    CERN Document Server

    Riotto, Antonio

    1998-01-01

    The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...

  14. Quantum memory Quantum memory

    Science.gov (United States)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  15. Exciton trapping in interface defects/quantum dots in narrow quantum wells: magnetic-field effects

    International Nuclear Information System (INIS)

    Barticevic, Z.; Pacheco, M.; Duque, C.A.; Oliveira, L.E.

    2003-01-01

    The effects of applied magnetic fields on excitons trapped in quantum dots/interface defects in narrow GaAs/Ga 1-x Al x As quantum wells are studied within the effective-mass approximation. The magnetic fields are applied in the growth direction of the quantum wells, and exciton trapping is modeled through a quantum dot formed by monolayer fluctuations in the z-direction, together with lateral confinement via a truncated or infinite parabolic potential in the exciton in-plane coordinate. Theoretical results are found in overall agreement with available experimental measurements

  16. Nanostructure van der Waals interaction between a quantum well and a quantum dot atom

    International Nuclear Information System (INIS)

    Horing, Norman J Morgenstern

    2006-01-01

    We examine the van der Waals interaction between mobile plasma electrons in a narrow quantum well nanostructure and a quantum dot atom. This formulation of the van der Waals interaction exhibits it to second order as the correlation energy (self-energy) of the dot-atom electrons mediated by the image potential arising from the dynamic, nonlocal and spatially inhomogeneous polarization of the quantum well plasma electrons. This image potential of the quantum-well plasma is, in turn, determined by the dynamic, nonlocal, inhomogeneous screening function of the quantum well, which involves the space-time matrix inversion of its spatially inhomogeneous, nonlocal and time-dependent dielectric function. The latter matrix inversion is carried out exactly, in closed form, and the van der Waals energy is evaluated in the electrostatic limit to dipole-dipole terms

  17. Quantum oscillator on CPn in a constant magnetic field

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Nersessian, Armen; Yeranyan, Armen

    2004-01-01

    We construct the quantum oscillator interacting with a constant magnetic field on complex projective spaces CP N , as well as on their noncompact counterparts, i.e., the N-dimensional Lobachewski spaces L N . We find the spectrum of this system and the complete basis of wave functions. Surprisingly, the inclusion of a magnetic field does not yield any qualitative change in the energy spectrum. For N>1 the magnetic field does not break the superintegrability of the system, whereas for N=1 it preserves the exact solvability of the system. We extend these results to the cones constructed over CP N and L N , and perform the Kustaanheimo-Stiefel transformation of these systems to the three dimensional Coulomb-like systems

  18. BQP-completeness of scattering in scalar quantum field theory

    Directory of Open Access Journals (Sweden)

    Stephen P. Jordan

    2018-01-01

    Full Text Available Recent work has shown that quantum computers can compute scattering probabilities in massive quantum field theories, with a run time that is polynomial in the number of particles, their energy, and the desired precision. Here we study a closely related quantum field-theoretical problem: estimating the vacuum-to-vacuum transition amplitude, in the presence of spacetime-dependent classical sources, for a massive scalar field theory in (1+1 dimensions. We show that this problem is BQP-hard; in other words, its solution enables one to solve any problem that is solvable in polynomial time by a quantum computer. Hence, the vacuum-to-vacuum amplitude cannot be accurately estimated by any efficient classical algorithm, even if the field theory is very weakly coupled, unless BQP=BPP. Furthermore, the corresponding decision problem can be solved by a quantum computer in a time scaling polynomially with the number of bits needed to specify the classical source fields, and this problem is therefore BQP-complete. Our construction can be regarded as an idealized architecture for a universal quantum computer in a laboratory system described by massive phi^4 theory coupled to classical spacetime-dependent sources.

  19. Quantum field theory and critical phenomena

    CERN Document Server

    Zinn-Justin, Jean

    1996-01-01

    Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...

  20. On the construction of quantum field theories with factorizing S-matrices

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, G.

    2006-05-24

    The subject of this thesis is a novel construction method for interacting relativistic quantum field theories on two-dimensional Minkowski space. Employing the algebraic framework of quantum field theory, it is shown under which conditions an algebra of observables localized in a wedge-shaped region of spacetime can be used to construct model theories. A crucial input in this context is the modular nuclearity condition for wedge algebras, which implies the existence of local observables. As an application of the new method, a rigorous construction of a large family of models with factorizing S-matrices is obtained. In an inverse scattering approach, a given factorizing scattering operator is used to define certain semi-localized Wightman fields associated to it. With the help of these fields, a wedge algebra can be defined, which determines the local observable content of a well-defined quantum field theory. In this approach, the modular nuclearity condition translates to certain analyticity and boundedness conditions on the formfactors of wedge-local observables. These conditions are shown to hold for a large class of underlying S-matrices, including the scattering operators of the Sinh-Gordon model and the scaling Ising model as special examples. The so constructed models are investigated with respect to their scattering properties. They are shown to solve the inverse scattering problem for the underlying S-matrices, and a proof of asymptotic completeness for these models is given. (orig.)

  1. An invitation to quantum field theory

    International Nuclear Information System (INIS)

    Alvarez-Gaume, Luis; Vazquez-Mozo, Miguel A.

    2012-01-01

    This book provides an introduction to Quantum Field Theory (QFT) at an elementary level - with only special relativity, electromagnetism and quantum mechanics as prerequisites. For this fresh approach to teaching QFT, based on numerous lectures and courses given by the authors, a representative sample of topics has been selected containing some of the more innovative, challenging or subtle concepts. They are presented with a minimum of technical details, the discussion of the main ideas being more important than the presentation of the typically very technical mathematical details necessary to obtain the final results. Special attention is given to the realization of symmetries in particle physics: global and local symmetries, explicit, spontaneously broken, and anomalous continuous symmetries, as well as discrete symmetries. Beyond providing an overview of the standard model of the strong, weak and electromagnetic interactions and the current understanding of the origin of mass, the text enumerates the general features of renormalization theory as well as providing a cursory description of effective field theories and the problem of naturalness in physics. Among the more advanced topics the reader will find are an outline of the first principles derivation of the CPT theorem and the spin-statistics connection. As indicated by the title, the main aim of this text is to motivate the reader to study QFT by providing a self-contained and approachable introduction to the most exciting and challenging aspects of this successful theoretical framework. (orig.)

  2. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field

    International Nuclear Information System (INIS)

    Qian Yi; Xu Jing-Bo

    2012-01-01

    We investigate the quantum discord dynamics in a cavity quantum electrodynamics system, which consists of two noninteracting two-level atoms driven by independent optical fields and classical fields, and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields. It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields. Finally, the influence of the classical driving field on the fidelity of the system is also examined. (general)

  3. Renormalization of quantum electrodynamics in an arbitrarily strong time independent external field. [Perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, H G [Heidelberg Univ. (F.R. Germany). Inst. fuer Theoretische Physik; Mueller, V F [Trier-Kaiserslautern Univ., Kaiserslautern (F.R. Germany). Fachbereich Physik

    1975-01-01

    Extending the inductive renormalization procedure of Epstein and Glaser which is essentially based on locality, we show that quantum electrodynamics in an external time independent electromagnetic field has a renormalizable formal perturbation expansion. The interaction involving the quantized radiation field but not the action of the external field is treated by perturbation theory. It turns out that vacuum polarization is undetermined in the framework of such a theory.

  4. Silicon Carbide Defect Qubits/Quantum Memory with Field-Tuning: OSD Quantum Science and Engineering Program (QSEP)

    Science.gov (United States)

    2017-08-01

    TECHNICAL REPORT 3073 August 2017 Silicon Carbide Defect Qubits/Quantum Memory with Field-tuning: OSD Quantum Science and Engineering Program...Quantum Science and Engineering Program) by the Advanced Concepts and Applied Research Branch (Code 71730), the Energy and Environmental Sustainability...the Secretary of Defense (OSD) Quantum Science and Engineering Program (QSEP). Their collaboration topic was to examine the effect of electric-field

  5. Quantum mechanics of Klein-Gordon-type fields and quantum cosmology

    International Nuclear Information System (INIS)

    Mostafazadeh, Ali

    2004-01-01

    With a view to address some of the basic problems of quantum cosmology, we formulate the quantum mechanics of the solutions of a Klein-Gordon-type field equation: (∂ t 2 +D)ψ(t)=0, where t is an element of R and D is a positive-definite operator acting in a Hilbert space H-tilde. In particular, we determine all the positive-definite inner products on the space H of the solutions of such an equation and establish their physical equivalence. This specifies the Hilbert space structure of H uniquely. We use a simple realization of the latter to construct the observables of the theory explicitly. The field equation does not fix the choice of a Hamiltonian operator unless it is supplemented by an underlying classical system and a quantization scheme supported by a correspondence principle. In general, there are infinitely many choices for the Hamiltonian each leading to a different notion of time-evolution in H. Among these is a particular choice that generates t-translations in H and identifies t with time whenever D is t-independent. For a t-dependent D, we show that regardless of the choice of the inner product the t-translations do not correspond to unitary evolutions in H, and t cannot be identified with time. We apply these ideas to develop a formulation of quantum cosmology based on the Wheeler-DeWitt equation for a Friedman-Robertson-Walker model coupled to a real scalar field with an arbitrary positive confining potential. In particular, we offer a complete solution of the Hilbert space problem, construct the observables, use a position-like observable to introduce the wave functions of the universe (which differ from the Wheeler-DeWitt fields), reformulate the corresponding quantum theory in terms of the latter, reduce the problem of the identification of time to the determination of a Hamiltonian operator acting in L 2 R+L 2 R, show that the factor-ordering problem is irrelevant for the kinematics of the quantum theory, and propose a formulation of the

  6. Quantum mechanics of Klein-Gordon-type fields and quantum cosmology

    Science.gov (United States)

    Mostafazadeh, Ali

    2004-01-01

    With a view to address some of the basic problems of quantum cosmology, we formulate the quantum mechanics of the solutions of a Klein-Gordon-type field equation: (∂t2+D)ψ(t)=0, where t∈R and D is a positive-definite operator acting in a Hilbert space H~. In particular, we determine all the positive-definite inner products on the space H of the solutions of such an equation and establish their physical equivalence. This specifies the Hilbert space structure of H uniquely. We use a simple realization of the latter to construct the observables of the theory explicitly. The field equation does not fix the choice of a Hamiltonian operator unless it is supplemented by an underlying classical system and a quantization scheme supported by a correspondence principle. In general, there are infinitely many choices for the Hamiltonian each leading to a different notion of time-evolution in H. Among these is a particular choice that generates t-translations in H and identifies t with time whenever D is t-independent. For a t-dependent D, we show that regardless of the choice of the inner product the t-translations do not correspond to unitary evolutions in H, and t cannot be identified with time. We apply these ideas to develop a formulation of quantum cosmology based on the Wheeler-DeWitt equation for a Friedman-Robertson-Walker model coupled to a real scalar field with an arbitrary positive confining potential. In particular, we offer a complete solution of the Hilbert space problem, construct the observables, use a position-like observable to introduce the wave functions of the universe (which differ from the Wheeler-DeWitt fields), reformulate the corresponding quantum theory in terms of the latter, reduce the problem of the identification of time to the determination of a Hamiltonian operator acting in L2(R)⊕L2(R), show that the factor-ordering problem is irrelevant for the kinematics of the quantum theory, and propose a formulation of the dynamics. Our method is

  7. Near-field levitated quantum optomechanics with nanodiamonds

    Science.gov (United States)

    Juan, M. L.; Molina-Terriza, G.; Volz, T.; Romero-Isart, O.

    2016-08-01

    We theoretically show that the dipole force of an ensemble of quantum emitters embedded in a dielectric nanosphere can be exploited to achieve near-field optical levitation. The key ingredient is that the polarizability from the ensemble of embedded quantum emitters can be larger than the bulk polarizability of the sphere, thereby enabling the use of repulsive optical potentials and consequently the levitation using optical near fields. In levitated cavity quantum optomechanics, this could be used to boost the single-photon coupling by combining larger polarizability to mass ratio, larger field gradients, and smaller cavity volumes while remaining in the resolved sideband regime and at room temperature. A case study is done with a nanodiamond containing a high density of silicon-vacancy color centers that is optically levitated in the evanescent field of a tapered nanofiber and coupled to a high-finesse microsphere cavity.

  8. Long-range interactions in lattice field theory

    International Nuclear Information System (INIS)

    Rabin, J.M.

    1981-06-01

    Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations

  9. Long-range interactions in lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, J.M.

    1981-06-01

    Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations.

  10. Electrical Initialization of Electron and Nuclear Spins in a Single Quantum Dot at Zero Magnetic Field.

    Science.gov (United States)

    Cadiz, Fabian; Djeffal, Abdelhak; Lagarde, Delphine; Balocchi, Andrea; Tao, Bingshan; Xu, Bo; Liang, Shiheng; Stoffel, Mathieu; Devaux, Xavier; Jaffres, Henri; George, Jean-Marie; Hehn, Michel; Mangin, Stephane; Carrere, Helene; Marie, Xavier; Amand, Thierry; Han, Xiufeng; Wang, Zhanguo; Urbaszek, Bernhard; Lu, Yuan; Renucci, Pierre

    2018-04-11

    The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X + ) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

  11. Quantum mechanics of Proca fields

    International Nuclear Information System (INIS)

    Zamani, Farhad; Mostafazadeh, Ali

    2009-01-01

    We construct the most general physically admissible positive-definite inner product on the space of Proca fields. Up to a trivial scaling this defines a five-parameter family of Lorentz invariant inner products that we use to construct a genuine Hilbert space for the quantum mechanics of Proca fields. If we identify the generator of time translations with the Hamiltonian, we obtain a unitary quantum system that describes first-quantized Proca fields and does not involve the conventional restriction to the positive-frequency fields. We provide a rather comprehensive analysis of this system. In particular, we examine the conserved current density responsible for the conservation of the probabilities, explore the global gauge symmetry underlying the conservation of the probabilities, obtain a probability current density, construct position, momentum, helicity, spin, and angular momentum operators, and determine the localized Proca fields. We also compute the generalized parity (P), generalized time-reversal (T), and generalized charge or chirality (C) operators for this system and offer a physical interpretation for its PT-, C-, and CPT-symmetries.

  12. Duality and braiding in twisted quantum field theory

    International Nuclear Information System (INIS)

    Riccardi, Mauro; Szabo, Richard J.

    2008-01-01

    We re-examine various issues surrounding the definition of twisted quantum field theories on flat noncommutative spaces. We propose an interpretation based on nonlocal commutative field redefinitions which clarifies previously observed properties such as the formal equivalence of Green's functions in the noncommutative and commutative theories, causality, and the absence of UV/IR mixing. We use these fields to define the functional integral formulation of twisted quantum field theory. We exploit techniques from braided tensor algebra to argue that the twisted Fock space states of these free fields obey conventional statistics. We support our claims with a detailed analysis of the modifications induced in the presence of background magnetic fields, which induces additional twists by magnetic translation operators and alters the effective noncommutative geometry seen by the twisted quantum fields. When two such field theories are dual to one another, we demonstrate that only our braided physical states are covariant under the duality

  13. In-plane nuclear field formation investigated in single self-assembled quantum dots

    Science.gov (United States)

    Yamamoto, S.; Matsusaki, R.; Kaji, R.; Adachi, S.

    2018-02-01

    We studied the formation mechanism of the in-plane nuclear field in single self-assembled In0.75Al0.25As /Al0.3Ga0.7As quantum dots. The Hanle curves with an anomalously large width and hysteretic behavior at the critical transverse magnetic field were observed in many single quantum dots grown in the same sample. In order to explain the anomalies in the Hanle curve indicating the formation of a large nuclear field perpendicular to the photo-injected electron spin polarization, we propose a new model based on the current phenomenological model for dynamic nuclear spin polarization. The model includes the effects of the nuclear quadrupole interaction and the sign inversion between in-plane and out-of-plane components of nuclear g factors, and the model calculations reproduce successfully the characteristics of the observed anomalies in the Hanle curves.

  14. Quantum mechanical force fields for condensed phase molecular simulations

    Science.gov (United States)

    Giese, Timothy J.; York, Darrin M.

    2017-09-01

    Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.

  15. Critical behavior of a quantum chain with four-spin interactions in the presence of longitudinal and transverse magnetic fields.

    Science.gov (United States)

    Boechat, B; Florencio, J; Saguia, A; de Alcantara Bonfim, O F

    2014-03-01

    We study the ground-state properties of a spin-1/2 model on a chain containing four-spin Ising-like interactions in the presence of both transverse and longitudinal magnetic fields. We use entanglement entropy and finite-size scaling methods to obtain the phase diagrams of the model. Our numerical calculations reveal a rich variety of phases and the existence of multicritical points in the system. We identify phases with both ferromagnetic and antiferromagnetic orderings. We also find periodically modulated orderings formed by a cluster of like spins followed by another cluster of opposite like spins. The quantum phases in the model are found to be separated by either first- or second-order transition lines.

  16. Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories

    Science.gov (United States)

    Berges, J.; Boguslavski, K.; Chatrchyan, A.; Jaeckel, J.

    2017-10-01

    We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. For a model system, we consider O (N ) -symmetric scalar field theories. We use classical-statistical real-time simulations as well as a systematic 1 /N expansion of the quantum (two-particle-irreducible) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean self-interactions, the inverse cascade is absent, and the particle annihilation rate is enhanced compared to the repulsive case, which counteracts the formation of coherent field configurations. For N ≥2 , the presence of a nonvanishing conserved charge can suppress number-changing processes and lead to the formation of stable localized charge clumps, i.e., Q balls.

  17. Quantum phases for point-like charged particles and for electrically neutral dipoles in an electromagnetic field

    Science.gov (United States)

    Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.

    2018-05-01

    We point out that the known quantum phases for an electric/magnetic dipole moving in an electromagnetic (EM) field must be presented as the superposition of more fundamental quantum phases emerging for elementary charges. Using this idea, we find two new fundamental quantum phases for point-like charges, next to the known electric and magnetic Aharonov-Bohm (A-B) phases, named by us as the complementary electric and magnetic phases, correspondingly. We further demonstrate that these new phases can indeed be derived via the Schrödinger equation for a particle in an EM field, where however the operator of momentum is re-defined via the replacement of the canonical momentum of particle by the sum of its mechanical momentum and interactional field momentum for a system "charged particle and a macroscopic source of EM field". The implications of the obtained results are discussed.

  18. Quantum dynamics in open quantum-classical systems.

    Science.gov (United States)

    Kapral, Raymond

    2015-02-25

    Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.

  19. Electronic properties of asymmetrical quantum dots dressed by laser field

    Energy Technology Data Exchange (ETDEWEB)

    Kibis, O.V. [Department of Applied and Theoretical Physics, Novosibirsk State Technical University, Karl Marx Avenue 20, 630092 Novosibirsk (Russian Federation); Slepyan, G.Ya.; Maksimenko, S.A. [Institute for Nuclear Problems, Belarus State University, Bobruyskaya St. 11, 220050 Minsk (Belarus); Hoffmann, A. [Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2012-05-15

    In the present paper, we demonstrate theoretically that the strong non-resonant interaction between asymmetrical quantum dots (QDs) and a laser field results in harmonic oscillations of their band gap. It is shown that such oscillations change the spectrum of elementary electron excitations in QDs: in the absence of the laser pumping there is only one resonant electron frequency, but QDs dressed by the laser field have a set of electron resonant frequencies. One expects that this modification of elementary electron excitations in QDs can be observable in optical experiments. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Influence of the Rashba and Dresselhaus spin-orbit interactions of equal strength on the electron states in the circular quantum ring in the presence of a magnetic field

    International Nuclear Information System (INIS)

    Kudryashov, V.V.; Baran, A.V.

    2012-01-01

    The solutions of the Schrodinger equation are obtained for an electron in the two-dimensional circular semiconductor quantum ring in the presence of both an external magnetic and the Rashba and Dresselhaus spin-orbit interactions of equal strength . Confinement is simulated by a realistic potential well of finite depth. The dependence of energy levels on the magnetic field, the strength of spin-orbit interaction, and the relative ring width is presented. (authors)

  1. Dephasing and hyperfine interaction in carbon nanotubes double quantum dots

    DEFF Research Database (Denmark)

    Reynoso, Andres Alejandro; Flensberg, Karsten

    2012-01-01

    We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C...... with these for DQDs in clean nanotubes, whereas the disorder effect is always relevant when the magnetic field is perpendicular to the nanotube axis....

  2. Magnetic-field-dependent optical properties and interdot correlations in coupled quantum dots

    International Nuclear Information System (INIS)

    Bellucci, Devis; Troiani, Filippo; Goldoni, Guido; Molinari, Elisa

    2005-01-01

    We theoretically investigate the properties of neutral and charged excitons in vertically coupled quantum dots, as a function of the in-plane magnetic field. The single-particle states are computed by numerically solving the 3D effective-mass equation, while the neutral- and charged-exciton states are obtained by means of a configuration interaction approach. We show that the field determines an enhancement of the interdot correlations, resulting in unexpected carrier localization. The field effect on the excitonic binding energies is also discussed, and is shown to strongly depend on the charging

  3. Finite field-dependent symmetries in perturbative quantum gravity

    International Nuclear Information System (INIS)

    Upadhyay, Sudhaker

    2014-01-01

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also

  4. Interaction of porphyrins with CdTe quantum dots

    International Nuclear Information System (INIS)

    Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei

    2011-01-01

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  5. Analysis of interacting quantum field theory in curved spacetime

    International Nuclear Information System (INIS)

    Birrell, N.D.; Taylor, J.G.

    1980-01-01

    A detailed analysis of interacting quantized fields propagating in a curved background spacetime is given. Reduction formulas for S-matrix elements in terms of vacuum Green's functions are derived, special attention being paid to the possibility that the ''in'' and ''out'' vacuum states may not be equivalent. Green's functions equations are obtained and a diagrammatic representation for them given, allowing a formal, diagrammatic renormalization to be effected. Coordinate space techniques for showing renormalizability are developed in Minkowski space, for lambdaphi 3 /sub() 4,6/ field theories. The extension of these techniques to curved spacetimes is considered. It is shown that the possibility of field theories becoming nonrenormalizable there cannot be ruled out, although, allowing certain modifications to the theory, phi 3 /sub( 4 ) is proven renormalizable in a large class of spacetimes. Finally particle production from the vacuum by the gravitational field is discussed with particular reference to Schwarzschild spacetime. We shed some light on the nonlocalizability of the production process and on the definition of the S matrix for such processes

  6. Interaction of a quantum well with squeezed light: Quantum-statistical properties

    International Nuclear Information System (INIS)

    Sete, Eyob A.; Eleuch, H.

    2010-01-01

    We investigate the quantum statistical properties of the light emitted by a quantum well interacting with squeezed light from a degenerate subthreshold optical parametric oscillator. We obtain analytical solutions for the pertinent quantum Langevin equations in the strong-coupling and low-excitation regimes. Using these solutions we calculate the intensity spectrum, autocorrelation function, and quadrature squeezing for the fluorescent light. We show that the fluorescent light exhibits bunching and quadrature squeezing. We also show that the squeezed light leads to narrowing of the width of the spectrum of the fluorescent light.

  7. New anomaly: nonvanishing interaction of longitudinal real photons in massless quantum electrodynamics

    International Nuclear Information System (INIS)

    Gorskij, A.S.; Ioffe, B.L.; Khodzhamiryan, A.Yu.

    1989-01-01

    It is shown that in massless electrodynamics (when the electron mass is strictly zero) the cross section of longitudinal photon interaction on mass shell is nonvanishing. The reasons of appearance of this effects and its possible consequences as well as analogous effects in other quantum field theories (especially non-Abelian gauge theories) are discussed. 7 refs.; 2 figs

  8. BOOK REVIEW: Classical Solutions in Quantum Field Theory Classical Solutions in Quantum Field Theory

    Science.gov (United States)

    Mann, Robert

    2013-02-01

    Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons--kinks, vortices, and magnetic monopoles--and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is rather condensed. It is

  9. What have we learned from quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Fulling, S.A.

    1984-01-01

    The paper reviews the quantum field theory in curved space-time. Field quantization in gravitational backgrounds; particle creation by black holes; Hawking radiation; quantum field theory in curved space-time; covariant renormalization of the stress-energy-momentum tensor; quantum field theory and quantum gravity; are all discussed. (U.K.)

  10. Anisotropy of exciton spectrum and spin-orbit interactions in quantum wells in tilted magnetic field

    International Nuclear Information System (INIS)

    Olendski, Oleg; Shahbazyan, Tigran V

    2006-01-01

    We study theoretically excitonic energy spectrum and optical absorption in narrowgap semiconductor quantum wells in strong magnetic field. We show that, in the presence of an in-plane field component, the absorption coefficient exhibit a double-peak structure due to hybridization of bright and dark excitons. If both Rashba and Dresselhaus spin-orbit terms are present, the spectrum is anisotropic in in-plane field orientation with respect to [100] axis. In particular, the magnitude of the splitting can be tuned in a wide interval by varying the azimuthal angle of the in-plane field. The absorption spectrrum anisotropy would allow simultaneous measurement Dresselhaus and Rashba spin-orbit coefficients

  11. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    Science.gov (United States)

    2011-01-01

    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633

  12. Quantum field theory in a gravitational shock wave background

    International Nuclear Information System (INIS)

    Klimcik, C.

    1988-01-01

    A scalar massless non-interacting quantum field theory on an arbitrary gravitational shock wave background is exactly solved. S-matrix and expectation values of the energy-momentum tensor are computed for an arbitrarily polarized sourceless gravitational shock wave and for a homogeneous infinite planar shell shock wave, all performed in any number of space-time dimensions. Expectation values of the energy density in scattering states exhibit a singularity which lies exactly at the location of the curvature singularity found in the infinite shell collision. (orig.)

  13. Enriching Elementary Quantum Mechanics with the Computer: Self-Consistent Field Problems in One Dimension

    Science.gov (United States)

    Bolemon, Jay S.; Etzold, David J.

    1974-01-01

    Discusses the use of a small computer to solve self-consistent field problems of one-dimensional systems of two or more interacting particles in an elementary quantum mechanics course. Indicates that the calculation can serve as a useful introduction to the iterative technique. (CC)

  14. Quantum limit on time measurement in a gravitational field

    International Nuclear Information System (INIS)

    Sinha, Supurna; Samuel, Joseph

    2015-01-01

    Good clocks are of importance both to fundamental physics and for applications in astronomy, metrology and global positioning systems. In a recent technological breakthrough, researchers at NIST have been able to achieve a stability of one part in 10 18 using an ytterbium clock. This naturally raises the question of whether there are fundamental limits to time keeping. In this article we point out that gravity and quantum mechanics set a fundamental limit on the fractional frequency uncertainty of clocks. This limit comes from a combination of the uncertainty relation, the gravitational redshift and the relativistic time dilation effect. For example, a single ion aluminium clock in a terrestrial gravitational field cannot achieve a fractional frequency uncertainty better than one part in 10 22 . This fundamental limit explores the interaction between gravity and quantum mechanics on a laboratory scale. (paper)

  15. Effect of Rashba and Dresselhaus interactions on the energy spectrum, chemical potential, addition energy and spin-splitting in a many-electron parabolic GaAs quantum dot in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D. Sanjeev [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, Soma [H & S Department of Physics, CMR College of Engineering and Technology, Kandlakoya, Medchal Road, Hyderabad 501 401 (India); Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2016-11-15

    The effect of electron–electron interaction and the Rashba and Dresselhaus spin–orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron–electron interaction term, the problem is solved exactly to second-order in the spin–orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.

  16. Effect of Rashba and Dresselhaus interactions on the energy spectrum, chemical potential, addition energy and spin-splitting in a many-electron parabolic GaAs quantum dot in a magnetic field

    International Nuclear Information System (INIS)

    Kumar, D. Sanjeev; Mukhopadhyay, Soma; Chatterjee, Ashok

    2016-01-01

    The effect of electron–electron interaction and the Rashba and Dresselhaus spin–orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron–electron interaction term, the problem is solved exactly to second-order in the spin–orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.

  17. On a formulation of qubits in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Jacques, E-mail: calmet@ira.uka.de [Karlsruhe Institute of Technology (KIT), Institute for Cryptography and Security, Am Fasanengarten 5, 76131 Karlsruhe (Germany); Calmet, Xavier, E-mail: x.calmet@sussex.ac.uk [Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom)

    2012-01-30

    Qubits have been designed in the framework of quantum mechanics. Attempts to formulate the problem in the language of quantum field theory have been proposed already. In this short Letter we refine the meaning of qubits within the framework of quantum field theory. We show that the notion of gauge invariance naturally leads to a generalization of qubits to QFTbits which are then the fundamental carriers of information from the quantum field theoretical point of view. The goal of this Letter is to stress the availability of such a generalized concept of QFTbits. -- Highlights: ► Gauge invariant qubits are proposed. ► Non-linear QFT effects are discussed. ► Entanglement of qubits in QFT.

  18. Geometric continuum regularization of quantum field theory

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1989-01-01

    An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs

  19. Correspondence between quantum gauge theories without ghost fields and their covariantly quantized theories with ghost fields

    International Nuclear Information System (INIS)

    Cheng Hung; Tsai Ercheng

    1986-01-01

    We give a correspondence formula which equates transition amplitudes in a quantum gauge field theory without ghost fields to those in a quantum theory with the gauge fields covariantly quantized and coupled to ghost fields. (orig.)

  20. Relation of a unified quantum field theory of spinors to the structure of general relativity

    International Nuclear Information System (INIS)

    Kober, Martin

    2009-01-01

    Based on a unified quantum field theory of spinors assumed to describe all matter fields and their interactions we construct the space-time structure of general relativity according to a general connection within the corresponding spinor space. The tetrad field and the corresponding metric field are composed from a space-time dependent basis of spinors within the internal space of the fundamental matter field. Similar to twistor theory the Minkowski signature of the space-time metric is related to this spinor nature of elementary matter, if we assume the spinor space to be endowed with a symplectic structure. The equivalence principle and the property of background independence arise from the fact that all elementary fields are composed from the fundamental spinor field. This means that the structure of space-time according to general relativity seems to be a consequence of a fundamental theory of matter fields and not a presupposition as in the usual setting of relativistic quantum field theories.

  1. Dimensional expansion for the Ising limit of quantum field theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Boettcher, S.

    1993-01-01

    A recently proposed technique, called dimensional expansion, uses the space-time dimension D as an expansion parameter to extract nonperturbative results in quantum field theory. Here we apply dimensional-expansion methods to examine the Ising limit of a self-interacting scalar field theory. We compute the first few coefficients in the dimensional expansion of γ 2n , the renormalized 2n-point Green's function at zero momentum, for n=2, 3, 4, and 5. Because the exact results for γ 2n are known at D=1 we can compare the predictions of the dimensional expansion at this value of D. We find typical accuracies of less than 5%. The radius of convergence of the dimensional expansion for γ 2n appears to be 2n/(n-1). As a function of the space-time dimension D, γ 2n appears to rise monotonically with increasing D and we conjecture that it becomes infinite at D=2n/(n-1). We presume that for values of D greater than this critical value γ 2n vanishes identically because the corresponding φ 2n scalar quantum field theory is free for D>2n/(n-1)

  2. Interacting systems far from equilibrium quantum kinetic theory

    CERN Document Server

    Morawetz, Klaus

    2018-01-01

    This book presents an up-to-date formalism of non-equilibrium Green's functions covering different applications ranging from solid state physics, plasma physics, cold atoms in optical lattices up to relativistic transport and heavy ion collisions. Within the Green's function formalism, the basic sets of equations for these diverse systems are similar, and approximations developed in one field can be adapted to another field. The central object is the self-energy which includes all non-trivial aspects of the system dynamics. The focus is therefore on microscopic processes starting from elementary principles for classical gases and the complementary picture of a single quantum particle in a random potential. This provides an intuitive picture of the interaction of a particle with the medium formed by other particles, on which the Green's function is built on.

  3. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    International Nuclear Information System (INIS)

    Andreev, Pavel A.

    2015-01-01

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction

  4. Zero-field quantum critical point in CeCoIn5.

    Science.gov (United States)

    Tokiwa, Y; Bauer, E D; Gegenwart, P

    2013-09-06

    Quantum criticality in the normal and superconducting states of the heavy-fermion metal CeCoIn5 is studied by measurements of the magnetic Grüneisen ratio ΓH and specific heat in different field orientations and temperatures down to 50 mK. A universal temperature over magnetic field scaling of ΓH in the normal state indicates a hidden quantum critical point at zero field. Within the superconducting state, the quasiparticle entropy at constant temperature increases upon reducing the field towards zero, providing additional evidence for zero-field quantum criticality.

  5. Quantum capacity of quantum black holes

    Science.gov (United States)

    Adami, Chris; Bradler, Kamil

    2014-03-01

    The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.

  6. Quantum golden field theory - Ten theorems and various conjectures

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    Ten theorems and few conjectures related to quantum field theory as applied to high energy physics are presented. The work connects classical quantum field theory with the golden mean renormalization groups of non-linear dynamics and E-Infinity theory

  7. Quantum theory of noncommutative fields

    International Nuclear Information System (INIS)

    Carmona, J.M.; Cortes, J.L.; Gamboa, J.; Mendez, F.

    2003-01-01

    Generalizing the noncommutative harmonic oscillator construction, we propose a new extension of quantum field theory based on the concept of 'noncommutative fields'. Our description permits to break the usual particle-antiparticle degeneracy at the dispersion relation level and introduces naturally an ultraviolet and an infrared cutoff. Phenomenological bounds for these new energy scales are given. (author)

  8. The quantum harmonic oscillator on a circle and a deformed quantum field theory

    International Nuclear Information System (INIS)

    Rego-Monteiro, M.A.

    2001-05-01

    We construct a deformed free quantum field theory with an standard Hilbert space based on a deformed Heisenberg algebra. This deformed algebra is a Heisenberg-type algebra describing the first levels of the quantum harmonic oscillator on a circle of large length L. The successive energy levels of this quantum harmonic oscillator on a circle of large length L are interpreted, similarly to the standard quantum one-dimensional harmonic oscillator on an infinite line, as being obtained by the creation of a quantum particle of frequency w at very high energies. (author)

  9. Microcanonical quantum field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1983-01-01

    Euclidean quantum field theory is equivalent to the equilibrium statistical mechanics of classical fields in 4+1 dimensions at temperature h. It is well known in statistical mechanics that the theory of systems at fixed temperature is embedded within the more general and fundamental theory of systems at fixed energy. We therefore develop, in precise analogy, a fixed action (macrocanonical) formulation of quantum field theory. For the case of ordinary renormalizable field theories, we show (with one exception) that the microcanonical is entirely equivalent to the canonical formulation. That is, for some particular fixed value of the total action, the Green's functions of the microcanonical theory are equal, in the bulk limit, to those of the canonical theory. The microcanonical perturbation expansion is developed in some detail for lambdaphi 4 . The particular value of the action for which the two formulations are equivalent can be calculated to all orders in perturbation theory. We prove, using Lehmann's Theorem, that this value is one-half Planck unit per degree of freedom, if fermionic degrees of freedom are counted negatively. This is the 4+1 dimensional analog of the equipartition theorem. The one exception to this is supersymmetric theories. A microcanonical formulation exists if and only if supersymmetry is broken. In statistical mechanics and in field theory there are systems for which the canonical description is pathological, but the microcanonical is not. An example of such a field theory is found in one dimension. A semiclassical expansion of the microcanonical theory is well defined, while an expansion of the canonical theory is hoplessly divergent

  10. Quantum control and coherence of interacting spins in diamond

    NARCIS (Netherlands)

    De Lange, G.

    2012-01-01

    The field of quantum science and technology has generated many ideas for new revolutionary devices that exploit the quantum mechanical properties of small-scale systems. Isolated solid state spins play a large role in quantum technologies. They can be used as basic building blocks for a quantum

  11. Integrability of a family of quantum field theories related to sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Ridout, David [Australian National Univ., Canberra, ACT (Australia). Dept. of Theoretical Physics; DESY, Hamburg (Germany). Theory Group; Teschner, Joerg [DESY, Hamburg (Germany). Theory Group

    2011-03-15

    A method is introduced for constructing lattice discretizations of large classes of integrable quantum field theories. The method proceeds in two steps: The quantum algebraic structure underlying the integrability of the model is determined from the algebra of the interaction terms in the light-cone representation. The representation theory of the relevant quantum algebra is then used to construct the basic ingredients of the quantum inverse scattering method, the lattice Lax matrices and R-matrices. This method is illustrated with four examples: The Sinh-Gordon model, the affine sl(3) Toda model, a model called the fermionic sl(2 vertical stroke 1) Toda theory, and the N=2 supersymmetric Sine-Gordon model. These models are all related to sigma models in various ways. The N=2 supersymmetric Sine-Gordon model, in particular, describes the Pohlmeyer reduction of string theory on AdS{sub 2} x S{sup 2}, and is dual to a supersymmetric non-linear sigma model with a sausage-shaped target space. (orig.)

  12. Group field theory and simplicial quantum gravity

    International Nuclear Information System (INIS)

    Oriti, D

    2010-01-01

    We present a new group field theory for 4D quantum gravity. It incorporates the constraints that give gravity from BF theory and has quantum amplitudes with the explicit form of simplicial path integrals for first-order gravity. The geometric interpretation of the variables and of the contributions to the quantum amplitudes is manifest. This allows a direct link with other simplicial gravity approaches, like quantum Regge calculus, in the form of the amplitudes of the model, and dynamical triangulations, which we show to correspond to a simple restriction of the same.

  13. Quantum field theory and the internal states of elementary particles

    CSIR Research Space (South Africa)

    Greben, JM

    2011-01-01

    Full Text Available A new application of quantum field theory is developed that gives a description of the internal dynamics of dressed elementary particles and predicts their masses. The fermionic and bosonic quantum fields are treated as interdependent fields...

  14. Coulomb drag: a probe of electron interactions in coupled quantum wells

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka

    1996-01-01

    As semiconductor devices shrink in size and in dimensionality, interactions between charge carriers become more and more important. There is a simple physical reason behind this behavior: fewer carriers lead to less effective screening, and hence stronger effective interactions. A point in case...... are one-dimensional systems (quantum wires): there electron-electron interactions may lead to a behavior, which is qualitatively different from the standard Fermi liquid picture (Luttinger liquids). Electron-electron interactions also play a central role in the fractional quantum Hall effect, which...... be the study of quantum wires: there the interactions may lead to even more dramatic effects...

  15. Quantum fields in curved space-times

    International Nuclear Information System (INIS)

    Ashtekar, A.; Magnon, A.

    1975-01-01

    The problem of obtaining a quantum description of the (real) Klein-Gordon system in a given curved space-time is discussed. An algebraic approach is used. The *-algebra of quantum operators is constructed explicitly and the problem of finding its *-representation is reduced to that of selecting a suitable complex structure on the real vector space of the solutions of the (classical) Klein-Gordon equation. Since, in a static space-time, there already exists, a satisfactory quantum field theory, in this case one already knows what the 'correct' complex structure is. A physical characterization of this 'correct' complex structure is obtained. This characterization is used to extend quantum field theory to non-static space-times. Stationary space-times are considered first. In this case, the issue of extension is completely straightforward and the resulting theory is the natural generalization of the one in static space-times. General, non-stationary space-times are then considered. In this case the issue of extension is quite complicated and only a plausible extension is presented. Although the resulting framework is well-defined mathematically, the physical interpretation associated with it is rather unconventional. Merits and weaknesses of this framework are discussed. (author)

  16. The Global Approach to Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)

    2003-12-12

    Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi{sup i} defined on a given spacetime M, the set of all varphi{sup i}(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the

  17. The Global Approach to Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Fulling, S A [Texas A and M University (United States)

    2006-05-21

    Parts I and II develop the basic classical and quantum kinematics of fields and other dynamical systems. The presentation is conducted in the utmost generality, allowing for dynamical quantities that may be anticommuting (supernumbers) and theories subject to the most general possible gauge symmetry. The basic ingredients are action functionals and the Peierls bracket, a manifestly covariant replacement for the Poisson bracket and equal-time commutation relations. For DeWitt the logical progression is Peierls bracket {yields} Schwinger action principle {yields} Feynman functional integral although he points out that the historical development was in the opposite order. It must be pointed out that the Peierls-Schwinger-DeWitt approach, despite some advantages over initial-value formulations, has some troubles of its own. In particular, it has never completely escaped from the arena of scattering theory, the paradigm of conventional particle physics. One is naturally led to study matrix elements between an 'in-vacuum' and an 'out-vacuum' though such concepts are murky in situations, such as big bangs and black holes, where the ambient geometry is not asymptotically static in the far past and future. The newest material in the treatise appears in two chapters in part II devoted to the interpretation of quantum theory, incorporating some unpublished work of David Deutsch on the meaning of probability in physics. Parts III through V apply the formalism in depth to successively more difficult classes of systems: quantum mechanics, linear (free) fields, and interacting fields. DeWitt's characteristic tools of effective actions, heat kernels, and ghost fields are developed. Chapters 26 and 31 outline new approaches developed in collaboration with DeWitt's recent students C Molina-Paris and C Y Wang, respectively. The most of parts VI and VII consist of special topics, such as anomalies, particle creation by external fields, Unruh acceleration

  18. The Global Approach to Quantum Field Theory

    International Nuclear Information System (INIS)

    Fulling, S A

    2006-01-01

    Parts I and II develop the basic classical and quantum kinematics of fields and other dynamical systems. The presentation is conducted in the utmost generality, allowing for dynamical quantities that may be anticommuting (supernumbers) and theories subject to the most general possible gauge symmetry. The basic ingredients are action functionals and the Peierls bracket, a manifestly covariant replacement for the Poisson bracket and equal-time commutation relations. For DeWitt the logical progression is Peierls bracket → Schwinger action principle → Feynman functional integral although he points out that the historical development was in the opposite order. It must be pointed out that the Peierls-Schwinger-DeWitt approach, despite some advantages over initial-value formulations, has some troubles of its own. In particular, it has never completely escaped from the arena of scattering theory, the paradigm of conventional particle physics. One is naturally led to study matrix elements between an 'in-vacuum' and an 'out-vacuum' though such concepts are murky in situations, such as big bangs and black holes, where the ambient geometry is not asymptotically static in the far past and future. The newest material in the treatise appears in two chapters in part II devoted to the interpretation of quantum theory, incorporating some unpublished work of David Deutsch on the meaning of probability in physics. Parts III through V apply the formalism in depth to successively more difficult classes of systems: quantum mechanics, linear (free) fields, and interacting fields. DeWitt's characteristic tools of effective actions, heat kernels, and ghost fields are developed. Chapters 26 and 31 outline new approaches developed in collaboration with DeWitt's recent students C Molina-Paris and C Y Wang, respectively. The most of parts VI and VII consist of special topics, such as anomalies, particle creation by external fields, Unruh acceleration temperature, black holes, and

  19. Lectures on algebraic quantum field theory and operator algebras

    International Nuclear Information System (INIS)

    Schroer, Bert

    2001-04-01

    In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)

  20. Quantum field theory III. Gauge theory. A bridge between mathematicians and physicists

    International Nuclear Information System (INIS)

    Zeidler, Eberhard

    2011-01-01

    In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos). (orig.)

  1. The conceptual basis of Quantum Field Theory

    NARCIS (Netherlands)

    Hooft, G. 't

    2005-01-01

    Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental

  2. Integrable structures in quantum field theory

    International Nuclear Information System (INIS)

    Negro, Stefano

    2016-01-01

    This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)

  3. Quantum well electronic states in a tilted magnetic field.

    Science.gov (United States)

    Trallero-Giner, C; Padilha, J X; Lopez-Richard, V; Marques, G E; Castelano, L K

    2017-08-16

    We report the energy spectrum and the eigenstates of conduction and uncoupled valence bands of a quantum well under the influence of a tilted magnetic field. In the framework of the envelope approximation, we implement two analytical approaches to obtain the nontrivial solutions of the tilted magnetic field: (a) the Bubnov-Galerkin spectral method and b) the perturbation theory. We discuss the validity of each method for a broad range of magnetic field intensity and orientation as well as quantum well thickness. By estimating the accuracy of the perturbation method, we provide explicit analytical solutions for quantum wells in a tilted magnetic field configuration that can be employed to study several quantitative phenomena.

  4. Factorization algebras in quantum field theory

    CERN Document Server

    Costello, Kevin

    2017-01-01

    Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.

  5. Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Juan; FANG Mao-Fa

    2004-01-01

    From a quantum information point of view we investigate the entropy squeezing properties for a two-level atom interacting with the two-mode coherent fields via the two-photon transition. We discuss the influences of the initial state of the system on the atomic information entropy squeezing. Our results show that the squeezed component number,squeezed direction, and time of the information entropy squeezing can be controlled by choosing atomic distribution angle,the relative phase between the atom and the two-mode field, and the difference of the average photon number of the two field modes, respectively. Quantum information entropy is a remarkable precision measure for the atomic squeezing.

  6. Designing learning environments to teach interactive Quantum Physics

    Science.gov (United States)

    Gómez Puente, Sonia M.; Swagten, Henk J. M.

    2012-10-01

    This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small groups. Individual formative feedback was introduced as a rapid assessment tool to provide an overview on progress and identify gaps by means of questioning students at three levels: conceptual; prior knowledge; homework exercises. The setup of Quantum Physics has been developed as a result of several loops of adjustments and improvements from a traditional-like type of teaching to an interactive classroom. Results of this particular instructional arrangement indicate significant gains in students' achievements in comparison with the traditional structure of this course, after recent optimisation steps such as the implementation of an individual feedback system.

  7. Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Stoehlker, T.

    2005-03-01

    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)

  8. Topological quantum field theory and four manifolds

    CERN Document Server

    Marino, Marcos

    2005-01-01

    The present book is the first of its kind in dealing with topological quantum field theories and their applications to topological aspects of four manifolds. It is not only unique for this reason but also because it contains sufficient introductory material that it can be read by mathematicians and theoretical physicists. On the one hand, it contains a chapter dealing with topological aspects of four manifolds, on the other hand it provides a full introduction to supersymmetry. The book constitutes an essential tool for researchers interested in the basics of topological quantum field theory, since these theories are introduced in detail from a general point of view. In addition, the book describes Donaldson theory and Seiberg-Witten theory, and provides all the details that have led to the connection between these theories using topological quantum field theory. It provides a full account of Witten’s magic formula relating Donaldson and Seiberg-Witten invariants. Furthermore, the book presents some of the ...

  9. Helium like impurity in CdTe/ Cd1-xMnxTe semimagnetic semiconductors under magnetic field: Dimensionality effect on electron - Electron interaction

    Science.gov (United States)

    Kalpana, Panneer Selvam; Jayakumar, Kalyanasundaram

    2017-11-01

    We study the effect of magnetic field on the Coulomb interaction between the two electrons confined inside a CdTe/Cd1-xMnxTe Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD) for the composition of Mn2+ ion, x = 0.3. The two particle Schrodinger equation has been solved using variational technique in the effective mass approximation. The results show that the applied magnetic field tremendously alters the Coulomb interaction of the electrons and their binding to the donor impurity by shrinking the spatial extension of the two particle wavefunction and leads to tunnelling through the barrier. The qualitative phenomenon involved in such variation of electron - electron interaction with the magnetic field has also been explained through the 3D - plot of the probability density function.

  10. On the consistency of quantum geometrodynamics and quantum field theories in the Bohm-de Broglie Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Pinto-Neto, N.; Santini, E. Sergio. E-mail: nelsonpn@lafex.cbpf.br; santini@lafex.cbpf.br

    2000-12-01

    We consider quantum geometrodynamics and parametrized quantum field theories in the frame-work of the Bohm-de Broglie interpretation. In the first case, and following the lines of our previous work, where a Hamiltonian formalism for the bohmian trajectories was constructed, we show the consistency of the theory for any quantum potential, completing the scenarios for canonical quantum cosmology presented there. In the latter case, we prove the consistency of scalar field theory in Minkowski spacetime for any quantum potential, and we show, using this alternative Hamiltonian method, a concrete example already known in the literature where Lorentz invariance of individual events is broken. (author)

  11. Quantum capacitance of an ultrathin topological insulator film in a magnetic field

    KAUST Repository

    Tahir, M.; Sabeeh, K.; Schwingenschlö gl, Udo

    2013-01-01

    We present a theoretical study of the quantum magnetocapacitance of an ultrathin topological insulator film in an external magnetic field. The study is undertaken to investigate the interplay of the Zeeman interaction with the hybridization between the upper and lower surfaces of the thin film. Determining the density of states, we find that the electron-hole symmetry is broken when the Zeeman and hybridization energies are varied relative to each other. This leads to a change in the character of the magnetocapacitance at the charge neutrality point. We further show that in the presence of both Zeeman interaction and hybridization the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high perpendicular magnetic field. In addition, we address the crossover from perpendicular to parallel magnetic field and find consistency with recent experimental data.

  12. Quantum capacitance of an ultrathin topological insulator film in a magnetic field

    KAUST Repository

    Tahir, M.

    2013-02-12

    We present a theoretical study of the quantum magnetocapacitance of an ultrathin topological insulator film in an external magnetic field. The study is undertaken to investigate the interplay of the Zeeman interaction with the hybridization between the upper and lower surfaces of the thin film. Determining the density of states, we find that the electron-hole symmetry is broken when the Zeeman and hybridization energies are varied relative to each other. This leads to a change in the character of the magnetocapacitance at the charge neutrality point. We further show that in the presence of both Zeeman interaction and hybridization the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high perpendicular magnetic field. In addition, we address the crossover from perpendicular to parallel magnetic field and find consistency with recent experimental data.

  13. Effect of carrier doping and external electric field on the optical properties of graphene quantum dots

    Science.gov (United States)

    Basak, Tista; Basak, Tushima

    2018-02-01

    In this paper, we demonstrate that the optical properties of finite-sized graphene quantum dots can be effectively controlled by doping it with different types of charge carriers (electron/hole). In addition, the role played by a suitably directed external electric field on the optical absorption of charge-doped graphene quantum dots have also been elucidated. The computations have been performed on diamond-shaped graphene quantum dot (DQD) within the framework of the Pariser-Parr-Pople (PPP) model Hamiltonian, which takes into account long-range Coulomb interactions. Our results reveal that the energy band-gap increases when the DQD is doped with holes while it decreases on doping it with electrons. Further, the optical absorption spectra of DQD exhibits red/blue-shift on doping with electrons/holes. Our computations also indicate that the application of external transverse electric field results in a substantial blue-shift of the optical spectrum for charge-doped DQD. However, it is observed that the influence of charge-doping is more prominent in tuning the optical properties of finite-sized graphene quantum dots as compared to externally applied electric field. Thus, tailoring the optical properties of finite-sized graphene quantum dots by manipulative doping with charge carriers and suitably aligned external electric field can greatly enhance its potential application in designing nano-photonic devices.

  14. Introduction to quantum field theory

    CERN Document Server

    Chang, Shau-Jin

    1990-01-01

    This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s

  15. High energy approximations in quantum field theory

    International Nuclear Information System (INIS)

    Orzalesi, C.A.

    1975-01-01

    New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given [pt

  16. Some aspects of quantum field theory in non-Minkowskian space-times

    International Nuclear Information System (INIS)

    Toms, D.J.

    1980-01-01

    Several aspects of quantum field theory in space-times which are different from Minkowski space-time, either because of the presence of a non-zero curvature or as a consequence of the topology of the manifold, are discussed. The Casimir effect is a quantum field theory in a space-time which has a different topology. A short review of some of its popular derivations is presented with comments. Renormalization of interacting scalar field theories in a flat space-time with a non-Minkowskian topology is considered. The presence of a non-trivial topology can lead to additional non-local divergent terms in the Schwinger-Dyson equations for a general scalar field theory; however, the theory may be renormalized with the same choice of counterterms as in Minkowski space-time. Propagators can develop poles corresponding to the generation of a topological mass. Zeta-function regularization is shown to fit naturally into the functional approach to the effective potential. This formalism is used to calculate the effective potential for some scalar field theories in non-Minkowskian space-times. Topological mass generation is discussed, and it is shown how radiative corrections can lead to spontaneous symmetry breaking. One- and two-loop contributions to the vacuum energy density are obtained for both massless and massive fields. In the massive case the role of renormalization in removing non-local divergences is discussed

  17. Quantum transport in strongly interacting one-dimensional nanostructures

    NARCIS (Netherlands)

    Agundez, R.R.

    2015-01-01

    In this thesis we study quantum transport in several one-dimensional systems with strong electronic interactions. The first chapter contains an introduction to the concepts treated throughout this thesis, such as the Aharonov-Bohm effect, the Kondo effect, the Fano effect and quantum state transfer.

  18. Neutrix calculus and finite quantum field theory

    International Nuclear Information System (INIS)

    Ng, Y Jack; Dam, H van

    2005-01-01

    In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like quantum electrodynamics are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT, obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework. (letter to the editor)

  19. Intense laser field effects on a Woods-Saxon potential quantum well

    Science.gov (United States)

    Restrepo, R. L.; Morales, A. L.; Akimov, V.; Tulupenko, V.; Kasapoglu, E.; Ungan, F.; Duque, C. A.

    2015-11-01

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties in an quantum well (QW) make with Woods-Saxon potential profile. The electric field and intense laser field are applied along the growth direction of the Woods-Saxon quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the Woods-Saxon quantum well, the effective mass approximation and the method of envelope wave function are used. The confinement in the Woods-Saxon quantum well is changed drastically by the application of intense laser field or either the effect of electric and magnetic fields. The optical properties are calculated using the compact density matrix.

  20. The canonical quantization of local scalar fields over quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1983-05-01

    Canonical quantization of a classical local field theory (CLFT) consisting of N real scalar fields is formulated in the Hilbert space over the sup(*)-algebra A of linear operators of L 2 (R 3 ). The canonical commutation relations (CCR) have an irreducible solution, unique up to A-unitary equivalence. The canonical equations as operator equations are equivalent to the classical (c) field equations. The interaction picture can be introduced in a well-defined manner. The main adventage of this treatment is that the corresponding S-matrix is free of divergences. The Feynman's graph technique is adaptable in a straightforward manner. This approach is a natural extension of the conventional canonical quantization method of quantum mechanics. (author)

  1. Identifying a cooperative control mechanism between an applied field and the environment of open quantum systems

    Science.gov (United States)

    Gao, Fang; Rey-de-Castro, Roberto; Wang, Yaoxiong; Rabitz, Herschel; Shuang, Feng

    2016-05-01

    Many systems under control with an applied field also interact with the surrounding environment. Understanding the control mechanisms has remained a challenge, especially the role played by the interaction between the field and the environment. In order to address this need, here we expand the scope of the Hamiltonian-encoding and observable-decoding (HE-OD) technique. HE-OD was originally introduced as a theoretical and experimental tool for revealing the mechanism induced by control fields in closed quantum systems. The results of open-system HE-OD analysis presented here provide quantitative mechanistic insights into the roles played by a Markovian environment. Two model open quantum systems are considered for illustration. In these systems, transitions are induced by either an applied field linked to a dipole operator or Lindblad operators coupled to the system. For modest control yields, the HE-OD results clearly show distinct cooperation between the dynamics induced by the optimal field and the environment. Although the HE-OD methodology introduced here is considered in simulations, it has an analogous direct experimental formulation, which we suggest may be applied to open systems in the laboratory to reveal mechanistic insights.

  2. Constructing quantum fields in a Fock space using a new picture of quantum mechanics

    International Nuclear Information System (INIS)

    Farrukh, M.O.

    1977-11-01

    For any conventional non-relativistic quantum theory of a finite number of degrees of freedom a picture is constructed called '' the scattering picture'', combining the ''nice'' properties of both the interaction and the Heisenberg pictures, and show that in the absence of bound states, the theory could be formulated in terms of a free Hamiltonian and an effective potential. The equations thus derived are generalized to the relativistic case and show that, given a Poincare invariant self-adjoint operator D densely defined on a Fock space, there exists an interacting field which is asymptotically free and has as the scattering matrix the non-trivial operator S=esup(iD), provided that D annihilates the vacuum and the one-particle states. Crossing relations could easily be imposed on D, but apart from a few comments, the problem of analyticity of S is left open

  3. Towards chaos criterion in quantum field theory

    OpenAIRE

    Kuvshinov, V. I.; Kuzmin, A. V.

    2002-01-01

    Chaos criterion for quantum field theory is proposed. Its correspondence with classical chaos criterion in semi-classical regime is shown. It is demonstrated for real scalar field that proposed chaos criterion can be used to investigate stability of classical solutions of field equations.

  4. Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance.

    Science.gov (United States)

    Jiang, Min; Wu, Teng; Blanchard, John W; Feng, Guanru; Peng, Xinhua; Budker, Dmitry

    2018-06-01

    Demonstration of coherent control and characterization of the control fidelity is important for the development of quantum architectures such as nuclear magnetic resonance (NMR). We introduce an experimental approach to realize universal quantum control, and benchmarking thereof, in zero-field NMR, an analog of conventional high-field NMR that features less-constrained spin dynamics. We design a composite pulse technique for both arbitrary one-spin rotations and a two-spin controlled-not (CNOT) gate in a heteronuclear two-spin system at zero field, which experimentally demonstrates universal quantum control in such a system. Moreover, using quantum information-inspired randomized benchmarking and partial quantum process tomography, we evaluate the quality of the control, achieving single-spin control for 13 C with an average fidelity of 0.9960(2) and two-spin control via a CNOT gate with a fidelity of 0.9877(2). Our method can also be extended to more general multispin heteronuclear systems at zero field. The realization of universal quantum control in zero-field NMR is important for quantum state/coherence preparation, pulse sequence design, and is an essential step toward applications to materials science, chemical analysis, and fundamental physics.

  5. Perturbative quantum field theory in the framework of the fermionic projector

    International Nuclear Information System (INIS)

    Finster, Felix

    2014-01-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur

  6. Perturbative Quantum Field Theory in the Framework of the Fermionic Projector

    OpenAIRE

    Finster, Felix

    2013-01-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  7. Perturbative quantum field theory in the framework of the fermionic projector

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix, E-mail: finster@ur.de [Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg (Germany)

    2014-04-15

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  8. Perturbative quantum field theory in the framework of the fermionic projector

    Science.gov (United States)

    Finster, Felix

    2014-04-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  9. Quantum optics with ultracold quantum gases: towards the full quantum regime of the light-matter interaction

    International Nuclear Information System (INIS)

    Mekhov, Igor B; Ritsch, Helmut

    2012-01-01

    Although the study of ultracold quantum gases trapped by light is a prominent direction of modern research, the quantum properties of light were widely neglected in this field. Quantum optics with quantum gases closes this gap and addresses phenomena where the quantum statistical natures of both light and ultracold matter play equally important roles. First, light can serve as a quantum nondemolition probe of the quantum dynamics of various ultracold particles from ultracold atomic and molecular gases to nanoparticles and nanomechanical systems. Second, due to the dynamic light-matter entanglement, projective measurement-based preparation of the many-body states is possible, where the class of emerging atomic states can be designed via optical geometry. Light scattering constitutes such a quantum measurement with controllable measurement back-action. As in cavity-based spin squeezing, the atom number squeezed and Schrödinger cat states can be prepared. Third, trapping atoms inside an optical cavity, one creates optical potentials and forces, which are not prescribed but quantized and dynamical variables themselves. Ultimately, cavity quantum electrodynamics with quantum gases requires a self-consistent solution for light and particles, which enriches the picture of quantum many-body states of atoms trapped in quantum potentials. This will allow quantum simulations of phenomena related to the physics of phonons, polarons, polaritons and other quantum quasiparticles. (topical review)

  10. Quantum field theory II introductions to quantum gravity, supersymmetry and string theory

    CERN Document Server

    Manoukian, Edouard B

    2016-01-01

    This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author in...

  11. Boundary effects on quantum field theories

    International Nuclear Information System (INIS)

    Lee, Tae Hoon

    1991-01-01

    Quantum field theory in the S 1 *R 3 space-time is simply described by the imaginary time formalism. We generalize Schwinger-DeWitt proper-time technique which is very useful in zero temperature field theories to this case. As an example we calculate the one-loop effective potential of the finite temperature scala field theory by this technique.(Author)

  12. An impurity solver for nonequilibrium dynamical mean field theory based on hierarchical quantum master equations

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer [Institut fuer Theoretische Physik, Georg-August-Universitaet Goettingen, Goettingen (Germany); Millis, Andrew J. [Department of Physics, Columbia University, New York (United States)

    2016-07-01

    We present a new impurity solver for real-time and nonequilibrium dynamical mean field theory applications, based on the recently developed hierarchical quantum master equation approach. Our method employs a hybridization expansion of the time evolution operator, including an advanced, systematic truncation scheme. Convergence to exact results for not too low temperatures has been demonstrated by a direct comparison to quantum Monte Carlo simulations. The approach is time-local, which gives us access to slow dynamics such as, e.g., in the presence of magnetic fields or exchange interactions and to nonequilibrium steady states. Here, we present first results of this new scheme for the description of strongly correlated materials in the framework of dynamical mean field theory, including benchmark and new results for the Hubbard and periodic Anderson model.

  13. Dirac's equation and the nature of quantum field theory

    International Nuclear Information System (INIS)

    Plotnitsky, Arkady

    2012-01-01

    This paper re-examines the key aspects of Dirac's derivation of his relativistic equation for the electron in order advance our understanding of the nature of quantum field theory. Dirac's derivation, the paper argues, follows the key principles behind Heisenberg's discovery of quantum mechanics, which, the paper also argues, transformed the nature of both theoretical and experimental physics vis-à-vis classical physics and relativity. However, the limit theory (a crucial consideration for both Dirac and Heisenberg) in the case of Dirac's theory was quantum mechanics, specifically, Schrödinger's equation, while in the case of quantum mechanics, in Heisenberg's version, the limit theory was classical mechanics. Dirac had to find a new equation, Dirac's equation, along with a new type of quantum variables, while Heisenberg, to find new theory, was able to use the equations of classical physics, applied to different, quantum-mechanical variables. In this respect, Dirac's task was more similar to that of Schrödinger in his work on his version of quantum mechanics. Dirac's equation reflects a more complex character of quantum electrodynamics or quantum field theory in general and of the corresponding (high-energy) experimental quantum physics vis-à-vis that of quantum mechanics and the (low-energy) experimental quantum physics. The final section examines this greater complexity and its implications for fundamental physics.

  14. Microcanonical formulation of quantum field theories

    International Nuclear Information System (INIS)

    Iwazaki, A.

    1984-03-01

    A microcanonical formulation of Euclidean quantum field theories is presented. In the formulation, correlation functions are given by a microcanonical ensemble average of fields. Furthermore, the perturbative equivalence of the formulation and the standard functional formulation is proved and the equipartition low is derived in our formulation. (author)

  15. Quantum Coherence and Random Fields at Mesoscopic Scales

    International Nuclear Information System (INIS)

    Rosenbaum, Thomas F.

    2016-01-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  16. Quantum Coherence and Random Fields at Mesoscopic Scales

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Thomas F. [Univ. of Chicago, IL (United States)

    2016-03-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  17. Concepts in quantum field theory a practitioner's toolkit

    CERN Document Server

    Ilisie, Victor

    2015-01-01

    This book uses less strict yet still formal mathematical language to clarify a variety of concepts in Quantum Field Theory that remain somewhat “fuzzy” in many books designed for undergraduates and fresh graduates. The aim is not to replace formal books on Quantum Field Theory, but rather to offer a helpful complementary tool for beginners in the field. Features include a reader-friendly introduction to tensor calculus and the concept of manifolds; a simple and robust treatment for dimensional regularization; a consistent explanation of the renormalization procedure, step by step and in a transparent manner at all orders, using the QED Lagrangian; and extensive treatment of infrared as well as ultraviolet divergences. The most general (Lorentz invariant) form of Noether's theorem is presented and applied to a few simple yet relevant examples in Quantum Field Theory. These and further interesting topics are addressed in a way that will be accessible for the target readership. Some familiarity with basic no...

  18. A general action for topological quantum field theories

    International Nuclear Information System (INIS)

    Dayi, O.F.

    1989-03-01

    Topological field theories can be formulated by beginning from a higher dimensional action. The additional dimension is an unphysical time parameter and the action is the derivative of a functional W with respect to this variable. In the d = 4 case, it produces actions which are shown to give topological quantum field theory after gauge fixing. In d = 3 this action leads to the Hamiltonian, which yields the Floer groups if the additional parameter is treated as physical when W is the pure Chern-Simons action. This W can be used to define a topological quantum field theory in d = 3 by treating the additional parameter as unphysical. The BFV-BRST operator quantization of this theory yields to an enlarged system which has only first class constraints. This is not identical to the previously introduced d = 3 topological quantum field theory, even if it is shown that the latter theory also gives the theory which we began with, after a partial gauge fixing. (author). 18 refs

  19. Dynamics of classical and quantum fields an introduction

    CERN Document Server

    Setlur, Girish S

    2014-01-01

    Dynamics of Classical and Quantum Fields: An Introduction focuses on dynamical fields in non-relativistic physics. Written by a physicist for physicists, the book is designed to help readers develop analytical skills related to classical and quantum fields at the non-relativistic level, and think about the concepts and theory through numerous problems. In-depth yet accessible, the book presents new and conventional topics in a self-contained manner that beginners would find useful. A partial list of topics covered includes: Geometrical meaning of Legendre transformation in classical mechanics Dynamical symmetries in the context of Noether's theorem The derivation of the stress energy tensor of the electromagnetic field, the expression for strain energy in elastic bodies, and the Navier Stokes equation Concepts of right and left movers in case of a Fermi gas explained Functional integration is interpreted as a limit of a sequence of ordinary integrations Path integrals for one and two quantum particles and for...

  20. Group field theories for all loop quantum gravity

    Science.gov (United States)

    Oriti, Daniele; Ryan, James P.; Thürigen, Johannes

    2015-02-01

    Group field theories represent a second quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the group field theory formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.

  1. One phonon resonant Raman scattering in semiconductor quantum wires: Magnetic field effect

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Riera, Re., E-mail: rbriera@posgrado.cifus.uson.mx [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonor, (Mexico); Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico); Betancourt-Riera, Ri. [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonora (Mexico); Nieto Jalil, J.M. [Tecnologico de Monterrey-Campus Sonora Norte, Bulevar Enrique Mazon Lopez No. 965, C.P. 83000, Hermosillo, Sonora (Mexico); Riera, R. [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico)

    2013-02-01

    We have developed a theory of one phonon resonant Raman scattering in a semiconductor quantum wire of cylindrical geometry in the presence of an external magnetic field distribution, parallel to the cylinder axis. The effect of the magnetic field in the electron and hole states, and in the Raman scattering efficiency, is determinate. We consider the electron-phonon interaction using a Froehlich-type Hamiltonian, deduced for the case of complete confinement phonon modes by Comas and his collaborators. We also assume T=0 K, a single parabolic conduction and valence bands. The spectra are discussed for different magnetic field values and the selection rules for the processes are also studied.

  2. Coupled field induced conversion between destructive and constructive quantum interference

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiangqian, E-mail: xqjiang@hit.edu.cn; Sun, Xiudong

    2016-12-15

    We study the control of quantum interference in a four-level atom driven by three coherent fields forming a closed loop. The spontaneous emission spectrum shows two sets of peaks which are dramatically influenced by the fields. Due to destructive quantum interference, a dark line can be observed in the emission spectrum, and the condition of the dark line is given. We found that the conversion between destructive and constructive quantum interference can be achieved through controlling the Rabi frequency of the external fields.

  3. Quantum field theory on higher-genus Riemann surfaces, 2

    International Nuclear Information System (INIS)

    Kubo, Reijiro; Ojima, Shuichi.

    1990-08-01

    Quantum field theory for closed bosonic string systems is formulated on arbitrary higher-genus Riemann surfaces in global operator formalism. Canonical commutation relations between bosonic string field X μ and their conjugate momenta P ν are derived in the framework of conventional quantum field theory. Problems arising in quantizing bosonic systems are considered in detail. Applying the method exploited in the preceding paper we calculate Ward-Takahashi identities. (author)

  4. Quantum Ising chains with boundary fields

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore; Pelissetto, Andrea

    2015-01-01

    We present a detailed study of the finite one-dimensional quantum Ising chain in a transverse field in the presence of boundary magnetic fields coupled with the order-parameter spin operator. We consider two magnetic fields located at the boundaries of the chain that have the same strength and that are aligned in the same or in the opposite direction. We derive analytic expressions for the gap in all phases for large values of the chain length L, as a function of the boundary field strength. We also investigate the behaviour of the chain in the quantum ferromagnetic phase for oppositely aligned fields, focusing on the magnet-to-kink transition that occurs at a finite value of the magnetic field strength. At this transition we compute analytically the finite-size crossover functions for the gap, the magnetisation profile, the two-point correlation function, and the density of fermionic modes. As the magnet-to-kink transition is equivalent to the wetting transition in two-dimensional classical Ising models, our results provide new analytic predictions for the finite-size behaviour of Ising systems in a strip geometry at this transition. (paper)

  5. Digestible quantum field theory

    CERN Document Server

    Smilga, Andrei

    2017-01-01

    This book gives an intermediate level treatment of quantum field theory, appropriate to a reader with a first degree in physics and a working knowledge of special relativity and quantum mechanics. It aims to give the reader some understanding of what QFT is all about, without delving deep into actual calculations of Feynman diagrams or similar. The author serves up a seven‐course menu, which begins with a brief introductory Aperitif. This is followed by the Hors d'oeuvres, which set the scene with a broad survey of the Universe, its theoretical description, and how the ideas of QFT developed during the last century. In the next course, the Art of Cooking, the author recaps on some basic facts of analytical mechanics, relativity, quantum mechanics and also presents some nutritious “extras” in mathematics (group theory at the elementary level) and in physics (theory of scattering). After these preparations, the reader should have a good appetite for the Entrées ‐ the central par t of the book where the...

  6. The quantum symmetry of rational field theories

    International Nuclear Information System (INIS)

    Fuchs, J.

    1993-12-01

    The quantum symmetry of a rational quantum field theory is a finite-dimensional multi-matrix algebra. Its representation category, which determines the fusion rules and braid group representations of superselection sectors, is a braided monoidal C*-category. Various properties of such algebraic structures are described, and some ideas concerning the classification programme are outlined. (orig.)

  7. Axiomatic field theory and quantum electrodynamics: the massive case

    International Nuclear Information System (INIS)

    Steinmann, O.

    1975-01-01

    Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(μν) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(μ); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(μν) with the current Jsub(μ). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(μ) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely

  8. The quantum symmetry of rational conformal field theories

    Directory of Open Access Journals (Sweden)

    César Gómez

    1991-04-01

    Full Text Available The quantum group symmetry of the c ˇ1 Rational Conformal Field Theory, in its Coulomb gas version, is formulated in terms of a new type of screened vertex operators, which define the representation spaces of a quantum group Q. The conformal properties of these operators show a deep interplay between the quantum group Q and the Virasoro algebra.The R-matrix, the comultiplication rules and the quantum Clebsch-Gordan coefficients of Q are obtained using contour deformation techniques. Finally, the relation between the chiral vertex operators and the quantum Clebsch-Gordan coefficients is shown.

  9. Quantum mechanics. Mechanically detecting and avoiding the quantum fluctuations of a microwave field.

    Science.gov (United States)

    Suh, J; Weinstein, A J; Lei, C U; Wollman, E E; Steinke, S K; Meystre, P; Clerk, A A; Schwab, K C

    2014-06-13

    Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion. Copyright © 2014, American Association for the Advancement of Science.

  10. Elementary particles and physics interaction unification

    International Nuclear Information System (INIS)

    Leite-Lopes, J.

    1985-01-01

    Quantum theory and relativity theory are fundamental of relativistic quantum mechanics, quantum field theory, which is the base of elementary particle physics, gauge field theory and basic force unification models. After a short introduction of relativistic equations of the main fields, the free scalar field, the free vector field, the free electromagnetic field and the free spinor field, and of elementary particles and basic interactions, gauge invariance and electromagnetic gauge field are detailed. Then the presentation of internal degrees of freedom, especially isospin, introduces gauge field theory of Yang-Mills. At last weak interactions and strong interactions are presented and lead to grand unification theory in conclusion [fr

  11. Quantum field kinetics of QCD: Quark-gluon transport theory for light-cone-dominated processes

    International Nuclear Information System (INIS)

    Geiger, K.

    1996-01-01

    A quantum-kinetic formalism is developed to study the dynamical interplay of quantum and statistical-kinetic properties of nonequilibrium multiparton systems produced in high-energy QCD processes. The approach provides the means to follow the quantum dynamics in both space-time and energy-momentum, starting from an arbitrary initial configuration of high-momentum quarks and gluons. Using a generalized functional integral representation and adopting the open-quote open-quote closed-time-path close-quote close-quote Green function techniques, a self-consistent set of equations of motions is obtained: a Ginzburg-Landau equation for a possible color background field, and Dyson-Schwinger equations for the two-point functions of the gluon and quark fields. By exploiting the open-quote open-quote two-scale nature close-quote close-quote of light-cone-dominated QCD processes, i.e., the separation between the quantum scale that specifies the range of short-distance quantum fluctuations, and the kinetic scale that characterizes the range of statistical binary interactions, the quantum field equations of motion are converted into a corresponding set of open-quote open-quote renormalization equations close-quote close-quote and open-quote open-quote transport equations.close-quote close-quote The former describe renormalization and dissipation effects through the evolution of the spectral density of individual, dressed partons, whereas the latter determine the statistical occurrence of scattering processes among these dressed partons. The renormalization equations and the transport equations are coupled, and, hence, must be solved self-consistently. This amounts to evolving the multiparton system, from a specified initial configuration, in time and full seven-dimensional phase space, constrained by the Heisenberg uncertainty principle. (Abstract Truncated)

  12. Evidence of quantum phase transition in real-space vacuum entanglement of higher derivative scalar quantum field theories.

    Science.gov (United States)

    Kumar, S Santhosh; Shankaranarayanan, S

    2017-11-17

    In a bipartite set-up, the vacuum state of a free Bosonic scalar field is entangled in real space and satisfies the area-law- entanglement entropy scales linearly with area of the boundary between the two partitions. In this work, we show that the area law is violated in two spatial dimensional model Hamiltonian having dynamical critical exponent z = 3. The model physically corresponds to next-to-next-to-next nearest neighbour coupling terms on a lattice. The result reported here is the first of its kind of violation of area law in Bosonic systems in higher dimensions and signals the evidence of a quantum phase transition. We provide evidence for quantum phase transition both numerically and analytically using quantum Information tools like entanglement spectra, quantum fidelity, and gap in the energy spectra. We identify the cause for this transition due to the accumulation of large number of angular zero modes around the critical point which catalyses the change in the ground state wave function due to the next-to-next-to-next nearest neighbor coupling. Lastly, using Hubbard-Stratanovich transformation, we show that the effective Bosonic Hamiltonian can be obtained from an interacting fermionic theory and provide possible implications for condensed matter systems.

  13. Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System.

    Science.gov (United States)

    Jurcevic, P; Shen, H; Hauke, P; Maier, C; Brydges, T; Hempel, C; Lanyon, B P; Heyl, M; Blatt, R; Roos, C F

    2017-08-25

    The theory of phase transitions represents a central concept for the characterization of equilibrium matter. In this work we study experimentally an extension of this theory to the nonequilibrium dynamical regime termed dynamical quantum phase transitions (DQPTs). We investigate and measure DQPTs in a string of ions simulating interacting transverse-field Ising models. During the nonequilibrium dynamics induced by a quantum quench we show for strings of up to 10 ions the direct detection of DQPTs by revealing nonanalytic behavior in time. Moreover, we provide a link between DQPTs and the dynamics of other quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.

  14. Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System

    Science.gov (United States)

    Jurcevic, P.; Shen, H.; Hauke, P.; Maier, C.; Brydges, T.; Hempel, C.; Lanyon, B. P.; Heyl, M.; Blatt, R.; Roos, C. F.

    2017-08-01

    The theory of phase transitions represents a central concept for the characterization of equilibrium matter. In this work we study experimentally an extension of this theory to the nonequilibrium dynamical regime termed dynamical quantum phase transitions (DQPTs). We investigate and measure DQPTs in a string of ions simulating interacting transverse-field Ising models. During the nonequilibrium dynamics induced by a quantum quench we show for strings of up to 10 ions the direct detection of DQPTs by revealing nonanalytic behavior in time. Moreover, we provide a link between DQPTs and the dynamics of other quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.

  15. Lorentz invariance from classical particle paths in quantum field theory of electric and magnetic charge

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.; Zwanziger, D.

    1979-01-01

    We establish the Lorentz invariance of the quantum field theory of electric and magnetic charge. This is a priori implausible because the theory is the second-quantized version of a classical field theory which is inconsistent if the minimally coupled charged fields are smooth functions. For our proof we express the generating functional for the gauge-invariant Green's functions of quantum electrodynamics: with or without magnetic charge: as a path integral over the trajectories of classical charged point particles. The electric-electric and electric-magnetic interactions contribute factors exp(JDJ) and exp(JD'K), where J and K are the electric and magnetic currents of classical point particles and D is the usual photon propagator. The propagator D' involves the Dirac string but exp(JD'K) depends on it only through a topological integer linking string and classical particle trajectories. The charge quantization condition e/sub i/g/sub j/ - g/sub i/e/sub j/ = integer then suffices to make the gauge-invariant Green's functions string independent. By implication our formulation shows that if the Green's functions of quantum electrodynamics are expressed as usual as functional integrals over classical charged fields, the smooth field configurations have measure zero and all the support of the Feynman measure lies on the trajectories of classical point particles

  16. Quantum field theory on toroidal topology: Algebraic structure and applications

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, F.C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); TRIUMF, Vancouver, BC, V6T 2A3 (Canada); Malbouisson, A.P.C., E-mail: adolfo@cbpf.br [Centro Brasileiro de Pesquisas Físicas/MCT, 22290-180, Rio de Janeiro, RJ (Brazil); Malbouisson, J.M.C., E-mail: jmalboui@ufba.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Santana, A.E., E-mail: asantana@unb.br [International Center for Condensed Matter Physics, Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF (Brazil)

    2014-06-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ{sub D}{sup d}=(S{sup 1}){sup d}×R{sup D−d} is developed from a Lie-group representation and c{sup ∗}-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ{sub 4}{sup 1}. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu

  17. Quantum field theory on toroidal topology: Algebraic structure and applications

    International Nuclear Information System (INIS)

    Khanna, F.C.; Malbouisson, A.P.C.; Malbouisson, J.M.C.; Santana, A.E.

    2014-01-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ D d =(S 1 ) d ×R D−d is developed from a Lie-group representation and c ∗ -algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ 4 1 . The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu–Jona-Lasinio models, are considered. Then

  18. Two-electrons quantum dot in plasmas under the external fields

    Science.gov (United States)

    Bahar, M. K.; Soylu, A.

    2018-02-01

    In this study, for the first time, the combined effects of the external electric field, magnetic field, and confinement frequency on energies of two-electron parabolic quantum dots in Debye and quantum plasmas modeled by more general exponential cosine screened Coulomb (MGECSC) potential are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in potential. Since the plasma is an important experimental argument for quantum dots, the influence of plasmas modeled by the MGECSC potential on quantum dots is probed. The confinement frequency of quantum dots and the external fields created significant quantum restrictions on quantum dot. In this study, as well as discussion of the functionalities of the quantum restrictions for experimental applications, the parameters are also compared with each other in terms of influence and behaviour. In this manner, the motivation points of this study are summarized as follows: Which parameter can be alternative to which parameter, in terms of experimental applications? Which parameters exhibit similar behaviour? What is the role of plasmas on the corresponding behaviours? In the light of these research studies, it can be said that obtained results and performed discussions would be important in experimental and theoretical research related to plasma physics and/or quantum dots.

  19. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.

    Science.gov (United States)

    Bryce, Richard A

    2011-04-01

    The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.

  20. Time-dependent quantum transport through an interacting quantum dot beyond sequential tunneling: second-order quantum rate equations

    International Nuclear Information System (INIS)

    Dong, B; Ding, G H; Lei, X L

    2015-01-01

    A general theoretical formulation for the effect of a strong on-site Coulomb interaction on the time-dependent electron transport through a quantum dot under the influence of arbitrary time-varying bias voltages and/or external fields is presented, based on slave bosons and the Keldysh nonequilibrium Green's function (GF) techniques. To avoid the difficulties of computing double-time GFs, we generalize the propagation scheme recently developed by Croy and Saalmann to combine the auxiliary-mode expansion with the celebrated Lacroix's decoupling approximation in dealing with the second-order correlated GFs and then establish a closed set of coupled equations of motion, called second-order quantum rate equations (SOQREs), for an exact description of transient dynamics of electron correlated tunneling. We verify that the stationary solution of our SOQREs is able to correctly describe the Kondo effect on a qualitative level. Moreover, a comparison with other methods, such as the second-order von Neumann approach and Hubbard-I approximation, is performed. As illustrations, we investigate the transient current behaviors in response to a step voltage pulse and a harmonic driving voltage, and linear admittance as well, in the cotunneling regime. (paper)