WorldWideScience

Sample records for interacting elementary particles

  1. Elementary particles and particle interactions

    International Nuclear Information System (INIS)

    Bethge, K.; Schroeder, U.E.

    1986-01-01

    This book is a textbook for an introductory course of elementary particle physics. After a general introduction the symmetry principles governing the interactions of elementary particles are discussed. Then the phenomenology of the electroweak and strong interactions are described together with a short introduction to the Weinberg-Salam theory respectively to quantum chromodynamics. Finally a short outlook is given to grand unification with special regards to SU(5) and cosmology in the framework of the current understanding of the fundamental principles of nature. In the appendix is a table of particle properties and physical constants. (HSI) [de

  2. Elementary particle interactions

    International Nuclear Information System (INIS)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Ward, B.F.L.; Close, F.E.; Christophorou, L.G.

    1990-10-01

    This report discusses freon bubble chamber experiments exposed to μ + and neutrinos, photon-proton interactions; shower counter simulations; SLD detectors at the Stanford Linear Collider, and the detectors at the Superconducting Super Collider; elementary particle interactions; physical properties of dielectric materials used in High Energy Physics detectors; and Nuclear Physics

  3. Elementary particles and physics interaction unification

    International Nuclear Information System (INIS)

    Leite-Lopes, J.

    1985-01-01

    Quantum theory and relativity theory are fundamental of relativistic quantum mechanics, quantum field theory, which is the base of elementary particle physics, gauge field theory and basic force unification models. After a short introduction of relativistic equations of the main fields, the free scalar field, the free vector field, the free electromagnetic field and the free spinor field, and of elementary particles and basic interactions, gauge invariance and electromagnetic gauge field are detailed. Then the presentation of internal degrees of freedom, especially isospin, introduces gauge field theory of Yang-Mills. At last weak interactions and strong interactions are presented and lead to grand unification theory in conclusion [fr

  4. [Research in elementary particles and interactions

    International Nuclear Information System (INIS)

    Adair, R.; Sandweiss, J.; Schmidt, M.

    1992-05-01

    Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K + decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e + e - interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks

  5. Elementary particles and basic interactions. Trends and perspectives

    International Nuclear Information System (INIS)

    Baton, J.P.; Cohen-Tannoudji, G.

    1992-06-01

    This lesson given to Physics teachers, takes stock of actual knowledge and trends in Particle Physics: basic interactions and unification, elementary particles (lepton-quarks), fields theories, boson and gluon discovery. It reminds the operating principle of different large accelerators established in the world and associated particle detectors. It includes also a glossary

  6. Notes on elementary particle physics

    CERN Document Server

    Muirhead, William Hugh

    1972-01-01

    Notes of Elementary Particle Physics is a seven-chapter text that conveys the ideas on the state of elementary particle physics. This book emerged from an introductory course of 30 lectures on the subject given to first-year graduate students at the University of Liverpool. The opening chapter deals with pertinent terminologies in elementary particle physics. The succeeding three chapters cover the concepts of transition amplitudes, probabilities, relativistic wave equations and fields, and the interaction amplitude. The discussion then shifts to tests of electromagnetic interactions, particul

  7. Elementary particles

    International Nuclear Information System (INIS)

    Prasad, R.

    1984-01-01

    Two previous monographs report on investigations into the extent to which a unified field theory can satisfactorily describe physical reality. The first, Unified field Theory, showed that the paths within a non-Riemannian space are governed by eigenvalue equations. The second, Fundamental Constants, show that the field tensors satisfy sets of differential equations with solutions which represent the evolution of the fields along the paths of the space. The results from the first two monographs are used in this one to make progress on the theory of elementary particles. The five chapters are as follows - Quantum mechanics, gravitation and electromagnetism are aspects of the Unified theory; the fields inside the particle; the quadratic and linear theories; the calculation of the eigenvalues and elementary particles as stable configurations of interacting fields. It is shown that it is possible to construct an internal structure theory for elementary particles. The theory lies within the framework of Einstein's programme-to identify physical reality with a specified geometrical structure. (U.K.)

  8. Dimensional considerations about elementary particles

    International Nuclear Information System (INIS)

    Cocconi, G.

    1978-01-01

    The search for fundamental elementary particles responsible for the observed behaviour of matter during the past decades is briefly reviewed, and the possibility is considered that the four fundamental interactions that shape things merge into a unique field when matter is so compressed that particles are at extremely small distances from one another. These interactions are the gravitational interaction, the electromagnetic interaction, the strong interaction, and the weak interaction. It is thought that a simple geometrical criterion, termed the 'elementary criterion', would suffice to indicate how the various interactions should behave as particles are brought closer to one another and thus approach the situation where all interactions merge. (6 references). (U.K.)

  9. Elementary particle theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1984-12-01

    The present state of the art in elementary particle theory is reviewed. Topics include quantum electrodynamics, weak interactions, electroweak unification, quantum chromodynamics, and grand unified theories. 113 references

  10. Elementary particles. 2

    International Nuclear Information System (INIS)

    Ranft, G.; Ranft, J.

    1977-01-01

    In this part the subject is covered under the following headings, methods for producing high-energy particles; interaction of high-energy particles with matter; methods for the detection of high-energy particles; symmetry properties and conservation laws; quantum number and selection rules; theorem of scattering behaviour at asymptotically high energies; statistical methods in elementary particle physics; interaction of high-energy particles with nuclei; relations of high-energy physics to other branches of science and its response to engineering. Intended as information on high-energy physics for graduate students and research workers familiar with the fundamentals of classical and quantum physics

  11. On the Origin of Elementary Particle Masses

    OpenAIRE

    Hansson, Johan

    2012-01-01

    The oldest enigma in fundamental particle physics is: Where do the observed masses of elementary particles come from? Inspired by observation of the empirical particle mass spectrum we propose that the masses of elementary parti cles arise solely due to the self-interaction of the fields associated with a particle. We thus assume that the mass is proportional to the strength of the interaction of th e field with itself. A simple application of this idea to the fermi...

  12. Non-potential interactions and the origin of masses of elementary particles

    International Nuclear Information System (INIS)

    Sun, J.

    1982-01-01

    We propose a fundamental assumption on internal states of particles. It follows from the fundamental assumption that: (1) the constituents of particles become non-particle objects; and (2) there appear naturally non-potential interactions. This non-potential interaction leads to a series of interesting results, one of which is that it yields the origin of masses of elementary particles. All mass values are given by the theory without pre-assumed mass values of the constituents (except the rest mass of the electron; mass is a physical quantity which appears only in particles but not in their constituents). The theoretically calculated mass values are in excellent agreement with the experimental values. In all calculations, only one constant b = 0.99935867 is introduced (bc being the speed of internal motion)

  13. Elementary particles and cosmology

    International Nuclear Information System (INIS)

    Audouze, J.; Paty, M.

    2000-01-01

    The universe is the most efficient laboratory of particle physics and the understanding of cosmological processes implies the knowledge of how elementary particles interact. This article recalls the mutual influences between on the one hand: astrophysics and cosmology and on the other hand: nuclear physics and particle physics. The big-bang theory relies on nuclear physics to explain the successive stages of nucleo-synthesis and the study of solar neutrinos has led to discover new aspects of this particle: it is likely that neutrinos undergo oscillations from one neutrino type to another. In some universe events such as the bursting of a super-nova, particles are released with a kinetic energy that would be impossible to reach on earth with a particle accelerator. These events are become common points of interest between astrophysicists and particle physicists and have promoted a deeper cooperation between astrophysics and elementary particle physics. (A.C.)

  14. Is an elementary particle really: (i) a particle? (ii) elementary?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Is an elementary particle really: (i) a particle? (ii) elementary? Over centuries, naïve notions about this have turned out incorrect. Particles are not really pointlike. The word elementary is not necessarily well-defined. Notes:

  15. Progress in elementary particle theory, 1950-1964

    International Nuclear Information System (INIS)

    Gell-Mann, M.

    1989-01-01

    This final chapter of the book lists advances in elementary particle theory from 1950 to 1964 in an order of progressive understanding of ideas rather than chronologically. Starting with quantum field theory and the important discoveries within it, the author explains the connections and items missing in this decade, but understood later. The second part of the chapter takes the same pattern, but deals with basic interactions (strong, electromagnetic, weak and gravitational) and elementary particles, including quarks. By 1985, theory had developed to such a degree that it was hoped that the long-sought-after unified field theory of all elementary particles and interactions of nature might be close at hand. (UK)

  16. Elementary Atom Interaction with Matter

    OpenAIRE

    Mrowczynski, Stanislaw

    1998-01-01

    The calculations of the elementary atom (the Coulomb bound state of elementary particles) interaction with the atom of matter, which are performed in the Born approximation, are reviewed. We first discuss the nonrelativistic approach and then its relativistic generalization. The cross section of the elementary atom excitation and ionization as well as the total cross section are considered. A specific selection rule, which applies for the atom formed as positronium by particle-antiparticle pa...

  17. Recent advances in elementary particle physics

    International Nuclear Information System (INIS)

    Zepeda, D.A.

    1985-01-01

    A brief review of recent successful results in elementary particle physics, as well as of those problems which may be dealt with in the present of near future is presented. A description of elementary particles and their interactions as they are presently conceived is given. The standard model of electroweak interactions is discussed in detail and the relevance of the recent discovery of the intermediate bosons W + and Z is analized. Finally, the weak features of the standard model and the theories which solve these problems are pointed out. (author)

  18. Physical Origin of Elementary Particle Masses

    OpenAIRE

    Hansson, Johan

    2014-01-01

    In contemporary particle physics, the masses of fundamental particles are incalculable constants, being supplied by experimental values. Inspired by observation of the empirical particle mass spectrum, and their corresponding physical interaction couplings, we propose that the masses of elementary particles arise solely due to the self-interaction of the fields associated with the charges of a particle. A first application of this idea is seen to yield correct order of magnitude predictions f...

  19. Elementary Particles A New Approach

    Directory of Open Access Journals (Sweden)

    FranciscoMartnezFlores.

    2015-07-01

    Full Text Available ABSTRACT It is shown the inexistence of neutrinos to define precisely the concept of relativistics mass under this scheme to elementarys particles as electron and interactions particles like photons correspond an electromagnetic and virtual mass. Nucleons protons and neutrons have real or inertial mass for being composite particles since inertia needs structure it is provided by an interactive network originated by strong and weak forces. This mass is building up atoms and all the material world under Classical Physics and Chemistrys laws.These actual masses may be considered as electromagnetic and virtual one thanks to its charge in order to establish the high energies level needed to obtain all particles physics elementary or not which are governed by the laws of Quantum Physics. With all this one may set up amore reasonable and understandable new Standard Model which being projected into Cosmological Model can get rid of some inconsistencies and concepts difficult to be admitted.

  20. The Sun as a system of elementary particles

    International Nuclear Information System (INIS)

    Kleczek, J.

    1986-01-01

    The paper based on known facts of solar physics-is an attempt to interpret the Sun as a selfgravitating system of about 10/sup 57/ nucleons and electrons. These elementary particles are endowed with strong, electromagnetic, weak and gravitational interactions. Origin of the Sun, its evolution, structure and physiology are consequences of the four interactions. Each structural property, every evolutionary process, any activity phenomenon or event on the Sun can be traced backwards to the four fundamental forces of nature, viz. to interactions of elementary particles

  1. Elementary particle interactions

    International Nuclear Information System (INIS)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out

  2. In search of elementary spin 0 particles

    International Nuclear Information System (INIS)

    Krasny, Mieczyslaw Witold; Płaczek, Wiesław

    2015-01-01

    The Standard Model of strong and electroweak interactions uses point-like spin 1/2 particles as the building bricks of matter and point-like spin 1 particles as the force carriers. One of the most important questions to be answered by the present and future particle physics experiments is whether the elementary spin 0 particles exist, and if they do, what are their interactions with the spin 1/2 and spin 1 particles. Spin 0 particles have been searched extensively over the last decades. Several initial claims of their discoveries were finally disproved in the final experimental scrutiny process. The recent observation of the excess of events at the LHC in the final states involving a pair of vector bosons, or photons, is commonly interpreted as the discovery of the first elementary scalar particle, the Higgs boson. In this paper we recall examples of claims and subsequent disillusions in precedent searches spin 0 particles. We address the question if the LHC Higgs discovery can already be taken for granted, or, as it turned out important in the past, whether it requires a further experimental scrutiny before the existence of the first ever found elementary scalar particle is proven beyond any doubt. An example of the Double Drell–Yan process for which such a scrutiny is indispensable is discussed in some detail. - Highlights: • We present a short history of searches of spin 0 particles. • We construct a model of the Double Drell–Yan Process (DDYP) at the LHC. • We investigate the contribution of the DDYP to the Higgs searches background

  3. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues, W. A.

    1985-01-01

    The possible role of space like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of tachyons. Particular attention is paid : 1) to tachyons as the possible carriers of interactions (''internal lines''); e.g., to the links between ''virtual particles'' and superluminal objects; 2) to the possibility of ''vacuum decays'' at the classical level; 3) to a Lorentz-invariant bootstrap model; 4) to the apparent shape of the tachyonic elementary particles (''elementary tachyons'') and its possible connection with the de Broglie wave-particle dualism

  4. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues Junior, W.A.

    1985-01-01

    The possible role of space-like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of Tachyons. Particular attention is paid: (i) to tachyons as the possible carriers of interactions ('internal lines'); e.g., to the links between 'virtual particles' and superluminal objects; (ii) to the possibility of 'vacuum decays' at the classical level; (iii) to a Lorentz-invariant bootstrap model; (iv) to the apparent shape of the tachyonic elementary particles ('elementary tachyons') and its possible connection with the de Broglie wave-particle dualism. (Author) [pt

  5. The geometry of elementary particles

    International Nuclear Information System (INIS)

    Lov, T.R.

    1987-01-01

    A new model of elementary particles based on the geometry of Quantum deSitter space QdS = SU (3,2)/(SU(3,1) x U(1)) is introduced and studied. QdS is a complexification of quantization of anti-de Sitter space, AdS = SO(3,2)/SO(3,1), which in recent years had played a pivotal role in supergravity. The nontrival principle fiber bundle has total space SU(3,2), fiber SU(3,1) x U(1) and base QdS. In this setting, the standard recipes for Yang-Mills fields don't work. These require connections and the associated covariant derivatives. Here it is shown that the Lie derivatives, not the covariant derivatives are important in quantization. In this setting, the no-go theorems are not valid. This new quantum mechanics leads to a model of elementary particles as vertical vector fields in the bundle with interaction via the Lie bracket. There are five physical interactions modelled by the bracket interaction. The quantum numbers are identified as the roots of su(3,2) and are preserved under the bracket interaction. The model explains conservation of charge, baryon number, lepton number, parity and the heirarchy problem. Since the bracket is the curvature of a homogeneous space, particles are then the curvature of QdS. This model for particles is consistent with the requirements of General Relativity. Furthermore, since the curvature tensor is built from the quantized wave functions, the curvature tensor is quantized and this is quantum theory of gravity

  6. LATTICE SIMULATIONS OF THE THERMODYNAMICS OF STRONGLY INTERACTING ELEMENTARY PARTICLES AND THE EXPLORATION OF NEW PHASES OF MATTER IN RELATIVISTIC HEAVY ION COLLISIONS

    International Nuclear Information System (INIS)

    KARSCH, F.

    2006-01-01

    At high temperatures or densities matter formed by strongly interacting elementary particles (hadronic matter) is expected to undergo a transition to a new form of matter--the quark gluon plasma--in which elementary particles (quarks and gluons) are no longer confined inside hadrons but are free to propagate in a thermal medium much larger in extent than the typical size of a hadron. The transition to this new form of matter as well as properties of the plasma phase are studied in large scale numerical calculations based on the theory of strong interactions--Quantum Chromo Dynamics (QCD). Experimentally properties of hot and dense elementary particle matter are studied in relativistic heavy ion collisions such as those currently performed at the relativistic heavy ion collider (RHIC) at BNL. We review here recent results from studies of thermodynamic properties of strongly interacting elementary particle matter performed on Teraflops-Computer. We present results on the QCD equation of state and discuss the status of studies of the phase diagram at non-vanishing baryon number density

  7. Atomic nucleus and elementary particles

    International Nuclear Information System (INIS)

    Zakrzewski, J.

    1976-01-01

    Negatively charged leptons and hadrons can be incorporated into atomic shells forming exotic atoms. Nucleon resonances and Λ hyperons can be considered as constituents of atomic nuclei. Information derived from studies of such exotic systems enriches our knowledge of both the interactions of elementary particles and of the structure of atomic nuclei. (author)

  8. Elementary particle physics in early physics education

    CERN Document Server

    Wiener, Gerfried

    2017-01-01

    Current physics education research is faced with the important question of how best to introduce elementary particle physics in the classroom early on. Therefore, a learning unit on the subatomic structure of matter was developed, which aims to introduce 12-year-olds to elementary particles and fundamental interactions. This unit was iteratively evaluated and developed by means of a design-based research project with grade-6 students. In addition, dedicated professional development programmes were set up to instruct high school teachers about the learning unit and enable them to investigate its didactical feasibility. Overall, the doctoral research project led to successful results and showed the topic of elementary particle physics to be a viable candidate for introducing modern physics in the classroom. Furthermore, thanks to the design-based research methodology, the respective findings have implications for both physics education and physics education research, which will be presented during the PhD defen...

  9. From the universe to the elementary particles a first introduction to cosmology and the fundamental interactions

    CERN Document Server

    Ellwanger, Ulrich

    2012-01-01

    In this book, the author leads the reader, step by step and without any advanced mathematics, to a clear understanding of the foundations of modern elementary particle physics and cosmology. He also addresses current and controversial questions on topics such as string theory. The book contains gentle introductions to the theories of special and general relativity, and also classical and quantum field theory. The essential aspects of these concepts are understood with the help of simple calculations; for example, the force of gravity as a consequence of the curvature of the space-time. Also treated are the Big Bang, dark matter and dark energy, as well as the presently known interactions of elementary particles: electrodynamics, the strong and the weak interactions including the Higgs boson. Finally, the book sketches as yet speculative theories: Grand Unification theories, supersymmetry, string theory and the idea of additional dimensions of space-time. Since no higher mathematical or physics expertise is r...

  10. From the universe to the elementary particles. A first introduction to cosmology and the fundamental interactions. 2. ed.

    International Nuclear Information System (INIS)

    Ellwanger, Ulrich

    2011-01-01

    This book serves for a representation of the foundations of modern elementary-particle physics and cosmology as well as the actual open questions up to the string theory. It contains elementary introductions to the special and general relativity theory, the classical and quantum field theory. The essential aspects of these concepts and many phenomena are understood by means of simple calculations like for instance the gravitational force as consequence of the curvature of the space. Treated are the big bang, the dark matter and the dark energy, as well as the contemporarily known interactions of the elementary-particle physics, electrodynamics, the strong and the weak interactions including the Higgs boson. Finally today (still?) speculative theories are sketched: Theories of the grand unification of the interactions, supersymmetry, the string theory, and additional dimensions of the space-time. The second edition contains significantly extended descriptions of the functionality of the LHC accelerator, the search for the Higgs boson, as well as the search for dark matter. No bigger mathematical and physical knowledges are presupposed; the book is also suited for grammar-school absolvents and students of the first semesters.

  11. Theoretical aspects of elementary particle physics

    International Nuclear Information System (INIS)

    Wess, J.

    1985-01-01

    The author presents a populary introduction to the theory of elementary particles on the base of quantum mechanics and special relativity theory. The families of quarks, leptons, and gauge bosons are presented, and the connection between symmetry and conservation laws is discussed with special regards to gauge theories. Thereby the description of particle interactions by Feynman diagrams is considered. Finally a brief introduction to supersymmetry and supergravity is given. (HSI) [de

  12. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, Erasmo

    1985-01-01

    The possible role of space-like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of Tachyons. Particular attention is paid: (i) to tachyons as the possible carriers of interactions; (ii) to the possibility of ''vacuum decays'' at the classical level; (iii) to a Lorentz-invariant bootstrap model; (iv) to the apparent shape of the tachyonic elementary particles and its possible connection with the de Broglie wave-particle dualism. (author)

  13. Do Elementary Particles Have an Objective Existence?

    OpenAIRE

    Nissenson, Bilha

    2007-01-01

    The formulation of quantum theory does not comply with the notion of objective existence of elementary particles. Objective existence independent of observation implies the distinguishability of elementary particles. In other words: If elementary particles have an objective existence independent of observations, then they are distinguishable. Or if elementary particles are indistinguishable then matter cannot have existence independent of our observation. This paper presents a simple deductio...

  14. On the Origin of Elementary Particle Masses

    Directory of Open Access Journals (Sweden)

    Hansson J.

    2014-04-01

    Full Text Available The oldest enigma in fundamental particle physics is: Where do the observed masses of elementary particles come from? Inspired by observation of the empirical particle mass spectrum we propose that the masses of elementary parti cles arise solely due to the self-interaction of the fields associated with a particle. We thus assume that the mass is proportional to the strength of the interaction of th e field with itself. A simple application of this idea to the fermions is seen to yield a mas s for the neutrino in line with constraints from direct experimental upper limits and correct order of magnitude predictions of mass separations between neutrinos, charge d leptons and quarks. The neutrino interacts only through the weak force, hence becom es light. The electron in- teracts also via electromagnetism and accordingly becomes heavier. The quarks also have strong interactions and become heavy. The photon is the only fundamental parti- cle to remain massless, as it is chargeless. Gluons gain mass comparable to quarks, or slightly larger due to a somewhat larger color charge. Inclu ding particles outside the standard model proper, gravitons are not exactly massless, but very light due to their very weak self-interaction. Some immediate and physically interesting consequences arise: i Gluons have an e ff ective range ∼ 1 fm, physically explaining why QCD has finite reach; ii Gravity has an effective range ∼ 100 Mpc coinciding with the largest known structures, the cosmic voids; iii Gravitational waves undergo dispersion even in vacuum, and have all five polarizations (not just the two of m = 0, which might explain why they have not yet been detected.

  15. String model of elementary particles

    International Nuclear Information System (INIS)

    Kikkawa, Keiji

    1975-01-01

    Recent development of the models of elementary particles is described. The principal features of elementary particle physics can be expressed by quark model, mass spectrum, the Regge behavior of scattering amplitude, and duality. Venezians showed in 1968 that the B function can express these features. From the analysis of mass spectrum, the string model was introduced. The quantization of the string is performed with the same procedure as the ordinary quantum mechanics. The motion of the string is determined by the Nambu-Goto action integral, and the Schroedinger equation is obtained. Mass spectrum from the string model was same as that from the duality model such as Veneziano model. The interaction between strings can be introduced, and the Lagrangian can be formulated. The relation between the string model and the duality model has been studied. The string model is the first theory of non-local field, and the further development is attractive. The relation between this model and the quark model is still not clear. (Kato, T.)

  16. Interaction of relativistic elementary atoms with matter. I. General formulas

    International Nuclear Information System (INIS)

    Mrowczyn'ski, S.

    1987-01-01

    The problem of the interaction of relativistic elementary atoms (Coulomb bound states of elementary particles such as positronium, pionium, etc.) with matter is studied in the reference frame where the atom is initially at rest. An atom of matter is treated as a spinless structureless fast particle. The amplitudes of elementary-atom interaction are derived in the Born approximation under the assumption that a momentum transfer to the atom does not significantly exceed an inverse Bohr radius of the atom. The elementary-atom excitation and ionization processes are considered. The transitions where the spin projection of the atom component is reversed are also studied. In particular the matrix elements for para-ortho and ortho-para transitions are given. The spin structure of the amplitudes is discussed in detail. The sum rules, which allow the calculation of the cross sections summed over atom final states are found. Finally the formulas of the atom interaction cross sections are presented

  17. From the universe to the elementary particles. A first introduction to cosmology and the fundamental interactions

    International Nuclear Information System (INIS)

    Ellwanger, Ulrich

    2012-01-01

    In this book, the author leads the reader, step by step and without any advanced mathematics, to a clear understanding of the foundations of modern elementary particle physics and cosmology. He also addresses current and controversial questions on topics such as string theory. The book contains gentle introductions to the theories of special and general relativity, and also classical and quantum field theory. The essential aspects of these concepts are understood with the help of simple calculations; for example, the force of gravity as a consequence of the curvature of the space-time. Also treated are the Big Bang, dark matter and dark energy, as well as the presently known interactions of elementary particles: electrodynamics, the strong and the weak interactions including the Higgs boson. Finally, the book sketches as yet speculative theories: Grand Unification theories, supersymmetry, string theory and the idea of additional dimensions of space-time. Since no higher mathematical or physics expertise is required, the book is also suitable for college and university students at the beginning of their studies. Hobby astronomers and other science enthusiasts seeking a deeper insight than can be found in popular treatments will also appreciate this unique book.

  18. Some problems of high-energy elementary particle physics

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1995-01-01

    The problems of high-energy elementary particle physics are discussed. It is pointed out that the modern theory of elementary-particle physics has no solutions of some large physical problems: origin of the mass, electric charge, identity of particle masses, change of the mass of elementary particles in time and others. 7 refs

  19. Physics through the 1990s: Elementary-particle physics

    Science.gov (United States)

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  20. Physics through the 1990s: Elementary-particle physics

    Science.gov (United States)

    1986-01-01

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  1. Compilation of data on elementary particles

    International Nuclear Information System (INIS)

    Trippe, T.G.

    1984-09-01

    The most widely used data compilation in the field of elementary particle physics is the Review of Particle Properties. The origin, development and current state of this compilation are described with emphasis on the features which have contributed to its success: active involvement of particle physicists; critical evaluation and review of the data; completeness of coverage; regular distribution of reliable summaries including a pocket edition; heavy involvement of expert consultants; and international collaboration. The current state of the Review and new developments such as providing interactive access to the Review's database are described. Problems and solutions related to maintaining a strong and supportive relationship between compilation groups and the researchers who produce and use the data are discussed

  2. On the ontology of the elementary particles. A philosophical analysis of the actual elementary-particle physics

    International Nuclear Information System (INIS)

    Brueckner, Thomas Christian

    2015-01-01

    After a description of the standard model of elementary-particle physics the author describes structuralistic reconstructions. Then the problem of the theoretical terms is discussed. Therafter the reconstruction of the standard-model elementary particles is described. Finally the ontology of leptons, quarks and both free and in atoms bound protons is considered.

  3. Elementary particle physics and cosmology: current status and prospects

    International Nuclear Information System (INIS)

    Rubakov, Valerii A

    1999-01-01

    The current status of elementary particle physics can be briefly summarized as follows: the Standard Model of elementary particles is perfectly (at the level of radiation effects!) adequate in describing all the available experimental data except for the recent indications of neutrino oscillations. At the same time, much (and possibly most) of today's cosmology is not encompassed by the Standard Model - a fact which, together with intrinsic theoretical difficulties and the neutrino oscillation challenge, strongly indicates that the Standard Model is incomplete. It is expected that in the current decade a 'new physics', i.e. particles and interactions beyond the Standard Model, will emerge. Major advances in cosmology, both in terms of qualitatively improved observations and theoretical analysis of the structure and evolution of the Universe, are expected as well. (special issue)

  4. A Simple Mathematical Model for Standard Model of Elementary Particles and Extension Thereof

    Science.gov (United States)

    Sinha, Ashok

    2016-03-01

    An algebraically (and geometrically) simple model representing the masses of the elementary particles in terms of the interaction (strong, weak, electromagnetic) constants is developed, including the Higgs bosons. The predicted Higgs boson mass is identical to that discovered by LHC experimental programs; while possibility of additional Higgs bosons (and their masses) is indicated. The model can be analyzed to explain and resolve many puzzles of particle physics and cosmology including the neutrino masses and mixing; origin of the proton mass and the mass-difference between the proton and the neutron; the big bang and cosmological Inflation; the Hubble expansion; etc. A novel interpretation of the model in terms of quaternion and rotation in the six-dimensional space of the elementary particle interaction-space - or, equivalently, in six-dimensional spacetime - is presented. Interrelations among particle masses are derived theoretically. A new approach for defining the interaction parameters leading to an elegant and symmetrical diagram is delineated. Generalization of the model to include supersymmetry is illustrated without recourse to complex mathematical formulation and free from any ambiguity. This Abstract represents some results of the Author's Independent Theoretical Research in Particle Physics, with possible connection to the Superstring Theory. However, only very elementary mathematics and physics is used in my presentation.

  5. Nuclei, hadrons, and elementary particles

    International Nuclear Information System (INIS)

    Bopp, F.W.

    1989-01-01

    This book is a short introduction to the physics of the nuclei, hadrons, and elementary particles for students of physics. Important facts and model imaginations on the structure, the decay, and the scattering of nuclei, the 'zoology' of the hadrons and basic facts of hadronic scattering processes, a short introduction to quantum electrodynamics and quantum chromodynamics and the most important processes of lepton and parton physics, as well as the current-current approach of weak interactions and the Glashow-Weinberg-Salam theory are presented. (orig.) With 153 figs., 10 tabs [de

  6. About limit masses of elementary particles

    International Nuclear Information System (INIS)

    Ibadova, U.R.

    2002-01-01

    The simple examples of spontaneous breaking of various symmetries for the scalar theory with fundamental mass have been considered. Higgs' generalizations on 'fundamental masses' that was introduced into the theory on a basis of the five-dimensional de Sitter space. The connection among 'fundamental mass', 'Planck's mass' and 'maxim ons' has been found. Consequently, the relationship among G-gravitational constant and other universal parameters can be established. The concept the mass having its root from deep antiquity (including Galilee's Pis sans experiment, theoretical research of the connection of mass with the Einstein's energy etc.) still remains fundamental. Every theoretical and experimental research in classical physics and quantum physics associated with mass is of step to the discernment of Nature. Besides of mass, the other fundamental constants such as Planck's constant ℎ and the speed of light also play the most important role in the modern theories. The first one related to quantum mechanics and the second one is related to the theory of relativity. Nowadays the properties and interactions of elementary particles can be described more or less adequately in terms of local fields that are affiliated with the lowest representations of corresponding compact groups of symmetry. It is known that the mass of any body is composed of masses of its comprising elementary particles. The mass of elementary particles is the Casimir operator of the non-compact Poincare group, and those representations of the given group, that are being used in Quantum Field Theory (QFT), and it can take any values in the interval of 0≤m≤∞. Two particles, today referred to as elementary particles, can have masses; distinct one from another by many orders. For example, vectorial bosons with the mass of ∼10 15 GeV take place in general relativity theory modules, whereas the mass of an electron is only ∼0.5·10 3 GeV. Formally, the standard QFT remains logical in a case

  7. Charm-quarks and new elementary particles

    International Nuclear Information System (INIS)

    Petersen, J.L.

    1978-01-01

    This is the first part of an extensive paper which discusses: the Nobel prize in physics 1976; discovery of the J/psi-particle; elementary particles and elementary building blocks; the four reciprocal effects; gauge theories; quark-antiquark reciprocal effects; the high-energy approximation; a simple quark-antiquark potential; and quark diagrams and the Zweig rule. (Auth.)

  8. Physics through the 1990s: Elementary-particle physics

    International Nuclear Information System (INIS)

    Kirk, W.T.

    1986-01-01

    This report on elementary-particle physics is part of an overall survey of physics carried out for the National Academy of Sciences by the National Research Council. The panel that wrote this report had three goals. The first goal was to explain the nature of elementary-particle physics and to describe how research is carried out in this field. The second goal was to summarize our present knowledge of the elementary particles and the fundamental forces. The third goal was to consider the future course of elementary-particle physics research and to propose a program for this research in the United States. All of these goals are covered in this report

  9. Elementary particle physics at the University of Florida

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP)

  10. Elementary particle physics at the University of Florida

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

  11. The Search for Stable, Massive, Elementary Particles

    International Nuclear Information System (INIS)

    Kim, Peter C.

    2001-01-01

    In this paper we review the experimental and observational searches for stable, massive, elementary particles other than the electron and proton. The particles may be neutral, may have unit charge or may have fractional charge. They may interact through the strong, electromagnetic, weak or gravitational forces or through some unknown force. The purpose of this review is to provide a guide for future searches--what is known, what is not known, and what appear to be the most fruitful areas for new searches. A variety of experimental and observational methods such as accelerator experiments, cosmic ray studies, searches for exotic particles in bulk matter and searches using astrophysical observations is included in this review

  12. Theory of particle interactions

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Shirkov, D.V.

    1986-01-01

    Development and modern state of the theory of elementary particle interactions is described. The main aim of the paper is to give a picture of quantum field theory development in the form easily available for physicists not occupied in this field of science. Besides the outline of chronological development of main representations, the description of renormalization and renorm-groups, gauge theories, models of electro-weak interactions and quantum chromodynamics, the latest investigations related to joining all interactions and supersymmetries is given

  13. Elementary particles physics

    International Nuclear Information System (INIS)

    1990-01-01

    It is discussed the physics in Brazil in the next decade with regard to elementary particles and field theories. The situation of brazilian research institutes as well as its personnel is also presented. Some recommendations and financing of new projects are also considered. (A.C.A.S.)

  14. Structures in elementary particles. An electromagnetic elementary-particle model

    International Nuclear Information System (INIS)

    Meyer, Carl-Friedrich

    2015-01-01

    A picture of matter is developed, which is suited to develope and to explain the experimentally determined properties of the elementary particles and the basing structures starting from few known physical conditions in a simple and understandable way. It explains illustratively the spin and the structure of the stable particles, symmetry properties resulting from the half-integerness of the spin, the nature of the electric charge and the third-integerness of the charges in hadrons resulting from this, the stability and the indivisibility f the proton, the conditions for the formation and stability of the particles, and the causes for the limited lifetime of unstable particles like the free neutron. It opens also the view on the cause for the quantization of all for us known processes in the range of the microcosm and creates so an illustrative picture of the matter surrounding us.

  15. Four different animated sub-particles as the origins of the life and creator of different angular momentums of elementary particles

    Science.gov (United States)

    Gholibeigian, Hassan; Gholibeigian, Zeinab

    2015-04-01

    Understanding the internal structure of the proton is crucial challenge for QCD, and one important aspect of this is to understand how the spin of the nucleon is build-up from the angular momentum of its quarks and gluons. In this way, what's the origin of differences between angular momentums of fundamental particles? It may be from their substructures. It seems there are four sub-particles of mater, plant, animal and human in substructure of each fundamental particle (string) as the origins of life and cause of differences between spins of those elementary particles. Material's sub-particle always is on and active. When the environmental conditions became ready for creation of each field of the plant, animal and human, sub-particles of their elementary particles became on and active and then, those elementary particles participated in processes of creation in their own field. God, as the main source of information, has been communicated with their sub-particles and transfers a package (bit) of information and laws (plus standard ethics for human sub-particles) to each of them for process and selection (mutation) of the next step of motion and interaction of their fundamental particles with each other in each Plank's time. This is causality for particles' motion in quantum area.

  16. Quantum Black Holes As Elementary Particles

    OpenAIRE

    Ha, Yuan K.

    2008-01-01

    Are black holes elementary particles? Are they fermions or bosons? We investigate the remarkable possibility that quantum black holes are the smallest and heaviest elementary particles. We are able to construct various fundamental quantum black holes: the spin-0, spin 1/2, spin-1, and the Planck-charge cases, using the results in general relativity. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox posed by the Greisen-Zatsepin-Kuzmin limit on the energy of cosmi...

  17. Condensed elementary particle matter

    International Nuclear Information System (INIS)

    Kajantie, K.

    1996-01-01

    Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)

  18. Resource Letter HEPP-1: History of elementary-particle physics

    International Nuclear Information System (INIS)

    Hovis, R.C.; Kragh, H.

    1991-01-01

    This Resource Letter provides a guide to literature on the history of modern elementary-particle physics. Histories that treat developments from the 1930s through the 1980s are focused on and a sampling is included of the historiography covering the period c. 1890--1930, the prehistory of elementary-particle physics as a discipline. Also included are collections of scientific papers, which might be especially valuable to individuals who wish to undertake historical research on particular scientists or subfields of elementary-particle physics. The introduction presents some statistical data and associated references for elementary-particle physics and surveys historiographical approaches and issues that are represented in historical accounts in the bibliography. All references are assigned a rating of E (Elementary), I (Intermediate), or A (Advanced) based on their technical or conceptual difficulty or their appropriateness for a person attempting a graduated study of the history of modern particle physics. That is, items labeled E are suitable for the layman or would be fundamental to a beginning exploration of the history of particle physics, whereas items labeled A are technically demanding (mathematically, historiographically, or philosophically) or would be most appropriate for specialized or advanced examinations of various topics

  19. Cosmic objects and elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Rozental, I L [AN SSSR, Moscow. Inst. Kosmicheskikh Issledovanij

    1977-02-01

    Considered are the connections between the parameters of elementary particles (mass ''size'') and the characteristics of stars (the main sequence stars, white dwarf stars and pulsars). Presented is the elementary theory of black hole radiation in the framework of which all the regularities of the process are derived. The emphiric numerical sequence connecting nucleon mass and universe constants (G, h, c) with the masses of some cosmic objects is given.

  20. Introduction to the elementary particle physics

    International Nuclear Information System (INIS)

    Shellard, R.C.

    1982-03-01

    An introduction is given to the subject of elementary particle physics. Several particle properties are discussed and some models are shown. This introduction covers the theoretical as well as the experimental aspects including a topic on detectors. (L.C.) [pt

  1. At the origins of mass: elementary particles and fundamental symmetries

    International Nuclear Information System (INIS)

    Iliopoulos, Jean; Englert, Francois

    2015-01-01

    After a brief recall of the history of cosmology, the author proposes an overview of the different symmetries (symmetries in space and in time, internal symmetries, local or gauge symmetries), describes the mass issue (gauge interactions, quarks and leptons as matter mass constituents, chirality), addresses the spontaneous symmetry breaking (the Curie theorem, spontaneous symmetry breaking in classical physics and in quantum physics, the Goldstone theorem, spontaneous symmetry breaking in presence of gauge interactions), presents the standard theory (electromagnetic and weak interactions, strong interactions, relationship with experiment). An appendix presents elementary particles, and notably reports the story of the neutrino

  2. Puzzle of the particles and the universe. The inner life of the elementary particles IX d

    International Nuclear Information System (INIS)

    Geitner, Uwe W.

    2013-01-01

    The series The Inner Life of the Elementary Particles attempts to develop the elementary particles along of a genealogical tree, which begins before the ''big bang''. The simple presentation without mathematics opens also for the interested layman a plastic understanding. Volume IX discusses the known puzzles of particle physics and cosmology and offers for many of them explanation models. Explanation approaches are among others the ''DNA'' of the elementary particles and the interpretation of the quanta and the spin.

  3. A research Program in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sobel, Henry; Molzon, William; Lankford, Andrew; Taffard, Anyes; Whiteson, Daniel; Kirkby, David

    2013-07-25

    Work is reported in: Neutrino Physics, Cosmic Rays and Elementary Particles; Particle Physics and Charged Lepton Flavor Violation; Research in Collider Physics; Dark Energy Studies with BOSS and LSST.

  4. Experimental Studies of Elementary Particle Interactions at High Energies

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller Univ., New York, NY (United States)

    2013-07-30

    This is the final report of a program of research on "Experimental Studies of Elementary Particle Interactions at High Energies'' of the High Energy Physics (HEP) group of The Rockefeller University. The research was carried out using the Collider Detector at Fermilab (CDF) and the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN. Three faculty members, two research associates, and two postdoctoral associates participated in this project. At CDF, we studied proton-antiproton collisions at an energy of 1.96 TeV. We focused on diffractive interactions, in which the colliding antiproton loses a small fraction of its momentum, typically less than 1%, while the proton is excited into a high mass state retaining its quantum numbers. The study of such collisions provides insight into the nature of the diffractive exchange, conventionally referred to as Pomeron exchange. In studies of W and Z production, we found results that point to a QCD-based interpretation of the diffractive exchange, as predicted in a data-driven phenomenology developed within the Rockefeller HEP group. At CMS, we worked on diffraction, supersymmetry (SUSY), dark matter, large extra dimensions, and statistical applications to data analysis projects. In diffraction, we extended our CDF studies to higher energies working on two fronts: measurement of the single/double diffraction and of the rapidity gap cross sections at 7 TeV, and development of a simulation of diffractive processes along the lines of our successful model used at CDF. Working with the PYTHIA8 Monte Carlo simulation authors, we implemented our model as a PYTHIA8-MBR option in PYTHIA8 and used it in our data analysis. Preliminary results indicate good agreement. We searched for SUSY by measuring parameters in the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM) and found results which, combined with other experimental constraints and theoretical considerations, indicate

  5. The origin of mass elementary particles and fundamental symmetries

    CERN Document Server

    Iliopoulos, John

    2017-01-01

    The discovery of a new elementary particle at the Large Hadron Collider at CERN in 2012 made headlines in world media. Since we already know of a large number of elementary particles, why did this latest discovery generate so much excitement? This small book reveals that this particle provides the key to understanding one of the most extraordinary phenomena which occurred in the early Universe. It introduces the mechanism that made possible, within tiny fractions of a second after the Big Bang, the generation of massive particles. The Origin of Mass is a guided tour of cosmic evolution, from the Big Bang to the elementary particles we study in our accelerators today. The guiding principle of this book is a concept of symmetry which, in a profound and fascinating way, seems to determine the structure of the Universe.

  6. On Adiabatic Processes at the Elementary Particle Level

    OpenAIRE

    A, Michaud

    2016-01-01

    Analysis of adiabatic processes at the elementary particle level and of the manner in which they correlate with the principle of conservation of energy, the principle of least action and entropy. Analysis of the initial and irreversible adiabatic acceleration sequence of newly created elementary particles and its relation to these principles. Exploration of the consequences if this first initial acceleration sequence is not subject to the principle of conservation.

  7. Elementary particle physics at the University of Florida. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

  8. Elementary particle physics with atoms

    International Nuclear Information System (INIS)

    Wieman, C.E.

    1993-01-01

    One of the unique aspects of atomic physics is the capacity to make measurements with extraordinarily high precision. In suitably chosen systems, precision measurements can reveal information about fundamental interactions in nature that is not available from other sources. Although elementary particle physics is often perceived as synonymous with open-quotes high energyclose quotes and open-quotes high cost,close quotes atomic physics has played, and can continue to play, a significant role in this area. A few illustrative examples of this include (1) the measurement of the Lamb shift in hydrogen and its, influence on the modern development of quantum field theory, (2) the severe limits placed on possible time reversal violating interactions by atomic (and neutron) searches for electric dipole moments, and (3) the measurement (and closely related atomic theory) of parity, nonconservation in atoms. This latter work has provides a precise confirmation of the Standard Model of the weak, electromagnetic, and strong interactions, and is a uniquely sensitive test for the validity of a variety of alternative models that have been put forth. I will also discuss some of the joys and frustrations of doggedly pursuing the open-quotes ultimateclose quotes measurement of ridiculously tiny effects

  9. Dynamic model of elementary particles and the nature of mass and “electric” charge

    OpenAIRE

    Kreidik, Leonid G.; Institute of Mathematics & Physics, UTA; Shpenkov, George P.; Institute of Mathematics & Physics, UTA

    2009-01-01

    The physical model of elementary particles, based on the wave features of their behavior, is described here. Elementary particles are regarded as elementary dynamical structures of the microworld, interrelated with all levels of the Universe, i.e., inseparable from the structure of the Universe as a whole. Between any elementary particles and the ambient field of matter-space-time, as well as between elementary particles themselves, there exists an interchange of matter-space-time occurring b...

  10. Non-European facilities for elementary particle physics research

    International Nuclear Information System (INIS)

    Mann, A.K.

    1983-01-01

    The facilities we now employ in high energy physics cover a broad spectrum of particle energies and intensities and provide therefore a multiplicity of probes with which to study the behavior of elementary particles. In general, the goal has been to achieve ever higher particle energies and intensities, with emphasis on energy, and to develop more versatile and more sensitive detectors with which to study the resultant particle-particle interactions. Most energy regimes that have been explored have yielded new, fundamental information which often becomes clearer and more easily developed when particle energies are further increased. In this talk I shall try to delineate the nature of those facilities in Canada, Japan and the U.S.A. It is useful, I believe, to begin with a brief discussion of the funding and management of facilities in those countries and a short summary of recent history. The main body of the talk concentrates on the present, planned and contemplated facilities of the major non-European accelerator laboratories, and address briefly the status of accelerator development. The concluding section will summarize the salient features of the discussion. (author)

  11. Topics in elementary particle physics

    International Nuclear Information System (INIS)

    Dugan, M.J.

    1985-01-01

    Topics in elementary particle physics are discussed. Models with N = 2 supersymmetry are constructed. The CP violation properties of a class of N = 1 supergravity models are analyzed. The structure of a composite Higgs model is investigated. The implications of a 17 keV neutrino are considered

  12. Search of unified theory of basic types of elementary particle interactions

    International Nuclear Information System (INIS)

    Anselm, A.

    1981-01-01

    Four types of forces are described (strong, weak, electromagnetic and gravitational) mediating the basic interactions of quarks and leptons, and attempts are reported of forming a unified theory of all basic interactions. The concepts are discussed, such as the theory symmetry (eg., invariance in relation to the Lorentz transformations) and isotopic symmetry (based on the interchangeability of particles in a given isotopic multiplet). Described are the gauge character of electromagnetic and gravitational interactions, the violation of the gauge symmetry and the mechanism of particle confinement. (H.S.)

  13. Latest AMS Results on elementary particles in cosmic rays

    Science.gov (United States)

    Kounine, Andrei; AMS Collaboration

    2017-01-01

    AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of all elementary charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the elementary cosmic ray particles are presented. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of the AMS Collaboration.

  14. Making elementary particles visible

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Eyal [ArSciMed (art, science, media), 100, rue du Faubourg Saint Antoine, 75012 Paris (France)

    1994-07-15

    Ever since the days of the ancient Greek atomists, the notion that matter is made up of tiny fundamental elements has dominated the history of scientific theories. Elementary particles (and now strings...) are the latest in this chronological list of fundamental objects. Our notions of what a physical theory should be like, and what precisely ''matter is made up of...'' really means, have evolved with the years, undergoing a profound revolution with quantum mechanics.

  15. On the ontology of the elementary particles. A philosophical analysis of the actual elementary-particle physics; Zur Ontologie der Elementarteilchen. Eine philosophische Analyse der aktuellen Elementarteilchenphysik

    Energy Technology Data Exchange (ETDEWEB)

    Brueckner, Thomas Christian

    2015-07-01

    After a description of the standard model of elementary-particle physics the author describes structuralistic reconstructions. Then the problem of the theoretical terms is discussed. Therafter the reconstruction of the standard-model elementary particles is described. Finally the ontology of leptons, quarks and both free and in atoms bound protons is considered.

  16. Elementary particle physics at the University of Florida. Annual progress report

    International Nuclear Information System (INIS)

    1996-01-01

    This report discusses the following topics: Task A: theoretical elementary particle physics; Task B: experimental elementary particle physics; Task C: axion project; Task G: experimental research in collider physics; and Task S: computer acquisition. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  17. Tracking and imaging elementary particles

    International Nuclear Information System (INIS)

    Breuker, H.; Drevermann, H.; Grab, C.; Rademakers, A.A.; Stone, H.

    1991-01-01

    The Large Electron-Positron (LEP) Collider is one of the most powerful particle accelerators ever built. It smashes electrons into their antimatter counterparts, positrons, releasing as much as 100 billion electron volts of energy within each of four enormous detectors. Each burst of energy generates a spray of hundreds of elementary particles that are monitored by hundreds of thousands of sensors. In less than a second, an electronic system must sort through the data from some 50,000 electron-positron encounters, searching for just one or two head-on collisions that might lead to discoveries about the fundamental forces and the elementary particles of nature. When the electronic systems identify such a promising event, a picture of the data must be transmitted to the most ingenious image processor ever created. The device is the human brain. Computers cannot match the brain's capacity to recognize complicated patterns in the data collected by the LEP detectors. The work of understanding subnuclear events begins therefore through the visualization of objects that are trillions of times smaller than the eye can see and that move millions of times faster than the eye can follow. During the past decade, the authors and their colleagues at the European laboratory for particle physics (CERN) have attempted to design the perfect interface between the minds of physicists and the barrage of electronic signals from the LEP detectors. Using sophisticated computers, they translate raw data - 500,000 numbers from each event - into clear, meaningful images. With shapes, curves and colors, they represent the trajectories of particles, their type, their energy and many other properties

  18. Making elementary particles visible

    International Nuclear Information System (INIS)

    Cohen, Eyal

    1994-01-01

    Ever since the days of the ancient Greek atomists, the notion that matter is made up of tiny fundamental elements has dominated the history of scientific theories. Elementary particles (and now strings...) are the latest in this chronological list of fundamental objects. Our notions of what a physical theory should be like, and what precisely ''matter is made up of...'' really means, have evolved with the years, undergoing a profound revolution with quantum mechanics

  19. Mass spectrum of elementary particles in a temperature-dependent model

    International Nuclear Information System (INIS)

    Malik, G.P.; Singh, Santokh; Varma, V.S.

    1994-01-01

    It is shown that the temperature-generalization of a popular model of quark-confinement seems to provide a rather interesting insight into the origin of mass of elementary particles: as the universe cooled, there was an era when particles did not have an identity since their masses were variable; the temperature at which the conversion of these 'nomadic' particles into 'elementary' particles took place seems to have been governed by the value of a dimensionless coupling constant C c . For C c =0.001(0.1) this temperature is of the order of 10 9 K (10 11 K), below which the particle masses do not change. (author). 27 refs., 1 tab

  20. The weak interaction in nuclear, particle and astrophysics

    International Nuclear Information System (INIS)

    Grotz, K.; Klapdor, H.V.

    1989-01-01

    This book is an introduction to the concepts of weak interactions and their importance and consequences for nuclear physics, particle physics, neutrino physics, astrophysics and cosmology. After a general introduction to elementary particles and interactions the Fermi theory of weak interactions is described together with its connection with nuclear structure and beta decay including the double beta decay. Then, after a general description of gauge theories the Weinberg-Salam theory of the electroweak interactions is introduced. Thereafter the weak interactions are considered in the framework of grand unification. Then the physics of neutrinos is discussed. Thereafter connections of weak interactions with astrophysics are considered with special regards to the gravitational collapse and the synthesis of heavy elements in the r-process. Finally, the connections of grand unified theories and cosmology are considered. (HSI) With 141 figs., 39 tabs

  1. Introduction to elementary particles

    CERN Document Server

    Griffiths, David J

    2008-01-01

    This is the first quantitative treatment of elementary particle theory that is accessible to undergraduates. Using a lively, informal writing style, the author strikes a balance between quantitative rigor and intuitive understanding. The first chapter provides a detailed historical introduction to the subject. Subsequent chapters offer a consistent and modern presentation, covering the quark model, Feynman diagrams, quantum electrodynamics, and gauge theories. A clear introduction to the Feynman rules, using a simple model, helps readers learn the calculational techniques without the complicat

  2. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Bland, R.W.; Greensite, J.

    1992-01-01

    Task A of this contract supports research in elementary particle physics using cryogenic particle detectors. We have developed superconducting aluminum tunnel-junction detectors sensitive to a variety of particle signals, and with potential application to a number of particle-physics problems. We have extended our range of technologies through a collaboration with Simon Labov, on niobium tri-layer junctions, and Jean-Paul Maneval, on high-T c superconducting bolometers. We have new data on response to low-energy X-rays and to alpha-particle signals from large-volume detectors. The theoretical work under this contract (Task B) is a continued investigation of nonperturbative aspects of quantum gravity. A Monte Carlo calculation is proposed for Euclidian quantum gravity, based on the ''fifth-time action'' stabilization procedure. Results from the last year include a set of seven papers, summarized below, addressing various aspects of nonperturbative quantum gravity and QCD. Among the issues- addressed is the so-called ''problem of time'' in canonical quantum gravity

  3. REDUCE in elementary particle physics. Quantum electrodynamics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1990-01-01

    This preprint is the second part of the problem book on using REDUCE for calculations of cross sections and decay probabilities in elementary particle physics. It contains examples of calculations in quantum electrodynamics. 5 refs

  4. Theoretical Studies in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Collins, John C.; Roiban, Radu S

    2013-04-01

    This final report summarizes work at Penn State University from June 1, 1990 to April 30, 2012. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.

  5. REDUCE system in elementary particle physics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1990-01-01

    This preprint is the first part of the problem book on using REDUCE for calculations of cross sections and decay probabilities in elementary particle physics. It contains the review of the necessary formulae and examples of using REDUCE for calculations with vectors and Dirac matrices. 5 refs.; 11 figs

  6. Electron, Muon, and Tau Heavy Lepton--Are These the Truly Elementary Particles?

    Science.gov (United States)

    Perl, Martin L.

    1980-01-01

    Discussed is the present concept of the ultimate nature of matter--the elementary particle. An explanation is given for why the lepton family of particles--the electron, muon, and tau--may be truly elementary. The tau lepton is described in more detail. (Author/DS)

  7. Elementary particle theory

    CERN Document Server

    Stefanovich, Eugene

    2018-01-01

    This book introduces notation, terminology, and basic ideas of relativistic quantum theories. The discussion proceeds systematically from the principle of relativity and postulates of quantum logics to the construction of Poincaré invariant few-particle models of interaction and scattering. It is the first of three volumes formulating a consistent relativistic quantum theory of interacting charged particles.

  8. Are Black Holes Elementary Particles?

    OpenAIRE

    Ha, Yuan K.

    2009-01-01

    Quantum black holes are the smallest and heaviest conceivable elementary particles. They have a microscopic size but a macroscopic mass. Several fundamental types have been constructed with some remarkable properties. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox of ultra-high energy cosmic rays detected in Earth's atmosphere. They may also play a role as dark matter in cosmology.

  9. Factorization of the Laplacian and families of elementary particles

    International Nuclear Information System (INIS)

    Keller, J.

    1994-01-01

    It is shown that multi-vector Clifford algebra allows a series of factorizations of the Laplacian operator and associated Dirac-like equations, this set of related equations generates 3 families of elementary particles with the experimentally observed lepton and quark content for each family and the experimentally observed electroweak color interactions and other related properties. In contrast to the usual approach to the standard model the properties for the different fields of the model are consequences of the relative properties of the equations, among themselves and in relation to space-time, and therefore, they do not need to be postulates of the theory. 11 refs

  10. The periodic table of elementary particles

    International Nuclear Information System (INIS)

    Bhattacharjee, B.J.

    1994-01-01

    It is shown that a periodic classification of elementary particles (eps) may be done with the basic properties of eps: viz. mass, spin and parity. Further application of spacing rule and GMO mass formulae show repetitions at very regular intervals. It is found that properties of eps are periodic function of rest mass. (author). 17 refs., 6 tabs

  11. The periodic table of elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, B J [St. Anthony' s College, Shillong (India). Dept. of Physics

    1994-01-01

    It is shown that a periodic classification of elementary particles (eps) may be done with the basic properties of eps: viz. mass, spin and parity. Further application of spacing rule and GMO mass formulae show repetitions at very regular intervals. It is found that properties of eps are periodic function of rest mass. (author). 17 refs., 6 tabs.

  12. Unification of all elementary-particle forces including gravity

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi; Chikashige, Yuichi; Matsuki, Takayuki; Akama, Keiichi.

    1978-07-01

    A unified model of the Nambu-Jona-Lasinio type for all elementary-particle forces including gravity is reviewed in some detail. Starting with a nonlinear fermion Lagrangian of the Heisenberg type and imposing the massless conditions of Bjorken on vector auxiliary fields, on effective Lagrangian is constructed, which combines the unified SU (2) x U (1) gauge theory of Weinberg and Salam for the weak and electromagnetic interactions of leptons and quarks and the Yang-Mills gauge theory of color SU (3) for the strong interaction of quarks. The photon, the weak vector bosons, and the physical Higgs scalar appear as collective excitations of lepton-antilepton or quark-antiquark pairs while the color-octet gluons appear as those of quark-antiquark pairs. The most important results of this unified model are presented. The Weinberg angle and the gluon coupling constant are determined, and the masses of the weak vector bosons are predicted. (Yoshimori, M.)

  13. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    1989-01-01

    The Syracuse High Energy Theory group has continued to make significant contributions to many areas. Many novel aspects of Chern-Simons terms and effective Lagrangians were investigated. Various interesting aspects of quantum gravity and string theory were explored. Gauge models of elementary particles were studied in depth. The investigations of QCD at finite temperatures and multiply connected configuration spaces continued. 24 refs

  14. Research in elementary particle physics at the University of Florida: Annual progress report

    International Nuclear Information System (INIS)

    1988-01-01

    This is a progress report on the Elementary Particle Physics program at the University of Florida. The program has five tasks covering a broad range of topics in theoretical and experimental high energy physics: Theoretical Elementary Particle Physics, Experimental High Energy Physics, Axion Search, Detector Development, and Computer Requisition

  15. Particle physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  16. Supersymmetry in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E.; /SLAC

    2008-02-05

    These lectures give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions that the MSSM gives to the problems of electroweak symmetry breaking and dark matter.

  17. Current status of elementary particle physics

    International Nuclear Information System (INIS)

    Okun', L.B.

    1998-01-01

    A brief review is given of the state-of-the art in elementary particle physics based on the talk of the same title given on January 22, 1998, at the seminar marking the 90th birth anniversary of L.D. Landau. (The seminar was hosted by the P.L. Kapitza Institute for Physical Problems in cooperation with the L.D. Landau Institute for Theoretical Physics)

  18. What can we learn about elementary particles from atomic physics

    International Nuclear Information System (INIS)

    Sanders, P.G.H.

    1976-01-01

    Information about elementary particles can be obtained from atomic physics in two ways. One can compare the results of high precision experiments with accurate theoretical predictions in those simple systems, such as hydrogen, where these are possible. Alternatively, one can carry out experiments designed to look with great sensitivity for small effects, such as non-conservation of parity or violation of time reversal invariance which are forbidden in the normal atomic theory. Current work which will be described can yield significant information concerning quantum electrodynamics, the values of the fundamental constants, the structure of nucleons and the nature of the weak interactions. (orig.) [de

  19. [Theoretical elementary particle studies.] Final report, September 1983-July 1985

    International Nuclear Information System (INIS)

    Collins, J.C.

    1985-01-01

    The work done during the period September 1983 to July 1985 covers several areas of the theory of the strong interactions of elementary particles, mostly in the area characterized as 'perturbative QCD'. The specific topics are: the proof of factorization for hard processes, such as the Drell-Yan process; calculation of transverse-mementum distributions for these processes; investigation of the small-x region; demonstration of the applicability of perturbative QCD (quantum chromodynamics) to the production of heavy quarks; and improved methods of calculation of the effects of heavy quarks in hard processes, and in particular of their distribution functions in hadrons ('structure functions'). 31 refs

  20. On the number of elementary particles in a resolution dependent fractal spacetime

    International Nuclear Information System (INIS)

    He Jihuan

    2007-01-01

    We reconsider the fundamental question regarding the number of elementary particles in a minimally extended standard model. The main conclusion is that since the dimension of E-infinity spacetime is resolution dependent, then the number of elementary particles is also resolution dependent. For D = 10 of superstrings, D = 11 of M theory and D = 12 of F theory one finds N(SM) equal to (6)(10) = 60 (6)(11) = 66 and (6)(12) = 72 particles, respectively. This is in perfect agreement with prediction made previously by Mohamed Saladin El-Naschie and Marek-Crnjac

  1. Electric dipole moments of elementary particles, nuclei, atoms, and molecules

    International Nuclear Information System (INIS)

    Commins, Eugene D.

    2007-01-01

    The significance of particle and nuclear electric dipole moments is explained in the broader context of elementary particle physics and the charge-parity (CP) violation problem. The present status and future prospects of various experimental searches for electric dipole moments are surveyed. (author)

  2. Models for Quarks and Elementary Particles --- Part IV: How Much Do We Know of This Universe?

    Directory of Open Access Journals (Sweden)

    Ulrich K. W. Neumann

    2008-07-01

    Full Text Available Essential laws and principles of the natural sciences were discovered at the high aggregation levels of matter such as molecules, metal crystals, atoms and elementary particles. These principles reappear in these models in modified form at the fundamental level of the quarks. However, the following is probably true: since the principles apply at the fundamental level of the quarks they also have a continuing effect at the higher aggregation levels. In the manner of the law of mass action, eight processes for weak interaction are formulated, which are also called Weak Processes here. Rules for quark exchange of the reacting elementary particles are named and the quasi-Euclidian or complex spaces introduced in Part I associated with the respective particles. The weak processes are the gateway to the second strand of this universe which we practically do not know. The particles with complex space, e.g. the neutrino, form this second strand. According to the physical model of gravitation from Part III the particles of both strands have fields and are thus subject to the superposition, which results in the attraction by gravity of the particles of both strands. The weak processes (7 and (8 offer a fair chance for the elimination of highly radioactive waste.

  3. Supersymmetry violation in elementary particle-monopole scattering

    International Nuclear Information System (INIS)

    Casher, A.; Shamir, Y.

    1991-10-01

    We show that the scattering of elementary particles on solitons (monopoles, fluxons, etc.) in supersymmetric gauge theories violates the relations dictated by supersymmetry at tree level. The violation arises because of the discrepancy between the spectra of bosonic and fermionic fluctuations and because of the fermionic nature of the supersymmetry generators. (author). 14 refs

  4. Elementary particle interactions. Progress report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out.

  5. Quantum Optics, Diffraction Theory, and Elementary Particle Physics

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Physical optics has expanded greatly in recent years. Though it remains part of the ancestry of elementary particle physics, there are once again lessons to be learned from it. I shall discuss several of these, including some that have emerged at CERN and Brookhaven.

  6. Knots on a Torus: A Model of the Elementary Particles

    Directory of Open Access Journals (Sweden)

    Jack S. Avrin

    2012-02-01

    Full Text Available Two knots; just two rudimentary knots, the unknot and the trefoil. That’s all we need to build a model of the elementary particles of physics, one with fermions and bosons, hadrons and leptons, interactions weak and strong and the attributes of spin, isospin, mass, charge, CPT invariance and more. There are no quarks to provide fractional charge, no gluons to sequester them within nucleons and no “colors” to avoid violating Pauli’s principle. Nor do we require the importation of an enigmatic Higgs boson to confer mass upon the particles of our world. All the requisite attributes emerge simply (and relativistically invariant as a result of particle conformation and occupation in and of spacetime itself, a spacetime endowed with the imprimature of general relativity. Also emerging are some novel tools for systemizing the particle taxonomy as governed by the gauge group SU(2 and the details of particle degeneracy as well as connections to Hopf algebra, Dirac theory, string theory, topological quantum field theory and dark matter. One exception: it is found necessary to invoke the munificent geometry of the icosahedron in order to provide, as per the group “flavor” SU(3, a scaffold upon which to organize the well-known three generations—no more, no less—of the particle family tree.

  7. A Search for Free Fractional Electric Charge Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, Valerie

    2000-12-04

    A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied--about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.

  8. A Search for Free Fractional Electric Charge Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, Valerie

    2000-12-04

    A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied| about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.

  9. Elementary particles and the laws of physics: The 1986 Dirac Memorial Lectures

    International Nuclear Information System (INIS)

    Feynman, R.P.; Weinberg, S.

    1987-01-01

    Elementary Particles and the Laws of Physics contains transcriptions of the two lectures given in Cambridge, England, in 1986 by Nobel Laureates Richard P. Feynman and Steven Weinberg to commemorate the famous British physicist Paul Dirac. The talks focus on the fundamental problems of physics and the present state of our knowledge. Professor Feynman discusses how the laws of physics require the existence of antiparticles; Professor Weinberg examines the development of the fundamental laws of elementary particle intersection

  10. Models for Quarks and Elementary Particles. Part IV: How Much do We Know of This Universe?

    Directory of Open Access Journals (Sweden)

    Neumann U. K. W.

    2008-07-01

    Full Text Available Essential laws and principles of the natural sciences were discovered at the high aggre- gation levels of matter such as molecules, metal crystals, atoms and elementary parti- cles. These principles reappear in these models in modified form at the fundamental level of the quarks. However, the following is probably true: since the principles apply at the fundamental level of the quarks they also have a continuing effect at the higher aggregation levels. In the manner of the law of mass action, eight processes for weak interaction are formulated, which are also called Weak Processes here. Rules for quark exchange of the reacting elementary particles are named and the quasi-Euclidian or complex spaces introduced in Part I associated with the respective particles. The weak processes are the gateway to the “second” strand of this universe which we practically do not know. The particles with complex space, e.g. the neutrino, form this second strand. According to the physical model of gravitation from Part III the particles of both strands have >-fields and are thus subject to the superposition, which results in the attraction by gravity of the particles of both strands. The weak processes (7 and (8 offer a fair chance for the elimination of highly radioactive waste.

  11. Current experiments in elementary-particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1983-03-01

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated

  12. A re-examination of symmetry/Group relationships as applied ot the elementary particles

    International Nuclear Information System (INIS)

    Byrd, K.; Cole R.

    1993-01-01

    The purpose of this investigation is to apply Group Theory to the elementary particles. Group Theory is a mathematical discipline used to predict the existence of elementary particles by physicists. Perhaps, the most famous application of Group Theory to the elementary particles was by Murray Gell-Mann in 1964. Gell-Mann used the theory to predict the existence and characteristics of the then undiscovered Omega Minus Particle. Group Theory relies heavily on symmetry relationships and expresses them in terms of geometry. Existence and the characteristics of a logical intuitable, but unobserved member of a group are given by extrapolation of the geometric relationships and characteristics of the known members of the group. In this study, the Delta, Sigma, Chi and Omega baryons are used to illustrate how physicists apply geometry and symmetrical relationships to predict new particles. The author's hypothesis is that by using the D3 crystal symmetry group and Gell-Mann's baryons, three new particles will be predicted. The results of my new symmetry predicts the Omega 2, Omega 3, and Chi 3. However, the Chi 3 does not have characteristics consistent with those of the other known group members

  13. Elementary Particle Interactions with CMS at LHC

    International Nuclear Information System (INIS)

    Spanier, Stefan

    2016-01-01

    The High Energy Particle Physics group of the University of Tennessee participates in the search for new particles and forces in proton-proton collisions at the LHC with the Compact Muon Solenoid experiment. Since the discovery of the Higgs boson in 2012, the search has intensified to find new generations of particles beyond the standard model using the higher collision energies and ever increasing luminosity, either directly or via deviations from standard model predictions such as the Higgs boson decays. As part of this effort, the UTK group has expanded the search for new particles in four-muon final states, and in final states with jets, has successfully helped and continues to help to implement and operate an instrument for improved measurements of the luminosity needed for all data analyses, and has continued to conduct research of new technologies for charged particle tracking at a high-luminosity LHC.

  14. Elementary Particle Interactions with CMS at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Spanier, Stefan [Univ. of Tennessee, Knoxville, TN (United States)

    2016-07-31

    The High Energy Particle Physics group of the University of Tennessee participates in the search for new particles and forces in proton-proton collisions at the LHC with the Compact Muon Solenoid experiment. Since the discovery of the Higgs boson in 2012, the search has intensified to find new generations of particles beyond the standard model using the higher collision energies and ever increasing luminosity, either directly or via deviations from standard model predictions such as the Higgs boson decays. As part of this effort, the UTK group has expanded the search for new particles in four-muon final states, and in final states with jets, has successfully helped and continues to help to implement and operate an instrument for improved measurements of the luminosity needed for all data analyses, and has continued to conduct research of new technologies for charged particle tracking at a high-luminosity LHC.

  15. Instrumentation in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Fabjan, C W [European Organization for Nuclear Research, Geneva (Switzerland); Pilcher, J E [Chicago Univ., IL (United States); eds.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs.

  16. Instrumentation in elementary particle physics

    International Nuclear Information System (INIS)

    Fabjan, C.W.; Pilcher, J.E.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs

  17. Elementary particle physics: Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Burnett, T.H.; Wilkes, R.J.

    1989-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled use to make the world's most accurate determination of the comparison of the cosmic rays above 10 13 eV. We have only the detector that can observe interaction vertices and identify particles at energies up to 10**15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detector will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques ate also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15 -- 200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  18. Facts and mysteries in elementary particle physics

    CERN Document Server

    Veltman, Martinus J G

    2018-01-01

    This book provides a comprehensive overview of modern particle physics accessible to anyone with a true passion for wanting to know how the universe works. We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson. Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the spectacular discovery of the Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons an...

  19. Software tool for representation and processing of experimental data on high energy interactions of elementary particles

    International Nuclear Information System (INIS)

    Cherepanov, E.O.; Skachkov, N.B.

    2002-01-01

    The software tool is developed for detailed and evident displaying of information about energy and space distribution of secondary particles produced in the processes of elementary particles collisions. As input information the data on the components of 4-momenta of secondary particles is used. As for these data the information obtained from different parts of physical detector (for example, from the calorimeter or tracker) as well as the information obtained with the help of event generator is taken. The tool is intended for use in Windows operation system and is developed on the basis of Borland Delphi. Mathematical architecture of the software tool allows user to receive complete information without making additional calculations. The program automatically performs analysis of structure and distributions of signals and displays the results in a transparent form which allows their quick analysis. To display the information the three-dimensional graphic methods as well as colour decisions based on intuitive associations are also used. (author)

  20. Uses of solid state analogies in elementary particle theory

    International Nuclear Information System (INIS)

    Anderson, P.W.

    1976-01-01

    The solid state background of some of the modern ideas of field theory is reviewed, and additional examples of model situations in solid state or many-body theory which may have relevance to fundamental theories of elementary particles are adduced

  1. 100 years of elementary particles [Beam Line, vol. 27, issue 1, Spring 1997

    Energy Technology Data Exchange (ETDEWEB)

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K.H.; Trimble, Virginia

    1997-04-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.

  2. 100 years of elementary particles [Beam Line, vol. 27, number 1, Spring 1997

    International Nuclear Information System (INIS)

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K.H.; Trimble, Virginia

    1997-01-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe

  3. 1975 annual report of the Elementary Particle Physics Department

    International Nuclear Information System (INIS)

    1976-03-01

    The annual report gives a short summary of experiments in progress and of approved proposals of experiments to be performed at CERN by the Elementary Particle Physics Department of Saclay, and also publication lists and informations about the Department activities during 1975 [fr

  4. Elementary particles as micro-universes or micro-black holes

    International Nuclear Information System (INIS)

    Rodrigues Junior, W.A.

    1985-01-01

    The idea that elementary particles can be presented as micro-universes and/or micro-black holes (Lorentzian manifolds) is presented and the fundamental mathematical problem associated with the simplest world manifold that 'contains' both the macrocosm and the microcosmes is discussed. (Author) [pt

  5. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Galic, H.; Dodder, D.C.; Klyukhin, V.I.; Ryabov, Yu.G.; Illarionova, N.S.; Lehar, F.; Oyanagi, Y.; Frosch, R.

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  6. Gauge evolution of elementary particles physics during the last fifty years

    International Nuclear Information System (INIS)

    Khodjaev, L.Sh

    2002-01-01

    Gauge evolution of the elementary particle physics has been remarked by outstanding and exiting discoveries during the last fifty years of X X century. We review a new tendency in the development of the modern elementary particle physics. The phenomenological basis for the formulation of Standard Model has been reviewed. The Standard Model based on the fundamental postulates has been formulated. The concept of the fundamental symmetries has been introduced to look for not fundamental particles but fundamental symmetries. The Standard Model is renormalizable and therefore potentially consistent in all energy scales. The Standard Model in principle can describe the properties of the Universe beginning at 10 -43 sec. after Big Bang. In searching of more general theory obvious program is to searching the first of all global symmetries and then learn consequences connected with the localization of these global symmetries

  7. Supersymmetry of elementary particles

    International Nuclear Information System (INIS)

    Sardanashvili, G.A.; Zakharov, O.A.

    1986-01-01

    Some difficulties, connected with correct application of supersymmetry mathematical tools in the field and elementary particle theory are pointed out. The role of Grassman algebra in the usual field theory and the role of Lee superalgebra in supertransformations mixing bosons and fermions are shown. Grassman algebra in the theory of supersymmetries plays a role of numerical field. A supersymmetrical model, when indexes {i} of Grassman algebra corresponding to ''color'', and indexes {α} of Lee superalgebra representations - to ''flavor'', is considered. It is marked that the problem of interpretation of Grassman algebra indexes is a key one for the theory of supersymmetries. In particular, it gives no possibility to come from the theory of supersymmetries to the usual field theory, whose indexes of Grassman algebra possess obvious physical meaning

  8. Elementary particles in curved spaces

    International Nuclear Information System (INIS)

    Lazanu, I.

    2004-01-01

    The theories in particle physics are developed currently, in Minkowski space-time starting from the Poincare group. A physical theory in flat space can be seen as the limit of a more general physical theory in a curved space. At the present time, a theory of particles in curved space does not exist, and thus the only possibility is to extend the existent theories in these spaces. A formidable obstacle to the extension of physical models is the absence of groups of motion in more general Riemann spaces. A space of constant curvature has a group of motion that, although differs from that of a flat space, has the same number of parameters and could permit some generalisations. In this contribution we try to investigate some physical implications of the presumable existence of elementary particles in curved space. In de Sitter space (dS) the invariant rest mass is a combination of the Poincare rest mass and the generalised angular momentum of a particle and it permits to establish a correlation with the vacuum energy and with the cosmological constant. The consequences are significant because in an experiment the local structure of space-time departs from the Minkowski space and becomes a dS or AdS space-time. Discrete symmetry characteristics of the dS/AdS group suggest some arguments for the possible existence of the 'mirror matter'. (author)

  9. The production of charmed particles in high-energy 16O-emulsion central interactions

    International Nuclear Information System (INIS)

    Aoki, S.; Hoshino, K.; Kitamura, H.; Kobayashi, M.; Kodama, K.; Miyanishi, M.; Nakamura, K.; Nakamura, M.; Nakanishi, S.; Niu, K.; Niwa, K.; Nomura, M.; Tajima, H.; Tsukagoshi, K.; Mazzoni, M.A.; Poulard, G.; Meddi, F.; Rosa, G.; Muciaccia, M.T.; Simone, S.; Nakazawa, K.; Tasaka, S.; Sato, Y.

    1989-01-01

    The production of charmed particles has been detected in 200 GeV per nucleon 16 O-emulsion central interactions. Their production cross section in elementary nucleon-nucleon processes has been estimated to be σ charm =[14.1±9.3(stat.) -8.4 +5.6 (syst.)]μb. (orig.)

  10. Second class current and structure of elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Senju, H [Nagoya Municipal Women' s Junior Coll. (Japan); Matsushima, T

    1976-10-01

    We examine what is required for the structure of elementary particles by the second class nucleonic currents which was recently discovered by Sugimoto et al. The experiment strongly suggests that the quark has a radius of a few tenth of fermi and the partons are constituents of quarks. We discuss briefly a possible internal structure of the quark.

  11. Elementary particle physics in a nutshell

    CERN Document Server

    Tully, Christopher C

    2011-01-01

    The new experiments underway at the Large Hadron Collider at CERN in Switzerland may significantly change our understanding of elementary particle physics and, indeed, the universe. This textbook provides a cutting-edge introduction to the field, preparing first-year graduate students and advanced undergraduates to understand and work in LHC physics at the dawn of what promises to be an era of experimental and theoretical breakthroughs. Christopher Tully, an active participant in the work at the LHC, explains some of the most recent experiments in the field. But this book, which emerged fr

  12. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  13. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized

  14. Inner life of elementary particles. Pt. V. Detail model

    International Nuclear Information System (INIS)

    Geitner, Uwe W.

    2011-01-01

    The author tries to develop a model for the cosmological beginning of the universe starting from the existing world. The booklet (part IV) includes the following chapters: introduction; origin of vibrations; origin of the big-bang; origin of elementary particles; charges and fields, unified conception of forces; conclusions.

  15. What are the masses of elementary particles?

    International Nuclear Information System (INIS)

    Good, I.J.

    1988-01-01

    The paper concerns the numerology on the masses of elementary particles, and examines the formula m(n)-m(p)/m(p) 136α/6x120 (where m(n) and m(p) are the rest masses of the neutron and proton respectively and α is the fine structure constant). The author reports that this simple relationship between fundamental constants is correct to one part in at least 51,000, and is comfortably consistent with experimental results. (U.K.)

  16. Quantum field theory and the internal states of elementary particles

    CSIR Research Space (South Africa)

    Greben, JM

    2011-01-01

    Full Text Available A new application of quantum field theory is developed that gives a description of the internal dynamics of dressed elementary particles and predicts their masses. The fermionic and bosonic quantum fields are treated as interdependent fields...

  17. Proceedings of the XXVI international symposium Ahrenshoop on the theory of elementary particles

    International Nuclear Information System (INIS)

    Doerfel, B.; Wieczorek, E.

    1993-02-01

    These proceedings contain most of the invited talks and short communications presented at the XXVI th International Symposium Ahrenshoop on the Theory of Elementary Particles which took place from September 9 th to 13 th , 1992 at Wendisch-Rietz near Berlin. The Symposium was organized jointly by the Institute for Elementary Particle Physics of the Humboldt University Berlin, the Institute for Theoretical Physics of the University Hannover, the Sektion Physik of the University Munich, and DESY - Institute for High Energy Physics Zeuthen. See hints under the relevant topics. (orig.)

  18. Elementary particles, dark matter candidate and new extended standard model

    Science.gov (United States)

    Hwang, Jaekwang

    2017-01-01

    Elementary particle decays and reactions are discussed in terms of the three-dimensional quantized space model beyond the standard model. Three generations of the leptons and quarks correspond to the lepton charges. Three heavy leptons and three heavy quarks are introduced. And the bastons (new particles) are proposed as the possible candidate of the dark matters. Dark matter force, weak force and strong force are explained consistently. Possible rest masses of the new particles are, tentatively, proposed for the experimental searches. For more details, see the conference paper at https://www.researchgate.net/publication/308723916.

  19. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. (Lawrence Berkeley Lab., CA (USA)); Oyanagi, Y. (Tsukuba Univ., Ibaraki (Japan)); Dodder, D.C. (Los Alamos National Lab., NM (USA)); Ryabov, Yu.G.; Slabospitsky, S.R. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov (USSR). Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  20. Elementary particles and emergent phase space

    CERN Document Server

    Zenczykowski, Piotr

    2014-01-01

    The Standard Model of elementary particles, although very successful, contains various elements that are put in by hand. Understanding their origin requires going beyond the model and searching for ""new physics"". The present book elaborates on one particular proposal concerning such physics. While the original conception is 50 years old, it has not lost its appeal over time. Its basic idea is that space - an arena of events treated in the Standard Model as a classical background - is a concept which emerges from a strictly discrete quantum layer in the limit of large quantum numbers. This bo

  1. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Slabospitsky, S.R.; Olin, A.; Klumov, I.A.

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized

  2. [Studies of interactions between elementary particles and nuclei

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1990-08-01

    This report discusses the following research: Particle production in p bar p collision at √s = 1.8 TeV; SSC subsystems R ampersand D; the solenoid detector collaboration particle nucleus collisions; task expenditure statement. Hadroproduction using 300 GeV particle beams Fermilab; hadroproduction of beauty Fermilab; and vector meson photo production

  3. Current experiments in elementary particle physics. Revision

    International Nuclear Information System (INIS)

    Galic, H.; Armstrong, F.E.; von Przewoski, B.

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  4. Current experiments in elementary particle physics. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Armstrong, F.E. [Lawrence Berkeley Lab., CA (United States); von Przewoski, B. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States)] [and others

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  5. Elementary particle theory in Japan, 1930-1960

    International Nuclear Information System (INIS)

    Brown, L.M.; Kawabe, Rokuo; Konuma, Michiji; Maki, Ziro

    1991-01-01

    The present volume consists of the combined proceedings of two Japan-USA Collaborative Workshops, organized to explore historical developments of particle theory in Japan during the period 1930-1960, i.e., the three decades that include the birth and development of Meson Theory. The first phase of workshops was held during September 1978-July 1979 and the second during July 1984-September 1985. The original versions of these proceedings were published informally; namely, the former was distributed as a series of preprints of the Yukawa Institute (then called RIFP) entitled 'Particle Physics in Japan, 1930-50 Vol. I, II' (RIFP-407 and -408, September 1980); the latter was issued in the form of camera-ready printing from Yukawa Hall Archival Library (YHAL) in May 1988, under the title 'Elementary Particle Theory in Japan, 1935-1960'. Only a small number of copies were printed for both sets of proceedings due to financial limitations of the project. (author)

  6. Point-counterpoint in physics: theoretical prediction and experimental discovery of elementary particles

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1984-01-01

    A report is given on the theoretical prediction and the experimental discovery of elementary particles from the electron to the weak intermediate vector bosons. The work of Lattes, Occhialini and Powell which put in evidence the pions predicted by Yukawa was the starting point of the modern experimental particle physics

  7. Detailed examination of 'standard elementary particle theories' based on measurement with Tristan

    International Nuclear Information System (INIS)

    Kamae, Tsuneyoshi

    1989-01-01

    The report discusses possible approaches to detailed analysis of 'standard elementary particle theories' on the basis of measurements made with Tristan. The first section of the report addresses major elementary particles involved in the 'standard theories'. The nature of the gauge particles, leptons, quarks and Higgs particle are briefly outlined. The Higgs particle and top quark have not been discovered, though the Higgs particle is essential in the Weiberg-Salam theory. Another important issue in this field is the cause of the collapse of the CP symmetry. The second section deals with problems which arise in universalizing the concept of the 'standard theories'. What are required to solve these problems include the discovery of supersymmetric particles, discovery of conflicts in the 'standard theories', and accurate determination of fundamental constants used in the 'standard theories' by various different methods. The third and fourth sections address the Weinberg-Salam theory and quantum chromodynamics (QCD). There are four essential parameters for the 'standard theories', three of which are associated with the W-S theory. The mass of the W and Z bosons measured in proton-antiproton collision experiments is compared with that determined by applying the W-S theory to electron-positron experiments. For QCD, it is essential to determine the lambda constant. (N.K.)

  8. Some current experimental challenges in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Cline, D.B. (California Univ., Los Angeles (USA). Dept. of Physics)

    1990-06-01

    We describe three experimental challenges for experimental elementary particle physics: (1) the ongoing search for flavor changing weak neutral currents, including future prospect for a anti BB factory, (2) the status of the tests of the standard model in the W, Z and t quark sectors and (3) some current search for physics beyond the standard model, to include the possibility of searching for CPT violation using a {Phi} factory. (orig.).

  9. Current experiments in elementary particle physics. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Wohl, C.G.; Armstrong, B. [Lawrence Berkeley Lab., CA (United States); Dodder, D.C. [Los Alamos National Lab., NM (United States); Klyukhin, V.I.; Ryabov, Yu.G. [Inst. for High Energy Physics, Serpukhov (Russian Federation); Illarionova, N.S. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); Lehar, F. [CEN Saclay, Gif-sur-Yvette (France); Oyanagi, Y. [Univ. of Tokyo (Japan). Faculty of Sciences; Olin, A. [TRIUMF, Vancouver, BC (Canada); Frosch, R. [Paul Scherrer Inst., Villigen (Switzerland)

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  10. Point-counterpoint in physics: theoretical prediction and experimental discovery of elementary particles

    International Nuclear Information System (INIS)

    Lopes, J.L.

    1984-01-01

    A report is given on the theoretical prediction and the experimental discovery of elementary particles from the electron to the weak intermediate vector bosons. The work of Lattes, Occhialini and Powell which put in evidence the pions predicted by Yukawa was the starting point of the modern experimental particle physics. (Author) [pt

  11. Elementary Particle Spectroscopy in Regular Solid Rewrite

    International Nuclear Information System (INIS)

    Trell, Erik

    2008-01-01

    The Nilpotent Universal Computer Rewrite System (NUCRS) has operationalized the radical ontological dilemma of Nothing at All versus Anything at All down to the ground recursive syntax and principal mathematical realisation of this categorical dichotomy as such and so governing all its sui generis modalities, leading to fulfilment of their individual terms and compass when the respective choice sequence operations are brought to closure. Focussing on the general grammar, NUCRS by pure logic and its algebraic notations hence bootstraps Quantum Mechanics, aware that it ''is the likely keystone of a fundamental computational foundation'' also for e.g. physics, molecular biology and neuroscience. The present work deals with classical geometry where morphology is the modality, and ventures that the ancient regular solids are its specific rewrite system, in effect extensively anticipating the detailed elementary particle spectroscopy, and further on to essential structures at large both over the inorganic and organic realms. The geodetic antipode to Nothing is extension, with natural eigenvector the endless straight line which when deployed according to the NUCRS as well as Plotelemeian topographic prescriptions forms a real three-dimensional eigenspace with cubical eigenelements where observed quark-skewed quantum-chromodynamical particle events self-generate as an Aristotelean phase transition between the straight and round extremes of absolute endlessness under the symmetry- and gauge-preserving, canonical coset decomposition SO(3)xO(5) of Lie algebra SU(3). The cubical eigen-space and eigen-elements are the parental state and frame, and the other solids are a range of transition matrix elements and portions adapting to the spherical root vector symmetries and so reproducibly reproducing the elementary particle spectroscopy, including a modular, truncated octahedron nano-composition of the Electron which piecemeal enter into molecular structures or compressed to each

  12. Elementary particle interactions. [Dept. of Physics and Astronomy, Univ. of Tennessee, Knoxville, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out.

  13. Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13

    Energy Technology Data Exchange (ETDEWEB)

    Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.; DeWolfe, Oliver; Ford, William T.; Hasenfratz, Anna; Mahanthappa, K. T.; Marino, Alysia D.; Nauenberg, Uriel; Smith, James G.; Stenson, Kevin; Wagner, Stephen R.; Zimmerman, Eric D.

    2013-06-27

    The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions, lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.

  14. New developments in elementary-particle physics

    CERN Document Server

    Zichichi, A

    1979-01-01

    The modern attempt at unification of all the forces in nature is based on supersymmetry. To achieve the unification of strong and electroweak forces the distinction between leptons and hadrons (quarks) must go. The fundamental symmetry of nature is the SU(3)/sub c/ gauge symmetry, where c stands for colour. There are three colours which are the basic changes of nature and act between quarks and gluons. Elementary particles are now thought to be made of quarks and gluons. The fundamental forces of nature now appear to be the superstrong (which generates strong and semi-strong forces), electroweak (generating electromagnetic, weak and superweak) and gravitational forces. (89 refs).

  15. The Joint Institute for Nuclear Research in Experimental Physics of Elementary Particles

    Science.gov (United States)

    Bednyakov, V. A.; Russakovich, N. A.

    2018-05-01

    The year 2016 marks the 60th anniversary of the Joint Institute for Nuclear Research (JINR) in Dubna, an international intergovernmental organization for basic research in the fields of elementary particles, atomic nuclei, and condensed matter. Highly productive advances over this long road clearly show that the international basis and diversity of research guarantees successful development (and maintenance) of fundamental science. This is especially important for experimental research. In this review, the most significant achievements are briefly described with an attempt to look into the future (seven to ten years ahead) and show the role of JINR in solution of highly important problems in elementary particle physics, which is a fundamental field of modern natural sciences. This glimpse of the future is full of justified optimism.

  16. Research in elementary particle physics

    International Nuclear Information System (INIS)

    1992-01-01

    Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology

  17. The new classification of elementary particle resonance mass spectra

    International Nuclear Information System (INIS)

    Gareev, F.A.; Barabanov, M.Yu.; Kazacha, G.S.

    1997-01-01

    Elementary particle resonances have been systematically analyzed from the first principles: the conservation laws of energy-momentum and Ehrenfest adiabatic invariant. As a result, resonance decay product momenta and masses of resonances were established to be quantized. Radial excited states of resonances were revealed. These observations give us a possibility to formulate the strategy of experimental searches for new resonances and to systematize already known ones. (author)

  18. Elementary Particles The first hundred years

    CERN Document Server

    Perkins, Donald Hill

    1997-01-01

    To mark the centenary of the discovery of that first elementary particle, the electron, some remarks and recollections from the early days of high energy physics, including the impact of early experiments and ideas on todayÕs research. Much of our progress in this field has been carefully anticipated and planned, but a surprising number of successes were the result of incredibly lucky breaks, where headway was made despite - or even because of - incorrect experimental results, crossed wires or simply asking the wrong question at the right time. We can be sure therefore that the next century - or perhaps even what remains of this one - will have unexpected surprises in store.

  19. Impact of storage rings on elementary particle physics

    International Nuclear Information System (INIS)

    Trilling, G.H.

    1979-03-01

    It is well known that new experimental discoveries often closely follow the development of new technology. There is hardly a better example of this than the close coupling between new discoveries in the frontiers of elementary particle physics and the development of the art and science of making high-energy accelerators. It is almost twenty-five years since the construction of the Bevatron made possible the discovery of the antiproton; and, since that time, knowledge and understanding of particle physics has made enormous strides in step with new developments in both the accelerator and the detector arts. An attempt is made to document how intimately many of the recent advances have been tied to the success in the development of storage rings and colliding beams

  20. Systematics of experimental charge radii of elements and elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Antony, M.S.; Britz, J.

    1987-02-01

    The systematics of experimental charge radii of elements and elementary particles ..pi../sup -/, K/sup -/, K/sup 0/, p and n is discussed. The root-meansquare charge radius of a quark core in nucleous derived from the systematics is estimated to be 0.3 fm. Charge radii evaluated from Coulomb displacement energies are also tabulated.

  1. A survey of research in elementary particle physics

    International Nuclear Information System (INIS)

    Baton, J.P.; Cohen-Tannoudji, G.

    1986-05-01

    These notes are devoted to the current trends in elementary particle physics. They are not intended for the training of experts in the field. After a brief historical survey, one discusses the difficulties which have made necessary to move from classical physics to relativistic quantum physics. The main concepts of this new theory are rapidly presented. The experimental methods are discussed within a few typical experiments, already performed or scheduled. The main questions which are still unsolved are rapidly mentioned [fr

  2. A survey of research in elementary particle physics

    International Nuclear Information System (INIS)

    Baton, J.P.; Cohen-Tannoudji, G.

    1986-10-01

    These notes are devoted to the current trends in elementary particle physics. They are not intended for the training of experts in the field. After a brief historical survey, one discusses the difficulties which have made necessary to move from classical physics to relativistic quantum physics. The main concepts of this new theory are rapidly presented. The experimental methods are discussed within a few typical experiments, already performed or scheduled. The main questions which are still unsolved are rapidly mentioned [fr

  3. The basic elementary particles as martensitic nucleus

    International Nuclear Information System (INIS)

    Aguinaco-Bravo, V. J.; Onoro, J.

    1999-01-01

    The martensitic transformation is a diffusional structural change that produces an important modification of the microstructure and properties of materials. In this paper we propose how the martensitic phase is nucleated from a basic elementary particle (bep). The bep is formed in several stages. Vacancies, divacancies, etc. are formed at high temperature, which collapse into prismatic dislocation loops during the cooling process. We define a bep as a dislocation loop reaching a critical radius and fulfilling certain elastic energy conditions. A martensitic nucleus is a bep that coincides crystallographically with the habit plane of the matrix. (Author) 16 refs

  4. Four-particle scattering with three-particle interactions

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1979-01-01

    The four-particle scattering formalism proposed independently by Alessandrini, by Mitra et al., by Rosenberg, and by Takahashi and Mishima is extended to include a possible three-particle interaction. The kernel of the new equations we get contain both two- and three-body connected parts and gets four-body connected after one iteration. On the other hand, the kernel of the original equations in the absence of three-particle interactions does not have a two-body connected part. We also write scattering equations for the transition operators connecting the two-body fragmentation channels. They are generalization of the Sloan equations in the presence of three-particle interactions. We indicate how to include approximately the effect of a weak three-particle interaction in a practical four-particle scattering calculation

  5. Toward unification of elementary particle physics and cosmology in 10-dimensions

    International Nuclear Information System (INIS)

    Chapline, G.; Gibbons, G.

    1984-01-01

    Ten-dimensions seem to be a unique setting for unifying at the classical level cosmology and elementary particle physics. Some interesting results along these lines are obtained starting with a Yang-Mills coupled to supergravity theory in 10-dimensions. However, further progress will require finding an underlying quantum theory

  6. Gauge theory and elementary particles

    International Nuclear Information System (INIS)

    Zwirn, H.

    1982-01-01

    The present orientation of particle physics, founded on local gauge invariance theories and spontaneous symmetry breaking is described in a simple formalism. The application of these ideas to the latest theories describing electromagnetic and weak interactions (Glashow, Weinberg, Salam models) and strong interactions, quantum chromodynamics, is presented so as to give a general picture of the mechanisms subtending these theories [fr

  7. Some questions on the research in particle physics

    International Nuclear Information System (INIS)

    Kiss, D.

    1978-01-01

    Some new developments in elementary particle physics and interaction processes are reviewed. Recent advances in the field of particle physics including the observation of an anomalous behaviour of interaction cross section at high energy levels, the deep inelastic scattering of electrons from protons, the existence of neutral currents and the relative frequency of events with high transverse pulses are pointed out. A special development is the discovery and identification of a number of new particles and processes. New advances in understanding of the structure of subelementary particles, and the combination of electromagnetic and weak interactions are described. After a discussion of the technical and instrumental requirements and possibilities in the field of elementary particle research, the role and achievements of Hungarian scientists in high-energy facilities of the Soviet Union are emphasized. (P.J.)

  8. Research in elementary particle physics. Technical progress report, June 1, 1985-May 31, 1986

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Abbott, L.F.; Blocker, C.A.

    1986-01-01

    Progress is reported in both experimental and theoretical elementary particle research. Experimental activities include: construction of the Forward Electromagnetic Shower Counters for the Collider Detector at Fermilab (CDF); a test run in the CDF, involving observation of a small number of proton-antiproton collisions; design of a self-contained single wire proportional chamber with pressure and temperature sensing for monitoring the gain of gases used by various components of the CDF; data acquisition, and calibration. Also included are a search for a dibaryon of strangeness=-1; hyperon weak radiative decay. Theoretical research is reported in the areas of quantum field theory, string theory, elementary particle phenomenology, cosmology, field theory in curved spacetimes, and cosmology. 34 refs

  9. Proceedings of the 28. international symposium Ahrenshoop on the theory of elementary particles

    International Nuclear Information System (INIS)

    Luest, D.; Weigt, G.

    1995-03-01

    The following topics were dealt with: elementary particle theory, string theory, algebra, group theory, symmetries, Lie groups, unified field theories, topology and theories of gravitation.ok place from August 30 to September 3, 1994 at Wendisch-Rietz near Berlin. The Symposium was organized jointly by the Institute for Elementary Particle Physics of the Humboldt University of Berlin, the Institute for Theoretical Physics of the University Hannover, the Section of Physics of the University Munich, and DESY Institute for High Energy Physics Zeuthen. It was made possible thanks to the financial support of the Bundesland Brandenburg, the DESY Institute for High Energy Physics Zeuthen, the Walter and Eva Andrejewski Stiftung, and last but not least the Deutsche Forschungsgemeinschaft (DFG). We also would like to thank Karin Pipke for her dedicated assistance to prepare this manuscript. (orig.)

  10. Topics in elementary scattering theory

    International Nuclear Information System (INIS)

    Imrie, D.C.

    1980-01-01

    In these lectures a summary is given of some of the fundamental ideas and formalism used to describe and understand the interactions of elementary particles. A brief review of relativistic kinematics is followed by a discussion of Lorentz-invariant variables for describing two-body processes, phase space and plots, such as the Dalitz plot, which can be used to study some aspects of the dynamics of an interaction, relatively free from kinematic complications. A general description of scattering and decay is given and then, more specifically, some aspects of two-body interactions in the absence of spin are discussed. Finally, complications that arise when particle spin has to be taken into account are considered. (U.K.)

  11. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  12. When cosmology and particle physics met

    International Nuclear Information System (INIS)

    Kaiser, D.

    2007-01-01

    Primordial cosmology describes the first moments of the universe when the interactions of elementary particles with one another determined its evolution. The mutual ignorance between the community of cosmologists with that of elementary physicists is well illustrated by the fact that both communities conceived distinct concepts of mass that 10 years later were found similar: Brans-Dicke gravitation and Higgs field. Now the collaboration between cosmology and particle physics appears necessary since the great unification theory that imposes the 3 basic forces: weak interaction, electromagnetic interaction and strong interaction to merge in a unique force at an energy scale of 10 24 eV, is supposed to have occurred just after the big-bang when the universe was dense and hot. (A.C.)

  13. Use of new computer technologies in elementary particle physics

    International Nuclear Information System (INIS)

    Gaines, I.; Nash, T.

    1987-01-01

    Elementary particle physics and computers have progressed together for as long as anyone can remember. The symbiosis is surprising considering the dissimilar objectives of these fields, but physics understanding cannot be had simply by detecting the passage of particles. It requires a selection of interesting events and their analysis in comparison with quantitative theoretical predictions. The extraordinary reach made by experimentalists into realms always further removed from everyday observation frequently encountered technology constraints. Pushing away such barriers has been an essential activity of the physicist since long before Rossi developed the first practical electronic AND gates as coincidence circuits in 1930. This article describes the latest episode of this history, the development of new computer technologies to meet the various and increasing appetite for computing of experimental (and theoretical) high energy physics

  14. Vanishing cosmological constant in elementary particles theory

    International Nuclear Information System (INIS)

    Pisano, F.; Tonasse, M.D.

    1997-01-01

    The quest of a vanishing cosmological constant is considered in the simplest anomaly-free chiral gauge extension of the electroweak standard model where the new physics is limited to a well defined additional flavordynamics above the Fermi scale, namely up to a few TeVs by matching the gauge coupling constants at the electroweak scale, and with an extended Higgs structure. In contrast to the electroweak standard model, it is shown how the extended scalar sector of the theory allows a vanishing or a very small cosmological constant. the details of the cancellation mechanism are presented. At accessible energies the theory is indistinguishable from the standard model of elementary particles and it is in agreement with all existing data. (author). 32 refs

  15. Advances in elementary particle physics with applied superconductivity. Contribution of superconducting technology to CERN large hadron collider accelerator

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2011-01-01

    The construction of the Large Hadron Collider (LHC) was started in 1994 and completed in 2008. The LHC consists of more than seven thousand superconducting magnets and cavities, which play an essential role in elementary particle physics and its energy frontier. Since 2010, physics experiments at the new energy frontier have been carried out to investigate the history and elementary particle phenomena in the early universe. The superconducting technology applied in the energy frontier physics experiments is briefly introduced. (author)

  16. Elementary particle physics---Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Burnett, T.H.; Wilkes, R.J.

    1990-01-01

    We are continuing a research program in high energy experimental particle physics and particle astrophysics. Studies of high energy hadronic interactions were performed using several techniques, in addition, a high energy leptoproduction experiment was continued at the Fermi National Accelerator Laboratory. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators. The data are being collected with ballon-borne emulsion chambers. The properties of nuclear interactions at these high energies will reveal whether new production mechanisms come into play due to the high nuclear densities and temperatures obtained. We carried out closely related studies of hadronic interactions in emulsions exposed to high energy accelerator beams. We are members of a large international collaboration which has exposed emulsion chamber detectors to beams of 32 S and 16 O with energy 60 and 200 GeV/n at CERN and 15 GeV/n at Brookhaven National Laboratory. The primary objectives of this program are to determine the existence and properties of the hypothesized quark-gluon phase of matter, and its possible relation to a variety of anomalous observations. Studies of leptoproduction processes at high energies involve two separate experiments, one using the Tevatron 500 GeV muon beam and the other exploring the >TeV regime. We are participants in Fermilab experiment E665 employing a comprehensive counter/streamer chamber detector system. During the past year we joined the DUMAND Collaboration, and have been assigned responsibility for development and construction of critical components for the deep undersea neutrino detector facility, to be deployed in 1991. In addition, we are making significant contributions to the design of the triggering system to be used

  17. Elementary particle physics

    International Nuclear Information System (INIS)

    Kenyon, I.R.

    1987-01-01

    Intended for undergraduate and postgraduate students the book concentrates on the 'standard model' and the gauge symmetries. Leptons, quarks and forces are introduced at the beginning, followed by experimental techniques which have found them. Gauge theories are dealt with in order of increasing complexity - quantum electrodynamics and the gauge principle, symmetries and conservation laws, colour and quantum chromodynamics, the V - A theory of weak interactions and electroweak unification. Attention is then focussed on the hadrons. Deep inelastic scattering of hadrons is explained first, then hadron spectroscopy and then hadron interactions. Current developments beyond the Standard model - grand unification, supersymmetry, cosmology and gravitation -are discussed in the final chapter. The appendices cover kinematic, cross-section and decay-rate formulae, Breit-Wigner resonances, some Clebsch-Gordan coefficient tables, a table of particle properties, exercises and answers, and the Dirac equation. There is also an appendix on calculating scattering amplitudes for fermion + fermion going to fermion + fermion. A list of references is given. (U.K.)

  18. Current experiments in elementary particle physics. Revision 1-85

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1985-01-01

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  19. Dark matter and particle physics

    International Nuclear Information System (INIS)

    Peskin, Michael E.

    2007-01-01

    Astrophysicists now know that 80% of the matter in the universe is 'dark matter', composed of neutral and weakly interacting elementary particles that are not part of the Standard Model of particle physics. I will summarize the evidence for dark matter. I will explain why I expect dark matter particles to be produced at the CERN LHC. We will then need to characterize the new weakly interacting particles and demonstrate that they the same particles that are found in the cosmos. I will describe how this might be done. (author)

  20. Elementary particle treatment of the radiative muon capture

    International Nuclear Information System (INIS)

    Gmitro, M.; Ovchinnikova, A.A.

    1979-01-01

    Radiative nucleon-capture amplitudes have been constructed for the 12 C(O + ) → 12 B(1 + ) and 16 O(O + ) → 16 N(2 - ) transitions using assumptions about the conservation of electromagnetic and weak hadronic currents supplemented by a dynamical hypothesis. The nucleus is treated as an elementary particle and therefore is completely defined by its charge e, magnetic moment μ, spin J and parity π. In this case the radiative amplitude obtained in the framework of perturbation theory with minimal coupling sometimes does not satisfy the CVC and PCAC conditions and it can be even gauge noninvariant. The method considered allows one to overcome these shortcomings. (G.M.)

  1. Research in elementary particle physics. Technical progress report, June 1, 1983-May 31, 1984

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Abbott, L.F.

    1984-01-01

    Under this contract, research has been performed on both the theoretical and experimental properties of elementary particles. A brief description of the work which is either in progress or has been completed is given. Publications are listed

  2. Topics in elementary particle physics

    Science.gov (United States)

    Jin, Xiang

    The author of this thesis discusses two topics in elementary particle physics: n-ary algebras and their applications to M-theory (Part I), and functional evolution and Renormalization Group flows (Part II). In part I, Lie algebra is extended to four different n-ary algebraic structure: generalized Lie algebra, Filippov algebra, Nambu algebra and Nambu-Poisson tensor; though there are still many other n-ary algebras. A natural property of Generalized Lie algebras — the Bremner identity, is studied, and proved with a totally different method from its original version. We extend Bremner identity to n-bracket cases, where n is an arbitrary odd integer. Filippov algebras do not focus on associativity, and are defined by the Fundamental identity. We add associativity to Filippov algebras, and give examples of how to construct Filippov algebras from su(2), bosonic oscillator, Virasoro algebra. We try to include fermionic charges into the ternary Virasoro-Witt algebra, but the attempt fails because fermionic charges keep generating new charges that make the algebra not closed. We also study the Bremner identity restriction on Nambu algebras and Nambu-Poisson tensors. So far, the only example 3-algebra being used in physics is the BLG model with 3-algebra A4, describing two M2-branes interactions. Its extension with Nambu algebra, BLG-NB model, is believed to describe infinite M2-branes condensation. Also, there is another propose for M2-brane interactions, the ABJM model, which is constructed by ordinary Lie algebra. We compare the symmetry properties between them, and discuss the possible approaches to include these three models into a grand unification theory. In Part II, we give an approximate solution for Schroeder's equations, based on series and conjugation methods. We use the logistic map as an example, and demonstrate that this approximate solution converges to known analytical solutions around the fixed point, around which the approximate solution is constructed

  3. Experimental investigation on particle-wall interactions

    International Nuclear Information System (INIS)

    Zeisel, H.; Dorfner, V.

    1988-01-01

    There is still a lack in the knowledge about many physical processes in two-phase flows and therefore their mathematical description for the modelling of two-phase flows by computer simulations still needs some improvement. One required information is the physical procedure of the momentum transfer between the phases themselves, such as particle-particle or particle-fluid interactions, and between the phases and the flow boundaries, such as particle-wall or fluid-wall interactions. The interaction between the two phases can be either a 'long-range' interference or a direct contact between both. For the particle-fluid two-phase flow system the interaction can be devided in particle-fluid, particle-particle and particle-boundary interactions. In this investigation the attention is drawn to the special case of a particle-wall interaction and its 'long-range' interference effect between the wall and a small particle which approaches the wall in normal direction. (orig./GL)

  4. Interrogation in Teacher-Student Interaction in Bahasa Indonesia Learning at Elementary School

    Directory of Open Access Journals (Sweden)

    Akmal Hamsa

    2014-08-01

    Full Text Available Interrogation in Teacher-Student Interaction in Bahasa Indonesia Learning at Elementary School. This study aimed to describe the form, function, and questioning strategies teachers in teacher-student interrogation in Bahasa Indonesia learning in elementary school. Data sourced from four teacher of elementary school, SDN Tamangapa and SD Inpres Tamangapa. Data were obtained by (1 recording, (2 documentation, (3 field notes, (4 interview. The results showed that: (1 the form of questioning the teacher in the teacher-student interaction in Bahasa Indonesia learning in primary schools generally examined the low-level thinking skills, (2 functions of teacher questions are generally intended to check student understanding, and (3 teachers utilize a variety of strategies in addressing student answers correctly and the apparent hesitation. Some disadvantages are indicated teachers in providing interrogation.

  5. Search for free fractional electric charge elementary particles using an automated millikan oil drop technique

    Science.gov (United States)

    Halyo; Kim; Lee; Lee; Loomba; Perl

    2000-03-20

    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0. 16e ( e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71x10(-22) particles per nucleon with 95% confidence.

  6. Biasing secondary particle interaction physics and production in MCNP6

    International Nuclear Information System (INIS)

    Fensin, M.L.; James, M.R.

    2016-01-01

    Highlights: • Biasing secondary production and interactions of charged particles in the tabular energy regime. • Examining lower weight window bounds for rare events when using Russian roulette. • The new biasing strategy can speedup calculations by a factor of 1 million or more. - Abstract: Though MCNP6 will transport elementary charged particles and light ions to low energies (i.e. less than 20 MeV), MCNP6 has historically relied on model physics with suggested minimum energies of ∼20 to 200 MeV. Use of library data for the low energy regime was developed for MCNP6 1.1.Beta to read and use light ion libraries. Thick target yields of neutron production for alphas on fluoride result in 1 production event per roughly million sampled alphas depending on the energy of the alpha (for other isotopes the yield can be even rarer). Calculation times to achieve statistically significant and converged thick target yields are quite laborious, needing over one hundred processor hours. The MUCEND code possess a biasing technique for improving the sampling of secondary particle production by forcing a nuclear interaction to occur per each alpha transported. We present here a different biasing strategy for secondary particle production from charged particles. During each substep, as the charged particle slows down, we bias both a nuclear collision event to occur at each substep and the production of secondary particles at the collision event, while still continuing to progress the charged particle until reaching a region of zero importance or an energy/time cutoff. This biasing strategy is capable of speeding up calculations by a factor of a million or more as compared to the unbiased calculation. Further presented here are both proof that the biasing strategy is capable of producing the same results as the unbiased calculation and the limitations to consider in order to achieve accurate results of secondary particle production. Though this strategy was developed for MCNP

  7. Teaching the Conceptual Scheme "The Particle Nature of Matter" in the Elementary School.

    Science.gov (United States)

    Pella, Milton O.; And Others

    Conclusions of an extensive project aimed to prepare lessons and associated materials related to teaching concepts included in the scheme "The Particle Nature of Matter" for grades two through six are presented. The hypothesis formulated for the project was that children in elementary schools can learn theoretical concepts related to the particle…

  8. Introduction to particle physics

    International Nuclear Information System (INIS)

    Zitoun, R.

    2000-01-01

    This book proposes an introduction to particle physics that requires only a high-school level mathematical knowledge. Elementary particles (leptons, quarks, bosons) are presented according to a modern view taking into account of their symmetries and interactions. The author shows how physicists have elaborated the standard model and what are its implications in cosmology. (J.S.)

  9. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1991-01-01

    The current research position is summarized, and what could be done in the future to clarify issues which were opened up by the research is indicated. Following on the discussion of the viability of catalyzed fusion, there is presented along with the key experimental results, a short account of the physics surrounding the subject. This is followed by a discussion of key research topics addressed. In consequence of the progress made, it appears that the feasibility of a small-scale fusion based on catalyzed reactions rests on either the remote chance that a yet undiscovered ultraheavy negatively charged elementary particle exists in Nature, or on the possible technical realization of a system based on muon-catalyzed fusion (MuCF) in high-density degenerate hydrogen plasma (density 1000 LHD, temperature O(100 eV)). The lattter is considered to have practical promise

  10. Weak decays of stable particles

    International Nuclear Information System (INIS)

    Brown, R.M.

    1988-09-01

    In this article we review recent advances in the field of weak decays and consider their implications for quantum chromodynamics (the theory of strong interactions) and electroweak theory (the combined theory of electromagnetic and weak interactions), which together form the ''Standard Model'' of elementary particles. (author)

  11. Modern Elementary Particle Physics

    Science.gov (United States)

    Kane, Gordon

    2017-02-01

    1. Introduction; 2. Relativistic notation, Lagrangians, and interactions; 3. Gauge invariance; 4. Non-abelian gauge theories; 5. Dirac notation for spin; 6. The Standard Model Lagrangian; 7. The electroweak theory and quantum chromodynamics; 8. Masses and the Higgs mechanism; 9. Cross sections, decay widths, and lifetimes: W and Z decays; 10. Production and properties of W± and Zᴼ; 11. Measurement of electroweak and QCD parameters: the muon lifetime; 12. Accelerators - present and future; 13. Experiments and detectors; 14. Low energy and non-accelerator experiments; 15. Observation of the Higgs boson at the CERN LHC: is it the Higgs boson?; 16. Colliders and tests of the Standard Model: particles are pointlike; 17. Quarks and gluons, confinement and jets; 18. Hadrons, heavy quarks, and strong isospin invariance; 19. Coupling strengths depend on momentum transfer and on virtual particles; 20. Quark (and lepton) mixing angles; 21. CP violation; 22. Overview of physics beyond the Standard Model; 23. Grand unification; 24. Neutrino masses; 25. Dark matter; 26. Supersymmetry.

  12. Interactive Terascale Particle Visualization

    Science.gov (United States)

    Ellsworth, David; Green, Bryan; Moran, Patrick

    2004-01-01

    This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.

  13. The Higgs--physical and number theoretical arguments for the necessity of a triple elementary particle in super symmetric spacetime

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2004-01-01

    A careful counting routine of all experimentally confirmed elementary particles plus the theoretically conjectured ones needed for a sound formulation of a mathematically consistent field theory is undertaken within a minimal N=1 super symmetric extension of the standard model of high energy physics. The number arrived at is subsequently linked to certain massless on shell representations connected to the quantized gravity interaction. Finally with the help of number theoretical arguments arising from a rigorous application of the formalism of transfinite Heterotic super string and E-infinity theory, we show that the proposed scheme would lack mathematical consistency and elegant simplicity unless we retain a postulated triplet which is logically identified as the H + , H - and H 0 Higgs particles. Connections to the 11 dimensional M theory and Harari's extended 'sub-quarks' theory is also discussed

  14. Beyond Mathematics, a Standard Elementary Particle, and the Unified Field of Energy

    International Nuclear Information System (INIS)

    Sourial, A.S.

    2008-01-01

    Teaching methods are presented based on a theoretical logical thesis of: A Standard Elementary Particle, i nstead of the current 200 odd different subatomic particles, and their plausible derivation from such a standard particle, similar to the derivation of our body cells from a multi potential S tem Cell, T he thesis reintroduces the theory of A Material Ether a s a necessary medium for the transmission of the Electro-Magnetic-Gravitational Waves. It solves and demystifies the following riddles: 1. The A ether Vacuum, by offering a plausible composition of A n elastic solid medium, t hat meets the specific physical requirements needed for the transmission of the electro magnetic gravitational waves, Explains the vast amount of Potential Energy that such an A ether can carry, That there is No Action at a Distance, 2. It explains Q uantum Mechanics, o n simple Newtonian principles, It nullifies the H eisenberg Uncertainty Principle, s howing that there is no uncertainty whatsoever, for individual particle interactions, and the existence of F unctional Barriers f or the disc like aggregates of contiguous particles representing I ntra-atomic Electrons, a nd A full P hysical e xplanation of the their quantum numbers, their electronic shells, as well as: The Pauli Exclusion Principle. 3. The possible explanation of Hubbell's Law without an expansion of the Universe, that the C osmic Red Shift g ives the illusion of an expanding Universe similar to that of the B ent Stick i n the water due to refraction. 4. That the Big Bang I nflation Theory, f or the origin of the Universe is: a Figment of Imagination similar to Aladdin's D jinni out of the bottle. a nd a Fantasy of Mathematics with complete lack of touch with reality. The thesis suggests a plausible explanation - Modus Operandi - for, and composition of: i) Gravity, II) The structure of nucleons, III) The nature of the strong force, IV) The structure of the string of The String Theory

  15. Research program in elementary particle theory. Progress report, 1984

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Dicus, D.A.

    1984-04-01

    Research progress is reported on the following topics: gauge theory and monopole physics; supersymmetry and proton decay; strong interactions and model of particles; quantum rotator and spectrum generating group models of particles; geometric foundations of particle physics and optics; and application of particle physics to astrophysics. The titles of DOE reports are listed, and research histories of the scientific staff of the Center for Particle Theory are included

  16. Superstrings, entropy and the elementary particles content of the standard model

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2006-01-01

    A number of interconnected issues involving superstring theory, entropy and the particle content of the standard model of high energy physics are discussed in the present work. It is found that within a non-transfinite approximation, the number of elementary particles is given by DimSU(8) in full agreement with the prediction gained from dividing the total number of the massless level of Heterotic string theory (256)(16)=8064 by the spin representation 2 7 =128 which gives DimSU(8)=(8) 2 -1=(8064)/(128)=63 particles. For the exact transfinite case however, one finds our previously established E-infinity result:N=(336+16k)(3/2+k)(16+k)/(128+8k)=α-bar o /2,where k=φ 3 (1-φ 3 ), φ=(5-1)/2 and α-bar o /2=68.54101965. Setting k=0 one finds that n=63 exactly as in the non-transfinite case

  17. Experimental elementary particle physics at the University of Pittsburgh: Progress report, April 1, 1987-March 31, 1988

    International Nuclear Information System (INIS)

    Cleland, W.E.; Coon, D.D.; Engels, E. Jr.; Shepard, P.F.; Thompson, J.A.

    1987-12-01

    This paper discusses research activity at the University of Pittsburgh in experimental elementary particle physics. The three main tasks included are: Study of lepton production at the SPS and study of large P/sub T/ direct photon production at the ISR; Direct photon production at the Fermi Tevatron; and Search for fractional charge particles in semiconductors

  18. Research in elementary particle physics. Technical progress report, May 1, 1980-April 30, 1981

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.

    1981-01-01

    Research in theoretical and experimental properties of elementary particles is described. This includes measurements made at the multiparticle spectrometer facility at Brookhaven, studies of baryonium production, inclusive hyperon production, and E 0 production. Theroetical work included extended field theories, subconstituent models, finite temperature QCD, grand unified theories, and calculational techniques in gauge theories

  19. Conceptual citation frequency - quantum mechanics and elementary particle physics

    International Nuclear Information System (INIS)

    Hurt, C.D.

    1986-01-01

    The differences in conceptual citation frequency are examined between quantum mechanics literature and elementary particle physics literature. Using a sample based on increments of 5 years, 7 contrast tests were generated over a literature period of 35 years. A Dunn planned comparison procedure indicated a statistical difference in years 5 and 10 but no differences were found in the remaining years. The results must be weighed against the time frames in which the literature was produced but clearly point to an initial difference in the two areas. Additional work is required to reevaluate the findings and to investigate the conceptual citation frequency issue further. The frequency distribution generated approximates a cumulative advantage process. (author)

  20. Theoretical & Experimental Studies of Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, Kevin [Univ. of Rochester, NY (United States)

    2012-10-04

    Abstract High energy physics has been one of the signature research programs at the University of Rochester for over 60 years. The group has made leading contributions to experimental discoveries at accelerators and in cosmic rays and has played major roles in developing the theoretical framework that gives us our ``standard model'' of fundamental interactions today. This award from the Department of Energy funded a major portion of that research for more than 20 years. During this time, highlights of the supported work included the discovery of the top quark at the Fermilab Tevatron, the completion of a broad program of physics measurements that verified the electroweak unified theory, the measurement of three generations of neutrino flavor oscillations, and the first observation of a ``Higgs like'' boson at the Large Hadron Collider. The work has resulted in more than 2000 publications over the period of the grant. The principal investigators supported on this grant have been recognized as leaders in the field of elementary particle physics by their peers through numerous awards and leadership positions. Most notable among them is the APS W.K.H. Panofsky Prize awarded to Arie Bodek in 2004, the J.J. Sakurai Prizes awarded to Susumu Okubo and C. Richard Hagen in 2005 and 2010, respectively, the Wigner medal awarded to Susumu Okubo in 2006, and five principal investigators (Das, Demina, McFarland, Orr, Tipton) who received Department of Energy Outstanding Junior Investigator awards during the period of this grant. The University of Rochester Department of Physics and Astronomy, which houses the research group, provides primary salary support for the faculty and has waived most tuition costs for graduate students during the period of this grant. The group also benefits significantly from technical support and infrastructure available at the University which supports the work. The research work of the group has provided educational opportunities

  1. Theoretical and Experimental Studies of Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Harold G [Indiana University; Kostelecky, V Alan [Indiana University; Musser, James A [Indiana University

    2013-07-29

    The elementary particle physics research program at Indiana University spans a broad range of the most interesting topics in this fundamental field, including important contributions to each of the frontiers identified in the recent report of HEPAP's Particle Physics Prioritization Panel: the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Experimentally, we contribute to knowledge at the Energy Frontier through our work on the D0 and ATLAS collaborations. We work at the Intensity Frontier on the MINOS and NOvA experiments and participate in R&D for LBNE. We are also very active on the theoretical side of each of these areas with internationally recognized efforts in phenomenology both in and beyond the Standard Model and in lattice QCD. Finally, although not part of this grant, members of the Indiana University particle physics group have strong involvement in several astrophysics projects at the Cosmic Frontier. Our research efforts are divided into three task areas. The Task A group works on D0 and ATLAS; Task B is our theory group; and Task C contains our MINOS, NOvA, and LBNE (LArTPC) research. Each task includes contributions from faculty, senior scientists, postdocs, graduate and undergraduate students, engineers, technicians, and administrative personnel. This work was supported by DOE Grant DE-FG02-91ER40661. In the following, we describe progress made in the research of each task during the final period of the grant, from November 1, 2009 to April 30, 2013.

  2. A data acquisition system for elementary particle physics

    International Nuclear Information System (INIS)

    Grittenden, J.A.; Benenson, G.; Cunitz, H.; Hsuing, Y.B.; Kaplan, D.M.; Sippach, W.; Stern, B.

    1984-01-01

    The data acquisition system experiment 605 at the Fermi National Accelerator Laboratory employs a set of data transfer protocols developed at Columbia University and implemented in the Nevis Laboratories Data Transport System. The authors describe the logical design of the Transport System, its physical realization, and its particular application during the Spring, 1982 data run of experiment 605. During that run it served as the interface between the data latches and a megabyte of fast memory, operating at a data transfer rate of 200 nsec/16-bit word. Up to two thousand events were read out during the one second beam spill, each event consisting of about 250 words. Included are details of proposed improvements to the data acquisition system and append a brief comment of the need for inexpensive, versatile readout systems in experimental elementary particle physics

  3. Particle-two particle interaction in configuration space

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-07-01

    The problem if three indentical particles with zero-range two-particle interaction is considered. An explicit expression for the effective potential between one particle and the remaining two-particle system is obtained in the coordinate representation. It is shown that for arbitrary energies, at small and, for zero energy, at large distances rho between the one particle and centre of mass of the other two particles the diagonal matrix element of the effective potential is attractive and proportional to 1/rho 2 . This property of the effective potenial explains both the Thomas singularity and the Efimov effect. In the case of zero total energy of the system the general form of the solution of the three-particle integral equation is found in configuration space. (orig.)

  4. On the scattering of composite particles

    International Nuclear Information System (INIS)

    Garsevanishvili, V.R.

    1975-01-01

    The ''light front'' form of the quasipotential approach is applied to the study of interactions of relativistic composite objects. The expression for the scattering amplitude of the composite particle on the elementary one is obtained and analysed

  5. Interaction of Multiple Particles with a Solidification Front: From Compacted Particle Layer to Particle Trapping.

    Science.gov (United States)

    Saint-Michel, Brice; Georgelin, Marc; Deville, Sylvain; Pocheau, Alain

    2017-06-13

    The interaction of solidification fronts with objects such as particles, droplets, cells, or bubbles is a phenomenon with many natural and technological occurrences. For an object facing the front, it may yield various fates, from trapping to rejection, with large implications regarding the solidification pattern. However, whereas most situations involve multiple particles interacting with each other and the front, attention has focused almost exclusively on the interaction of a single, isolated object with the front. Here we address experimentally the interaction of multiple particles with a solidification front by performing solidification experiments of a monodisperse particle suspension in a Hele-Shaw cell with precise control of growth conditions and real-time visualization. We evidence the growth of a particle layer ahead of the front at a close-packing volume fraction, and we document its steady-state value at various solidification velocities. We then extend single-particle models to the situation of multiple particles by taking into account the additional force induced on an entering particle by viscous friction in the compacted particle layer. By a force balance model this provides an indirect measure of the repelling mean thermomolecular pressure over a particle entering the front. The presence of multiple particles is found to increase it following a reduction of the thickness of the thin liquid film that separates particles and front. We anticipate the findings reported here to provide a relevant basis to understand many complex solidification situations in geophysics, engineering, biology, or food engineering, where multiple objects interact with the front and control the resulting solidification patterns.

  6. Interaction of particles with complex electrostatic structures and 3D clusters

    International Nuclear Information System (INIS)

    Antonova, Tetyana

    2007-01-01

    Particles of micrometer size externally introduced in plasmas usually find their positions of levitation in the plasma sheath, where the gravity force is compensated by the strong electric field. Here due to electrostatic interaction they form different structures, which are interesting objects for the investigation of strongly coupled systems and critical phenomena. Because of the low damping (e.g. in comparison to colloidal suspension) it is possible to measure the dynamics up to the relevant highest frequency (e.g. Einstein frequency) at the most elementary level of single particle motion. The task of this work was to analyze the three dimensional structure, dynamical processes and the limit of the cooperative behavior in small plasma crystals. In addition to the study of the systems formed, the immersed particles themselves may be used for diagnostics of the plasma environment: estimation of parameters or monitoring of the processes inside plasma. The laboratory experiments are performed in two radio-frequency (RF) plasma reactors with parallel plate electrodes, where the lower electrode is a so-called ''adaptive electrode''. This electrode is segmented into 57 small ''pixels'' independently driven in DC (direct current) and/or RF voltage. When RF voltage is applied to one of these pixels, a bright localized glow, ''secondary plasma ball'', appears above. Three dimensional dust crystals with less than 100 particles are formed inside this ''plasma ball'' - the ideal conditions for the investigation of the transition from cluster systems to collective systems. The investigation of the particle interactions in crystals is performed with an optical diagnostic, which allows determination of all three particle coordinates simultaneously with time resolution of 0.04 sec. The experimental results are: 1. The binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part, which is experimentally determined for the first

  7. Interaction of particles with complex electrostatic structures and 3D clusters

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, Tetyana

    2007-10-16

    Particles of micrometer size externally introduced in plasmas usually find their positions of levitation in the plasma sheath, where the gravity force is compensated by the strong electric field. Here due to electrostatic interaction they form different structures, which are interesting objects for the investigation of strongly coupled systems and critical phenomena. Because of the low damping (e.g. in comparison to colloidal suspension) it is possible to measure the dynamics up to the relevant highest frequency (e.g. Einstein frequency) at the most elementary level of single particle motion. The task of this work was to analyze the three dimensional structure, dynamical processes and the limit of the cooperative behavior in small plasma crystals. In addition to the study of the systems formed, the immersed particles themselves may be used for diagnostics of the plasma environment: estimation of parameters or monitoring of the processes inside plasma. The laboratory experiments are performed in two radio-frequency (RF) plasma reactors with parallel plate electrodes, where the lower electrode is a so-called 'adaptive electrode'. This electrode is segmented into 57 small 'pixels' independently driven in DC (direct current) and/or RF voltage. When RF voltage is applied to one of these pixels, a bright localized glow, 'secondary plasma ball', appears above. Three dimensional dust crystals with less than 100 particles are formed inside this 'plasma ball' - the ideal conditions for the investigation of the transition from cluster systems to collective systems. The investigation of the particle interactions in crystals is performed with an optical diagnostic, which allows determination of all three particle coordinates simultaneously with time resolution of 0.04 sec. The experimental results are: 1. The binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part, which is

  8. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  9. Interaction of elementary damage processes and their contribution to neutron damage of ceramics

    International Nuclear Information System (INIS)

    Itoh, Noriaki

    1989-01-01

    Specific features of radiation damage of ceramics as compared with those of metals are discussed. It is pointed out that the electronic excitation gives considerable contribution to radiation damage of ceramics not only by itself but also through interaction with knock-on processes. In the talk first I mention briefly the elementary damage processes; the knock-on process and the processes induced by electronic excitation; the latter is of particularly importance in ceramics because of large energy quantums. Then I discuss possible interactions between these elementary processes; why they may contribute to radiation damage and in what situation they are induced. The types of interactions discussed include those between knock-on processes, between electronic excitation and knock-on processes and between processes induced by electronic excitation. Experimental results which prove directly the significance of such interactions are also described. Importance of such interactions in radiation damage of ceramics and their relevance to other phenomena, such as laser damage, is emphasized. Possible experimental techniques, including those which uses high energy neutron sources, are described. (author)

  10. Coulomb interactions in particle beams

    International Nuclear Information System (INIS)

    Jansen, G.H.

    1988-01-01

    This thesis presents a theoretical description of the Coulomb interaction between identical charged particles (electrons or ions) in focussed beam. The charge-density effects as well as the various statistical interaction effects, known as the Boersch effect and the 'trajectory displacement effect', are treated. An introductory literature survey is presented from which the large differences in theoretical approach appear. Subsequently the methods are investigated which are used in studies of comparable problems in plasma physics and stellar dynamics. These turn out to be applicable to particle beams only for certain extreme conditions. The approach finally chosen in this study is twofold. On the one hand use is made of a semi-analytical model in which the statistical and dynamical aspects of the N-particle problem are reduced to two-particle problem. This model results in a number of explicit equations in the experimental parameters, with ties of the beam can be determined directly. On the other hand use has been made of a purely numerical Monte Carlo model in which the kinematical equations of an ensemble interacting particles with 'at random' chosen starting conditions are solved exactly. This model does not lead to general expressions, but yields a specific numerical prediction for each simulated experimental situation. The results of both models appear to agree well mutually. This yields a consistent theory which complements the existing knowledge of particle optics and which allow the description of systems in which the interaction between particles can not be neglected. The predictions of this theory are qualitatively and quantitatively compared with those from some other models, recently reported in literature. (author). 256 refs.; 114 figs.; 1180 schemes; 5 tabs

  11. Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip

    Science.gov (United States)

    Alam, Manjurul; Golozar, Matin; Darabi, Jeff

    2018-04-01

    A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.

  12. Properties of the elementary KN and anti KN interactions

    International Nuclear Information System (INIS)

    Dover, C.B.

    1979-01-01

    Kaon beams offer exciting prospects for the study of both nuclear and hypernuclear physics. Experiments on hypernucleus formation via the (K - ,π - ) reaction, as well as elastic and inelastic scattering of K +- from nuclei, are already underway. The theoretical analysis of such experiments requires an understanding of the underlying two-body K +- n interaction. The main features of these elementary amplitudes, as revealed through phase shift analyses and meson exchange model are reviewed. It is indicated how the properties of the two body interaction (isospin dependence, Y* and Z* resonance formation, strangeness exchange, etc.) are reflected in reactions induced by kaons in nuclei. 81 references

  13. The fundamental interactions of matter

    International Nuclear Information System (INIS)

    Falla, D.F.

    1977-01-01

    Elementary particles are here discussed, in the context of the extent to which the fundamental interactions are related to the elementary constituents of matter. The field quanta related to the four fundamental interactions (electromagnetic, strong,weak and gravitational) are discussed within an historical context beginning with the conception of the photon. The discovery of the mesons and discoveries relevant to the nature of the heavy vector boson are considered. Finally a few recent speculations on the properties of the graviton are examined. (U.K.)

  14. Superparamagnetic relaxation of weakly interacting particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Tronc, Elisabeth

    1994-01-01

    The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...

  15. Research in elementary particle physics. [Ohio State Univ. , Columbus

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology.

  16. Matter and Interactions: a particle physics perspective

    OpenAIRE

    Organtini, Giovanni

    2011-01-01

    In classical mechanics matter and fields are completely separated. Matter interacts with fields. For particle physicists this is not the case. Both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this paper we explain why particle physicists believe in such a picture, introducing the technique of Feynman diagrams starting from very basic and popular analogies with classical mechanics, making the physics ...

  17. Entropic Ratchet transport of interacting active Brownian particles

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Bao-Quan, E-mail: aibq@hotmail.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); He, Ya-Feng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Zhong, Wei-Rong, E-mail: wrzhong@jnu.edu.cn [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, 510632 Guangzhou (China)

    2014-11-21

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.

  18. Entropic Ratchet transport of interacting active Brownian particles

    International Nuclear Information System (INIS)

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-01-01

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction

  19. Research program in elementary particle theory, 1980. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1980-01-01

    Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification

  20. The momentum degree of freedom of elementary particles and the gravitation

    International Nuclear Information System (INIS)

    Tati, Takao.

    1978-01-01

    A universal time-like vector has been introduced into the momentum space of elementary particles, in a quantum field theory with a finite degree of freedom, in order to specify the Lorentz-system in which the cutoff function of momentum is given. In this paper, the relationship between quantum field theory and general relativity is considered and it is argued that, when the effect of gravitation on the momentum degree of freedom is taken into account, the universal time-like vector depends on the position of macroscopic space-time and can be considered, in a cosmological model, to coincide, on an average, with the Weyl's cosmic time. (auth.)

  1. Particle physics and the LEP project

    International Nuclear Information System (INIS)

    Roussarie, A.

    1985-01-01

    A very didactic chronological account of the last 20 years of elementary particle physics is presented. After some recall on matter constituents and interactions between these constituents, some details are given on researches which will be made in LEP, the e + -e - collider [fr

  2. A two-particle exchange interaction model

    International Nuclear Information System (INIS)

    Lyubina, Julia; Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich

    2010-01-01

    The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation δM(H m ) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H m not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called δM-plot depends on whether the sample is ac-field or thermally demagnetised.

  3. A two-particle exchange interaction model

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, Julia, E-mail: j.lyubina@ifw-dresden.d [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany); Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany)

    2010-10-15

    The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation {delta}M(H{sub m}) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H{sub m} not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called {delta}M-plot depends on whether the sample is ac-field or thermally demagnetised.

  4. Research program in elementary particle theory, 1980. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E. C.G.; Ne' eman, Y.

    1980-01-01

    Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification. (GHT)

  5. Summer Workshop on Particle Physics

    CERN Document Server

    Chamseddine, A H; Nath, Pran

    1984-01-01

    These lectures give an elementary introduction to the important recent developments of the applications of N=1 supergravity to the construction of unified models of elementary particle interactions. Topics covered include couplings of supergravity with matter, spontaneous symmetry breaking and the super-higgs effect, construction of supergravity unified models, and the phenomenon of SU(2) x U(1) electroweak-symmetry breaking by supergravity. Experimental consequences of N-1 supergravity unified theory, in particular, the possible supersymmetric decays of the W ± and Z 0 bosons, are also discus

  6. The theory of particle interactions

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Shirkov, D.V.

    1991-01-01

    The Theory of Particle Interactions introduces students and physicists to the chronological development, concepts, main methods, and results of modern quantum field theory -- the most fundamental, abstract, and mathematical branch of theoretical physics. Belokurov and Shirkov, two prominent Soviet theoretical physicists, carefully describe the many facets of modern quantum theory including: renormalization theory and renormalization group; gauge theories and spontaneous symmetry breaking; the electroweak interaction theory and quantum chromodynamics; the schemes of the unification of the fundamental interactions; and super-symmetry and super-strings. The authors use a minimum of mathematical concepts and equations in describing the historical development, the current status, and the role of quantum field theory in modern theoretical physics. Because readers will be able to comprehend the main concepts of modern quantum theory without having to master its rather difficult apparatus, The Theory of Particle Interactions is ideal for those who seek a conceptual understanding of the subject. Students, physicists, mathematicians, and theoreticians involved in astrophysics, cosmology, and nuclear physics, as well as those interested in the philosophy and history of natural sciences will find The Theory of Particle Interactions invaluable and an important addition to their reading list

  7. The Review-of-Particle-Properties system

    International Nuclear Information System (INIS)

    Trippe, T.G.

    1984-01-01

    The Berkeley Particle Data Group is engaged in a major modernization of its primary project, the Review of Particle Properties, a compilation of experimental data on elementary particles. The goal of this modernization is to develop an integrated system for data storage, manipulation, interactive access and publication using modern technqiues for database management, text processing and phototypesetting. The existing system and the plans for modernization are described. The group's other projects and the computer systems used are also discussed. (orig.)

  8. Research in elementary particle physics: Technical progress report, June 1, 1986-May 31, 1987

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Abbott, L.F.; Bensinger, J.R.; Blocker, C.A.

    1987-01-01

    Work is reported in the areas of: design, construction, and testing of components of the CDF, including shower counters, electronics, and electron identification algorithms; contributions to the design and construction of the Brookhaven MultiParticle Spectrometer; search for charm and K*'s and baryonium; measurement of differential cross section and polarization in the Lambda-antiLambda channel; a study of Xi states which measured the Xi asymmetry parameter; and dibaryon searches using the Brookhaven Hypernuclear Spectrometer. Theoretical efforts are reported in the areas of string theory, the Skyrme model applied to elementary particle phenomenology, quantum field theory, cosmology, galaxy formation, supernova 187A, field theory in curved space-times, and spin-glasses

  9. Introduction to Particle Physics course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    These lectures are an introduction to the ideas of particle physics, aimed at students and teachers with little or on knowledge of the subject. They form a broad basis that will be developed in more detail by the subsequent lecturers in the school. These four lectures are meant to present an overview of particle physics based on its historical evolution over the past century. It will be shown how concepts have evolved following progress in instrumentation and in theoretical ideas, from atoms to the elementary particles and their interactions, as they are known today.

  10. Research program in elementary particle theory. Progress report, 1975--1976

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1976-01-01

    Research on particle theory is summarized including field theory models, phenomenological applications of field theory, strong interactions, the algebraic approach to weak and electromagnetic interactions, and superdense matter. A list of reports is also included

  11. Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow

    DEFF Research Database (Denmark)

    Salewski, Mirko; Fuchs, Laszlo

    2008-01-01

    Aerodynamic four-way coupling models are necessary to handle two-phase flows with a dispersed phase in regimes in which the particles are neither dilute enough to neglect particle interaction nor dense enough to bring the mixture to equilibrium. We include an aerodynamic particle interaction model...... levels in the flow then decrease. The impact of the stochastic particle description on the four-way coupling model is shown to be relatively small. If particles are also allowed to break up according to a wave breakup model, the particles become polydisperse. An ad hoc model for handling polydisperse...

  12. Proceedings of the fifth workshop on elementary-particle picture of the universe

    International Nuclear Information System (INIS)

    Fukugita, Masataka; Suzuki, Atsuto

    1991-01-01

    The Fifth Workshop on the Elementary-Particle of the Universe was held at Minami-Izu, from 19 to 21, November, 1990. The 80 participants included high-energy physicists, nuclear physicists, cosmic-ray physicists and astrophysicists, both from the theoretic and experimental fields. In this workshop most of the time was given to reviews of the present status and prospects of the subjects of the present project as well as some others, in order to find future directions. A detector symposium was held to explore the applicability of new technologies. This publication collects the presented papers and transparencies. (J.P.N.)

  13. Vol. 1: Physics of Elementary Particles and Quantum Field Theory. General Problems

    International Nuclear Information System (INIS)

    Sitenko, A.

    1993-01-01

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceedings are published in 6 volumes. The papers presented in this volume refer to elementary particle physics and quantum field theory. The main attention is paid to the following problems: - development of science in Ukraine and its role in the state structures; - modern state of scientific research in Ukraine; - education and training of specialists; - history of Ukrainian physics and contribution of Ukrainian scientists in the world science; - problems of the Ukrainian scientific terminology

  14. Proceedings of the fourth workshop on elementary-particle picture of the universe

    International Nuclear Information System (INIS)

    Hikasa, Ken-ichi; Nakamura, Takashi; Ohshima, Takayoshi; Suzuki, Atsuo

    1990-01-01

    The Fourth Workshop on Elementary-Particle Picture of the Universe was held at Tateyama National Rest House from November 22 to 25, 1989. The main purpose of this workshop focuses on most of current experimental and theoretical activities in non-accelerator particle physics and astrophysics. It is also aimed to promote effective collaborations between experimentalists and theorists in these fields. The solar neutrino problem and the dark matter problem are the most exciting subjects in the astroparticle physics. They threw some doubts on the standard theories of astrophysics and also particle physics. We picked up both problems in this workshop as main themes, and discussed what they are at present and how they can be solved. Cosmology gives stringent constraints on particle properties which are frequently plausible candidates to solve the astrophysical problems. However, it is scarce to argue about how to determine the cosmological parameters and their ambiguities. We had some talks for this subject given by astronomers. New experimental results and detector developments were also presented. The atmosphere of workshop was informal, and there were extensive discussions on the above subjects. We got the confirm response that experimental and theoretical research activities in astroparticle physics were increasing here in Japan. (J.P.N.)

  15. Particles and Nuclei an introduction to the physical concepts

    CERN Document Server

    Povh, B; Scholz, C; Zetsche, F

    2008-01-01

    This well-established textbook gives a uniform and unique presentation of both nuclear and particle physics. Analysis, Part 1, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being built out of a small number of elementary building blocks and a small number of fundamental interactions. Synthesis, Part 2, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions responsible for the forces in all systems become less and less evident in increasingly complex systems. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modern astrophysics and cosmology". The new edition incorporates a large amount of new experimental results on deep inelastic scattering (obtained at the Electron-Proton Collider HERA at...

  16. Particles and Nuclei An Introduction to the Physical Concepts

    CERN Document Server

    Povh, Bogdan; Scholz, Christoph; Zetsche, Frank

    2006-01-01

    This well-known introductory textbook gives a uniform presentation of nuclear and particle physics from an experimental point of view. The new edition has been extensively revised and updated. The first part, Analysis, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being constructed from a small number of elementary building blocks and a small number of fundamental interactions. The second part, Synthesis, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions, which are responsible for the forces in all systems, become less and less evident in increasingly complex systems. Such systems are in fact dominated by many-body phenomena. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modern ast...

  17. Syzygies among elementary string interactions in 2+1 dimensions

    International Nuclear Information System (INIS)

    Scott Carter, J.; Saito, M.

    1991-01-01

    The elementary string interactions are the Reidemeister moves, birth/death, and fusion/fission. Such interactions have as their trace generically mapped surfaces, and these combine to form knotted surfaces in 4-space. The syzygies among these interactions are moves to such surfaces analogous to the Reidemeister moves for knots. 'Movie' parametrizations of these syzygies are given and interpreted in dimension 2+2. A Morse theoretic argument shows there are 15 such movie moves. These moves, with appropriate choices of crossing information, are sufficient to construct any isotropy of an embedded surface on which a height function has been specified. The first seven of the movie moves are parametrized versions of those given by Roseman. The remaining eight are moves of Δ-type. Amplitudes assigned to these interactions must satisfy relations that correspond to the movie moves. One such relation is a Zamolodchikov tetrahedral equation. We present some puzzles about the matrix formulations of these amplitudes. (orig.)

  18. Charge interaction between particle-laden fluid interfaces.

    Science.gov (United States)

    Xu, Hui; Kirkwood, John; Lask, Mauricio; Fuller, Gerald

    2010-03-02

    Experiments are described where two oil/water interfaces laden with charged particles move at close proximity relative to one another. The particles on one of the interfaces were observed to be attracted toward the point of closest approach, forming a denser particle monolayer, while the particles on the opposite interface were repelled away from this point, forming a particle depletion zone. Such particle attraction/repulsion was observed even if one of the interfaces was free of particles. This phenomenon can be explained by the electrostatic interaction between the two interfaces, which causes surface charges (charged particles and ions) to redistribute in order to satisfy surface electric equipotential at each interface. In a forced particle oscillation experiment, we demonstrated the control of charged particle positions on the interface by manipulating charge interaction between interfaces.

  19. Lennard–Jones interactions between nano-rod like particles at an arbitrary orientation and an infinite flat solid surface

    International Nuclear Information System (INIS)

    Hamady, Saleem; Hijazi, Abbas; Atwi, Ali

    2013-01-01

    An analytical expression for the Lennard–Jones interaction between nano-rods and an infinite flat solid surface is presented. Starting from the elementary Lennard–Jones interaction between two particles, and taking the shape of the nano-rod to be a filled cylinder of radius r and length L, the obtained expression was valid for arbitrary orientation of the nano-rod at variable elevation from the surface. By differentiating the potential with respect to the orientation and elevation we were able to extract the torque and force, respectively, exerted on the nano-rods when approaching a flat surface. The derivation is subjected to the assumption of additivity and approximated for some limiting case

  20. The electrostatic interaction between interfacial colloidal particles

    Science.gov (United States)

    Hurd, A. J.

    1985-11-01

    The electrostatic interaction between charged, colloidal particles trapped at an air-water interface is considered using linearised Poisson-Boltzmann results for point particles. In addition to the expected screened-Coulomb contribution, which decays exponentially, an algebraic dipole-dipole interaction occurs that may account for long-range interactions in interfacial colloidal systems.

  1. Narrow Escape of Interacting Diffusing Particles

    Science.gov (United States)

    Agranov, Tal; Meerson, Baruch

    2018-03-01

    The narrow escape problem deals with the calculation of the mean escape time (MET) of a Brownian particle from a bounded domain through a small hole on the domain's boundary. Here we develop a formalism which allows us to evaluate the nonescape probability of a gas of diffusing particles that may interact with each other. In some cases the nonescape probability allows us to evaluate the MET of the first particle. The formalism is based on the fluctuating hydrodynamics and the recently developed macroscopic fluctuation theory. We also uncover an unexpected connection between the narrow escape of interacting particles and thermal runaway in chemical reactors.

  2. Quantum theory of nonrelativistic particles interacting with gravity

    International Nuclear Information System (INIS)

    Anastopoulos, C.

    1996-01-01

    We investigate the effects of the gravitational field on the quantum dynamics of nonrelativistic particles. We consider N nonrelativistic particles, interacting with the linearized gravitational field. Using the Feynman-Vernon influence functional technique, we trace out the graviton field to obtain a master equation for the system of particles to first order in G. The effective interaction between the particles as well as the self-interaction is in general non-Markovian. We show that the gravitational self-interaction cannot be held responsible for decoherence of microscopic particles due to the fast vanishing of the diffusion function. For macroscopic particles though, it leads to diagonalization to the energy eigenstate basis, a desirable feature in gravity-induced collapse models. We finally comment on possible applications. copyright 1996 The American Physical Society

  3. Research in elementary particle physics. Technical progress report, June 1, 1984-May 31, 1985

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Abbott, L.F.

    1985-01-01

    Research performed on both the experimental and theoretical properties of elementary particles is briefly described, including: construction of forward electromagnetic shower counters; BO test facility; gas monitor development and production; off-line simulation work for trigger studies; hyperon weak radiative decay; search for dibaryons of strangeness = -1; study of the Skyrme model; collider physics; quarkonium spectroscopy; some theoretical studies of the standard model; and studies of cosmology, the cosmological constant, and scalar fields in curved space-time. 37 refs

  4. Effective interactions and elementary excitations in quantum liquids

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    The effective interactions which provide a wavevector and frequency dependent restoring force for collective modes in quantum liquids are derived for the helium liquids by means of physical arguments and sum rule and continuity considerations. A simple model is used to take into account mode-mode coupling between collective and multiparticle excitations, and the results for the zero-temperature liquid 4 He phonon-maxon-roton spectrum are shown to compare favorably with experiment and with microscopic calculation. The role played by spin-dependent backflow in liquid 3 He is analyzed, and a physical interpretation of its variation with density and spin-polarization is presented. A progress report is given on recent work on effective interactions and elementary excitations in nuclear matter, with particular attention to features encountered in the latter system which have no counterparts in the helium liquids

  5. Fibre bundle varieties and the number of generations of elementary particles

    International Nuclear Information System (INIS)

    Ross, D.K.

    1985-01-01

    The idea is presented that the number of generations of elementary particles in a gauge theory characterised by a given Lie algebra is the same as the number of topologically distinct principal fibre bundles with a structure group having the same Lie algebra and R 3 -(0) as base space. Two different generations thus have a different global structure or 'twist' to their fibre bundles. It is found that at most three generations are allowed for groups with the same Lie algebra as E 6 , at most four generations for groups with the same Lie algebra as SOsub(41+2) with 1>=2, and at most n generations for groups with the same Lie algebra as SUsub(n). (author)

  6. Enriching Elementary Quantum Mechanics with the Computer: Self-Consistent Field Problems in One Dimension

    Science.gov (United States)

    Bolemon, Jay S.; Etzold, David J.

    1974-01-01

    Discusses the use of a small computer to solve self-consistent field problems of one-dimensional systems of two or more interacting particles in an elementary quantum mechanics course. Indicates that the calculation can serve as a useful introduction to the iterative technique. (CC)

  7. Elasto-capillary interactions of drops and particles

    Science.gov (United States)

    Snoeijer, Jacco; Pandey, Anupam; Karpitschka, Stefan; Nawijn, Charlotte; Botto, Lorenzo; Andreotti, Bruno

    2017-11-01

    The interaction of solid particles floating on a liquid interface is popularly known as the Cheerios effect. Here we present similar interactions for particles and droplets on elastic surfaces, mediated by elastic deformation. We start with the Inverted Cheerios effect, by considering liquid drops on a solid gel. Remarkably, the interaction can be tuned from attractive to repulsive, as shown experimentally and theoretically. We then turn to more general cases of particles on elastic layers, for which new interaction laws are derived. An overview is given on the various regimes, including the crossover from purely elastic to purely capillary interfaces. ERC Consolidator Grant 616918.

  8. Interaction of ionising radiations with matter

    International Nuclear Information System (INIS)

    Caudrelier, Olivier

    2010-01-01

    In a first part, this academic course addresses the interaction of non-charged particles with matter. The author more particularly addresses the interaction of a photon plasma with matter (attenuation of electromagnetic radiations, law of exponential attenuation, attenuation half value layer), the elementary phenomena of the interaction of a photon with matter (photoelectric effect, Compton effect, Thomson-Rayleigh scattering, materialisation, photo-nuclear reaction, prevalence domains, application in medical imagery), and the interaction of fast and slow neutrons with matter (elastic and inelastic scattering, radiative and non-radiative capture). The second part addresses the interaction of charged particles with matter. The author more particularly addresses the interaction with electrons present in the medium (ionization, excitation, stop efficiency, linear energy transfer, ionization linear density), the interaction with the nucleus (Bremsstrahlung), and the case of light particles (electrons) and of heavy particles (protons, alpha, fission products)

  9. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab

  10. Light weakly interacting massive particles

    Science.gov (United States)

    Gelmini, Graciela B.

    2017-08-01

    Light weakly interacting massive particles (WIMPs) are dark matter particle candidates with weak scale interaction with the known particles, and mass in the GeV to tens of GeV range. Hints of light WIMPs have appeared in several dark matter searches in the last decade. The unprecedented possible coincidence into tantalizingly close regions of mass and cross section of four separate direct detection experimental hints and a potential indirect detection signal in gamma rays from the galactic center, aroused considerable interest in our field. Even if these hints did not so far result in a discovery, they have had a significant impact in our field. Here we review the evidence for and against light WIMPs as dark matter candidates and discuss future relevant experiments and observations.

  11. Effective Lagrangians in elementary particle physics

    International Nuclear Information System (INIS)

    Trahern, C.G.

    1982-01-01

    Non-linear effective Lagrangians are constructed to represent the low energy phenomenology of elementary particles. As approximate descriptions of the dynamics of hadrons, these models simulate the expected (but unproven) behavior of more complex theories such as quantum Chromo-dynamics [QCD]. A general formalism for non-linear models was developed in the late 1960's by Coleman, Wess and Zumino. This dissertation utilizes and extends their work by incorporating some of the advances that have been made in the understanding of quantum field theories in the last decade. In particular the significance of spatial boundary conditions for interpreting the ground state behavior of the non-linear models is investigated. In addition the existence of a dual theory for the non-linear model is discussed. For experimental purposes duality refers to the possibility that in different enrgy regimes there may be wholly distinct kinds of excitations in the physical spectrum. Corresponding to these phenomenological distinctions are mutually exclusive mathematical descriptions. A familiar example is the duality of electric and magnetic charge in electro-dynamics. If magnetic charges do exist, they are expected to be extremely massive states that are unobservable up to very high energies. The analysis of such states within electrodynamics shows that one cannot describe both electric and magnetic charges without admitting the presence of singularities in the electric potential. A completely analogous form of duality is found and discussed for the non-linear models

  12. Induced gravity with Higgs potential. Elementary interactions and quantum processes

    International Nuclear Information System (INIS)

    Bezares Roder, Nils Manuel

    2010-01-01

    This work is intended to first serve as introduction in fundamental subjects of physics in order to be then able to review the mechanism of symmetry breakdown and its essential character in physics. It introduces the concept of scalar-tensor theories of gravity based on Bergmann-Wagoner models with a Higgs potential. The main physical context aimed is the problem of Dark Matter and Dark Energy. On the one hand, there is gravitation. Within this context, we have Dark Matter as an especially relevant concept. This work entails the following main contributions: - General features of Einstein's theory are introduced together with generalities of the different elementary interactions of physics from which the concepts of dark sectors and Higgs Mechanism are derived. - The concept of symmetry breaking and especially the Higgs Mechanism of mass generation are discussed in their relevance for the most different subjects of physics, especially in relation to the Standard Model of elementary particle physics with elementary Higgs fields. - Scalar-Tensor Theories are introduced in order to build in them the process of Higgs Mechanism. This is then fulfilled with a theory of induced gravity with a Higgs potential which seems renormalizable according to deWitt's power counting criterion, and with mass-generating Higgs fields which only couple gravitationally as well as with Higgs fields which act analogously to cosmon fields. - Further, the energy density of the gravitational field is derived for the specific model of induced gravity from an analogy to electrodynamics. It is shown that a nonvanishing value of pressure related to the scalar field is necessary in order to reproduce standard linear solar-relativistic dynamics. Within astrophysical considerations for flat rotation curves of galaxies, a possible dark-matter behavior is concluded within spherical symmetry. The scalar field and the dark-matter profile of total energy density are derived. An analogous relation between

  13. Induced gravity with Higgs potential. Elementary interactions and quantum processes

    Energy Technology Data Exchange (ETDEWEB)

    Bezares Roder, Nils Manuel

    2010-07-01

    This work is intended to first serve as introduction in fundamental subjects of physics in order to be then able to review the mechanism of symmetry breakdown and its essential character in physics. It introduces the concept of scalar-tensor theories of gravity based on Bergmann-Wagoner models with a Higgs potential. The main physical context aimed is the problem of Dark Matter and Dark Energy. On the one hand, there is gravitation. Within this context, we have Dark Matter as an especially relevant concept. This work entails the following main contributions: - General features of Einstein's theory are introduced together with generalities of the different elementary interactions of physics from which the concepts of dark sectors and Higgs Mechanism are derived. - The concept of symmetry breaking and especially the Higgs Mechanism of mass generation are discussed in their relevance for the most different subjects of physics, especially in relation to the Standard Model of elementary particle physics with elementary Higgs fields. - Scalar-Tensor Theories are introduced in order to build in them the process of Higgs Mechanism. This is then fulfilled with a theory of induced gravity with a Higgs potential which seems renormalizable according to deWitt's power counting criterion, and with mass-generating Higgs fields which only couple gravitationally as well as with Higgs fields which act analogously to cosmon fields. - Further, the energy density of the gravitational field is derived for the specific model of induced gravity from an analogy to electrodynamics. It is shown that a nonvanishing value of pressure related to the scalar field is necessary in order to reproduce standard linear solar-relativistic dynamics. Within astrophysical considerations for flat rotation curves of galaxies, a possible dark-matter behavior is concluded within spherical symmetry. The scalar field and the dark-matter profile of total energy density are derived. An analogous

  14. "Strong interaction" for particle physics laboratories

    CERN Multimedia

    2003-01-01

    A new Web site pooling the communications resources of particle physics centres all over the world has just been launched. The official launching of the new particle physics website Interactions.org during the Lepton-Proton 2003 Conference at the American laboratory Fermilab was accompanied by music and a flurry of balloons. On the initiative of Fermilab, the site was created by a collaboration of communication teams from over fifteen of the world's particle physics laboratories, including KEK, SLAC, INFN, JINR and, of course, CERN, who pooled their efforts to develop the new tool. The spectacular launching of the new particle physics website Interactions.org at Fermilab on 12 August 2003. A real gateway to particle physics, the site not only contains all the latest news from the laboratories but also offers images, graphics and a video/animation link. In addition, it provides information about scientific policies, links to the universities, a very useful detailed glossary of particle physics and astrophysic...

  15. Accelerators of atomic particles

    International Nuclear Information System (INIS)

    Sarancev, V.

    1975-01-01

    A brief survey is presented of accelerators and methods of accelerating elementary particles. The principle of collective accelerating of elementary particles is clarified and the problems are discussed of its realization. (B.S.)

  16. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. copyright 1997 American Institute of Physics

  17. Theoretical studies in elementary particle physics: [Progress report for the period June 1986 to February 1987

    International Nuclear Information System (INIS)

    Collins, J.C.

    1987-01-01

    Theoretical research on elementary particles is reported, with progress discussed in these areas: heavy quark production, the cosmic rays observed from Cygnus X-3, hadron-hadron collisions at small values of x, Monte Carlo event generators for hadron-hadron collisions, review of perturbative QCD theorems, direct computation of helicity amplitudes for tree diagrams, and application of the factorization of helicity amplitudes to the effective W approximation

  18. The Writing Performance of Elementary Students Receiving Strategic and Interactive Writing Instruction

    Science.gov (United States)

    Wolbers, Kimberly A.; Dostal, Hannah M.; Graham, Steve; Cihak, David; Kilpatrick, Jennifer R.; Saulsburry, Rachel

    2015-01-01

    Strategic and Interactive Writing Instruction (SIWI) has led to improved writing and language outcomes among deaf and hard of hearing (DHH) middle grades students. The purpose of this study was to examine the effects of SIWI on the written expression of DHH elementary students across recount/personal narrative, information report, and persuasive…

  19. Interaction and deformation of viscoelastic particles: Nonadhesive particles

    International Nuclear Information System (INIS)

    Attard, Phil

    2001-01-01

    A viscoelastic theory is formulated for the deformation of particles that interact with finite-ranged surface forces. The theory generalizes the static approach based upon classic continuum elasticity theory to account for time-dependent effects, and goes beyond contact theories such as Hertz and that given by Johnson, Kendall, and Roberts by including realistic surface interactions. Common devices used to measure load and deformation are modeled and the theory takes into account the driving velocity of the apparatus and the relaxation time of the material. Nonadhesive particles are modeled by an electric double layer repulsion. Triangular, step, and sinusoidal trajectories are analyzed in a unified treatment of loading and unloading. The load-deformation and the load-contact area curves are shown to be velocity dependent and hysteretic

  20. MEG studies prohibited muon decays to explore grand unified theories of elementary particles

    International Nuclear Information System (INIS)

    Mori, Toshinori

    2009-01-01

    The MEG experiment, designed and proposed by Japanese physicists, is being carried out at Paul Scherrer Institute (PSI) in Switzerland, in collaboration with physicists from Italy, Switzerland, Russia and U.S.A. The experiment will make an extensive search for a muon's two-body decay into an electron and a gamma ray, μ→eγ, which is prohibited in the Standard Model of elementary particles, to explore Supersymmetric Grand Unified Theories. This article gives a brief description of the MEG experiment with an emphasis on the innovative experimental techniques developed to achieve the unprecedented experimental sensitivity. (author)

  1. Violation of Particle Anti-particle Symmetry

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Symmetry is a fundamental concept which can be found in the whole range of human activities e. g. from arts to science. The beauty of a statues is often related to its symmetric form. In physics, all the laws are related to some sort of symmetry. Equally important is a small breakdown ofsymmetry. Even for the case of a statue, its beauty might be enhanced by introducing small distortions. In this course, we investigate the role symmetry in the world of elementary particles. Some symmetries found there are very similar to those which can be seen in our daily life, while others are more exotic and related to the quantum nature of the elementary particles. Our particular focus ismade on symmetry and its violation between the matter and anti-matter, known as CP violation. It is experimentally well established that particleand anti-particle behave a tiny bit differently in the world of elementary particles. We discuss how this would be explained and how we can extendour knowledge. Evolution of our universe is stro...

  2. Laws of motion for interacting Yang-Mills particles

    International Nuclear Information System (INIS)

    Fuchs, H.

    1988-01-01

    Our recent Lagrangian approach to the equations of motion for test particles with internal structure can be enlarged to the laws of motion for interacting particles, at least in principle. As an example we consider the interaction of point particles endowed with a pole-dipole structure of the non-abelian charge. (author)

  3. Wave-particle interactions in rotating mirrorsa)

    Science.gov (United States)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-05-01

    Wave-particle interactions in E ×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  4. Wave-particle Interactions In Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Wave-particle interactions in E×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  5. Wave-particle interactions in rotating mirrors

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Wave-particle interactions in ExB rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  6. Wave-particle Interactions In Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Wave-particle interactions in E-B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  7. Topics in gauge theories and the unification of elementary particle interactions

    International Nuclear Information System (INIS)

    Srivastava, Y.N.; Vaughn, M.T.

    1992-02-01

    We report on work done by the principal investigators and their collaborators on: purely fermionic composite models, gravitational diamagnetism, dynamical Casimir effect, N-particle amplitudes for large N beyond the three approximation, and analysis of classical scalar φ 4 field theory

  8. INTERACTING MANY-PARTICLE SYSTEMS OF DIFFERENT PARTICLE TYPES CONVERGE TO A SORTED STATE

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby; Starke, Jens; Hummel, N.

    2010-01-01

    We consider a model class of interacting many-particle systems consisting of different types of particles defined by a gradient flow. The corresponding potential expresses attractive and repulsive interactions between particles of the same type and different types, respectively. The introduced...... system converges by self-organized pattern formation to a sorted state where particles of the same type share a common position and those of different types are separated from each other. This is proved in the sense that we show that the property of being sorted is asymptotically stable and all other...... states are unstable. The models are motivated from physics, chemistry, and biology, and the principal investigations can be useful for many systems with interacting particles or agents. The models match particularly well a system in neuroscience, namely the axonal pathfinding and sorting in the olfactory...

  9. Cellular structures in a system of interacting particles

    International Nuclear Information System (INIS)

    Lev, B.I.

    2009-01-01

    The general description of the formation of a cellular structure in the system of interacting particles is proposed. The analytical results for possible cellular structures in the usual colloidal systems, systems of particles immersed in a liquid crystal, and gravitational systems have been presented. It is shown that the formation of a cellular structure in all systems of interacting particles at different temperatures and concentrations of particles has the same physical nature

  10. Music of elementary particles

    International Nuclear Information System (INIS)

    Sternheimer, J.

    1983-01-01

    This Note offers a new point of view on particle masses. It is shown that they are distributed following a musical scale, the chromatic tempered scale -for stable particles- subdivided into microintervals including unstable particles. A theoretical explanation, based on causality, allows one also to calculate their global distribution along the mass scale, in agreement with experiment, and indicating the existence of ''musical'' laws in the vibratory organisation of matter [fr

  11. New particles and interactions

    International Nuclear Information System (INIS)

    Gilman, F.J.; Grannis, P.D.

    1984-04-01

    The Working Group on New Particles and Interactions met as a whole at the beginning and at the end of the Workshop. However, much of what was accomplished was done in five subgroups. These were devoted to: (1) new quarks and leptons; (2) technicolor; (3) supersymmetry; (4) rare decays and CP; and (5) substructure of quarks and leptons. Other aspects of new particles, e.g., Higgs, W', Z', fell to the Electroweak Working Group to consider. The central question of this Workshop of comparing anti pp (with L = 10 32 /cm 2 -sec) with pp (with L = 10 33 /cm 2 -sec) colliders carried through to all these subgroups. In addition there were several other aspects of hadron colliders which were considered: what does an increase in √s gain in cross section and resultant sensitivity to new physics versus an increase in luminosity; will polarized beams or the use of asymmetries be essential in finding new interactions; where and at what level do rate limitations due to triggering or detection systems play a role; and how and where will the detection of particles with short, but detectable, lifetimes be important. 25 references

  12. Inter-particle and interfacial interaction of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Bae, Che Jin; Hwang, Yosun; Park, Jongnam; An, Kwangjin; Lee, Youjin; Lee, Jinwoo; Hyeon, Taeghwan; Park, J.-G.

    2007-01-01

    In order to understand inter-particle as well as interfacial interaction of magnetic nanoparticles, we have prepared several Fe 3 O 4 nanoparticles in the ranges from 3 to 50 nm. These nanoparticles are particularly well characterized in terms of size distribution with a standard deviation (σ) in size less than 0.4 nm. We investigated the inter-particle interaction by measuring the magnetic properties of the nanoparticles while controlling inter-particle distances by diluting the samples with solvents. According to this study, blocking temperatures dropped by 8-17 K with increasing the inter-particle distances from a few nm to 140 nm while the overall shape and qualitative behavior of the magnetization remain unchanged. It implies that most features observed in the magnetic properties of the nanoparticles are due to the intrinsic properties of the nanoparticles, not due to the inter-particle interaction. We then examined possible interfacial magnetic interaction in the core-shell structure of our Fe 3 O 4 nanoparticles

  13. Music of elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Sternheimer, J.

    1983-12-12

    This note offers a new point of view on particle masses. It is shown that they are distributed following a musical scale, the chromatic tempered scale -for stable particles- subdivided into microintervals including unstable particles. A theoretical explanation, based on causality, allows one also to calculate their global distribution along the mass scale, in agreement with experiment, and indicating the existence of ''musical'' laws in the vibratory organisation of matter.

  14. High-energy nuclear optics of polarized particles

    CERN Document Server

    Baryshevsky, Vladimir G

    2012-01-01

    The various phenomena caused by refraction and diffraction of polarized elementary particles in matter have opened up a new research area in the particle physics: nuclear optics of polarized particles. Effects similar to the well-known optical phenomena such as birefringence and Faraday effects, exist also in particle physics, though the particle wavelength is much less than the distance between atoms of matter. Current knowledge of the quasi-optical effects, which exist for all particles in any wavelength range (and energies from low to extremely high), will enable us to investigate different properties of interacting particles (nuclei) in a new aspect. This pioneering book will provide detailed accounts of quasi-optical phenomena in the particle polarization, and will interest physicists and professionals in experimental particle physics.

  15. Interactive methods for exploring particle simulation data

    Energy Technology Data Exchange (ETDEWEB)

    Co, Christopher S.; Friedman, Alex; Grote, David P.; Vay, Jean-Luc; Bethel, E. Wes; Joy, Kenneth I.

    2004-05-01

    In this work, we visualize high-dimensional particle simulation data using a suite of scatter plot-based visualizations coupled with interactive selection tools. We use traditional 2D and 3D projection scatter plots as well as a novel oriented disk rendering style to convey various information about the data. Interactive selection tools allow physicists to manually classify ''interesting'' sets of particles that are highlighted across multiple, linked views of the data. The power of our application is the ability to correspond new visual representations of the simulation data with traditional, well understood visualizations. This approach supports the interactive exploration of the high-dimensional space while promoting discovery of new particle behavior.

  16. Charm and particle production in neutrino interactions

    International Nuclear Information System (INIS)

    Cazzoli, E.G.; Cnops, A.M.; Connolly, P.L.; Louttit, R.I.; Murtagh, M.J.; Palmer, R.B.; Samios, N.P.; Tso, T.T.; Williams, H.H.

    1976-01-01

    Ten strange particles were observed in a total of 1086 charged current neutrino interactions obtained in the analysis of 482,000 pictures taken in the Brookhaven Cryogenic 7' Bubble Chamber filled with hydrogen and deuterium. Details of these events are presented together with rates for associated strange particle and ΔS = +-ΔQ production in neutrino interactions

  17. Research in theoretical elementary-particle physics. Progress report, March 1, 1981-February 28, 1983

    International Nuclear Information System (INIS)

    Field, R.D.; Ramond, P.M.; Thorn, C.B.

    1982-01-01

    The first two years of operation of the Theoretical Particle Physics group at the University of Florida are discussed. At present our group consists of three full professors, one assistant professor, one DOE Outstanding Junior Instructor, three post-docs and one graduate student. The group has been very productive during the first two years of its existence resulting in the publication of over 30 papers covering a broad range of topics in theoretical high energy physics. In addition, members of our group have traveled and given important talks at national and international physics conferences. The research we have accomplished in such subjects as quantum field theory, quantum chromodynamics, and grand unified theories has increased mankind's understanding of elementary particle physics. It is the intention of our group to continue to actively participate in the further development of high energy physics

  18. Cornell's LEPP, CHESS research labs expected to get $124 million in NSF funding for elementary particle and X-ray research

    CERN Multimedia

    2003-01-01

    "Cornell University will be awarded up to $124 million over the next five years by the National Science Foundation (NSF) to support research at the Laboratory for Elementary-Particle Physics (LEPP) and the Cornell High Energy Synchrotron Source (CHESS), a national user facility" (1 page).

  19. Centre for Particle Physics of Marseille. 1994-1995 Activity report

    International Nuclear Information System (INIS)

    1996-01-01

    The Center for particle physics of Marseilles (CPPM) is one of the laboratories of the National Institute of Nuclear Physics and Particle Physics of the CNRS which gathers the means of the particle physics studies. The laboratory is a mixed research unit which concerns at the same time the CNRS/IN2P3 and the Aix-Marseille University. The principal role of the laboratory is fundamental research in particle physics which deals with the elementary components of the matter and their interactions; astro-particles physics i.e. observation of the elementary particles in the Universe and in observational cosmology to understand the universe behaviour through the observation and study of supernovas. This document is the 1994-1995 Activity report of the CPPM. It presents the experiments in which the CPPM is involved (Aleph, Atlas, Bugey, CPLear, Delphi, H1, Particle astrophysics), the training, teaching, industrial relations/valorisation and technical activities (electronics, computers and information technology, mechanics), and the list of publications (seminars, conference papers, journal articles, dissertations) of the Centre. A list of the CPPM staff is attached to the document

  20. Some studies in parastatistical theories and its applications in the internal symmetry of elementary particles

    International Nuclear Information System (INIS)

    Silva, H.V. da.

    1984-01-01

    The results of investigations in parastatistical theories and in their applications to the internal symmetries of elementary particles are present. The paraquantization and the 'generalized paraquantization' (of Levine and Tomozawa) of the relativistic Schroedinger wave equations for non-zero mass and arbitrary spin (s), involving locally covariant wave functions, Ψ o,s + Ψ s,o are executed, and the restrictions resulting from the criterion of microscopic causality and the manner of establishment of the connection between spin and statistics in these quantizations are explicitly demonstrated. (Author) [pt

  1. The interaction of fine particles with stranded oil

    International Nuclear Information System (INIS)

    Owens, E.H.

    1999-01-01

    The interaction of micron-sized mineral particles with stranded oil reduces its adhesion to solid surfaces, such as sediments or bedrock. The net result is the formation of stable, micron-sized, oil droplets that disperse into the water column. In turn, the increase in surface area makes the oil more available for biodegradation. Oil and Fine-particle Interaction ('OFI') can explain how oiled shorelines are cleaned naturally in the absence of wave action in very sheltered coastal environments. Fine-particle interaction can be accelerated during a spill response by relocating the oiled sediments into the surf zone. This has been achieved successfully on two occasions to date: the Tampa Bay response in Florida, and the Sea Empress operation in Wales. Sediment relocation also causes physical abrasion by the hydraulic action of waves so that the processes of fine-particle interaction and surf washing usually occur in combination on open coasts. (author)

  2. Elementary particle physics at the University of Florida. Annual report

    International Nuclear Information System (INIS)

    Field, R.D.; Ramond, P.M.; Sikivie, P.

    1995-01-01

    This is the annual progress report of the University of Florida's elementary particle physics group. The theoretical high energy physics group's research covers a broad range of topics, including both theory and phenomenology. Present work of the experimental high energy physics group is directed toward the CLEO detector, with some effort going to B physics at Fermilab. The Axion Search project is participating in the operation of a large-scale axion detector at Lawrence Livermore National Laboratory, with the University of Florida taking responsibility for this experiment's high-resolution spectrometer's assembly, programming, and installation, and planning to take shifts during operation of the detector in FY96. The report also includes a continuation of the University's three-year proposal to the United States Department of Energy to upgrade the University's high-energy physics computing equipment and to continue student support, system manager/programmer support, and maintenance. Report includes lists of presentations and publications by members of the group

  3. Hyperon and negative particle production at central rapidity in proton-beryllium interactions at 158 GeV/c

    Czech Academy of Sciences Publication Activity Database

    Antinori, F.; Bakke, H.; Beusch, W.; Staroba, Pavel; Závada, Petr

    1999-01-01

    Roč. 661, - (1999), 476c-480c ISSN 0375-9474 Institutional research plan: CEZ:AV0Z1010920 Keywords : CERN SPS * WA97 * proton-beryllium collisions * hyperon * negaive particle production Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.088, year: 1999

  4. Big Bang Day: 5 Particles - 3. The Anti-particle

    CERN Multimedia

    Franck Close

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  5. Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates

    Science.gov (United States)

    2015-06-23

    AFRL-OSR-VA-TR-2015-0141 INTERACTIONS OF ULTRACOLD IMPURITY PARTICLES WITH BOSE- EINSTEIN CONDENSATES Georg Raithel UNIVERSITY OF MICHIGAN Final...SUBTITLE Interactions of ultracold impurity particles with Bose- Einstein Condensates 5a. CONTRACT NUMBER FA9550-10-1-0453 5b. GRANT NUMBER 5c...Interactions of ultracold impurity particles with Bose- Einstein Condensates Contract/Grant #: FA9550-10-1-0453 Reporting Period: 8/15/2010 to 2/14

  6. [Studies of elementary particles and high energy phenomena: [Progress report

    International Nuclear Information System (INIS)

    Cumalat, J.P.

    1989-01-01

    The scope of work under this contract is unclassified and shall consist of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles at the Fermi National Accelerator Laboratory, the Stanford Linear Accelerator Center, the Los Alamos National Laboratory, the SSC laboratory, and the University of Colorado with emphasis on photon beam experiments, electron-positron interactions, charmed particles, production of new vector bosons, advanced data acquisition systems, two photon physics, particle lifetimes, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions, lattice gauge theory, anomaly-free theories, gravity and instrumentation development. These topics are covered in this report

  7. Particles and quantum fields

    CERN Document Server

    Kleinert, Hagen

    2016-01-01

    This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordin...

  8. Current fluctuations of interacting active Brownian particles

    OpenAIRE

    Pre, Trevor Grand; Limmer, David T.

    2018-01-01

    We derive the distribution function for particle currents for a system of interacting active Brownian particles in the long time limit using large deviation theory and a weighted many body expansion. We find the distribution is non-Gaussian, except in the limit of passive particles. The non-Gaussian fluctuations can be understood from the effective potential the particles experience when conditioned on a given current. This potential suppresses fluctuations of the particle's orientation, and ...

  9. Centre for Particle Physics of Marseille. 1996-1997 Activity report

    International Nuclear Information System (INIS)

    1998-01-01

    The Center for particle physics of Marseilles (CPPM) is one of the laboratories of the National Institute of Nuclear Physics and Particle Physics of the CNRS which gathers the means of the particle physics studies. The laboratory is a mixed research unit which concerns at the same time the CNRS/IN2P3 and the Aix-Marseille University. The principal role of the laboratory is fundamental research in particle physics which deals with the elementary components of the matter and their interactions; astro-particles physics i.e. observation of the elementary particles in the Universe and in observational cosmology to understand the universe behaviour through the observation and study of supernovas. This document is the 1996-1997 Activity report of the CPPM. It presents the experiments in which the CPPM is involved (Aleph, Antares, Atlas, CPLear, H1), the training, teaching and technical activities (electronics, computers and information technology, mechanics), and the list of publications (seminars, conference papers, journal articles, dissertations) of the Centre. A list of the CPPM staff is attached to the document

  10. Centre for Particle Physics of Marseille. 1989-1991 Activity report

    International Nuclear Information System (INIS)

    1992-01-01

    The Center for particle physics of Marseilles (CPPM) is one of the laboratories of the National Institute of Nuclear Physics and Particle Physics of the CNRS which gathers the means of the particle physics studies. The laboratory is a mixed research unit which concerns at the same time the CNRS/IN2P3 and the Aix-Marseille University. The principal role of the laboratory is fundamental research in particle physics which deals with the elementary components of the matter and their interactions; astro-particles physics i.e. observation of the elementary particles in the Universe and in observational cosmology to understand the universe behaviour through the observation and study of supernovas. This document is the 1989-1991 Activity report of the CPPM. It presents the experiments in which the CPPM is involved (Aleph, Bugey, CPLear, Delphi, LHC), the teaching and technical activities (electronics, computers and information technology, mechanics), and the list of publications (seminars, conference papers, journal articles, dissertations) of the Centre. A list of the CPPM staff is attached to the document

  11. Centre for Particle Physics of Marseille. 1992-1993 Activity report

    International Nuclear Information System (INIS)

    1994-01-01

    The Center for particle physics of Marseilles (CPPM) is one of the laboratories of the National Institute of Nuclear Physics and Particle Physics of the CNRS which gathers the means of the particle physics studies. The laboratory is a mixed research unit which concerns at the same time the CNRS/IN2P3 and the Aix-Marseille University. The principal role of the laboratory is fundamental research in particle physics which deals with the elementary components of the matter and their interactions; astro-particles physics i.e. observation of the elementary particles in the Universe and in observational cosmology to understand the universe behaviour through the observation and study of supernovas. This document is the 1992-1993 Activity report of the CPPM. It presents the experiments in which the CPPM is involved (Aleph, Atlas, Bugey, CPLear, Delphi), the training, teaching, industrial relations/valorisation and technical activities (electronics, computers and information technology, mechanics), and the list of publications (seminars, conference papers, journal articles, dissertations) of the Centre. A list of internal seminars and of the CPPM staff is attached to the document

  12. Mean multiplicity of secondary particles in hadron-nuclear interactions

    International Nuclear Information System (INIS)

    Alaverdyan, G.B.; Pak, A.S.

    1980-01-01

    The mean multiplicity of secondary particles in hA interactions is examined in the framework of the multiplex scattering theory. The dependence of the secondary particle multiplicity coefficient Rsub(6)=anti nsub(hA)/anti nsub(hN) (where anti nsub(hA) and anti nsub(hN) are mean multiplicities of secondary relativistic particles in hA and hN interactions, respectively) on the energy and type of incident particles and atomic number of a target nucleus is analysed. It is shown that predictions of the leading particle cascade model are in satisfactory agreement with the experimental data if the uncertainties of the inelasticity in hN interactions are taken into account. The value Rsub(A) weakly depends both on the incident particle energy and the form of parametrization anti nsub(hN)(E). Allowance of energy losses fluctuation of leading particle results in the Rsub(A) value decrease. From the model of leading particles it does not follow that Rsub(a) strictly depends on the type of incident particles at the fixed value of mean number of collisions. But quantitative values of Rsub(A) for different types of particles and at one value of anti ν, (i.e. at properly chosen value) coincide. The value of Rsub(A) is profoundly dependent on the values of inelasticity factor in hN interactions

  13. Repulsive four-body interactions of α particles and quasistable nuclear α -particle condensates in heavy self-conjugate nuclei

    Science.gov (United States)

    Bai, Dong; Ren, Zhongzhou

    2018-05-01

    We study the effects of repulsive four-body interactions of α particles on nuclear α -particle condensates in heavy self-conjugate nuclei using a semianalytic approach, and find that the repulsive four-body interactions could decrease the critical number of α particles, beyond which quasistable α -particle condensate states can no longer exist, even if these four-body interactions make only tiny contributions to the total energy of the Hoyle-like state of 16O. Explicitly, we study eight benchmark parameter sets, and find that the critical number Ncr decreases by |Δ Ncr|˜1 -4 from Ncr˜11 with vanishing four-body interactions. We also discuss the effects of four-body interactions on energies and radii of α -particle condensates. Our study can be useful for future experiments to study α -particle condensates in heavy self-conjugate nuclei. Also, the experimental determination of Ncr will eventually help establish a better understanding on the α -particle interactions, especially the four-body interactions.

  14. Inter-particle Interactions in Composites of Antiferromagnetic Nanoparticles

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Mørup, Steen

    2003-01-01

    -Fe2O3 and Fe-57-doped NiO particles. The effect of NiO particles on alpha-FeA particles was a shorter relaxation time and an induced Morin transition, which usually is absent in alpha-Fe2O3 nanoparticles. Spectra of alpha-Fe2O3 particles, prepared by drying suspensions with added Co2+ and Ni2+ ions......We have prepared mixtures of alpha-Fe2O3, CoO, and NiO nanoparticles by drying aqueous suspensions of the particles. The magnetic properties were studied by Mossbauer spectroscopy. The measurements showed that interactions with CoO particles suppress the superparamagnetic relaxation of both alpha......, showed that the suspension medium can affect the magnetic properties of the alpha-FeA particles significantly, but not in the same way as the CoO or NiO nanoparticles. Therefore, a strong inter-particle exchange interaction between particles of different materials seems to be responsible for the magnetic...

  15. Weak interactions

    International Nuclear Information System (INIS)

    Ogava, S.; Savada, S.; Nakagava, M.

    1983-01-01

    The problem of the use of weak interaction laws to study models of elementary particles is discussed. The most typical examples of weak interaction is beta-decay of nucleons and muons. Beta-interaction is presented by quark currents in the form of universal interaction of the V-A type. Universality of weak interactions is well confirmed using as examples e- and μ-channels of pion decay. Hypothesis on partial preservation of axial current is applicable to the analysis of processes with pion participation. In the framework of the model with four flavours lepton decays of hadrons are considered. Weak interaction without lepton participation are also considered. Properties of neutral currents are described briefly

  16. Plasma-wall interactions

    International Nuclear Information System (INIS)

    Behrisch, Rainer

    1978-01-01

    The plasma wall interactions for two extreme cases, the 'vacuum model' and the 'cold gas blanket' are outlined. As a first step for understanding the plasma wall interactions the elementary interaction processes at the first wall are identified. These are energetic ion and neutral particle trapping and release, ion and neutral backscattering, ion sputtering, desorption by ions, photons and electrons and evaporation. These processes have only recently been started to be investigated in the parameter range of interest for fusion research. The few measured data and their extrapolation into regions not yet investigated are reviewed

  17. Surface charge accumulation of particles containing radionuclides in open air.

    Science.gov (United States)

    Kim, Yong-Ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Acoustic interaction forces between small particles in an ideal fluid

    DEFF Research Database (Denmark)

    Silva, Glauber T.; Bruus, Henrik

    2014-01-01

    We present a theoretical expression for the acoustic interaction force between small spherical particles suspended in an ideal fluid exposed to an external acoustic wave. The acoustic interaction force is the part of the acoustic radiation force on one given particle involving the scattered waves...... from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair...

  19. An experimental study of particle-bubble interaction and attachment in flotation

    KAUST Repository

    Sanchez Yanez, Aaron

    2017-05-01

    The particle-bubble interaction is found in industrial applications with the purpose of selective separation of materials especially in the mining industry. The separation is achieved with the use of bubbles that collect particles depending on their hydrophobicity. There are few experimental studies involving a single interaction between a bubble and a particle. The purpose of this work is to understand this interaction by the study of a single bubble interacting with a single particle. Experiments were conducted using ultra-pure water, glass particles and air bubbles. Single interactions of particles with bubbles were observed using two high speed cameras. The cameras were placed perpendicular to each other allowing to reconstruct the three-dimensional position of the particle, the bubble and the particle-bubble aggregate. A single size of particle was used varying the size for the bubbles. It was found that the attachment of a particle to a bubble depends on its degree of hydrophobicity and on the relative position of the particle and the bubble before they encounter.

  20. Energy exchange in systems of particles with nonreciprocal interaction

    Energy Technology Data Exchange (ETDEWEB)

    Vaulina, O. S.; Lisina, I. I., E-mail: Irina.Lisina@mail.ru; Lisin, E. A. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    A model is proposed to describe the sources of additional kinetic energy and its redistribution in systems of particles with a nonreciprocal interaction. The proposed model is shown to explain the qualitative specific features of the dust particle dynamics in the sheath region of an RF discharge. Prominence is given to the systems of particles with a quasi-dipole–dipole interaction, which is similar to the interaction induced by the ion focusing effects that occur in experiments on a laboratory dusty plasma, and with the shadow interaction caused by thermophoretic forces and Le Sage’s forces.

  1. Shock Interaction with Random Spherical Particle Beds

    Science.gov (United States)

    Neal, Chris; Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth

    2016-11-01

    In this talk we present results on fully resolved simulations of shock interaction with randomly distributed bed of particles. Multiple simulations were carried out by varying the number of particles to isolate the effect of volume fraction. Major focus of these simulations was to understand 1) the effect of the shockwave and volume fraction on the forces experienced by the particles, 2) the effect of particles on the shock wave, and 3) fluid mediated particle-particle interactions. Peak drag force for particles at different volume fractions show a downward trend as the depth of the bed increased. This can be attributed to dissipation of energy as the shockwave travels through the bed of particles. One of the fascinating observations from these simulations was the fluctuations in different quantities due to presence of multiple particles and their random distribution. These are large simulations with hundreds of particles resulting in large amount of data. We present statistical analysis of the data and make relevant observations. Average pressure in the computational domain is computed to characterize the strengths of the reflected and transmitted waves. We also present flow field contour plots to support our observations. U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  2. From basic processes to sensors: particle-matter interactions

    International Nuclear Information System (INIS)

    Laforge, Bertrand; Bourgeois, Christian

    2005-11-01

    This academic course aims at presenting and explaining techniques of detection of radiations displaying an energy higher that some tens of keV, such as those met in nuclear physics or in particle physics. In a first part, the author first analyses the operation of a biological sensor (the eye), and then presents some generalities about matter: Rutherford experiment, the atom, molecules and solids. The second part deals with interactions between radiations and matter. The author there addresses interactions of heavy charged particles (ionization with high or low energy transfer), interactions of electrons (ionization, Bremsstrahlung), multiple scattering and straggling, the Cherenkov effect, transition radiation, the interaction of γ radiations in matter (Compton effect, photoelectric effect), the interaction of neutrons in matter. Appendices address γ spectrometry, the radiation of a charged particle moving in a dielectric medium, and issues related to statistical fluctuations (distribution functions, fluctuation propagation, energy resolution, noises)

  3. Quantum walks of two interacting particles on percolation graphs

    Science.gov (United States)

    Siloi, Ilaria; Benedetti, Claudia; Piccinini, Enrico; Paris, Matteo G. A.; Bordone, Paolo

    2017-10-01

    We address the dynamics of two indistinguishable interacting particles moving on a dynamical percolation graph, i.e., a graph where the edges are independent random telegraph processes whose values jump between 0 and 1, thus mimicking percolation. The interplay between the particle interaction strength, initial state and the percolation rate determine different dynamical regimes for the walkers. We show that, whenever the walkers are initially localised within the interaction range, fast noise enhances the particle spread compared to the noiseless case.

  4. Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK

    Science.gov (United States)

    Konstantinova, O. Tanaka

    2017-03-01

    High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.

  5. A study of compound particles in pion-nucleus interactions

    International Nuclear Information System (INIS)

    Ahmad, Tufail

    2012-01-01

    In this paper, the phenomenon of multiparticle production has been studied using the nuclear emulsion technique. Nuclear emulsion is a material which memorises the tracks of charged particles. When an incident particle interacts with the nuclei of the emulsion, secondary particles are produced. These secondary particles are classified into three categories viz., shower (Ns), grey (Ng) and black (Nb) particles. The investigation of particle-nucleus collisions is fundamental for understanding the nature of the interaction process. In such studies most of the attention was paid to the relativistic charged particles that is showers (1-3). From the survey of literature it is found that slow particles (grey and black) are less studied in comparison to charged shower particles. Grey particles may provide some valuable information and it may be taken as good measure of number of collisions made by the incident particle

  6. Multivariate Relationships of Specific Impression Cues with Teacher Expectations and Dyadic Interactions in Elementary Physical Education Classes.

    Science.gov (United States)

    Martinek, Thomas J.; Karper, William B.

    1984-01-01

    This study determined multivariate relationships of the impression cues of attractiveness and effort with teacher expectations and dyadic interaction in two groups of elementary school children. (Author/JMK)

  7. Transport with three-particle interaction

    International Nuclear Information System (INIS)

    Morawetz, K.

    2000-01-01

    Starting from a point - like two - and three - particle interaction the kinetic equation is derived. While the drift term of the kinetic equation turns out to be determined by the known Skyrme mean field the collision integral appears in two - and three - particle parts. The cross section results from the same microscopic footing and is naturally density dependent due to the three - particle force. By this way no hybrid model for drift and cross section is needed for nuclear transport. The resulting equation of state has besides the mean field correlation energy also a two - and three - particle correlation energy which both are calculated analytically for the ground state. These energies contribute to the equation of state and lead to an occurrence of a maximum at 3 times nuclear density in the total energy. (author)

  8. Charged-particle distributions in pp interactions at √s= 8 TeV measured with the ATLAS detector

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Penc, Ondřej; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2016-01-01

    Roč. 76, č. 7 (2016), s. 1-46, č. článku 403. ISSN 1434-6044 Institutional support: RVO:68378271 Keywords : ATLAS * CERN LHC Coll * experimental results * 8000 GeV-cms * kinematics * charged particle * rapidity * trigger Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.331, year: 2016

  9. The influence of final state interaction on two-particle correlations in multiple production of particles and resonances

    International Nuclear Information System (INIS)

    Lednicky, R.; Lyuboshitz, V.L.

    1996-01-01

    The structure of pair correlations of interacting particles moving with nearby velocities is analysed. A general formalism of the two-particle space-time density matrix, taking into account the space-time coherence of the production process, is developed. The influence of strong final state interaction on two-particle correlations in the case of the production of a system resonance + particle is investigated in detail. It is shown that in the limit of small distances between the resonance and particle production points the effect of final state interaction is enhanced due to logarithmic singularity of the triangle diagram. Numerical estimates indicate that, in this limit, the effect of strong final state interaction becomes important even for two-pion correlations. (author)

  10. Is the Field of Numbers a Real Physical Field? On the Frequent Distribution and Masses of the Elementary Particles

    Directory of Open Access Journals (Sweden)

    Belyakov A. V.

    2010-04-01

    Full Text Available Frequent distributions of the databases of the numerical values obtained by resolving algorithms, which describe physical and other processes, give a possibility for bonding the probability of that results the algorithms get. In the frequent distribution of the fractions of integers (rational numbers, local maxima which meet the ratios of masses of the elementary particles have been found.

  11. An interacting particle process related to Young tableaux

    OpenAIRE

    Borodin, Alexei; Olshanski, Grigori

    2013-01-01

    We discuss a stochastic particle system consisting of a two-dimensional array of particles living in one space dimension. The stochastic evolution bears a certain similarity to Hammersley's process, and the particle interaction is governed by combinatorics of the Young tableaux.

  12. Pair interaction of bilayer-coated nanoscopic particles

    International Nuclear Information System (INIS)

    Qi-Yi, Zhang

    2009-01-01

    The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placed on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphiles, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery. (condensed matter: structure, thermal and mechanical properties)

  13. Research in elementary particle physics. Annual report, January 1--October 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology.

  14. Progress report on research program in elementary particle theory, 1979-1980

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1980-01-01

    A qualitative description is given of research in the following areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics and quark-parton physics; quantum mechanics, quantum field theory, and fundamental problems; and groups, gauges, and grand unified theories. Reports on this work have already been published, or will be, when it is completed

  15. Algebra of strong and electroweak interactions

    International Nuclear Information System (INIS)

    Bolokhov, S.V.; Vladimirov, Yu.S.

    2004-01-01

    The algebraic approach to describing the electroweak and strong interactions is considered within the frames of the binary geometrophysics, based on the principles of the Fokker-Feynman direct interparticle interaction theories of the Kaluza-Klein multidimensional geometrical models and the physical structures theory. It is shown that in this approach the electroweak and strong elementary particles interaction through the intermediate vector bosons, are characterized by the subtypes of the algebraic classification of the complex 3 x 3-matrices [ru

  16. Extended micro objects as dark matter particles

    Science.gov (United States)

    Belotsky, K.; Rubin, S.; Svadkovsky, I.

    2017-05-01

    Models of various forms of composite dark matter (DM) predicted by particle theory and the DM constituents formed by gravity that are not reduced to new elementary particle candidates are discussed. Main attention is paid to a gravitational origin of the DM. The influence of extended mass spectrum of primordial black holes on observational limits is considered. It is shown that non-uniformly deformed extra space can be considered as point-like masses which possess only gravitational interaction with each other and with the ordinary particles. The recently discussed six-dimensional stable wormholes could contribute to the DM. The contribution of dark atoms is also considered.

  17. Rice Starch Particle Interactions at Air/Aqueous Interfaces—Effect of Particle Hydrophobicity and Solution Ionic Strength

    Science.gov (United States)

    McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-01-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film. PMID:29868551

  18. Iterative Dipole Moment Method for the Dielectrophoretic Particle-Particle Interaction in a DC Electric Field

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2018-01-01

    Full Text Available Electric force is the most popular technique for bioparticle transportation and manipulation in microfluidic systems. In this paper, the iterative dipole moment (IDM method was used to calculate the dielectrophoretic (DEP forces of particle-particle interactions in a two-dimensional DC electric field, and the Lagrangian method was used to solve the transportation of particles. It was found that the DEP properties and whether the connection line between initial positions of particles perpendicular or parallel to the electric field greatly affect the chain patterns. In addition, the dependence of the DEP particle interaction upon the particle diameters, initial particle positions, and the DEP properties have been studied in detail. The conclusions are advantageous in elelctrokinetic microfluidic systems where it may be desirable to control, manipulate, and assemble bioparticles.

  19. SYMPOSIUM: Particle identification

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-07-15

    Typical elementary particle experiments consist of a source of interactions (an external beam and a fixed target or two colliding beams) and a detector system including most of the following components: a tracking system and analysis magnet, calorimetry (measurement of energy deposition), hadron and electron identification, muon detection, trigger counters and processors, and data acquisition electronics. Experiments aimed at future high luminosity hadron collider (proton-proton or proton-antiproton) projects such as an upgraded Tevatron at Fermilab, the Large Hadron Collider (LHC) idea at CERN, and the proposed US Superconducting Supercollider (SSC), must ideally cover the entire solid angle and be capable of not only surviving the collisions, but also providing high resolution event information at incredible interaction rates. The Symposium on Particle Identification at High Luminosity Hadron Colliders held at Fermilab from 5-7 April (sponsored by Fermilab, the US Department of Energy, and the SSC Central Design Group) focused on this single facet of detector technology.

  20. Self-interacting spin-2 dark matter

    Science.gov (United States)

    Chu, Xiaoyong; Garcia-Cely, Camilo

    2017-11-01

    Recent developments in bigravity allow one to construct consistent theories of interacting spin-2 particles that are free of ghosts. In this framework, we propose an elementary spin-2 dark matter candidate with a mass well below the TeV scale. We show that, in a certain regime where the interactions induced by the spin-2 fields do not lead to large departures from the predictions of general relativity, such a light dark matter particle typically self-interacts and undergoes self-annihilations via 3-to-2 processes. We discuss its production mechanisms and also identify the regions of the parameter space where self-interactions can alleviate the discrepancies at small scales between the predictions of the collisionless dark matter paradigm and cosmological N-body simulations.

  1. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2000-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on the integral representation for structure functions and target mass effects, multiscale properties of DNA primary structure including cross-scale correlations, dissipative evolution of the elementary act, the fine structure of the M T =1 Gamow-Teller resonance in 147g Tb→ 147 Gd β + /EC decay, the behaviour of the TVO temperature sensors in the magnetic fields, a fast method for searching for tracks in multilayer drift chambers of HADES spectrometer, a novel approach to particle track etching including surfactant enhanced control of pore morphology, azimuthal correlations of secondary particles in 32 S induced interactions with Ag(Br) nuclei at 4.5 GeV/ c/ nucleon

  2. Investigation on particle-solid interactions

    International Nuclear Information System (INIS)

    Yano, Syukuro

    1988-08-01

    Basic processes in plasma-material interactions have been surveyed and reviewed. Problems concerned with carbon materials, which have been progressively used for the first wall and limiters in Tokamaks, are mainly discussed. Recent usage of carbon materials, basic properties and characteristics of carbon/graphite materials, desorption of gasses are described. As to the interactions of incident hydrogen isotope particles with graphite surface, data of trapping, depth profile, reemission, isotope exchange, and diffusion are reviewed and discussed. (author)

  3. Interactive visual exploration of a trillion particles

    KAUST Repository

    Schatz, Karsten

    2017-03-10

    We present a method for the interactive exploration of tera-scale particle data sets. Such data sets arise from molecular dynamics, particle-based fluid simulation, and astrophysics. Our visualization technique provides a focus+context view of the data that runs interactively on commodity hardware. The method is based on a hybrid multi-scale rendering architecture, which renders the context as a hierarchical density volume. Fine details in the focus are visualized using direct particle rendering. In addition, clusters like dark matter halos can be visualized as semi-transparent spheres enclosing the particles. Since the detail data is too large to be stored in main memory, our approach uses an out-of-core technique that streams data on demand. Our technique is designed to take advantage of a dual-GPU configuration, in which the workload is split between the GPUs based on the type of data. Structural features in the data are visually enhanced using advanced rendering and shading techniques. To allow users to easily identify interesting locations even in overviews, both the focus and context view use color tables to show data attributes on the respective scale. We demonstrate that our technique achieves interactive performance on a one trillionpar-ticle data set from the DarkSky simulation.

  4. Proceedings of International Symposium TEPA 2016: Thunderstorms and Elementary Particle Acceleration

    International Nuclear Information System (INIS)

    Chilingarian, A.

    2017-03-01

    The problem of the thundercloud electrification and how particle fluxes and lightning flashes are initiated inside thunderclouds are among the biggest unsolved problems in atmospheric sciences. The relationship between thundercloud electrification, lightning initiation, and particle fluxes from the clouds has not been yet unambiguously established. Cosmic Ray Division of Yerevan Physics Institute (YerPhI), Armenia and Skobeltsyn Institute of Nuclear Physics of Moscow State University (SINP), Russia already 6th year are organizing Thunderstorms and Elementary Particle Acceleration (TEPA) annual meeting, creating environment for leading scientists and students to meet each other and discuss last discoveries in these fields (see reports of previous TEPA symposia in Fishman and Chilingarian, 2010, Chilingarian, 2013, 2014, 2016). The CRD have an impressing profile of the investigations in the emerging field of high- energy physics in the atmosphere. New designed particle detector networks and unique geographical location of Aragats station allows observation in last 8 years near 500 intensive particle fluxes from the thunderclouds, which were called TGEs – Thunderstorm ground enhancements. Aragats physicists enlarge the TGE research by coherent detection of the electrical and geomagnetic fields, temperature, relative humidity and other meteorological parameters, as well as by detection of the lightning flashes. An adopted multivariate approach allows interrelate particle fluxes, electric fields, and lightning occurrences and finally come to a comprehensive model of the TGE. One of most intriguing opportunities opening by observation of the high-energy processes in the atmosphere is their relation to lightning initiation. C.T.R. Wilson postulated acceleration of electrons in the strong electric fields inside thunderclouds in 1924. In 1992 Gurevich et al. developed the theory of the runaway breakdown (RB), now mostly referred to as relativistic runaway electron

  5. Development of Interactive Media for ICT Learning at Elementary School Based on Student Self Learning

    Directory of Open Access Journals (Sweden)

    Sri Huning Anwariningsih

    2013-05-01

    Full Text Available The implementation of information and comunication technology (ICT curriculum at elementary school is the educational sector development. ICT subject is a practical subject which require a direct practice to make easier in the student understanding. Therefore, a teacher is demanded to make a learning media which helps the student to understand the material of study. This research is aimed at describing the model of ICT study in elementary school and using of learning media. Moreover, the description can be bocome one of the basic from the development of interactive study model base on student self learning. Besides, the arraging of this study model is hoped to make habitual and self learning.

  6. Effective field theory of thermal Casimir interactions between anisotropic particles.

    Science.gov (United States)

    Haussman, Robert C; Deserno, Markus

    2014-06-01

    We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.

  7. Two-particle versus three-particle interactions in single ionization of helium by ion impact

    International Nuclear Information System (INIS)

    Schulz, M; Moshammer, R; Fischer, D; Ullrich, J

    2004-01-01

    We have performed kinematically complete experiments on single ionization of He by 100 MeV amu -1 C 6+ and 3.6 MeV amu -1 Au 24,53+ impact. By analysing doubly differential cross sections (DDCS) as a function of the momenta of all two-particle sub-systems we studied the importance of two-particle interactions. Furthermore, presenting the squared momenta of all three collision fragments simultaneously in a Dalitz plot, we evaluated the role of three-particle interactions. Finally, both for the DDCS and the Dalitz plots the corresponding correlation function was analysed. While the absolute cross sections confirm that ionization predominantly leads to a momentum exchange between the electron and the recoil-ion, the correlation function reveals strong correlations between the particles of any two-particle sub-system. Three-particle correlations, which are not accounted for by perturbative calculations, are quite significant as well, at least for certain kinematic conditions

  8. Higgs Particle: The Origin of Mass

    OpenAIRE

    Okada, Yasuhiro

    2007-01-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generat...

  9. A Statistical Model for Soliton Particle Interaction in Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Pécseli, Hans; Truelsen, J.

    1986-01-01

    A statistical model for soliton-particle interaction is presented. A master equation is derived for the time evolution of the particle velocity distribution as induced by resonant interaction with Korteweg-de Vries solitons. The detailed energy balance during the interaction subsequently determines...... the evolution of the soliton amplitude distribution. The analysis applies equally well for weakly nonlinear plasma waves in a strongly magnetized waveguide, or for ion acoustic waves propagating in one-dimensional systems....

  10. Contribution to a study of real time information systems for elementary particle physics

    International Nuclear Information System (INIS)

    Meyer, J.-M.

    1977-01-01

    The structure of data acquisition systems used in elementary particle physics experiments is formulated. The experiments and the equipment used from a data processing point of view are characterized and the acquisition system is modeled to obtain an optimal architecture. Practical compromises are implemented, leading to a system with a new structure, now being used at the CERN SPS in a hyperon experiment. The realization of this system (FAS) is described using three computers: a NORD-10, a DDP and GESPRO. The latter is an original device built using INTEL-3000 integrated circuits. GESPRO can be microprogramed with instructions specialized for use with CAMAC. Finally, the software for the entire FAS system is given. This includes the assembler, test programs for CAMAC, management programs for the memory, etc [fr

  11. Esoteric elementary particle phenomena in undergraduate physics: spontaneous symmetry breaking and scale invariance

    International Nuclear Information System (INIS)

    Greenberger, D.M.

    1978-01-01

    We take two rather abstract concepts from elementary particle physics, and show that there actually exist analogs to both of them in undergraduate physics. In the case of spontaneous symmetry breaking, we provide an example where the most symmetrical state of a simple system suddenly becomes unstable, while a less symmetrical state develops lower energy and becomes stable. In the case of scale invariance, we consider an example with no natural scale determined, and show that a straightforward dimensional analysis of the problem leads to incorrect results, because of the occurrence of infinities, even though they would appear to be irrelevant infinities that might not be expected to affect the dimensions of the answer. We then show how a simple use of the scale invariance of the problem leads to the correct answer

  12. Interaction range perturbation theory for three-particle problem

    International Nuclear Information System (INIS)

    Simenog, I.V.; Shapoval, D.V.

    1988-01-01

    The limit of zero interaction range is correctly defined for a system of three spinless particles and three particles in a doublet state. The scattering amplitude is expanded with respect to the interaction range r, and the corrections of order r ln r, r, and r 2 ln2 r are found. An explicit model-independent asymptotic expression is obtained for the scattering amplitude in terms of the scattering length, and its accuracy is established

  13. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Srednicki, M.

    1990-01-01

    At least eighty percent of the mass of the universe consists of some material which, unlike ordinary matter, neither emits nor absorbs light. This book collects key papers related to the discovery of this astonishing fact and its profound implications for astrophysics, cosmology, and the physics of elementary particles. The book focusses on the likely possibility that the dark matter is composed of an as yet undiscovered elementary particle, and examines the boundaries of our present knowledge of the properties such a particle must possess. (author). refs.; figs.; tabs

  14. Higgs Particle: The Origin of Mass

    Science.gov (United States)

    Okada, Yasuhiro

    2007-11-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics.

  15. Higgs particle. The origin of mass

    International Nuclear Information System (INIS)

    Okada, Yasuhiro

    2007-01-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments. LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics. (author)

  16. Particle accelerators test cosmological theory

    International Nuclear Information System (INIS)

    Schramm, D.N.; Steigman, G.

    1988-01-01

    Over the past decade two subfields of science, cosmology and elementary-particle physics, have become married in a symbiotic relationship that has produced a number of exciting offspring. These offspring are beginning to yield insights on the creation of spacetime and matter at epochs as early as 10 to the minus 43 to 10 to the minus 35 second after the birth of the universe in the primordial explosion known as the big bang. Important clues to the nature of the big bang itself may even come from a theory currently under development, known as the ultimate theory of everything (T.E.O.). A T.E.O. would describe all the interactions among the fundamental particles in a single bold stroke. Now that cosmology ahs begun to make predictions about elementary-particle physics, it has become conceivable that those cosmological predictions could be checked with carefully controlled accelerator experiments. It has taken more than 10 years for accelerators to reach the point where they can do the appropriate experiments, but the experiments are now in fact in progress. The preliminary results confirm the predictions of cosmology. The cosmological prediction the authors have been concerned with pertains to setting limits on the number of fundamental particles of matter. It appears that there are 12 fundamental particles, as well as their corresponding antiparticles. Six of the fundamental particles are quarks. The other six are leptons. The 12 particles are grouped in three families, each family consisting of four members. Cosmology suggests there must be a finite number of families and, further limits the possible range of to small values: only three or at most four families exist. 7 figs

  17. Analysis of the dynamic interaction between SVOCs and airborne particles

    DEFF Research Database (Denmark)

    Liu, Cong; Shi, Shanshan; Weschler, Charles J.

    2013-01-01

    A proper quantitative understanding of the dynamic interaction between gas-phase semivolatile organic compounds (SVOCs) and airborne particles is important for human exposure assessment and risk evaluation. Questions regarding how to properly address gas/particle interactions have introduced...

  18. The interface of mathematics and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Quillen, D.G.; Segal, G.B.; Tsousheung Tsun (Oxford Univ. (UK). Mathematical Inst.) (eds.)

    1990-01-01

    This collection of papers is based on the proceedings of a conference organized by the Institute of Mathematics and its Applications on the Interface of Mathematics and Particle Physics held at Oxford University in September 1988. There are twenty-five papers, all of which are indexed separately. Many contribute to the search for an understanding of how gravity can be unified with other interactions in one field theory. String and twistor theories are important in this search and many of the papers refer to strings, superstrings or twistor. All the papers seek a physical interpretation of theories and elementary particles. (author).

  19. The relations of particles

    International Nuclear Information System (INIS)

    Okun, L.B.

    1991-01-01

    This book presents papers on elementary particle physics, relations between various particles, and the connections between particle physics with other branches of physics. The papers include: Contemporary status and prospects of high-energy physics; Particle physics prospects; and High energy physics

  20. A discrete element study of wet particle-particle interaction during granulation in a spout fluidized bed

    NARCIS (Netherlands)

    van Buijtenen, M.S.; Deen, N.G.; Heinrich, Stefan; Antonyuk, Sergiy; Kuipers, J.A.M.

    2009-01-01

    In this article we study the effect of the inter-particle interaction on the bed dynamics, by considering a variable restitution coefficient. The restitution coefficient is varied in time and space depending on the moisture content due to the particle-droplet interaction and evaporation. This study

  1. Velocity width of the resonant domain in wave-particle interaction

    International Nuclear Information System (INIS)

    Firpo, Marie-Christine; Doveil, Fabrice

    2002-01-01

    Wave-particle interaction is a ubiquitous physical mechanism exhibiting locality in velocity space. A single-wave Hamiltonian provides a rich model by which to study the self-consistent interaction between one electrostatic wave and N quasiresonant particles. For the simplest nonintegrable Hamiltonian coupling two particles to one wave, we analytically derive the particle velocity borders separating quasi-integrable motions from chaotic ones. These estimates are fully retrieved through computation of the largest Lyapunov exponent. For the large-N particle self-consistent case, we numerically investigate the localization of stochasticity in velocity space and test a qualitative estimate of the borders of chaos

  2. Visualization of acoustic particle interaction and agglomeration: Theory evaluation

    International Nuclear Information System (INIS)

    Hoffmann, T.L.; Koopmann, G.H.

    1997-01-01

    In this paper experimentally observed trajectories of particles undergoing acoustically induced interaction and agglomeration processes are compared to and validated with numerically generated trajectories based on existing agglomeration theories. Models for orthokinetic, scattering, mutual radiation pressure, and hydrodynamic particle interaction are considered in the analysis. The characteristic features of the classical orthokinetic agglomeration hypothesis, such as collision processes and agglomerations due to the relative entrainment motion, are not observed in the digital images. The measured entrainment rates of the particles are found to be consistently lower than the theoretically predicted values. Some of the experiments reveal certain characteristics which may possibly be related to mutual scattering interaction. The study's most significant discovery is the so-called tuning fork agglomeration [T. L. Hoffmann and G. H. Koopmann, J. Acoust. Soc. Am. 99, 2130 endash 2141 (1996)]. It is shown that this phenomenon contradicts the theories for mutual scattering interaction and mutual radiation pressure interaction, but agrees with the acoustic wake effect model in its intrinsic feature of attraction between particles aligned along the acoustic axis. A model by Dianov et al. [Sov. Phys. Acoust. 13 (3), 314 endash 319 (1968)] is used to describe this effect based on asymmetric flow fields around particles under Oseen flow conditions. It is concluded that this model is consistent with the general characteristics of the tuning fork agglomerations, but lacks certain refinements with respect to accurate quantification of the effect. copyright 1997 Acoustical Society of America

  3. A new type of elementary interaction observed at CERN

    CERN Document Server

    Musset, P

    1974-01-01

    Describes recent observations on neutrino interactions at CERN. A beam of protons from a 25 GeV accelerator impinges on a beryllium target and produces a secondary beam of pi mesons. These disintegrate into muons and neutrinos. The protons, mesons and muons are arrested by a heavy steel screen so that only the neutrinos are observed in the Gargamelle bubble chamber. There are strong indications of the existence of neutrino interactions without the production of a muon or electron, which are electrically charged particles. This phenomenon is interpreted as a neutral current which has an intensity predicted by certain theories. It suggests a relationship between two kinds of interactions formerly considered as distinct: weak Fermi interactions and electromagnetic interactions. These two interactions can thus be combined in a unified scheme which overcomes difficulties found in previous theories. (0 refs).

  4. Are Higgs particles strongly interacting(question mark)

    International Nuclear Information System (INIS)

    Shanker, O.

    1982-02-01

    The order of magnitude of Yukawa couplings in some theories with flavour violating Higgs particles is estimated. Based on these couplings, mass bounds for flavour violating Higgs particles are derived from the Ksub(L)-Ksub(S) mass difference. The Higgs particles have to be very heavy, implying that the Higgs sector quartic couplings are very large. Thus, these theories seem to require a strongly interacting Higgs sector unless one adjusts to the Higgs-fermion Yukawa couplings to within two orders of magnitude, so as to suppress the coupling of Higgs particles to the flavour-violating anti sd current. Most models with flavour violating Higgs particles have the same general features, so the conclusions are likely to hold for a wide class of models with flavour violating Higgs particles

  5. Effects of field interactions upon particle creation in Robertson-Walker universes

    International Nuclear Information System (INIS)

    Birrell, N.D.; Davies, P.C.W.; Ford, L.H.

    1980-01-01

    Particle creation due to field interactions in an expanding Robertson-Walker universe is investigated. A model in which pseudoscalar mesons and photons are created as a result of their mutual interaction is considered, and the energy density of created particles is calculated in model universes which undergo a bounce at some maximum curvature. The free-field creation of non-conformally coupled scalar particles and of gravitons is calculated in the same space-times. It is found that if the bounce occurs at a sufficiently early time the interacting particle creation will dominate. This result may be traced to the fact that the model interaction chosen introduces a length scale which is much larger than the Planck length. (author)

  6. Particle physics and gauge theories

    International Nuclear Information System (INIS)

    Morel, A.

    1985-01-01

    These notes are intended to help readers not familiar with particle physics in entering the domain of gauge field theory applied to the so-called standard model of strong and electroweak interactions. The introduction is considerably enlarged in order to give non specialists a general overview of present days ''elementary'' particle physics. The Glashow-Salam-Weinberg model is then treated, with the details which its unquestioned successes deserve, most probably for a long time. Finally SU(5) is presented as a prototype of these developments of particle physics which aim at a unification of all forces. Although its intrinsic theoretical difficulties and the non-observation of a sizable proton decay rate do not qualify this model as a realistic one, it has many of the properties expected from a ''good'' unified theory. In particular, it allows one to study interesting connections between particle physics and cosmology. 35 refs.

  7. The dynamical groups SO0(3.2) and SO0(4.2) as space-time groups of elementary particles

    International Nuclear Information System (INIS)

    Heidenreich, W.

    1981-01-01

    Elementary particles are described by representations of SO 0 (4.2) and SO 0 (3.2). An S-matrix invariant under the corresponding group constrains the possible scattering channels. The simptest used representations have each one gauge freedom, the physical significance of which is discussed. 'Higher' representations can be constructed from the simplest by means of the tensor product; the same is true for the corresponding particles. The simplest objects of the SO 0 (3.2) theory, the SO 0 (3.2) theory, the Dirac singletons correspond to the states of a 2-dimensional harmonic oscillator. The basic states of this are interpreted as urs in the sense of von Weizsaecker. (orig./HSI) [de

  8. An introduction to particle dark matter

    CERN Document Server

    Profumo, Stefano

    2017-01-01

    What is the dark matter that fills the Universe and binds together galaxies? How was it produced? What are its interactions and particle properties?The paradigm of dark matter is one of the key developments at the interface of cosmology and elementary particle physics. It is also one of the foundations of the standard cosmological model. This book presents the state of the art in building and testing particle models for dark matter. Each chapter gives an analysis of questions, research directions, and methods within the field. More than 200 problems are included to challenge and stimulate the reader's knowledge and provide guidance in the practical implementation of the numerous 'tools of the trade' presented. Appendices summarize the basics of cosmology and particle physics needed for any quantitative understanding of particle models for dark matter.This interdisciplinary textbook is essential reading for anyone interested in the microscopic nature of dark matter as it manifests itself in particle physics ex...

  9. Incremental discovery of hidden structure: Applications in theory of elementary particles

    International Nuclear Information System (INIS)

    Zytkow, J.M.; Fischer, P.J.

    1996-01-01

    Discovering hidden structure is a challenging, universal research task in Physics, Chemistry, Biology, and other disciplines. Not only must the elements of hidden structure be postulated by the discoverer, but they can only be verified by indirect evidence, at the level of observable objects. In this paper we describe a framework for hidden structure discovery, built on a constructive definition of hidden structure. This definition leads to operators that build models of hidden structure step by step, postulating hidden objects, their combinations and properties, reactions described in terms of hidden objects, and mapping between the hidden and the observed structure. We introduce the operator dependency diagram, which shows the order of operator application and model evaluation. Different observational knowledge supports different evaluation criteria, which lead to different search systems with verifiable sequences of operator applications. Isomorph-free structure generation is another issue critical for efficiency of search. We apply our framework in the system GELL-MANN, that hypothesizes hidden structure for elementary particles and we present the results of a large scale search for quark models

  10. Particle-turbulence interaction; Partikkelitihentymien ja turbulenssin vuorovaikutus

    Energy Technology Data Exchange (ETDEWEB)

    Karvinen, R.; Savolainen, K. [Tampere Univ. of Technology (Finland). Energy and Process Technology

    1997-10-01

    In this work the interaction between solid particles and turbulence of the carrier fluid in two-phase flow is studied. The aim of the study is to find out prediction methods for the interaction of particles and fluid turbulence. Accurate measured results are needed in order to develop numerical simulations. There are very few good experimental data sets concerning the particulate matter and its effect on the gas turbulence. Turbulence of the gas phase in a vertical, dilute gas-particle pipe flow has been measured with the laser-Doppler anemometer in Tampere University of Technology. Special attention was paid to different components of the fluctuating velocity. Numerical simulations were done with the Phoenics-code in which the models of two-phase flows suggested in the literature were implemented. It has been observed that the particulate phase increases the rate of anisotropy of the fluid turbulence. It seems to be so that small rigid particles increase the intensity of the axial and decrease the intensity of the radial component in a vertical pipe flow. The change of the total kinetic energy of turbulence obviously depends on the particle size. In the case of 150 ,{mu} spherical glass particles flowing upwards with air, it seems to be slightly positive near the centerline of the pipe. This observation, i.e. the particles decrease turbulence in the radial direction, is very important; because mass and heat transfer in flows is strongly dependent on the component of fluctuating velocity perpendicular to the main flow direction

  11. Capillary interactions in nano-particle suspensions

    International Nuclear Information System (INIS)

    Bossev, D.P.; Warren, G.

    2009-01-01

    We have investigated the structures formed by colloidal particles suspended in solvents at volume fractions below 10% and interacting through capillary bridges. Such systems resemble colloidal gas of sticky nano-spheres that form pearl-necklace like chains that, in turn, induce strong viscoelasticity due to the formation of 3-D fractal network. The capillary force dominates the electrostatic and Van der Waals forces in solutions and can bridge multiple particles depending of the volume of the capillary bridge. We have investigated the morphology of the structures formed at different fractions of the bridging fluid. Small-angle neutron scattering (SANS) is used to study nanoparticles with an average diameter of 10 nm in polar and non-polar organic solvents at ambient temperatures. SANS intensity as a function of the scattering vector is analyzed as a product of a form factor, that depends on the particle shape, and a structure factor, that characterizes the interparticle inter reactions. The interaction of particles in polar solvents is considered to be through electrostatic repulsion and the data is successfully fitted by Hayter-Penfold mean spherical approximation (HPMSA). Computer simulations of a pearl necklace-like chain of spheres is conducted to explain the structure factor when capillary bridges are present. Alternatively, we have analyzed the slope of the intensity at low scattering vector in a double logarithmic plot to determine the dimension of the fractal structures formed by the particles at different volume fraction of the bridging fluid. We have also studied the properties of the capillary bridge between a pair of particles. The significance of this study is to explore the possibility of using capillary force as a tool to engineer new colloidal structures and materials in solutions and to optimize their viscoelastic properties. (author)

  12. Hydrodynamic limit of interacting particle systems

    International Nuclear Information System (INIS)

    Landim, C.

    2004-01-01

    We present in these notes two methods to derive the hydrodynamic equation of conservative interacting particle systems. The intention is to present the main ideas in the simplest possible context and refer for details and references. (author)

  13. Search for massive long-lived highly ionising particles with the ATLAS detector at the LHC

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Havránek, Miroslav; Hruška, I.; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Kvasnička, Jiří; Lipinský, L.; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Panušková, M.; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Taševský, Marek; Tic, Tomáš; Valenta, J.; Vrba, Václav

    2011-01-01

    Roč. 698, č. 5 (2011), s. 353-370 ISSN 0370-2693 R&D Projects: GA MŠk LA08015; GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : charged particle: long-lived * charge: electric * ionization: energy loss * calorimeter : electromagnetic * ATLAS * CERN LHC * p p: interaction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.955, year: 2011

  14. Elementary particles, the concept of mass, and emergent spacetime

    Science.gov (United States)

    Żenczykowski, Piotr

    2015-07-01

    It is argued that the problem of space quantization should be considered in close connection with the problem of mass quantization. First, the nonlocality of quantum physics suggests that if spacetime emerges from the underlying quantum layer, this emergence should occur simultaneously at all distance and momentum scales, and not just at the Planck scale. Second, the spectrum of elementary particles provides us with a lot of important information, experimentally inaccessible at the Planck scale, that could be crucial in unravelling the mechanism of emergence. Accordingly, we start with a brief review of some fundamental issues appearing both in the spectroscopy of excited baryons and in connection with the concept of quark mass. It is pointed out that experiment suggests the inadequacy of the description of baryonic interior in terms of ordinary spacetime background. Thus, it is argued that one should be able to learn about the emergence of space from the studies of the quark/hadron transition. The problem of mass is then discussed from the point of view of nonrelativistic phase space and its Clifford algebra, which proved promising in the past. Connection with the Harari-Shupe explanation of the pattern of a single Standard Model generation is briefly reviewed and a proposal for the reintroduction of relativistic covariance into the phase-space scheme is presented.

  15. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    Science.gov (United States)

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  16. Einstein model for elementary particles

    International Nuclear Information System (INIS)

    Sharma, N.K.

    1975-01-01

    A group theoretical model unifying a space-time group (E) and an internal symmetry group (I) for strongly interacting particles is worked out. The space-time group is the one that pertains to the group of motions of static Einstein cosmological model implying the symmetry of the group E = O 4 logical operation of multiplication R. With the use of Gueret and Vigier prescription, the left coset R logical operation of multiplication O 4 is identified with the internal symmetry group I = U 1 β logical operation of multiplication (SU(2) logical operation of multiplication SU(2)) contains SU(4). The complete dynamical group (D) is then found to be D = E logical operation of multiplication I = (O logical operation of multiplication R) logical operation of multiplication U 1 β logical operation of multiplication (SU(2) logical operation of multiplication SU(2) contains SO(4,2). Physically useful representations of the space-time group (E) are worked out by solving the eigenvalue problem of Laplace-Beltmi operator. The internal quantum numbers are prescribed in accordance with the SU(2) logical operation of multiplication SU(2) model of Nakamura and Sato. A general mass formula is derived and its use for known baryons and mesons is discussed. (author)

  17. Polarization asymmetries and gauge theory interactions at short distances

    International Nuclear Information System (INIS)

    Craigie, N.S.

    1983-01-01

    In this talk, we give the arguments as to why spin asymmetries test fundamental properties of the underlying gauge theories of elementary particles, concentrating mainly on electro-weak and QCD interactions, but also looking at the future and possible signatures for supersymmetric strong interactions. We also mention briefly the role helicity asymmetry measurements can play as regards higher order corrections, including higher twist, in QCD. (orig./HSI)

  18. Coupled electrostatic and material surface stresses yield anomalous particle interactions and deformation

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, B. A., E-mail: bkemp@astate.edu; Nikolayev, I. [College of Engineering, Arkansas State University, Jonesboro, Arkansas 72467 (United States); Sheppard, C. J. [College of Sciences and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467 (United States)

    2016-04-14

    Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.

  19. Gravity, particles and astrophysics

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1980-01-01

    The author deals with the relationship between gravitation and elementary particle physics, and the implications of these subjects for astrophysics. The text is split up into two parts. The first part represents a relatively non-technical overview of the subject, while the second part represents a technical examination of the most important aspects of non-Einsteinian gravitational theory and its relation to astrophysics. Relevant references from the fields of gravitation, elementary particle theory and astrophysics are included. (Auth.)

  20. Research program in elementary particle theory. Progress report, 1975--1976. [Summaries of research activities

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E.C.G.; Ne' eman, Y.

    1976-01-01

    Research on particle theory is summarized including field theory models, phenomenological applications of field theory, strong interactions, the algebraic approach to weak and electromagnetic interactions, and superdense matter. A list of reports is also included. (JFP)

  1. Elementary processes in plasma-surface interactions with emphasis on ions

    International Nuclear Information System (INIS)

    Zalm, P.C.

    1985-01-01

    Elementary processes occurring at solid surfaces immersed in low pressure plasmas are reviewed. In particular mechanisms leading to anisotropic or directional etching are discussed. The crucial role of ion bombardment is emphasized. First a brief summary of the interaction of (excited) neutrals, ions and electrons with targets is given. Next various aspects of sputter-etching with noble gas and reactive ions are surveyed. Finally it will be argued that synergistic effects, invoked by ion bombardment of a surface under simultaneous exposure to a reactive gas flux, are foremost important in explaining anisotropic plasma etching. It is shown that the role of the ions is not merely to stimulate the chemical reaction path but rather that the active gas flow chemically enhances the sputtering. (author)

  2. Simulations of Shock Wave Interaction with a Particle Cloud

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  3. Interaction of free charged particles with a chirped electromagnetic pulse

    International Nuclear Information System (INIS)

    Khachatryan, A.G.; Goor, F.A. van; Boller, K.-J.

    2004-01-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM chirped pulse. Different types of chirp and pulse envelopes are considered. In the case of small chirp, an analytical expression is found for arbitrary temporal profiles of the chirp and the pulse envelope. In the 3D case, the interaction with a chirped pulse results in a polarization-dependent scattering of charged particles

  4. Effect of confining walls on the interaction between particles in a nematic liquid crystal

    CERN Document Server

    Fukuda, J I; Yokoyama, H

    2003-01-01

    We investigate theoretically how the confining walls of a nematic cell affect the interaction of particles mediated by the elastic deformation of a nematic liquid crystal. We consider the case where strong homeotropic or planar anchoring is imposed on the flat parallel walls so that the director on the wall surfaces is fixed and uniform alignment is achieved in the bulk. This set-up is more realistic experimentally than any other previous theoretical studies concerning the elastic-deformation-mediated interactions that assume an infinite medium. When the anchoring on the particle surfaces is weak, an exact expression of the interaction between two particles can be obtained. The two-body interaction can be regarded as the interaction between one particle and an infinite array of 'mirror images' of the other particle. We also obtain the 'self-energy' of one particle, the interaction of a particle with confining walls, which is interpreted along the same way as the interaction of one particle with its mirror ima...

  5. Particle transport in 3He-rich events: wave-particle interactions and particle anisotropy measurements

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2002-04-01

    Full Text Available Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths lW - P are calculated using the measured wave intensities, polarizations, and k directions. The values of lW - P are found to be ~ 5 times less than the value of lHe , the latter derived from He intensity and anisotropy time profiles. It is demonstrated by computer simulation that scattering rates through a 90° pitch angle are lower than that of other pitch angles, and that this is a possible explanation for the discrepancy between the lW - P and lHe values. At this time the scattering mechanism(s is unknown. We suggest a means where a direct comparison between the two l values could be made. Computer simulations indicate that although scattering through 90° is lower, it still occurs. Possibilities are either large pitch angle scattering through resonant interactions, or particle mirroring off of field compression regions. The largest solar proton events are analyzed to investigate the possibilities of local wave generation at 1 AU. In accordance with the results of a previous calculation (Gary et al., 1985 of beam stability, proton beams at 1 AU are found to be marginally stable. No evidence for substantial wave amplitude was found. Locally generated waves, if present, were less than 10-3 nT 2 Hz-1 at the leading

  6. Particle transport in 3He-rich events: wave-particle interactions and particle anisotropy measurements

    Directory of Open Access Journals (Sweden)

    T. Hada

    Full Text Available Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths lW - P are calculated using the measured wave intensities, polarizations, and k directions. The values of lW - P are found to be ~ 5 times less than the value of lHe , the latter derived from He intensity and anisotropy time profiles. It is demonstrated by computer simulation that scattering rates through a 90° pitch angle are lower than that of other pitch angles, and that this is a possible explanation for the discrepancy between the lW - P and lHe values. At this time the scattering mechanism(s is unknown. We suggest a means where a direct comparison between the two l values could be made. Computer simulations indicate that although scattering through 90° is lower, it still occurs. Possibilities are either large pitch angle scattering through resonant interactions, or particle mirroring off of field compression regions. The largest solar proton events are analyzed to investigate the possibilities of local wave generation at 1 AU. In accordance with the results of a previous calculation (Gary et al., 1985 of beam stability, proton beams at 1 AU are found to be marginally stable. No evidence for substantial wave amplitude was found. Locally generated waves, if present, were less than 10-3 nT 2 Hz-1 at the leading

  7. CMB and the elementary particles structure deduced from QFT of non-dot model

    Science.gov (United States)

    Chen, Shao-Guang

    = ± ( h c / 2 r (3) ) r cos thetaθ for r not equal to 0 and f = 0 for r = 0, f as the magnetic force makes the photons, rest mass and charge quanta automatically come into being and stabilize. CMB photon can be produced from many spin 1 unit photons by its statistical attraction. In the quantized inconsecutive time-space-spin using momentum and turn-quantity as the coordinates drawing the momentum-turn graphics are some points with certain distance. The rest mass m _{0} is the lowest energy state advance-back neutrinos pair nuυ _{0}nuυ (0) , when j direction have 2n nuυ_{0} the i , k directions must have (2n-1), (2n+1) nuυ_{0} for i, j, k three directions all matching into pair to eliminate the external interaction of electric quantity q(0) in nuυ_{0}. The spatial rest mass is quanta (n) m _{0} = (2n - 1) 2n (2n +1) m (0) = 6, 60, 210, 504, 990, 1716 m (0) , m (0) is the rest mass of nuυ_{0} (also anti-mass (n) \\underline{m}_{0} and \\underline{m}(0) ). According to the uncertainty principle n large rest mass layer is more little and at the inside layer of particle. The spatial unit charge quanta e or \\underline{e} is constituted by nine one-dimensional unit charge quanta nuυ_{0}(0) nuυ or _{0}nuυnuυ (0) because of the vertical polarization at each spatial direction there is only three states: the left, the right and the middle of left-right balance. Via photons, rest mass and charge quanta all elementary particles come from _{0}nuυ, nuυ_{0}, (0) nuυ, nuυ (0) . The particle’s momentum is constituted by the photons _{0}nuυnuυ _{0} or (0) nuυnuυ (0) and a few nuυ _{0} or _{0}nuυ. The particle’s charge is constituted by one e or \\underline{e} and one nuυ _{0} or _{0}nuυ. The particle’s rest mass is constituted by one or several (n) m _{0} or (n) \\underline{m} _{0}. According to the uncertainty principle n large rest mass layer is more little and at the inside layer of particle. The left spin 1/2 nu υ _{mu}: 1 _{0}nuυ + 1 (n

  8. P-matrix description of charged particles interaction

    International Nuclear Information System (INIS)

    Babenko, V.A.; Petrov, N.M.

    1992-01-01

    The paper deals with formalism of the P-matrix description of two charged particles interaction. Separation in the explicit form of the background part corresponding to the purely Coulomb interaction in the P-matrix is proposed. Expressions for the purely Coulomb P-matrix, its poles, residues and purely Coulomb P-matrix approach eigenfunctions are obtained. (author). 12 refs

  9. Interacting particle systems on graphs

    Science.gov (United States)

    Sood, Vishal

    In this dissertation, the dynamics of socially or biologically interacting populations are investigated. The individual members of the population are treated as particles that interact via links on a social or biological network represented as a graph. The effect of the structure of the graph on the properties of the interacting particle system is studied using statistical physics techniques. In the first chapter, the central concepts of graph theory and social and biological networks are presented. Next, interacting particle systems that are drawn from physics, mathematics and biology are discussed in the second chapter. In the third chapter, the random walk on a graph is studied. The mean time for a random walk to traverse between two arbitrary sites of a random graph is evaluated. Using an effective medium approximation it is found that the mean first-passage time between pairs of sites, as well as all moments of this first-passage time, are insensitive to the density of links in the graph. The inverse of the mean-first passage time varies non-monotonically with the density of links near the percolation transition of the random graph. Much of the behavior can be understood by simple heuristic arguments. Evolutionary dynamics, by which mutants overspread an otherwise uniform population on heterogeneous graphs, are studied in the fourth chapter. Such a process underlies' epidemic propagation, emergence of fads, social cooperation or invasion of an ecological niche by a new species. The first part of this chapter is devoted to neutral dynamics, in which the mutant genotype does not have a selective advantage over the resident genotype. The time to extinction of one of the two genotypes is derived. In the second part of this chapter, selective advantage or fitness is introduced such that the mutant genotype has a higher birth rate or a lower death rate. This selective advantage leads to a dynamical competition in which selection dominates for large populations

  10. Interaction between colloidal particles. Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Longcheng Liu; Neretnieks, Ivars (Royal Inst. of Technology, Stockholm (Sweden). School of Chemical Science and Engineering, Dept. of Chemical Engineering and Technology)

    2010-02-15

    This report summarises the commonly accepted theoretical basis describing interaction between colloidal particles in an electrolyte solution. The two main forces involved are the van der Waals attractive force and the electrical repulsive force. The report describes in some depth the origin of these two forces, how they are formulated mathematically as well as how they interact to sometimes result in attraction and sometimes in repulsion between particles. The report also addresses how the mathematical models can be used to quantify the forces and under which conditions the models can be expected to give fair description of the colloidal system and when the models are not useful. This report does not address more recent theories that still are discussed as to their applicability, such as ion-ion correlation effects and the Coulombic attraction theory (CAT). These and other models will be discussed in future reports

  11. Proceedings of International Symposium TEPA 2015: Thunderstorms and Elementary Particle Acceleration

    International Nuclear Information System (INIS)

    Chilingarian, A.

    2016-03-01

    The problem of how lightning is initiated inside thunderclouds is probably one of the biggest mysteries in the atmospheric sciences. Recently established high energy processes in the atmosphere, i.e. Terrestrial Gamma Flashes (TGF) – brief bursts of gamma rays observed by orbiting gamma ray observatories and Thunderstorm Ground Enhancements (TGEs) – sizable long-lasting fluxes of electrons, gamma rays and neutrons detected on Earth’s surface are correlated with thunderstorms. However, the relationship among thundercloud electrification, lightning activity, and wideband radio emission and enhanced particle fluxes have not been yet unambiguously established. One of the most intriguing opportunities opened by the observation of the high-energy processes in the atmosphere is their relation to lightning initiation and propagation. Lightning discharges and TGEs are alternative mechanisms for the discharging of the atmospheric “electric engine” and synchronized observations of both phenomena help to understand them better. With the objective to discuss these high-energy phenomena, the conference on Thunderstorms and Elementary Particle Acceleration was held at the Nor Amberd International Conference Center of the Yerevan Physics Institute (YerPhI) in Armenia. The Cosmic Ray Division of the YerPhI and Skobeltsyn Institute of Nuclear Physics of Moscow State University organized the workshop; YerPhI and the Armenian State Committee of Science sponsored it. Thirty scientists and students from the United States, Japan, France, Germany, Israel, Russia, and Armenia attended. Presentations focused on observations and models of high-energy emissions in thunderclouds; on the termination of particle fluxes by lightning; multivariate observations of thunderstorms from the Earth’s surface and from space; radio emissions produced by atmospheric discharges and particle fluxes; the influence of the Extensive Air Showers (EASes) on lightning initiation and others. Discussions

  12. Research in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    White, Andrew Paul [Univ. of Texas, Arlington, TX (United States); De, Kaushik [Univ. of Texas, Arlington, TX (United States); Brandt, Andrew [Univ. of Texas, Arlington, TX (United States); Yu, Jaehoon [Univ. of Texas, Arlington, TX (United States); Farbin, Amir [Univ. of Texas, Arlington, TX (United States)

    2015-02-02

    This report details the accomplishments and research results for the High Energy Physics Group at the University of Texas at Arlington at the Energy and Intensity Frontiers. For the Energy Frontier we have made fundamental contributions in the search for supersymmetric particles, proposed to explain the stabilization of the mass of the Higgs Boson – the agent giving mass to all known particles. We have also made major contributions to the search for additional Higgs Bosons and to the planning for future searches. This work has been carried out in the context of the ATLAS Experiment at CERN (European Nuclear Research Laboratory) and for which we have made major contributions to computing and data distribution and processing, and have worked to calibrate the detector and prepare upgraded electronics for the future. Our other contribution to the Energy Frontier has been to the International Linear Collider (ILC) project, potentially hosted by Japan, and to the Silicon Detector Concept (SiD) in particular. We have lead the development of the SiD Concept and have worked on a new form of precise energy measurement for particles from the high energy collisions of electrons and positrons at the ILC. For the Intensity Frontier, we have worked to develop the concept of Long Baseline Neutrino Experiment(s) (LBNE) at the Fermi National Accelerator Laboratory. Our contributions to detector development, neutrino beam studies, particle identification, software development will facilitate future studies of the oscillation of one type of neutrino into other type(s), establish the order of the neutrino masses, and, through an innovative new idea, allow us to create a beam of dark matter particles.

  13. Consideration of the oxide particle-dislocation interaction in 9Cr-ODS steel

    Science.gov (United States)

    Ijiri, Yuta; Oono, N.; Ukai, S.; Yu, Hao; Ohtsuka, S.; Abe, Y.; Matsukawa, Y.

    2017-05-01

    The interaction between oxide particles and dislocations in a 9Cr-ODS ferritic steel is investigated by both static and in situ TEM observation under dynamic straining conditions and room temperature. The measured obstacle strength (?) of the oxide particles was no greater than 0.80 and the average was 0.63. The dislocation loops around some coarsened particles were also observed. The calculated obstacle strength by a stress formula of the Orowan interaction is nearly equaled to the average experimental value. Not only cross-slip system but also the Orowan interaction should be considered as the main interaction mechanism between oxide particles and dislocation in 9CrODS ferritic steel.

  14. On slow particle production in hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Stenlund, E.; Otterlund, I.

    1982-01-01

    A model for slow particle production in hadron-nucleus interactions is presented. The model succesfully predicts correlations between the number of knock-on particles and the number of particles associated with the evaporation process as well as correlations with the number of collisions, ν, between the incident hadron and the nucleons inside the target nucleus. The model provides two independent possibilities to determine the number of primary intranuclear collisions, ν, i.e. by its correlation to the number of knock-on particles or to the number of evaporated particles. The good agreement indicates that the model gives an impact-parameter sensitive description of hardron nucleus reactions. (orig.)

  15. Stochastic interaction between TAE and alpha particles

    International Nuclear Information System (INIS)

    Krlin, L.; Pavlo, P.; Malijevsky, I.

    1996-01-01

    The interaction of toroidicity-induced Alfven eigenmodes with thermonuclear alpha particles in the intrinsic stochasticity regime was investigated based on the numerical integration of the equation of motion of alpha particles in the tokamak. The first results obtained for the ITER parameters and moderate wave amplitudes indicate that the stochasticity is highest in the trapped/passing boundary region, where the alpha particles jump stochastically between the two regimes with an appreciable radial excursion (about 0.5 m amplitudes). A similar chaotic behavior was also found for substantially lower energies (about 350 keV). 7 figs., 15 refs

  16. Interaction of free charged particles with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2004-01-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM

  17. Using a Humanoid Robot to Develop a Dialogue-Based Interactive Learning Environment for Elementary Foreign Language Classrooms

    Science.gov (United States)

    Chang, Chih-Wei; Chen, Gwo-Dong

    2010-01-01

    Elementary school is the critical stage during which the development of listening comprehension and oral abilities in language acquisition occur, especially with a foreign language. However, the current foreign language instructors often adopt one-way teaching, and the learning environment lacks any interactive instructional media with which to…

  18. Theoretical Studies of Strongly Interacting Fine Particle Systems

    Science.gov (United States)

    Fearon, Michael

    Available from UMI in association with The British Library. A theoretical analysis of the time dependent behaviour of a system of fine magnetic particles as a function of applied field and temperature was carried out. The model used was based on a theory assuming Neel relaxation with a distribution of particle sizes. This theory predicted a linear variation of S_{max} with temperature and a finite intercept, which is not reflected by experimental observations. The remanence curves of strongly interacting fine-particle systems were also investigated theoretically. It was shown that the Henkel plot of the dc demagnetisation remanence vs the isothermal remanence is a useful representation of interactions. The form of the plot was found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is investigated. These results are consistent with a previous experimental study. Finally the results of the noise power spectral density for erased and saturated recording media are presented, so that characterisation of interparticle interactions may be carried out with greater accuracy.

  19. Measurement of charged-particle event shape variables in √s = 7 TeV proton-proton interactions with the ATLAS detector

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abajyan, T.; Abbott, B.; Böhm, Jan; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Jakoubek, Tomáš; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Růžička, P.; Schovancová, J.; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Valenta, J.; Vrba, Václav; Zeman, Martin

    2013-01-01

    Roč. 88, č. 3 (2013), "032004-1"-"032004-11" ISSN 1550-7998 R&D Projects: GA MŠk LA08032 Institutional support: RVO:68378271 Keywords : CERN * thrust * ATLAS * sphericity * leading particle * transverse momentum * transverse momentum * dependence * multiplicity * dependence * experimental results Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.864, year: 2013

  20. Atypical energetic particle events observed prior energetic particle enhancements associated with corotating interaction regions

    Science.gov (United States)

    Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan

    2017-04-01

    Recent studies of mechanisms of particle acceleration in the heliosphere have revealed the importance of the comprehensive analysis of stream-stream interactions as well as the heliospheric current sheet (HCS) - stream interactions that often occur in the solar wind, producing huge magnetic cavities bounded by strong current sheets. Such cavities are usually filled with small-scale magnetic islands that trap and re-accelerate energetic particles (Zank et al. ApJ, 2014, 2015; le Roux et al. ApJ, 2015, 2016; Khabarova et al. ApJ, 2015, 2016). Crossings of these regions are associated with unusual variations in the energetic particle flux up to several MeV/nuc near the Earth's orbit. These energetic particle flux enhancements called "atypical energetic particle events" (AEPEs) are not associated with standard mechanisms of particle acceleration. The analysis of multi-spacecraft measurements of energetic particle flux, plasma and the interplanetary magnetic field shows that AEPEs have a local origin as they are observed by different spacecraft with a time delay corresponding to the solar wind propagation from one spacecraft to another, which is a signature of local particle acceleration in the region embedded in expanding and rotating background solar wind. AEPEs are often observed before the arrival of corotating interaction regions (CIRs) or stream interaction regions (SIRs) to the Earth's orbit. When fast solar wind streams catch up with slow solar wind, SIRs of compressed heated plasma or more regular CIRs are created at the leading edge of the high-speed stream. Since coronal holes are often long-lived structures, the same CIR re-appears often for several consecutive solar rotations. At low heliographic latitudes, such CIRs are typically bounded by forward and reverse waves on their leading and trailing edges, respectively, that steepen into shocks at heliocentric distances beyond 1 AU. Energetic ion increases have been frequently observed in association with CIR

  1. On a connection between the VAK, knot theory and El Naschie's theory of the mass spectrum of the high energy elementary particles

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2004-01-01

    In the present work we give an introduction to the ε (∞) Cantorian space-time theory. In this theory every particle can be interpreted as a scaling of another particle. Some particles are a scaling of the proton and are expressed in terms of phi and α-bar 0 . Following the VAK suggestion of El Naschie, the limit sets of Kleinian groups are Cantor sets with Hausdorff dimension phi or a derivative of phi such as 1/phi, 1/phi 2 , 1/phi 3 , etc. Consequently and using ε (∞) theory, the mass spectrum of elementary particles may be found from the limit set of the Moebius-Klein geometry of quantum space-time as a function of the golden mean phi=(}5-1)/2=0.618033989 as discussed recently by Datta (see Chaos, Solitons and Fractals 17 (2003) 621-630)

  2. Particle Swarm Optimization With Interswarm Interactive Learning Strategy.

    Science.gov (United States)

    Qin, Quande; Cheng, Shi; Zhang, Qingyu; Li, Li; Shi, Yuhui

    2016-10-01

    The learning strategy in the canonical particle swarm optimization (PSO) algorithm is often blamed for being the primary reason for loss of diversity. Population diversity maintenance is crucial for preventing particles from being stuck into local optima. In this paper, we present an improved PSO algorithm with an interswarm interactive learning strategy (IILPSO) by overcoming the drawbacks of the canonical PSO algorithm's learning strategy. IILPSO is inspired by the phenomenon in human society that the interactive learning behavior takes place among different groups. Particles in IILPSO are divided into two swarms. The interswarm interactive learning (IIL) behavior is triggered when the best particle's fitness value of both the swarms does not improve for a certain number of iterations. According to the best particle's fitness value of each swarm, the softmax method and roulette method are used to determine the roles of the two swarms as the learning swarm and the learned swarm. In addition, the velocity mutation operator and global best vibration strategy are used to improve the algorithm's global search capability. The IIL strategy is applied to PSO with global star and local ring structures, which are termed as IILPSO-G and IILPSO-L algorithm, respectively. Numerical experiments are conducted to compare the proposed algorithms with eight popular PSO variants. From the experimental results, IILPSO demonstrates the good performance in terms of solution accuracy, convergence speed, and reliability. Finally, the variations of the population diversity in the entire search process provide an explanation why IILPSO performs effectively.

  3. Experimental comparison of particle interaction measurement techniques using optical traps

    International Nuclear Information System (INIS)

    Koehler, Timothy P.; Grillet, Anne Mary; Brotherton, Christopher M.; Molecke, Ryan A.

    2008-01-01

    Optical tweezers has become a powerful and common tool for sensitive determination of electrostatic interactions between colloidal particles. Recently, two techniques, 'blinking' tweezers and direct force measurements, have become increasingly prevalent in investigations of inter-particle potentials. The 'blinking' tweezers method acquires physical statistics of particle trajectories to determine drift velocities, diffusion coefficients, and ultimately colloidal forces as a function of the center-center separation of two particles. Direct force measurements monitor the position of a particle relative to the center of an optical trap as the separation distance between two continuously trapped particles is gradually decreased. As the particles near each other, the displacement from the trap center for each particle increases proportional to the inter-particle force. Although commonly employed in the investigation of interactions of colloidal particles, there exists no direct comparison of these experimental methods in the literature. In this study, an experimental apparatus was developed capable of performing both methods and is used to quantify electrostatic potentials between particles in several particle/solvent systems. Comparisons are drawn between the experiments conducted using the two measurement techniques, theory, and existing literature. Forces are quantified on the femto-Newton scale and results agree well with literature values

  4. The notions of mass in gravitational and particle physics

    Science.gov (United States)

    Castellani, Gianluca

    It is presently thought that the mass of all of the elementary particles is determined by the Higgs field. This scalar field couples directly into the trace of the energy momentum tensor of the elementary particles. The attraction between two or more masses arises from the exchange of gravitational quantum particles of spin 2, called gravitons. The gravitational field couples directly into the energy momentum tensor. Then there is a close connection between the Higgs field, that originates the mass, and the gravitational field that dictates how the masses interact. Our purpose in this thesis is to discuss this close connection in terms of fundamental definitions of inertial and gravitational masses. On a practical level we explore two properties of mass from the viewpoint of coupling into the Higgs field: (i) The coupling of the both the Higgs and gravity to the energy-pressure tensor allows for the decay of the Higgs particle into two gravitons. We use the self energy part of the Higgs propagator to calculate the electromagnetic, weak, fermionic and gravitational decay rate of the Higgs particle. We show that the former process appears to dominate the other decay modes. Since the gravitons are detectable with virtually zero probability, the number of Higgs particles with observable decay products will be much less than previously expected. (ii) Some new experimental results seem to indicate that the mass of the heavy elementary particles like the Z,W+,W- and especially the top quark, depends on the particle environment in which these particles are produced. The presence of a Higgs field due to neighboring particles could be responsible for induced mass shifts. Further measurements of mass shift effects might give an indirect proof of the Higgs particle. Such can be in principle done by re-analyzing some of the production data e +e- → ZZ (or W+W-) already collected at the LEP experiment. About the physical property of the top quark, it is too early to arrive at

  5. On the reduced dynamics of a subset of interacting bosonic particles

    Science.gov (United States)

    Gessner, Manuel; Buchleitner, Andreas

    2018-03-01

    The quantum dynamics of a subset of interacting bosons in a subspace of fixed particle number is described in terms of symmetrized many-particle states. A suitable partial trace operation over the von Neumann equation of an N-particle system produces a hierarchical expansion for the subdynamics of M ≤ N particles. Truncating this hierarchy with a pure product state ansatz yields the general, nonlinear coherent mean-field equation of motion. In the special case of a contact interaction potential, this reproduces the Gross-Pitaevskii equation. To account for incoherent effects on top of the mean-field evolution, we discuss possible extensions towards a second-order perturbation theory that accounts for interaction-induced decoherence in form of a nonlinear Lindblad-type master equation.

  6. Electrostatic Charging and Particle Interactions in Microscopic Insulating Grains

    Science.gov (United States)

    Lee, Victor

    In this thesis, we experimentally investigate the electrostatic charging as well as the particle interactions in microscopic insulating grains. First, by tracking individual grains accelerated in an electric field, we quantitatively demonstrate that tribocharging of same-material grains depends on particle size. Large grains tend to charge positively, and small ones tend to charge negatively. Theories based on the transfer of trapped electrons can explain this tendency but have not been validated. Here we show that the number of trapped electrons, measured independently by a thermoluminescence technique, is orders of magnitude too small to be responsible for the amount of charge transferred. This result reveals that trapped electrons are not responsible for same-material tribocharging of dielectric particles. Second, same-material tribocharging in grains can result in important long-range electrostatic interactions. However, how these electrostatic interactions contribute to particle clustering remains elusive, primarily due to the lack of direct, detailed observations. Using a high-speed camera that falls with a stream charged grains, we observe for the first time how charged grains can undergo attractive as well as repulsive Kepler-like orbits. Charged particles can be captured in their mutual electrostatic potential and form clusters via multiple bounces. Dielectric polarization effects are directly observed, which lead to additional attractive forces and stabilize "molecule-like" arrangements of charged particles. Third, we have developed a new method to study the charge transfer of microscopic particles based on acoustic levitation techniques. This method allows us to narrow the complex problem of many-particle charging down to precise charge measurements of a single sub-millimeter particle colliding with a target plate. By simply attaching nonpolar groups onto glass surfaces, we show that the contact charging of a particle is highly dependent on

  7. Relationship between the cohesion of guest particles on the flow behaviour of interactive mixtures.

    Science.gov (United States)

    Mangal, Sharad; Gengenbach, Thomas; Millington-Smith, Doug; Armstrong, Brian; Morton, David A V; Larson, Ian

    2016-05-01

    In this study, we aimed to investigate the effects cohesion of small surface-engineered guest binder particles on the flow behaviour of interactive mixtures. Polyvinylpyrrolidone (PVP) - a model pharmaceutical binder - was spray-dried with varying l-leucine feed concentrations to create small surface-engineered binder particles with varying cohesion. These spray-dried formulations were characterised by their particle size distribution, morphology and cohesion. Interactive mixtures were produced by blending these spray-dried formulations with paracetamol. The resultant blends were visualised under scanning electron microscope to confirm formation of interactive mixtures. Surface coverage of paracetamol by guest particles as well as the flow behaviour of these mixtures were examined. The flow performance of interactive mixtures was evaluated using measurements of conditioned bulk density, basic flowability energy, aeration energy and compressibility. With higher feed l-leucine concentrations, the surface roughness of small binder particles increased, while their cohesion decreased. Visual inspection of the SEM images of the blends indicated that the guest particles adhered to the surface of paracetamol resulting in effective formation of interactive mixtures. These images also showed that the low-cohesion guest particles were better de-agglomerated that consequently formed a more homogeneous interactive mixture with paracetamol compared with high-cohesion formulations. The flow performance of interactive mixtures changed as a function of the cohesion of the guest particles. Interactive mixtures with low-cohesion guest binder particles showed notably improved bulk flow performance compared with those containing high-cohesion guest binder particles. Thus, our study suggests that the cohesion of guest particles dictates the flow performance of interactive mixtures. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Introduction to the study of particle accelerators. Atomic, nuclear and high energy physics for engineers

    International Nuclear Information System (INIS)

    Warnecke, R.R.

    1975-01-01

    This book is destined for engineers taking part in the design building and running of nuclear physics and high-energy physics particle accelerators. It starts with some notions on the theory of relativity, analytical and statistical mechanics and quantum mechanics. An outline of the properties of atomic nuclei, the collision theory and the elements of gaseous plasma physics is followed by a discussion on elementary particles: characteristic parameters, properties, interactions, classification [fr

  9. Weakly interacting massive particles and stellar structure

    International Nuclear Information System (INIS)

    Bouquet, A.

    1988-01-01

    The existence of weakly interacting massive particles (WIMPs) may solve both the dark matter problem and the solar neutrino problem. Such particles affect the energy transport in the stellar cores and change the stellar structure. We present the results of an analytic approximation to compute these effects in a self-consistent way. These results can be applied to many different stars, but we focus on the decrease of the 8 B neutrino flux in the case of the Sun

  10. Relativistic mechanics of two interacting particles and bilocal theory

    International Nuclear Information System (INIS)

    Takabayasi, Takehiko

    1975-01-01

    New relativistic mechanics of two-particle system is set forth, where the two constituent particles are interacting by an arbitrary (central) action-at-a-distance. The fundamental equations are presented in a form covariant under general transformation of parameters parametrizing the world lines of constituent particles. The theory represents the proper relativistic generalization of the usual Newtonian mechanics in the sense that it tends in the non-relativistic (and weak interaction) limit to the usual mechanics of two particles moving under a corresponding non-relativistic potential. For the analysis of theory it is convenient to choose a certain particular gauge (i.e., parametrization) fixed by two gauge relations. This brings the theory to a canonical formalism accompanied by two weak equations, and in this gauge quantization can be performed. The result verifies that the relativistic quantum mechanics for two particles interacting by an action-at-a-distance is just represented by a bilocal wave equation and a subsidiary condition, with the clarification of its correspondence-theoretical foundation and internal dynamics. As an example the case of Hooke-type force is illustrated, where the internal motions are elliptic oscillations in the center-of-mass frame. Its quantum theory just reproduces the original form of bilocal theory giving bound states lying on a straightly rising trajectory and on its daughter trajectories. (auth.)

  11. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  12. Synergistic effects in radiation-induced particle ejection from solid surfaces

    International Nuclear Information System (INIS)

    Itoh, Noriaki

    1990-01-01

    A description is given on radiation-induced particle ejection from solid surfaces, emphasizing synergistic effects arising from multi-species particle irradiation and from irradiation under complex environments. First, it is pointed out that synergisms can be treated by introducing the effects of material modification on radiation-induced particle ejection. As examples of the effects of surface modification on the sputtering induced by elastic encounters, sputtering of alloys and chemical sputtering of graphite are briefly discussed. Then the particle ejection induced by electronic encounters is explained emphasizing the difference in the behaviors from materials to materials. The possible synergistic effects of electronic and elastic encounters are also described. Lastly, we point out the importance of understanding the elementary processes of material-particle interaction and of developing computer codes describing material behaviors under irradiation. (author)

  13. Tunable interactions between paramagnetic colloidal particles driven in a modulated ratchet potential.

    Science.gov (United States)

    Straube, Arthur V; Tierno, Pietro

    2014-06-14

    We study experimentally and theoretically the interactions between paramagnetic particles dispersed in water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating magnetic field modulates the stray field of the garnet film and generates a translating potential landscape which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of particles can approach each other and form stable doublets which afterwards travel along the modulated landscape at a constant mean speed. We measure the strength of the attractive force between the moving particles and propose an analytically tractable model that explains the observations and is in quantitative agreement with experiment.

  14. Charged-particle distributions in √s=13 TeV pp interactions measured with the ATLAS detector at the LHC

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Nechansky, F.; Němeček, Stanislav; Penc, Ondřej; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2016-01-01

    Roč. 758, Jul (2016), 67-88 ISSN 0370-2693 Institutional support: RVO:68378271 Keywords : CERN LHC Coll * numerical calculations * Monte Carlo * ATLAS * kinematics Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.807, year: 2016

  15. Search for Higgs Bosons and Supersymmetric Particles in Tau Final States

    Energy Technology Data Exchange (ETDEWEB)

    Torchiani, Ingo [Univ. of Freiburg (Germany)

    2008-09-01

    Elementary particle physics tries to find an answer to no minor question: What is our universe made of? To our current knowledge, the elementary constituents of matter are quarks and leptons, which interact via four elementary forces: electromagnetism, strong force, weak force and gravity. All forces, except gravity, can be described in one framework, the Standard Model of particle physics. The model's name reflects its exceptional success in describing all available experimental high energy physics data to high precision up to energies of about 100 GeV. An exception is given by the neutrino masses but even these can be integrated into the model. The Standard Model is based on the requirement of invariance of all physics processes under certain fundamental symmetry transformations. The consideration of these symmetries leads naturally to the correct description of the electromagnetic, weak and strong forces as the exchange of interaction particles, the gauge bosons. However, this formalism has the weakness that it only allows for massless particles. In order to obey the symmetries, a way to introduce the particle masses is given by the Higgs mechanism, which predicts the existence of the only particle of the Standard Model which has yet to be observed: the Higgs boson. In spite of the success of the Standard Model, it has to be considered as a low energy approximation of a more profound theory for various reasons. For example, the underlying theory is expected to allow for an integration of gravity into the framework and to provide a valid particle candidate for the dark matter in our universe. Furthermore, a solution has to be found to the problem that the Higgs boson as a fundamental scalar is sensitive to large radiative corrections driving its mass to the Planck scale of 1019 GeV. Several models have been proposed to address the remaining open questions of the Standard Model. Currently, the most promising extension of the Standard Model is

  16. Higgs-Like Particle due to Revised Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2013-07-01

    Full Text Available A Higgs-like particle having zero net electric charge, zero spin, and a nonzero rest mass can be deduced from an earlier elaborated revised quantum electrodynamical theory which is based on linear symmetry breaking through a nonzero electric field divergence in the vacuum state. This special particle is obtained from a composite longitudinal solution based on a zero magnetic field strength and on a nonzero divergence but a vanishing curl of the electric field strength. The present theory further differs from that of the nonlinear spontaneously broken symmetry by Higgs, in which elementary particles obtain their masses through an interaction with the Higgs field. An experimental proof of the basic features of a Higgs-like particle thus supports the present theory, but does not for certain confirm the process which would generate massive particles through a Higgs field

  17. Plasma Interaction and Energetic Particle Dynamics near Callisto

    Science.gov (United States)

    Liuzzo, L.; Simon, S.; Feyerabend, M.; Motschmann, U. M.

    2017-12-01

    Callisto's magnetic environment is characterized by a complex admixture of induction signals from its conducting subsurface ocean, the interaction of corotating Jovian magnetospheric plasma with the moon's ionosphere and induced dipole, and the non-linear coupling between the effects. In contrast to other Galilean moons, ion gyroradii near Callisto are comparable to its size, requiring a kinetic treatment of the interaction region near the moon. Thus, we apply the hybrid simulation code AIKEF to constrain the competing effects of plasma interaction and induction. We determine their influence on the magnetic field signatures measured by Galileo during various Callisto flybys. We use the magnetic field calculated by the model to investigate energetic particle dynamics and their effect on Callisto's environment. From this, we provide a map of global energetic particle precipitation onto Callisto's surface, which may contribute to the generation of its atmosphere.

  18. Interaction mechanisms between ceramic particles and atomized metallic droplets

    Science.gov (United States)

    Wu, Yue; Lavernia, Enrique J.

    1992-10-01

    The present study was undertaken to provide insight into the dynamic interactions that occur when ceramic particles are placed in intimate contact with a metallic matrix undergoing a phase change. To that effect, Al-4 wt pct Si/SiCp composite droplets were synthesized using a spray atomization and coinjection approach, and their solidification microstructures were studied both qualitatively and quantitatively. The present results show that SiC particles (SiCp) were incor- porated into the matrix and that the extent of incorporation depends on the solidification con- dition of the droplets at the moment of SiC particle injection. Two factors were found to affect the distribution and volume fraction of SiC particles in droplets: the penetration of particles into droplets and the entrapment and/or rejection of particles by the solidification front. First, during coinjection, particles collide with the atomized droplets with three possible results: they may penetrate the droplets, adhere to the droplet surface, or bounce back after impact. The extent of penetration of SiC particles into droplets was noted to depend on the kinetic energy of the particles and the magnitude of the surface energy change in the droplets that occurs upon impact. In liquid droplets, the extent of penetration of SiC particles was shown to depend on the changes in surface energy, ΔEs, experienced by the droplets. Accordingly, large SiC particles encoun- tered more resistance to penetration relative to small ones. In solid droplets, the penetration of SiC particles was correlated with the dynamic pressure exerted by the SiC particles on the droplets during impact and the depth of the ensuing crater. The results showed that no pene- tration was possible in such droplets. Second, once SiC particles have penetrated droplets, their final location in the microstructure is governed by their interactions with the solidification front. As a result of these interactions, both entrapment and rejection of

  19. Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics.

    Science.gov (United States)

    Schein, Perry; Kang, Pilgyu; O'Dell, Dakota; Erickson, David

    2015-02-11

    Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.

  20. Experimental studies of elementary particle interactions at high energies

    International Nuclear Information System (INIS)

    Goulianos, K.

    1992-01-01

    In the past year, our research program encompassed four major areas: the UA-6 experiment at CERN, the CDF (Collider Detector at Fermilab) experiment at Fermilab, the SDC (Solenoidal Detector Collaboration) experiment of the SSC (Superconducting Super Collider), and an R ampersand D project for the development of High Pressure Gas Calorimetry for high luminosity colliders. The UA-6 experiment studies direct-γ and J/ψ production in pp and bar pp interactions at √s = 22.5 GeV. In the CDF experiment we have concentrated in the plug calorimeter upgrade program, which involves replacing the plug and forward calorimetry with a more compact calorimeter based on scintillator tiles being readout with wave-length shifting (WLS) fibers. In the SDC experiment, we have taken primary responsibility for the Preshower/Shower-Maximum detectors. We wrote the original shower-maximum proposal for the SDC and have contributed to detector simulations, scintillator/WLS-fiber light yield measurements, building prototype preshower and shower-maximum detectors and measuring their performance in a test beam, and developing novel photosensitive devices to read out the fibers. The High Pressure Gas Calorimeter project has been very successful. A prototype parallel plate iron based electromagnetic calorimeter was designed, constructed and tested in an electron beam at Fermilab. The results were very encouraging. We are presently working on a new design, which would be more suitable for the construction of economical, large scale calorimeters, such as those needed for the forward region of SDC and FAD

  1. The Relative Effectiveness of the Use of Static and Dynamic Mechanical Models in Teaching Elementary School Children the Theoretical Concept--The Particle Nature of Matter.

    Science.gov (United States)

    Ziegler, Robert Edward

    This study is concerned with determining the relative effectiveness of a static and dynamic theoretical model in teaching elementary school students to use the particle idea of matter when explaining certain physical phenomena. A clinical method of personal individual interview-testing, teaching, and retesting of a random sample population from…

  2. Particles colliders at the Large High Energy Laboratories

    International Nuclear Information System (INIS)

    Aguilar, M.

    1996-01-01

    In this work we present an elementary introduction to particle accelerators, a basic guide of existing colliders and a description of the large european laboratories devoted to Elementary Particle Physics. This work is a large, corrected and updated version of an article published in: Ciencia-Tecnologia-Medio Ambiente Annual report 1996 Edition el Pais (Author)

  3. Elementary analysis of interferometers for wave—particle duality test and the prospect of going beyond the complementarity principle

    International Nuclear Information System (INIS)

    Li Zhi-Yuan

    2014-01-01

    A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach—Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave—particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level. (general)

  4. Elementary spin excitations in ultrathin itinerant magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zakeri, Khalil, E-mail: zakeri@mpi-halle.de

    2014-12-10

    Elementary spin excitations (magnons) play a fundamental role in condensed matter physics, since many phenomena e.g. magnetic ordering, electrical (as well as heat) transport properties, ultrafast magnetization processes, and most importantly electron/spin dynamics can only be understood when these quasi-particles are taken into consideration. In addition to their fundamental importance, magnons may also be used for information processing in modern spintronics. Here the concept of spin excitations in ultrathin itinerant magnets is discussed and reviewed. Starting with a historical introduction, different classes of magnons are introduced. Different theoretical treatments of spin excitations in solids are outlined. Interaction of spin-polarized electrons with a magnetic surface is discussed. It is shown that, based on the quantum mechanical conservation rules, a magnon can only be excited when a minority electron is injected into the system. While the magnon creation process is forbidden by majority electrons, the magnon annihilation process is allowed instead. These fundamental quantum mechanical selection rules, together with the strong interaction of electrons with matter, make the spin-polarized electron spectroscopies as appropriate tools to excite and probe the elementary spin excitations in low-dimensional magnets e.g ultrathin films and nanostructures. The focus is put on the experimental results obtained by spin-polarized electron energy loss spectroscopy and spin-polarized inelastic tunneling spectroscopy. The magnon dispersion relation, lifetime, group and phase velocity measured using these approaches in various ultrathin magnets are discussed in detail. The differences and similarities with respect to the bulk excitations are addressed. The role of the temperature, atomic structure, number of atomic layers, lattice strain, electronic complexes and hybridization at the interfaces are outlined. A possibility of simultaneous probing of magnons and phonons

  5. Studies of many-particle correlations in proton-nucleus interactions using distributions of rapidity-gaps between particles

    International Nuclear Information System (INIS)

    Mangotra, L.K.; Otterlund, I.; Stenlund, E.

    1985-01-01

    Many-particle correlations in proton-Emulsion interactions at 400 GeV have been investigated using distributions of rapidity-gaps between particles. We have defined the normalized semi-inclusive rapidity-gap correlation function which is shown to have advantages over the normalized two- particle correlation function. Small, but significant, deviations from zero-correlations are observed in the data

  6. Photon-Graviton Interaction and CPH Theory

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed

    2016-01-01

    , and the weak interaction by the W and Z bosons. The hypothesis is that the gravitational interaction is likewise mediated by a – yet undiscovered – elementary particle, dubbed the graviton. In the classical limit, the theory would reduce to general relativity and conform to Newton's law of gravitation......-renormalizable). Since classical general relativity and quantum mechanics are incompatible at such energies, from a theoretical point of view the present situation is not tenable. Some proposed models of quantum gravity attempt to address these issues, but these are speculative theories. Does a new definition...

  7. Fabricating bio-inspired micro/nano-particles by polydopamine coating and surface interactions with blood platelets

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Wei [Jiangsu Provincial Key Lab for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Shi, Qiang, E-mail: shiqiang@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Hou, Jianwen; Gao, Jian; Li, Chunming; Jin, Jing; Shi, Hengchong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin, Jinghua, E-mail: yinjh@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-10-01

    Graphical abstract: The particles or particle aggregations activate the blood platelets and provide the physical adhesive sites for platelets adhesion. - Highlights: • Particles with varied sizes and surface properties were fabricated by facile polydopamine (PDA) coating on polystyrene microsphere. • The direct interaction between PDA particles and blood platelets was qualitatively investigated. • The knowledge on platelet–particle interactions provided the basic principle to select biocompatible micro/nano-particles in biomedical field. - Abstract: Although bio-inspired polydopamine (PDA) micro/nano-particles show great promise for biomedical applications, the knowledge on the interactions between micro/nano-particles and platelets is still lacking. Here, we fabricate PDA-coated micro/nano-particles and investigate the platelet–particle surface interactions. Our strategy takes the advantage of facile PDA coating on polystyrene (PS) microsphere to fabricate particles with varied sizes and surface properties, and the chemical reactivity of PDA layers to immobilize fibrinogen and bovine serum albumin to manipulate platelet activation and adhesion. We demonstrate that PS particles activate the platelets in the size-dependent manner, but PDA nanoparticles have slight effect on platelet activation; PS particles promote platelet adhesion while PDA particles reduce platelet adhesion on the patterned surface; Particles interact with platelets through activating the glycoprotein integrin receptor of platelets and providing physical sites for initial platelet adhesion. Our work sheds new light on the interaction between platelets and particles, which provides the basic principle to select biocompatible micro/nano-particles in biomedical field.

  8. Centroids of effective interactions from measured single-particle energies: An application

    International Nuclear Information System (INIS)

    Cole, B.J.

    1990-01-01

    Centroids of the effective nucleon-nucleon interaction for the mass region A=28--64 are extracted directly from experimental single-particle spectra, by comparing single-particle energies relative to different cores. Uncertainties in the centroids are estimated at approximately 100 keV, except in cases of exceptional fragmentation of the single-particle strength. The use of a large number of inert cores allows the dependence of the interaction on mass or model space to be investigated. The method permits accurate empirical modifications to be made to realistic interactions calculated from bare nucleon-nucleon potentials, which are known to possess defective centroids in many cases. In addition, the centroids can be used as input to the more sophisticated fitting procedures that are employed to produce matrix elements of the effective interaction

  9. A measurement of material in the ATLAS tracker using secondary hadronic interactions in 7 TeV pp collisions

    Czech Academy of Sciences Publication Activity Database

    Aaboud, M.; Aad, G.; Abbott, B.; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Penc, Ondřej; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2016-01-01

    Roč. 11, Nov (2016), s. 1-45, č. článku P11020. ISSN 1748-0221 Institutional support: RVO:68378271 Keywords : detector modelling and simulations I * interaction of radiation with matter * interaction of photons with matter * interaction of hadrons with matter Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.220, year: 2016

  10. In search for the unified theory of fundamental interactions

    International Nuclear Information System (INIS)

    Ansel'm, A.A.

    1980-01-01

    The problem of developing the unified theory of fundamental interactions is considered in a popular form. The fundamental interactions include interactions between really elementary particles (quarks and leptons) which are performed by strong, weak, electromagnetic and gravitational forces. The unified theory is based on the requirement of ''Local symmetry''. The problem on invariance of strong interaction theory to local isotopic transformation was proposed for the first time by Yang and Mills, who introduced fields, called compensating (they compensate additional members in the theory equations, appearing during local transformations) Quanta of these fields (calibrating bosons) are massless particles with a spin, equal to one. The bosons should have the mass different from zero in order to be the carriers of real strong and weak interactions. At present there exist two mechanisms, due to which the mentioned controdiction can be overcome. One of these mechanisms - spontaneous symmetry distortion, the other mechanism - ''non-escape'', or ''captivity'' of the particles. The main ideas of building the realistic model of strong interaction are briefly presented

  11. RadSim: a program to simulate individual particle interactions for educational purposes

    International Nuclear Information System (INIS)

    Verhaegen, Frank; Palefsky, Steven; DeBlois, Francois

    2006-01-01

    A program was developed, RadSim, which can be used to simulate certain individual interactions of photons, electrons, positrons and alpha particles with a single atom for educational purposes. The program can be run in two modes: manual and simulated. In the manual mode, an individual particle undergoing a specified interaction with a target atom can be simulated, which essentially comes down to a graphical evaluation of kinematic equations. In the simulated mode, a preset number of identical particles are allowed to undergo a specified interaction type with a target atom. The exit channel of the interaction is sampled from probability distributions using Monte Carlo methods. The incoming and outgoing particles are visualized and the frequency distribution of the kinematic variables of the exit channel is displayed graphically. It has to be emphasized that RadSim was mainly developed for educational purposes. (note)

  12. Slow, target associated particles produced in ultrarelativistic heavy-ion interactions

    Energy Technology Data Exchange (ETDEWEB)

    Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Anson, Z V; Arora, R; Avetyan, F A; Badyal, S K; Basova, E; Bhalla, K B; Bhasin, A; Bhatia, V S; Bogdanov, V G; Bubnov, V I; Burnett, T H; Cai, X; Chasnikov, I Y; Chernova, L P; Chernyavsky, M M; Dressel, B; Eligbaeva, G Z; Eremenko, L E; Friedlander, E M; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V; Heckman, H H; Huang, H; Jakobsson, B; Judek, B; Kachroo, S; Kadyrov, F G; Kalyachkina, G S; Kanygina, E K; Karabova, M; Kaul, G L; Kaur, M; Kharlamov, S P; Koss, Y; Krasnov,; Kumar,; Lal, P; Larionova,; Lepetan,; Lindstrom,; Liu,; Lokanathan, S; Lord, J; Lukicheva, N S; Luo, S B; Mangotra, L K; Marutyan,; Maslennikova, N V; Mittra, I S; Mookerjee, S; Mueller, C; Nasrulaeva, H; Nasyrov, S H; Navotny, V S; Orlova, G I; Otterlund, I; Palsania, H S; Peresadko, N G; Petrov, N V; Plyushchev, V A; Qian, W Y; Raniwala,; EMU01 Collaboration

    1991-06-20

    The slow, target associated particles produced in ultrarelativistic heavy-ion interactions are a quantitative probe of the cascading processes in the spectator parts of the target nucleus. These processes are directly influenced by the proper timescale for the formation of hadronic matter. In this letter we show experimental data on singly and multiply charged particles, with velocities smaller than 0.7c, produced in ultrarelativistic heavy-ion interactions in nuclear emulsion. (orig.).

  13. Dark-Matter Particles without Weak-Scale Masses or Weak Interactions

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kumar, Jason

    2008-01-01

    We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders

  14. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  15. Electron cooling and elementary particle physics

    International Nuclear Information System (INIS)

    Budker, G.I.; Skrinskij, A.N.

    1978-01-01

    This review is devoted to a new method in experimental physics - the electron cooling. This method opens possibilities in storing the intense and highly monochromatic beams of heavy particles and allows to carry out a wide series of experiments of a high luminocity and resolution. The method is based on the beam cooling by an accompanying flux of electrons. The cooling is due to Coulomb collisions of the beam particles with electrons. In the first part the theoretical aspects of the method are considered shortly. The layout of the NAP-M installation with electron cooling and results of successful experiments on cooling the proton beam are given. In the second part the new possibilities are discussed which appear due to application of electron cooling: storing the intense antiproton beams and realization of the proton - antiproton colliding beams, carrying out experiments with the super fine targets in storage rings, experiments with particles and antiparticles at ultimately low energies, storing the polarized antiprotons and other particles, production of antiatoms, antideuton storing, experiments with ion beams

  16. Solutions for correlations along the coexistence curve and at the critical point of a kagomé lattice gas with three-particle interactions

    Science.gov (United States)

    Barry, J. H.; Muttalib, K. A.; Tanaka, T.

    2008-01-01

    We consider a two-dimensional (d=2) kagomé lattice gas model with attractive three-particle interactions around each triangular face of the kagomé lattice. Exact solutions are obtained for multiparticle correlations along the liquid and vapor branches of the coexistence curve and at criticality. The correlation solutions are also determined along the continuation of the curvilinear diameter of the coexistence region into the disordered fluid region. The method generates a linear algebraic system of correlation identities with coefficients dependent only upon the interaction parameter. Using a priori knowledge of pertinent solutions for the density and elementary triplet correlation, one finds a closed and linearly independent set of correlation identities defined upon a spatially compact nine-site cluster of the kagomé lattice. Resulting exact solution curves of the correlations are plotted and discussed as functions of the temperature and are compared with corresponding results in a traditional kagomé lattice gas having nearest-neighbor pair interactions. An example of application for the multiparticle correlations is demonstrated in cavitation theory.

  17. Advanced concepts in particle and field theory

    CERN Document Server

    Hübsch, Tristan

    2015-01-01

    Uniting the usually distinct areas of particle physics and quantum field theory, gravity and general relativity, this expansive and comprehensive textbook of fundamental and theoretical physics describes the quest to consolidate the basic building blocks of nature, by journeying through contemporary discoveries in the field, and analysing elementary particles and their interactions. Designed for advanced undergraduates and graduate students and abounding in worked examples and detailed derivations, as well as including historical anecdotes and philosophical and methodological perspectives, this textbook provides students with a unified understanding of all matter at the fundamental level. Topics range from gauge principles, particle decay and scattering cross-sections, the Higgs mechanism and mass generation, to spacetime geometries and supersymmetry. By combining historically separate areas of study and presenting them in a logically consistent manner, students will appreciate the underlying similarities and...

  18. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size.

    Science.gov (United States)

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-04-20

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.

  19. Plasma-surface interactions under high heat and particle fluxes

    NARCIS (Netherlands)

    De Temmerman, G.; Bystrov, K.; Liu, F.; Liu, W.; Morgan, T.; Tanyeli, I.; van den Berg, M.; Xu, H.; Zielinski, J.

    2013-01-01

    The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface

  20. Particles and nuclei. An introduction to the physical concepts. 7. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Povh, Bogdan; Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Scholz, Christoph [SAP AG, Walldorf (Germany); Rith, Klaus [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. Physik; Zetsche, Frank [DFS Deutsche Flugsicherung GmbH, Langen (Germany)

    2015-09-01

    This well-known introductory textbook gives a uniform presentation of nuclear and particle physics from an experimental point of view. The first part, Analysis, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being constructed from a small number of elementary building blocks and a small number of fundamental interactions. The second part, Synthesis, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions, which are responsible for the forces in all systems, become less and less evident in increasingly complex systems. Such systems are in fact dominated by many-body phenomena. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of ''nuclear and particle physics'' and ''modem astrophysics and cosmology. The seventh revised and extended edition includes new material, in particular the experimental verification of the Higgs particle at the LHC, recent results in neutrino physics, the violation of CP-symmetry in the decay of neutral B-mesons, the experimental investigations of the nucleon's spin structure and outstanding results of the HERA experiments in deep-inelastic electron- and positron-proton scattering. The concise text is based on lectures held at the University of Heidelberg and includes numerous exercises with worked answers. It has been translated into several languages and has become a standard reference for advanced undergraduate and graduate courses.

  1. The mass spectrum of high energy elementary particles via El Naschie's E(∞) golden mean nested oscillators, the Dunkerly-Southwell eigenvalue theorems and KAM

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2003-01-01

    In the present work we give a classical nested mechanical model and corresponding expressions for the theoretical masses of elementary particles, including the masses of quarks as being the joint eigenvalues of combined vibrating sets using the Southwell and the Dunkerly theorems. The role played by the golden mean in KAM theory and consequently our present model is also discussed

  2. The Higgs and the expectation value of the number of elementary particles in a supersymmetric extensions of the standard model of high energy physics

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2005-01-01

    Supersymmetry, colours and chirality are utilized to develop three minimally extended versions of the standard model. Based on these models, it is possible to predict that few new elementary particles are likely to be found experimentally at an energy scale which is very modestly above that of the electroweak. Connections to the 8064 massless states of Heterotic string theory are also discussed

  3. On the origin of particle fluxes from thunderclouds

    International Nuclear Information System (INIS)

    Chilingarian, A.; Chilingaryan, S.; Karapetyan, T.; Khanikyants, Y.; Pokhsraryan, D.; Soghomonyan, S.

    2017-01-01

    We present the observational data on registration of atmospheric discharges simultaneously with the detection of elementary particles performed during thunderstorms at 3200m altitudes above sea level on Mt. Aragats in Armenia. Throughout the 2016 summer campaign on Aragats we monitored lightning occurrences and signals from NaI spectrometers, plastic scintillators, and Neutron Monitor proportional counters, and analyzed the shape of registered pulses. Particle detector signals were synchronized with lightning occurrences on microsecond time scale. Our measurements prove that all signals registered by particle detectors simultaneously with lightning were Electromagnetic interferences (EMI) and not typical responses of particle detectors on the passage of neutral or charged elementary particles. (author)

  4. Acoustically mediated long-range interaction among multiple spherical particles exposed to a plane standing wave

    International Nuclear Information System (INIS)

    Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou

    2016-01-01

    In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n  = −1 or −2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction. (paper)

  5. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions.

    Science.gov (United States)

    Jin, Chao; Ren, Carolyn L; Emelko, Monica B

    2016-04-19

    It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces.

  6. Many-particle hydrodynamic interactions in parallel-wall geometry: Cartesian-representation method

    International Nuclear Information System (INIS)

    Blawzdziewicz, J.; Wajnryb, E.; Bhattacharya, S.

    2005-01-01

    This talk will describe the results of our theoretical and numerical studies of hydrodynamic interactions in a suspension of spherical particles confined between two parallel planar walls, under creeping-flow conditions. We propose an efficient algorithm for evaluating many-particle friction matrix in this system-no Stokesian-dynamics algorithm of this kind has been available so far. Our approach involves expanding the fluid velocity field in the wall-bounded suspension into spherical and Cartesian fundamental sets of Stokes flows. The spherical set is used to describe the interaction of the fluid with the particles and the Cartesian set to describe the interaction with the walls. At the core of our method are transformation relations between the spherical and Cartesian fundamental sets. Using the transformation formulas, we derive a system of linear equations for the force multipoles induced on the particle surfaces; the coefficients in these equations are given in terms of lateral Fourier integrals corresponding to the directions parallel to the walls. The force-multipole equations have been implemented in a numerical algorithm for the evaluation of the multiparticle friction matrix in the wall-bounded system. The algorithm involves subtraction of the particle-wall and particle-particle lubrication contributions to accelerate the convergence of the results with the spherical-harmonics order, and a subtraction of the single-wall contributions to accelerate the convergence of the Fourier integrals. (author)

  7. Production of neutrinos and neutrino-like particles in proton-nucleus interactions

    International Nuclear Information System (INIS)

    Dishaw, J.P.

    1979-03-01

    An experimental search was performed to look for the direct production of neutrinos or neutrino-like particles, i.e., neutral particles which interact weakly with hadrons, in proton-nucleus interactions at 400 GeV incident proton energy. Possible sources of such particles include the semi-leptonic decay of new heavy particles such as charm, and the direct production of a light neutral Higgs particle such as the axion. The production of these particles has been inferred in this experiment by energy nonconservation in the collision of a proton with an iron nucleus. The total visible energy of the interaction was measured using a sampling ionization calorimeter. After correcting for beam intensity effects and cutting the data to eliminate systematic effects in the measurement, the final resolution of the calorimeter was 3.51% and increased with decreasing incident beam energy with a square root dependence on the beam energy. Energy nonconservation in the data is manifest as a non-Gaussian distribution on the low side of the calorimeter measured energy. Model calculations yield the fraction of events expected in this non-Gaussian behavior for the various sources of neutrinos or neutrino-like particles. A maximum likelihood fit to the data with the theoretical fraction of events expected yields the 95% confidence level production cross section upper limit values. The upper limits for general production of neutrino-like particles for various parameterizations of the production cross section are presented. The following specific upper limits have been established: charm particle production -3 times the π 0 production cross section. 144 references

  8. Chapter 8. Elementary notions on the quantum theory of potential scattering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Elementary notions in quantum theory of potential scattering are exposed: stationary states of scattering, calculus of cross section, scattering by central potential, phase shift method. In complement, these questions are studied: free particle (stationary states of well defined kinetic momentum); phenomenological description of collisions with absorption; elementary examples of application of the scattering theory [fr

  9. Introduction to supersymmetry and its applications to particle interactions

    International Nuclear Information System (INIS)

    Fayet, P.

    1978-01-01

    The fundamental mechanisms are first studied: spontaneous breaking of gauge invariance and supersymmetry, definition of conserved quantum numbers. Then it is shown how to construct spontaneously broken supersymmetric gauge theories of weak and electromagnetic interactions. Supersymmetry associates a neutrino to the photon; new leptons and Higgs scalars to heavy vector bosons; heavy scalar particles to usual leptons and quarks. The Goldstone neutrino and photon neutrino belong to a new class of leptons, with its own quantum number, R; R-conservation explains why these neutrinos have not yet been observed. Particles with R=0 are those of usual gauge theories, gauge bosons, fermions and Higgs scalars; the others lead to new weak interactions phenomena, where scalars can be exchanged. Finally, it is shown how strong and gravitational interactions can also be included [fr

  10. Particle-solid interactions and 21st century materials science

    International Nuclear Information System (INIS)

    Feldman, L.C.; Lupke, G.; Tolk, N.H.; Lopez, R.; Haglund, R.F.; Haynes, T.E.; Boatner, L.A.

    2003-01-01

    The basic physics that governs the interaction of energetic ion beams with solids has its roots in the atomic and nuclear physics of the last century. The central formalism of Jens Lindhard, describing the 'particle-solid interaction', provides a valuable quantitative guide to statistically meaningful quantities such as energy loss, ranges, range straggling, channeling effects, sputtering coefficients, and damage intensity and profiles. Modern materials modification (nanoscience, solid state dynamics) requires atomic scale control of the particle-solid interaction. Two recent experimental examples are discussed: (1) the control of the size distribution of nanocrystals formed in implanted materials and (2) the investigation of the site-specific implantation of hydrogen into silicon. Both cases illustrate unique solid-state configurations, created by ion implantation, that address issues of current materials science interest

  11. Observation and Control of Hamiltonian Chaos in Wave-particle Interaction

    International Nuclear Information System (INIS)

    Doveil, F.; Ruzzon, A.; Elskens, Y.

    2010-01-01

    Wave-particle interactions are central in plasma physics. The paradigm beam-plasma system can be advantageously replaced by a traveling wave tube (TWT) to allow their study in a much less noisy environment. This led to detailed analysis of the self-consistent interaction between unstable waves and an either cold or warm electron beam. More recently a test cold beam has been used to observe its interaction with externally excited wave(s). This allowed observing the main features of Hamiltonian chaos and testing a new method to efficiently channel chaotic transport in phase space. To simulate accurately and efficiently the particle dynamics in the TWT and other 1D particle-wave systems, a new symplectic, symmetric, second order numerical algorithm is developed, using particle position as the independent variable, with a fixed spatial step.This contribution reviews: presentation of the TWT and its connection to plasma physics, resonant interaction of a charged particle in electrostatic waves, observation of particle trapping and transition to chaos, test of control of chaos, and description of the simulation algorithm.The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the 4m long helix of the TWT. The nonlinear synchronization of particles by a single wave, responsible for Landau damping, is observed. We explore the resonant velocity domain associated with a single wave as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a devil's staircase behavior when increasing the excitation level in agreement with numerical simulation.A new strategy for control of chaos by building barriers of transport in phase space as well as its robustness is successfully tested. The underlying concepts extend far beyond the field of

  12. Cosmological constraints on interacting light particles

    Energy Technology Data Exchange (ETDEWEB)

    Brust, Christopher [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON, N2L 2Y5 Canada (Canada); Cui, Yanou [Department of Physics and Astronomy, University of California, 900 University Ave, Riverside, CA, 92521 (United States); Sigurdson, Kris, E-mail: cbrust@perimeterinstitute.ca, E-mail: yanou.cui@ucr.edu, E-mail: krs@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 Canada (Canada)

    2017-08-01

    Cosmological observations are becoming increasingly sensitive to the effects of light particles in the form of dark radiation (DR) at the time of recombination. The conventional observable of effective neutrino number, N {sub eff}, is insufficient for probing generic, interacting models of DR. In this work, we perform likelihood analyses which allow both free-streaming effective neutrinos (parametrized by N {sub eff}) and interacting effective neutrinos (parametrized by N {sub fld}). We motivate an alternative parametrization of DR in terms of N {sub tot} (total effective number of neutrinos) and f {sub fs} (the fraction of effective neutrinos which are free-streaming), which is less degenerate than using N {sub eff} and N {sub fld}. Using the Planck 2015 likelihoods in conjunction with measurements of baryon acoustic oscillations (BAO), we find constraints on the total amount of beyond the Standard Model effective neutrinos (both free-streaming and interacting) of Δ N {sub tot} < 0.39 at 2σ. In addition, we consider the possibility that this scenario alleviates the tensions between early-time and late-time cosmological observations, in particular the measurements of σ{sub 8} (the amplitude of matter power fluctuations at 8 h {sup −1} Mpc), finding a mild preference for interactions among light species. We further forecast the sensitivities of a variety of future experiments, including Advanced ACTPol (a representative CMB Stage-III experiment), CMB Stage-IV, and the Euclid satellite. This study is relevant for probing non-standard neutrino physics as well as a wide variety of new particle physics models beyond the Standard Model that involve dark radiation.

  13. The properties of charmonium and charm particles

    International Nuclear Information System (INIS)

    Schopper, H.

    1977-12-01

    An impressive amount of data has been accumulated over the past three years which support strongly the idea that elementary particles are composed of four quarks instead of three. All the predictions based on the existence of the fourth, the charm quark, have in principal been born out by experiments and from detailed investigations very interesting results could be obtained for the strong and the weak interaction. Most of these results have been obtained with electron-positron storage rings, and only these will be discussed in this report. Additional data from hadronic or neutrino interactions are in general agreement with the e + e - data and will not be discussed here. This series of lectures will be entirely devoted to a discussion of mesons, i.e. quark-antiquark systems. Although some indications have been found for the existence of charmed baryons, these data are still rather scanty. In the last chapter we shall also discuss the upsilon particle. (orig.) [de

  14. When is a particle

    International Nuclear Information System (INIS)

    Drell, S.D.

    1978-01-01

    The concept of elementary constituents or ultimate building blocks of nature in recent years is reviewed. The quark hypothesis, neutrinos, color, hard collisions, psi and other recent resonances, flavor, quantum chromodynamics, the tau particle, and particle structure are among the ideas considered. 22 references

  15. Properties and Interactions of Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    Amidei, Dante; Campbell, Myron; Huterer, Dragan; Kane, Gordon; Liu, James; Qian, Jianming; Tarle, Gregory; Zhou, Bing

    2012-08-25

    We summarize the accomplishments over the last renewal period in a broad program of research in experimental and theoretical High Energy Physics, conducted at the University of Michigan, and supported by the U.S. Department of Energy.

  16. Interactions of casein micelles with calcium phosphate particles.

    Science.gov (United States)

    Tercinier, Lucile; Ye, Aiqian; Anema, Skelte G; Singh, Anne; Singh, Harjinder

    2014-06-25

    Insoluble calcium phosphate particles, such as hydroxyapatite (HA), are often used in calcium-fortified milks as they are considered to be chemically unreactive. However, this study showed that there was an interaction between the casein micelles in milk and HA particles. The caseins in milk were shown to bind to the HA particles, with the relative proportions of bound β-casein, αS-casein, and κ-casein different from the proportions of the individual caseins present in milk. Transmission electron microscopy showed no evidence of intact casein micelles on the surface of the HA particles, which suggested that the casein micelles dissociated either before or during binding. The HA particles behaved as ion chelators, with the ability to bind the ions contained in the milk serum phase. Consequently, the depletion of the serum minerals disrupted the milk mineral equilibrium, resulting in dissociation of the casein micelles in milk.

  17. Search for strongly interacting massive particles using semiconductor detectors on the ground

    International Nuclear Information System (INIS)

    Derbin, A.V.; Egorov, A.I.; Bakhlanov, S.V.; Muratova, V.N.

    1999-01-01

    Using signals from recoil nucleus in semiconductor detectors, search for strongly interacting massive particles, as a possible candidate for dark matter, is continued. Experimental installation and the experimental results are given. New limits on the possible masses and cross sections of strongly interacting massive particles are presented [ru

  18. Growth of the interaction layer around fuel particles in dispersion fuel

    International Nuclear Information System (INIS)

    Olander, D.

    2009-01-01

    Corrosion of uranium particles in dispersion fuel by the aluminum matrix produces interaction layers (an intermetallic-compound corrosion product) around the shrinking fuel spheres. The rate of this process was modeled as series resistances due to Al diffusion through the interaction layer and reaction of aluminum with uranium in the fuel particle to produce UAl x . The overall kinetics are governed by the relative rates of these two steps, the slowest of which is reaction at the interface between Al in the interaction layer and U in the fuel particle. The substantial volume change as uranium is transferred from the fuel to the interaction layer was accounted for. The model was compared to literature data on in-reactor growth of the interaction layer and the Al/U gradient in this layer, the latter measured in ex-reactor experiments. The rate constant of the Al-U interface reaction and the diffusivity of Al in the interaction layer were obtained from this fitting procedure. The second feature of the corrosion process is the transfer of fission products from the fuel particle to the interaction layer due to the reaction. It is commonly assumed that the observed swelling of irradiated fuel elements of this type is due to release of fission gas in the interaction layer to form large bubbles. This hypothesis was tested by using the model to compute the quantity of fission gas available from this source and comparing the pressure of the resulting gas with the observed swelling of fuel plates. It was determined that the gas pressure so generated is too small to account for the observed delamination of the fuel

  19. Critical review of a quantitative study of a specialty in high energy particle physics

    International Nuclear Information System (INIS)

    White, D.H.; Sullivan, D.

    1980-01-01

    A review is made of the authors' series of quantitative, historical, and social studies of the weak interactions of elementary particles. A short intellectual history, the quantitative methodology, and a summary of the papers analyzing specific episodes in this field are presented. The social organization of the field is described, and an overall policy for resource management is discussed. 6 figures, 3 tables

  20. Transverse Characteristics of Hadron Production in Elementary and Nuclear Collisions at the CERN SPS Energies

    CERN Document Server

    AUTHOR|(CDS)2076476; Bialkowska, H

    2004-01-01

    A comprehensive study of transverse phenomena at CERN-SPS energies has been performed using data collected by the NA49 experiment. Results on p, p, pi+ and pi- production in elementary hadronic interactions (p + p, pi+ +p and pi- + p) as well as in nuclear collisions (centrality-defined p + Pb, C + C, Si + Si And Pb + Pb) are presented. The dependence of transverse momentum spectra, and in particular the - xF correlations, on particle species, collision energy, size and structure of the colliding objects has been investigated. Particle composition, in terms of the nuclear modification factors RpA (pT) for different xF regions – and particle ratios, has been also studied. The whole set of experimental data puts strong constraints on theoretical models aiming at the description of hadron production in the studied reactions.

  1. Search for supersymmetric particles in final states with jets and missing transverse momentum with the ATLAS detector

    CERN Document Server

    Rammensee, Michael

    The Standard Model of particle physics (SM) is very successful in describing elementary particles and their interactions. The recent discovery of a new boson at the LHC continues this successful story as it is compatible with the last undiscovered particle in the SM, the Higgs boson. However, the SM has limitations such as the hierarchy problem or the missing dark matter candidate. One of the extensions to the SM includes a new space-time symmetry, called Supersymmetry (SUSY), resulting in a symmetry between fermions and bosons. In most phenomenological SUSY models the production of supersymmetric particles at the LHC is dominated by squark-squark, squark-anti-squark, squark-gluino and gluino-gluino pair production. Squarks are the super-partners to quarks and gluinos the super-partners to the gluons. These particles decay subsequently into the lightest supersymmetric particle which does not interact with detector material. Thus the striking signature for such a pair production of supersymmetric particles in ...

  2. Features and states of microscopic particles in nonlinear quantum-mechanics systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,we present the elementary principles of nonlinear quantum mechanics(NLQM),which is based on some problems in quantum mechanics.We investigate in detail the motion laws and some main properties of microscopic particles in nonlinear quantum systems using these elementary principles.Concretely speaking,we study in this paper the wave-particle duality of the solution of the nonlinear Schr6dinger equation,the stability of microscopic particles described by NLQM,invariances and conservation laws of motion of particles,the Hamiltonian principle of particle motion and corresponding Lagrangian and Hamilton equations,the classical rule of microscopic particle motion,the mechanism and rules of particle collision,the features of reflection and the transmission of particles at interfaces,and the uncertainty relation of particle motion as well as the eigenvalue and eigenequations of particles,and so on.We obtained the invariance and conservation laws of mass,energy and momentum and angular momenturn for the microscopic particles,which are also some elementary and universal laws of matter in the NLQM and give further the methods and ways of solving the above questions.We also find that the laws of motion of microscopic particles in such a case are completely different from that in the linear quantum mechanics(LQM).They have a lot of new properties;for example,the particles possess the real wave-corpuscle duality,obey the classical rule of motion and conservation laws of energy,momentum and mass,satisfy minimum uncertainty relation,can be localized due to the nonlinear interaction,and its position and momentum can also be determined,etc.From these studies,we see clearly that rules and features of microscopic particle motion in NLQM is different from that in LQM.Therefore,the NLQM is a new physical theory,and a necessary result of the development of quantum mechanics and has a correct representation of describing microscopic particles in nonlinear systems,which can

  3. Analysis of solid particles falling down and interacting in a channel with sedimentation using fictitious boundary method

    Science.gov (United States)

    Usman, K.; Walayat, K.; Mahmood, R.; Kousar, N.

    2018-06-01

    We have examined the behavior of solid particles in particulate flows. The interaction of particles with each other and with the fluid is analyzed. Solid particles can move freely through a fixed computational mesh using an Eulerian approach. Fictitious boundary method (FBM) is used for treating the interaction between particles and the fluid. Hydrodynamic forces acting on the particle's surface are calculated using an explicit volume integral approach. A collision model proposed by Glowinski, Singh, Joseph and coauthors is used to handle particle-wall and particle-particle interactions. The particulate flow is computed using multigrid finite element solver FEATFLOW. Numerical experiments are performed considering two particles falling and colliding and sedimentation of many particles while interacting with each other. Results for these experiments are presented and compared with the reference values. Effects of the particle-particle interaction on the motion of the particles and on the physical behavior of the fluid-particle system has been analyzed.

  4. How elementary paticles are discovered. From the cyclotron to the LHC - an expedition through the world of the particle accelerators; Wie man Elementarteilchen entdeckt. Vom Zyklotron zum LHC - ein Streifzug durch die Welt der Teilchenbeschleuniger

    Energy Technology Data Exchange (ETDEWEB)

    Freytag, Carl; Osterhage, Wolfgang W.

    2016-07-01

    This book explains the physical foundations and the technology of the elementary-particle research and describes the particle accelerators, the detector, and their concerted acting. On some milestones of the research - from the production of transuranium elements via the discovery of exotic mesons until the Higgs particle - the way from theory via the experiment to the research result is shown.

  5. Interacting particle systems in time-dependent geometries

    Science.gov (United States)

    Ali, A.; Ball, R. C.; Grosskinsky, S.; Somfai, E.

    2013-09-01

    Many complex structures and stochastic patterns emerge from simple kinetic rules and local interactions, and are governed by scale invariance properties in combination with effects of the global geometry. We consider systems that can be described effectively by space-time trajectories of interacting particles, such as domain boundaries in two-dimensional growth or river networks. We study trajectories embedded in time-dependent geometries, and the main focus is on uniformly expanding or decreasing domains for which we obtain an exact mapping to simple fixed domain systems while preserving the local scale invariance properties. This approach was recently introduced in Ali et al (2013 Phys. Rev. E 87 020102(R)) and here we provide a detailed discussion on its applicability for self-affine Markovian models, and how it can be adapted to self-affine models with memory or explicit time dependence. The mapping corresponds to a nonlinear time transformation which converges to a finite value for a large class of trajectories, enabling an exact analysis of asymptotic properties in expanding domains. We further provide a detailed discussion of different particle interactions and generalized geometries. All our findings are based on exact computations and are illustrated numerically for various examples, including Lévy processes and fractional Brownian motion.

  6. On a connection between the VAK, knot theory and El Naschie's theory of the mass spectrum of the high energy elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Marek-Crnjac, L

    2004-02-01

    In the present work we give an introduction to the {epsilon}{sup ({infinity}}{sup )} Cantorian space-time theory. In this theory every particle can be interpreted as a scaling of another particle. Some particles are a scaling of the proton and are expressed in terms of phi and {alpha}-bar{sub 0}. Following the VAK suggestion of El Naschie, the limit sets of Kleinian groups are Cantor sets with Hausdorff dimension phi or a derivative of phi such as 1/phi, 1/phi{sup 2}, 1/phi{sup 3}, etc. Consequently and using {epsilon}{sup ({infinity}}{sup )} theory, the mass spectrum of elementary particles may be found from the limit set of the Moebius-Klein geometry of quantum space-time as a function of the golden mean phi=({r_brace}5-1)/2=0.618033989 as discussed recently by Datta (see Chaos, Solitons and Fractals 17 (2003) 621-630)

  7. Final state interaction effect on correlations in narrow particles pairs

    International Nuclear Information System (INIS)

    Lednicky, R.; Lyuboshitz, V.L.

    1990-01-01

    In this paper the dependence of the two-particle correlation function on the space-time dimensions of the particle production region is discussed. The basic formulae, taking into account he effects of quantum statistics and final state interaction, and the conditions of their applicability are given

  8. Beyond the God particle

    CERN Document Server

    Lederman, Leon M

    2013-01-01

    On July 4, 2012, the long-sought Higgs Boson--aka "the God Particle"--was discovered at the world's largest particle accelerator, the LHC, in Geneva, Switzerland. On March 14, 2013, physicists at CERN confirmed it. This elusive subatomic particle forms a field that permeates the entire universe, creating the masses of the elementary particles that are the basic building blocks of everything in the known world--from viruses to elephants, from atoms to quasars.

  9. Atomic data for controlled fusion research. Volume III. Particle interactions with surfaces

    International Nuclear Information System (INIS)

    Thomas, E.W.

    1985-02-01

    This report provides a handbook of data concerning particle solid interactions that are relevant to plasma-wall interactions in fusion devices. Published data have been collected, assessed, and represented by a single functional relationship which is presented in both tabular and graphical form. Mechanisms reviewed here include sputtering, secondary electron emission, particle reflection, and trapping

  10. Statistical effect of interactions on particle creation in expanding universe

    International Nuclear Information System (INIS)

    Kodama, Hideo

    1982-01-01

    The statistical effect of interactions which drives many-particle systems toward equilibrium is expected to change the qualitative and quantitative features of particle creation in expanding universe. To investigate this problem a simplified model called the finite-time reduction model is formulated and applied to the scalar particle creation in the radiation dominant Friedmann universe. The number density of created particles and the entropy production due to particle creation are estimated. The result for the number density is compared with that in the conventional free field theory. It is shown that the statistical effect increases the particle creation and lengthens the active creation period. As for the entropy production it is shown that it is negligible for scalar particles in the Friedmann universe. (author)

  11. Bookshelf (Conceptual Foundations of Modern Particle Physics, by Robert E. Marshak)

    International Nuclear Information System (INIS)

    Fritzsch, Harald

    1994-01-01

    Particle physics really began as an independent scientific discipline after the Second World War. Robert Marshak was one of its pioneers on the theoretical front, starting out his career with important contributions on meson theory (together with Hans Bethe). The life of Marshak, who died in December 1992, was intimately interwoven with the post-war development of particle physics. His work on weak interaction theory was an important step towards the formulation of the V-A theory, the main pillar on which the modern electroweak theory rests erected. He is also remembered as the founder of the biennial 'Rochester' conference series (March 1993, page 24). Just before his death Robert Marshak finished writing his book on the concepts of particle physics. The book starts out with an historical account of the development of the field. He divides it into the startup period (1945-60) - the period of meson physics, the physics of strange particles, parity violation etc; the heroic period (1960-1975) when the Standard Model of the electroweak and strong interactions was developed; and finally the period of consolidation and speculation (since 1975). Marshak's recollection of the development of particle physics represents a personal view, worth reading by young researchers, although it does not attempt to provide a complete picture. After the historical chapter Marshak introduces the reader to the basics of quantum field theory (space-time symmetries, global internal symmetries and their breaking, gauge symmetries). Later he turns to a description of QCD and the gauge theory of the electroweak interactions. A whole chapter is devoted to the problems related to anomalies. In the last part of the book Marshak discusses various hypotheses of unifying the strong and electroweak interactions, especially the various facets of the SO(10) theory, followed by a long discussion of the fermion generation problem and of preon models. The book concludes with an extensive

  12. Bond rupture between colloidal particles with a depletion interaction

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Kathryn A.; Furst, Eric M., E-mail: furst@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, Delaware 19716 (United States)

    2016-05-15

    The force required to break the bonds of a depletion gel is measured by dynamically loading pairs of colloidal particles suspended in a solution of a nonadsorbing polymer. Sterically stabilized poly(methyl methacrylate) colloids that are 2.7 μm diameter are brought into contact in a solvent mixture of cyclohexane-cyclohexyl bromide and polystyrene polymer depletant. The particle pairs are subject to a tensile load at a constant loading rate over many approach-retraction cycles. The stochastic nature of the thermal rupture events results in a distribution of bond rupture forces with an average magnitude and variance that increases with increasing depletant concentration. The measured force distribution is described by the flux of particle pairs sampling the energy barrier of the bond interaction potential based on the Asakura–Oosawa depletion model. A transition state model demonstrates the significance of lubrication hydrodynamic interactions and the effect of the applied loading rate on the rupture force of bonds in a depletion gel.

  13. The Spectrum of Particles with Short-Ranged Interactions in a Harmonic Trap

    Directory of Open Access Journals (Sweden)

    Metsch B. Ch.

    2010-04-01

    Full Text Available The possibility to control short-ranged interactions of cold gases in optical traps by Feshbachresonances makes these systems ideal candidates to study universal scaling properties and Efimov physics. The spectrum of particles in a trap, idealised by a harmonic oscillator potential, in the zero range limit with 2- and 3-particle contact interactions is studied numerically. The Hamiltonian is regularised by restricting the oscillator basis and the coupling constants are tuned such that the ground state energies of the 2- and 3-particle sector are reproduced [1],[2]. Results for 2-, 3-, and 4 particle systems are presented and compared to exact results [3],[4].

  14. The atomic hypothesis: physical consequences

    International Nuclear Information System (INIS)

    Rivas, Martin

    2008-01-01

    The hypothesis that matter is made of some ultimate and indivisible objects, together with the restricted relativity principle, establishes a constraint on the kind of variables we are allowed to use for the variational description of elementary particles. We consider that the atomic hypothesis not only states the indivisibility of elementary particles, but also that these ultimate objects, if not annihilated, cannot be modified by any interaction so that all allowed states of an elementary particle are only kinematical modifications of any one of them. Therefore, an elementary particle cannot have excited states. In this way, the kinematical group of spacetime symmetries not only defines the symmetries of the system, but also the variables in terms of which the mathematical description of the elementary particles can be expressed in either the classical or the quantum mechanical description. When considering the interaction of two Dirac particles, the atomic hypothesis restricts the interaction Lagrangian to a kind of minimal coupling interaction

  15. Indirect probe of electroweak-interacting particles at future lepton colliders

    International Nuclear Information System (INIS)

    Harigaya, Keisuke; Ichikawa, Koji; Kundu, Anirban; Matsumoto, Shigeki; Shirai, Satoshi

    2015-01-01

    Various types of electroweak-interacting particles, which have non-trivial charges under the SU(2)_L×U(1)_Y gauge symmetry, appear in various extensions of the Standard Model. These particles are good targets of future lepton colliders, such as the International Linear Collider (ILC), the Compact LInear Collider (CLIC) and the Future Circular Collider of electrons and positrons (FCC-ee). An advantage of the experiments is that, even if their beam energies are below the threshold of the production of the new particles, quantum effects of the particles can be detected through high precision measurements. We estimate the capability of future lepton colliders to probe electroweak-interacting particles through the quantum effects, with particular focus on the wino, the Higgsino and the so-called minimal dark matters, and found that a particle whose mass is greater than the beam energy by 100–1000 GeV is detectable by measuring di-fermion production cross sections with O(0.1)% accuracy. In addition, with the use of the same analysis, we also discuss the sensitivity of the future colliders to model independent higher dimensional operators, and found that the cutoff scales corresponding to the operators can be probed up to a few ten TeV.

  16. Indirect Probe of Electroweak-Interacting Particles at Future Lepton Colliders

    International Nuclear Information System (INIS)

    Harigaya, Keisuke

    2015-04-01

    Various types of electroweak-interacting particles, which have non-trivial charges under the SU(2) L x U(1) Y gauge symmetry, appear in various extensions of the Standard Model. These particles are good targets of future lepton colliders, such as the International Linear Collider (ILC), the Compact LInear Collider (CLIC) and the Future Circular Collider of electrons and positrons (FCC-ee). An advantage of the experiments is that, even if their beam energies are below the threshold of the production of the new particles, quantum effects of the particles can be detected through high precision measurements. We estimate the capability of future lepton colliders to probe electroweak-interacting particles through the quantum effects, with particular focus on the wino, the Higgsino and the so-called minimal dark matters, and found that a particle whose mass is greater than the beam energy by 100-1000 GeV is detectable by measuring di-fermion production cross sections with O(0.1)% accuracy. In addition, with the use of the same analysis, we also discuss the sensitivity of the future colliders to model independent higher dimensional operators, and found that the cutoff scales corresponding to the operators can be probed up to a few ten TeV.

  17. Recent (t,p) and (3He,n) studies of elementary excitations in the lead region

    International Nuclear Information System (INIS)

    Flynn, E.R.

    1978-01-01

    A number of experiments involving two-nucleon transfer reactions were recently carried out in the region of 208 Pb to explore the limits of the pairing vibration model. ( 3 He,n) studies revealed that the proton pairing elementary excitations give a reasonably simple vibrational picture after corrections for important particle--hole terms. These data are also described accurately by microscopic calculations of the 0 + pairing phonon. (t,p) results on a 204 Hg target reveal a pairing vibrational state in 206 Hg near the predicted energy, after various interactions are taken into account. 14 figures

  18. Charged particle interaction with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, Klaus J.; van Goor, F.A.

    2003-01-01

    It is found that a charged particle can get a net energy gain from the interaction with an electromagnetic chirped pulse. Theoretically, the energy gain increases with the pulse amplitude and with the relative frequency variation in the pulse.

  19. The use of a quartz crystal microbalance as an analytical tool to monitor particle/surface and particle/particle interactions under dry ambient and pressurized conditions: a study using common inhaler components.

    Science.gov (United States)

    Turner, N W; Bloxham, M; Piletsky, S A; Whitcombe, M J; Chianella, I

    2016-12-19

    Metered dose inhalers (MDI) and multidose powder inhalers (MPDI) are commonly used for the treatment of chronic obstructive pulmonary diseases and asthma. Currently, analytical tools to monitor particle/particle and particle/surface interaction within MDI and MPDI at the macro-scale do not exist. A simple tool capable of measuring such interactions would ultimately enable quality control of MDI and MDPI, producing remarkable benefits for the pharmaceutical industry and the users of inhalers. In this paper, we have investigated whether a quartz crystal microbalance (QCM) could become such a tool. A QCM was used to measure particle/particle and particle/surface interactions on the macroscale, by additions of small amounts of MDPI components, in the powder form into a gas stream. The subsequent interactions with materials on the surface of the QCM sensor were analyzed. Following this, the sensor was used to measure fluticasone propionate, a typical MDI active ingredient, in a pressurized gas system to assess its interactions with different surfaces under conditions mimicking the manufacturing process. In both types of experiments the QCM was capable of discriminating interactions of different components and surfaces. The results have demonstrated that the QCM is a suitable platform for monitoring macro-scale interactions and could possibly become a tool for quality control of inhalers.

  20. Interaction of Macro-particles with LHC proton beam

    CERN Document Server

    Zimmermann, F; Xagkoni, A

    2010-01-01

    We study the interaction of macro-particles residing inside the LHC vacuum chamber, e.g. soot or thermalinsulation fragments, with the circulating LHC proton beam. The coupled equations governing the motion and charging rate of metallic or dielectric micron-size macroparticles are solved numerically to determine the time spent by such “dust” particles close to the path of the beam as well as the resulting proton-beam losses, which could lead to a quench of superconducting magnets and, thereby, to a premature beam abort.

  1. Elementary operators - still not elementary?

    Directory of Open Access Journals (Sweden)

    Martin Mathieu

    2016-01-01

    Full Text Available Properties of elementary operators, that is, finite sums of two-sided multiplications on a Banach algebra, have been studied under a vast variety of aspects by numerous authors. In this paper we review recent advances in a new direction that seems not to have been explored before: the question when an elementary operator is spectrally bounded or spectrally isometric. As with other investigations, a number of subtleties occur which show that elementary operators are still not elementary to handle.

  2. Second quantization approach to composite hadron interactions in quark models

    International Nuclear Information System (INIS)

    Hadjimichef, D.; Krein, G.; Veiga, J.S. da; Szpigel, S.

    1995-11-01

    Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions. (author). 13 refs., 1 fig

  3. Dynamics of particles and fields. Final report

    International Nuclear Information System (INIS)

    Cahill, K.E.

    1985-01-01

    The principal objective of the proposed work is a better understanding of the internal and coordinate symmetries that characterize the interactions of the elementary particles. Their interactions - gravitational, weak, electromagnetic, and strong - seem to be well described by gauge theories, i.e., ones whose equations of motion are invariant under symmetry transformations that vary independently from point to point. The principal subject of the proposed research is the development of techniques for the numerical evaluation of path integrals, particularly those that occur in gauge theories. Other subjects of the proposed research are: quark confinement and other nonperturbative phenomena in field theory, gauge theories of compact and noncompact symmetry groups, supersymmetry, grand unification, the unification of the gravitational and electronuclear forces, and various topics in computer physics

  4. The search for fractional charge elemental particles and very massive particles in bulk matter

    International Nuclear Information System (INIS)

    Perl, M.

    2000-01-01

    The authors describe their ongoing work on, and future plans for, searches in bulk matter for fractional charge elementary particles and very massive elementary particles. Their primary interest is in searching for such particles that may have been produced in the early universe and may be found in the more primeval matter available in the solar system: meteorites, material from the moon's surface, and certain types of ancient terrestrial rocks. In the future the authors are interested in examining material brought back by sample return probes from asteroids. The authors will describe their experimental methods that are based on new modifications of the Millikan liquid drop technique and modern technology: micromachining, CCD cameras, and desktop computers. Extensions of the experimental methods and technology allow searches for very massive charged particles in primeval matter; particles with masses greater than 1,013 GeV. In the first such searches carried out on earth there will be uncertainties in the mass search range. Therefore the authors will also discuss the advantages of eventually carrying out such searches directly on an asteroid

  5. Atomic interactions of charged particles with matter

    International Nuclear Information System (INIS)

    Bichsel, H.

    1993-01-01

    Ideas about the interactions of charged particles with matter are discussed. First, some experimental information is presented. Concepts related to collision cross sections and the Bethe model for them are given. The stopping power is derived and applied to the discussion of depth dose functions ('Bragg curves'). Some details of the energy loss in microscopic volumes are discussed

  6. Search for a particle with a long interaction length

    International Nuclear Information System (INIS)

    Barrowes, S.C.; Huggett, R.W.; Jones, W.V.; Levit, L.B.; Porter, L.G.

    1975-01-01

    A search has been carried out for a long-lived particle having an interaction length lambdasub(m) = 300 to 2,000 cm -2 in air. Such a particle, called the mandela, has been proposed by the Leeds group to explain an anomalous energy spectrum of particles observed near sea level with a shallow spectrometer. Data taken at mountain altitude with a deep spectrometer has been examined for compatibility with the existence of the mandela. Although the data tend to favor the mandela hypothesis the results are not conclusive and appear to be explainable by conventional means. (orig.) [de

  7. The mass spectrum of high energy elementary particles via El Naschie's E sup ( supinfinity sup ) golden mean nested oscillators, the Dunkerly-Southwell eigenvalue theorems and KAM

    CERN Document Server

    Marek-Crnjac, L

    2003-01-01

    In the present work we give a classical nested mechanical model and corresponding expressions for the theoretical masses of elementary particles, including the masses of quarks as being the joint eigenvalues of combined vibrating sets using the Southwell and the Dunkerly theorems. The role played by the golden mean in KAM theory and consequently our present model is also discussed.

  8. Interference of two-particle states in elementary particle physics and in astronomy

    International Nuclear Information System (INIS)

    Kopylov, G.I.; Podgoretskij, M.I.

    1975-01-01

    Comparison is given of two versions of an experiment for observing of the interference of two-particle states of identical particles: time - space and momentum - energy versions. Both versions are considered in detail and make it possible to measure dimensions of particle souces. An interesting symmetry has been found. Expressions for the phase of interfering states in both versions of the experiment are obtained by mutual replacement of particle sources on their detector. An imaginary experiment is suggested which makes it possible to follow how these mutually exclusive versions of the experiment turn one into another

  9. A volume-filtered formulation to capture particle-shock interactions in multiphase compressible flows

    Science.gov (United States)

    Shallcross, Gregory; Capecelatro, Jesse

    2017-11-01

    Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.

  10. Feebly Interacting Dark Matter Particle as the Inflaton

    OpenAIRE

    Tenkanen, Tommi

    2016-01-01

    We present a scenario where a $Z_2$-symmetric scalar field $\\phi$ first drives cosmic inflation, then reheats the Universe but remains out-of-equilibrium itself, and finally comprises the observed dark matter abundance, produced by particle decays \\`{a} la freeze-in mechanism. We work model-independently without specifying the interactions of the scalar field besides its self-interaction coupling, $\\lambda\\phi^4$, non-minimal coupling to gravity, $\\xi\\phi^2R$, and coupling to another scalar f...

  11. 12th DESY Workshop on Elementary Particle Physics: Loops and Legs in Quantum Field Theory

    CERN Document Server

    LL2014

    2014-01-01

    The bi-annual international conference “Loops and Legs in Quantum Field Theory” has been held at Weimar, Germany, from April 27 to May 02, 2014. It has been the 12th conference of this series, started in 1992. The main focus of the conference are precision calculations of multi- loop and multi-leg processes in elementary particle physics for processes at present and future high-energy facilities within and beyond the Standard Model. At present many physics questions studied deal with processes at the LHC and future facilities like the ILC. A growing number of contributions deals with important developments in the field of computational technologies and algorithmic methods, including large-scale computer algebra, efficient methods to compute large numbers of Feynman diagrams, analytic summation and integration methods of various kinds, new related function spaces, precise numerical methods and Monte Carlo simulations. The present conference has been attended by more than 110 participants from all over the ...

  12. Interaction Potential between Parabolic Rotator and an Outside Particle

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2014-01-01

    Full Text Available At micro/nanoscale, the interaction potential between parabolic rotator and a particle located outside the rotator is studied on the basis of the negative exponential pair potential 1/Rn between particles. Similar to two-dimensional curved surfaces, we confirm that the potential of the three-dimensional parabolic rotator and outside particle can also be expressed as a unified form of curvatures; that is, it can be written as the function of curvatures. Furthermore, we verify that the driving forces acting on the particle may be induced by the highly curved micro/nano-parabolic rotator. Curvatures and the gradient of curvatures are the essential elements forming the driving forces. Through the idealized numerical experiments, the accuracy of the curvature-based potential is preliminarily proved.

  13. Frame dependence of world lines for directly interacting classical relativistic particles

    International Nuclear Information System (INIS)

    Molotkov, V.V.; Todorov, I.T.

    1979-06-01

    The motion of world lines is studied in the constraint Hamiltonian formulation of relativistic point particle dynamics. The particle world lines are shown to depend, in general (in the presence of interaction) on the choice of the equal time hyperplane (the only exception being the elastic scattering of rigid balls). However, the relative motion of a 2-particle system and the (classical) S-matrix are independent of this choice. This inferred that particle trajectories should not be regarded as frame independent observables in the classical theory of relativistic particles. (author)

  14. Nonlinear interaction of colliding beams in particle storage rings

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.

    1979-01-01

    When two beams of high energy particles moving in opposite directions are brought into collision, a large amount of energy is available for the production of new particles. However to obtain a sufficiently high event rate for rare processes, such as the production of the intermediate vector boson (Z 0 and W +- ), large beam currents are also required. Under this circumstance, the high charge density of one beam results in a classical electromagnetic interaction on the particles in the other beam. This very nonlinear space charge force, caled the beam-beam force, limits the total circulating charge and, thereby, the ultimate performance of the colliding ring system. The basic nature of the beam-beam force is discussed, indicating how it is quite different in the case of continuous beams, which cross each other at an angle as compared to the case of bunched beams which collide head-on. Some experimental observations on the beam-beam interaction in proton-proton and electron-positron beams are then reviewed and interpreted. An important aspect of the beam-beam problem in storage rings is to determine at what point in the analysis of the particle dynamics is it relevant to bring in the concepts of stochasticity, slow diffusion, and resonance overlap. These ideas are briefly discussed

  15. The influence of magnetostatic interactions in exchange-coupled composite particles

    DEFF Research Database (Denmark)

    Vokoun, D.; Beleggia, Marco; De Graef, M.

    2010-01-01

    Exchange-coupled composite (ECC) particles are the basic constituents of ECC magnetic recording media. We examine and compare two types of ECC particles: (i) core-shell structures, consisting of a hard-magnetic core and a coaxial soft-magnetic shell and (ii) conventional ECC particles, with a hard-magnetic...... core topped by a soft cylindrical element. The model we present describes the magnetic response of the two ECC particle types, taking into account all significant magnetic contributions to the energy landscape. Special emphasis is given to the magnetostatic (dipolar) interaction energy. We find...... that both the switching fields and the zero-field energy barrier depend strongly on the particle geometry. A comparison between the two types reveals that core-shell ECC particles are more effective in switching field reduction, while conventional ECC particles maintain a larger overall figure of merit....

  16. Direct path from microscopic mechanics to Debye shielding, Landau damping and wave-particle interaction

    International Nuclear Information System (INIS)

    Escande, D F; Elskens, Yves; Doveil, F

    2015-01-01

    The derivation of Debye shielding and Landau damping from the N-body description of plasmas is performed directly by using Newton’s second law for the N-body system. This is done in a few steps with elementary calculations using standard tools of calculus and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. On top of their well-known production of collisional transport, the repulsive deflections of electrons are shown to produce shielding, in such a way that each particle is shielded by all other ones, while keeping in uninterrupted motion. (paper)

  17. Resonant and non-resonant whistlers-particle interaction in the radiation belts

    NARCIS (Netherlands)

    E. Camporeale (Enrico)

    2015-01-01

    htmlabstractWe study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle Particle-in-Cell (PIC) simulations with a quasi-linear diffusion code. In the PIC

  18. Resonant and non-resonant whistlers-particle interaction in the radiation belts

    NARCIS (Netherlands)

    E. Camporeale (Enrico)

    2014-01-01

    htmlabstractWe study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle Particle-in-Cell (PIC) simulations with a quasi-linear diffusion code, in this context.

  19. Symmetry and the Standard Model mathematics and particle physics

    CERN Document Server

    Robinson, Matthew

    2011-01-01

    While elementary particle physics is an extraordinarily fascinating field, the huge amount of knowledge necessary to perform cutting-edge research poses a formidable challenge for students. The leap from the material contained in the standard graduate course sequence to the frontiers of M-theory, for example, is tremendous. To make substantial contributions to the field, students must first confront a long reading list of texts on quantum field theory, general relativity, gauge theory, particle interactions, conformal field theory, and string theory. Moreover, waves of new mathematics are required at each stage, spanning a broad set of topics including algebra, geometry, topology, and analysis. Symmetry and the Standard Model: Mathematics and Particle Physics, by Matthew Robinson, is the first volume of a series intended to teach math in a way that is catered to physicists. Following a brief review of classical physics at the undergraduate level and a preview of particle physics from an experimentalist's per...

  20. Process maps for plasma spray: Part 1: Plasma-particle interactions

    International Nuclear Information System (INIS)

    Gilmore, Delwyn L.; Neiser, Richard A. Jr.; Wan, Yuepeng; Sampath, Sanjay

    2000-01-01

    This is the first paper of a two part series based on an integrated study carried out at Sandia National Laboratories and the State University of New York at Stony Brook. The aim of the study is to develop a more fundamental understanding of plasma-particle interactions, droplet-substrate interactions, deposit formation dynamics and microstructural development as well as final deposit properties. The purpose is to create models that can be used to link processing to performance. Process maps have been developed for air plasma spray of molybdenum. Experimental work was done to investigate the importance of such spray parameters as gun current, auxiliary gas flow, and powder carrier gas flow. In-flight particle diameters, temperatures, and velocities were measured in various areas of the spray plume. Samples were produced for analysis of microstructures and properties. An empirical model was developed, relating the input parameters to the in-flight particle characteristics. Multi-dimensional numerical simulations of the plasma gas flow field and in-flight particles under different operating conditions were also performed. In addition to the parameters which were experimentally investigated, the effect of particle injection velocity was also considered. The simulation results were found to be in good general agreement with the experimental data

  1. Interaction between particles and grain boundaries under conditions of cooperative migration

    International Nuclear Information System (INIS)

    Marvina, L.A.; Marvin, V.B.

    1996-01-01

    The analysis of particle grain boundary interaction is performed for dispersion hardened alloys when cooperative migration takes place. It is shown that in a general case the particle experiences a Zener force and a force of grain boundary surface tension due to boundary bending between particles. Approximate numerical estimates are made for the force acting on a particle in dispersion hardened alloy Ni-HfO 2 . It is noted that during cooperative migration of particle and grain boundary the velocity of the particle is directed along the resulting force. The latter equals the sum of surface tension and Zener forces. 6 refs., 2 figs

  2. Concepts of particle physics

    International Nuclear Information System (INIS)

    Gottfried, K.; Weisskopf, V.F.

    1984-01-01

    This volume elucidates basic and well-established concepts of particle physics for the autodidact who is curious about recent developments in fundamental physics. Elementary quantum mechanics is a background must. Contents, abridged: The evolution of the particle concept before the advent of quantum mechanics. Nonrelativistic quantum mechanics and atomic physics. Relativistic quantum theory. Nuclear phenomena. Subnuclear phenomena. Index

  3. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    Science.gov (United States)

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  4. Experimental studies of elementary particle interactions at high energies. Technical progress report

    International Nuclear Information System (INIS)

    1986-01-01

    Work being done with respect to the CERN S anti ppS Collider experiment UA-6, which seeks to measure direct photon production, neutral pion and neutral eta inclusive cross sections from proton-antiproton interactions, is reported. Also reported is data analysis for alpha-alpha and p-p collisions performed at ISR. Work is being performed on the small angle silicon detector system of CDF. An experiment is described to determine the electron neutrino mass with the precision of a few electron volts by measuring the tritium beta decay energy distribution near the endpoint

  5. CrossRef Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Aguilar, M; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M  J; Bourquin, M; Bueno, E  F; Burger, J; Cadoux, F; Cai, X  D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M  J; Chang, Y  H; Chen, A  I; Chen, G  M; Chen, H  S; Cheng, L; Chou, H  Y; Choumilov, E; Choutko, V; Chung, C  H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y  M; Delgado, C; Della Torre, S; Demirköz, M  B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R  J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D  M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K  H; Habiby, M; Haino, S; Han, K  C; He, Z  H; Heil, M; Hoffman, J; Hsieh, T  H; Huang, H; Huang, Z  C; Huh, C; Incagli, M; Ionica, M; Jang, W  Y; Jinchi, H; Kang, S  C; Kanishev, K; Kim, G  N; Kim, K  S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M  S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H  T; Lee, S  C; Leluc, C; Li, H  S; Li, J  Q; Li, Q; Li, T  X; Li, W; Li, Z  H; Li, Z  Y; Lim, S; Lin, C  H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S  Q; Lu, Y  S; Luebelsmeyer, K; Luo, F; Luo, J  Z; Lv, S  S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D  C; Morescalchi, L; Mott, P; Nelson, T; Ni, J  Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X  M; Qin, X; Qu, Z  Y; Räihä, T; Rancoita, P  G; Rapin, D; Ricol, J  S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S  M; Schulz von Dratzig, A; Schwering, G; Seo, E  S; Shan, B  S; Shi, J  Y; Siedenburg, T; Son, D; Song, J  W; Sun, W  H; Tacconi, M; Tang, X  W; Tang, Z  C; Tao, L; Tescaro, D; Ting, Samuel C  C; Ting, S  M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J  P; Vitale, V; Vitillo, S; Wang, L  Q; Wang, N  H; Wang, Q  L; Wang, X; Wang, X  Q; Wang, Z  X; Wei, C  C; Weng, Z  L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R  Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y  J; Yu, Z  Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J  H; Zhang, S  D; Zhang, S  W; Zhang, Z; Zheng, Z  M; Zhu, Z  Q; Zhuang, H  L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P

    2016-01-01

    A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×105 antiproton events and 2.42×109 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500  GV, the antiproton p¯, proton p, and positron e+ fluxes are found to have nearly identical rigidity dependence and the electron e− flux exhibits a different rigidity dependence. Below 60 GV, the (p¯/p), (p¯/e+), and (p/e+) flux ratios each reaches a maximum. From ∼60 to ∼500  GV, the (p¯/p), (p¯/e+), and (p/e+) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.

  6. The physics of wave-particle interactions with applications to astrophysics

    International Nuclear Information System (INIS)

    Karimabadi, H.

    1988-01-01

    The physics of electromagnetic wave-particle interactions in the limit of a strong static magnetic field is investigated using Hamiltonian and multiple time-scale techniques. For sufficiently small wave amplitude, the system is integrable and the motion in phase space is regular. For amplitudes exceeding a threshold value, the system become nonintegrable and the particle motion in phase space becomes stochastic. The stochasticity is caused by the overlapping of the adjacent resonances. The particle dynamics in various limits is discussed using a novel graphical technique for analyzing the particle motion. It is found that for ncosα > 1, the constant Hamiltonian surfaces are topologically closed and the maximum attainable particle energy is severely limited (n is the index of refraction and α is the wave propagation angle). For ncosα ≤ 1, however, the constant Hamiltonian surfaces are open due to relativistic correlations and the particles can gain large energies. A diffusion equation analogous to the Fokker-Planck equation is derived and used to examine the effect of the wave on an ensemble of particles. The model is applied to two different space applications. (i) It is shown that electrons can be accelerated by interacting with fundamental or second harmonic of an obliquely propagating cyclotron wave. This acceleration mechanism can explain the observed high energy electrons in solar type III bursts. (ii). The Kennel and Coroniti (1984) model of the Crab nebula is reexamined including the wave effects. A new model for the Crab nebula which accounts for the presence of radio electrons is proposed and its predictions compared to observations

  7. Particle Pusher for the Investigation of Wave-Particle Interactions in the Magnetic Centrifugal Mass Filter (MCMF)

    Science.gov (United States)

    Kulp-McDowall, Taylor; Ochs, Ian; Fisch, Nathaniel

    2016-10-01

    A particle pusher was constructed in MATLAB using a fourth order Runge-Kutta algorithm to investigate the wave-particle interactions within theoretical models of the MCMF. The model simplified to a radial electric field and a magnetic field focused in the z direction. Studies on an average velocity calculation were conducted in order to test the program's behavior in the large radius limit. The results verified that the particle pusher was behaving correctly. Waves were then simulated on the rotating particles with a periodic divergenceless perturbation in the Bz component of the magnetic field. Preliminary runs indicate an agreement of the particle's motion with analytical predictions-ie. cyclic contractions of the doubly rotating particle's gyroradius.The next stage of the project involves the implementation of particle collisions and turbulence within the particle pusher in order to increase its accuracy and applicability. This will allow for a further investigation of the alpha channeling electrode replacement thesis first proposed by Abraham Fetterman in 2011. Made possible by Grants from the Princeton Environmental Institute (PEI) and the Program for Plasma Science and Technology (PPST).

  8. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    CERN Document Server

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  9. Duality and 'particle' democracy

    Science.gov (United States)

    Castellani, Elena

    2017-08-01

    Weak/strong duality is usually accompanied by what seems a puzzling ontological feature: the fact that under this kind of duality what is viewed as 'elementary' in one description gets mapped to what is viewed as 'composite' in the dual description. This paper investigates the meaning of this apparent 'particle democracy', as it has been called, by adopting an historical approach. The aim is to clarify the nature of the correspondence between 'dual particles' in the light of a historical analysis of the developments of the idea of weak/strong duality, starting with Dirac's electric-magnetic duality and its successive generalizations in the context of (Abelian and non-Abelian) field theory, to arrive at its first extension to string theory. This analysis is then used as evidential basis for discussing the 'elementary/composite' divide and, after taking another historical detour by analyzing an instructive analogy case (DHS duality and related nuclear democracy), drawing some conclusions on the particle-democracy issue.

  10. Particle interaction with the deuteron

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1974-09-01

    A study of the particle deuteron interactions at low, intermediate and high energies is presented. The differential cross section for pion deuteron scattering, near the 33 resonance, is calculated considering the Fermi motion and the off energy shell effects. We present formulae for the calculation of correction to the incoherent production cross section on deuteron arising from the multiple scattering and interference; we apply them to the case K + → K 0 π + between 1. and 5 Gev/c. is introduced. A relativistic correction to the double scattering Glauber formula and is done an application to the rho photoproduction on deuteron at high energies

  11. Wave-particle Interactions in Space and Laboratory Plasmas

    Science.gov (United States)

    An, Xin

    This dissertation presents a study of wave-particle interactions in space and in the laboratory. To be concrete, the excitation of whistler-mode chorus waves in space and in the laboratory is studied in the first part. The relaxation of whistler anisotropy instability relevant to whistler-mode chorus waves in space is examined. Using a linear growth rate analysis and kinetic particle-in-cell simulations, the electron distributions are demonstrated to be well-constrained by the whistler anisotropy instability to a marginal-stability state, consistent with measurements by Van Allen Probes. The electron parallel beta beta ∥e separates the excited whistler waves into two groups: (i) quasi-parallel whistler waves for beta∥e > 0.02 and (ii) oblique whistler waves close to the resonance cone for beta∥e cell simulations. Motivated by the puzzles of chorus waves in space and by their recognized importance, the excitation of whistler-mode chorus waves is studied in the Large Plasma Device by the injection of a helical electron beam into a cold plasma. Incoherent broadband whistler waves similar to magnetospheric hiss are observed in the laboratory plasma. Their mode structures are identified by the phase-correlation technique. It is demonstrated that the waves are excited through a combination of Landau resonance, cyclotron resonance and anomalous cyclotron resonance. To account for the finite size effect of the electron beam, linear unstable eigenmodes of whistler waves are calculated by matching the eigenmode solution at the boundary. It is shown that the perpendicular wave number inside the beam is quantized due to the constraint imposed by the boundary condition. Darwin particle-in-cell simulations are carried out to study the simultaneous excitation of Langmuir and whistler waves in a beam-plasma system. The electron beam is first slowed down and relaxed by the rapidly growing Langmuir wave parallel to the background magnetic field. The tail of the core electrons

  12. TransPlanckian Particles and the Quantization of Time

    NARCIS (Netherlands)

    Hooft, G. 't

    1999-01-01

    Trans-Planckian particles are elementary particles accelerated such that their energies surpass the Planck value. There are several reasons to believe that trans-Planckian particles do not represent independent degrees of freedom in Hilbert space, but they are controlled by the cis-Planckian

  13. Principals' Opinions of Organisational Justice in Elementary Schools in Turkey

    Science.gov (United States)

    Aydin, Inayet; Karaman-Kepenekci, Yasemin

    2008-01-01

    Purpose--This study aims to present the opinions of public elementary school principals in Turkey about the current organisational justice practices among teachers from the distributive, procedural, interactional, and rectificatory dimensions. Design/methodology/approach--The opinions of 11 public elementary school principals in Ankara about…

  14. Effective interactions, transport properties, and elementary excitations in helium three-helium four mixtures

    International Nuclear Information System (INIS)

    Hsu, W.

    1984-01-01

    A unified theory of effective interaction, elementary excitations, transport properties, and possible superfluidity of 3 He- 4 He mixtures was developed. The basic approach is patterned after that of Aldrich and Pines (AP) for pure 4 He and 3 He, in which the consequence of the strong interactions in 3 He and 4 He is described in terms of self-consistent fields. The strength of these fields are determined by physical arguments, static measurement, and sum rule considerations. A set of pseudopotentials was developed to describe the 3 He- 3 He and 3 He- 4 He interactions. In the long wavelength and zero concentration limit, these potentials are obtained by the thermodynamic argument of Bardeen, Baym, and Pines. At finite concentration and finite momentum transfer, these potentials are obtained with the aids of a scaling law and the AP pseudopotential theory. From these pseudopotentials, the scattering amplitudes, transport coefficients, and normal-superfluid transition temperature are calculated as functions of 3 He concentration. Good agreement is obtained between theory and experiment for low temperature transport coefficients, and the 3 He superfluid transition temperature is predicted to be approx. -80 K. The change in the density fluctuation excitation spectrum of 4 He atoms in 3 He- 4 He mixtures is calculated

  15. Self-assembled structures of Gaussian nematic particles.

    Science.gov (United States)

    Nikoubashman, Arash; Likos, Christos N

    2010-03-17

    We investigate the stable crystalline configurations of a nematic liquid crystal made of soft parallel ellipsoidal particles interacting via a repulsive, anisotropic Gaussian potential. For this purpose, we use genetic algorithms (GA) in order to predict all relevant and possible solid phase candidates into which this fluid can freeze. Subsequently we present and discuss the emerging novel structures and the resulting zero-temperature phase diagram of this system. The latter features a variety of crystalline arrangements, in which the elongated Gaussian particles in general do not align with any one of the high-symmetry crystallographic directions, a compromise arising from the interplay and competition between anisotropic repulsions and crystal ordering. Only at very strong degrees of elongation does a tendency of the Gaussian nematics to align with the longest axis of the elementary unit cell emerge.

  16. Elementary Thermal Operations

    DEFF Research Database (Denmark)

    Lostaglio, Matteo; Alhambra, Álvaro M.; Perry, Christopher

    2018-01-01

    To what extent do thermodynamic resource theories capture physically relevant constraints? Inspired by quantum computation, we define a set of elementary thermodynamic gates that only act on 2 energy levels of a system at a time. We show that this theory is well reproduced by a Jaynes-Cummings in......To what extent do thermodynamic resource theories capture physically relevant constraints? Inspired by quantum computation, we define a set of elementary thermodynamic gates that only act on 2 energy levels of a system at a time. We show that this theory is well reproduced by a Jaynes......-Cummings interaction in rotating wave approximation and draw a connection to standard descriptions of thermalisation. We then prove that elementary thermal operations present tighter constraints on the allowed transformations than thermal operations. Mathematically, this illustrates the failure at finite temperature...... to do so, including necessary and sufficient conditions for a given change of the population to be possible. As an example, we describe the resource theory of the Jaynes-Cummings model. Finally, we initiate an investigation into how our resource theories can be applied to Heat Bath Algorithmic Cooling...

  17. Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.

    Science.gov (United States)

    Tränkle, B; Ruh, D; Rohrbach, A

    2016-03-14

    Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.

  18. Particle physics 2012. Highlights and annual report

    International Nuclear Information System (INIS)

    Fleischer, Manfred; Kasemann, Matthias; Medinnis, Michael

    2013-01-01

    The following topics are dealt with: Particle physics at DESY, the work of the Helmholtz alliance concerning the LHC and the ILC, bringing particle physics into people's mind, research at HERA, LHC, and the linear accelerators, plasma wakefield acceleration, astroparticle physics, theory of elementary particles, research projects and scientific infrastructure. (HSI)

  19. On the relativistic quantum mechanics of two interacting spinless particles

    International Nuclear Information System (INIS)

    Rizov, V.A.; Sazdjian, H.; Todorov, I.T.

    1984-05-01

    The L 2 -scalar product ∫ PHI*(x)PSI(x) d 3 x is not appropriate for the space of states describing the center-of-mass relative motion of two relativistic particles whose interaction is given by an energy dependent quasipotential. The problem already appears in the relativistic quantum mechanics of a Klein-Gordon charged particle in an external field. We extend the methods developed for that case to study a two-particle system with an energy independent scalar interaction as well as the relativistic Coulomb problem. We write down a Poincare invariant inner product for which the eigenfunctions corresponding to different energy eigenvalues are orthogonal. We also construct a perturbative expansion for bound-state energy eigenvalues corresponding to an arbitrary energy dependent (quasipotential) correction to an unperturbed Hamiltonian with a known spectrum. The description of observables and transition probabilities for eigenvalue problems with a polynomial dependence on the spectral parameter is also discussed

  20. Quasi-particle description of strongly interacting matter: Towards a foundation

    International Nuclear Information System (INIS)

    Bluhm, M.; Kaempfer, B.; Schulze, R.; Seipt, D.

    2007-01-01

    We confront our quasi-particle model for the equation of state of strongly interacting matter with recent first-principle QCD calculations. In particular, we test its applicability at finite baryon densities by comparing with Taylor expansion coefficients of the pressure for two quark flavours. We outline a chain of approximations starting from the Φ-functional approach to QCD which motivates the quasi-particle picture. (orig.)