WorldWideScience

Sample records for interacting boson-fermion model

  1. The interacting boson-fermion model

    International Nuclear Information System (INIS)

    Iachello, F.; Van Isacker, P.

    1990-01-01

    The interacting boson-fermion model has become in recent years the standard model for the description of atomic nuclei with an odd number of protons and/or neutrons. This book describes the mathematical framework on which the interacting boson-fermion model is built and presents applications to a variety of situations encountered in nuclei. The book addresses both the analytical and the numerical aspects of the problem. The analytical aspect requires the introduction of rather complex group theoretic methods, including the use of graded (or super) Lie algebras. The first (and so far only) example of supersymmetry occurring in nature is also discussed. The book is the first comprehensive treatment of the subject and will appeal to both theoretical and experimental physicists. The large number of explicit formulas for level energies, electromagnetic transition rates and intensities of transfer reactions presented in the book provide a simple but detailed way to analyze experimental data. This book can also be used as a textbook for advanced graduate students

  2. Level Density In Interacting Boson-Fermion-Fermion Model (IBFFM) Of The Odd-Odd Nucleus 196Au

    International Nuclear Information System (INIS)

    Kabashi, Skender; Bekteshi, Sadik

    2007-01-01

    The level density of the odd-odd nucleus 196Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM total level density is fitted by Gaussian and its tail is also fitted by Bethe formula and constant temperature Fermi gas model

  3. The Fermion boson interaction within the linear sigma model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, H.C.G. [Fundacao de Ensino Superior de Sao Joao del Rei (FUNREI), MG (Brazil). Dept. de Ciencias Naturais (DCNAT)

    2000-07-01

    We study the interaction of massless bosons at finite temperature. Specifically, we calculate the self-energy of massless fermions due to interaction with massless bosons at high temperature, which is the region where thermal effects are maximal. The calculations are concentrated in the limit of vanishing fermion three momentum and after considering the effective boson dressed mass, we obtain the damping rate of the fermion. It is shown that in the limit k{sub O} <fermion acquire a thermal mass of order gT and the leading term of the fermion damping rate is of order g{sup 2} T + g{sup 3} T. (author)

  4. The Fermion boson interaction within the linear sigma model at finite temperature

    International Nuclear Information System (INIS)

    Caldas, H.C.G.

    2000-01-01

    We study the interaction of massless bosons at finite temperature. Specifically, we calculate the self-energy of massless fermions due to interaction with massless bosons at high temperature, which is the region where thermal effects are maximal. The calculations are concentrated in the limit of vanishing fermion three momentum and after considering the effective boson dressed mass, we obtain the damping rate of the fermion. It is shown that in the limit k O 2 T + g 3 T. (author)

  5. Composite antisymmetric tensor bosons in a four-fermion interaction model

    International Nuclear Information System (INIS)

    Dmitrasinovic, V.

    2000-01-01

    We discuss the phenomenological consequences of the U A (1) symmetry-breaking two-flavour four-fermion antisymmetric (AS) Lorentz tensor interaction Lagrangians. We use the recently developed methods that respect the 'duality' symmetry of this interaction. Starting from the Fierz transform of the two-flavour 't Hooft interaction (a four-fermion Lagrangian with AS tensor interaction terms augmented by Nambu and Jona-Lasinio (NJL)-type Lorentz scalar interaction responsible for dynamical symmetry breaking and quark mass generation), we find the following. (a) Four antisymmetric tensor and four AS pseudotensor bosons exist which satisfy a mass relation previously derived for scalar and pseudoscalar mesons from the 't Hooft interaction. (b) Antisymmetric tensor bosons mix with vector bosons via one-fermion-loop effective couplings so that both kinds of bosons have their masses shifted and the fermions (quarks) acquire anomalous magnetic moment form factors that explicitly violate chiral symmetry. (c) The mixing of massive AS tensor fields with vector fields leads to two sets of spin-1 states. The second set of spin-1 mesons is heavy and has not been observed. Moreover, at least one member of this second set is tachyonic, under standard assumptions about the source and strength of the AS tensor interaction. The tachyonic state also shows up as a pole in the space-like region of the electromagnetic form factors. (d) The mixing of axial-vector fields with antisymmetric tensor bosons is proportional to the (small) isospin-breaking up-down quark mass difference, so the mixing-induced mass shift is negligible. (e) The AS tensor version of the Veneziano-Witten U A (1) symmetry-breaking interaction does not lead to tachyons, or any AS tensor field propagation to leading order in N C . (author)

  6. Spin-dependent level density in interacting Boson-Fermion-Fermion model of the Odd-Odd Nucleus 196Au

    International Nuclear Information System (INIS)

    Kabashi, S.; Bekteshi, S.; Ahmetaj, S.; Shaqiri, Z.

    2009-01-01

    The level density of the odd-odd nucleus 196 Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM spin-dependent level densities show high-spin reduction with respect to Bethe formula.This can be well accounted for by a modified spin-dependent level density formula. (authors)

  7. An introduction to the interacting boson-fermion model

    International Nuclear Information System (INIS)

    Iachello, F.

    1985-01-01

    Spectra of odd-even medium mass and heavy nuclei are rather complex since they arise from the interplay between collective and single particle degrees of freedom. Their properties can be discussed in terms of simple models only in a limited number of cases, as, for example, in spherical nuclei (where the shell model can be applied in a straight forward way), or in nuclei with a rigid axially symmetric deformation (where the deformed shell model, or Nilsson model, can be used). Neither of these models, can, however, be applied to the large majority of nuclei, those forming the transitional classes. In the last few years, a model for odd-even nuclei has been introduced which is, on one side relatively simple, but which, on the other side, is able to describe the large variety of observed spectra. In this model, the collective degrees of freedom are described by bosons, while the single particle degrees of freedom are described by fermions, hence the name interacting boson-fermion model given to it. The authors describes the basic features of the model concentrating my attention to those cases that can be solved analytically, without resorting to numerical calculations. These analytical results are obtained by making use of group theory

  8. Superconductivity in mixed boson-fermion systems

    International Nuclear Information System (INIS)

    Ioffe, L.; Larkin, A.I.; Ovchinnikov, Yu.N.; Yu, L.

    1989-12-01

    The superconductivity of mixed boson-fermion systems is studied using a simple boson-fermion transformation model. The critical temperature of the superconducting transition is calculated over a wide range of the narrow boson band position relative to the Fermi level. The BCS scenario and boson condensation picture are recovered in two limiting cases of high and low positions of boson band, respectively, with modifications due to boson-fermion interaction. (author). 11 refs

  9. Localized bound states of fermions interacting via massive vector bosons

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.

    1988-11-01

    A model for composite consisting of fermions with internal degrees of freedom interacting via intermediate vector bosons (IVB) is constructed. We find highly localized, low-mass bound states in the Hartree-Fock approximation. We investigate the dependence of these states as function of the coupling constant and vector boson mass. In the limit of infinite vector boson mass the interaction is described by Fermi-type contact forces. (orig.)

  10. Isotropization in Bianchi type-I cosmological model with fermions and bosons interacting via Yukawa potential

    International Nuclear Information System (INIS)

    Ribas, M O; Samojeden, L L; Devecchi, F P; Kremer, G M

    2015-01-01

    In this work we investigate a model for the early Universe in a Bianchi type-I metric, where the sources of the gravitational field are a fermionic and a bosonic field, interacting through a Yukawa potential, following the standard model of elementary particles. It is shown that the fermionic field has a negative pressure, while the boson has a small positive pressure. The fermionic field is the responsible for an accelerated regime at early times, but since the total pressure tends to zero for large times, a transition to a decelerated regime occurs. Here the Yukawa potential answers for the duration of the accelerated regime, since by decreasing the value of its coupling constant the transition accelerated–decelerated occurs in later times. The isotropization which occurs for late times is due to the presence of the fermionic field as one of the sources of the gravitational field. (paper)

  11. An exact fermion-pair to boson mapping

    International Nuclear Information System (INIS)

    Johnson, C.W.

    1993-01-01

    I derive in a novel fashion exact formulas for the calculation of general matrix elements, including the overlap (norm) matrix, between states constructed from fermion pairs. Mapping the fermion pairs to bosons, I show how to construct finite and exact (in the sense of preserving matrix elements) boson representations of the norm operator and one- and two-fermion operators. This may lead to a microscopic basis for the Interacting Boson Model, as well as new truncation schemes for the nuclear shell model

  12. Boson representations of fermion systems: Proton-neutron systems

    International Nuclear Information System (INIS)

    Sambataro, M.

    1988-01-01

    Applications of a procedure recently proposed to construct boson images of fermion Hamiltonians are shown for proton-neutron systems. First the mapping from SD fermion onto sd boson spaces is discussed and a Q/sub π/xQ/sub ν/ interaction investigated. A Hermitian one-body Q boson operator is derived and analytical expressions for its coefficients are obtained. A (Q/sub π/+Q/sub ν/)x(Q/sub π/+Q/sub ν/) interaction is, then, studied for particle-hole systems and the connections with the SU/sup */(3) dynamical symmetry of the neutron-proton interacting boson model are discussed. Finally, an example of mapping from SDG onto sdg spaces is analyzed. Fermion spectra and E2 matrix elements are well reproduced in the boson spaces

  13. On the exchange term of the interacting boson-fermion hamiltonian

    International Nuclear Information System (INIS)

    Gelberg, A.

    1983-01-01

    The exchange term of the Interacting Boson Fermion Model is investigated by using I. Talmi's method based on the shell model. A quadrupole operator of a three-proton system is formed; the protons are quadrupole-coupled to the neutron-bosons. Seniority conserving and seniority non conserving terms are considered. The particle number dependence of the parameters is investigated for the single-j shell. The relation between exchange and direct, seniority non conserving terms is examined. Approximate formulas are given for the multi-j shell. (orig.)

  14. Interacting fermions and bosons with definite total momentum

    International Nuclear Information System (INIS)

    Alon, Ofir E.; Streltsov, Alexej I.; Cederbaum, Lorenz S.

    2005-01-01

    Any exact eigenstate with a definite momentum of a many-body Hamiltonian can be written as an integral over a symmetry-broken function Φ. For two particles, we exactly express Φ in terms of (single-particle) orbitals for all energy levels and any interparticle interaction. Especially for the ground state, Φ is given by the simple Hartree-Fock and Hartree Ansaetze for fermions and bosons, respectively. Implications for several and many particles as well as a numerical example for interacting bosons are provided

  15. Two-dimensional thermofield bosonization II: Massive fermions

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2008-01-01

    We consider the perturbative computation of the N-point function of chiral densities of massive free fermions at finite temperature within the thermofield dynamics approach. The infinite series in the mass parameter for the N-point functions are computed in the fermionic formulation and compared with the corresponding perturbative series in the interaction parameter in the bosonized thermofield formulation. Thereby we establish in thermofield dynamics the formal equivalence of the massive free fermion theory with the sine-Gordon thermofield model for a particular value of the sine-Gordon parameter. We extend the thermofield bosonization to include the massive Thirring model

  16. Stability condition of a strongly interacting boson-fermion mixture across an interspecies Feshbach resonance

    International Nuclear Information System (INIS)

    Yu Zengqiang; Zhai Hui; Zhang Shizhong

    2011-01-01

    We study the properties of dilute bosons immersed in a single-component Fermi sea across a broad boson-fermion Feshbach resonance. The stability of the mixture requires that the bare interaction between bosons exceeds a critical value, which is a universal function of the boson-fermion scattering length, and exhibits a maximum in the unitary region. We calculate the quantum depletion, momentum distribution, and the boson contact parameter across the resonance. The transition from condensate to molecular Fermi gas is also discussed.

  17. Inertial parameters in the interacting boson fermion approximation

    International Nuclear Information System (INIS)

    Dukelsky, J.; Lima, C.

    1986-06-01

    The Hartree-Bose-Fermi and the adiabatic approximations are used to derive analytic formulas for the moment of inertia and the decoupling parameter of the interacting boson fermion approximation for deformed systems. These formulas are applied to the SU(3) dynamical symmetry, obtaining perfect agreement with the exact results. (Authors) [pt

  18. Boson-fermion mixtures inside an elongated cigar-shaped trap

    International Nuclear Information System (INIS)

    Akdeniz, Z; Vignolo, P; Tosi, M P

    2005-01-01

    We present mean-field calculations of the equilibrium state in a gaseous mixture of bosonic and spin-polarized fermionic atoms with repulsive or attractive interspecies interactions, confined inside a cigar-shaped trap under conditions such that the radial thickness of the two atomic clouds is approaching the magnitude of the s-wave scattering lengths. In this regime, the kinetic pressure of the fermionic component is dominant. Full demixing under repulsive boson-fermion interactions can occur only when the number of fermions in the trap is below a threshold, and collapse under attractive interactions is suppressed within the range of validity of the mean-field model. Specific numerical illustrations are given for values of system parameters obtaining in 7 Li- 6 Li clouds

  19. The comparison of bosonic and fermionic descriptions of collective nuclear structure

    International Nuclear Information System (INIS)

    Baktybaev, K.

    2004-01-01

    Full text: Bosonic and fermionic descriptions for the nuclear many body system are complementary. The archetypical bosonic algebra is the original interacting boson model [1]. Without distinguishing between proton and neutron bosons, it gave rise to successful phenomenology for medium and heavy nuclei, and is built from the concept of dynamical symmetry whose genesis is a group chain. The fermionic algebra on the other hand, such as the fermion dynamical symmetry model (FDSM) [2], is necessarily more complex because it originates from the shell structure and uses protons and neutrons as building blocks. We have presented two complementary pictures of bosons and fermions to describe the normal and the exotic states. We find that the bosonic concepts of symmetry and mixed- symmetry can subtly be interpreted within the fermion picture as well. However, there is one important dichotomy. In the fermion description, the n-p quadrupole interaction is responsible for splitting these two type of states and produces strong M1 transitions. This phenomenon is in close analogy to the L-S splitting of orbital and spin spaces. The examples given in the paper show that many 2 + normal and exotic states are in fact 'partners' for n-p quadrupole coupling and there fore must split in its presence. We would like to emphasize that the proper placement of the positions of the exotic states and the prediction of their respective transitions must be another stringent constraint on the effective interactions of the Hamiltonian

  20. Fermion to boson mappings revisited

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Johnson, C.W.

    1996-01-01

    We briefly review various mappings of fermion pairs to bosons, including those based on mapping operators, such as Belyaev-Zelevinskii, and those on mapping states, such as Marumori; in particular we consider the work of Otsuka-Arima-Iachello, aimed at deriving the Interacting Boson Model. We then give a rigorous and unified description of state-mapping procedures which allows one to systematically go beyond Otsuka-Arima-Iachello and related approaches, along with several exact results. (orig.)

  1. Boson mappings for elementary excitations in fermion systems

    International Nuclear Information System (INIS)

    Geyer, H.B.

    1981-07-01

    The boson mapping formalism is presented with a dual purpose in mind. It is first demonstrated to constitute a microscopic formalism leading to the introduction of collective variables into the many-fermion problem in an exact and consistent manner. Secondly it is shown to present ideal exploring ground with a view to the reconciliation of phenomenological collective nuclear models and microscopic considerations. Of the various existing possibilities for the construction of a boson mapping, we single out the finite, non-unitary Dyson-Maleev mapping, emphasising the convenience of its finiteness, especially in investigations concerning formal aspects of the boson mapping formalism. A contribution to the theory of Dyson-Maleev mappinigs for fermion operators is made by introducing the construction of a consistent mapping for single fermion operators which is free of limitations previously imposed on such a mapping. In various fermion models studies it is shown how the Dyson-Maleev mapping can be utilized to obtain equivalent boson models which, however, can be restricted to yield information about the collective subspace only. As far as phenomenological models are concerned, some new light from a microscopic viewpiont is shed on the assumption underlying the interacting boson model as well as on the calculational procedures usually adopted in this model. The most important observation concerns the assumed structure of the IBM hamiltonian where a non-hermitian form, rather than the existing hermitian form, is indicated

  2. Fermion boson metamorphosis in field theory

    International Nuclear Information System (INIS)

    Ha, Y.K.

    1982-01-01

    In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered

  3. Four fermion interaction near four dimensions

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    1991-01-01

    It is known that field theories with attractive four-point fermion interactions can produce scalar bound states: Fermion mass generation by spontaneous chiral symmetry breaking associated with such fermion bound states provides an attractive mechanism for building models of composite Higgs bosons. The ratio of fermion and boson masses can then be predicted while it seems to be a free parameter in similar models where a boson field explicitly appears in the action. The main problem is that the corresponding models are renormalizable only in two dimensions, in contrast with models with explicit bosons. Many fermion models with four-point interaction are asymptotically free in two dimensions and then behave also like renormalizable models in higher dimensions, at least within the framework of some 1/N expansion. On the other hand mass ratio predictions also follow in the models with explicit bosons, when they have an IR fixed point, from the additional natural assumption that coupling constants have generic values at the cut-off scale. To the model with a four fermion interaction one can associate an effective model containing an additional scalar field, renormalizable in four dimensions, which has the same large distance, small momentum physics, at least to all orders in some 1/N expansion. Even the leading corrections corresponding to irrelevant or marginal operators are identical. This property is important in four dimensions where the IR fixed point coupling constants vanish: The correction amplitudes can be varied by changing the coupling constants in the renormalizable model and the cut-off function in the perturbatively non-renormalizable model. We shall consider here for definiteness only the Gross-Neveu model but it will be clear that the arguments are more general

  4. Bosonization of free Weyl fermions

    Science.gov (United States)

    Marino, E. C.

    2017-03-01

    We generalize the method of bosonization, in its complete form, to a spacetime with 3  +  1 dimensions, and apply it to free Weyl fermion fields, which thereby, can be expressed in terms of a boson field, namely the Kalb-Ramond anti-symmetric tensor gauge field. The result may have interesting consequences both in condensed matter and in particle physics. In the former, the bosonized form of the Weyl chiral currents provides a simple explanation for the angle-dependent magneto-conductance recently observed in materials known as Weyl semimetals. In the latter, conversely, since electrons can be thought of as a combination of left and right Weyl fermions, our result suggests the possibility of a unified description of the elementary particles, which undergo the fundamental interactions, with the mediators of such interactions, namely, the gauge fields. This would fulfill the pioneering attempt of Skyrme, to unify the particles with their interaction mediators (Skyrme 1962 Nucl. Phys. 31 556).

  5. Energy Level Statistics of SO(5) Limit of Super-symmetry U(6/4) in Interacting Boson-Fermion Model

    International Nuclear Information System (INIS)

    Bai Hongbo; Zhang Jinfu; Zhou Xianrong

    2005-01-01

    We study the energy level statistics of the SO(5) limit of super-symmetry U(6/4) in odd-A nucleus using the interacting boson-fermion model. The nearest neighbor spacing distribution (NSD) and the spectral rigidity (Δ 3 ) are investigated, and the factors that affect the properties of level statistics are also discussed. The results show that the boson number N is a dominant factor. If N is small, both the interaction strengths of subgroups SO B (5) and SO BF (5) and the spin play important roles in the energy level statistics, however, along with the increase of N, the statistics distribution would tend to be in Poisson form.

  6. EM Transition Sum Rules Within the Framework of sdg Proton-Neutron Interacting Boson Model, Nuclear Pair Shell Model and Fermion Dynamical Symmetry Model

    Science.gov (United States)

    Zhao, Yumin

    1997-07-01

    By the techniques of the Wick theorem for coupled clusters, the no-energy-weighted electromagnetic sum-rule calculations are presented in the sdg neutron-proton interacting boson model, the nuclear pair shell model and the fermion-dynamical symmetry model. The project supported by Development Project Foundation of China, National Natural Science Foundation of China, Doctoral Education Fund of National Education Committee, Fundamental Research Fund of Southeast University

  7. Scaling and crossover in a fermion-boson mixture

    International Nuclear Information System (INIS)

    Singh, K.K.

    1987-01-01

    Thermodynamic behaviour of a mixture of weakly interacting fermions and bosons is investigated in (4 - ε) dimensions by the renormalization group method with a view to study scaling and crossover properties of the system in the tricritical region. Conventional tricritical scaling, first found to breakdown for a classical infinite-component model, is seen to do so more spectacularly in the case of the mixture. Whereas in the infinite-component model, conventional scaling holds in the ordered and disordered phases separately (i.e. with different tricritical exponents), no such thing is possible in either of the phases of the mixture. The breakdown of scaling in the mixture is associated with the dimensionless strength v 6 of the 6-point interaction in the effective Hamiltonian which causes the parameters of the renormalized Hamiltonian to depend on two combinations of scaling fields rather than one. The strength v 6 is a quantum mechanical parameter being proportional in 3 dimensions to (b 3 /λ T 4 K F ) where λ T , K F and b denote, respectively, the boson thermal wavelength, the Fermi momentum of the fermion component and the scattering length associated with the fermion-boson interaction. The square root of this quantity agrees with the non-universality parameter which was found to characterize tricritical amplitude ratios in 3 dimensions in an earlier work. (author). 19 refs, 8 figs

  8. Particle-hole symmetry in the interacting-boson model: Fermion and boson aspects

    International Nuclear Information System (INIS)

    Johnson, A.B.; Vincent, C.M.

    1985-01-01

    We show that the S-D subspaces, which are used in the Otsuka-Arima-Iachello microscopic derivation of the interacting-boson model, form a particle-hole-symmetric family. Consequently, there exist particle-hole-symmetric prescriptions for determining the structure of the S and D pairs. This result holds independently of whether the Hamiltonian conserves generalized seniority. Nevertheless, there are deviations from particle-hole symmetry when boson matrix elements involving more than two d bosons are calculated in lowest order using the boson mapping procedure of Otsuka, Arima, and Iachello. These deviations are used to estimate the inaccuracies introduced by the lowest-order mapping

  9. A numerical algorithm for modelling boson-fermion stars in dilatonic gravity

    CERN Document Server

    Boyadzhiev, T L; Todorov, M D; Yazadjiev, S S

    2002-01-01

    We investigate numerically the class of models of the static spherically symmetric boson-fermion stars in the scalar-tensor theory of gravity with massive dilaton field. The proper mathematical model of such stars is interpreted as a nonlinear two-parametric eigenvalue problem. The first of the parameters is the unknown internal boundary (the radius of the fermionic part of the star) R sub s , and the second one represents the frequency OMEGA of the time oscillations of the boson field. To solve this problem, the whole space [0, infinity) is splitted into two domains: internal [0, R sub s] (inside the star) and external [R sub s , infinity) (outside the star). In each domain the physical model leads to two nonlinear boundary value problems in respect to metric functions, the functions describing the fermionic and bosonic matter, and the dilaton field. These boundary value problems have different dimensions inside and outside the star, respectively. The solutions in these regions are obtained separately and ma...

  10. Bosonic behavior of entangled fermions

    DEFF Research Database (Denmark)

    C. Tichy, Malte; Alexander Bouvrie, Peter; Mølmer, Klaus

    2012-01-01

    Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi-composite-boson st......Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi...

  11. Even zinc isotopes in the interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; McCullen, J.D.; Duval, P.D.; Barrett, B.R. (Arizona Univ., Tucson (USA). Dept. of Physics)

    1982-11-01

    The interacting boson model is applied to the even zinc isotopes /sup 62/Zn-/sup 72/Zn. Two boson configurations are used to account for the behaviour of excited O/sup +/ states; one is the usual particle boson configuration and the other a configuration representing proton excitation from the /sup 56/Ni core. The parameter variation in the model is constrained as much as possible to agree with calculations from a non-degenerate multi-shell fermion basis for the bosons. Energy levels, quadrupole moments and B(E2) values are calculated. Values obtained compare favourably with experiment and with other calculations.

  12. Seniority mappings for probing phenomenological nuclear boson models

    International Nuclear Information System (INIS)

    De Kock, E.A.

    1988-12-01

    The interacting boson model (IBM) and interacting boson-fermion model (IBFM) are discussed. The main ideas of boson mapping of fermion systems are introduced using Holstein-Primakoff and Dyson-Maleev mappings of angular momentum operators. Generalized Dyson-Maleev (GDM) and Holstein-Primakoff (GHP) mappings are included. In fermoin problems, the degrees of freedom of collective motion are described by a collective subalgebra of the complete bifermion subalgebra. GDM mapping of Sp(6) generators, the transformation to collect bosons and truncation to these bosons led to collective sd-boson realization of Sp(6) algebra. This resulted in an IBM-like description of the collective subspace. Non-hermitian and existing hermitian forms are indicated in the assumed structure of an IBM Hamiltonian Boson mapping based on seniority considerations and involving single-j shell approximations of the shell model are examined. One method utilized truncation of a shell model space to a space spanned by monopole (S) and quadrupole (D) pairs. The association between states in truncated fermion and sd-boson spaces constructs boson images of fermion operators by equating boson and fermion matrix elements. To obtain boson images with IBM-like structures, a zero-order approximation was adopted. This approximation retains only N-body terms in the images of N-body fermion operators. A similarity transformation re-expressing GDM images of single-j shell fermion operators in seniority bosons was applied to the GDM image of a general shell model Hamiltonian. Numerical results for the surface-delta interaction show that truncation to s- and d-bosons in the seniority image of a two-body operator is not allowed if N≥2. This transformation was extended to odd fermion systems and applied to the image of the quadrupole pairing interaction. 79 refs., 3 figs., 4 tabs

  13. Interacting fermions on a random lattice

    International Nuclear Information System (INIS)

    Perantonis, S.J.; Wheater, J.F.

    1988-01-01

    We extend previous work on the properties of the Dirac lagrangian on two-dimensional random lattices to the case where interaction terms are included. Although for free fermions the chiral symmetry of the doubles is spontaneously broken by their interaction with the lattice and tehy decouple from long-distance physics, our results in this paper show that all is undone by quantum corrections in an interacting field theory and taht the end result is very similar to what is found with Wilson fermions. Two field-theoretical models with interacting fermions are studied by perturbation expansion in the field theory coupling constant. These are a model with one fermion and one boson species interacting via a scalar Yukawa coupling and the massive Thirring model. It is shown that on the random lattice ultraviolet finite diagrams and finite parts of ultraviolet divergent diagrams have the correct continuum limit. Ultraviolet divergent parts can be removed by the same renormalisation procedure as in the continuum, but do not exhibit the same dependence on the lagrangian mass. In the case of the massive Thirring model this causes a fermion mass correction of order the cut-off scale, which breaks the chiral symmetry of the remaining light fermion; there is consequently a fine-tuning problem. In the context of the same model we discuss the effect of the Goldstone boson associated with the spontaneous breakdown of the chiral symmetry of the doubles on two-dimensional models with vector couplings. (orig.)

  14. Fermions and bosons : a 'spinless' approach

    International Nuclear Information System (INIS)

    Oliveira, P.M.C. de; Ribeiro, S.C.

    1980-07-01

    The fundamental difference between fermions and bosons is presented. The treatment used is based only on indistinguishability and its related implications on interference, with no mention to spin. Comparison between indistinguishable (fermions or bosons) and distinguishable identical particles are also made, yielding the enhancement (bosons) or inhibition (fermions) factors which determine the quantum distribution equations. (Author) [pt

  15. Collective Interference of Composite Two-Fermion Bosons

    DEFF Research Database (Denmark)

    Tichy, Malte; Bouvrie, Peter Alexander; Mølmer, Klaus

    2012-01-01

    The composite character of two-fermion bosons manifests itself in the interference of many composites as a deviation from the ideal bosonic behavior. A state of many composite bosons can be represented as a superposition of different numbers of perfect bosons and fermions, which allows us...... to provide the full Hong–Ou–Mandel-like counting statistics of interfering composites. Our theory quantitatively relates the deviation from the ideal bosonic interference pattern to the entanglement of the fermions within a single composite boson....

  16. Fermion electric dipole moments induced by P- and T-odd WWγ interactions in the minimal supersymmetric standard model and multi-Higgs-boson model

    International Nuclear Information System (INIS)

    West, T.H.

    1994-01-01

    We calculate fermion electric dipole moments generated by P- and T-odd WWγ interactions in the supersymmetry and multi-Higgs-boson models without using an approximation first introduced by Marciano and Queijeiro. In essence, this approximation consists of ignoring the details of the high energy physics responsible for the W electric dipole moment. For the minimal supersymmetry model, our more exact results are roughly three times those obtained from the simplest application of the above-mentioned approximation for gaugino masses larger than m W . However, if the gaugino masses are approx-lt m W , our results are less than would be expected from the Marciano-Queijeiro estimate. In part, because of this suppression, we discover that the experimental bounds on d n place no restrictions on either the allowed values of d W or on the permitted masses of the minimal supersymmetry model. This contradicts the findings of Vendramin who used the Marciano-Queijeiro results to deduce such prohibited regions of parameter space and mildly improves the prospects of observing a nonzero W-boson electric dipole moment in accelerator experiments. In the case of the multi-Higgs-boson model, we again find fermion electric dipole moments that are three times those expected from a simple application of the Marciano-Queijeiro technique. In addition, when this result is combined with a complete two-loop calculation of the W electric dipole moment, we find that the fermion electric dipole moments generated in this way are approximately 30 times those expected from a previous calculation by He and McKellar

  17. Unified theory of fermion pair to boson mappings in full and truncated spaces

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Johnson, C.W.

    1995-01-01

    After a brief review of various mappings of fermion pairs to bosons, we rigorously derive a general approach. Following the methods of Marumori and Otsuka, Arima, and Iachello, our approach begins with mapping states and constructs boson representations that preserve fermion matrix elements. In several cases these representations factor into finite, Hermitian boson images times a projection or norm operator that embodies the Pauli principle. We pay particular attention to truncated boson spaces, and describe general methods for constructing Hermitian and approximately finite boson image Hamiltonians. This method is akin to that of Otsuka, Arima, and Iachello introduced in connection with the interacting boson model, but is more rigorous, general, and systematic

  18. Component separation in harmonically trapped boson-fermion mixtures

    DEFF Research Database (Denmark)

    Nygaard, Nicolai; Mølmer, Klaus

    1999-01-01

    We present a numerical study of mixed boson-fermion systems at zero temperature in isotropic and anise tropic harmonic traps. We investigate the phenomenon of component separation as a function of the strength ut the interparticle interaction. While solving a Gross-Pitaevskii mean-field equation ...... for the boson distribution in the trap, we utilize two different methods to extract the density profile of the fermion component; a semiclassical Thomas-Fermi approximation and a quantum-mechanical Slater determinant Schrodinger equation....

  19. Super boson-fermion correspondence

    International Nuclear Information System (INIS)

    Kac, V.G.; Leur van de, J.W.

    1987-01-01

    Since the pioneering work of Skyrme, the boson-fermion correspondence has been playing an increasingly important role in 2-dimensional quantum field theory. More recently, it has become an important ingredient in the work of the Kyoto school on the KP hierarchy of soliton equations. In the present paper we establish a super boson-fermion correspondence, having in mind its applications to super KP hierarchies

  20. Exact results for the spectra of bosons and fermions with contact interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mashkevich, Stefan [Schroedinger, 120 West 45th St., New York, NY 10036 (United States)]. E-mail: mash@mashke.org; Matveenko, Sergey [Landau Institute for Theoretical Physics, Kosygina Str. 2, 119334 Moscow (Russian Federation)]. E-mail: matveen@landau.ac.ru; Ouvry, Stephane [Laboratoire de Physique Theorique et Modeles Statistiques, Unite de Recherche de l' Universite Paris 11 associee au CNRS, UMR 8626., Bat. 100, Universite Paris-Sud, 91405 Orsay (France)]. E-mail: ouvry@lptms.u-psud.fr

    2007-02-19

    An N-body bosonic model with delta-contact interactions projected on the lowest Landau level is considered. For a given number of particles in a given angular momentum sector, any energy level can be obtained exactly by means of diagonalizing a finite matrix: they are roots of algebraic equations. A complete solution of the three-body problem is presented, some general properties of the N-body spectrum are pointed out, and a number of novel exact analytic eigenstates are obtained. The FQHE N-fermion model with Laplacian-delta interactions is also considered along the same lines of analysis. New exact eigenstates are proposed, along with the Slater determinant, whose eigenvalues are shown to be related to Catalan numbers.

  1. Single nuclear transfer strengths and sum rules in the interacting boson-fermion model and in the spectral averaging theory

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    1991-01-01

    In the interacting boson-fermion model of collective nuclei, in the symmetry limits of the model appropriate for vibrational, rotational and γ-unstable nuclei, for one-particle transfer, the selection rules, model predictions for the allowed strengths and comparison of theory with experiment are briefly reviewed. In the spectral-averaging theory, with the specific example of orbit occupancies, the smoothed forms (linear or better ratio of Gaussians) as determined by central limit theorems, how they provide a good criterion for selecting effective interactions and the convolution structure of occupancy densities in huge spaces are described. Complementary information provided by nuclear models and statistical laws is broughtout. (author). 63 refs., 5 figs

  2. The microscopic structure and group theory of the interacting boson model

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1980-01-01

    The chains of groups used in calssifying states of the IBM are compared with the chains used in a composite model with j = 3/2 fermion pairs. Many similarities are found, along with differences due to Pauli principle effects in continuum fermion pairs. The classifications are shown to be characterized by several different seniority numbers, which are physically similar but formally different in the two cases because fermion pair and boson pair states used to define seniority in each model correspond to single bosons and four-fermion clusters, respectively, in the other model. The SO(6) and SO(5) groups which define boson pair seniorities in the boson sextet model are isomorphic, respectively, to SU(4) and Sp(4) which have simple physical interpretations in fermion quartet models. (orig.)

  3. SDG Fermion-Pair Algebraic SO(12) and Sp(10) Models and Their Boson Realizations

    Science.gov (United States)

    Navratil, P.; Geyer, H. B.; Dobes, J.; Dobaczewski, J.

    1995-11-01

    It is shown how the boson mapping formalism may be applied as a useful many-body tool to solve a fermion problem. This is done in the context of generalized Ginocchio models for which we introduce S-, D-, and G-pairs of fermions and subsequently construct the sdg-boson realizations of the generalized Dyson type. The constructed SO(12) and Sp(10) fermion models are solved beyond the explicit symmetry limits. Phase transitions to rotational structures are obtained also in situations where there is no underlying SU(3) symmetry.

  4. The electro-magnetic transition properties in the microscopic SDG interacting boson model

    International Nuclear Information System (INIS)

    Han Guangze; Liu Yong; Sang Jianping

    1996-01-01

    A bosonic method and the corresponding fermionic one for studying the electro-magnetic transition properties of nucleus are presented in the microscopic sdg interacting boson model. The methods are applied to the nucleus 60 Ni. Detailed discussions are made with the calculated results

  5. Cosmic expansion from boson and fermion fields

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2011-01-01

    This paper consists in analyzing an action that describes boson and fermion fields minimally coupled to the gravity and a common matter field. The self-interaction potentials of the fields are not chosen a priori but from the Noether symmetry approach. The Noether forms of the potentials allow the boson field to play the role of dark energy and matter and the fermion field to behave as standard matter. The constant of motion and the cyclic variable associated with the Noether symmetry allow the complete integration of the field equations, whose solution produces a universe with alternated periods of accelerated and decelerated expansion.

  6. Finite boson mappings of fermion systems

    International Nuclear Information System (INIS)

    Johnson, C.W.; Ginocchio, J.N.

    1994-01-01

    We discuss a general mapping of fermion pairs to bosons that preserves Hermitian conjugation, with an eye towards producing finite and usable boson Hamiltonians that approximate well the low-energy dynamics of a fermion Hamiltonian

  7. SDG fermion-pair algebraic SO(12) and Sp(10) models and their boson realizations

    International Nuclear Information System (INIS)

    Navatil, P.; Geyer, H.B.; Dobes, J.

    1995-01-01

    It is shown how the boson mapping formalism may be applied as a useful many-body tool to solve a fermion problem. This is done in the context of generalized Ginocchio models for which the authors introduce S-, D-, and G-pairs of fermions and subsequently construct the sdg-boson realizations of the generalized Dyson type. The constructed SO(12) and Sp(10) fermion models are solved beyond the explicit symmetry limits. Phase transitions to rotational structures are obtained also in situations where there is no underlying SU(3) symmetry. 34 refs., 5 figs., 2 tabs

  8. From the shell model to the interacting boson model

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Johnson, C.W.

    1994-01-01

    Starting from a general, microscopic fermion-pair-to-boson mapping of a complete fermion space that preserves Hermitian conjugation, we show that the resulting infinite and non-convergent boson Hamilitonian can be factored into a finite (e.g., a 1 + 2-body fermion Hamiltonian is mapped to a 1 + 2-body boson Hamiltonian) image Hamilitonian times the norm operator, and it is the norm operator that is infinite and non-convergent. We then truncate to a collective boson space and we give conditions under which the exact boson images of finite fermion operators are also finite in the truncated basis

  9. Calculation of CWKB envelope in boson and fermion productions

    International Nuclear Information System (INIS)

    Biswas, S.; Chowdhury, I.

    2007-01-01

    We present the calculation of envelope of boson and of both low-and high-mass fermion production at the end of inflation when the coherently oscillating inflations decay into bosons and fermions. We consider three different models of inflation and use CWKB technique to calculate the envelope to understand the structure of resonance band formation. We observe that though low-mass fermion production is not effective in preheating because of Pauli blocking, it is quite probable for high-mass fermion to take part in pre heating. (author)

  10. Calculation of CWKB envelope in boson and fermion productions

    Indian Academy of Sciences (India)

    Abstract. We present the calculation of envelope of boson and of both low- and high- mass fermion production at the end of inflation when the coherently oscillating inflatons decay into bosons and fermions. We consider three different models of inflation and use. CWKB technique to calculate the envelope to understand the ...

  11. Application of the interacting boson model to collective states in medium heavy nuclei

    International Nuclear Information System (INIS)

    Kaup, U.

    1983-01-01

    In the framework of the interacting boson model a systematic description of even-even isotopes of the medium heavy elements selenium, krypton, and strontium is given. The number of the free parameters could be kept very small by the determination of the physically relevant terms of the general model Hamiltonian. The variation of the collectivity from spherical to deformed, γ-soft nuclei could be mainly derived from the influence of the number of valence nucleons. All model parameters vary smoothly as function of the valence particle number and in qualitative agreement with predictions of a simplified microscopical model. Odd nuclei were studied in the framework of the interacting boson-fermion model. Beside the phenomenological description of odd-even rubidium, technetium, and silver isotope this part of the thesis is occupied mainly by the microscopical theory of the boson-fermion model. The effect of the antisymmetrization of the last, odd particle with the core nucleons is discussed. The microscopic theory is supplemented by the derivation of the so called Pauli term from the interaction of identical nucleons. (orig./HSI) [de

  12. Many-particle interference beyond many-boson and many-fermion statistics

    International Nuclear Information System (INIS)

    Tichy, Malte C; Tiersch, Markus; Mintert, Florian; Buchleitner, Andreas

    2012-01-01

    Identical particles exhibit correlations even in the absence of inter-particle interaction, due to the exchange (anti)symmetry of the many-particle wavefunction. Two fermions obey the Pauli principle and anti-bunch, whereas two bosons favor bunched, doubly occupied states. Here, we show that the collective interference of three or more particles leads to much more diverse behavior than expected from the boson–fermion dichotomy known from quantum statistical mechanics. The emerging complexity of many-particle interference is tamed by a simple law for the strict suppression of events in the Bell multiport beam splitter. The law shows that counting events are governed by widely species-independent interference, such that bosons and fermions can even exhibit identical interference signatures, while their statistical character remains subordinate. Recent progress in the preparation of tailored many-particle states of bosonic and fermionic atoms promises experimental verification and applications in novel many-particle interferometers. (paper)

  13. Remarks on Fermion-Boson equivalence in three dimensions

    International Nuclear Information System (INIS)

    Dutra, A. de Souza; Natividade, C.P.

    1998-06-01

    Starting from a decomposition of the self-dual field in (2+1) dimensions, we build up an alternative quantum theory which consists of a self-dual model coupled to a Maxwell-generalized Chern-Simons theory. We discuss the fermion-boson equivalence of this quantum theory by comparing it to the Thirring model. Using these results we were able to compute the mass of the bosonized fermions up to third order in (1/m). Some problems related to the number of poles of the effective propagator are also addressed. (author)

  14. Remarks on Fermion-Boson equivalence in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, A de Souza [UNESP, Guaratingueta, SP (Brazil); Natividade, C P [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica

    1998-06-01

    Starting from a decomposition of the self-dual field in (2+1) dimensions, we build up an alternative quantum theory which consists of a self-dual model coupled to a Maxwell-generalized Chern-Simons theory. We discuss the fermion-boson equivalence of this quantum theory by comparing it to the Thirring model. Using these results we were able to compute the mass of the bosonized fermions up to third order in (1/m). Some problems related to the number of poles of the effective propagator are also addressed. (author) 13 refs.

  15. Particles and holes equivalence for generalized seniority and the interacting boson model

    International Nuclear Information System (INIS)

    Talmi, I.

    1982-01-01

    An apparent ambiguity was recently reported in coupling either pairs of identical fermions or hole pairs. This is explained here as due to a Hamiltonian whose lowest eigenstates do not have the structure prescribed by generalized seniority. It is shown that generalized seniority eigenstates can be equivalently constructed from correlated J = 0 and J = 2 pair states of either particles or holes. The interacting boson model parameters calculated can be unambiguously interpreted and then are of real interest to the shell model basis of interacting boson model

  16. A fermion-boson composite model of quarks and leptons

    Directory of Open Access Journals (Sweden)

    Yoshio Koide

    1983-01-01

    Full Text Available Quark and lepton masses and flavor-mixing angles are estimated on the basis of a fermion-boson composite model where the (u, d, (c, s and (t, b quarks are assigned to the diagonal elements π8, η8 and η1, respectively, in3 × 3* = 8 + 1 of the SU(3-generation symmetry.

  17. Neutron-capture gamma-ray study of levels in 135Ba and description of nuclear levels in the interacting-boson-fermion model

    International Nuclear Information System (INIS)

    Chrien, R.E.; Koene, B.K.S.; Stelts, M.L.; Meyer, R.A.; Brant, S.; Paar, V.; Lopac, V.

    1993-01-01

    We have performed neutron-capture gamma-ray studies on natural and enriched targets of 134 Ba in order to investigate the nuclear levels of 135 Ba. The low-energy level spectra were compared with the calculations using the interacting-boson-fermion model (IBFM) and the cluster-vibration model. The level densities up to 5 MeV that are calculated within the IBFM are in accordance with the constant temperature Fermi gas model. From the spin distribution we have determined the corresponding spin cutoff parameter σ and compared it to the prediction from nuclear systematics

  18. Boson-fermion and boson-boson scattering in a Yang-Mills theory at high energy: Sixth-order perturbation theory

    International Nuclear Information System (INIS)

    McCoy, B.M.; Wu, T.T.

    1976-01-01

    Our previous study of Yang-Mills fields is extended by calculating the high-energy behavior of the boson-fermion and of the boson-boson amplitude in sixth-order perturbation theory. In the isovector and isoscalar channels of both these processes the behavior of the amplitude is the same as that found in fermion-fermion scattering

  19. Fermion number in supersymmetric models

    International Nuclear Information System (INIS)

    Mainland, G.B.; Tanaka, K.

    1975-01-01

    The two known methods for introducing a conserved fermion number into supersymmetric models are discussed. While the introduction of a conserved fermion number often requires that the Lagrangian be massless or that bosons carry fermion number, a model is discussed in which masses can be introduced via spontaneous symmetry breaking and fermion number is conserved at all stages without assigning fermion number to bosons. (U.S.)

  20. Many-particle interference beyond many-boson and many-fermion statistics

    DEFF Research Database (Denmark)

    Tichy, Malte C.; Tiersch, Markus; Mintert, Florian

    2012-01-01

    Identical particles exhibit correlations even in the absence of inter-particle interaction, due to the exchange (anti)symmetry of the many-particle wavefunction. Two fermions obey the Pauli principle and anti-bunch, whereas two bosons favor bunched, doubly occupied states. Here, we show that the ......Identical particles exhibit correlations even in the absence of inter-particle interaction, due to the exchange (anti)symmetry of the many-particle wavefunction. Two fermions obey the Pauli principle and anti-bunch, whereas two bosons favor bunched, doubly occupied states. Here, we show...... that the collective interference of three or more particles leads to much more diverse behavior than expected from the boson–fermion dichotomy known from quantum statistical mechanics. The emerging complexity of many-particle interference is tamed by a simple law for the strict suppression of events in the Bell...

  1. Sdg interacting boson hamiltonian in the seniority scheme

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, N.

    1989-03-06

    The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagnoalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.

  2. sdg Interacting boson hamiltonian in the seniority scheme

    Science.gov (United States)

    Yoshinaga, N.

    1989-03-01

    The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagonalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.

  3. Bosonization of fermions coupled to topologically massive gravity

    Science.gov (United States)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-03-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.

  4. Bosonization of fermions coupled to topologically massive gravity

    International Nuclear Information System (INIS)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-01-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space–time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy–momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space–time.

  5. Bosonization of fermions coupled to topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, Eduardo [Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080 (United States); Moreno, Enrique F. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Schaposnik, Fidel A. [Departamento de Física, Universidad Nacional de La Plata, Instituto de Física La Plata, C.C. 67, 1900 La Plata (Argentina)

    2014-03-07

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space–time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy–momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space–time.

  6. SU(8) family unification with boson-fermion balance

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Grand unification has been intensively investigated for over forty years, and many different approaches have been tried. In this talk I propose a model that involves three ingredients that do not appear in the usual constructions: (1) boson--fermion balance without full supersymmetry, (2) canceling the spin 1/2 fermion gauge anomalies against the anomaly from a gauged spin 3/2 gravitino, and (3) using a scalar field representation with non-zero U(1) generator to break the SU(8) gauge symmetry through a ground state which, before dynamical symmetry breaking, has a periodic U(1) generator structure. The model has a number of promising features: (1) natural incorporation of three families, (2) incorporation of the experimentally viable flipped SU(5) model, (3) a symmetry breaking pathway to the standard model using the scalar field required by boson-fermion balance, together with a stage of most attractive channel dynamical symmetry breaking, without postulating additional Higgs fields, (4) vanishing of bare Yuk...

  7. High-spin level structure and Ground-state phase transition in the odd-mass 103-109Rh isotopes in the framework of exactly solvable sdg interacting boson-fermion model

    Science.gov (United States)

    Ghapanvari, M.; Ghorashi, A. H.; Ranjbar, Z.; Jafarizadeh, M. A.

    2018-03-01

    In this article, the negative-parity states in the odd-mass 103 - 109Rh isotopes in terms of the sd and sdg interacting-boson fermion models were studied. The transitional interacting boson-fermion model Hamiltonians in sd and sdg-IBFM versions based on affine SU (1 , 1) Lie Algebra were employed to describe the evolution from the spherical to deformed gamma unstable shapes along with the chain of Rh isotopes. In this method, sdg-IBFM Hamiltonian, which is a three level pairing Hamiltonian was determined easily via the exactly solvable method. Some observables of the shape phase transitions such as energy levels, the two neutron separation energies, signature splitting of the γ-vibrational band, the α-decay and double β--decay energies were calculated and examined for these isotopes. The present calculation correctly reproduces the spherical to gamma-soft phase transition in the Rh isotopes. Some comparisons were made with sd-IBFM.

  8. Four-fermion interaction near four dimensions

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    1991-01-01

    A large class of models with four-fermion interactions is known to be renormalizable and asymptotically free in two dimensions. It has been noticed very early, in the example of the U(N)-invariant Gross-Neveu model and within the framework of the 1/N expansion, that then these models behave also like renormalizable models in higher dimensions. Some of them are thus natural candidates for composite models of scalar particles like for example the Higgs boson. An important question, however, has to be answered: Are these models more predictive, in four dimensions, than the effective models containing the bosons explicitly? We shall show here that, like for the non-linear σ-model which has been investigated earlier, the answer, at least in some perturbative sense, is negative for a large class of models. The reason can be easily understood: These models are more short-distance sensitive than normal renormalizable models. The new parameters are hidden in the cut-off procedure. In particular in some models the fermions receive masses by spontaneous chiral symmetry breaking. The property that ratio of fermion and boson masses can be predicted is simply a consequence of the IR freedom of both type of models and the natural assumption that coupling constants have generic values at the cut-off scale. We shall consider in this article for definiteness the Gross-Neveu model but it will be clear that the arguments are rather general. (orig.)

  9. Structural aspects of the fermion-boson mapping in two-dimensional gauge and anomalous gauge theories with massive fermions

    International Nuclear Information System (INIS)

    Belvedere, L.V.; Souza Dutra, A. de; Natividade, C.P.; Queiroz, A.F. de

    2002-01-01

    Using a synthesis of the functional integral and operator approaches we discuss the fermion-boson mapping and the role played by the Bose field algebra in the Hilbert space of two-dimensional gauge and anomalous gauge field theories with massive fermions. In QED 2 with quartic self-interaction among massive fermions, the use of an auxiliary vector field introduces a redundant Bose field algebra that should not be considered as an element of the intrinsic algebraic structure defining the model. In anomalous chiral QED 2 with massive fermions the effect of the chiral anomaly leads to the appearance in the mass operator of a spurious Bose field combination. This phase factor carries no fermion selection rule and the expected absence of Θ-vacuum in the anomalous model is displayed from the operator solution. Even in the anomalous model with massive Fermi fields, the introduction of the Wess-Zumino field replicates the theory, changing neither its algebraic content nor its physical content

  10. Boson and fermion degrees of freedom in the orthosymplectic extension of the IVBM: Odd-odd nuclear spectra

    International Nuclear Information System (INIS)

    Ganev, H. G.; Georgieva, A. I.

    2008-01-01

    The dynamical symmetry group Sp(12, R) of the Interacting Vector Boson Model (IVBM) is extended to the orthosymplectic group OSp(2Ω/12, R) in order to incorporate fermion degrees of freedom. The structure of even-even nuclei is used as a core on which the collective excitations of the neighboring odd-mass and odd-odd nuclei are build on. Hence, the spectra of odd-mass and odd-odd nuclei arise as a result of the coupling of the fermion degrees of freedom, specified by the fermion sector SOF (2Ω) to the boson core, whose states belong to an Sp(12, R) irreducible representation. The orthosymplectic dynamical symmetry is applied for the simultaneous description of the spectra of some neighboring nuclei from rare earth region. The theoretical predictions for different low-lying collective bands with positive and negative parity are compared with the experiment. The obtained results reveal the applicability of the model and its boson-fermion extension.

  11. Symmetry between bosons and fermions

    International Nuclear Information System (INIS)

    Ohnuki, Y.; Kamefuchi, S.

    1986-01-01

    By definition Bosons and Fermions behave quite differently as regards statistics. It is equally true, however, that in some other respects they do behave similarly or even symmetrically. In the present paper they would like to show that such similarity or symmetry can be exhibited most fully when the theory is formulated in a specific manner, i.e. in terms of annihilation and creation operators a/sub j/ and a/sub j//sup dagger/ or what they term g-numbers. The difference between Bosons and Fermions can, of course, be traced back to the difference in the signatures (jj) = +,- attached to the brackets in the basic commutation relations: [a/sub j/,a/sub j//sup dagger/]-(jj) = 1, [a/sub j/,a/sub j/]-(jj) = 0. However, the substantial part of the theory can in fact be formulated without specifying the individual signatures (jj). This is why it is possible to treat Bosons and Fermions in a unified manner, and to thereby consider, among the two, super- or more general, g-symmetry transformations. 6 references, 1 table

  12. The investigation of 1+1 dimensional lattice gauge theories with fermions, gauge bosons and scalar using Hamiltonian Monte-Carlo methods

    International Nuclear Information System (INIS)

    Ranft, J.

    1984-01-01

    Hamiltonian lattice models with fermions, gauge bosons and scalar fields are studied in 1+1 dimensions using the local Hamiltonian Monte-Carlo method. Results are presented for the massive Schwinger model with one and two flavors, for a model with interacting Higgs fields, fermions and gauge bosons, where fractionally charged solitons are found as free states of the lattice model, and for Wess-Zumino type models with restricted lattice supersymmetry, where examples for spontaneous breaking of supersymmetry are found

  13. Bosonic and fermionic dipoles on a ring

    DEFF Research Database (Denmark)

    Zöllner, Sascha; Pethick, C. J.; Bruun, Georg Morten

    2011-01-01

    We show that dipolar bosons and fermions confined in a quasi-one-dimensional ring trap exhibit a rich variety of states because their interaction is inhomogeneous. For purely repulsive interactions, with increasing strength of the dipolar coupling there is a crossover from a gaslike state...... to an inhomogeneous crystal-like one. For small enough angles between the dipoles and the plane of the ring, there are regions with attractive interactions, and clustered states can form....

  14. Interacting boson model with surface delta interaction between nucleons: Structure and interaction of bosons

    International Nuclear Information System (INIS)

    Druce, C.H.; Moszkowski, S.A.

    1986-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested

  15. Interacting boson model with surface delta interaction between nucleons: Structure and interaction of bosons

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; Moszkowski, S.A.

    1986-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested.

  16. Boson-fermion symmetries in the W-Pt region

    International Nuclear Information System (INIS)

    Warner, D.D.

    1985-01-01

    The concept of symmetry in the Interacting Boson Model (IBM) description of even-even nuclei has proved to be one of the model's most important elements, because they provide benchmarks in the formulation of a unified description of a broad range of nuclei. The importance of the recently proposed symmetries in odd-even systems can thus be viewed in the same light, and their role in pointing to a simple prescription for the changing collective structure in odd A nuclei throughout a major shell is likely to prove even more essential, given the much greater complexity of the boson-fermion (IBFM) Hamiltonian. The group structure of a boson-fermion system is described by U/sup B/(6) x U/sup F/(m) where m specifies the number of states available to the odd fermion, and thus depends on the single particle space assumed. The ability to construct group chains corresponding to the symmetries SU(5), SU(3) or 0(6) depends on the value of m. Of the structures studied in detail to date, the case of m = 12 is the one with the broadest potential. The fermion is allowed to occupy orbits with j = 1/2, 3/2 and 5/2, so that the assumed single particle space corresponds to the negative parity states available to an odd neutron at the end of the N = 82-126 shell, namely, P/sub 1/2/, p/sub 3/2/ and f/sub 5/2/. The region of interest thus spans the W-Pt nuclei, and since one prerequisite for an odd-A symmetry is the existence of that same symmetry in the neighboring even-even core nucleus, the odd Pt nuclei around A = 196 offer the obvious testing ground for the 0(6) limit of U(6/12). The heavier even-even W nuclei, on the other hand, have the characteristics of an axial rotor, and hence the negative parity structure of the neighboring odd W isotopes offers the possibility to study the validity of the SU(3) limit. Given a definition and understanding of these two limits, the construction of a simple description of the transitional Os nuclei can be considered

  17. II. The Standard Model in the Isotopic Foldy-Wouthuysen Representation without Higgs Bosons in the Fermion Sector. Spontaneous Breaking of Parity and "Dark Matter" Problems

    OpenAIRE

    Neznamov, V. P.

    2011-01-01

    The Standard Model with massive fermions is formulated in the isotopic Foldy-Wouthuysen representation. SU(2)xU(1) - invariance of the theory in this representation is independent of whether fermions possess mass or not, and, consequently, it is not necessary to introduce interactions between Higgs bosons and fermions. The study discusses a possible relation between spontaneous breaking of parity in the isotopic Foldy-Wouthuysen representation and the composition of elementary particles of "d...

  18. Constraints on the mass spectrum of fourth generation fermions and Higgs bosons

    International Nuclear Information System (INIS)

    Hashimoto, Michio

    2010-01-01

    We reanalyze constraints on the mass spectrum of the chiral fourth generation fermions and the Higgs bosons for the standard model (SM4) and the two Higgs doublet model. We find that the Higgs mass in the SM4 should be larger than roughly the fourth generation up-type quark mass, while the light CP even Higgs mass in the two Higgs doublet model can be smaller. Various mass spectra of the fourth generation fermions and the Higgs bosons are allowed. The phenomenology of the fourth generation models is still rich.

  19. Fermion dynamical symmetry and the nuclear shell model

    International Nuclear Information System (INIS)

    Ginocchio, J.N.

    1985-01-01

    The interacting boson model (IBM) has been very successful in giving a unified and simple description of the spectroscopic properties of a wide range of nuclei, from vibrational through rotational nuclei. The three basic assumptions of the model are that: (1) the valence nucleons move about a doubly closed core, (2) the collective low-lying states are composed primarily of coherent pairs of neutrons and pairs of protons coupled to angular momentum zero and two, and (3) these coherent pairs are approximated as bosons. In this review we shall show how it is possible to have fermion Hamiltonians which have a class of collective eigenstates composed entirely of monopole and quadrupole pairs of fermions. Hence these models satisfy the assumptions (1) and (2) above but no boson approximation need be made. Thus the Pauli principle is kept in tact. Furthermore the fermion shell model states excluded in the IBM can be classified by the number of fermion pairs which are not coherent monopole or quadrupole pairs. Hence the mixing of these states into the low-lying spectrum can be calculated in a systematic and tractable manner. Thus we can introduce features which are outside the IBM. 11 refs

  20. Two- and four-quasiparticle states in the interacting boson model: Strong-coupling and decoupled band patterns in the SU(3) limit

    International Nuclear Information System (INIS)

    Vretenar, D.; Paar, V.; Bonsignori, G.; Savoia, M.

    1990-01-01

    An extension of the interacting boson approximation model is proposed by allowing for two- and four-quasiparticle excitations out of the boson space. The formation of band patterns based on two- and four-quasiparticle states is investigated in the SU(3) limit of the model. For hole-type (particle-type) fermions coupled to the SU(3) prolate (oblate) core, it is shown that the algebraic K-representation basis, which is the analog of the strong-coupling basis of the geometrical model, provides an appropriate description of the low-lying two-quasiparticle bands. In the case of particle-type (hole-type) fermions coupled to the SU(3) prolate (oblate) core, a new algebraic decoupling basis is derived that is equivalent in the geometrical limit to Stephens' rotation-aligned basis. Comparing the wave functions that are obtained by diagonalization of the model Hamiltonian to the decoupling basis, several low-lying two-quasiparticle bands are identified. The effects of an interaction that conserves only the total nucleon number, mixing states with different number of fermions, are investigated in both the strong-coupling and decoupling limits. All calculations are performed for an SU(3) boson core and the h11/2 fermion orbital

  1. Comparison of interacting boson-fermion model with spin-dependent generalized collective model for the j=3/2

    International Nuclear Information System (INIS)

    Baktybaev, K.; Koilyk, N.; Ramankulov, K.

    2006-01-01

    Full text: Collective Schrodinger equations are applied to describe low-energy spectra of even-even nuclei [1]. Spectra for even-odd nuclei are calculated by coupling the single particle degrees of freedom to the collective degree of freedom of the core nucleus, which is of even-even type. The collective spin has a value of 3/2. This leads to the assumption that the linearized equation may be applied to describe nuclei with spin 3/2 in the ground state. Good description of the low energy spectra and electromagnetic transition probabilities can be obtained only with introduction of spin-dependent potentials, which apart from coordinates and momenta also depend on the matrices of the Clifford algebra arising in the linearization,. The interacting boson-fermion models (IBFM) [2] represent another approach to describe spectra of even-odd nuclei. For even-odd nuclei with spin 3/2 in the ground state one uses so-called j=3/2 - IBFM, which is also denoted as the U B (6)xU F (4) IBFM. In this paper we establish the relation between the matrices of the Clifford algebra, which arise in the linearization procedure, and the fermion operators of the j=3/2 IBFM. This allows us to establish a connection between the j=3/2 IBFM and spin dependent generalized collective model (SGCM). The results of the SGCM for Ir and Au nuclei are presented and compared with the results of the j=3/2 IBFM with a dynamical spin symmetry [3] present. In this respect we could apply the linearized collective Schrodinger equation and IBFM with arbitrary spin to all other even-odd nuclei. (author)

  2. Search for Heavy Higgs Bosons in Fermionic Decay Channels with CMS

    CERN Document Server

    Chen, Ye

    2017-01-01

    Latest results of searches for heavy Higgs bosons in fermionic final states are presented using the CMS detector at the LHC. Results are based on pp collision data collected at centre-of-mass energies of 8 and 13 TeV which have been interpreted according to different extensions of the Standard Model such as MSSM, 2HDM, and NMSSM. These searches look for evidence of other scalar or pseudoscalar bosons, in addition to the observed SM-like 125 GeV Higgs boson, and set 95\\% confidence level upper limits in fermionic final states and benchmark models explored. The talk reviews briefly the major results obtained by the CMS Collaboration during Run I, and presents the most recent searches performed during Run II.

  3. A test of boson mappings of fermion systems

    International Nuclear Information System (INIS)

    Arima, A.; Yoshida, N.; Ginocchio, J.N.

    1981-01-01

    The Otsuka-Arima-Iachello Method, the Belyaev-Zelevinsky-Marshalek boson expansion method, and the boson expansion theory are each used to map a solvable fermion hamiltonian onto a boson space. Comparison of the spectra and transition rates obtained by these three boson mapping methods are compared to the exact values. (orig.)

  4. Search for BSM Higgs bosons in fermion decay modes with ATLAS

    CERN Document Server

    Straessner, Arno; The ATLAS collaboration

    2017-01-01

    Many physics models beyond the Standard Model (BSM) predict an extension of the Higgs sector, like the general 2-Higgs Doublet Model (2HDM) or supersymmetric models. In case of one additional Higgs doublet, there are five physical Higgs bosons: two CP neutral states (h,H), one CP odd state (A) and two charged Higgs bosons (H±). Typically, the already observed Higgs boson is identified with the h Higgs boson, while the others are assumed to be heavy. This presentation is reporting on recent results of direct searches for heavy neutral and charged Higgs bosons by the ATLAS Collaboration, in particular analyzing direct Higgs boson decays to fermions, like $H^\\pm \\to \\tau\

  5. Induced boson self couplings in four-fermion and Yukawa theories

    International Nuclear Information System (INIS)

    Tamvakis, K.K.

    1978-01-01

    Theories of self-interacting fermion fields are expanded in a mean field expansion in terms of boson collective variables. Divergences can be absorbed in a renormalized mass and a renormalized Yukawa-type coupling to all orders in the mean field expansion. The cubic and quartic collective boson self-couplings required by renormalization are fixed in terms of the renormalized Yukawa coupling. This fixing is demonstrated by use of the Callan-Symanzik equations. These theories are formally equivalent to Yukawa-type theories, expanded the same way, with the boson self-couplings constrained to be functions of the Yukawa coupling

  6. The bosonic mother of fermionic D-branes

    OpenAIRE

    Chattaraputi, Auttakit; Englert, Francois; Houart, Laurent; Taormina, Anne

    2002-01-01

    We extend the search for fermionic subspaces of the bosonic string compactified on E8 X SO(16) lattices to include all fermionic D-branes. This extension constraints the truncation procedure previously proposed and relates the fermionic strings, supersymmetric or not, to the global structure of the SO(16) group. The specific properties of all the fermionic D-branes are found to be encoded in its universal covering, whose maximal toroid defines the configuration space torus of their mother bos...

  7. Coupled kinetic equations for fermions and bosons in the relaxation-time approximation

    Science.gov (United States)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw

    2018-02-01

    Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.

  8. From bosonic topological transition to symmetric fermion mass generation

    Science.gov (United States)

    You, Yi-Zhuang; He, Yin-Chen; Vishwanath, Ashvin; Xu, Cenke

    2018-03-01

    A bosonic topological transition (BTT) is a quantum critical point between the bosonic symmetry-protected topological phase and the trivial phase. In this work, we investigate such a transition in a (2+1)-dimensional lattice model with the maximal microscopic symmetry: an internal SO (4 ) symmetry. We derive a description for this transition in terms of compact quantum electrodynamics (QED) with four fermion flavors (Nf=4 ). Within a systematic renormalization group analysis, we identify the critical point with the desired O (4 ) emergent symmetry and all expected deformations. By lowering the microscopic symmetry, we recover the previous Nf=2 noncompact QED description of the BTT. Finally, by merging two BTTs we recover a previously discussed theory of symmetric mass generation, as an SU (2 ) quantum chromodynamics-Higgs theory with Nf=4 flavors of SU (2 ) fundamental fermions and one SU (2 ) fundamental Higgs boson. This provides a consistency check on both theories.

  9. Extra Z neutral bosons, families and heavy fermions

    International Nuclear Information System (INIS)

    Li Tiezhong

    1989-08-01

    The minimal Grand Unified Theories with three-family should include two extra Z neufral bosons which belong to the different broken scales. Georgi's argument on heavy Dirac fermions has been realized. These fermions should not be bizarre. The extra Z and Dirac fermions are not too heavy. The difficulty of the proton decay may be resolved

  10. Effects of a potential fourth fermion generation on the Higgs boson mass bounds

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim; Jansen, Karl

    2010-12-01

    We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)

  11. Para-bosons and Para-fermions in Quantum Mechanics

    International Nuclear Information System (INIS)

    Cattani, M.S.D.; Fernandes, N.C.

    1982-01-01

    Within the framework of the ordinary quantum mechanics, a detailed study of the energy eigenfunctions of N identical particles using the irreducible representations of the permutation group in the Hilbert space is performed. It is shown that the para-states, as occurs with the boson and fermion states, are compatible with the postulates of quantum mechanics and with the principle of indistinguishability. A mathematical support for the existence of para-bosons and para-fermions is given. Gentile's quantum statistics is, in a certain sense, justified. (Author) [pt

  12. Exploring fermionic dark matter via Higgs boson precision measurements at the Circular Electron Positron Collider

    Science.gov (United States)

    Xiang, Qian-Fei; Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan

    2018-03-01

    We study the impact of fermionic dark matter (DM) on projected Higgs precision measurements at the Circular Electron Positron Collider (CEPC), including the one-loop effects on the e+e-→Z h cross section and the Higgs boson diphoton decay, as well as the tree-level effects on the Higgs boson invisible decay. As illuminating examples, we discuss two UV-complete DM models, whose dark sector contains electroweak multiplets that interact with the Higgs boson via Yukawa couplings. The CEPC sensitivity to these models and current constraints from DM detection and collider experiments are investigated. We find that there exist some parameter regions where the Higgs measurements at the CEPC will be complementary to current DM searches.

  13. The properties of W-boson condensation induced by fermion density at finite temperatures

    International Nuclear Information System (INIS)

    Perez Rojas, H.; Kalashnikov, O.K.

    1987-01-01

    Bose-Einstein condensation of W bosons induced by fermion density is discussed within models of unified interactions at T ≠ 0. We study in detail the Weinberg-Salam model in wich chemical potentials related to lepton number, electric charge and weak neutral charge are introduced. The one-loop thermodynamic potential is calculated and a set of equations representing the necessary condition for condensation is solved thogether with the corresponding chemical equilibrium conditions. The boundary of the condensate phase is established and estimations for the critical lepton density are given. It is found that for small lepton density W-boson condensation exists only in the finite temperature region, evaporating when T goes to zero. (orig.)

  14. Interacting boson model with surface delta interaction between nucleons

    International Nuclear Information System (INIS)

    Druce, C.; Moszkowski, S.A.

    1984-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. The authors have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson proton-boson interaction for the case of degenerate orbits

  15. Partially composite Goldstone Higgs boson

    DEFF Research Database (Denmark)

    Alanne, Tommi; Franzosi, Diogo Buarque; Frandsen, Mads T.

    2017-01-01

    We consider a model of dynamical electroweak symmetry breaking with a partially composite Goldstone Higgs boson. The model is based on a strongly interacting fermionic sector coupled to a fundamental scalar sector via Yukawa interactions. The SU(4)×SU(4) global symmetry of these two sectors...... is broken to a single SU(4) via Yukawa interactions. Electroweak symmetry breaking is dynamically induced by condensation due to the strong interactions in the new fermionic sector which further breaks the global symmetry SU(4)→Sp(4). The Higgs boson arises as a partially composite state which is an exact...... Goldstone boson in the limit where SM interactions are turned off. Terms breaking the SU(4) global symmetry explicitly generate a mass for the Goldstone Higgs boson. The model realizes in different limits both (partially) composite Higgs and (bosonic) technicolor models, thereby providing a convenient...

  16. MS vs. pole masses of gauge bosons II: Two-loop electroweak fermion correct

    International Nuclear Information System (INIS)

    Jegerlehner, F.; Kalmykov, M.Yu.; Veretin, O.

    2002-12-01

    We have calculated the fermion contributions to the shift of the position of the poles of the massive gauge boson propagators at two-loop order in the Standard Model. Together with the bosonic contributions calculated previously the full two-loop corrections are available. This allows us to investigate the full correction in the relationship between anti M anti S and pole masses of the vector bosons Z and W. Two-loop renormalization and the corresponding renormalization group equations are discussed. Analytical results for the master-integrals appearing in the massless fermion contributions are given. A new approach of summing multiple binomial sums has been developed. (orig.)

  17. Evidence for the direct decay of the 125 GeV Higgs boson to fermions

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Kim, Tae Jeong; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Mahrous, Ayman; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sauvan, Jean-baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Geiser, Achim; Grebenyuk, Anastasia; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krämer, Mira; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Ntomari, Eleni; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Stein, Matthias; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Enderle, Holger; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hartmann, Frank; Hauth, Thomas; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Martschei, Daniel; Mozer, Matthias Ulrich; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Gouskos, Loukas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Jones, John; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mittal, Monika; Nishu, Nishu; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Singh, Anil; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Ferro, Fabrizio; Lo Vetere, Maurizio; Musenich, Riccardo; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kim, Tae Yeon; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Golutvin, Igor; Gorbunov, Ilya; Karjavin, Vladimir; Konoplyanikov, Viktor; Korenkov, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Karavakis, Edward; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Palencia Cortezon, Enrique; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Reece, William; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Ronga, Frederic Jean; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Wilken, Rachel; Asavapibhop, Burin; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Karapinar, Guler; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Ilic, Jelena; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Lazic, Dragoslav; Richardson, Clint; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Shrinivas, Amithabh; Sturdy, Jared; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Kovalskyi, Dmytro; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Kcira, Dorian; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Eggert, Nicholas; Gibbons, Lawrence Kent; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Ratnikova, Natalia; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Gray, Julia; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Cremaldi, Lucien Marcus; Kroeger, Rob; Oliveros, Sandra; Perera, Lalith; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Woods, Nathaniel

    2014-06-22

    The discovery of a new boson with a mass of approximately 125 GeV in 2012 at the LHC has heralded a new era in understanding the nature of electroweak symmetry breaking and possibly completing the standard model of particle physics. Since the first observation in decays to gamma-gamma, WW, and ZZ boson pairs, an extensive set of measurements of the mass and couplings to W and Z bosons, as well as multiple tests of the spin-parity quantum numbers, have revealed that the properties of the new boson are consistent with those of the long-sought agent responsible for electroweak symmetry breaking. An important open question is whether the new particle also couples to fermions, and in particular to down-type fermions, since the current measurements mainly constrain the couplings to the up-type top quark. Determination of the couplings to down-type fermions requires direct measurement of the corresponding Higgs boson decays, as recently reported by the CMS experiment in the study of Higgs decays to bottom quarks and...

  18. Projective flatness in the quantisation of bosons and fermions

    Science.gov (United States)

    Wu, Siye

    2015-07-01

    We compare the quantisation of linear systems of bosons and fermions. We recall the appearance of projectively flat connection and results on parallel transport in the quantisation of bosons. We then discuss pre-quantisation and quantisation of fermions using the calculus of fermionic variables. We define a natural connection on the bundle of Hilbert spaces and show that it is projectively flat. This identifies, up to a phase, equivalent spinor representations constructed by various polarisations. We introduce the concept of metaplectic correction for fermions and show that the bundle of corrected Hilbert spaces is naturally flat. We then show that the parallel transport in the bundle of Hilbert spaces along a geodesic is a rescaled projection provided that the geodesic lies within the complement of a cut locus. Finally, we study the bundle of Hilbert spaces when there is a symmetry.

  19. Massive boson-fermion degeneracy and the early structure of the universe

    International Nuclear Information System (INIS)

    Kounnas, C.

    2008-01-01

    The existence of a new kind of massive boson-fermion symmetry is shown explicitly in the framework of the heterotic, type II and type II orientifold superstring theories. The target space-time is two-dimensional. Higher dimensional models are defined via large marginal deformations of J anti J-type. The spectrum of the initial undeformed two dimensional vacuum consists of massless boson degrees of freedom, while all massive boson and fermion degrees of freedom exhibit a new Massive Spectrum Degeneracy Symmetry (MSDS). This precise property, distinguishes the MSDS theories from the well known supersymmetric SUSY-theories. Some proposals are stated in the framework of these theories concerning the structure of: (i) The Early Non-singular Phase of the Universe, (ii) The two dimensional boundary theory of AdS 3 Black-Holes, (iii) Plausible applications of the MSDS theories in particle physics, alternative to SUSY. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  20. Collisional oscillations of trapped boson-fermion mixtures in the approach to the collapse instability

    International Nuclear Information System (INIS)

    Capuzzi, P.; Minguzzi, A.; Tosi, M.P.

    2004-01-01

    We study the collective modes of a confined gaseous cloud of bosons and fermions with mutual attractive interactions at zero temperature. The cloud consists of a Bose-Einstein condensate and a spin-polarized Fermi gas inside a spherical harmonic trap and the coupling between the two species is varied by increasing either the magnitude of the interspecies s-wave scattering length or the number of bosons. The mode frequencies are obtained in the collisional regime by solving the equations of generalized hydrodynamics and are compared with the spectra calculated in the collisionless regime within a random-phase approximation. We find that, as the mixture is driven towards the collapse instability, the frequencies of the modes of fermionic origin show a blue shift which can become very significant for large numbers of bosons. Instead the modes of bosonic origin show a softening, which becomes most pronounced in the very proximity of collapse. Explicit illustrations of these trends are given for the monopolar spectra, but similar trends are found for the dipolar and quadrupolar spectra except for the surface (n=0) modes which are essentially unaffected by the interactions

  1. Boson mapping and the microscopic collective nuclear Hamiltonian

    International Nuclear Information System (INIS)

    Dobes, J.; Ivanova, S.P.; Dzholos, R.V.; Pedrosa, R.

    1990-01-01

    Starting with the mapping of the quadrupole collective states in the fermion space onto the boson space, the fermion nuclear problem is transformed into the boson one. The boson images of the bifermion operators and of the fermion Hamiltonian are found. Recurrence relations are used to obtain approximately the norm matrix which appears in the boson-fermion mapping. The resulting boson Hamiltonian contains terms which go beyond the ordinary SU(6) symmetry Hamiltonian of the interacting boson model. Calculations, however, suggest that on the phenomenological level the differences between the mapped Hamiltonian and the SU(6) Hamiltonian are not too important. 18 refs.; 2 figs

  2. A path-integral approach for bosonic effective theories for Fermion fields in four and three dimensions

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    1998-02-01

    We study four dimensional Effective Bosonic Field Theories for massive fermion field in the infrared region and massive fermion in ultraviolet region by using an appropriate Fermion Path Integral Chiral variable change and the Polyakov's Fermi-Bose transmutation in the 3D-Abelian Thrirring model. (author)

  3. Production of a Scalar Boson and a Fermion Pair in Arbitrarily Polarized e - e + Beams

    Science.gov (United States)

    Abdullayev, S. K.; Gojayev, M. Sh.; Nasibova, N. A.

    2018-05-01

    Within the framework of the Standard Model (Minimal Supersymmetric Standard Model) we consider the production of the scalar boson HSM (h; H) and a fermion pair ff- in arbitrarily polarized, counterpropagating electron-positron beams e - e + ⇒ HSM (h; H) ff-. Characteristic features of the behavior of the cross sections and polarization characteristics (right-left spin asymmetry, degree of longitudinal polarization of the fermion, and transverse spin asymmetry) are investigated and elucidated as functions of the energy of the electron-positron beams and the mass of the scalar boson.

  4. Wilson Fermions with Four Fermion Interactions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Drach, Vincent; Hietanen, Ari

    2015-01-01

    We present a lattice study of a four fermion theory, known as Nambu Jona-Lasinio (NJL) theory, via Wilson fermions. Four fermion interactions naturally occur in several extensions of the Standard Model as a low energy parameterisation of a more fundamental theory. In models of dynamical electroweak...

  5. Composite fermion theory for bosonic quantum Hall states on lattices.

    Science.gov (United States)

    Möller, G; Cooper, N R

    2009-09-04

    We study the ground states of the Bose-Hubbard model in a uniform magnetic field, motivated by the physics of cold atomic gases on lattices at high vortex density. Mapping the bosons to composite fermions (CF) leads to the prediction of quantum Hall fluids that have no counterpart in the continuum. We construct trial states for these phases and test numerically the predictions of the CF model. We establish the existence of strongly correlated phases beyond those in the continuum limit and provide evidence for a wider scope of the composite fermion approach beyond its application to the lowest Landau level.

  6. Boson-fermion mass splittings in four-dimensional heterotic string models with anomalous U(1) gauge groups

    International Nuclear Information System (INIS)

    Yamaguchi, Masahiro; Yamamoto, Hisashi; Onogi, Tetsuya

    1989-01-01

    In four-dimensional heterotic string models with anomalous U(1) gauge groups, space-time supersymmetry (SUSY) breaks down spontaneously at one loop. In this paper, the Ward-Takahashi identity of broken SUSY in one-loop two-point amplitudes is investigated in all generalities. The boson-fermion mass splitting of any supersymmetric pair in an arbitrary model is proportional to the product of the D-term expectation value (the sum of (chirality)x(U(1) charge) of massless fermions in the model) and the U(1) charge of the external particle. In order to give a better understanding of the results, we present some examples of the mass splittings in a simple Z 3 orbifold model. (orig.)

  7. Mixtures of bosonic and fermionic atoms in optical lattices

    International Nuclear Information System (INIS)

    Albus, Alexander; Illuminati, Fabrizio; Eisert, Jens

    2003-01-01

    We discuss the theory of mixtures of bosonic and fermionic atoms in periodic potentials at zero temperature. We derive a general Bose-Fermi Hubbard Hamiltonian in a one-dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean-field criterion for the onset of a bosonic superfluid transition. We investigate the ground-state properties of the mixture in the Gutzwiller formulation of mean-field theory, and present numerical studies of finite systems. The bosonic and fermionic density distributions and the onset of quantum phase transitions to demixing and to a bosonic Mott-insulator are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasidegenerate ground states is related to a breaking of the mirror symmetry in the lattice

  8. Effects of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim; Jansen, Karl

    2010-12-01

    We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)

  9. Entanglement dynamics in itinerant fermionic and bosonic systems

    Science.gov (United States)

    Pillarishetty, Durganandini

    2017-04-01

    The concept of quantum entanglement of identical particles is fundamental in a wide variety of quantum information contexts involving composite quantum systems. However, the role played by particle indistinguishabilty in entanglement determination is being still debated. In this work, we study, theoretically, the entanglement dynamics in some itinerant bosonic and fermionic systems. We show that the dynamical behaviour of particle entanglement and spatial or mode entanglement are in general different. We also discuss the effect of fermionic and bosonic statistics on the dynamical behaviour. We suggest that the different dynamical behaviour can be used to distinguish between particle and mode entanglement in identical particle systems and discuss possible experimental realizations for such studies. I acknowledge financial support from DST, India through research Grant.

  10. Study of a one-dimensional model for a system of interacting fermions; Etude d'un modele a une dimension pour un systeme de fermions en interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gaudin, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-11-01

    The subject of this thesis is a one dimensional model for a quantum system of fermions with attractive or repulsive interaction. The eigenvalues and eigenfunctions of the Hamiltonian with periodic boundary conditions are exactly determined. The knowledge of the spectrum is essentially applied on the study of the attractive gas, characterized by the presence of 'pairs' or two particles bound states. This system can be described as a gas of 'one dimensional deuterons', which has some analogy with a boson gas. Some extensive properties of the ground state have been discussed for example energy as a function of the density and magnetization, for all the values of the coupling constant. The analytic properties of the energy function are studied, but not completely resolved. Finally the elementary excitations of the phonon type are considered and the dispersion curves are given. (author) [French] On etudie un modele a une dimension pour un systeme quantique de fermions en interaction attractive ou repulsive dans un volume donne. L'ensemble des niveaux d'energie et des etats propres du systeme est determine exactement. La connaissance du spectre est surtout appliquee a l'etude du gaz attractif, interessant par la presence de 'paires' ou etats lies a deux particules. On peut decrire ce systeme comme un gaz de 'deuterons a une dimension' qui possede quelque ressemblance avec un systeme de bosons. Quelques proprietes extensives de l'etat fondamental sont donnees, comme l'energie en fonction de la densite et de la magnetisation totale, pour toute valeur de la constante de couplage. Les proprietes analytiques de la fonction energie sont etudiees sans etre completement elucidees. On aborde enfin les excitations elementaires du systeme et on etablit la courbe de dispersion d'une excitation de type phonon. (auteur)

  11. Constraints on a fourth generation of fermions from Higgs Boson searches

    CERN Document Server

    Lenz, Alexander

    2013-01-01

    We review the past and current status of the extension of the standard model (SM) by a fourth generation of fermions. In particular the new results for Higgs boson searches at the LHC and at Tevatron exclude the possibility of having simply a perturbative fourth generation of fermions with one Higgs doublet (SM4). We also briefly mention more complicated extensions of the SM4, which are not yet excluded, like adding in addition another Higgs doublet to the SM4.

  12. Modulational instability, solitons and periodic waves in a model of quantum degenerate boson-fermion mixtures

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym

    2007-01-01

    In this paper, we study a system of coupled nonlinear Schroedinger equations modelling a quantum degenerate mixture of bosons and fermions. We analyze the stability of plane waves, give precise conditions for the existence of solitons and write explicit solutions in the form of periodic waves. We also check that the solitons observed previously in numerical simulations of the model correspond exactly to our explicit solutions and see how plane waves destabilize to form periodic waves

  13. Two component WIMP-FImP dark matter model with singlet fermion, scalar and pseudo scalar

    Energy Technology Data Exchange (ETDEWEB)

    Dutta Banik, Amit; Pandey, Madhurima; Majumdar, Debasish [Saha Institute of Nuclear Physics, HBNI, Astroparticle Physics and Cosmology Division, Kolkata (India); Biswas, Anirban [Harish Chandra Research Institute, Allahabad (India)

    2017-10-15

    We explore a two component dark matter model with a fermion and a scalar. In this scenario the Standard Model (SM) is extended by a fermion, a scalar and an additional pseudo scalar. The fermionic component is assumed to have a global U(1){sub DM} and interacts with the pseudo scalar via Yukawa interaction while a Z{sub 2} symmetry is imposed on the other component - the scalar. These ensure the stability of both dark matter components. Although the Lagrangian of the present model is CP conserving, the CP symmetry breaks spontaneously when the pseudo scalar acquires a vacuum expectation value (VEV). The scalar component of the dark matter in the present model also develops a VEV on spontaneous breaking of the Z{sub 2} symmetry. Thus the various interactions of the dark sector and the SM sector occur through the mixing of the SM like Higgs boson, the pseudo scalar Higgs like boson and the singlet scalar boson. We show that the observed gamma ray excess from the Galactic Centre as well as the 3.55 keV X-ray line from Perseus, Andromeda etc. can be simultaneously explained in the present two component dark matter model and the dark matter self interaction is found to be an order of magnitude smaller than the upper limit estimated from the observational results. (orig.)

  14. Derivation of the Gross-Pitaevskii equation for condensed bosons from the Bogoliubov-de Gennes equations for superfluid fermions

    International Nuclear Information System (INIS)

    Pieri, P.; Strinati, G.C.

    2003-01-01

    We derive the time-independent Gross-Pitaevskii equation at zero temperature for condensed bosons, which form as bound-fermion pairs when the mutual fermionic attractive interaction is sufficiently strong, from the strong-coupling limit of the Bogoliubov-de Gennes equations that describe superfluid fermions in the presence of an external potential. Three-body corrections to the Gross-Pitaevskii equation are also obtained by our approach. Our results are relevant to the recent advances with ultracold fermionic atoms in a trap

  15. Microscopic structure of an interacting boson model in terms of the dyson boson mapping

    International Nuclear Information System (INIS)

    Geyer, H.B.; Lee, S.Y.

    1982-01-01

    In an application of the generalized Dyson boson mapping to a shell model Hamiltonian acting in a single j shell, a clear distinction emerges between pair bosons and kinematically determined seniority bosons. As in the Otsuka-Arima-Iachello method it is found that the latter type of boson determines the structure of an interactive boson-model-like Hamiltonian for the single j-shell model. It is furthermore shown that the Dyson boson mapping formalism is equally well suited for investigating possible interactive boson-model-like structures in a multishell case, where dynamical considerations are expected to play a much more important role in determining the structure of physical bosons

  16. Exact Boson-Fermion Duality on a 3D Euclidean Lattice

    Science.gov (United States)

    Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; Raghu, S.

    2018-01-01

    The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. We describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.

  17. Fermion-boson scattering in ladder approximation

    International Nuclear Information System (INIS)

    Jafarov, R.G.; Hadjiev, S.A.

    1992-10-01

    A method of calculation of forward scattering amplitude for fermions and scalar bosons with exchanging of scalar particle is suggested. The Bethe-Salpeter ladder equation for the imaginary part of the amplitude is constructed and a solution in Regge asymptotical form is found and the corrections to the amplitude due to the exit from mass shell are calculated. (author). 8 refs

  18. Grand unified models including extra Z bosons

    International Nuclear Information System (INIS)

    Li Tiezhong

    1989-01-01

    The grand unified theories (GUT) of the simple Lie groups including extra Z bosons are discussed. Under authors's hypothesis there are only SU 5+m SO 6+4n and E 6 groups. The general discussion of SU 5+m is given, then the SU 6 and SU 7 are considered. In SU 6 the 15+6 * +6 * fermion representations are used, which are not same as others in fermion content, Yukawa coupling and broken scales. A conception of clans of particles, which are not families, is suggested. These clans consist of extra Z bosons and the corresponding fermions of the scale. The all of fermions in the clans are down quarks except for the standard model which consists of Z bosons and 15 fermions, therefore, the spectrum of the hadrons which are composed of these down quarks are different from hadrons at present

  19. 2-fermion and 4-fermion production at LEP2

    CERN Document Server

    van Vulpen, Ivo B

    2000-01-01

    We present the measurements on 2-fermion and 4-fermion production in e + e - collisions at centre-of-mass energies ranging from 192 to 202 Ge V as collected by the 4 LEP experiments in 1999. For processes with 2-fermions in the final state we present both production cross sections and asymmetries for event samples at low and high effective centre-of-mass energies, where the latter process is sensitive to possible contributions from various non-SM physics, like contact interactions or Z' exchange, and can therefore be used to set limits on parameters in those models. We also report on the measured cross sections for a subset of processes leading to 4 fermions in the final state: pair production of heavy vector bosons w+w- (NC03) and ZZ (NC02) followed by single-W production. A measurement of the leptonic branching ratio of the W-boson is used to extract information on IV c• I

  20. The interacting boson model: its formulation, application, extension and interpretation

    International Nuclear Information System (INIS)

    Barrett, B.R.

    1981-01-01

    The goal of this article is to review the present status of the Interacting Boson Model (IBM) for describing the collective properties of medium and heavy mass nuclei, with particular emphasis being given to the work on the IBM at the University of Arizona. First, a concise review of the basic phenomenological IBM, as developed by Arima and Iachello for only one kind of boson, is presented. Next, the extension of the IBM to both proton and neutron bosons is outlined. This latter model is known as the IBM-2. The application of the IBM-2 to the tungsten isotopes by the University of Arizona group is discussed, followed by their calculations for the mercury isotopes. In the case of the mercury isotopes an extended form of the IBM-2 is developed in order to treat the configuration mixing of two entirely different structures which occur in the same energy region. The relationship between the bosons and the underlying fermionic structure of the nucleus is discussed using the generalized seniority scheme of Talmi. Work by the Arizona group to calculate the phenomenological parameters of the IBM-2 using these generalized seniority ideas is described, along with their results, which agree quite well with the empirical values. Efforts by the University of Arizona group to determine the influence of terms left out of the basic IBM, such as the g boson, using second-order perturbation theory are described. In conclusion, a discussion of the limitations as well as the usefulness of the IBM is given along with its exciting possibilities for the future of nuclear structure physics. (author)

  1. An SU(3)xU(1) theory of weak-electromagnetic interactions with charged boson mixing

    International Nuclear Information System (INIS)

    Singer, M.

    1978-01-01

    An SU(3)xU(1) gauge theory of weak electromagnetic interactions is proposed in which the charged bosons mix with each other. The model naturally ensures e-μ and quark-lepton universality in couplings, and the charged boson mixing permits an equal number of leptons and quark flavours. There are no new stable leptons. All the fermions are placed in triplets and singlets and the theory is vector-like and hence free of anomalies. In addition one of the charged bosons can have a mass less than 43 GeV. Discrete symmetries and specific choices for Higgs fields are postulated to obtain the appropriate boson and fermion masses. Calculations for the decay of the tau particle, which is described as a heavy electron, are given. Multimuon events are discussed as are neutrino neutral currents. Calculations are also given for testing asymmetries in e-hadron scattering due to weak electron neutral currents along with other phenomenology of the model

  2. A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies

    Science.gov (United States)

    Lu, Wei

    2017-09-01

    We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.

  3. Interference effects of two scalar boson propagators on the LHC search for the singlet fermion DM

    Energy Technology Data Exchange (ETDEWEB)

    Ko, P., E-mail: pko@kias.re.kr; Li, Jinmian, E-mail: jmli@kias.re.kr

    2017-02-10

    A gauge invariant UV-completion for singlet fermion DM interacting with the standard model (SM) particles involves a new singlet scalar. Therefore the model contains two scalar mediators, mixtures of the SM Higgs boson and a singlet scalar boson. Collider phenomenology of the interference effect between these two scalar propagators is studied in this work. This interference effect can be either constructive or destructive in the DM production cross section depending on both singlet scalar and DM masses, and it will soften the final state jets in the full mass region. Applying the CMS mono-jet search to our model, we find the interference effect plays a very important role in the DM search sensitivity, and the DM production cross section of our model is more than one order of magnitude below the LHC sensitivity at current stage.

  4. Dynamic origins of fermionic D -terms

    Science.gov (United States)

    Hudson, Jonathan; Schweitzer, Peter

    2018-03-01

    The D -term is defined through matrix elements of the energy-momentum tensor, similarly to mass and spin, yet this important particle property is experimentally not known any fermion. In this work we show that the D -term of a spin 1/2 fermion is of dynamical origin: it vanishes for a free fermion. This is in pronounced contrast to the bosonic case where already a free spin-0 boson has a non-zero intrinsic D -term. We illustrate in two simple models how interactions generate the D -term of a fermion with an internal structure, the nucleon. All known matter is composed of elementary fermions. This indicates the importance to study this interesting particle property in more detail, which will provide novel insights especially on the structure of the nucleon.

  5. Free expansion of fermionic dark solitons in a boson-fermion mixture

    International Nuclear Information System (INIS)

    Adhikari, Sadhan K

    2005-01-01

    We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic dark solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a harmonic as well as a periodic optical-lattice potential. The dark soliton with a 'notch' in the probability density with a zero at the minimum is simulated numerically as a nonlinear continuation of the first vibrational excitation of the linear mean-field-hydrodynamic equations, as suggested recently for pure bosons. We study the free expansion of these dark solitons as well as the consequent increase in the size of their central notch and discuss the possibility of experimental observation of the notch after free expansion

  6. An introduction to the interacting boson model

    International Nuclear Information System (INIS)

    Iachello, F.

    1981-01-01

    This chapter introduces an alternative, algebraic, description of the properties of nuclei with several particles outside the closed shells. Focuses on the group theory of the interacting boson model. Discusses the group structure of the boson Hamiltonian; subalgebras; the classification of states; dynamical symmetry; electromagnetic transition rates; transitional classes; and general cases. Omits a discussion of the latest developments (e.g., the introduction of proton and neutron degrees of freedom); the spectra of odd-A nuclei; and the bosonfermion model. Concludes that the major new feature of the interacting boson model is the introduction and systematic exploitation of algebraic techniques, which allows a simple and detailed description of many nuclear properties

  7. Fractional energy states of strongly-interacting bosons in one dimension

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; G. Volosniev, A.; V. Fedorov, D.

    2014-01-01

    We study two-component bosonic systems with strong inter-species and vanishing intra-species interactions. A new class of exact eigenstates is found with energies that are {\\it not} sums of the single-particle energies with wave functions that have the characteristic feature that they vanish over...... than three particles. The states can be probed using the same techniques that have recently been used for fermionic few-body systems in quasi-1D.......We study two-component bosonic systems with strong inter-species and vanishing intra-species interactions. A new class of exact eigenstates is found with energies that are {\\it not} sums of the single-particle energies with wave functions that have the characteristic feature that they vanish over...... extended regions of coordinate space. This is demonstrated in an analytically solvable model for three equal mass particles, two of which are identical bosons, which is exact in the strongly-interacting limit. We numerically verify our results by presenting the first application of the stochastic...

  8. Upper and lower Higgs boson mass bounds from a lattice Higgs-Yukawa model with dynamical overlap fermions

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Jansen, Karl

    2009-12-01

    We study a lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model, in particular, obeying a Ginsparg- Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. In this paper we present our results on the cutoffdependent upper Higgs boson mass bound at several selected values of the cutoff parameter Λ. (orig.)

  9. Renormalization group analysis of order parameter fluctuations in fermionic superfluids

    International Nuclear Information System (INIS)

    Obert, Benjamin

    2014-01-01

    In this work fluctuation effects in two interacting fermion systems exhibiting fermionic s-wave superfluidity are analyzed with a modern renormalization group method. A description in terms of a fermion-boson theory allows an investigation of order parameter fluctuations already on the one-loop level. In the first project a quantum phase transition between a semimetal and a s-wave superfluid in a Dirac cone model is studied. The interplay between fermions and quantum critical fluctuations close to and at the quantum critical point at zero and finite temperatures are studied within a coupled fermion-boson theory. At the quantum critical point non-Fermi liquid and non-Gaussian behaviour emerge. Close to criticality several quantities as the susceptibility show a power law behaviour with critical exponents. We find an infinite correlation length in the entire semimetallic ground state also away from the quantum critical point. In the second project, the ground state of an s-wave fermionic superfluid is investigated. Here, the mutual interplay between fermions and order parameter fluctuations is studied, especially the impact of massless Goldstone fluctuations, which occur due to spontaneous breaking of the continuous U(1)-symmetry. Fermionic gap and bosonic order parameter are distinguished. Furthermore, the bosonic order parameter is decomposed in transverse and longitudinal fluctuations. The mixing between transverse and longitudinal fluctuations is included in our description. Within a simple truncation of the fermion-boson RG flow, we describe the fermion-boson theory for the first time in a consistent manner. Several singularities appear due the Goldstone fluctuations, which partially cancel due to symmetry. Our RG flow captures the correct infrared asymptotics of the system, where the collective excitations act as an interacting Bose gas. Lowest order Ward identities and the massless Goldstone mode are fulfilled in our truncation.

  10. Interacting-fermion approximation in the two-dimensional ANNNI model

    International Nuclear Information System (INIS)

    Grynberg, M.D.; Ceva, H.

    1990-12-01

    We investigate the effect of including domain-walls interactions in the two-dimensional axial next-nearest-neighbor Ising or ANNNI model. At low temperatures this problem is reduced to a one-dimensional system of interacting fermions which can be treated exactly. It is found that the critical boundaries of the low-temperature phases are in good agreement with those obtained using a free-fermion approximation. In contrast with the monotonic behavior derived from the free-fermion approach, the wall density or wave number displays reentrant phenomena when the ratio of the next-nearest-neighbor and nearest-neighbor interactions is greater than one-half. (author). 17 refs, 2 figs

  11. Generalization of boson-fermion equivalence and Fay's addition theorem

    International Nuclear Information System (INIS)

    Kato, Hideyuki; Saito, Satoru

    1989-01-01

    Generalizations of Fay's addition theorem for Abel functions are obtained by using generalized boson-fermion equivalence of off-shell string amplitudes. A simple example of such generalizations is presented explicitly which relates derivatives of a Riemann θ-function to its determinant. (orig.)

  12. Higgs-boson and Z-boson flavor-changing neutral-current decays correlated with B-meson decays in the littlest Higgs model with T parity

    International Nuclear Information System (INIS)

    Han Xiaofang; Wang Lei; Yang Jinmin

    2008-01-01

    In the littlest Higgs model with T-parity new flavor-changing interactions between mirror fermions and the standard model (SM) fermions can induce various flavor-changing neutral-current decays for B-mesons, the Z-boson, and the Higgs boson. Since all these decays induced in the littlest Higgs with T-parity model are correlated, in this work we perform a collective study for these decays, namely, the Z-boson decay Z→bs, the Higgs-boson decay h→bs, and the B-meson decays B→X s γ, B s →μ + μ - , and B→X s μ + μ - . We find that under the current experimental constraints from the B-decays, the branching ratios of both Z→bs and h→bs can still deviate from the SM predictions significantly. In the parameter space allowed by the B-decays, the branching ratio of Z→bs can be enhanced up to 10 -7 (about one order above the SM prediction) while h→bs can be much suppressed relative to the SM prediction (about one order below the SM prediction).

  13. Search for the Higgs boson in fermionic channels using the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Hageböck Stephan

    2015-01-01

    Full Text Available Since the discovery of the Higgs boson by the ATLAS and CMS experiments at the LHC, the emphasis has shifted towards measurements of its properties. Of particular importance is the direct observation of the coupling of the Higgs boson to fermions. A review of ATLAS results in the search for the Higgs boson in tau, muon and b-quark pairs is presented.

  14. Scattering amplitude and bosonization duality in general Chern-Simons vector models

    Science.gov (United States)

    Yokoyama, Shuichi

    2016-09-01

    We present the exact large N calculus of four point functions in general Chern-Simons bosonic and fermionic vector models. Applying the LSZ formula to the four point function we determine the two body scattering amplitudes in these theories taking a special care for a non-analytic term to achieve unitarity in the singlet channel. We show that the S-matrix enjoys the bosonization duality, an unusual crossing relation and a non-relativistic reduction to Aharonov-Bohm scattering. We also argue that the S-matrix develops a pole in a certain range of coupling constants, which disappears in the range where the theory reduces to the Chern-Simons theory interacting with free fermions.

  15. Remark on Kalnay theory of fermions constructed from bosons

    International Nuclear Information System (INIS)

    Garbaczewski, P.

    1976-01-01

    Theories of Bose description for fermions developed by Kalnay and the present author (Garbaczewski) are compared. It is proved that the underlying constructions can be in principle summarized as follows: CAR and CCR implies new CAR (1) CCR implies CAR (2) where CCR and CAR are abbreviations for representations of the canonical commutation (and anticommutation, respectively) relations algebra. According to this result (1), though independent of (2), can appear as a secondary step only in the quantum theory of fermions constructed from bosons. (author)

  16. A description of odd mass Xe and Te isotopes in the Interacting Boson–Fermion Model

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Musleh, S. [National Center of Research, Gaza, Palestine (Country Unknown); Phys. Dep., Faculty of Women for Art, Science and Education, Ain Shams University, Cairo (Egypt); Abu-Zeid, H.M. [Phys. Dep., Faculty of Women for Art, Science and Education, Ain Shams University, Cairo (Egypt); Scholten, O. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA, Groningen (Netherlands)

    2014-07-15

    Recent interest in spectroscopic factors for single-neutron transfer in low-spin states of the even–odd Xenon {sup 125,127,129.131}Xe and even–odd Tellurium, {sup 123,125,127,129,131}Te isotopes stimulated us to study these isotopes within the framework of the Interacting Boson–Fermion Model. The fermion that is coupled to the system of bosons is taken to be in the positive parity 3s{sub 1/2}, 2d{sub 3/2}, 2d{sub 5/2}, 1g{sub 7/2} and in the negative 1h{sub 11/2} single-particle orbits, the complete 50–82 major shell. The calculated energies of low-spin energy levels of the odd isotopes are found to agree well with the experimental data. Also, B(E2), B(M1) values and spectroscopic factors for single-neutron transfer are calculated and compared with experimental data.

  17. Top and Higgs masses in a composite boson model

    International Nuclear Information System (INIS)

    Kahana, D.E.

    1993-01-01

    Recently Nambu as well as Bardeen, Hill and Linden have suggested replacing the Higgs mechanism with a dynamical symmetry breaking generated by four fermion interactions of the top quark. In fact the model for replacing the scalar sector is that of Nambu and Jona-Lasinio (NJL) and one recovers the Higgs as a tt composite. Earlier authors have also treated vector mesons as composites within the NJL framework, with perhaps the earliest suggestion being that of Bjorken for a composite photon. Here we attempt to generate the entire electroweak interaction from a specific current-current, baryon number conserving form of the four fermion interaction. The W, Z and Higgs boson appear as coherent composites of all fermions, quarks and lepton, and not just of the top quark. The four fermion interaction is assumed to be valid at some high mass scale μ, perhaps the low energy limit resulting by the elimination of non-fermionic degrees of freedom from a more basic theory. The cutoff Λ, necessary in the non-renormalizable NJL may be viewed then as the proper scale for this more basic theory

  18. Coupled fermion-kink system in Jackiw-Rebbi model

    International Nuclear Information System (INIS)

    Amado, A.; Mohammadi, A.

    2017-01-01

    In this paper, we study Jackiw-Rebbi model, in which a massless fermion is coupled to the kink of λφ"4 theory through a Yukawa interaction. In the original Jackiw-Rebbi model, the soliton is prescribed. However, we are interested in the back-reaction of the fermion on the soliton besides the effect of the soliton on the fermion. Also, as a particular example, we consider a minimal supersymmetric kink model in (1 + 1) dimensions. In this case, the bosonic self-coupling, λ, and the Yukawa coupling between fermion and soliton, g, have a specific relation, g = √(λ/2). As the set of coupled equations of motion of the system is not analytically solvable, we use a numerical method to solve it self-consistently. We obtain the bound energy spectrum, bound states of the system and the corresponding shape of the soliton using a relaxation method, except for the zero mode fermionic state and threshold energies which are analytically solvable. With the aid of these results, we are able to show how the soliton is affected in general and supersymmetric cases. The results we obtain are consistent with the ones in the literature, considering the soliton as background. (orig.)

  19. Twisted vertex algebras, bicharacter construction and boson-fermion correspondences

    International Nuclear Information System (INIS)

    Anguelova, Iana I.

    2013-01-01

    The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras

  20. Exotic composite vector boson

    International Nuclear Information System (INIS)

    Akama, K.; Hattori, T.; Yasue, M.

    1991-01-01

    An exotic composite vector boson V is introduced in two dynamical models of composite quarks, leptons, W, and Z. One is based on four-Fermi interactions, in which composite vector bosons are regarded as fermion-antifermion bound states and the other is based on the confining SU(2) L gauge model, in which they are given by scalar-antiscalar bound states. Both approaches describe the same effective interactions for the sector of composite quarks, leptons, W, Z, γ, and V

  1. The slave-fermion approach of spin fluctuations in ferromagnet metals

    Science.gov (United States)

    Hu, C. D.

    2015-11-01

    In this work we propose a method to treat the spin fluctuations in itinerant ferromagnets. It is able to do calculation with a convergent series. The slave fermion method is applied to separate the charge (denoted by fermions) and spin (denoted by bosons) degrees of freedom. The spin operators are then replaced by the Schwinger boson fields. This way, the interaction term in the model can be reduced to a very simple form and can be teated without difficulty. Finally the equations of motion are derived in order to obtain the forms of Green's functions of fermions and bosons. The result is applied to the calculation of resistivity as a function temperature.

  2. g-Boson renormalization effects in the interacting Boson model for nondegenerate orbits

    Science.gov (United States)

    Duval, P. D.; Pittel, S.; Barrett, B. R.; Druce, C. H.

    1983-09-01

    A nonperturbative model-space truncation procedure is utilized to include the effects of a single g boson on the parameters of the neutron-proton Interacting Boson Model in the realistic case of nondegenerate single-particle orbits. Particular emphasis is given to the single-boson energies ɛdϱ (ϱ = v, π), with numerical results presented for the even isotopes of Hg. Only part of the observed renormalization is obtained. Possible sources of further renormalizations to ɛdϱ are discussed. Results are also presented for the renormalizations of the boson quadrupole parameters κ and χϱ.

  3. Ra isotopes in the sdg interacting-boson model with one f-boson

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Naotaka (Department of Physics, Saitama University (Japan)); Mizusaki, Takahiro (Department of Physics, University of Tokyo (Japan)); Otsuka, Takaharu (Department of Physics, University of Tokyo (Japan))

    1993-06-21

    We study positive- and negative-parity states in Ra isotopes in terms of the proton-neutron sdg interacting-boson model with one f-boson. The present calculation correctly reproduces the spherical to deformed phase transition. Especially, we would like to stress the importance of the g-boson for reproducing the E1 transitions which are very strong in this region. (orig.)

  4. Ra isotopes in the sdg interacting-boson model with one f-boson

    Science.gov (United States)

    Naotaka, Yoshinaga; Takahiro, Mizusaki; Takaharu, Otsuka

    1993-06-01

    We study positive- and negative-parity states in Ra isotopes in terms of the proton-neutron sdg interacting-boson model with one f-boson. The present calculation correctly reproduces the spherical to deformed phase transition. Especially, we would like to stress the importance of the g-boson for reproducing the E1 transitions which are very strong in this region.

  5. Ra isotopes in the sdg interacting-boson model with one f-boson

    International Nuclear Information System (INIS)

    Yoshinaga, Naotaka; Mizusaki, Takahiro; Otsuka, Takaharu.

    1992-01-01

    We study positive and negative parity in Ra isotopes in terms of the proton-neutron sdg interacting-boson model with one f-boson. The present calculation correctly reproduces the spherical to deformed phase transition. Especially, we would like to stress the importance of the g-boson for reproducing the E1 transitions which are very strong in this region. (author)

  6. Configuration mixing in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Bouldjedri, A; Van Isacker, P; Zerguine, S

    2005-01-01

    A wavefunction analysis of the strong-coupling limits of the sdg interacting boson model is presented. The analysis is carried out for two-boson states and allows us to characterize the boson configuration mixing in the different limits. Based on these results and those of a shell-model analysis of the sdg IBM, qualitative conclusions are drawn about the range of applicability of each limit

  7. Configuration mixing in the sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Bouldjedri, A [Department of Physics, Faculty of Science, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria); Van Isacker, P [GANIL, BP 55027, F-14076 Caen cedex 5 (France); Zerguine, S [Department of Physics, Faculty of Science, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria)

    2005-11-01

    A wavefunction analysis of the strong-coupling limits of the sdg interacting boson model is presented. The analysis is carried out for two-boson states and allows us to characterize the boson configuration mixing in the different limits. Based on these results and those of a shell-model analysis of the sdg IBM, qualitative conclusions are drawn about the range of applicability of each limit.

  8. Boson-fermion demixing in a cloud of lithium atoms in a pancake trap

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Vignolo, P.; Tosi, M.P.

    2004-01-01

    We evaluate the equilibrium state of a mixture of 7 Li and 6 Li atoms with repulsive interactions, confined inside a pancake-shaped trap under conditions such that the thickness of the bosonic and fermionic clouds is approaching the values of the s-wave scattering lengths. In this regime the effective couplings depend on the axial confinement and full demixing can become observable by merely squeezing the trap, without enhancing the scattering lengths through recourse to a Feshbach resonance

  9. New aspects of the interacting boson model

    International Nuclear Information System (INIS)

    Nadzakov, E.G.; Mikhajlov, I.N.

    1987-01-01

    In the framework of the boson space extension called interacting multiboson model: conserving the model basic dynamic symmetries, the s p d f boson model is considered. It does not destruct the intermediate mass nuclei simple description, and at the same time includes the number of levels and transitions, inaccessible to the usual s d boson model. Its applicability, even in a brief version, to the recently observed asymmetric nuclear shape effect in the Ra-Th-U region (and in other regions) with possible octupole and dipole deformation is demonstrated. It is done by reproducing algebraically the yrast lines of nuclei with vibrational, transitional and rotational spectra

  10. Quantum geometry of the Dirac fermions

    International Nuclear Information System (INIS)

    Korchemskij, G.P.

    1989-01-01

    The bosonic path integral formalism is developed for Dirac fermions interacting with a nonabelian gauge field in the D-dimensional Euclidean space-time. The representation for the effective action and correlation functions of interacting fermions as sums over all bosonic paths on the complex projective space CP 2d-1 , (2d=2 [ D 2] is derived where all the spinor structure is absorbed by the one-dimensional Wess-Zumino term. It is the Wess-Zumino term that ensures all necessary properties of Dirac fermions under quantization. i.e., quantized values of the spin, Dirac equation, Fermi statistics. 19 refs

  11. Multi-boson block factorization of fermions

    Science.gov (United States)

    Giusti, Leonardo; Cè, Marco; Schaefer, Stefan

    2018-03-01

    The numerical computations of many quantities of theoretical and phenomenological interest are plagued by statistical errors which increase exponentially with the distance of the sources in the relevant correlators. Notable examples are baryon masses and matrix elements, the hadronic vacuum polarization and the light-by-light scattering contributions to the muon g - 2, and the form factors of semileptonic B decays. Reliable and precise determinations of these quantities are very difficult if not impractical with state-of-the-art standard Monte Carlo integration schemes. I will review a recent proposal for factorizing the fermion determinant in lattice QCD that leads to a local action in the gauge field and in the auxiliary boson fields. Once combined with the corresponding factorization of the quark propagator, it paves the way for multi-level Monte Carlo integration in the presence of fermions opening new perspectives in lattice QCD. Exploratory results on the impact on the above mentioned observables will be presented.

  12. Higgs-boson contributions to gauge-boson mass shifts in extended electroweak models

    International Nuclear Information System (INIS)

    Moore, S.R.

    1985-10-01

    In the minimal standard model, the difference between the tree-level and one-loop-corrected predictions for the gauge-boson masses, known as the mass shifts, are of the order of 4%. The dominant contribution is from light-fermion loops. The Higgs-dependent terms are small, even if the Higgs boson is heavy. We have analyzed the mass shifts for models with a more complicated Higgs sector. We use the on-shell renormalization scheme, in which the parameters of the theory are the physical masses and couplings. We have considered the 2-doublet, n-doublet, triplet and doublet-triplet models. We have found that the Z-boson mass prediction has a strong dependence on the charged-Higgs mass. In the limit that the charged Higgs is much heavier than the gauge bosons, the Higgs-dependent terms become significant, and may even cancel the light-fermion terms. In the models with a Higgs triplet, there is also a strong dependence on the neutral-Higgs masses, although this contribution tends to be suppressed in realistic models. The W-boson mass shift does not have a strong Higgs dependence. If we use the Z mass as input in determining the parameters of the theory, a scenario which will become attractive as the mass of the Z is accurately measured in the next few years, we find that the W-boson mass shift exhibits the same sort of behavior, differing from the minimal model for the case of the charged Higgs being heavy. We have found that when radiative corrections are taken into account, models with extended Higgs sectors may differ significantly from the minimal standard model in their predictions for the gauge-boson masses. Thus, an accurate measurement of the masses will help shed light on the structure of the Higgs sector. 68 refs

  13. An exotic composite vector boson

    International Nuclear Information System (INIS)

    Akama, Keiichi; Hattori, Takashi; Yasue, Masaki.

    1990-08-01

    An exotic composite vector boson, V, is introduced in two dynamical models of composite quarks, leptons, W and Z. One is based on four Fermi interactions, in which composite vector bosons are regarded as fermion-antifermion bound states and the other is based on the confining SU(2) L gauge model, in which they are given by scalar-antiscalar bound states. Both approaches describe the same effective interactions for the sector of composite quarks, leptons, W, Z, γ and V. (author)

  14. Model test of boson mappings

    International Nuclear Information System (INIS)

    Navratil, P.; Dobes, J.

    1992-01-01

    Methods of boson mapping are tested in calculations for a simple model system of four protons and four neutrons in single-j distinguishable orbits. Two-body terms in the boson images of the fermion operators are considered. Effects of the seniority v=4 states are thus included. The treatment of unphysical states and the influence of boson space truncation are particularly studied. Both the Dyson boson mapping and the seniority boson mapping as dictated by the similarity transformed Dyson mapping do not seem to be simply amenable to truncation. This situation improves when the one-body form of the seniority image of the quadrupole operator is employed. Truncation of the boson space is addressed by using the effective operator theory with a notable improvement of results

  15. Siegel's chiral boson and the chiral Schwinger model

    International Nuclear Information System (INIS)

    Berger, T.

    1992-01-01

    In this paper Siegel's proposal for a Lagrangian formulation of a chiral boson is analyzed by applying recent results on 2d chiral quantum gravity. A model is derived whose solution consists of a massive scalar and two massless chiral scalars. Therefore it is a minimally bosonized two-fermion chiral Schwinger model

  16. Bosonization

    CERN Document Server

    1994-01-01

    Bosonization is a useful technique for studying systems of interacting fermions in low dimensions. It has applications in both particle and condensed matter physics.This book contains reprints of papers on the method as used in these fields. The papers range from the classic work of Tomonaga in the 1950's on one-dimensional electron gases, through the discovery of fermionic solitons in the 1970's, to integrable systems and bosonization on Riemann surfaces. A four-chapter pedagogical introduction by the editor should make the book accessible to graduate students and experienced researchers alik

  17. Multiple multi-orbit fermionic and bosonic pairing and rotational SU(3) algebras

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    2017-01-01

    In nuclei with valence nucleons that are identical nucleons and occupy r number of j-orbits, there will be 2 r-1 number of multiple pairing (quasi-spin) SU(2) algebras with the generalized pair creation operator S + being a sum of single-j pair creation operators with arbitrary phases. Also, for each set of phases there will be a corresponding Sp(2Ω) algebra in U(2Ω) ⊃ Sp(2Ω); Ω = ∑ (2j+1)/2. Using this correspondence, derived is the condition for a general one-body operator of angular momentum rank k to be a quasi-spin scalar or a vector vis-a-vis the phases in S + . These will give special seniority selection rules for electromagnetic transitions. We found that the phase choice advocated by Arvieu and Moszkowski gives pairing Hamiltonians having maximum correlation with well known effective interactions. All the results derived for identical fermion systems are shown to extend to identical boson systems such as sd, sp, sdg and sdpf interacting boson models (IBM's) with SU(2) → SU(1,1) and Sp(2/Omega) → SO(2Ω). Going beyond pairing, for a given set of oscillator orbits, there are multiple rotational SU(3) algebras both in shell model and IBM's. Different SU(3) algebras in IBM's are shown, using sdg IBM as an example, to give different geometric shapes.

  18. Nonequilibrium fermion production in quantum field theory

    International Nuclear Information System (INIS)

    Pruschke, Jens

    2010-01-01

    The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio

  19. Nonequilibrium fermion production in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Pruschke, Jens

    2010-06-16

    The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio

  20. Goldstone fermions in supersymmetric theories at finite temperature

    International Nuclear Information System (INIS)

    Aoyama, H.; Boyanovsky, D.

    1984-01-01

    The behavior of supersymmetric theories at finite temperature is examined. It is shown that supersymmetry is broken for any T> or =0 because of the different statistics obeyed by bosons and fermions. This breaking is always associated with a Goldstone mode(s). This phenomenon is shown to take place even in a free massive theory, where the Goldstone modes are created by composite fermion-boson bilinear operators. In the interacting theory with chiral symmetry, the same bilinear operators create the chiral doublet of Goldstone fermions, which is shown to saturate the Ward-Takahashi identities up to one loop. Because of this spontaneous supersymmetry breaking, the fermions and the bosons acquire different effective masses. In theories without chiral symmetry, at the tree level the fermion-boson bilinear operators create Goldstone modes, but at higher orders these modes become massive and the elementary fermion becomes the Goldstone field because of the mixing with these bilinear operators

  1. Microscopic bosonization of band structures: x-ray processes beyond the Fermi edge

    Science.gov (United States)

    Snyman, Izak; Florens, Serge

    2017-11-01

    Bosonization provides a powerful analytical framework to deal with one-dimensional strongly interacting fermion systems, which makes it a cornerstone in quantum many-body theory. However, this success comes at the expense of using effective infrared parameters, and restricting the description to low energy states near the Fermi level. We propose a radical extension of the bosonization technique that overcomes both limitations, allowing computations with microscopic lattice Hamiltonians, from the Fermi level down to the bottom of the band. The formalism rests on the simple idea of representating the fermion kinetic term in the energy domain, after which it can be expressed in terms of free bosonic degrees of freedom. As a result, one- and two-body fermionic scattering processes generate anharmonic boson-boson interactions, even in the forward channel. We show that up to moderate interaction strengths, these non-linearities can be treated analytically at all energy scales, using the x-ray emission problem as a showcase. In the strong interaction regime, we employ a systematic variational solution of the bosonic theory, and obtain results that agree quantitatively with an exact diagonalization of the original one-particle fermionic model. This provides a proof of the fully microscopic character of bosonization, on all energy scales, for an arbitrary band structure. Besides recovering the known x-ray edge singularity at the emission threshold, we find strong signatures of correlations even at emission frequencies beyond the band bottom.

  2. Isospin invariant forms of interacting boson model (IBM)

    International Nuclear Information System (INIS)

    Evans, A.

    1989-01-01

    In the original version of the interacting boson model, IBM1, there are only two quantum numbers with exact values: the angular momentum and the number of bosons. IBM2 distinguishes between two kinds of bosons. However, the IBM2 algebra does not include the operators T± and consequently the states in the model have no good isospin, generally. IBM3 includes the isospin in the algebra and therefore the construction of states with any number of bosons and good isospin presents no problem. In this work, IBM3 is compared with the shell model. IBFM3 is also studied, which describes an odd nucleus as a system of N bosons plus a single nucleon that is a neutron with some probability and a proton with the complementary probability. The spectra obtained in the shell model, IBFM3 and IBFM2 for 45 Ti and 45 Sc are compared. (Author) [es

  3. A unification of boson expansion theories. (III) Applications

    International Nuclear Information System (INIS)

    Dobaczewski, J.

    1981-10-01

    A general scheme of constructing boson expansions that was proposed in earlier work is applied to a number or examples. The Fukutome expansion is obtained by considering the spinor representation of the SO(2N+1) group. Its hermitian, Holstein-Primakofr-type version is also derived. The generalized Dyson expansions for even and odd fermion systems are given in terms of two spinor representations of the SO(2N) group. For fixed fermion number systems the relevant boson expansions are obtained by considering the fundamental representations of SU(N) while for fixed seniority those of Sp(N) are concerned. The collective boson expansions corresponding to the Ginocchio model, the interacting boson model of Arima and Iachello and the Elliot model are given for the symmetric representations of SO(8) and SU(1+1) and any representation of SU(3)

  4. The interacting boson model

    International Nuclear Information System (INIS)

    Iachello, F.; Arima, A.

    1987-01-01

    The book gives an account of some of the properties of the interacting boson model. The model was introduced in 1974 to describe in a unified way the collective properties of nuclei. The book presents the mathematical techniques used to analyse the structure of the model. The mathematical framework of the model is discussed in detail. The book also contains all the formulae that have been developed throughout the years to account for collective properties of nuclei. These formulae can be used by experimentalists to compare their data with the predictions of the model. (U.K.)

  5. An RVB state with fermionic charges and bosonic spins: Mean field theory

    International Nuclear Information System (INIS)

    Flensberg, K.; Hedegard, P.; Brix Pedersen, M.

    1989-01-01

    We consider a representation of the Hubbard model, in which the charge carriers are fermions and the spin carriers are bosons. We show that there exist a mean-field solution with a condensate of spin-singlets and we characterize the low temperature behavior of the quasiparticles. Finally we calculate the tunneling spectrum for a normal metal-RVB state tunnel junction and suggest the tunneling experiment as a probe of the statistics of the RVB quasiparticles. (orig.)

  6. Microscopic foundation of the interacting boson model

    International Nuclear Information System (INIS)

    Arima, Akito

    1994-01-01

    A microscopic foundation of the interacting boson model is described. The importance of monopole and quadrupole pairs of nucleons is emphasized. Those pairs are mapped onto the s and d bosons. It is shown that this mapping provides a good approximation in vibrational and transitional nuclei. In appendix, it is shown that the monopole pair of electrons plays possibly an important role in metal clusters. (orig.)

  7. Towards a Complete Classification of Symmetry-Protected Topological Phases for Interacting Fermions in Three Dimensions and a General Group Supercohomology Theory

    Science.gov (United States)

    Wang, Qing-Rui; Gu, Zheng-Cheng

    2018-01-01

    The classification and construction of symmetry-protected topological (SPT) phases in interacting boson and fermion systems have become a fascinating theoretical direction in recent years. It has been shown that (generalized) group cohomology theory or cobordism theory gives rise to a complete classification of SPT phases in interacting boson or spin systems. The construction and classification of SPT phases in interacting fermion systems are much more complicated, especially in three dimensions. In this work, we revisit this problem based on an equivalence class of fermionic symmetric local unitary transformations. We construct very general fixed-point SPT wave functions for interacting fermion systems. We naturally reproduce the partial classifications given by special group supercohomology theory, and we show that with an additional B ˜H2(Gb,Z2) structure [the so-called obstruction-free subgroup of H2(Gb,Z2) ], a complete classification of SPT phases for three-dimensional interacting fermion systems with a total symmetry group Gf=Gb×Z2f can be obtained for unitary symmetry group Gb. We also discuss the procedure for deriving a general group supercohomology theory in arbitrary dimensions.

  8. Moment of inertia and the interacting boson model

    International Nuclear Information System (INIS)

    Yoshida, N.; Sagawa, H.; Otsuka, T.; Arima, A.

    1989-01-01

    Mass-number dependence of the moment of inertia is studied in relation with the boson number in the SU(3) limit of the interacting boson model 1 (IBM-1). The analytic formula in the limit indicates the pairing correlation between nucleons is directly related to the moment of inertia in the IBM. It is shown in general that the kink of the moment of inertia coincides with the maximum boson number of each element. (author)

  9. Exotic fermions in the left-right symmetric model

    International Nuclear Information System (INIS)

    Choi, J.; Volkas, R.R.

    1992-01-01

    A systematic study is made of non-standard fermion multiplets in left-right symmetric models with gauge group SU(3) x SU(2) L x SU(2) R x U(1) BL . Constraints from gauge anomaly cancellation and invariance of Yukawa coupling terms are used to define interesting classes of exotic fermions. The standard quark lepton spectrum of left-right symmetric models was identified as the simplest member of an infinite class. Phenomenological implications of the next simplest member of this class are then studied. Classes of exotic fermions which may couple to the standard fermions through doublet Higgs bosons were also considered, then shown that some of these exotics may be used to induce a generalised universal see-saw mechanism. 12 refs., 1 tab

  10. Interacting p- Boson model with isospin

    International Nuclear Information System (INIS)

    Chen, C.H.-T.

    A description of collective states in self-conjugate nuclei is proposed, both odd-odd and even-even, in terms of an interacting isoscalar p-boson model. Within this model, two limiting cases can be identified with the anharmonic vibrator and axial rotor limits of the classical geometrical description. (Author) [pt

  11. CMS standard model Higgs boson results

    Directory of Open Access Journals (Sweden)

    Garcia-Abia Pablo

    2013-11-01

    Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.

  12. Transport in Josephson heterostructures and numerical applications of bosonization for fermionic systems

    Energy Technology Data Exchange (ETDEWEB)

    Kandelaki, Ervand

    2014-11-25

    power P absorbed in the system if a microwave radiation with an ac in-plane magnetic field is applied (magnetic resonance). The derived formula for the power P essentially differs from the one which describes the power absorption in an isolated ferromagnetic film. In particular, this formula describes the peaks related to the excitation of standing plasma waves as well as the peak associated with the magnetic resonance. In Part III, We study the dc Josephson effect and the density of states in a multiterminal structure of cross-type geometry that consists of four superconducting electrodes connected by one-dimensional normal or ferromagnetic wires. We find that the Josephson current I{sub Jz} has a sinusoidal dependence on the phase difference φ{sub z} between the superconductors in the horizontal wire with a critical current I{sub c} that can be varied by changing the phase difference φ{sub y} between the superconductors in the vertical wire. The period of the function I{sub Jz} (φ{sub z}) depends on the ratio of the interface resistances R{sub Sn,z}/R{sub Sn,y} being equal to 2π if this ratio is small and equal to 4π in the opposite limit. We also calculate the amplitudes of both the singlet and the odd-frequency triplet components in the system under consideration. The triplet component amplitude may be significantly larger than the amplitude of the singlet component. In the last Part IV of this Thesis, we develop a new Quantum Monte Carlo (QMC) method suitable for simulations of the interacting fermionic systems. Since it is based on the mapping to bosonic models introduced by Efetov et al. [1, 2] we call it ''Bosonic QMC'' (BQMC). The key ingredient of this approach is the representation of the partition function in terms of an auxiliary bosonic field Φ and an additional bosonic field A being subject to a constraint, a dynamical equation involving Φ. The value of A leading to the usual fermionic action is related to the fermionic equal

  13. Transport in Josephson heterostructures and numerical applications of bosonization for fermionic systems

    International Nuclear Information System (INIS)

    Kandelaki, Ervand

    2014-01-01

    power P absorbed in the system if a microwave radiation with an ac in-plane magnetic field is applied (magnetic resonance). The derived formula for the power P essentially differs from the one which describes the power absorption in an isolated ferromagnetic film. In particular, this formula describes the peaks related to the excitation of standing plasma waves as well as the peak associated with the magnetic resonance. In Part III, We study the dc Josephson effect and the density of states in a multiterminal structure of cross-type geometry that consists of four superconducting electrodes connected by one-dimensional normal or ferromagnetic wires. We find that the Josephson current I Jz has a sinusoidal dependence on the phase difference φ z between the superconductors in the horizontal wire with a critical current I c that can be varied by changing the phase difference φ y between the superconductors in the vertical wire. The period of the function I Jz (φ z ) depends on the ratio of the interface resistances R Sn,z /R Sn,y being equal to 2π if this ratio is small and equal to 4π in the opposite limit. We also calculate the amplitudes of both the singlet and the odd-frequency triplet components in the system under consideration. The triplet component amplitude may be significantly larger than the amplitude of the singlet component. In the last Part IV of this Thesis, we develop a new Quantum Monte Carlo (QMC) method suitable for simulations of the interacting fermionic systems. Since it is based on the mapping to bosonic models introduced by Efetov et al. [1, 2] we call it ''Bosonic QMC'' (BQMC). The key ingredient of this approach is the representation of the partition function in terms of an auxiliary bosonic field Φ and an additional bosonic field A being subject to a constraint, a dynamical equation involving Φ. The value of A leading to the usual fermionic action is related to the fermionic equal-time Green's function. However

  14. Higgs bosons in the two-doublet model with CP violation

    International Nuclear Information System (INIS)

    Akhmetzyanova, E.; Dolgopolov, M.; Dubinin, M.

    2005-01-01

    We consider the effective two-Higgs-doublet potential with complex parameters, when the CP invariance is broken both explicitly and spontaneously. The diagonal mass term in the local minimum of the potential is constructed for the physical basis of Higgs fields, keeping explicitly the limiting case of CP conservation, if the parameters are taken real. For the special case of the two-doublet Higgs sector of the minimal supersymmetric model, when CP invariance is violated by the Higgs bosons interaction with scalar quarks of the third generation, we calculate by means of the effective potential method the Higgs boson masses and evaluate the two-fermion Higgs boson decay widths and the widths of rare one-loop-mediated decays H→γγ, H→gg

  15. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    Science.gov (United States)

    Devi, Y. D.; Kota, V. K. B.

    1993-07-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150Nd.

  16. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1993-01-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150 Nd

  17. Fermion pair physics at LEP2

    International Nuclear Information System (INIS)

    Georgios, Anagnostou

    2004-01-01

    Combined measurements of the 4 LEP collaborations for the fermion pair processes e + e - →f anti f are presented. The results show no significant deviations when compared with the Standard Model predictions and are used to set limits on contact interactions, Z' gauge bosons and low scale gravity models with large extra dimensions. (orig.)

  18. Correction of Cardy–Verlinde formula for Fermions and Bosons with modified dispersion relation

    Energy Technology Data Exchange (ETDEWEB)

    Sadatian, S. Davood, E-mail: sd-sadatian@um.ac.ir; Dareyni, H.

    2017-05-15

    Cardy–Verlinde formula links the entropy of conformal symmetry field to the total energy and its Casimir energy in a D-dimensional space. To correct black hole thermodynamics, modified dispersion relation can be used which is proposed as a general feature of quantum gravity approaches. In this paper, the thermodynamics of Schwarzschild four-dimensional black hole is corrected using the modified dispersion relation for Fermions and Bosons. Finally, using modified thermodynamics of Schwarzschild four-dimensional black hole, generalization for Cardy–Verlinde formula is obtained. - Highlights: • The modified Cardy–Verlinde formula obtained using MDR for Fermions and Bosons. • The modified entropy of the black hole used to correct the Cardy–Verlinde formula. • The modified entropy of the CFT has been obtained.

  19. Phase transitions in the hard-core Bose-Fermi-Hubbard model at non-zero temperatures in the heavy-fermion limit

    Energy Technology Data Exchange (ETDEWEB)

    Stasyuk, I.V.; Krasnov, V.O., E-mail: krasnoff@icmp.lviv.ua

    2017-04-15

    Phase transitions at non-zero temperatures in ultracold Bose- and Fermi-particles mixture in optical lattices using the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations are investigated. The case of infinitely small fermion transfer and the repulsive on-site boson-fermion interaction is considered. The possibility of change of order (from the 2nd to the 1st one) of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams determining the conditions at which such a change takes place, are built.

  20. Upper and lower Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model

    International Nuclear Information System (INIS)

    Gerhold, Philipp Frederik Clemens

    2009-01-01

    Motivated by the advent of the Large Hadron Collider (LHC) the aim of the present work is the non-perturbative determination of the cutoff-dependent upper and lower mass bounds of the Standard Model Higgs boson based on first principle calculations, in particular not relying on additional information such as the triviality property of the Higgs- Yukawa sector or indirect arguments like vacuum stability considerations. For that purpose the lattice approach is employed to allow for a non-perturbative investigation of a chirally invariant lattice Higgs-Yukawa model, serving here as a reasonable simplification of the full Standard Model, containing only those fields and interactions which are most essential for the intended Higgs boson mass determination. These are the complex Higgs doublet as well as the top and bottom quark fields and their mutual interactions. To maintain the chiral character of the Standard Model Higgs-fermion coupling also on the lattice, the latter model is constructed on the basis of the Neuberger overlap operator, obeying then an exact global lattice chiral symmetry. Respecting the fermionic degrees of freedom in a fully dynamical manner by virtue of a PHMC algorithm appropriately adapted to the here intended lattice calculations, such mass bounds can indeed be established with the aforementioned approach. Supported by analytical calculations performed in the framework of the constraint effective potential, the lower bound is found to be approximately m low H (Λ)=80 GeV at a cutoff of Λ=1000 GeV. The emergence of a lower Higgs boson mass bound is thus a manifest property of the pure Higgs-Yukawa sector that evolves directly from the Higgs-fermion interaction for a given set of Yukawa coupling constants. Its quantitative size, however, turns out to be non-universal in the sense, that it depends on the specific form, for instance, of the Higgs boson self-interaction. The upper Higgs boson mass bound is then established in the strong coupling

  1. QUANTUM STOCHASTIC PROCESSES: BOSON AND FERMION BROWNIAN MOTION

    Directory of Open Access Journals (Sweden)

    A.E.Kobryn

    2003-01-01

    Full Text Available Dynamics of quantum systems which are stochastically perturbed by linear coupling to the reservoir can be studied in terms of quantum stochastic differential equations (for example, quantum stochastic Liouville equation and quantum Langevin equation. In order to work it out one needs to define the quantum Brownian motion. As far as only its boson version has been known until recently, in the present paper we present the definition which makes it possible to consider the fermion Brownian motion as well.

  2. Trapped Fermions with Density Imbalance in the Bose-Einstein Condensate Limit

    International Nuclear Information System (INIS)

    Pieri, P.; Strinati, G.C.

    2006-01-01

    We analyze the effects of imbalancing the populations of two-component trapped fermions, in the Bose-Einstein condensate limit of the attractive interaction between different fermions. Starting from the gap equation with two fermionic chemical potentials, we derive a set of coupled equations that describe composite bosons and excess fermions. We include in these equations the processes leading to the correct dimer-dimer and dimer-fermion scattering lengths. The coupled equations are then solved in the Thomas-Fermi approximation to obtain the density profiles for composite bosons and excess fermions, which are relevant to the recent experiments with trapped fermionic atoms

  3. Baryons and baryonic matter in four-fermion interaction models

    International Nuclear Information System (INIS)

    Urlichs, K.

    2007-01-01

    In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon number. In contrast

  4. Baryons and baryonic matter in four-fermion interaction models

    Energy Technology Data Exchange (ETDEWEB)

    Urlichs, K.

    2007-02-23

    In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon

  5. Intrinsic states in the sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, N.

    1986-08-04

    We give the intrinsic states explicitly in the boson representation in the framework of the sdg interacting boson model. Although they are only valid in the large-N limit, they are useful to estimate various physical quantities in well deformed nuclei. One can compare these results with those predicted in the IBM1 or in the IBM2.

  6. Intrinsic states in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Yoshinaga, N.

    1986-01-01

    We give the intrinsic states explicitly in the boson representation in the framework of the sdg interacting boson model. Although they are only valid in the large-N limit, they are useful to estimate various physical quantities in well deformed nuclei. One can compare these results with those predicted in the IBM1 or in the IBM2. (orig.)

  7. Role of polarization in probing anomalous gauge interactions of the Higgs boson

    International Nuclear Information System (INIS)

    Biswal, Sudhansu S.; Godbole, Rohini M.; Choudhury, Debajyoti; Mamta

    2009-01-01

    We explore the use of polarized e + /e - beams and/or the information on final state decay lepton polarizations in probing the interaction of the Higgs boson with a pair of vector bosons. A model independent analysis of the process e + e - →ffH, where f is any light fermion, is carried out through the construction of observables having identical properties under the discrete symmetry transformations as different individual anomalous interactions. This allows us to probe an individual anomalous term independent of the others. We find that initial state beam polarization can significantly improve the sensitivity to CP-odd couplings of the Z boson with the Higgs boson (ZZH). Moreover, an ability to isolate events with a particular τ helicity, with even 40% efficiency, can improve sensitivities to certain ZZH couplings by as much as a factor of 3. In addition, the contamination from the ZZH vertex contributions present in the measurement of the trilinear Higgs-W (WWH) couplings can be reduced to a great extent by employing polarized beams. The effects of initial state radiation and beamstrahlung, which can be relevant for higher values of the beam energy are also included in the analysis.

  8. Structure of transition nuclei states in fermion dynamic-symmetry model

    International Nuclear Information System (INIS)

    Baktybaev, K.; Kojlyk, N.O.; Romankulov, K.

    2007-01-01

    In the paper collective structures of osmium heavy isotopes nucleons are studied. Results of diagonalization of SO(6) symmetric Hamiltonian of fermion-dynamical symmetry-model are comparing with results of other phenomenological methods such as Bohr-Mottelson model and interacting bosons model. For heavy osmium isotopes not only collective excitations spectral bands but also for probability of E2-electromagnet transition are which are compared with existing experimental data. It is revealed, that complexity of state structure for examined nuclei is related with competition and interweaving of rotation and vibration states and also more complicated states of γ instable nature

  9. Sphericity in the interacting boson model

    International Nuclear Information System (INIS)

    Ogata, H.

    1977-01-01

    The interacting boson model (IBM) of Arima and Iachello is examined. The transition between the rotational and vibrational modes of even-even nuclei is presented as a function of a sphericity parameter, which is determined primarily from yrast band spectra. The backbending feature is reasonably reproduced. (author)

  10. Top quark rare decays via loop-induced FCNC interactions in extended mirror fermion model

    Science.gov (United States)

    Hung, P. Q.; Lin, Yu-Xiang; Nugroho, Chrisna Setyo; Yuan, Tzu-Chiang

    2018-02-01

    Flavor changing neutral current (FCNC) interactions for a top quark t decays into Xq with X represents a neutral gauge or Higgs boson, and q a up- or charm-quark are highly suppressed in the Standard Model (SM) due to the Glashow-Iliopoulos-Miami mechanism. Whilst current limits on the branching ratios of these processes have been established at the order of 10-4 from the Large Hadron Collider experiments, SM predictions are at least nine orders of magnitude below. In this work, we study some of these FCNC processes in the context of an extended mirror fermion model, originally proposed to implement the electroweak scale seesaw mechanism for non-sterile right-handed neutrinos. We show that one can probe the process t → Zc for a wide range of parameter space with branching ratios varying from 10-6 to 10-8, comparable with various new physics models including the general two Higgs doublet model with or without flavor violations at tree level, minimal supersymmetric standard model with or without R-parity, and extra dimension model.

  11. Lefschetz thimbles in fermionic effective models with repulsive vector-field

    Science.gov (United States)

    Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira

    2018-06-01

    We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field appearing from the logarithmic function. In the fermionic effective models with attractive scalar and repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation of the vector field, the oscillating Boltzmann weight appears in the partition function. This "auxiliary" sign problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz thimbles is caused by singular points and cuts induced by multivalued functions of the complexified scalar field in the momentum integration. We propose a new prescription which fixes gradient flow trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration in the complex domain.

  12. Field theory of interacting open superstrings of fermionic ghost representation

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Medvedev, P.V.

    1987-01-01

    Field theory of interacting open superstring in fermionic ghost representation based on anticommuting and commuting ghosts corresponding respectively to world sheet bosonic x μ and fermionic φ μ coordinates is presented. The author have to revise once more the field theory of the free Ramond (R) string and starting from general algebraic point of view they obtain that the number of degrees of freedom in the R and NS (Neveu-Schwartz) sectors equalise themselves permitting to construct a supersymmetric operator. It is proposed to solve a specific equation guaranteeing superinvariance in order to find the R-R-NS and NS-R-R vertices in the term of the NS-NS-NS vertex

  13. Shear viscosity and imperfect fluidity in bosonic and fermionic superfluids

    Science.gov (United States)

    Boyack, Rufus; Guo, Hao; Levin, K.

    2014-12-01

    In this paper we address the ratio of the shear viscosity to entropy density η /s in bosonic and fermionic superfluids. A small η /s is associated with nearly perfect fluidity, and more general measures of the fluidity perfection/imperfection are of wide interest to a number of communities. We use a Kubo approach to concretely address this ratio via low-temperature transport associated with the quasiparticles. Our analysis for bosonic superfluids utilizes the framework of the one-loop Bogoliubov approximation, whereas for fermionic superfluids we apply BCS theory and its BCS-BEC extension. Interestingly, we find that the transport properties of strict BCS and Bogoliubov superfluids have very similar structures, albeit with different quasiparticle dispersion relations. While there is a dramatic contrast between the power law and exponential temperature dependence for η alone, the ratio η /s for both systems is more similar. Specifically, we find the same linear dependence (on the ratio of temperature T to inverse lifetime γ (T ) ) with η /s ∝T /γ (T ) , corresponding to imperfect fluidity. By contrast, near the unitary limit of BCS-BEC superfluids a very different behavior results, which is more consistent with near-perfect fluidity.

  14. Elements of the interacting boson approximation

    International Nuclear Information System (INIS)

    Cseh, Jozsef

    1985-01-01

    The main features of the interacting boson model family are briefly summarized. The main tool of the model is the group theory; its basic useful results (symmetry groups, spectrum generating algebra, dynamic groups and symmetries, tensor representations, broken symmetries, subgroup chains) are summarized. The emission and annihilation operators of the individual boson degrees of freedom form a U(n) algebra. Its reprezentation theory can be used to classify the basic states and energy levels of the system. A simple variant of the interacting boson model is analyzed in detail. The genealogy of different interacting boson models from vibron model to supersymmetric ones is surveyed. (D.Gy.)

  15. Strongly interacting Higgs bosons

    International Nuclear Information System (INIS)

    Appelquist, T.; Bernard, C.

    1980-01-01

    The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is discussed. The gauged nonlinear sigma model, which is the limit of the linear model as the Higgs-boson mass goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the SU(2)/sub L/ x SU(2)/sub R/ symmetry of the Higgs sector is preserved, these effects are found to be small, of the order of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by the W mass. We work in the context of a simplified model with gauge group SU(2)/sub L/; the extension to SU(2)/sub L/ x U(1) is briefly discussed

  16. Schwinger's formula and the partition function for the bosonic and fermionic harmonic oscillators

    International Nuclear Information System (INIS)

    Albuquerque, L.C. de; Farina, C.; Rabello, S.J.

    1994-01-01

    We use Schwinger's formula, introduced by himself in the early fifties to compute effective actions for Qed, and recently applied to the Casimir effect, to obtain the partition functions for both the bosonic and fermionic harmonic oscillators. (author)

  17. Study of Higgs boson production in fermionic decay channels at the LHC

    CERN Document Server

    Jain, V; The ATLAS collaboration

    2014-01-01

    I will present results from ATLAS and CMS on the fermionic decays of the Higgs boson at the 26th Recontres de Blois. The talk includes results for Higgs to mumu, tautau, VH(bb) and ttH. This is a 15' talk in a parallel session.

  18. G-Boson renormalizations and mixed symmetry states

    International Nuclear Information System (INIS)

    Scholten, O.

    1986-01-01

    In the IBA model the low-lying collective states are described in terms of a system of interacting s- and d-bosons. A boson can be interpreted as corresponding to collective J=0 or J=2 fermion pair states. As such the IBA model space can be seen as only a small subsector of the full shell model space. For medium heavy nuclei such a truncation of the model space is necessary to make calculations feasible. As is well known truncations of a model space make it necessary to renormalize the model parameters. In this work some renormalizations of the Hamiltonian and the E2 transition operator will be discussed. Special attention will be given to the implication of these renormalizations for the properties of mixed symmetry states. The effects of renormalization are obtained by considering the influence of fermion pair states that have been omitted from the model basis. Here the authors focus attention on the effect of the low-lying two particle J=4 state, referred to as g-boson or G-pair state. Renormalizations of the d-boson energy, the E2 effective charges, and symmetry force are discussed

  19. Strength of the trilinear Higgs boson coupling in technicolor models

    International Nuclear Information System (INIS)

    Doff, A.; Natale, A.A.

    2006-01-01

    In the standard model of elementary particles the fermion and gauge boson masses are generated due to the interaction of these particles with elementary Higgs scalar bosons. Despite its success there are some points in the model as, for instance, the enormous range of masses between the lightest and heaviest fermions and other peculiarities that could be better explained at a deeper level. The nature of the Higgs boson is one of the most important problems in particle physics, and there are many questions that may be answered in the near future by LHC experiments, such as: Is the Higgs boson, if it exists at all, elementary or composite? What are the symmetries behind the Higgs mechanism? There are many variants for the Higgs mechanism. Our interest in this work will be focused in the models of electroweak symmetry breaking via strongly interacting theories of technicolor (TC) type. In these theories the Higgs boson is a composite of the so called technifermions, and at some extent any model where the Higgs boson is not an elementary field follows more or less the same ideas of the technicolor models. In extensions of the standard model the scalar self-couplings can be enhanced, like in the supersymmetric version. If the same happens in models of dynamical symmetry breaking, as far as we know, has not been investigated up to now, and this study is the motivation of our work. Although technicolor is a non-Abelian gauge theory it is not necessarily similar to QCD, and most of the work in this area try to find the TC dynamics dealing with the particle content of the theory in order to obtain a technifermion self-energy that does not lead to phenomenological problems as in the scheme known as walking technicolor. In this work we will consider a very general Ansatz for the technifermion self-energy, which is an essential ingredient to compute the scalar self-couplings. This Ansatz interpolates between all known forms of technifermionic self-energy. As we vary some

  20. Fermion flavor in the soft-wall AdS model

    International Nuclear Information System (INIS)

    Gherghetta, Tony; Sword, Daniel

    2009-01-01

    The formalism for modeling multiple fermion generations in a warped extra dimension with a soft wall is presented. A bulk Higgs condensate is responsible for generating mass for the zero-mode fermions but leads to additional complexity from large mixing between different flavors. We extend existing single-generation analyses by considering new special cases in which analytical solutions can be derived. The general three-generation case is then treated using a simple numerical routine. Assuming anarchic 5D parameters, we find a fermion mass spectrum resembling the standard model quarks and leptons with highly degenerate couplings to Kaluza-Klein gauge bosons. This confirms that the soft-wall model has similar attractive features as that found in hard-wall models, providing a framework to generalize existing phenomenological analyses.

  1. Coherent state path integral and super-symmetry for condensates composed of bosonic and fermionic atoms

    International Nuclear Information System (INIS)

    Mieck, B.

    2007-01-01

    A super-symmetric coherent state path integral on the Keldysh time contour is considered for bosonic and fermionic atoms which interact among each other with a common short-ranged two-body potential. We investigate the symmetries of Bose-Einstein condensation for the equivalent bosonic and fermionic constituents with the same interaction potential so that a super-symmetry results between the bosonic and fermionic components of super-fields. Apart from the super-unitary invariance U(L vertical stroke S) of the density terms, we specialize on the examination of super-symmetries for pair condensate terms. Effective equations are derived for anomalous terms which are related to the molecular- and BCS- condensate pairs. A Hubbard-Stratonovich transformation from 'Nambu'-doubled super-fields leads to a generating function with super-matrices for the self-energy whose manifold is given by the orthosympletic super-group Osp(S,S vertical stroke 2L). A nonlinear sigma model follows from the spontaneous breaking of the ortho-symplectic super-group Osp(S,S vertical stroke 2L) to the coset decomposition Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) x U(L vertical stroke S). The invariant subgroup U(L vertical stroke S) for the vacuum or background fields is represented by the density terms in the self-energy whereas the super-matrices on the coset space Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) describe the anomalous molecular and BCS-pair condensate terms. A change of integration measure is performed for the coset decomposition Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) x U(L vertical stroke S), including a separation of density and anomalous parts of the self-energy with a gradient expansion for the Goldstone modes. The independent anomalous fields in the actions can be transformed by the inverse square root G Osp backslash U -1/2 of the metric tensor of Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) so that

  2. Coherent state path integral and super-symmetry for condensates composed of bosonic and fermionic atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mieck, B. [Department of Physics in Duisburg, University Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg (Germany)

    2007-09-15

    A super-symmetric coherent state path integral on the Keldysh time contour is considered for bosonic and fermionic atoms which interact among each other with a common short-ranged two-body potential. We investigate the symmetries of Bose-Einstein condensation for the equivalent bosonic and fermionic constituents with the same interaction potential so that a super-symmetry results between the bosonic and fermionic components of super-fields. Apart from the super-unitary invariance U(L vertical stroke S) of the density terms, we specialize on the examination of super-symmetries for pair condensate terms. Effective equations are derived for anomalous terms which are related to the molecular- and BCS- condensate pairs. A Hubbard-Stratonovich transformation from 'Nambu'-doubled super-fields leads to a generating function with super-matrices for the self-energy whose manifold is given by the orthosympletic super-group Osp(S,S vertical stroke 2L). A nonlinear sigma model follows from the spontaneous breaking of the ortho-symplectic super-group Osp(S,S vertical stroke 2L) to the coset decomposition Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) x U(L vertical stroke S). The invariant subgroup U(L vertical stroke S) for the vacuum or background fields is represented by the density terms in the self-energy whereas the super-matrices on the coset space Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) describe the anomalous molecular and BCS-pair condensate terms. A change of integration measure is performed for the coset decomposition Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) x U(L vertical stroke S), including a separation of density and anomalous parts of the self-energy with a gradient expansion for the Goldstone modes. The independent anomalous fields in the actions can be transformed by the inverse square root G{sub Osp} {sub backslash} {sub U}{sup -1/2} of the metric tensor of Osp(S,S vertical stroke 2L) backslash U

  3. Is it possible to tell the difference between fermionic and bosonic hot dark matter?

    Energy Technology Data Exchange (ETDEWEB)

    Hannestad, S.; Tu, H. [Aarhus Univ. (Denmark). Dept. of Physics and Astronomy; Ringwald, A.; Wong, Y.Y.Y. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2005-07-01

    We study the difference between thermally produced fermionic and bosonic hot dark matter in detail. In the linear regime of structure formation, their distinct free-streaming behaviours can lead to pronounced differences in the matter power spectrum. While not detectable with current cosmological data, such differences will be clearly observable with upcoming large scale weak lensing surveys for particles as light as m{sub HDM} {proportional_to} 0.2 eV. In the nonlinear regime, bosonic hot dark matter is not subject to the same phase space constraints that severely limit the amount of fermionic hot dark matter infall into cold dark matter halos. Consequently, the overdensities in fermionic and bosonic hot dark matter of equal particle mass can differ by more than a factor of five in the central part of a halo. However, this unique manifestation of quantum statistics may prove very difficult to detect unless the mass of the hot dark matter particle and its decoupling temperature fall within a very narrow window, 1

  4. Introduction to interacting boson model

    International Nuclear Information System (INIS)

    Goutte, D.

    1986-01-01

    A very simple presentation of the interacting boson model is first given. The two computerized models which are presented allow, with few parameters, to reproduce an impressive quantity of data characterizing the deformed nuclei. Their excitation spectra, the reduced transition probabilities, the quadrupolar moments, the two nucleon transfer experiment results, ... Then a specific application of the model is given: radial extension reproduction of nuclear functions. It is shown first how the electron inelastic scattering allows to measure observables related to these radial functions, the transition charge densities, then, on some examples, how the model allows to reproduce them [fr

  5. Electron scattering in the interacting boson model

    NARCIS (Netherlands)

    Dieperink, AEL; Iachello, F; Rinat, A; Creswell, C

    1978-01-01

    It is suggested that the interacting boson model be used in the analysis of electron scattering data. Qualitative features of the expected behavior of the inelastic excitation of some 2 ÷ states inthe transitional Sm-Nd region are discussed

  6. Fermion condensation and gapped domain walls in topological orders

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yidun [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University,Nanjing 210093 (China); Perimeter Institute for Theoretical Physics,Waterloo N2L 2Y5, Ontario (Canada); Wang, Chenjie [Perimeter Institute for Theoretical Physics,Waterloo N2L 2Y5, Ontario (Canada)

    2017-03-31

    We study fermion condensation in bosonic topological orders in two spatial dimensions. Fermion condensation may be realized as gapped domain walls between bosonic and fermionic topological orders, which may be thought of as real-space phase transitions from bosonic to fermionic topological orders. This picture generalizes the previous idea of understanding boson condensation as gapped domain walls between bosonic topological orders. While simple-current fermion condensation was considered before, we systematically study general fermion condensation and show that it obeys a Hierarchy Principle: a general fermion condensation can always be decomposed into a boson condensation followed by a minimal fermion condensation. The latter involves only a single self-fermion that is its own anti-particle and that has unit quantum dimension. We develop the rules of minimal fermion condensation, which together with the known rules of boson condensation, provides a full set of rules for general fermion condensation.

  7. Dark matter annihilations into two light fermions and one gauge boson. General analysis and antiproton constraints

    International Nuclear Information System (INIS)

    Garny, Mathias; Ibarra, Alejandro; Vogl, Stefan

    2011-12-01

    We study in this paper the scenario where the dark matter is constituted by Majo- rana particles which couple to a light Standard Model fermion and an extra scalar via a Yukawa coupling. In this scenario, the annihilation rate into the light fermions with the mediation of the scalar particle is strongly suppressed by the mass of the fermion. Nevertheless, the helicity suppression is lifted by the associated emission of a gauge boson, yielding annihilation rates which could be large enough to allow the indirect detection of the dark matter particles. We perform a general analysis of this scenario, calculating the annihilation cross section of the processes χχ → f anti fV when the dark matter particle is a SU(2) L singlet or doublet, f is a lepton or a quark, and V is a photon, a weak gauge boson or a gluon. We point out that the annihilation rate is particularly enhanced when the dark matter particle is degenerate in mass to the intermediate scalar particle, which is a scenario barely constrained by collider searches of exotic charged or colored particles. Lastly, we derive upper limits on the relevant cross sections from the non-observation of an excess in the cosmic antiproton-to-proton ratio measured by PAMELA. (orig.)

  8. Dark matter annihilations into two light fermions and one gauge boson. General analysis and antiproton constraints

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Vogl, Stefan [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2011-12-15

    We study in this paper the scenario where the dark matter is constituted by Majo- rana particles which couple to a light Standard Model fermion and an extra scalar via a Yukawa coupling. In this scenario, the annihilation rate into the light fermions with the mediation of the scalar particle is strongly suppressed by the mass of the fermion. Nevertheless, the helicity suppression is lifted by the associated emission of a gauge boson, yielding annihilation rates which could be large enough to allow the indirect detection of the dark matter particles. We perform a general analysis of this scenario, calculating the annihilation cross section of the processes {chi}{chi} {yields} f anti fV when the dark matter particle is a SU(2){sub L} singlet or doublet, f is a lepton or a quark, and V is a photon, a weak gauge boson or a gluon. We point out that the annihilation rate is particularly enhanced when the dark matter particle is degenerate in mass to the intermediate scalar particle, which is a scenario barely constrained by collider searches of exotic charged or colored particles. Lastly, we derive upper limits on the relevant cross sections from the non-observation of an excess in the cosmic antiproton-to-proton ratio measured by PAMELA. (orig.)

  9. Electron scattering in the interacting boson model

    International Nuclear Information System (INIS)

    Dieperink, A.E.L.; Iachello, F.; Creswell, C.

    1978-01-01

    It is suggested that the interacting boson model be used in the analysis of electron scattering data. Qualitative features of the expected behavior of the inelastic excitation of some 2 + states in the transitional Sm-Nd region are discussed. (Auth.)

  10. Interacting boson model: Microscopic calculations for the mercury isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; Pittel, S.; Barrett, B.R.; Duval, P.D.

    1987-05-15

    Microscopic calculations of the parameters of the proton--neutron interacting boson model (IBM-2) appropriate to the even Hg isotopes are reported. The calculations are based on the Otsuka--Arima--Iachello boson mapping procedure, which is briefly reviewed. Renormalization of the parameters due to exclusion of the l = 4 g boson is treated perturbatively. The calculations employ a semi-realistic shell-model Hamiltonian with no adjustable parameters. The calculated parameters of the IBM-2 Hamiltonian are used to generate energy spectra and electromagnetic transition probabilities, which are compared with experimental data and with the result of phenomenological fits. The overall agreement is reasonable with some notable exceptions, which are discussed. Particular attention is focused on the parameters of the Majorana interaction and on the F-spin character of low-lying levels. copyright 1987 Academic Press, Inc.

  11. Highly imbalanced fermion-fermion mixtures in one dimension

    International Nuclear Information System (INIS)

    Recher, Christian

    2013-01-01

    In the framework of exactly solvable quantum many-body systems we study models of interacting spin one-half Fermions in one dimension. The first part deals with systems of spin one-half Fermions which interact via repulsive contact interaction. A reformulation of the Bethe-Ansatz solvable many-body wave function is presented. This simplifies considerably the calculations for the highly imbalanced case, where very few particles of one species (minority Fermions) are present. For the other particle species (majority Fermions) the thermodynamic limit is taken. We assume the majority Fermions to be in the ground state such that their non-interacting momentum distribution is a Fermi-sea. Upon this we consider excitations where the particles of the minority species may occupy an arbitrary state within the Fermi-sea. In the case of only a single minority Fermion, the many-body wave function can be expressed as a determinant. This allows us to derive exact thermodynamic expressions for several expectation values as well as for the density-density correlation function. Moreover it is possible to find closed expressions for the single particle Green's function. All of the above mentioned quantities show a non-trivial dependence on the minority particle's momentum. In particular the Green's function in the Tonks-Girardeau regime of hardcore interaction is shown to undergo a transition from the one of impenetrable Bosons to that of free Fermions as the extra particle's momentum varies from the core to the edge of the Fermi-sea. This transition becomes manifest in an algebraic asymptotic decay of the Green's function. If two minority Fermions are present, the many-body wave function turns out to be more complicated. Nevertheless it is possible to derive exact expressions for the two and the three particle density-density correlation functions. Furthermore we calculate the system's total energy and based on that, identify terms which have a natural

  12. Atomic physics constraints on the X boson

    Science.gov (United States)

    Jentschura, Ulrich D.; Nándori, István

    2018-04-01

    Recently, a peak in the light fermion pair spectrum at invariant q2≈(16.7MeV ) 2 has been observed in the bombardment of 7Li by protons. This peak has been interpreted in terms of a protophobic interaction of fermions with a gauge boson (X boson) of invariant mass ≈16.7 MeV which couples mainly to neutrons. High-precision atomic physics experiments aimed at observing the protophobic interaction need to separate the X boson effect from the nuclear-size effect, which is a problem because of the short range of the interaction (11.8 fm), which is commensurate with a "nuclear halo." Here we analyze the X boson in terms of its consequences for both electronic atoms as well as muonic hydrogen and deuterium. We find that the most promising atomic systems where the X boson has an appreciable effect, distinguishable from a finite-nuclear-size effect, are muonic atoms of low and intermediate nuclear charge numbers.

  13. SP(6) X SU(2) and SO(8) X SU(2) - symmetric fermion-dynamic model of multinucleon systems

    International Nuclear Information System (INIS)

    Baktybaev, K.

    2007-01-01

    In last years a new approach describing collective states of multinucleon system on the base of their fermion dynamic symmetry was developed. Such fermion model is broad and logical one in comparison with the phenomenological model of interacting bosons. In cut fermion S- and D- pair spaces complicated nucleons interactions are approximating in that way so multinucleon system Hamiltonian becomes a simple function of fermion generators forming corresponding Lie algebra. Correlation fermion pairs are structured in such form so its operators of birth and destruction together with a set multiband operators are formed Sp(6) and SO(8) algebra of these pairs and SU(2)-algebra for so named anomalous pairs. For convenience at the model practical application to concrete systems the dynamical-symmetric Hamiltonian is writing by means of independent Casimir operators of subgroup are reductions of a large group. It is revealed, that observed Hamiltonians besides the known SU 3 , and SO 6 asymptotic borders have also more complicated 'vibration-like' borders SO 7 , SO 5 XSU 2 and SU 2 XSO 3 . In the paper both advantages and disadvantages of these borders and some its applications to specific nuclear systems are discussing

  14. A Study of the Standard Model Higgs Boson Decaying to a Pair of Tau Leptons with the CMS Detector at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00398807; Smith, Wesley H.; Herndon, Matthew F.

    This thesis presents a 5.5 standard deviation observation of the Higgs boson decaying to fermions using the data collected at the LHC at 13\\TeV center-of-mass energy. The studied dataset corresponds to an integrated luminosity of 35.9\\fbinv. The best fit signal strength for the $\\htt$ process is measured to be $\\mu = 1.24 ^{+0.29} _{-0.27}$, consistent with standard model predictions. Unique event categories are used targeting the leading Higgs boson production processes, gluon fusion, vector boson fusion, and associated production. This provides signal regions sensitive to Higgs boson couplings to both fermions and vector bosons. These two Higgs boson couplings are measured and are consistent with standard model predictions within one standard deviation. This 5.5 standard deviation observation of the $\\htt$ process and the consistency of the Higgs boson couplings with the standard model provide confirmation of the Higgs boson Yukawa couplings to fermions. This is evidence that the Higgs field provides mass f...

  15. First-order density matrices in one dimension for independent fermions and impenetrable bosons in harmonic traps

    International Nuclear Information System (INIS)

    Capuzzi, P.; Howard, I.A.; March, N.H.; Tosi, M.P.

    2007-01-01

    To complement existing knowledge of the density matrix γ F (x,y) of independent fermions for N particles in one dimension under harmonic confinement, the corresponding matrix γ IB (x,y) for impenetrable bosons is given for N=2 and 3 (with the N=4 form available also). For fermions the momentum density is then obtained and illustrated numerically for N=10. The boson momentum density is studied analytically at high momentum p, the coefficients of the p -4 and p -6 terms being tabulated for N=2-5 inclusive. Their dependence on powers of N is exhibited numerically. Finally, the functional relationship between γ IB (x,y) and γ F (x,y) is formally set out and illustrated

  16. Baryon-number generation in supersymmetric unified models: the effect of supermassive fermions

    International Nuclear Information System (INIS)

    Kolb, E.W.; Raby, S.

    1983-01-01

    In supersymmetric unified models, baryon-number-violating reactions may be mediated by supermassive fermions in addition to the usual supermassive bosons. The effective low-energy baryon-number-violating cross section for fermion-mediated reactions is sigma/sub DeltaB/approx.g 4 /m 2 , where g is a coupling constant and m is the supermassive fermion mass, as opposed to sigma/sub DeltaB/approx.g 4 s/m 4 for scalar- or vector-mediated reactions (√s is the center-of-mass energy). Since the fermion-mediated cross section is larger at low energy, it is more effective at damping the baryon number produced in decay of the supermassive particles. In this paper we calculate baryon-number generation in models with fermion-mediated baryon-number-violating reactions, and discuss implications for supersymmetric model building

  17. Higgs-gauge boson interactions in the economical 3-3-1 model

    International Nuclear Information System (INIS)

    Phung Van Dong; Hoang Ngoc Long; Dang Van Soa

    2006-01-01

    Interactions among the standard model gauge bosons and scalar fields in the framework of the SU(3) C xSU(3) L xU(1) X gauge model with minimal (economical) Higgs content are presented. From these couplings, all scalar fields including the neutral scalar h and the Goldstone bosons can be identified and their couplings with the usual gauge bosons such as the photon, the charged W ± , and the neutral Z, without any additional conditions, are recovered. In the effective approximation, the full content of the scalar sector can be recognized. The CP-odd part of the Goldstone associated with the neutral non-Hermitian bilepton gauge boson G X 0 is decoupled, while its CP-even counterpart has the mixing in the same way in the gauge boson sector. Masses of the new neutral Higgs boson H 1 0 and the neutral non-Hermitian bilepton X 0 are dependent on a coefficient of Higgs self-coupling (λ 1 ). Similarly, masses of the singly charged Higgs boson H 2 ± and of the charged bilepton Y ± are proportional through a coefficient of Higgs self-interaction (λ 4 ). The hadronic cross section for production of this Higgs boson at the CERN LHC in the effective vector boson approximation is calculated. Numerical evaluation shows that the cross section can exceed 260 fb

  18. Evaluation of the real parts of fermion and boson propagators using dispersion relations

    International Nuclear Information System (INIS)

    Davies, K.T.R.; Davies, R.W.

    1991-01-01

    General methods are developed for efficiently evaluating principal-value integrals containing fermion and boson causal propagators. These methods are particularly applicable to integrals containing step functions which appear in the zero temperature limit of infinite nuclear matter. Examples are given for the Green functions that occur in the solution of Dyson's equations, with the inclusion of nucleon-delta-mesonic interactions. It is shown how to discretize in order to evaluate numerically the real parts of the propagators. If the real and purely imaginary self-energies of a propagator obey a dispersion relation, then the propagator itself satisfies such a relation. Finally, we discuss the two types of resonances occurring in the pion Green function. (orig.)

  19. The interacting boson model: Microscopic calculations for the mercury isotopes

    Science.gov (United States)

    Druce, C. H.; Pittel, S.; Barrett, B. R.; Duval, P. D.

    1987-05-01

    Microscopic calculations of the parameters of the proton-neutron interacting boson model (IBM-2) appropriate to the even Hg isotopes are reported. The calculations are based on the Otsuka-Armia-Iachello boson mapping procedure, which is briefly reviewed. Renormalization of the parameters due to exclusion of the l=4 g boson is treated perturbatively. The calculations employ a semi-realistic shell-model Hamiltonian with no adjustable parameters. The calculated parameters of the IBM-2 Hamiltonian are used to generate energy spectra and electromagnetic transition probabilities, which are compared with experimental data and with the result of phenomenological fits. The overall agreement is reasonable with some notable exceptions, which are discussed. Particular attention is focused on the parameters of the Majorana interaction and on the F-spin character of low-lying levels.

  20. Time-dependent Gross-Pitaevskii equation for composite bosons as the strong-coupling limit of the fermionic broken-symmetry random-phase approximation

    International Nuclear Information System (INIS)

    Strinati, G.C.; Pieri, P.

    2004-01-01

    The linear response to a space- and time-dependent external disturbance of a system of dilute condensed composite bosons at zero temperature, as obtained from the linearized version of the time-dependent Gross-Pitaevskii equation, is shown to result also from the strong-coupling limit of the time-dependent BCS (or broken-symmetry random-phase) approximation for the constituent fermions subject to the same external disturbance. In this way, it is possible to connect excited-state properties of the bosonic and fermionic systems by placing the Gross-Pitaevskii equation in perspective with the corresponding fermionic approximations

  1. Quantum correlations through event horizons: Fermionic versus bosonic entanglement

    International Nuclear Information System (INIS)

    Martin-Martinez, Eduardo; Leon, Juan

    2010-01-01

    We disclose the behavior of quantum and classical correlations among all the different spatial-temporal regions of a space-time with an event horizon, comparing fermionic with bosonic fields. We show the emergence of conservation laws for entanglement and classical correlations, pointing out the crucial role that statistics plays in the information exchange (and more specifically, the entanglement tradeoff) across horizons. The results obtained here could shed new light on the problem of information behavior in noninertial frames and in the presence of horizons, giving better insight into the black-hole information paradox.

  2. Higgs boson as a top-mode pseudo-Nambu-Goldstone boson

    Science.gov (United States)

    Fukano, Hidenori S.; Kurachi, Masafumi; Matsuzaki, Shinya; Yamawaki, Koichi

    2014-09-01

    In the spirit of the top-quark condensation, we propose a model which has a naturally light composite Higgs boson, "tHiggs" (ht0), to be identified with the 126 GeV Higgs discovered at the LHC. The tHiggs, a bound state of the top quark and its flavor (vectorlike) partner, emerges as a pseudo-Nambu-Goldstone boson (NGB), "top-mode pseudo-Nambu-Goldstone boson," together with the exact NGBs to be absorbed into the W and Z bosons as well as another (heavier) top-mode pseudo-Nambu-Goldstone bosons (CP-odd composite scalar, At0). Those five composite (exact/pseudo-) NGBs are dynamically produced simultaneously by a single supercritical four-fermion interaction having U(3)×U(1) symmetry which includes the electroweak symmetry, where the vacuum is aligned by a small explicit breaking term so as to break the symmetry down to a subgroup, U(2)×U(1)', in a way not to retain the electroweak symmetry, in sharp contrast to the little Higgs models. The explicit breaking term for the vacuum alignment gives rise to a mass of the tHiggs, which is protected by the symmetry and hence naturally controlled against radiative corrections. Realistic top-quark mass is easily realized similarly to the top-seesaw mechanism by introducing an extra (subcritical) four-fermion coupling which explicitly breaks the residual U(2)'×U(1)' symmetry with U(2)' being an extra symmetry besides the above U(3)L×U(1). We present a phenomenological Lagrangian of the top-mode pseudo-Nambu-Goldstone bosons along with the Standard Model particles, which will be useful for the study of the collider phenomenology. The coupling property of the tHiggs is shown to be consistent with the currently available data reported from the LHC. Several phenomenological consequences and constraints from experiments are also addressed.

  3. Topological Edge-State Manifestation of Interacting 2D Condensed Boson-Lattice Systems in a Harmonic Trap

    Science.gov (United States)

    Galilo, Bogdan; Lee, Derek K. K.; Barnett, Ryan

    2017-11-01

    In this Letter, it is shown that interactions can facilitate the emergence of topological edge states of quantum-degenerate bosonic systems in the presence of a harmonic potential. This effect is demonstrated with the concrete model of a hexagonal lattice populated by spin-one bosons under a synthetic gauge field. In fermionic or noninteracting systems, the presence of a harmonic trap can obscure the observation of edge states. For our system with weakly interacting bosons in the Thomas-Fermi regime, we can clearly see a topological band structure with a band gap traversed by edge states. We also find that the number of edge states crossing the gap is increased in the presence of a harmonic trap, and the edge modes experience an energy shift while traversing the first Brillouin zone which is related to the topological properties of the system. We find an analytical expression for the edge-state energies and our comparison with numerical computation shows excellent agreement.

  4. Topological Edge-State Manifestation of Interacting 2D Condensed Boson-Lattice Systems in a Harmonic Trap.

    Science.gov (United States)

    Galilo, Bogdan; Lee, Derek K K; Barnett, Ryan

    2017-11-17

    In this Letter, it is shown that interactions can facilitate the emergence of topological edge states of quantum-degenerate bosonic systems in the presence of a harmonic potential. This effect is demonstrated with the concrete model of a hexagonal lattice populated by spin-one bosons under a synthetic gauge field. In fermionic or noninteracting systems, the presence of a harmonic trap can obscure the observation of edge states. For our system with weakly interacting bosons in the Thomas-Fermi regime, we can clearly see a topological band structure with a band gap traversed by edge states. We also find that the number of edge states crossing the gap is increased in the presence of a harmonic trap, and the edge modes experience an energy shift while traversing the first Brillouin zone which is related to the topological properties of the system. We find an analytical expression for the edge-state energies and our comparison with numerical computation shows excellent agreement.

  5. Model-independent limits on four-fermion contact interactions at LC with polarization

    International Nuclear Information System (INIS)

    Pankov, A.A.; Paver, N.

    1998-04-01

    Fermion compositeness, and other types of new physics that can be described by the exchange of very massive particles, can manifest themselves as the result of an effective four-fermion contact interaction. In the case of the processes e + e - →μ + μ - , τ + τ - , b-bar b and c-bar c at future e + e - colliders with √s=0.5-1 TeV, we examine the sensitivity to four-fermion contact interactions of two new integrated observables, σ + and σ - , conveniently defined for such kind of analysis. We find that, if longitudinal polarization of the electron beam were available, these observables would offer the opportunity to separate the helicity cross sections and, in this way, to derive model-independent bounds on the relevant parameters. (author)

  6. Plethystic vertex operators and boson-fermion correspondences

    International Nuclear Information System (INIS)

    Fauser, Bertfried; Jarvis, Peter D; King, Ronald C

    2016-01-01

    We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π . Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π , the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms. (paper)

  7. Plethystic vertex operators and boson-fermion correspondences

    Science.gov (United States)

    Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C.

    2016-10-01

    We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.

  8. Construction of closed fermionic string models in four dimensions

    International Nuclear Information System (INIS)

    Lewellen, D.C.

    1987-01-01

    It is possible to construct consistent closed string models directly in four space-time dimensions if reparametrization invariance, conformal invariance and world sheet supersymmetry are properly accounted for. In the context of string models whose internal degrees of freedom are represented by free world sheet fermions, it is possible to completely solve for the above requirements, providing a simple set of rules for constructing string models. N = 1 supersymmetric and non-supersymmetric heterotic type string models with chiral fermions and realistic gauge groups, as well as generalized type II models with realistic gauge groups, can easily be constructed. Many other string models can be constructed using similar methods based on free world sheet bosons

  9. Fermion pair production in $e^+e^-$ collisions at 189-209 GeV and constraints on physics beyond the Standard Model

    CERN Document Server

    Schael, S.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rouge, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Muller, A.-S.; Quast, G.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Azzurri, P.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Bohrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, K.; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; USA; Dissertori, G.

    2007-01-01

    Cross sections, angular distributions and forward-backward asymmetries are presented, of two-fermion events produced in e+e- collisions at centre-of-mass energies from 189 to 209 GeV at LEP, measured with the ALEPH detector. Results for e+e-, mu+mu-, tau+tau-, qq, bb and cc production are in agreement with the Standard Model predictions. Constraints are set on scenarios of new physics such as four-fermion contact interactions, leptoquarks, Z' bosons, TeV-scale quantum gravity and R-parity violating squarks and sneutrinos.

  10. Quarks and leptons as quasi Nambu-Goldstone fermions

    International Nuclear Information System (INIS)

    Buchmueller, W.; Peccei, R.D.; Yanagida, T.

    1983-01-01

    We discuss a new idea for constructing composite quarks and leptons which have (approximately) vanishing mass. They are associated with fermionic partners of Goldstone bosons arising from the spontaneous breakdown of an internal symmetry Gsub(f) in a supersymmetric preon theory. For Gsub(f)=SU(5) being broken to SU(3) x U(1)sub(em) there arise as quasi Goldstone fermions, naturally and unequivocally, precisely the quarks and leptons of one family. The dynamics of these quasi Goldstone fermions is explored by constructing a general supersymmetric nonlinear effective lagrangian. By means of a reduced model, we show that the first nontrivial interactions of the quasi Goldstone fermions can give rise, in an effective way, to the weak interactions. Issues connected with the incorporation of families in the scheme and the generation of masses, as well as the possible structure of the underlying preon theory are briefly discussed. (orig.)

  11. Combined Tevatron upper limit on gg -> H -> W^+W^- and constraints on the Higgs boson mass in fourth-generation fermion models

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Adelman, J.; Aguilo, E.; Alexeev, G.D.; Alkhazov, G.; /Helsinki Inst. of Phys. /Dubna, JINR /Oklahoma U. /Michigan State U. /Tata Inst. /Illinois U., Chicago /Florida State U. /Chicago U., EFI /Simon Fraser U. /York U., Canada /St. Petersburg, INP /Illinois U., Urbana /Sao Paulo, IFT /Munich U. /University Coll. London /Oxford U. /St. Petersburg, INP /Duke U. /Kyungpook Natl. U. /Chonnam Natl. U. /Florida U. /Osaka City U.

    2010-05-01

    We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg {yields} H {yields} W{sup +}W{sup -} in p{bar p} collisions at the Fermilab Tevatron Collider at {radical}s = 1.o6 TeV. With 4.8 fb{sup -1} of itnegrated luminosity analyzed at CDF and 5.4 fb{sup -1} at D0, the 95% Confidence Level upper limit on {sigma}(gg {yields} H) x {Beta}(H {yields} W{sup +}W{sup -}) is 1.75 pb at m{sub H} = 120 GeV, 0.38 pb at m{sub H} = 165 GeV, and 0.83 pb at m{sub H} = 200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, they exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 Gev.

  12. On the equivalence of quadrupole phonon model and interacting boson model

    International Nuclear Information System (INIS)

    Kyrchev, G.

    1980-01-01

    A rigorous proof of the quadrupole phonon model (QPM) and the interacting boson model (IBM) equivalence (the Hamiltonians and the relevant operators of both models are identical) is presented. Within the theory of classical Lie algebras the Schwinger representation (SR) construction of SU(6)-algebra, generated by QPM collective coordinates, conjugated momenta and their commutators, is given. Having the explicit form of SU(6) generators in SR, we get the QPM collective Hamiltonian in SR (previously Holstein-Primakoff infinite Boson expansion has been applied for this Hamiltonian). The Hamiltonian of QPM thus obtained contains all Boson structures, which are present in the Hamiltonian of IBM and under definite relations between their parameters, both Hamiltonians coincide identically. The relevant operators are identical too. Thus, though QPM and IBM, being advanced independently, have been developed in a different fashion, they are essentially equivalent

  13. Chiral Schwinger model and lattice fermionic regularizations

    International Nuclear Information System (INIS)

    Kieu, T.D.; Sen, D.; Xue, S.

    1988-01-01

    The chiral Schwinger model is studied on the lattice with use of Wilson fermions. The arbitrary mass term for the gauge boson is shown to originate from the arbitrariness of the Wilson parameter, which is required to avoid the doubling phenomenon on the lattice. The necessity for such a term is thus demonstrated in contrast to the mere admissibility as indicated by previous continuum calculations

  14. Search for a low-mass neutral Higgs boson with suppressed couplings to fermions using events with multiphoton final states

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2016-06-01

    A search for a Higgs boson with suppressed couplings to fermions, hf, assumed to be the neutral, lower-mass partner of the Higgs boson discovered at the Large Hadron Collider, is reported. Such a Higgs boson could exist in extensions of the standard model with two Higgs doublets, and could be produced via p p ¯→H±hf→W*hfhf→4 γ +X , where H± is a charged Higgs boson. This analysis uses all events with at least three photons in the final state from proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected by the Collider Detector at Fermilab, corresponding to an integrated luminosity of 9.2 fb-1. No evidence of a signal is observed in the data. Values of Higgs-boson masses between 10 and 100 GeV /c2 are excluded at 95% Bayesian credibility.

  15. Quantum Statistics: Is there an effective fermion repulsion or boson attraction?

    OpenAIRE

    Mullin, W. J.; Blaylock, G.

    2003-01-01

    Physicists often claim that there is an effective repulsion between fermions, implied by the Pauli principle, and a corresponding effective attraction between bosons. We examine the origins of such exchange force ideas, the validity for them, and the areas where they are highly misleading. We propose that future explanations of quantum statistics should avoid the idea of a effective force completely and replace it with more appropriate physical insights, some of which are suggested here.

  16. Higgs bosons in supersymmetric models. Pt. 1

    International Nuclear Information System (INIS)

    Gunion, J.F.

    1986-01-01

    We describe the properties of Higgs bosons in a class of supersymmetric theories. We consider models in which the low-energy sector contains two weak complex doublets and perhaps one complex gauge-singlet Higgs field. Supersymmetry is assumed to be either softly or spontaneously broken, thereby imposing a number of restrictions on the Higgs boson parameters. We elucidate the Higgs boson masses and present Feynman rules for their couplings to the gauge bosons, fermions and scalars of the theory. We also present Feynman rules for vertices which are related by supersymmetry to the above couplings. Exact analytic expressions are given in two useful limits - one corresponding to the absence of the gauge-singlet Higgs field and the other corresponding to the absence of a supersymmetric Higgs mass term. (orig.)

  17. Equation of state and hybrid star properties with the weakly interacting light U-boson in relativistic models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dong-Rui; Jiang, Wei-Zhou; Wei, Si-Na; Yang, Rong-Yao [Southeast University, Department of Physics, Nanjing (China); Xiang, Qian-Fei [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2016-05-15

    It has been a puzzle whether quarks may exist in the interior of massive neutron stars, since the hadron-quark phase transition softens the equation of state (EOS) and reduce the neutron star (NS) maximum mass very significantly. In this work, we consider the light U-boson that increases the NS maximum mass appreciably through its weak coupling to fermions. The inclusion of the U-boson may thus allow the existence of the quark degrees of freedom in the interior of large mass neutron stars. Unlike the consequence of the U-boson in hadronic matter, the stiffening role of the U-boson in the hybrid EOS is not sensitive to the choice of the hadron phase models. In addition, we have also investigated the effect of the effective QCD correction on the hybrid EOS. This correction may reduce the coupling strength of the U-boson that is needed to satisfy NS maximum mass constraint. While the inclusion of the U-boson also increases the NS radius significantly, we find that appropriate in-medium effects of the U-boson may reduce the NS radii significantly, satisfying both the NS radius and mass constraints well. (orig.)

  18. Characterization of topological phases in models of interacting fermions

    International Nuclear Information System (INIS)

    Motruk, Johannes

    2016-01-01

    The concept of topology in condensed matter physics has led to the discovery of rich and exotic physics in recent years. Especially when strong correlations are included, phenomenons such as fractionalization and anyonic particle statistics can arise. In this thesis, we study several systems hosting topological phases of interacting fermions. In the first part, we consider one-dimensional systems of parafermions, which are generalizations of Majorana fermions, in the presence of a Z N charge symmetry. We classify the symmetry-protected topological (SPT) phases that can occur in these systems using the projective representations of the symmetries and find a finite number of distinct phases depending on the prime factorization of N. The different phases exhibit characteristic degeneracies in their entanglement spectrum (ES). Apart from these SPT phases, we report the occurrence of parafermion condensate phases for certain values of N. When including an additional Z N symmetry, we find a non-Abelian group structure under the addition of phases. In the second part of the thesis, we focus on two-dimensional lattice models of spinless fermions. First, we demonstrate the detection of a fractional Chern insulator (FCI) phase in the Haldane honeycomb model on an infinite cylinder by means of the density-matrix renormalization group (DMRG). We report the calculation of several quantities characterizing the topological order of the state, i.e., (i) the Hall conductivity, (ii) the spectral flow and level counting in the ES, (iii) the topological entanglement entropy, and (iv) the charge and topological spin of the quasiparticles. Since we have access to sufficiently large system sizes without band projection with DMRG, we are in addition able to investigate the transition from a metal to the FCI at small interactions which we find to be of first order. In a further study, we consider a time-reversal symmetric model on the honeycomb lattice where a Chern insulator (CI) induced

  19. High-energy behavior of fermion-meson and meson-meson scattering in a supersymmetric field theory

    International Nuclear Information System (INIS)

    Opoien, J.W.

    1978-01-01

    The high-energy behavior of fermion-boson and boson-boson scattering amplitudes of a supersymmetric field theory containing a spin-1/2 fermion field, a scalar field, and a pseudoscalar field is investigated. The results can be easily modified to apply to the Yukawa model and the neutral version of the linear sigma model. The results are also compared to those of fermion-fermion scattering in the same model. In the leading-logarithm approximation, ladders with fermions running along the sides in the t channel and mesons as rungs dominate in each order of two classes of diagrams. The sum of the dominant series give rise to fixed Regge cuts for all amplitudes in each of the three theories. All amplitudes in the supersymmetric theory possess a definite signature factor, while the amplitudes for fermion-fermion and fermion-antifermion scattering in the Y model and the sigma model lack it. The results of the supersymmetric theory are also compared to the results of the spontaneously broken non-Abelian gauge theory

  20. Cut-off parameters in the one-dimensional two-fermion model

    International Nuclear Information System (INIS)

    Apostol, M.

    1982-07-01

    It is shown that the usual cut-off procedure (α cut-off parameter) employed in the boson representation of the fermion field opepators of the one-djmensional two-fermion model (TFM) is an incorrect one as the computator of the hermitean-conjugate field operators at the same space-point fails to fulfil a certain relationship which was pointed out long ago by Jordan. The complete form of the boson representation (including the zero-mode) of a single fermion field and the correct values of the cut-off parameter α is reviewed following Jordan and generalized to the TFM. The cut-off parameter α corresponds to a bandwidth cut-off and Jordan's boson representation is exact only in the limit α → 0. The additional zero-mode terms make the exact solution of the backscattering and umklapp scattering problem to be valid only if a supplementary condition is imposed on the coupling constants. Using the present bosonization technique all the inconsistencies of the TFM are removed. The one-particle Green's function and response functions of the Tomonaga-Luttinger model (TLM) are calculated and found to be identical with those obtained by direct diagram summation. The energy gap appearing in the spectrum of the TFM with backscattering and umklapp scattering for certain values of the coupling constants is shown to be proportional to the momentum transfer cut-off γ -1 which has to be kept finite while α goes to zero. Under such conditions the anticommunication relations and Jordan's commutator are invariant under the canonical transformation on the boson operators that diagonalizes the Hamiltonian of the TLM. The charge-density response function of the TFM with backscattering is perturbationally calculated up to the first order. The cut-off α -1 applies in the same way to terms which differ only by their spin indices in the expression of this response function. The charge-density response function is also evaluated at low frequencies for the exactly soluble TFM with

  1. Higgs-boson contributions to gauge-boson mass shifts in extended electroweak models

    International Nuclear Information System (INIS)

    Moore, S.R.

    1985-01-01

    The author analyzed the mass shifts for models with a more complicated Higgs sector. He uses the on-shell renormalization scheme, in which the parameters of the theory are the physical masses and couplings. The author has considered the 2-doublet, n-doublet, triplet and doublet-triplet models. He has found that the Z-boson mass prediction has a strong dependence on the charged-Higgs mass. In the limit that the charged Higgs is much heavier than the gauge bosons, the Higgs-dependent terms become significant, and may even cancel the light-fermion terms. If the author uses the Z mass as input in determining the parameters of the theory, a scenario which will become attractive as the mass of the Z is accurately measured in the next few years, it is found that the W-boson mass shift exhibits the same sort of behavior, differing from the minimal model for the case of the charged Higgs being heavy. The author has found that when the radiative corrections are taken into account, models with extended Higgs sectors may differ significantly from the minimal standard model in this predictions for the gauge-boson masses. Thus, an accurate measurement of the masses will help shed light on the structure of the Higgs sector

  2. The W bosons physics and four-fermion processes in the LEP2 experiments - Monte Carlo approach

    International Nuclear Information System (INIS)

    Skrzypek, M.

    1998-06-01

    The computer codes LoralW and YFSWW for Monte Carlo simulation of the four-fermion processes is presented. These programs are dedicated for prediction of W bosons pairs production and theirs decay at LEP experiments at CERN

  3. Linear bosonic and fermionic quantum gauge theories on curved spacetimes

    International Nuclear Information System (INIS)

    Hack, Thomas-Paul; Schenkel, Alexander

    2012-05-01

    We develop a general setting for the quantization of linear bosonic and fermionic field theories subject to local gauge invariance and show how standard examples such as linearized Yang-Mills theory and linearized general relativity fit into this framework. Our construction always leads to a well-defined and gauge-invariant quantum field algebra, the centre and representations of this algebra, however, have to be analysed on a case-by-case basis. We discuss an example of a fermionic gauge field theory where the necessary conditions for the existence of Hilbert space representations are not met on any spacetime. On the other hand, we prove that these conditions are met for the Rarita-Schwinger gauge field in linearized pure N=1 supergravity on certain spacetimes, including asymptotically flat spacetimes and classes of spacetimes with compact Cauchy surfaces. We also present an explicit example of a supergravity background on which the Rarita-Schwinger gauge field can not be consistently quantized.

  4. Linear bosonic and fermionic quantum gauge theories on curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Schenkel, Alexander [Bergische Univ., Wuppertal (Germany). Fachgruppe Physik

    2012-05-15

    We develop a general setting for the quantization of linear bosonic and fermionic field theories subject to local gauge invariance and show how standard examples such as linearized Yang-Mills theory and linearized general relativity fit into this framework. Our construction always leads to a well-defined and gauge-invariant quantum field algebra, the centre and representations of this algebra, however, have to be analysed on a case-by-case basis. We discuss an example of a fermionic gauge field theory where the necessary conditions for the existence of Hilbert space representations are not met on any spacetime. On the other hand, we prove that these conditions are met for the Rarita-Schwinger gauge field in linearized pure N=1 supergravity on certain spacetimes, including asymptotically flat spacetimes and classes of spacetimes with compact Cauchy surfaces. We also present an explicit example of a supergravity background on which the Rarita-Schwinger gauge field can not be consistently quantized.

  5. Microscopic boson approach to the description of sd-shell nuclei

    International Nuclear Information System (INIS)

    Kuchta, R.

    1987-01-01

    A microscopic method is proposed for analyzing the properties of light nuclei with an equal number of protons and neutrons in terms of many interacting bosons. An exact boson image of the underlying shell-model Hamiltonian is derived and the dynamical behaviour of the original fermion system is studied directly in the boson picture using the mean field approximation. The resulting boson states are shown to be free from spurios components, so that the cubersome procedure of constructing the physical boson states can be avoided. The method is applied to calculating the energy spectra of 20 Ne, 24 Mg and a satisfactory agreement with experimental data is found

  6. Dynamics of fermionic Hubbard models after interaction quenches in one and two dimensions

    International Nuclear Information System (INIS)

    Hamerla, Simone Anke

    2013-10-01

    In the last years the impressive progress on the experimental side led to a variety of new experiments allowing to address systems out of equilibrium. In this way the behavior of such systems far from equilibrium is no longer a purely theoretical issue but indeed observable. New experimental techniques, like particles trapped in optical lattices, render a realization of quantum systems with nearly arbitrary system parameters possible and provide a possibility to study their time evolution. Systems out of equilibrium are characterized by the fact, that these systems are in highly excited states giving rise to totally new fascinating properties. In the present thesis one- and two-dimensional fermionic Hubbard models out of equilibrium are discussed. The system is taken out of equilibrium by a so-called interaction quench. At the beginning the system is prepared in the groundstate of the non-interacting Hamiltonian. At a time t the interaction between the fermions is suddenly turned on so that the time evolution is governed by the whole, interacting Hamiltonian. Hence the system is prepared in the groundstate of one Hamiltonian but evolves according to a different Hamiltonian. Consequently the system ends up in a highly excited state. To describe such a system a method based on an expansion of the Heisenberg equations of motion to highest order possible is developed in this thesis. This method provides an exact description of the time evolution on short and intermediate time scales after the quench. As the method reveal exact results and does not rely on any perturbative assumption, a study of arbitrarily large interaction strengths is possible. Besides, the method is one of the few methods capable of two-dimensional systems. In the following the method used in this thesis is explained and advantages and disadvantages of the approach are thematized. For this purpose the results of the developed iterated equation of motion approach are compared to results obtained in

  7. Dynamics of fermionic Hubbard models after interaction quenches in one and two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Hamerla, Simone Anke

    2013-10-15

    In the last years the impressive progress on the experimental side led to a variety of new experiments allowing to address systems out of equilibrium. In this way the behavior of such systems far from equilibrium is no longer a purely theoretical issue but indeed observable. New experimental techniques, like particles trapped in optical lattices, render a realization of quantum systems with nearly arbitrary system parameters possible and provide a possibility to study their time evolution. Systems out of equilibrium are characterized by the fact, that these systems are in highly excited states giving rise to totally new fascinating properties. In the present thesis one- and two-dimensional fermionic Hubbard models out of equilibrium are discussed. The system is taken out of equilibrium by a so-called interaction quench. At the beginning the system is prepared in the groundstate of the non-interacting Hamiltonian. At a time t the interaction between the fermions is suddenly turned on so that the time evolution is governed by the whole, interacting Hamiltonian. Hence the system is prepared in the groundstate of one Hamiltonian but evolves according to a different Hamiltonian. Consequently the system ends up in a highly excited state. To describe such a system a method based on an expansion of the Heisenberg equations of motion to highest order possible is developed in this thesis. This method provides an exact description of the time evolution on short and intermediate time scales after the quench. As the method reveal exact results and does not rely on any perturbative assumption, a study of arbitrarily large interaction strengths is possible. Besides, the method is one of the few methods capable of two-dimensional systems. In the following the method used in this thesis is explained and advantages and disadvantages of the approach are thematized. For this purpose the results of the developed iterated equation of motion approach are compared to results obtained in

  8. Fermionic One-Way Quantum Computation

    International Nuclear Information System (INIS)

    Cao Xin; Shang Yun

    2014-01-01

    Fermions, as another major class of quantum particles, could be taken as carriers for quantum information processing beyond spins or bosons. In this work, we consider the fermionic generalization of the one-way quantum computation model and find that one-way quantum computation can also be simulated with fermions. In detail, using the n → 2n encoding scheme from a spin system to a fermion system, we introduce the fermionic cluster state, then the universal computing power with a fermionic cluster state is demonstrated explicitly. Furthermore, we show that the fermionic cluster state can be created only by measurements on at most four modes with |+〉 f (fermionic Bell state) being free

  9. Characterization of topological phases in models of interacting fermions

    Energy Technology Data Exchange (ETDEWEB)

    Motruk, Johannes

    2016-05-25

    The concept of topology in condensed matter physics has led to the discovery of rich and exotic physics in recent years. Especially when strong correlations are included, phenomenons such as fractionalization and anyonic particle statistics can arise. In this thesis, we study several systems hosting topological phases of interacting fermions. In the first part, we consider one-dimensional systems of parafermions, which are generalizations of Majorana fermions, in the presence of a Z{sub N} charge symmetry. We classify the symmetry-protected topological (SPT) phases that can occur in these systems using the projective representations of the symmetries and find a finite number of distinct phases depending on the prime factorization of N. The different phases exhibit characteristic degeneracies in their entanglement spectrum (ES). Apart from these SPT phases, we report the occurrence of parafermion condensate phases for certain values of N. When including an additional Z{sub N} symmetry, we find a non-Abelian group structure under the addition of phases. In the second part of the thesis, we focus on two-dimensional lattice models of spinless fermions. First, we demonstrate the detection of a fractional Chern insulator (FCI) phase in the Haldane honeycomb model on an infinite cylinder by means of the density-matrix renormalization group (DMRG). We report the calculation of several quantities characterizing the topological order of the state, i.e., (i) the Hall conductivity, (ii) the spectral flow and level counting in the ES, (iii) the topological entanglement entropy, and (iv) the charge and topological spin of the quasiparticles. Since we have access to sufficiently large system sizes without band projection with DMRG, we are in addition able to investigate the transition from a metal to the FCI at small interactions which we find to be of first order. In a further study, we consider a time-reversal symmetric model on the honeycomb lattice where a Chern insulator (CI

  10. Fermion-fermion scattering in quantum field theory with superconducting circuits.

    Science.gov (United States)

    García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E

    2015-02-20

    We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.

  11. S-wave scattering of fermion revisited

    International Nuclear Information System (INIS)

    Rahaman, Anisur

    2011-01-01

    A model where a Dirac fermion is coupled to background dilaton field is considered to study s-wave scattering of fermion by a back ground dilaton black hole. It is found that an uncomfortable situation towards information loss scenario arises when one loop correction gets involved during bosonization.

  12. Geometry of coexistence in the interacting boson model

    International Nuclear Information System (INIS)

    Van Isacker, P.; Frank, A.; Vargas, C.E.

    2004-01-01

    The Interacting Boson Model (IBM) with configuration mixing is applied to describe the phenomenon of coexistence in nuclei. The analysis suggests that the IBM with configuration mixing, used in conjunction with a (matrix) coherent-state method, may be a reliable tool for the study of geometric aspects of shape coexistence in nuclei

  13. Gauge boson mass without a Higgs field: a simple model

    International Nuclear Information System (INIS)

    Nicholson, A.F.; Kennedy, D.C.

    1997-02-01

    A simple, anomaly-free chiral gauge theory can be perturbatively quantized and renormalized in such a way as to generate fermion and gauge boson masses. This development exploits certain freedoms inherent in choosing the unperturbed Lagrangian and in the renormalization procedure. Apart from its intrinsic interest, such a mechanism might be employed in electroweak gauge theory to generate fermion and gauge boson masses without a Higgs sector. 38 refs

  14. General quadrupole shapes in the Interacting Boson Model

    International Nuclear Information System (INIS)

    Leviatan, A.

    1990-01-01

    Characteristic attributes of nuclear quadrupole shapes are investigated within the algebraic framework of the Interacting Boson Model. For each shape the Hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed and used to estimate transition matrix elements. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of the three-body interactions. 27 refs

  15. Feynman rules for fermion-number-violating interactions

    International Nuclear Information System (INIS)

    Denner, A.; Eck, H.; Hahn, O.; Kueblbeck, J.

    1992-01-01

    We present simple algorithmic Feynman rules for fermion-number-violating interactions. They do not involve explicit charge-conjugation matrices and resemble closely the familiar rules for Dirac fermions. We insist on a fermion flow through the graphs along fermion lines and get the correct relative signs between different interfering Feynman graphs as in the case of Dirac fermions. We only need the familiar Dirac propagator and fewer vertices than in the usual treatment of fermion-number-violating interactions. (orig.)

  16. Transformation of renormalization groups in 2N-component fermion hierarchical model

    International Nuclear Information System (INIS)

    Stepanov, R.G.

    2006-01-01

    The 2N-component fermion model on the hierarchical lattice is studied. The explicit formulae for renormalization groups transformation in the space of coefficients setting the Grassmannian-significant density of the free measure are presented. The inverse transformation of the renormalization group is calculated. The definition of immovable points of renormalization groups is reduced to solving the set of algebraic equations. The interesting connection between renormalization group transformations in boson and fermion hierarchical models is found out. It is shown that one transformation is obtained from other one by the substitution of N on -N [ru

  17. Fermion local charged boson model and cuprate superconductors

    International Nuclear Information System (INIS)

    Sinha, K.P.; Kakani, S.L.

    2002-01-01

    One of the most exciting developments in Science in past few years is the discovery of high temperature superconductivity (HTSC) in cuprates. It has been observed that the superconducting state in these cuprates is rather normal compared to the anomalous normal state. This discovery has led to deluge of experimental and theoretical researches all along the world. These cuprates are close to metal-insulator transition and the stability of the insulating and metallic phase depends on the degree of doping. Measurements of physical properties of these systems have revealed many anomalous results both in the superconducting and normal states, e.g. d-wave superconducting gap, the presence of pseudo gap in the normal state, static or dynamic striped structure of CuO 2 planes etc. These have posed serious theoretical challenges towards formulating the mechanisms of pairing and explanation of anomalous behaviour. Several theoretical proposals have been advanced and only a few are likely to survive in the teeth of some reliable experimental data. A combined mechanism mediated by phonons and lochons (local charged bosons, local pairs or bipolarons) for the pairing of fermions (holes or electrons) belonging to a wide band provides a microscopic explanation of anomalous normal state properties of HTSC cuprates and vindicates features of the phenomenological marginal Fermi liquid formulation. In the present review article detailed features of combined lochon and phonon mediated pairing mechanism are presented and a contact with the normal and superconducting state properties of HTSC in YBa 2 Cu 3 O x does indicate pair hopping between planes via such resonant centres lying in between the CuO 2 planes. (author)

  18. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.

    Science.gov (United States)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  19. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases

    Science.gov (United States)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  20. Ultracold fermion race is on

    International Nuclear Information System (INIS)

    Hulet, R.

    1999-01-01

    At the quantum level, particles behave very differently depending on whether their spin angular momentum is an integer or a half-integer. Half-integer spin particles are known as fermions, and include all the constituents of atoms: electrons, protons and neutrons. Bosons, on the other hand, are particles with integer spin, such as photons. Atoms are fermions if they are composed of an odd number of particles, like helium-3 or lithium-6. If they have an even number of constituents, like hydrogen, helium-4 or lithium-7, they are known as bosons. Fermions and bosons behave in profoundly different ways under certain conditions, especially at low temperatures. Four years ago, physicists created a Bose condensate, a quantum degenerate gas of bosons. Now the race is on to do the same with fermions. Deborah Jin's group at the US National Institute of Standards and Technology (NIST) and the University of Colorado has cooled a fermion gas to the lowest temperature yet (B DeMarco 1999 Phys. Rev. Lett. 82 4208). And John Thomas and co-workers at Duke University have set a new record for the length of time that fermions can be trapped using lasers (K O'Hara 1999 Phys. Rev. Lett. 82 4204). In this article the author describes the latest advances in the race to create a quantum degenerate gas of fermions. (UK)

  1. Probing kink interactions with fermions

    International Nuclear Information System (INIS)

    Carlitz, R.; Chakrabarti, R.

    1985-01-01

    A dilute gas of kinks exhibits strong but short-ranged intrinsic interactions. When these intrinsic interactions are supplemented by other ''extrinsic'' interactions, a phase transition can occur in which kinks and antikinks bind to form a gas of bounces. The extrinsic interactions arise from the coupling of kinks to an additional degree of freedom, which we take to be a fermion field. The class of quantum-mechanical models which we study includes examples of supersymmetry. The way in which kinks and antikinks bind depends in detail on aspects of the intrinsic interactions. This structure is probably shared by field-theoretic models

  2. Itinerant quantum multicriticality of two-dimensional Dirac fermions

    Science.gov (United States)

    Roy, Bitan; Goswami, Pallab; Juričić, Vladimir

    2018-05-01

    We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d =2 ) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S1) and O(S2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the ɛ =(3 -d ) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S1+S2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either O(S1) or O(S2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.

  3. Interacting composite fermions

    DEFF Research Database (Denmark)

    nrc762, nrc762

    2016-01-01

    Numerical studies by Wójs, Yi, and Quinn have suggested that an unconventional fractional quantum Hall effect is plausible at filling factors ν=1/3 and 1/5, provided the interparticle interaction has an unusual form for which the energy of two fermions in the relative angular momentum three channel...... as fractional quantum Hall effect of electrons at ν=4/11, 4/13, 5/13, and 5/17. I investigate in this article the nature of the fractional quantum Hall states at ν=4/5, 5/7, 6/17, and 6/7, which correspond to composite fermions at ν∗=4/3, 5/3, and 6/5, and find that all these fractional quantum Hall states...... are conventional. The underlying reason is that the interaction between composite fermions depends substantially on both the number and the direction of the vortices attached to the electrons. I also study in detail the states with different spin polarizations at 6/17 and 6/7 and predict the critical Zeeman...

  4. Fermionic bound states in distinct kinklike backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil)

    2017-04-15

    This work deals with fermions in the background of distinct localized structures in the two-dimensional spacetime. Although the structures have a similar topological character, which is responsible for the appearance of fractionally charged excitations, we want to investigate how the geometric deformations that appear in the localized structures contribute to the change in the physical properties of the fermionic bound states. We investigate the two-kink and compact kinklike backgrounds, and we consider two distinct boson-fermion interactions, one motivated by supersymmetry and the other described by the standard Yukawa coupling. (orig.)

  5. Geometrical analysis of the interacting boson model

    International Nuclear Information System (INIS)

    Dieperink, A.E.L.

    1983-01-01

    The Interacting Boson Model is considered, in relation with geometrical models and the application of mean field techniques to algebraic models, in three lectures. In the first, several methods are reviewed to establish a connection between the algebraic formulation of collective nuclear properties in terms of the group SU(6) and the geometric approach. In the second lecture the geometric interpretation of new degrees of freedom that arise in the neutron-proton IBA is discussed, and in the third one some further applications of algebraic techniques to the calculation of static and dynamic collective properties are presented. (U.K.)

  6. Entanglement in bipartite pure states of an interacting boson gas obtained by local projective measurements

    International Nuclear Information System (INIS)

    Paraan, Francis N. C.; Korepin, Vladimir E.; Molina-Vilaplana, Javier; Bose, Sougato

    2011-01-01

    We quantify the extractable entanglement of excited states of a Lieb-Liniger gas that are obtained from coarse-grained measurements on the ground state in which the boson number in one of two complementary contiguous partitions of the gas is determined. Numerically exact results obtained from the coordinate Bethe ansatz show that the von Neumann entropy of the resulting bipartite pure state increases monotonically with the strength of repulsive interactions and saturates to the impenetrable-boson limiting value. We also present evidence indicating that the largest amount of entanglement can be extracted from the most probable projected state having half the number of bosons in a given partition. Our study points to a fundamental difference between the nature of the entanglement in free-bosonic and free-fermionic systems, with the entanglement in the former being zero after projection, while that in the latter (corresponding to the impenetrable-boson limit) being nonzero.

  7. Dynamical triangulated fermionic surfaces

    International Nuclear Information System (INIS)

    Ambjoern, J.; Varsted, S.

    1990-12-01

    We perform Monte Carlo simulations of randomly triangulated random surfaces which have fermionic world-sheet scalars θ i associated with each vertex i in addition to the usual bosonic world-sheet scalar χ i μ . The fermionic degrees of freedom force the internal metrics of the string to be less singular than the internal metric of the pure bosonic string. (orig.)

  8. Gauge boson/Higgs boson unification: The Higgs bosons as superpartners of massive gauge bosons

    International Nuclear Information System (INIS)

    Fayet, P.

    1984-01-01

    We show how one can use massive gauge superfields to describe, simultaneously, gauge bosons (Wsup(+-), Z, ...) and Higgs bosons (wsup(+-), z, ...) together with their spin-1/2 partners (pairs of winos, zinos, ...), despite their different electroweak properties. This provides a manifestly supersymmetric formulation of spontaneously broken supersymmetric gauge theories, and makes explicit the relations between massive gauge bosons and Higgs bosons. It raises, however, the following question: if the gauge bosons Wsup(+-) and Z and the Higgs bosons wsup(+-) and z are related by supersymmetry, how it is possible that the former couple to leptons and quarks proportionately to g or g', and the latter proportionately to gsub(F)sup(1/2) m (fermions). The paradox is solved as follows: when the Higgs bosons are described by massive gauge superfields, the lagrangian density is non-polynomial and field redefinitions have to be performed, in particular: lepton or quark field -> lepton or quark field + (approx.= Gsub(F)sup(1/2) Higgs field) (lepton or quark field). They automatically regenerate, from the lepton and quark supersymmetric mass terms, the correct Yukawa couplings of Higgs bosons proportional to fermion masses. We also apply this method to the case in which an extra U(1) group is gauged, the standard Higgs boson h 0 being then the superpartner of the new neutral gauge boson U. (orig.)

  9. Why is the top-quark much heavier than other fermions?

    International Nuclear Information System (INIS)

    Xue, She-Sheng

    2013-01-01

    The recent ATLAS and CMS experiments show the first observations of a new particle in the search for the Standard Model Higgs boson at the LHC. We revisit the theoretical inconsistency of the fundamental high-energy cutoff with the parity-violating gauge symmetry of local quantum field theory for the Standard Model. This inconsistency suggests high-dimensional operators of fermion interactions, which are attributed to the quantum gravity. In this Letter, recalling the minimal dynamical symmetry breaking mechanism, we show that it is energetically favorable for the top-quark to acquire its mass via spontaneous symmetry breaking, whereas other fermions acquire their masses via explicit symmetry breaking

  10. Description of the hexadecapole deformation parameter in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Liu Yuxin; Sun Di; Wang Jiajun; Han Qizhi

    1998-01-01

    The hexadecapole deformation parameter β 4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacting boson model. An explicit relation between the geometric hexadecapole deformation parameter β 4 and the intrinsic deformation parameters ε 4 , ε 2 are obtained. The deformation parameters β 4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β 4 systematics as well as the SU(3) limit

  11. Higher-dimensional bosonization and its application to Fermi liquids

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Hendrik

    2012-06-28

    The bosonization scheme presented in this thesis allows to map models of interacting fermions onto equivalent models describing collective bosonic excitations. For simple systems that do not require plenty computational power and optimized algorithms, the positivity of the weight function in the bosonic frame has been confirmed - in particular also for those configurations in which the fermionic representation shows the minus-sign problem. The numerical tests are absolutely elementary and based on the simplest possible regularization scheme. The second part of this thesis presented an analytical study about the non-analytic corrections to thermodynamic quantities in a two-dimensional Fermi liquid. The perturbation theory developed for the exact formulation is by no means more convenient than the well-established fermionic diagram technique. The effective low-energy theory for studying the anomalous contributions to the Fermi liquid was derived focussing on the relevant soft modes of the interaction only. The final effective model took the form of a field theory for a bosonic superfield Ψ interacting in quadratic, cubic, and quartic terms in the action. This field theory turned out nontrivial and was shown to lead to logarithmic divergencies in both spin and charge channels. By means of a combined scheme of ladder diagram summations and renormalization group equations, the logarithmic terms were summed up in the first-loop order, thus yielding the renormalized effective coupling constants of the theory at low temperatures. The fully renormalized action then allowed to conveniently compute the low-temperature limit behavior of the non-analytic corrections to the Fermi-liquid thermodynamic response functions such as the low temperature non-analytic correction δc to the specific heat. The explicit formula for δc is the sum of two contributions - one due to the spin singlet and one due to the spin triplet superconducting excitations. Depending on the values of the

  12. Chiral composite fermions without U(1)'s

    International Nuclear Information System (INIS)

    Nelson, A.E.

    1986-01-01

    Some models are discussed which seem likely to produce composite fermions with masses protected only by nonabelian global symmetries. A subgroup of the original global symmetries can be weakly gauged to produce small masses for the fermions. A new feature of these models is that the original global symmetries contain no abelian factors and below the confinement scale there are neither exactly massless fermions nor Goldstone bosons. A candidate is given for a potentially realistic model with up to six families of quarks and leptons. (orig.)

  13. Three-body recombination of cold fermionic atoms

    International Nuclear Information System (INIS)

    Suno, H; Esry, B D; Greene, Chris H

    2003-01-01

    Recombination of identical, spin-polarized fermions in cold three-body collisions is investigated. We parametrize the mechanisms for recombination in terms of the 'scattering volume' V p and another length scale r 0 . Model two-body interactions were used within the framework of the adiabatic hyperspherical representation. We examine the recombination rate K 3 as a function of the collision energy E for various values of V p . Not only do we consider the dominant J Π = 1 + case, but also the next-leading order contributions from J Π = 1 - and 3 - . We discuss the behaviour near a two-body resonance and the expected universality of fermionic recombination. Comparisons with boson recombination are considered in detail

  14. Nambu-Jona-Lasinio model with Wilson fermions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Drach, Vincent; Pica, Claudio

    2017-01-01

    We present a lattice study of a Nambu-Jona-Lasinio (NJL) model using Wilson fermions. Four-fermion interactions are a natural part of several extensions of the Standard Model, appearing as a low-energy description of a more fundamental theory. In models of dynamical electroweak symmetry breaking...

  15. Interacting fermions in one spatial dimensions

    International Nuclear Information System (INIS)

    Wolf, D.

    1982-01-01

    This thesis contains in its first part a critical survey about the method of the bosonization of fermi fields in one spatial dimension and its application to the Luttinger and the massive Thirring model. The first chapter served for the explanation of the term of the unitary inequivalence. Thereby two generally valid facts could be demonstrated very illustratively by the example of a fermion algebra and its representations, namely first that infinite, direct product space are not separable, and second that weak equivalence of the vacua is equivalent to the unitary equivalence of the corresponding representations of the field algebra. In the second part the statement first studied by Luther (1976) and since then often cited, that the continuum limit of the Heisenberg model is the massive Thirring model. It is concluded that it can up to today not be considered as proved although indications for its validity can be found. (orig./HSI) [de

  16. Chiral anomaly, fermionic determinant and two dimensional models

    International Nuclear Information System (INIS)

    Rego Monteiro, M.A. do.

    1985-01-01

    The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt

  17. Higgs boson production and decay in little Higgs models with T-parity

    International Nuclear Information System (INIS)

    Chen, C.-R.; Tobe, Kazuhiro; Yuan, C.-P.

    2006-01-01

    We study Higgs boson production and decay in a certain class of little Higgs models with T-parity in which some T-parity partners of the Standard Model (SM) fermions gain their masses through Yukawa-type couplings. We find that the Higgs boson production cross section of a 120 GeV Higgs boson at the CERN LHC via gg fusion process at one-loop level could be reduced by about 45%, 35% and 20%, as compared to its SM prediction, for a relatively low new particle mass scale f=600, 700 and 1000 GeV, respectively. On the other hand, the weak boson fusion cross section is close to the SM value. Furthermore, the Higgs boson decay branching ratio into di-photon mode can be enhanced by about 35% in small Higgs mass region in certain case, for the total decay width of Higgs boson in the little Higgs model is always smaller than that in the SM

  18. Laughlin-like States in Bosonic and Fermionic Atomic Synthetic Ladders

    Directory of Open Access Journals (Sweden)

    Marcello Calvanese Strinati

    2017-06-01

    Full Text Available The combination of interactions and static gauge fields plays a pivotal role in our understanding of strongly correlated quantum matter. Cold atomic gases endowed with a synthetic dimension are emerging as an ideal platform to experimentally address this interplay in quasi-one-dimensional systems. A fundamental question is whether these setups can give access to pristine two-dimensional phenomena, such as the fractional quantum Hall effect, and how. We show that unambiguous signatures of bosonic and fermionic Laughlin-like states can be observed and characterized in synthetic ladders. We theoretically diagnose these Laughlin-like states focusing on the chiral current flowing in the ladder, on the central charge of the low-energy theory, and on the properties of the entanglement entropy. Remarkably, Laughlin-like states are separated from conventional liquids by Lifschitz-type transitions, characterized by sharp discontinuities in the current profiles, which we address using extensive simulations based on matrix-product states. Our work provides a qualitative and quantitative guideline towards the observability and understanding of strongly correlated states of matter in synthetic ladders. In particular, we unveil how state-of-the-art experimental settings constitute an ideal starting point to progressively tackle two-dimensional strongly interacting systems from a ladder viewpoint, opening a new perspective for the observation of non-Abelian states of matter.

  19. Bosonization methods in string theory

    International Nuclear Information System (INIS)

    Abdalla, E.

    1988-02-01

    The use of bosonization/fermionization techniques to convert non-linear operators of the dual, is discussed. Non abelian bosonization to the case where the central charge of the Kac-Moody algebra is not unity, is generalized. In particular, using this generalization of non-abelian bosonization, the bosonic string vertex of the compactified theory; turns out to be fundamental field of thre fermionic theory, or bound states of it thus permiting explicit computations easily. (author) [pt

  20. Boson forbidden transitions and their manifestation in spherical nuclei

    International Nuclear Information System (INIS)

    Stoyanov, Ch.

    2002-01-01

    For the correct description of the 'boson forbidden' transitions it is necessary to go beyond the quasi-boson approximation and to take into account the fermion structure of the phonons. Once it done it is quantitative description of the transitions is possible within the simplest model based on the separable residual interactions. Calculations of the forbidden E1-transitions in 120 Sn, 144 Sm and 144 Nd are presented. Analysis of some low-energy M1-transitions is made using IBM-2. The discussed examples reveal the complex properties of the low-lying excited states

  1. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kallarackal, Jim

    2011-04-28

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  2. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    International Nuclear Information System (INIS)

    Kallarackal, Jim

    2011-01-01

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  3. The sdg interacting-boson model applied to 168Er

    Science.gov (United States)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1986-03-01

    The sdg interacting-boson model is applied to 168Er. Energy levels and E2 transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first Kπ=4+ band relative to that of the first Kπ=2+ one. The level scheme including the Kπ=3+ band is well reproduced and the calculated B(E2)'s are consistent with the experimental data.

  4. Electromagnetic production of Higgs bosons, SUSY particles, glueballs and mesons in ultrarelativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Greiner, M.; Soff, G.

    1992-12-01

    The electromagnetic creation of various exotic particles in ultrarelativistic heavy-ion collisions is discussed. The production of intermediate mass Higgs bosons of the minimal supersymmetric extension of the Standard Model is enhanced over the Standard Model Higgs boson formation for certain model parameter choices and as a consequence might be detectable at LCH and SSC. We also investigate the electromagnetic generation of supersymmetric fermions and bosons as well as glueballs, mesons and fermions. (orig.)

  5. On the relation between the interacting boson model of Arima and Iachello and the collective model of Bohr and Mottelson

    International Nuclear Information System (INIS)

    Assenbaum, H.J.; Weiguny, A.

    1982-01-01

    The generator coordinate method is used to relate the interacting boson model of Arima and Iachello and the collective model of Bohr and Mottelson through an isometric transformation. It associates complex parameters to the original boson operators whereas the ultimate collective variables are real. The absolute squares of the collective wave functions can be given a direct probability interpretation. The lowest order Bohr-Mottelson hamiltonian is obtained in the harmonic approximation to the interacting boson model; unharmonic coupling terms render the collective potential to be velocity-dependent. (orig.)

  6. Microscopic calculation of the Majorana parameters of the interacting boson model for the Hg isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; Barrett, B.R. (Arizona Univ., Tucson (USA). Dept. of Physics); Pittel, S. (Delaware Univ., Newark (USA). Bartol Research Foundation); Duval, P.D. (BEERS Associates, Reston, VA (USA))

    1985-07-11

    The parameters of the Majorana interaction of the neutron-proton interacting boson model are calculated for the Hg isotopes. The calculations utilize the Otsuka-Arima-Iachello mapping procedure and also lead to predictions for the other boson parameters. The resulting spectra are compared with experimental spectra and those obtained from phenomenological fits.

  7. Microscopic calculation of the Majorana parameters of the interacting boson model for the Hg isotopes

    Science.gov (United States)

    Druce, C. H.; Pittel, S.; Barrett, B. R.; Duval, P. D.

    1985-07-01

    The parameters of the Majorana interaction of the neutron-proton interacting boson model are calculated for the Hg isotopes. The calculations utilize the Otsuka-Arima-Iachello mapping procedure and also lead to predictions for the other boson parameters. The resulting spectra are compared with experimental spectra and those obtained from phenomenological fits.

  8. Exact boson mappings for nuclear neutron (proton) shell-model algebras having SU(3) subalgebras

    International Nuclear Information System (INIS)

    Bonatsos, D.; Klein, A.

    1986-01-01

    In this paper the commutation relations of the fermion pair operators of identical nucleons coupled to spin zero are given for the general nuclear major shell in LST coupling. The associated Lie algebras are the unitary symplectic algebras Sp(2M). The corresponding multipole subalgebras are the unitary algebras U(M), which possess SU(3) subalgebras. Number conserving exact boson mappings of both the Dyson and hermitian form are given for the nuclear neutron (proton) s--d, p--f, s--d--g, and p--f--h shells, and their group theoretical structure is emphasized. The results are directly applicable in the case of the s--d shell, while in higher shells the experimentally plausible pseudo-SU(3) symmetry makes them applicable. The final purpose of this work is to provide a link between the shell model and the Interacting Boson Model (IBM) in the deformed limit. As already implied in the work of Draayer and Hecht, it is difficult to associate the boson model developed here with the conventional IBM model. The differences between the two approaches (due mainly to the effects of the Pauli principle) as well as their physical implications are extensively discussed

  9. Analytical expressions for two-nucleon transfer spectroscopic factors in sdg interacting boson model

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1991-01-01

    Analytical expressions for two-nucleon (l = 0,2 and 4) transfer spectroscopic factors are derived in the SU sdg (3) limit of the sdg interacting boson model. In addition, large N (boson number) limit expressions for the ratio of summed l = 0 transfer strength to excited 0 + states to that of ground state are derived in all the symmetry limits of the sdg model. Some comparisons with data are made. (author)

  10. Effect of three body interaction in the Hamiltonian of the interacting bosons model

    International Nuclear Information System (INIS)

    Nunes, C.A.A.

    1987-01-01

    The interacting boson model algebra is analysed on the basis of group theory. Through the topological properties of the groups a geometry is associated and the fundamental state of the nucleus is obtained. Calculations were carried out for 102 Ru and 168 Er. (A.C.A.S.) [pt

  11. Bosonization via Julia-Toulouse mechanism

    International Nuclear Information System (INIS)

    Rougemont, R.; Wotzasek, C.; Zarro, C.A.D.; Guimaraes, M.S.

    2012-01-01

    Full text: In this work we show how the bosonized version of the Schwinger model (which already takes into account quantum effects), both in the massless and massive cases, can be easily obtained by considering a condensation of electric charges in 1 + 1 dimensions via the Julia-Toulouse approach (JTA) for condensation of charges and defects. The massless case is obtained when there are no vortices over the electric condensate (perfect condensation) and the massive case is obtained by taking into account the contribution of these defects (incomplete condensation). The Schwinger model is the electrodynamics in 1+1 dimensions. The theory with massless fermions is exactly solvable (i.e., all the Green's functions of the model can be obtained in closed form) and electric probe charges are screened due to the mass acquired by the gauge boson due to fermionic fluctuations. On the other hand, in the theory with massive fermions (which is not exactly solvable), electric probe charges interact via an effective potential that features both, a screening piece and a linear confining term. For large inter-charge separations the confining term prevails as long as the theta-vacuum angle is different from π and the probe charges are not integer multiples of the dynamical fermionic charges, in which case the confining term vanishes. The JTA is a prescription used to construct low energy effective theories describing a system with condensed charges or defects, having previous knowledge of the model that describes the system in the regime with diluted charges or defects and also of the symmetries expected for the condensed regime. Based mainly on the formulation of ensembles of charges and defects, we introduced recently a generalization of the JTA, which we shall use in this work. (author)

  12. On bosonization in 3 dimensions

    International Nuclear Information System (INIS)

    Barci, D.G.; Fosco, C.D.; Oxman, L.E.

    1995-08-01

    A recently proposed path-integral bosonization scheme for massive fermions in 3 dimensions is extended by keeping the full momentum-dependence of the one-loop vacuum polarization tensor. This makes it possible to discuss both the massive and massless fermion cases on an equal footing, and moreover the results it yields for massless fermions are consistent with the ones of another, seemingly different, canonical quantization approach to the problem of bosonization for a massless fermionic field in 3 dimensions. (author). 10 refs

  13. Status of the charged Higgs boson in two Higgs doublet models

    Science.gov (United States)

    Arbey, A.; Mahmoudi, F.; Stål, O.; Stefaniak, T.

    2018-03-01

    The existence of charged Higgs boson(s) is inevitable in models with two (or more) Higgs doublets. Hence, their discovery would constitute unambiguous evidence for new physics beyond the Standard Model (SM). Taking into account all relevant results from direct charged and neutral Higgs boson searches at LEP and the LHC, as well as the most recent constraints from flavour physics, we present a detailed analysis of the current phenomenological status of the charged Higgs sector in a variety of well-motivated two Higgs doublet models (2HDMs). We find that charged Higgs bosons as light as 75 GeV can still be compatible with the combined data, although this implies severely suppressed charged Higgs couplings to all fermions. In more popular models, e.g. the 2HDM of Type II, we find that flavour physics observables impose a combined lower limit on the charged Higgs mass of M_{H^± } ≳ 600 GeV - independent of tan β - which increases to M_{H^± } ≳ 650 GeV for tan β < 1. We furthermore find that in certain scenarios, the signature of a charged Higgs boson decaying into a lighter neutral Higgs boson and a W boson provides a promising experimental avenue that would greatly complement the existing LHC search programme for charged Higgs boson(s).

  14. Status of the charged Higgs boson in two Higgs doublet models

    International Nuclear Information System (INIS)

    Arbey, A.; Mahmoudi, F.; Stefaniak, T.; Staal, O.

    2018-01-01

    The existence of charged Higgs boson(s) is inevitable in models with two (or more) Higgs doublets. Hence, their discovery would constitute unambiguous evidence for new physics beyond the Standard Model (SM). Taking into account all relevant results from direct charged and neutral Higgs boson searches at LEP and the LHC, as well as the most recent constraints from flavour physics, we present a detailed analysis of the current phenomenological status of the charged Higgs sector in a variety of well-motivated two Higgs doublet models (2HDMs). We find that charged Higgs bosons as light as 75 GeV can still be compatible with the combined data, although this implies severely suppressed charged Higgs couplings to all fermions. In more popular models, e.g. the 2HDM of Type II, we find that flavour physics observables impose a combined lower limit on the charged Higgs mass of M H ± > or similar 600 GeV - independent of tan β - which increases to M H ± > or similar 650 GeV for tan β < 1. We furthermore find that in certain scenarios, the signature of a charged Higgs boson decaying into a lighter neutral Higgs boson and a W boson provides a promising experimental avenue that would greatly complement the existing LHC search programme for charged Higgs boson(s). (orig.)

  15. On chiral bosonization

    International Nuclear Information System (INIS)

    Bastianelli, F.

    1991-01-01

    We examine the bosonization of chiral fermions in a gravitational background, using a path integral approach. The bosonic model is given by an action proposed some time ago by Floreanini and Jackiw, suitably coupled to gravity. We use a regulator for the path integral measure obtained from the general construction of Diaz, Hatsuda, Troost, van Nieuwenhuizen and Van Proeyen. We show that the effective actions are identical. (orig.)

  16. Impersonating the Standard Model Higgs boson: alignment without decoupling

    International Nuclear Information System (INIS)

    Carena, Marcela; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E.M.

    2014-01-01

    In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the Z boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to “alignment without decoupling”, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of tan β for which this happens are derived in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. Moreover, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the m A −tan β parameter space

  17. Analytical expressions for two-nucleon transfer spectroscopic factors in sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Devi, Y.D.; Kota, V.K.B. (Physical Research Lab., Ahmedabad (India))

    1991-11-01

    Analytical expressions for two-nucleon (l = 0,2 and 4) transfer spectroscopic factors are derived in the SU{sub sdg}(3) limit of the sdg interacting boson model. In addition, large N (boson number) limit expressions for the ratio of summed l = 0 transfer strength to excited 0{sup +} states to that of ground state are derived in all the symmetry limits of the sdg model. Some comparisons with data are made. (author).

  18. Strongly coupled SU(2v boson and LEP1 versus LEP2

    Directory of Open Access Journals (Sweden)

    M. Bilenky

    1993-10-01

    Full Text Available If new strong interactions exist in the electroweak bosonic sector (e.g., strong Higgs sector, dynamical electroweak breaking, etc., it is natural to expect new resonances, with potentially strong couplings. We consider an additional vector-boson triplet, V+-, V0, associated with an SU(2v local symmetry under the specific (but rather natural assumption that ordinary fermions are SU(2v singlets. Mixing of the V triplet with the W+-, Z0 bosons effectively leads to an SU(2L×U(1Y violating vector-boson-fermion interaction which is strongly bounded by LEP1 data. In contrast, the potentially large deviation of the Z0W+W- coupling from its SU(2L×U(1Y value is hardly constrained by LEP1 data. Results from experiments with direct access to the trilinear Z0W+W− coupling (LEP200, NLC are urgently needed.

  19. Calculation of ground state deformation of even-even rare-earth nuclei in sdg interacting boson model

    International Nuclear Information System (INIS)

    Wang Baolin

    1995-01-01

    The analytical calculation of the nuclear ground state deformation of the even-even isotopes in the rare-earth region is given by utilizing the intrinsic states of the sdg interacting boson model. It is compared systematically with the reported theoretical and experimental results. It is shown that the sdg interacting boson model is a reasonable scheme for the description of even-even nuclei deformation

  20. Phase transitions in the $sdg$ interacting boson model

    OpenAIRE

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2009-01-01

    19 pages, 5 figures, submitted to Nuclear Physics A; A geometric analysis of the $sdg$ interacting boson model is performed. A coherent-state is used in terms of three types of deformation: axial quadrupole ($\\beta_2$), axial hexadecapole ($\\beta_4$) and triaxial ($\\gamma_2$). The phase-transitional structure is established for a schematic $sdg$ hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical ${\\rm U}(5)\\otimes{\\rm U}(9)$, the (prolate and ob...

  1. Microscopic calculation of parameters of the sdg interacting boson model for 104-110Pd isotopes

    International Nuclear Information System (INIS)

    Liu Yong

    1995-01-01

    The parameters of the sdg interacting boson model Hamiltonian are calculated for the 104-110 Pd isotopes. The calculations utilize the microscopic procedure based on the Dyson boson mapping proposed by Yang-Liu-Qi and extended to include the g boson effects. The calculated parameters reproduce those values from the phenomenological fits. The resulting spectra are compared with the experimental spectra

  2. On the equivalence between the thirring model and a derivative coupling model

    International Nuclear Information System (INIS)

    Gomes, M.; Silva, A.J. da.

    1986-07-01

    The equivalence between the Thirring model and the fermionic sector of the theory of a Dirac field interacting via derivate coupling with two boson fields is analysed. For a certain choice of the parameters the two models have the same fermionic Green functions. (Author) [pt

  3. Duality and bosonization in Schwinger–Keldysh formulation

    International Nuclear Information System (INIS)

    Saraví, R E Gamboa; Naón, C M; Schaposnik, F A

    2014-01-01

    We present a path-integral bosonization approach for systems out of equilibrium based on a duality transformation of the original Dirac fermion theory combined with the Schwinger–Keldysh time closed contour technique, to handle the non-equilibrium situation. The duality approach to bosonization that we present is valid for D ≥ 2 space–time dimensions leading for D = 2 to exact results. In this last case we present the bosonization rules for fermion currents, calculate current–current correlation functions and establish the connection between the fermionic and bosonic distribution functions in a generic, non-equilibrium situation. (paper)

  4. Three-dimensional topological insulators and bosonization

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Sisti, Jacopo [Scuola Internazionale Superiore di Studi Avanzati (SISSA),Via Bonomea 265, 34136 Trieste (Italy)

    2017-05-25

    Massless excitations at the surface of three-dimensional time-reversal invariant topological insulators possess both fermionic and bosonic descriptions, originating from band theory and hydrodynamic BF theory, respectively. We analyze the corresponding field theories of the Dirac fermion and compactified boson and compute their partition functions on the three-dimensional torus geometry. We then find some non-dynamic exact properties of bosonization in (2+1) dimensions, regarding fermion parity and spin sectors. Using these results, we extend the Fu-Kane-Mele stability argument to fractional topological insulators in three dimensions.

  5. Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa Model

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany)

    2010-02-15

    We establish the cutoff-dependent upper Higgs boson mass bound by means of direct lattice computations in the framework of a chirally invariant lattice Higgs-Yukawa model emulating the same chiral Yukawa coupling structure as in the Higgs-fermion sector of the Standard Model. As expected from the triviality picture of the Higgs sector, we observe the upper mass bound to decrease with rising cutoff parameter {lambda}. Moreover, the strength of the fermionic contribution to the upper mass bound is explored by comparing to the corresponding analysis in the pure {phi}{sup 4}-theory. (orig.)

  6. Bosonization of non-relativistic fermions and W-infinity algebra

    International Nuclear Information System (INIS)

    Das, S.R.; Dhar, A.; Mandal, G.; Wadia, S.R.

    1992-01-01

    In this paper the authors discuss the bosonization of non-relativistic fermions in one-space dimension in terms of bilocal operators which are naturally related to the generators of W-infinity algebra. The resulting system is analogous to the problem of a spin in a magnetic field for the group W-infinity. The new dynamical variables turn out to be W-infinity group elements valued in the coset W-infinity/H where H is a Cartan subalgebra. A classical action with an H gauge invariance is presented. This action is three-dimensional. It turns out to be similar to the action that describes the color degrees of freedom of a Yang-Mills particle in a fixed external field. The authors also discuss the relation of this action with the one recently arrived at in the Euclidean continuation of the theory using different coordinates

  7. The algebras of higher order currents of the fermionic Gross-Neveu model

    International Nuclear Information System (INIS)

    Saltini, Luis Eduardo

    1996-01-01

    Results are reported from our studies on the following 2-dimensional field theories: the supersymmetric non-linear sigma model and the fermionic Gross-Neveu model. About the supersymmetric non-linear sigma model, an attempt is made to solve the the algebraic problem of finding the non-local conserved charges and the corresponding algebra, extending the methods described in a previous article for the case of the purely bosonic non linear sigma model. For the fermionic Gross-Neveu model, we intend to construct the conserved currents and the respective charges, related to the abelian U(1) symmetry and non-abelian SU(n) symmetry, at the conformal point and calculate the correlation functions between them. From these results at the conformal point, we want to study the effects of perturbation to get a massive but integral theory

  8. Interference of identical particles from entanglement to boson-sampling

    International Nuclear Information System (INIS)

    Tichy, Malte C

    2014-01-01

    Progress in the reliable preparation, coherent propagation and efficient detection of many-body states has recently brought collective quantum phenomena of many identical particles into the spotlight. This tutorial introduces the physics of many-boson and many-fermion interference required for the description of current experiments and for the understanding of novel approaches to quantum computing. The field is motivated via the two-particle case, for which the uncorrelated, classical dynamics of distinguishable particles is compared to the quantum behaviour of identical bosons and fermions. Bunching of bosons is opposed to anti-bunching of fermions, while both species constitute equivalent sources of bipartite two-level entanglement. The realms of indistinguishable and distinguishable particles are connected by a monotonic transition, on a scale defined by the coherence length of the interfering particles. As we move to larger systems, any attempt to understand many particles via the two-particle paradigm fails: in contrast to two-particle bunching and anti-bunching, the very same signatures can be exhibited by bosons and fermions, and coherent effects dominate over statistical behaviour. The simulation of many-boson interference, termed boson-sampling, entails a qualitatively superior computational complexity when compared to fermions. The problem can be tamed by an artificially designed symmetric instance, which allows a systematic understanding of coherent bosonic and fermionic signatures for arbitrarily large particle numbers, and a means to stringently assess many-particle interference. The hierarchy between bosons and fermions also characterizes multipartite entanglement generation, for which bosons again clearly outmatch fermions. Finally, the quantum-to-classical transition between many indistinguishable and many distinguishable particles features non-monotonic structures, which dismisses the single-particle coherence length as unique indicator for

  9. Charge and transition densities of samarium isotopes in the interacting Boson model

    International Nuclear Information System (INIS)

    Moinester, M.A.; Alster, J.; Dieperink, A.E.L.

    1982-01-01

    The interacting boson approximation (IBA) model has been used to interpret the ground-state charge distributions and lowest 2 + transition charge densities of the even samarium isotopes for A = 144-154. Phenomenological boson transition densities associated with the nucleons comprising the s-and d-bosons of the IBA were determined via a least squares fit analysis of charge and transition densities in the Sm isotopes. The application of these boson trasition densities to higher excited 0 + and 2 + states of Sm, and to 0 + and 2 + transitions in neighboring nuclei, such as Nd and Gd, is described. IBA predictions for the transition densities of the three lowest 2 + levels of 154 Gd are given and compared to theoretical transition densities based on Hartree-Fock calculations. The deduced quadrupole boson transition densities are in fair agreement with densities derived previously from 150 Nd data. It is also shown how certain moments of the best fit boson transition densities can simply and sucessfully describe rms radii, isomer shifts, B(E2) strengths, and transition radii for the Sm isotopes. (orig.)

  10. Study of the Standard Model Higgs boson decaying to taus at CMS

    CERN Document Server

    Botta, Valeria

    2017-01-01

    The most recent search for the Standard Model Higgs boson decaying to a pair of $\\tau$ leptons is performed using proton-proton collision events at a centre-of-mass energy of 13~TeV, recorded by the CMS experiment at the LHC. The full 2016 dataset, corresponding to an integrated luminosity of 35.9~fb$^{-1}$, has been analysed. The Higgs boson signal in the $\\tau^{+}\\tau^{-}$ decay mode is observed with a significance of 4.9 standard deviations, to be compared to an expected significance of 4.7 standard deviations. This measurement is the first observation of the Higgs boson decay into fermions by a single experiment.

  11. Microscopic aspects of the Interacting Boson

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.

    1985-01-01

    A review is presented of the concept of using boson descriptions of many-fermion systems, and the IBM is introduced in a historical context. Next, the use of the IBM-2 as a phenomenological tool is investigated. The model is applied to the even zinc isotopes and the model is found to give a reasonable description of the experimental data. In the phenomenological calculations, the parameters of the IBM-2 Hamiltonian are adjusted until good agreement is obtained with the experimental data. To put the theoretical basis of the IBM-2 on firm ground, it is important to be able to calculate these parameters microscopically. A framework is developed in which such calculations can be performed for non-deformed nuclei. Results are presented for the mercury isotopes and discussed in detail. The calculated parameter values agree for the most part with the values obtained by phenomenological fit but with some exceptions. Similar calculations are performed for the platinum isotopes. The results for these isotopes are then related to the concept of F-spin multiplets. When the Surface Delta Interaction (SDI) is used, several simplifications can be made in the IBM. In certain schematic situations, the parameters of the IBM-2 Hamiltonian can be related directly to the strength of the SDI. Several interesting results are obtained whose full implication will be investigated in the future.

  12. Microscopic aspects of the Interacting Boson

    International Nuclear Information System (INIS)

    Druce, C.H.

    1985-01-01

    A review is presented of the concept of using boson descriptions of many-fermion systems, and the IBM is introduced in a historical context. Next, the use of the IBM-2 as a phenomenological tool is investigated. The model is applied to the even zinc isotopes and the model is found to give a reasonable description of the experimental data. In the phenomenological calculations, the parameters of the IBM-2 Hamiltonian are adjusted until good agreement is obtained with the experimental data. To put the theoretical basis of the IBM-2 on firm ground, it is important to be able to calculate these parameters microscopically. A framework is developed in which such calculations can be performed for non-deformed nuclei. Results are presented for the mercury isotopes and discussed in detail. The calculated parameter values agree for the most part with the values obtained by phenomenological fit but with some exceptions. Similar calculations are performed for the platinum isotopes. The results for these isotopes are then related to the concept of F-spin multiplets. When the Surface Delta Interaction (SDI) is used, several simplifications can be made in the IBM. In certain schematic situations, the parameters of the IBM-2 Hamiltonian can be related directly to the strength of the SDI. Several interesting results are obtained whose full implication will be investigated in the future

  13. sdg boson model in the SU(3) scheme

    Science.gov (United States)

    Akiyama, Yoshimi

    1985-02-01

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15) ⊃ SU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the 168Er nucleus.

  14. Phase diagrams for an ideal gas mixture of fermionic atoms and bosonic molecules

    DEFF Research Database (Denmark)

    Williams, J. E.; Nygaard, Nicolai; Clark, C. W.

    2004-01-01

    We calculate the phase diagrams for a harmonically trapped ideal gas mixture of fermionic atoms and bosonic molecules in chemical and thermal equilibrium, where the internal energy of the molecules can be adjusted relative to that of the atoms by use of a tunable Feshbach resonance. We plot...... diagrams obtained in recent experiments on the Bose-Einstein condensation to Bardeen-Cooper-Schrieffer crossover, in which the condensate fraction is plotted as a function of the initial temperature of the Fermi gas measured before a sweep of the magnetic field through the resonance region....

  15. One-dimensional gas of bosons with Feshbach-resonant interactions

    International Nuclear Information System (INIS)

    Gurarie, V.

    2006-01-01

    We present a study of a gas of bosons confined in one dimension with Feshbach-resonant interactions, at zero temperature. Unlike the gas of one-dimensional bosons with non resonant interactions, which is known to be equivalent to a system of interacting spinless fermions and can be described using the Luttinger liquid formalism, the resonant gas possesses additional features. Depending on its parameters, the gas can be in one of three possible regimes. In the simplest of those, it can still be described by the Luttinger liquid theory, but its Fermi momentum cannot be larger than a certain cutoff momentum dependent on the details of the interactions. In the other two regimes, it is equivalent to a Luttinger liquid at low density only. At higher densities its excitation spectrum develops a minimum, similar to the roton minimum in helium, at momenta where the excitations are in resonance with the Fermi sea. As the density of the gas is increased further, the minimum dips below the Fermi energy, thus making the ground state unstable. At this point the standard ground state gets replaced by a more complicated one, where not only the states with momentum below the Fermi points, but also the ones with momentum close to that minimum, get filled, and the excitation spectrum develops several branches. We are unable so far to study this regime in detail due to the lack of the appropriate formalism

  16. Description of the Hexadecapole Deformation Parameter in the sdg Interacting Boson Model

    Science.gov (United States)

    Liu, Yu-xin; Sun, Di; Wang, Jia-jun; Han, Qi-zhi

    1998-04-01

    The hexadecapole deformation parameter β4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacing boson model. An explicit relation between the geometric hexadecapole deformation parameter β4 and the intrinsic deformation parameters epsilon4, epsilon2 are obtained. The deformation parameters β4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β4 systematics as well as the SU(3) limit.

  17. Sdg boson model in the SU(3) scheme

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Y.

    1985-02-11

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15)containsSU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the /sup 168/Er nucleus.

  18. sdg boson model in the SU(3) scheme

    International Nuclear Information System (INIS)

    Akiyama, Y.

    1985-01-01

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15)containsSU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the 168 Er nucleus. (orig.)

  19. Prediction of the Cabibbo angle in the vector model for electroweak interactions

    International Nuclear Information System (INIS)

    Reifler, F.; Morris, R.

    1985-01-01

    In a recent paper we presented a vector model for the electroweak interactions which is similar to the Weinberg--Salam model but differs in the following features. (1) In the vector model all fermion wave functions are bispinors or equivalently isotropic Yang--Mills triplets (as opposed to a state vector composed of a spinor and bispinors in the Weinberg--Salam model). Particles are distinguished by their Higgs fields. (2) The vector model predicts that sin 2 theta/sub W/ = 1/4 , where theta/sub W/ is the Weinberg angle. (3) The vector model accounts for conservation of lepton number, electric charge, and baryon number. (4) In the vector model an antiparticle is characterized by opposite lepton number, electric charge, and baryon number; yet both particles and antiparticles propagate forward in time with positive energies. In this paper we extend the vector theory to include interactions between fermions and the gauge bosons mediating the electroweak force. We model the bosons as Yang--Mills fields with their own Higgs fields. We further propose a specific configuration of Higgs fields for the u,d,s, and c quarks. With these features, the model accounts for electroweak transitions of quarks and leptons and predicts that cos theta/sub C/ = 0.9744, where theta/sub C/ is the Cabibbo angle. We further show that the vector model accounts for the intrinsic parity of particles and antiparticles, and parity violations and CPT invariance for electroweak interactions

  20. Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions

    OpenAIRE

    Chandrasekharan, Shailesh; Li, Anyi

    2010-01-01

    We explore the sign problem in strongly coupled lattice QED with one flavor of Wilson fermions in four dimensions using the fermion bag formulation. We construct rules to compute the weight of a fermion bag and show that even though the fermions are confined into bosons, fermion bags with negative weights do exist. By classifying fermion bags as either simple or complex, we find numerical evidence that complex bags with positive and negative weights come with almost equal probabilities and th...

  1. Two- and three-particle interference correlations of identical bosons and fermions with close momenta in the model of independent point-like sources

    International Nuclear Information System (INIS)

    Lyuboshits, V.L.

    1991-01-01

    Interference correlations introduced between identical particles with close momenta by the effect of Bose or Fermi statistics are discussed. Relations describing two- and three-particle correlations of identical bosons and fermions with arbitrary spin and arbitrary spin polarization are obtained on the basis of the model of independent single-particle point-like sources. The general structure of the dependence of narrow two- and three-particle correlations on the difference of the four-momenta in the presence of several groups of single-particle sources with different space-time distributions is analyzed. The idea of many-particle point sources of identical bosons is introduced. The suppression of two- and three-particle interference correlations between identical π mesons under conditions when one or several many-particle sources are added to a system of randomly distributed independent single-particle sources is studied. It is shown that if the multiplicities of the particles emitted by the sources are distributed according to the Poisson law, the present results agree with the relations obtained by means of the formalism of coherent states. This agreement also holds in the limit of very large multiplicities with any distribution laws

  2. Instantons and Massless Fermions in Two Dimensions

    Science.gov (United States)

    Callan, C. G. Jr.; Dashen, R.; Gross, D. J.

    1977-05-01

    The role of instantons in the breakdown of chiral U(N) symmetry is studied in a two dimensional model. Chiral U(1) is always destroyed by the axial vector anomaly. For N = 2 chiral SU(N) is also spontaneously broken yielding massive fermions and three (decoupled) Goldstone bosons. For N greater than or equal to 3 the fermions remain massless. Realistic four dimensional theories are believed to behave in a similar way but the critical N above which the fermions cease to be massive is not known in four dimensions.

  3. Path integral measure and the fermion-boson equivalence in the Schwinger model

    International Nuclear Information System (INIS)

    Maiella, G.

    1980-02-01

    I perform a change of field variables in the Schwinger model using the non-invariance of path integral measure under γ 5 transformations. The known equivalence of the model with a bosonic field theory and the Kogut-Susskind dipole mechanism is then derived. (author)

  4. Current algebra and bosonization in three dimensions

    International Nuclear Information System (INIS)

    Le Guillou, J.C.; Schaposnik, F.A.

    1996-01-01

    We consider the fermion-boson mapping in three dimensional space-time, in the Abelian case, from the current algebra point of view. We show that in a path-integral framework one can derive a general bosonization recipe leading, in the bosonic language, to the correct equal-time current commutators of the original free fermionic theory. Copyright copyright 1996 Academic Press, Inc

  5. sdg Interacting boson model: two nucleon transfer

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1996-01-01

    A brief overview of the sdg interacting boson model (sdg IBM) is given. The two examples: (i) spectroscopic properties (spectra, B(E2)s, B(E4)s etc) of the rotor-γ unstable transitional Os-Pt isotopes and (ii) the analytical formulation of two nucleon transfer spectroscopic factors and sum-rule quantities are described in detail. They demonstrate that sdg IBM can be employed for systematic description of spectroscopic properties of nuclei and that large number of analytical formulas, which facilitate rapid analysis of data and provide a clear insight into the underlying structures, can be derived using sdg IBM dynamical symmetries respectively. (author). 24 refs., 5 figs., 3 tabs

  6. On the conductivity of a one-dimensional system of interacting fermions in a random potential

    International Nuclear Information System (INIS)

    Apel, W.

    1981-01-01

    A one-dimensional system of interacting fermions in an external potential is studied. The problem was for this purpose transformed to two classical models of statistical mechanics in two dimensions in which occasionally results were found in complementary ranges of the interaction constants of the fermion system. The conductivity appeared as a simple correlation function in both classical models. It was shown that the interaction in a one-dimensional polluted fermion system can cause an isolator-metal transition. (orig./HSI) [de

  7. Super symmetry in strong and weak interactions

    International Nuclear Information System (INIS)

    Seshavatharam, U.V.S.; Lakshminarayana, S.

    2010-01-01

    For strong interaction two new fermion mass units 105.32 MeV and 11450 MeV are assumed. Existence of "Integral charge quark bosons", "Integral charge effective quark fermions", "Integral charge (effective) quark fermi-gluons" and "Integral charge quark boso-gluons" are assumed and their masses are estimated. It is noticed that, characteristic nuclear charged fermion is X s · 105.32 = 938.8 MeV and corresponding charged boson is X s (105.32/x) = 415.0 where X s = 8.914 is the inverse of the strong coupling constant and x = 2.26234 is a new number by using which "super symmetry" can be seen in "strong and weak" interactions. 11450 MeV fermion and its boson of mass = 11450/x = 5060 MeV plays a crucial role in "sub quark physics" and "weak interaction". 938.8 MeV strong fermion seems to be the proton. 415 MeV strong boson seems to be the mother of the presently believed 493,496 and 547 MeV etc, strange mesons. With 11450 MeV fermion "effective quark-fermi-gluons" and with 5060 MeV boson "quark boso-gluon masses" are estimated. "Effective quark fermi-gluons" plays a crucial role in ground state charged baryons mass generation. Light quark bosons couple with these charged baryons to form doublets and triplets. "Quark boso-gluons" plays a crucial role in ground state neutral and charged mesons mass generation. Fine and super-fine rotational levels can be given by [I or (I/2)] power(1/4) and [I or (I/2)] power(1/12) respectively. Here, I = n(n+1) and n = 1, 2, 3, … (author)

  8. Pair-Production of W Bosons in $e^+ e^-$ Interactions at $\\sqrt{s}$ = 161 GeV

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alpat, B; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Antreasyan, D; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banicz, K; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Caria, M; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chan, A; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Choi, M T; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Fernández, D; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee Jae Sik; Lee, K Y; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lieb, E H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nagy, E; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Opitz, H; Organtini, G; Ostonen, R; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Ro, S; Robohm, A; Rodin, J; Rodríguez-Calonge, F J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Santocchia, A; Sarakinos, M E; Sarkar, S; Sassowsky, M; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    We report on the measurement of W-boson pair-production with the L3 detector at LEP at a centre-of-mass energy of 161.34~\\GeV. In a data sample corresponding to a total luminosity of 11~pb$^{-1}$, we select four-fermion events with high invariant masses of pairs of hadronic jets or leptons. Combining all final states, the measured total cross section for W-pair production is: $\\SWW = 2.89^{+0.81}_{-0.70}~(stat.)\\pm0.14~(syst.)$~pb. Within the Standard Model, this corresponds to a mass of the W boson of: $\\MW = 80.80^{+0.48}_{-0.42}~(exp.)\\pm 0.03$~(LEP)~\\GeV. Limits on anomalous triple-vector-boson couplings are derived. \\end{abstract}

  9. Fermionic topological quantum states as tensor networks

    Science.gov (United States)

    Wille, C.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  10. Two loop O(αsGFmt2) corrections to the fermionic decay rates of the standard-model Higgs boson

    International Nuclear Information System (INIS)

    Kniehl, B.A.

    1994-05-01

    Low- and intermediate mass Higgs bosons decay preferably into fermion pairs. The one-loop electroweak corrections to the respective decay rates are dominated by a flavour-independent term of O(G F m t 2 ). We calculate the two-loop gluon correction to this term. It turns out that this correction screens the leading high-m t behaviour of the one-loop result by roughly 10%. We also present the two-loop QCD correction to the contribution induced by a pair of fourth-generation quarks with arbitrary masses. As expected, the inclusion of the QCD correction considerably reduces the renormalization-scheme dependence of the prediction. (orig.)

  11. Observables and transformation properties of fermions and parafermions constructed in terms of bosons

    International Nuclear Information System (INIS)

    Kalnay, A.J.; Kademova, K.V.

    1975-01-01

    Further to work previously reported (Kalnay. MacCotrina and Kademova. Int. J. Theor. Phys.; 7:9 (1973)) in which it was shown how the quantum Fermi or para-Fermi commutation rules of fields could be reproduced in terms of functions of Bose fields and of part 1 of the present work (Kalnay and Kademova. Int. J. Theor. Phys.; 12:141 (1975)), the same concepts are here utilized for the Bose representation of transformation laws. It is apparent that the Bose representation does not introduce conflict between the tensor transformation laws of bosons and the spinor laws of fermions and parafermions. (U.K.)

  12. Theory of quantum dynamics in fermionic environment: an influence functional approach

    International Nuclear Information System (INIS)

    Chen, Y.

    1987-01-01

    Quantum dynamics of a particle coupled to a fermionic environment is considered, with particular emphasis on the formulation of macroscopic quantum phenomena. The framework is based on a path integral formalism for the real-time density matrix. After integrating out of the fermion variables of the environment, they embed the whole environmental effects on the particle into the so-called influence functional in analogy to Feynman and Vernon's initial work. They then show that to the second order of the coupling constant, the exponent of the influence functional is in exact agreement with that due to a linear dissipative environment (boson bath). Having obtained this, they turn to a specific model in which the influence functional can be exactly evaluated in a long-term limit (long compared to the inverse of the cutoff frequency of the environmental spectrum). In this circumstance, they mainly address their attention to the quantum mechanical representation of the system-plus-environment from the known classical properties of the particle. It is shown that, in particular, the equivalence between the fermion bath and the boson bath is generally correct for a single-channel coupling provided they make a simple mapping between the nonlinear interaction functions of the baths. Finally, generalizations of the model to more complicated situations are discussed and significant applications and connections to certain practically interesting problems are mentioned

  13. Effective γ deformation near A=130 in the interacting boson model

    International Nuclear Information System (INIS)

    Vogel, O.; Van Isacker, P.; Gelberg, A.; Brentano, P. von; Dewald, A.

    1996-01-01

    'Effective' γ-deformation parameters are derived for even-even Xe, Ba, and Ce nuclei from the matrix elements of (QxQ) 00 and (QxQxQ) 00 . Interacting boson model calculations are performed with the quadrupole operator Q determined from the E2 branching ratios of the 2 2 + decay and compared to results obtained with the rigid triaxial rotor model. copyright 1996 The American Physical Society

  14. How well do we need to measure Higgs boson couplings?

    CERN Document Server

    Gupta, Rick S.; Wells, James D.

    2012-01-01

    Most of the discussion regarding the Higgs boson couplings to Standard Model vector bosons and fermions is presented with respect to what present and future collider detectors will be able to measure. Here, we ask the more physics-based question of how well do we need to measure the Higgs boson couplings? We first present a reasonable definition of "need" and then investigate the answer in the context of various highly motivated new physics scenarios: supersymmetry, mixed-in hidden sector Higgs bosons, and a composite Higgs boson. We find the largest coupling deviations away from the SM Higgs couplings that are possible if no other state related to EWSB is directly accessible at the LHC. Depending on the physics scenario under consideration, we find targets that range from less than 1% to 10% for vector bosons, and from a few percent to tens of percent for couplings to fermions.

  15. Boson localization and the superfluid-insulator transition

    International Nuclear Information System (INIS)

    Fisher, M.P.A.; Weichman, P.B.; Grinstein, G.; Fisher, D.S.; Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 91125; IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598; Joseph Henry Laboratory of Physics, Jadwin Hall, Princeton University, Princeton, New Jersey 08544)

    1989-01-01

    The phase diagrams and phase transitions of bosons with short-ranged repulsive interactions moving in periodic and/or random external potentials at zero temperature are investigated with emphasis on the superfluid-insulator transition induced by varying a parameter such as the density. Bosons in periodic potentials (e.g., on a lattice) at T=0 exhibit two types of phases: a superfluid phase and Mott insulating phases characterized by integer (or commensurate) boson densities, by the existence of a gap for particle-hole excitations, and by zero compressibility. Generically, the superfluid onset transition in d dimensions from a Mott insulator to superfluidity is ''ideal,'' or mean field in character, but at special multicritical points with particle-hole symmetry it is in the universality class of the (d+1)-dimensional XY model. In the presence of disorder, a third, ''Bose glass'' phase exists. This phase is insulating because of the localization effects of the randomness and analogous to the Fermi glass phase of interacting fermions in a strongly disordered potential

  16. Renormalization of fermion mixing

    International Nuclear Information System (INIS)

    Schiopu, R.

    2007-01-01

    hermiticity. After analysing the complete renormalized Lagrangian in a general theory including vector and scalar bosons with arbitrary renormalizable interactions, we consider two specific models: quark mixing in the electroweak Standard Model and mixing of Majorana neutrinos in the seesaw mechanism. A counter term for fermion mixing matrices can not be fixed by only taking into account self-energy corrections or fermion field renormalization constants. The presence of unstable particles in the theory can lead to a non-unitary renormalized mixing matrix or to a gauge parameter dependence in its counter term. Therefore, we propose to determine the mixing matrix counter term by fixing the complete correction terms for a physical process to experimental measurements. As an example, we calculate the decay rate of a top quark and of a heavy neutrino. We provide in each of the chosen models sample calculations that can be easily extended to other theories. (orig.)

  17. Renormalization of fermion mixing

    Energy Technology Data Exchange (ETDEWEB)

    Schiopu, R.

    2007-05-11

    hermiticity. After analysing the complete renormalized Lagrangian in a general theory including vector and scalar bosons with arbitrary renormalizable interactions, we consider two specific models: quark mixing in the electroweak Standard Model and mixing of Majorana neutrinos in the seesaw mechanism. A counter term for fermion mixing matrices can not be fixed by only taking into account self-energy corrections or fermion field renormalization constants. The presence of unstable particles in the theory can lead to a non-unitary renormalized mixing matrix or to a gauge parameter dependence in its counter term. Therefore, we propose to determine the mixing matrix counter term by fixing the complete correction terms for a physical process to experimental measurements. As an example, we calculate the decay rate of a top quark and of a heavy neutrino. We provide in each of the chosen models sample calculations that can be easily extended to other theories. (orig.)

  18. Phase transitions in the sdg interacting boson model

    Science.gov (United States)

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2010-05-01

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ( β), axial hexadecapole ( β) and triaxial ( γ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)⊗U(9), the (prolate and oblate) deformed SU(3) and the γ-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  19. Phase transitions in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2010-01-01

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole (β 2 ), axial hexadecapole (β 4 ) and triaxial (γ 2 ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)xU(9), the (prolate and oblate) deformed SU ± (3) and the γ 2 -soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  20. Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model

    International Nuclear Information System (INIS)

    Friederich, Simon

    2010-01-01

    Despite its apparent simplicity, the two-dimensional Hubbard model for locally interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the quasi two-dimensional high-T c cuprate materials. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic fields are introduced which correspond to the different possible collective orders of the system, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of ''rebosonization'' (or ''flowing bosonization''), which can be described as a continuous, scale-dependent Hubbard-Stratonovich transformation. This method allows an efficient parameterization of the momentum-dependent effective two-particle interaction between fermions (four-point vertex), and it makes it possible to follow the flow of the running couplings into the regimes exhibiting spontaneous symmetry breaking, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of different, competing types of order. (orig.)

  1. Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Friederich, Simon

    2010-12-08

    Despite its apparent simplicity, the two-dimensional Hubbard model for locally interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the quasi two-dimensional high-T{sub c} cuprate materials. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic fields are introduced which correspond to the different possible collective orders of the system, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of ''rebosonization'' (or ''flowing bosonization''), which can be described as a continuous, scale-dependent Hubbard-Stratonovich transformation. This method allows an efficient parameterization of the momentum-dependent effective two-particle interaction between fermions (four-point vertex), and it makes it possible to follow the flow of the running couplings into the regimes exhibiting spontaneous symmetry breaking, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of different, competing types of order. (orig.)

  2. Gauge invariance and fermion mass dimensions

    International Nuclear Information System (INIS)

    Elias, V.

    1979-05-01

    Renormalization-group equation fermion mass dimensions are shown to be gauge dependent in gauge theories possessing non-vector couplings of gauge bosons to fermions. However, the ratios of running fermion masses are explicitly shown to be gauge invariant in the SU(5) and SU(2) x U(1) examples of such theories. (author)

  3. Bounds on dark matter interactions with electroweak gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Cotta, R. C.; Hewett, J. L.; Le, M. -P.; Rizzo, T. G.

    2013-12-01

    We investigate scenarios in which dark matter interacts with the Standard Model primarily through electroweak gauge bosons. We employ an effective field theory framework wherein the Standard Model and the dark matter particle are the only light states in order to derive model-independent bounds. Bounds on such interactions are derived from dark matter production by weak boson fusion at the LHC, indirect detection searches for the products of dark matter annihilation and from the measured invisible width of the Z 0 . We find that limits on the UV scale, Λ , reach weak scale values for most operators and values of the dark matter mass, thus probing the most natural scenarios in the weakly interacting massive particle dark matter paradigm. Our bounds suggest that light dark matter ( m χ ≲ m Z / 2 or m χ ≲ 100 – 200 GeV , depending on the operator) cannot interact only with the electroweak gauge bosons of the Standard Model, but rather requires additional operator contributions or dark sector structure to avoid overclosing the Universe.

  4. Search for the Standard Model Higgs Boson in $e^+ e^-$ Collisions at $\\sqrt{s}$ = 161-172 GeV

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Beeston, C; Behnke, T; Bell, A N; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bloomer, J E; Bobinski, M; Bock, P; Bonacorsi, D; Boutemeur, M; Bouwens, B T; Braibant, S; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Clarke, P E L; Cohen, I; Conboy, J E; Cooke, O C; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; Desch, Klaus; Dienes, B; Dixit, M S; do Couto e Silva, E; Doucet, M; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Edwards, J E G; Estabrooks, P G; Evans, H G; Evans, M; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Foucher, M; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geddes, N I; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hart, P A; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Hutchcroft, D E; Igo-Kemenes, P; Imrie, D C; Ingram, M R; Ishii, K; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jones, G; Jones, M; Jost, U; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kirk, J; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lahmann, R; Lai, W P; Lanske, D; Lauber, J; Lautenschlager, S R; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markus, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mikenberg, G; Miller, D J; Mincer, A; Mir, R; Mohr, W; Montanari, A; Mori, T; Morii, M; Müller, U; Mihara, S; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oh, A; Oldershaw, N J; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pearce, M J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, J L; Plane, D E; Poffenberger, P R; Poli, B; Posthaus, A; Rees, D L; Rigby, D; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Rooke, A M; Ros, E; Rossi, A M; Routenburg, P; Rozen, Y; Runge, K; Runólfsson, O; Ruppel, U; Rust, D R; Rylko, R; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schenk, P; Schieck, J; Schleper, P; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schultz-Coulon, H C; Schumacher, M; Schwick, C; Scott, W G; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skillman, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Springer, R W; Sproston, M; Stephens, K; Steuerer, J; Stockhausen, B; Stoll, K; Strom, D; Szymanski, P; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Utzat, P; Van Kooten, R; Verzocchi, M; Vikas, P; Vokurka, E H; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilkens, B; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1998-01-01

    This paper describes a search for the Standard Model Higgs boson using data from e^+e^- collisions collected at center-of-mass energies of 161, 170 and 172 GeV by the OPAL detector at LEP. The data collected at these energies correspond to integrated luminosities of 10.0, 1.0 and 9.4 pb^-1, respectively. The search is sensitive to the main final states from the process in which the Higgs boson is produced in association with a fermion anti-fermion pair, namely four jets, two jets with missing energy, and two jets produced together with a pair of electron, muon or tau leptons. One candidate event is observed, in agreement with the Standard Model background expectation. In combination with previous OPAL searches at center-of-mass energies close to the Z^0 resonance and the revised previous OPAL searches at 161 GeV, we derive a lower limit of 69.4 GeV for the mass of the Standard Model Higgs boson at the 95% confidence level.

  5. Higgs boson results on couplings to fermions, CP parameters and perspectives for high-lumi LHC (ATLAS AND CMS)

    CERN Document Server

    Brandstetter, Johannes

    2018-01-01

    This talk summarizes latest ATLAS and CMS results on Higgs boson couplings to fermions. Presented topics include decays into final states of pairs of tau leptons and pairs of bottom quarks as well as results on the ttH production mode. Results are complemented by tests of the CP invariance and searches for lepton flavor violating decays. Finally, prospects of future Higgs boson analyses within the scope of the High Luminosity LHC program are discussed. The presented results mostly use LHC 2016 data collected at a center-of-mass energy of $\\sqrt{\\mathrm{s}}=13~$TeV corresponding to an integrated luminosity of about 36~$\\mathrm{fb^{-1}}$.

  6. FCNC Effects in a Minimal Theory of Fermion Masses

    CERN Document Server

    Buras, Andrzej J; Pokorski, Stefan; Ziegler, Robert

    2011-01-01

    As a minimal theory of fermion masses we extend the SM by heavy vectorlike fermions, with flavor-anarchical Yukawa couplings, that mix with chiral fermions such that small SM Yukawa couplings arise from small mixing angles. This model can be regarded as an effective description of the fermionic sector of a large class of existing flavor models and thus might serve as a useful reference frame for a further understanding of flavor hierarchies in the SM. Already such a minimal framework gives rise to FCNC effects through exchange of massive SM bosons whose couplings to the light fermions get modified by the mixing. We derive general formulae for these corrections and discuss the bounds on the heavy fermion masses. Particularly stringent bounds, in a few TeV range, come from the corrections to the Z couplings.

  7. Hierarchical fermions and detectable Z' from effective two-Higgs-triplet 3-3-1 model

    Science.gov (United States)

    Barreto, E. R.; Dias, A. G.; Leite, J.; Nishi, C. C.; Oliveira, R. L. N.; Vieira, W. C.

    2018-03-01

    We develop a SU (3 )C⊗SU (3 )L⊗U (1 )X model where the number of fermion generations is fixed by cancellation of gauge anomalies, being a type of 3-3-1 model with new charged leptons. Similarly to the economical 3-3-1 models, symmetry breaking is achieved effectively with two scalar triplets so that the spectrum of scalar particles at the TeV scale contains just two C P even scalars, one of which is the recently discovered Higgs boson, plus a charged scalar. Such a scalar sector is simpler than the one in the Two Higgs Doublet Model, hence more attractive for phenomenological studies, and has no flavor changing neutral currents (FCNC) mediated by scalars except for the ones induced by the mixing of Standard Model (SM) fermions with heavy fermions. We identify a global residual symmetry of the model which guarantees mass degeneracies and some massless fermions whose masses need to be generated by the introduction of effective operators. The fermion masses so generated require less fine-tuning for most of the SM fermions and FCNC are naturally suppressed by the small mixing between the third family of quarks and the rest. The effective setting is justified by an ultraviolet completion of the model from which the effective operators emerge naturally. A detailed particle mass spectrum is presented, and an analysis of the Z' production at the LHC run II is performed to show that it could be easily detected by considering the invariant mass and transverse momentum distributions in the dimuon channel.

  8. Variational study of fermionic and bosonic systems with non-Gaussian states: Theory and applications

    Science.gov (United States)

    Shi, Tao; Demler, Eugene; Ignacio Cirac, J.

    2018-03-01

    We present a new variational method for investigating the ground state and out of equilibrium dynamics of quantum many-body bosonic and fermionic systems. Our approach is based on constructing variational wavefunctions which extend Gaussian states by including generalized canonical transformations between the fields. The key advantage of such states compared to simple Gaussian states is presence of non-factorizable correlations and the possibility of describing states with strong entanglement between particles. In contrast to the commonly used canonical transformations, such as the polaron or Lang-Firsov transformations, we allow parameters of the transformations to be time dependent, which extends their regions of applicability. We derive equations of motion for the parameters characterizing the states both in real and imaginary time using the differential structure of the variational manifold. The ground state can be found by following the imaginary time evolution until it converges to a steady state. Collective excitations in the system can be obtained by linearizing the real-time equations of motion in the vicinity of the imaginary time steady-state solution. Our formalism allows us not only to determine the energy spectrum of quasiparticles and their lifetime, but to obtain the complete spectral functions and to explore far out of equilibrium dynamics such as coherent evolution following a quantum quench. We illustrate and benchmark this framework with several examples: a single polaron in the Holstein and Su-Schrieffer-Heeger models, non-equilibrium dynamics in the spin-boson and Kondo models, the superconducting to charge density wave phase transitions in the Holstein model.

  9. Application of the Kishimoto-Tamura boson expansion theory to a single-j shell model

    International Nuclear Information System (INIS)

    Li, C.T.; Pedrocchi, V.G.; Tamura, T.

    1985-01-01

    The boson expansion theory of Kishimoto and Tamura is applied to a single-j shell model. It is shown that this theory is quite accurate, giving results that agree very closely with those of the exact fermion calculations. The fast convergence of the boson expansion is also demonstrated. A critical discussion is then made of an earlier paper by Arima, in which he stated that the Kishimoto-Tamura theory gives rise to very poor numerical results. The source of the trouble encountered by Arima is unmasked

  10. Search for $\\gamma\\gamma$ decays of a Higgs boson produced in association with a fermion pair in $e^{+} e^{-}$ collisions at LEP

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Kado, M.; Lemaitre, V.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Valassi, A.; Ward, J.J.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Pascolo, J.M.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raeven, B.; Smith, D.; Teixeira-Dias, P.; Thompson, A.S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Sedgbeer, J.K.; Thompson, J.C.; Thomson, Evelyn J.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C.K.; Buck, P.G.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Smizanska, M.; Giehl, I.; Holldorfer, F.; Jakobs, K.; Kleinknecht, K.; Krocker, M.; Muller, A.S.; Nurnberger, H.A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Aleppo, M.; Gilardoni, Simone S.; Ragusa, F.; Dietl, H.; Ganis, G.; Heister, A.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.J.; Videau, I.; de Vivie de Regie, J.B.; Zerwas, D.; Bagliesi, Giuseppe; Boccali, T.; Calderini, G.; Ciulli, V.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Coles, J.; Cowan, G.; Green, M.G.; Hutchcroft, D.E.; Jones, L.T.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Faif, G.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Black, S.N.; Dann, J.H.; Loomis, C.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; Gobbo, B.; He, H.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Cranmer, K.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A.; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, J.; Wu, S.L.; Wu, X.; Zobernig, G.

    2000-01-01

    A search for gamma-gamma decays of a Higgs boson is performed in the data sample collected at LEP with the ALEPH detector between 1991 and 1999. This corresponds to an integrated luminosity of 672 pb-1 at centre-of-mass energies ranging from 88 to 202 GeV. The search is based on topologies arising from a Higgs boson produced in association with a fermion pair via the Higgs-strahlung process e+e- -> Hff, with ff=nu\

  11. Quantum Phases of Atom-Molecule Mixtures of Fermionic Atoms

    Science.gov (United States)

    Lopez, Nicolas; Tsai, Shan-Wen

    2009-11-01

    Cold atom experiments have observed atom-molecule mixtures by tuning the interactions between particles.footnotetextM.L. Olsen, J. D. Perreault, T. D. Cumby, and D. S. Jin, Phys. Rev. A 80, 030701(R) (2009) We study many particle interactions by examaning a simple model that describes the destruction of fermionic atom pairs to form single bosonic molecules and vice versa. A set of functional Renomalization Group equationsfootnotetextR. Shankar, Rev. Mod. Phys., Vol 66 No. 1, January 1994^,footnotetextS.W. Tsai, A.H. Castro Neto, R. Shankar, D.K. Campbell, Phys. Rev. B 72, 054531 (2005) describing these processes are set up and solved numerically. The Self Energy of the fermions are attained as a function of frequency and we search for frequency dependent instabilities that could denote a transition from a disordered liquid to a BCS phase. (Financial support from NSF DMR-084781 and UC-Lab Fees Research Program.)

  12. Marginal deformations of vacua with massive boson-fermion degeneracy symmetry

    International Nuclear Information System (INIS)

    Florakis, Ioannis; Kounnas, Costas; Toumbas, Nicolaos

    2010-01-01

    Two-dimensional string vacua with Massive Spectrum boson-fermion Degeneracy Symmetry, [MSDS] d=2 , are explicitly constructed in Type II and Heterotic superstring theories. The study of their moduli space indicates the existence of large marginal deformations that connect continuously the initial [MSDS] d=2 vacua to higher-dimensional conventional superstring vacua, where spacetime supersymmetry is spontaneously broken by geometrical fluxes. We find that the maximally symmetric, [Max:MSDS] d=2 , Type II vacuum, is in correspondence with the maximal, N=8, d=4 'gauged supergravity', where the supergravity gauging is induced by the fluxes. This correspondence is extended to less symmetric cases where the initial MSDS symmetry is reduced by orbifolds: [Z orb :MSDS] d=2 ↔[N≤8:SUGRA] d=4,fluxes . We also exhibit and analyse thermal interpretations of some Euclidean versions of the models and identify classes of MSDS vacua that remain tachyon-free under arbitrary marginal deformations about the extended symmetry point. The connection between the two-dimensional MSDS vacua and the resulting four-dimensional effective supergravities arises naturally within the context of an adiabatic cosmological evolution, where the very early Universe is conjectured to be described by an MSDS vacuum, while at late cosmological times it is described by an effective N=1 supergravity theory with spontaneously broken supersymmetry.

  13. Phase transitions in the sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P. [Grand Accelerateur National d' Ions Lourds, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)], E-mail: isacker@ganil.fr; Bouldjedri, A.; Zerguine, S. [Department of Physics, PRIMALAB Laboratory, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria)

    2010-05-15

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ({beta}{sub 2}), axial hexadecapole ({beta}{sub 4}) and triaxial ({gamma}{sub 2}). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)xU(9), the (prolate and oblate) deformed SU{sub {+-}}(3) and the {gamma}{sub 2}-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  14. Vector and axial-vector resonances in composite models of the Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Franzosi, Diogo Buarque [II. Physikalisches Institut, Universität Göttingen,Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Cacciapaglia, Giacomo; Cai, Haiying; Deandrea, Aldo [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNL,F-69622, Villeurbanne (France); Frandsen, Mads [CP-Origins & Danish Institute for Advanced Study DIAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark)

    2016-11-11

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.

  15. Fermions and link invariants

    International Nuclear Information System (INIS)

    Kauffman, L.; Saleur, H.

    1991-01-01

    Various aspects of knot theory are discussed when fermionic degrees of freedom are taken into account in the braid group representations and in the state models. It is discussed how the R matrix for the Alexander polynomial arises from the Fox differential calculus, and how it is related to the quantum group U q gl(1,1). New families of solutions of the Yang Baxter equation obtained from ''linear'' representations of the braid group and exterior algebra are investigated. State models associated with U q sl(n,m), and in the case n=m=1 a state model for the multivariable Alexander polynomial are studied. Invariants of links in solid handlebodies are considered and it is shown how the non trivial topology lifts the boson fermion degeneracy is present in S 3 . (author) 36 refs

  16. Diffusion in higher dimensional SYK model with complex fermions

    Science.gov (United States)

    Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong

    2018-01-01

    We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.

  17. A quantum theory of the self-energy of non-relativistic fermions and of the Coulomb-Yukawa force acting between them

    International Nuclear Information System (INIS)

    Ernst, V.

    1978-01-01

    The idea of the systematic Weisskopf-Wigner approximation as used sporadically in atomic physics and quantum optics, is extended here to the interaction of a field of non-relativistic fermions with a field of relativistic bosons. It is shown that the usual (non-existing) interaction Hamiltonian of this system can be written as a sum of a countable number of self-adjoint and bounded partial Hamiltonians. The system of these Hamiltonians defines the order hierarchy of the present approximation scheme. To demonstrate its physical utility it is shown that in a certain order it provides satisfactory quantum theory of the 'self-energy' of the fermions under discussion. This is defined as the binding energy of bosons bound to the fermions and building up the latter's 'individual Coulomb or Yukawa fields' in the sense of expectation values of the corresponding field operator. In states of more than one fermion the bound photons act as a mediating agent between the fermions; this mechanism closely resembles the Coulomb or Yukawa 'forces' used in conventional non-relativistic quantum mechanics. (author)

  18. Competing effective interactions of Dirac electrons in the Spin–Fermion system

    International Nuclear Information System (INIS)

    Marino, E.C.; Nunes, Lizardo H.C.M.

    2014-01-01

    Recently discovered advanced materials, such as heavy fermions, frequently exhibit a rich phase diagram suggesting the presence of different competing interactions. A unified description of the origin of these multiple interactions, albeit very important for the comprehension of such materials is, in general not available. It would be therefore very useful to have a simple model where the common source of different interactions could be possibly traced back. In this work we consider a system consisting in a set of localized spins on a square lattice with antiferromagnetic nearest neighbors interactions and itinerant electrons, which are assumed to be Dirac-like and interact with the localized spins through a Kondo magnetic interaction. This system is conveniently described by the Spin–Fermion model, which we use in order to determine the effective interactions among the itinerant electrons. By integrating out the localized degrees of freedom we obtain a set of different interactions, which includes: a BCS-like superconducting term, a Nambu–Jona-Lasinio-like, excitonic term and a spin–spin magnetic term. The resulting phase diagram is investigated by evaluation of the mean-field free-energy as a function of the relevant order parameters. This shows the competition of the above interactions, depending on the temperature, chemical potential and coupling constants. -- Highlights: •Antiferromagnetic Heisenberg–Kondo lattice model with itinerant Dirac fermions. •Integrating out the spins generates competing interactions: BCS-like, excitonic and magnetic. •Novel mechanism of superconductivity from magnetic interactions between the spins and electrons. •Dome-shaped dependence of the temperature on the chemical potential in agreement with pnictides

  19. Stochastic bosonization for a d ≥ 3 Fermi system

    International Nuclear Information System (INIS)

    Accardi, L.; Lu, Y.G.; Mastropietro, V.

    1997-01-01

    We consider a system of fermions interacting via an external field and we prove, in d ≥ 3, that a suitable collective operator, bilinear in the fermionic fields, in the stochastic limit becomes a boson quantum brownian motion. The evolution operator after the limit satisfies a quantum stochastic differential equation, in which the imaginary part of the Ito correction is the ground state shift while its real part is the lifetime of the ground state. (orig.)

  20. A supersymmetric matrix model: II. Exploring higher-fermion-number sectors

    CERN Document Server

    Veneziano, Gabriele

    2006-01-01

    Continuing our previous analysis of a supersymmetric quantum-mechanical matrix model, we study in detail the properties of its sectors with fermion number F=2 and 3. We confirm all previous expectations, modulo the appearance, at strong coupling, of {\\it two} new bosonic ground states causing a further jump in Witten's index across a previously identified critical 't Hooft coupling $\\lambda_c$. We are able to elucidate the origin of these new SUSY vacua by considering the $\\lambda \\to \\infty$ limit and a strong coupling expansion around it.

  1. Coulomb’s law corrections and fermion field localization in a tachyonic de Sitter thick braneworld

    International Nuclear Information System (INIS)

    Cartas-Fuentevilla, Roberto; Escalante, Alberto; Germán, Gabriel; Herrera-Aguilar, Alfredo; Mora-Luna, Refugio Rigel

    2016-01-01

    Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aims we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ-bar in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb’s law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb’s law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb’s law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally

  2. Coulomb’s law corrections and fermion field localization in a tachyonic de Sitter thick braneworld

    Energy Technology Data Exchange (ETDEWEB)

    Cartas-Fuentevilla, Roberto; Escalante, Alberto [Instituto de Física, Benemérita Universidad Autónoma de Puebla,Apdo. postal J-48, 72570 Puebla, Pue. (Mexico); Germán, Gabriel [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apdo. Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road,Oxford, OX1 3NP (United Kingdom); Herrera-Aguilar, Alfredo [Instituto de Física, Benemérita Universidad Autónoma de Puebla,Apdo. postal J-48, 72570 Puebla, Pue. (Mexico); Institutode Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Edificio C-3, Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico); Mora-Luna, Refugio Rigel [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apdo. Postal 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2016-05-11

    Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aims we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ-bar in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb’s law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb’s law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb’s law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally

  3. Collider signatures of flavorful Higgs bosons

    International Nuclear Information System (INIS)

    Altmannshofer, Wolfgang; Eby, Joshua; Gori, Stefania; Lotito, Matteo

    2016-01-01

    Motivated by our limited knowledge of the Higgs couplings to the first two generation fermions, we analyze the collider phenomenology of a class of two Higgs doublet models (2HDMs) with a nonstandard Yukawa sector. One Higgs doublet is mainly responsible for the masses of the weak gauge bosons and the third-generation fermions, while the second Higgs doublet provides mass for the lighter fermion generations. The characteristic collider signatures of this setup differ significantly from well-studied 2HDMs with natural flavor conservation, flavor alignment, or minimal flavor violation. New production mechanisms for the heavy scalar, pseudoscalar, and charged Higgs involving second-generation quarks can become dominant. The most interesting decay modes include H/A → cc,tc,μμ,τμ and H"± → cb,cs,μν. As a result, searches for low-mass dimuon resonances are currently among the best probes of the heavy Higgs bosons in this setup.

  4. A model for the origin and mechanisms of CP violation

    International Nuclear Information System (INIS)

    Wu, Y.

    1995-01-01

    In this talk I will show that the two-Higgs doublet model with vacuum CP violation and approximate global U(1) family symmetries may provide one of the simplest and attractive models for understanding the origin and mechanisms of CP violation. It is shown that the mechanism of spontaneous symmetry breaking provides not only a mechanism for generating masses of the bosons and fermions, but also a mechanism for creating CP-phases of the bosons and fermions, so that CP violation occurs, after spontaneous symmetry breaking, in all possible ways from a single CP phase of the vacuum and is generally classified into four types of CP-violating mechanism. A new type of CP-violating mechanism in the charged Higgs boson interactions of the fermions is emphasized and can provide a consistent description for both established and reported CP-, P-, and T-violating phenomena. Of particular importance is the new source of CP violation for charged Higgs boson interactions that lead to the value of ε'/ε as large as 10 -3 independent of the CKM phase. copyright 1995 American Institute of Physics

  5. Comments and questions about the interacting-boson model

    International Nuclear Information System (INIS)

    Rowe, D.J.; McGowan, F.; Raman, S.; Wyss, R.; Zelevinsky, V.

    1992-01-01

    The Interacting Boson Model (IBM) has had an enormous influence on nuclear physics. One of its important achievements has been to remove the mystique and psychological barriers that once surrounded the use of group theory and algebraic methods in nuclear physics. Surely no one nowadays doubts that a dynamical system can be very simple when it has an algebraic structure. The IBM has also provided a systematic classification of a wide variety of data in terms of a small number of parameters. The wide range of successful applications of the model is very impressive. If the model did nothing more, it would have served an important and useful purpose in getting theorists to look more closely at the systematics of nuclear data. It also challenges us to explain, in physical terms, the reasons for its success

  6. Free-fermion descriptions of parafermion chains and string-net models

    Science.gov (United States)

    Meichanetzidis, Konstantinos; Turner, Christopher J.; Farjami, Ashk; Papić, Zlatko; Pachos, Jiannis K.

    2018-03-01

    Topological phases of matter remain a focus of interest due to their unique properties: fractionalization, ground-state degeneracy, and exotic excitations. While some of these properties can occur in systems of free fermions, their emergence is generally associated with interactions between particles. Here, we quantify the role of interactions in general classes of topological states of matter in one and two spatial dimensions, including parafermion chains and string-net models. Surprisingly, we find that certain topological states can be exactly described by free fermions, while others saturate the maximum possible distance from their optimal free-fermion description [C. J. Turner et al., Nat. Commun. 8, 14926 (2017), 10.1038/ncomms14926]. Our work opens the door to understanding the complexity of topological models by establishing new types of fermionization procedures to describe their low-energy physics, thus making them amenable to experimental realizations.

  7. Fermions on the electroweak string

    CERN Document Server

    Moreno, J M; Quirós, Mariano; Moreno, J M; Oaknin, D H; Quiros, M

    1995-01-01

    We construct a simple class of exact solutions of the electroweak theory including the naked Z--string and fermion fields. It consists in the Z--string configuration (\\phi,Z_\\theta), the {\\it time} and z components of the neutral gauge bosons (Z_{0,3},A_{0,3}) and a fermion condensate (lepton or quark) zero mode. The Z--string is not altered (no feed back from the rest of fields on the Z--string) while fermion condensates are zero modes of the Dirac equation in the presence of the Z--string background (no feed back from the {\\it time} and z components of the neutral gauge bosons on the fermion fields). For the case of the n--vortex Z--string the number of zero modes found for charged leptons and quarks is (according to previous results by Jackiw and Rossi) equal to |n|, while for (massless) neutrinos is |n|-1. The presence of fermion fields in its core make the obtained configuration a superconducting string, but their presence (as well as that of Z_{0,3},A_{0,3}) does not enhance the stability of the Z--stri...

  8. Gamma-unstable nuclei in the sdg boson model

    Science.gov (United States)

    Kuyucak, S.; Lac, V.-S.; Morrison, I.; Barret, B. R.

    Following the recent Pt(p,p') experiments which indicated the need for high angular momentum (g) bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to the sdg bosons. It is shown that a gamma-unstable Hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the gamma-unstable nature of the Hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions to the 4(sup +) states presumed to be g boson states. Specific applications are made to the Xe and Pt isotopes.

  9. E4 properties in deformed nuclei and the sdg interacting boson model

    NARCIS (Netherlands)

    Wu, H.C.; Dieperink, A. E. L.; Scholten, O.; Harakeh, M. N.; de Leo, R.; Pignanelli, M.; Morrison, I.

    1988-01-01

    The hexadecapole transition strength distribution is measured for the deformed nucleus 150Nd using the (p,p') reaction at Ep=30 MeV. The experimental information on B(E4) values in this nucleus and in 156Gd is interpreted in the framework of the sdg interacting boson model. It is found that the main

  10. Functional renormalization group approach to interacting three-dimensional Weyl semimetals

    Science.gov (United States)

    Sharma, Anand; Scammell, Arthur; Krieg, Jan; Kopietz, Peter

    2018-03-01

    We investigate the effect of long-range Coulomb interaction on the quasiparticle properties and the dielectric function of clean three-dimensional Weyl semimetals at zero temperature using a functional renormalization group (FRG) approach. The Coulomb interaction is represented via a bosonic Hubbard-Stratonovich field which couples to the fermionic density. We derive truncated FRG flow equations for the fermionic and bosonic self-energies and for the three-legged vertices with two fermionic and one bosonic external legs. We consider two different cutoff schemes—cutoff in fermionic or bosonic propagators—in order to calculate the renormalized quasiparticle velocity and the dielectric function for an arbitrary number of Weyl nodes and the interaction strength. If we approximate the dielectric function by its static limit, our results for the velocity and the dielectric function are in good agreement with that of A. A. Abrikosov and S. D. Beneslavskiĭ [Sov. Phys. JETP 32, 699 (1971)] exhibiting slowly varying logarithmic momentum dependence for small momenta. We extend their result for an arbitrary number of Weyl nodes and finite frequency by evaluating the renormalized velocity in the presence of dynamic screening and calculate the wave function renormalization.

  11. Leptophobic Boson Signals with Leptons, Jets and Missing Energy

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A.

    2015-06-14

    Color-singlet gauge bosons with renormalizable couplings to quarks but not to leptons must interact with additional fermions (''anomalons'') required to cancel the gauge anomalies. Analyzing the decays of such leptophobic bosons into anomalons, I show that they produce final states involving leptons at the LHC. Resonant production of a flavor-universal leptophobic Z' boson leads to cascade decays via anomalons, whose signatures include a leptonically decaying Z, missing energy and several jets. A Z' boson that couples to the right-handed quarks of the first and second generations undergoes cascade decays that violate lepton universality and include signals with two leptons and jets, or with a Higgs boson, a lepton, a W and missing energy.

  12. Analytic operator approach to fermionic lattice field theories

    International Nuclear Information System (INIS)

    Duncan, A.

    1985-01-01

    An analytic Lanczos algorithm previously used to extract the spectrum of bosonic lattice field theories in the continuum region is extended to theories with fermions. The method is illustrated in detail for the (1+1)-dimensional Gross-Neveu model. All parameters in the model (coupling, lattice size N, number of fermion flavors Nsub(F), etc.) appear explicitly in analytic formulas for matrix elements of the hamiltonian. The method is applied to the calculation of the collective field vacuum expectation value and the mass gap, and excellent agreement obtained with explicit results available from the large Nsub(F) solution of the model. (orig.)

  13. The continuum limit of causal fermion systems from Planck scale structures to macroscopic physics

    CERN Document Server

    Finster, Felix

    2016-01-01

    This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries". The dynamics is described by a novel variational principle, called the causal action principle. In addition to the basics, the book provides all the necessary mathematical background and explains how the causal action principle gives rise to the interactions of the standard model plus gravity on the level of second-quantized fermionic fields coupled to classical bosonic fields. The focus is on getting a mathematically sound connection between causal fermion systems and physical systems in Minkowski space. The book is intended for graduate students e...

  14. Bosonic analog of the Klein paradox

    International Nuclear Information System (INIS)

    Wagner, R. E.; Ware, M. R.; Su, Q.; Grobe, R.

    2010-01-01

    The standard Klein paradox describes how an incoming electron scatters off a supercritical electrostatic barrier that is so strong that it can generate electron-positron pairs. This fermionic system has been widely discussed in textbooks to illustrate some of the discrepancies between quantum mechanical and quantum field theoretical descriptions for the pair creation process. We compare the fermionic dynamics with that of the corresponding bosonic system. We point out that the direct counterpart of the Pauli exclusion principle (the central mechanism to resolve the fermionic Klein paradox) is stimulated emission, which leads to the resolution of the analogous bosonic paradox.

  15. Dynamic response of interacting one-dimensional fermions in the harmonic atom trap: Phase response and the inhomogeneous mobility

    International Nuclear Information System (INIS)

    Wonneberger, W.

    2006-01-01

    The problem of the Kohn mode in bosonized theories of one-dimensional interacting fermions in the harmonic trap is investigated and a suitable modification of the interaction is proposed which preserves the Kohn mode. The modified theory is used to calculate exactly the inhomogeneous linear mobility μ(z,z 0 ;ω) at position z in response to a spatial force pulse at position z 0 . It is found that the inhomogeneous particle mobility exhibits resonances not only at the trap frequency ω - bar but also at multiples mε-bar , m=2,3,... of a new renormalized collective mode frequency which depends on the strength of the interaction. In contrast, the homogeneous response obtained by an average over z 0 remains that of the non-interacting system

  16. Hartree-Fock-Bogolubov approximation in the models with general four-fermion interaction

    International Nuclear Information System (INIS)

    Bogolubov, N.N. Jr.; Soldatov, A.V.

    1995-12-01

    The foundation of this work was established by the lectures of Prof. N.N. Bogolubov (senior) written in the beginning of 1990. We should like to develop some of his ideas connected with Hartree-Fock-Bogolubov method and to show how this approximation works in connection with general equations for Green's functions with source terms for sufficiently general model Hamiltonian of four-fermion interaction type and how, for example, to get some results of superconductivity theory by means of this method. (author). 5 refs

  17. Conformal complex singlet extension of the Standard Model: scenario for dark matter and a second Higgs boson

    Science.gov (United States)

    Wang, Zhi-Wei; Steele, T. G.; Hanif, T.; Mann, R. B.

    2016-08-01

    We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. The global U(1) symmetry of the complex singlet can be either broken or unbroken and we study each scenario. In the unbroken case, the global U(1) symmetry protects the complex singlet from decaying, leading to an ideal cold dark matter candidate with approximately 100 GeV mass along with a significant proportion of thermal relic dark matter abundance. In the broken case, we have developed a renormalization-scale optimization technique to significantly narrow the parameter space and in some situations, provide unique predictions for all the model's couplings and masses. We have found there exists a second Higgs boson with a mass of approximately 550 GeV that mixes with the known 125 GeV Higgs with a large mixing angle sin θ ≈ 0.47 consistent with current experimental limits. The imaginary part of the complex singlet in the broken case could provide axion dark matter for a wide range of models. Upon including interactions of the complex scalar with an additional vector-like fermion, we explore the possibility of a diphoton excess in both the unbroken and the broken cases. In the unbroken case, the model can provide a natural explanation for diphoton excess if extra terms are introduced providing extra contributions to the singlet mass. In the broken case, we find a set of coupling solutions that yield a second Higgs boson of mass 720 GeV and an 830 GeV extra vector-like fermion F , which is able to address the 750 GeV LHC diphoton excess. We also provide criteria to determine the symmetry breaking pattern in both the Higgs and hidden sectors.

  18. Boson mapping of the shell model algebra obtained from a seniority-dictated similarity transformation

    International Nuclear Information System (INIS)

    Geyer, H.B.

    1986-01-01

    The qualitative ideas put forward by Geyer and Lee are given quantitative content by constructing a similarity transformation which reexpresses the Dyson boson images of the single-j shell fermion operators in terms of seniority bosons. It is shown that the results of Otsuka, Arima, and Iachello, or generalizations thereof which include g bosons or even bosons with J>4, can be obtained in an economic and transparent way without resorting to any comparison of matrix elements

  19. Standard model Higgs boson-inflaton and dark matter

    International Nuclear Information System (INIS)

    Clark, T. E.; Liu Boyang; Love, S. T.; Veldhuis, T. ter

    2009-01-01

    The standard model Higgs boson can serve as the inflaton field of slow roll inflationary models provided it exhibits a large nonminimal coupling with the gravitational scalar curvature. The Higgs boson self interactions and its couplings with a standard model singlet scalar serving as the source of dark matter are then subject to cosmological constraints. These bounds, which can be more stringent than those arising from vacuum stability and perturbative triviality alone, still allow values for the Higgs boson mass which should be accessible at the LHC. As the Higgs boson coupling to the dark matter strengthens, lower values of the Higgs boson mass consistent with the cosmological data are allowed.

  20. Search for the standard model Higgs boson decaying to a pair of $\\tau$ leptons and produced in association with a W or a Z boson in proton-proton collisions at $\\sqrt{s}=13$ TeV

    CERN Document Server

    CMS Collaboration

    1900-01-01

    A search for the standard model Higgs boson produced in association with a W or a Z boson decaying leptonically is performed using a data sample of proton-proton collisions collected at $\\sqrt{s} = 13$ TeV by the CMS experiment at the LHC corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The Higgs boson is sought in its decay to a pair of $\\tau$ leptons. A significance of 2.3 standard deviations is observed (1.0 expected) for a Higgs boson mass of 125 GeV. The signal strength, $\\mu = 2.5 ^{+1.4} _{-1.3}$, is measured relative to the expectation for the standard model Higgs boson. These results are combined with a previous analysis performed on the same data set targeting the gluon fusion and vector boson fusion production modes with the Higgs boson decaying to a pair of $\\tau$ leptons. The combined results provide increased sensitivity to the Higgs boson couplings to fermions and vector bosons, which are measured to be compatible with standard model predictions within one standard deviation.

  1. Interacting-string picture of the fermionic string

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1986-01-01

    This report gives a review of the interacting-string picture of the Bose string. In the present lecture, the author outlines a similar treatment of the Fermionic string. The quantization of the free Fermionic string is carried out to the degrees of freedom x, representing the displacement of the string. Also presented are Grassman degrees of freedom S distributed along the string. The report pictures the fermionic string as a string of dipoles. The general picture of the interaction of such strings by joining and splitting is the same as for the Bose string. The author does not at present have the simplest formula for fermion string scattering amplitudes. A less detailed treatment is given than for the Bose string. The report sets up the functional-integration formalism, derives the analog mode, and indicates in general, terms how the conformal transformation to the z-plane may be performed. The paper concludes by stating without proof the formula for the N-article tree amplitude in the manifestly supersymmetric formalism

  2. γ-unstable nuclei in the sdg boson model

    International Nuclear Information System (INIS)

    Kuyucak, S.; Lac, V-S.; Morrison, I.; Barret, B.R.

    1991-01-01

    Following the recent Pt(p,p') experiments which indicated the need for g bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to the sdg bosons. It is shown that a γ-unstable Hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the γ-unstable nature of the Hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions to the 4 + states presumed to be g boson states. Specific applications are made to the Xe and Pt isotopes. 12 refs., 2 tabs., 4 figs

  3. Substructure and strong interactions at the TeV scale

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1985-12-01

    A review is given of the current status of the three main theoretical ideas relevant to strong-interaction 1 TeV physics. These are composite vector bosons, Higgs bosons (''Technicolor''), and matter fermions. All involve the assumption that some object which is assumed to be fundamental in the standard model actually has dynamical internal structure. Complex, mechanistic models of the new physics are discussed. A brief digression is then made on how the weak interaction allows probing for this new structure. Direct manifestations of new 1 TeV strong interactions are discussed. 125 refs., 18 figs

  4. Search for the Higgs boson decaying into $\\tau$ lepton pairs with the Matrix Element Method and $\\tau$ trigger optimization in the CMS experiment at the LHC

    CERN Document Server

    AUTHOR|(CDS)2083962; Beaudette, Florian; Beaudette, Florian

    2016-01-01

    I performed my thesis work in Particle Physics at the laboratoire Leprince-Ringuet of the Ecole Polytechnique. I have been involved in the analysis of the data produced in the proton-proton collisions at the Large Hadron Collider (CERN) and collected by the CMS experiment. Particle physics is a scientific field which is currently undergoing very important breakthroughs. The discovery of the Higgs boson is a major step forward as the mass of vector bosons are explained through their interactions with the corresponding field. I worked on the newly discovered heavy boson analysis. As its direct coupling to fermions remained to be exhibited, I focused on the search for the Higgs boson decaying in tau lepton pairs. The Higgs decay into tau pairs is the most promising decay channel to measure the couplings between the Standard Model Higgs boson and the fermions. Indeed, this decay channel benefits from a large expected event rate compared to the other leptonic decay modes. The Higgs boson decaying to tau lepton ana...

  5. Light dark photon and fermionic dark radiation for the Hubble constant and the structure formation

    OpenAIRE

    Ko, P.; Tang, Yong

    2018-01-01

    Motivated by the tensions in the Hubble constant $H_0$ and the structure growth $\\sigma_8$ between $Planck$ results and other low redshift measurements, we discuss some cosmological effects of a dark sector model in which dark matter (DM) interacts with fermionic dark radiation (DR) through a light gauge boson (dark photon). Such kind of models are very generic in particle physics with a dark sector with dark gauge symmetries. The effective number of neutrinos is increased by $\\delta N_{eff} ...

  6. Fermionic bound states in Minkowski space. Light-cone singularities and structure

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Wayne de; Frederico, Tobias; Pimentel, Rafael [Instituto Tecnologico de Aeronautica, DCTA, Dept. de Fisica, Sao Jose dos Campos, Sao Paulo (Brazil); Salme, Giovanni [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Viviani, Michele [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)

    2017-11-15

    The Bethe-Salpeter equation for two-body bound system with spin 1/2 constituent is addressed directly in the Minkowski space. In order to accomplish this aim we use the Nakanishi integral representation of the Bethe-Salpeter amplitude and exploit the formal tool represented by the exact projection onto the null-plane. This formal step allows one (i) to deal with end-point singularities one meets and (ii) to find stable results, up to strongly relativistic regimes, which settle in strongly bound systems. We apply this technique to obtain the numerical dependence of the binding energies upon the coupling constants and the light-front amplitudes for a fermion-fermion 0{sup +} state with interaction kernels, in ladder approximation, corresponding to scalar-, pseudoscalar- and vector-boson exchanges, respectively. After completing the numerical survey of the previous cases, we extend our approach to a quark-antiquark system in 0{sup -} state, taking both constituent-fermion and exchanged-boson masses, from lattice calculations. Interestingly, the calculated light-front amplitudes for such a mock pion show peculiar signatures of the spin degrees of freedom. (orig.)

  7. Proton-neutron sdg boson model and spherical-deformed phase transition

    Science.gov (United States)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-12-01

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing+quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.

  8. Proton-neutron sdg boson model and spherical-deformed phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-12-15

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing + quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.

  9. Search for Higgs bosons and for Supersymmetric particles at particle collider experiments

    CERN Document Server

    Muanza, Steve

    The corner stone of the Standard Model (SM) of Particle Physics is the Higgs mechanism. It explains how the bosons W, Z and H acquire a mass via weak interactions. In addition it explains how the charged fermions also acquire a mass through Yukawa interactions. And on top of this, it regularizes the scattering of longitudinal W and Z bosons at high energy. The discovery of a Higgs boson by the ATLAS and the CMS collaborations in 2012 marked the culminating success of the SM at explaining most of the known phenomena. However a few other phenomena such as the Dark Matter and the Dark energy cannot be explained by the SM particles. What's more, the SM leaves several open questions such as a quest for a quantum theory for gravity, the naturalness in the Higgs sector, a possible Grand Unification,... The common thread in topics presented in this habilitation thesis is the search for manifestations of a TeV scale supersymmetric (SUSY) extension of the Standard Model at particle collider experiments. Among the predi...

  10. On the magnetoresistance of heavy fermion compounds

    International Nuclear Information System (INIS)

    Lee Chengchung; Chen Chung

    1992-09-01

    Starting from two-conduction-band Anderson lattice model, the magneto-transport properties of heavy fermion systems are studied in the slave boson mean field theory. The residual magnetoresistivity induced by different kinds of impurities is calculated, and the experimentally detected positive maximum structure in the residual magnetoresistance of heavy fermion systems is reproduced. The transition of field-dependent resistivity from nonmonotonic to monotonic behaviour with increasing temperature can be explained naturally by including the charge fluctuation effect. The influence of applied pressure is also investigated. (author). 22 refs, 5 figs

  11. Higher order supersymmetries and fermionic conservation laws of the supersymmetric extension of the KdV equation

    NARCIS (Netherlands)

    Kersten, P.H.M.

    1988-01-01

    By the introduction of nonlocal basonic and fermionic variables we construct a recursion symmetry of the super KdV equation, leading to a hierarchy of bosonic symmetries and one of fermionic symmetries. The hierarchies of bosonic and fermionic conservation laws arise in a natural way in the

  12. Conformal window of gauge theories with four-fermion interactions and ideal walking technicolor

    DEFF Research Database (Denmark)

    Sannino, Francesco; Sakuma, Hidenori

    2010-01-01

    We investigate the effects of four-fermion interactions on the phase diagram of strongly interacting theories for any representation as function of the number of colors and flavors. We show that the conformal window, for any representation, shrinks with respect to the case in which the four...... discover that when the extended technicolor sector, responsible for giving masses to the standard model fermions, is sufficiently strongly coupled the technicolor theory, in isolation, must have an infrared fixed point for the full model to be phenomenologically viable. Using the new phase diagram we show...

  13. Heuristic models of two-fermion relativistic systems with field-type interaction

    International Nuclear Information System (INIS)

    Duviryak, A

    2002-01-01

    We use the chain of simple heuristic expedients for obtaining perturbative and exactly solvable relativistic spectra for a family of two-fermionic bound systems with Coulomb-like interaction. In the case of electromagnetic interaction the spectrum coincides up to the second order in a coupling constant with that following from the quantum electrodynamics. Discrepancy occurs only for S-states which is the well-known difficulty in the bound-state problem. The confinement interaction is considered too

  14. Perturbation theory around the Wess-Zumino-Witten model

    International Nuclear Information System (INIS)

    Hasseln, H. v.

    1991-05-01

    We consider a perturbation of the Wess-Zumino-Witten model in 2D by a current-current interaction. The β-function is computed to third order in the coupling constant and a nontrivial fixedpoint is found. By non-abelian bosonization, this perturbed WZW-model is shown to have the same β-function (at least to order g 2 ) as the fermionic theory with a four-fermion interaction. (orig.) [de

  15. gamma. -unstable nuclei in the sdg boson model

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, S.; Lac, V.S.; Morrison, I.; Barrett, B.R. (School of Physics, Univ. of Melbourne, Parkville (Australia))

    1991-07-18

    Following the recent Pt(p, p') experiments which indicated the need for g bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to include g bosons. It is shown that a {gamma}-unstable hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the {gamma}-unstable nature of the hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions. Applications are made to the Xe and Pt isotopes. (orig.).

  16. γ-unstable nuclei in the sdg boson model

    Science.gov (United States)

    Kuyucak, S.; Lac, V.-S.; Morrison, I.; Barrett, B. R.

    1991-07-01

    Following the recent Pt(p, p‧) experiments which indicated the need for g bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to include g bosons. It is shown that a γ-unstable hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the γ-unstable nature of the hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions. Applications are made to the Xe and Pt isotopes.

  17. Introduction to gauge theories of electroweak interactions

    International Nuclear Information System (INIS)

    Ecker, G.

    1982-01-01

    Intended as a lecture for physicists who are not familiar with the sophisticated theoretical models in particle physics. Starting with the standard gauge model of electromagnetic, weak and strong interactions the recent developments of a unified gauge theory of electroweak interactions are shown. Shortcomings in the unitarity problem of the V-A fermi theory of charged intermediate vector bosons. Presented are the spontaneous symmetry breaking in quantum mechanics, the abelian higgs model as an example of a spontaneously broken gauge field theory, the minimal gauge group of electroweak interactions, the fermion mass generation. Further on the anomalies in quantum field theory are discussed and the radiative corrections to the vector boson masses are considered. (H.B.)

  18. Popov approximation for composite bosons in the BCS-BEC crossover

    International Nuclear Information System (INIS)

    Pieri, P.; Strinati, G.C.

    2005-01-01

    Theoretical treatments of the BCS-BEC crossover need to provide as accurate as possible descriptions of the two regimes where the diluteness condition applies, either in terms of the constituent fermions (BCS limit) or of the composite bosons which form as bound-fermion pairs (BEC limit). This has to occur via a single fermionic theory that bridges across these two limiting representations. In this paper, we set up successive improvements of the fermionic theory, that result into composite bosons described at the level of either the Bogoliubov or the Popov approximations for pointlike bosons. This work bears on the recent experimental advances on the BCS-BEC crossover with trapped Fermi atoms, which show the need for accurate theoretical descriptions of the BEC side of the crossover

  19. Fermions in interaction with time dependent fields

    International Nuclear Information System (INIS)

    Falkensteiner, P.; Grosse, H.

    1988-01-01

    We solve a two dimensional model describing the interaction of fermions with time dependent external fields. We work out the second quantized formulation and obtain conditions for equivalence of representations at different times. This implies the existence of sectors which describe charged states. We obtain the time dependence of charges and observe that charge differences become integer for unitary equivalent states. For scattering we require the equivalence of in- and out-representations; nevertheless charged sectors may be reached by suitable interactions and ionization is possible. 20 refs. (Author)

  20. Proton-neutron sdg boson model and spherical-deformed phase transition

    International Nuclear Information System (INIS)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-01-01

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing + quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects. (orig.)

  1. A method for the solution of arbitrary bosonic and fermionic many-particle systems; Eine Methode zur Loesung beliebiger bosonischer und fermionischer Vielteilchensysteme

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Stefan

    2008-04-18

    In the present dissertation different classes of quantum mechanical many body systems are investigated numerically and analytically considering symmetries in the formalism of second quantization. All algebraic ideas which are neccessary to develop a numerical computer code which is able to calculate the eigenvalues and eigenstates of a very general quantum many body hamiltonian are explained. The two most crucial problems are branching rules and the calculation of isoscalar factors. Methods are presented to solve these problems numerically for the general case. The most important point is the calculation of isoscalar factors with a nonrecursive method and without any numerical error. All presented ideas were implemented in the program '' ArbModel''. With this very flexible computer code at hand, systems of identical particles were investigated in general. General formulas were derived for the presence of dynamical symmetry. Weaker conditions are neccessary for the conservation of the so called seniority quantum number. This situation is called partial dynamical symmetry. These conditions were investigated in detail. Althouth other authors have previously investigated this problem, some new cases were discovered and new conditions could be derived. Most surprisingly, cases were found in which the seniority quantum number is generally broken except for some specific states. These states are solvable and formulae for their energies are presented. All analytically derived results were checked with ''ArbModel''. As further applications for the code, two selected models with distinguishable particles are investigated. The predictions of a very new theory, which connects quantum phase transitions and exceptional points, are verified with the sd-Interacting-Boson-Model 1 (sd-IBM1) and a very high particle number. For the Interacting-Boson-Fermion-Model a selected dynamical symmetry was investigated. The branching rules for this Bose

  2. Conformal complex singlet extension of the Standard Model: scenario for dark matter and a second Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi-Wei; Steele, T.G. [Department of Physics and Engineering Physics, University of Saskatchewan,116 Science Place, Saskatoon, SK, S7N 5E2 (Canada); Hanif, T. [Department of Theoretical Physics, University of Dhaka,Dhaka-1000 (Bangladesh); Mann, R.B. [Department of Physics, University of Waterloo,Waterloo, ON, N2L 3G1 (Canada)

    2016-08-09

    We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. The global U(1) symmetry of the complex singlet can be either broken or unbroken and we study each scenario. In the unbroken case, the global U(1) symmetry protects the complex singlet from decaying, leading to an ideal cold dark matter candidate with approximately 100 GeV mass along with a significant proportion of thermal relic dark matter abundance. In the broken case, we have developed a renormalization-scale optimization technique to significantly narrow the parameter space and in some situations, provide unique predictions for all the model’s couplings and masses. We have found there exists a second Higgs boson with a mass of approximately 550 GeV that mixes with the known 125 GeV Higgs with a large mixing angle sin θ≈0.47 consistent with current experimental limits. The imaginary part of the complex singlet in the broken case could provide axion dark matter for a wide range of models. Upon including interactions of the complex scalar with an additional vector-like fermion, we explore the possibility of a diphoton excess in both the unbroken and the broken cases. In the unbroken case, the model can provide a natural explanation for diphoton excess if extra terms are introduced providing extra contributions to the singlet mass. In the broken case, we find a set of coupling solutions that yield a second Higgs boson of mass 720 GeV and an 830 GeV extra vector-like fermion F, which is able to address the 750 GeV LHC diphoton excess. We also provide criteria to determine the symmetry breaking pattern in both the Higgs and hidden sectors.

  3. Boson-mediated quantum spin simulators in transverse fields: X Y model and spin-boson entanglement

    Science.gov (United States)

    Wall, Michael L.; Safavi-Naini, Arghavan; Rey, Ana Maria

    2017-01-01

    The coupling of spins to long-wavelength bosonic modes is a prominent means to engineer long-range spin-spin interactions, and has been realized in a variety of platforms, such as atoms in optical cavities and trapped ions. To date, much of the experimental focus has been on the realization of long-range Ising models, but generalizations to other spin models are highly desirable. In this work, we explore a previously unappreciated connection between the realization of an X Y model by off-resonant driving of a single sideband of boson excitation (i.e., a single-beam Mølmer-Sørensen scheme) and a boson-mediated Ising simulator in the presence of a transverse field. In particular, we show that these two schemes have the same effective Hamiltonian in suitably defined rotating frames, and analyze the emergent effective X Y spin model through a truncated Magnus series and numerical simulations. In addition to X Y spin-spin interactions that can be nonperturbatively renormalized from the naive Ising spin-spin coupling constants, we find an effective transverse field that is dependent on the thermal energy of the bosons, as well as other spin-boson couplings that cause spin-boson entanglement not to vanish at any time. In the case of a boson-mediated Ising simulator with transverse field, we discuss the crossover from transverse field Ising-like to X Y -like spin behavior as a function of field strength.

  4. Scalar boson decays to tau leptons: in the standard model and beyond

    CERN Document Server

    Caillol, Cecile; Mohammadi, Abdollah

    2016-01-01

    This thesis presents a study of the scalar sector in the standard model (SM), as well asdifferent searches for an extended scalar sector in theories beyond the standard model(BSM). All analyses have in common the fact that at least one scalar boson decays to apair of tau leptons. The results exploit the data collected by the CMS detector duringLHC Run-1, in proton-proton collisions with a center-of-mass energy of 7 or 8 TeV.The particle discovered in 2012, H, looks compatible with a SM Brout-Englert-Higgsboson, but this statement is driven by the H → γγ and H → ZZ decay modes. TheH → τ + τ − decay mode is the most sensitive fermionic decay channel, and allows to testthe Yukawa couplings of the new particle. The search for the SM scalar boson decaying totau leptons, and produced in association with a massive vector boson W or Z, is describedin this thesis. Even though a good background rejection can be achieved by selecting theleptons originating from the vector boson, Run-1 data are not sensitive...

  5. Functional renormalization group study of fluctuation effects in fermionic superfluids

    Energy Technology Data Exchange (ETDEWEB)

    Eberlein, Andreas

    2013-03-22

    This thesis is concerned with ground state properties of two-dimensional fermionic superfluids. In such systems, fluctuation effects are particularly strong and lead for example to a renormalization of the order parameter and to infrared singularities. In the first part of this thesis, the fermionic two-particle vertex is analysed and the fermionic renormalization group is used to derive flow equations for a decomposition of the vertex in charge, magnetic and pairing channels. In the second part, the channel-decomposition scheme is applied to various model systems. In the superfluid state, the fermionic two-particle vertex develops rich and singular dependences on momentum and frequency. After simplifying its structure by exploiting symmetries, a parametrization of the vertex in terms of boson-exchange interactions in the particle-hole and particle-particle channels is formulated, which provides an efficient description of the singular momentum and frequency dependences. Based on this decomposition of the vertex, flow equations for the effective interactions are derived on one- and two-loop level, extending existing channel-decomposition schemes to (i) the description of symmetry breaking in the Cooper channel and (ii) the inclusion of those two-loop renormalization contributions to the vertex that are neglected in the Katanin scheme. In the second part, the superfluid ground state of various model systems is studied using the channel-decomposition scheme for the vertex and the flow equations. A reduced model with interactions in the pairing and forward scattering channels is solved exactly, yielding insights into the singularity structure of the vertex. For the attractive Hubbard model at weak coupling, the momentum and frequency dependence of the two-particle vertex and the frequency dependence of the self-energy are determined on one- and two-loop level. Results for the suppression of the superfluid gap by fluctuations are in good agreement with the literature

  6. A search for excited fermions in electron-proton collisions at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1994-10-01

    A search for excited states of the standard model fermions was performed using the ZEUS detector at the HERA electron-proton collider, operating at a centre of mass enery of 296 GeV. In a sample corresponding to an integrated luminosity of 0.55 pb -1 , no evidence was found for any resonant state decaying into final states composed of a fermion and a gauge boson. Limits on the coupling strength times branching ratio of excited fermions are presented for masses between 50 GeV and 250 GeV, extending previous search regions significantly. (orig.)

  7. Non-unitary boson mapping and its application to nuclear collective motions

    International Nuclear Information System (INIS)

    Takada, Kenjiro

    2001-01-01

    First, the general theory of boson mapping for even-number many-fermion systems is surveyed. In order to overcome the confusion concerning the so-called unphysical or spurious states in the boson mapping, the correct concept of the unphysical states is precisely given in a clear-cut way. Next, a method to apply the boson mapping to a truncated many-fermion Hilbert space consisting of collective phonons is proposed, by putting special emphasis on the Dyson-type non-unitary boson mapping. On the basis of this method, it becomes possible for the first time to apply the Dyson-type boson mapping to analyses of collective motions in realistic nuclei. This method is also extended to be applicable to odd-number-fermion systems. As known well, the Dyson-type boson mapping is a non-unitary transformation and it gives a non-Hermitian boson Hamiltonian. It is not easy (but not impossible) to solve the eigenstates of the non-Hermitian Hamiltonian. A Hermitian treatment of this non-Hermitian eigenvalue problem is discussed and it is shown that this treatment is a very good approximation. using this Hermitian treatment, we can obtain the normal-ordered Holstein-Primakoff-type boson expansion in the multi-collective-phonon subspace. Thereby the convergence of the boson expansion can be tested. Some examples of application of the Dyson-type non-unitary boson mapping to simplified models and realistic nuclei are also shown, and we can see that it is quite useful for analysis of the collective motions in realistic nuclei. In contrast to the above-mentioned ordinary type of boson mapping, which may be called a a 'static' boson mapping, the Dyson-type non-unitary self-consistent-collective-coordinate method is discussed. The latter is, so to speak, a 'dynamical' boson mapping, which is a dynamical extension of the ordinary boson mapping to be capable to include the coupling effects from the non-collective degrees of freedom self-consistently.Thus all of the Dyson-type non-unitary boson

  8. Fermionic dimensions and Kaluza-Klein theory

    International Nuclear Information System (INIS)

    Delbourgo, R.; Zhang, R.B.

    1988-01-01

    Instead of appending extra bosonic dimensions to spacetime and needing to exorcise the higher modes, it is possible to construct Kaluza-Klein models in which the additional coordinates are fermionic and the higher modes do not arise. We erect a unified gravity/Yang-Mills theory on such a grassmannian framework and then discuss possible generalisations to other internal groups. (orig.)

  9. Systematics of β and γ parameters of O(6)-like nuclei in the interacting boson model

    International Nuclear Information System (INIS)

    Wang Baolin

    1997-01-01

    By comparing quadrupole moments between the interacting boson model (IBM) and the collective model, a simple calculation for the triaxial deformation parameters β and γ in the O(6)-like nuclei is presented, based on the intrinsic frame in the IBM. The systematics of the β and γ are studied. The realistic cases are calculated for the even-even Xe, Ba and Ce isotopes, and the smooth dependences of the strength ratios θ 3 /κ and the effective charges e 2 on the proton and neutron boson numbers N π and N ν are discovered

  10. 125 GeV Higgs boson mass from 5D gauge-Higgs unification

    Science.gov (United States)

    Carson, Jason; Okada, Nobuchika

    2018-03-01

    In the context of a simple gauge-Higgs unification (GHU) scenario based on the gauge group SU(3)×U(1)^' in a 5D flat space-time, we investigate the possibility of reproducing the observed Higgs boson mass of around 125 GeV. We introduce bulk fermion multiplets with a bulk mass and a (half-)periodic boundary condition. In our analysis, we adopt a low-energy effective theoretical approach of the GHU scenario, where the running Higgs quartic coupling is required to vanish at the compactification scale. Under this "gauge-Higgs condition," we investigate the renormalization group evolution of the Higgs quartic coupling and find a relation between the bulk mass and the compactification scale so as to reproduce the 125 GeV Higgs boson mass. Through quantum corrections at the one-loop level, the bulk fermions contribute to the Higgs boson production and decay processes and deviate the Higgs boson signal strengths at the Large Hadron Collider experiments from the Standard Model (SM) predictions. Employing the current experimental data that show that the Higgs boson signal strengths for a variety of Higgs decay modes are consistent with the SM predictions, we obtain lower mass bounds on the lightest mode of the bulk fermions to be around 1 TeV.

  11. Quantum Glass of Interacting Bosons with Off-Diagonal Disorder

    Science.gov (United States)

    Piekarska, A. M.; Kopeć, T. K.

    2018-04-01

    We study disordered interacting bosons described by the Bose-Hubbard model with Gaussian-distributed random tunneling amplitudes. It is shown that the off-diagonal disorder induces a spin-glass-like ground state, characterized by randomly frozen quantum-mechanical U(1) phases of bosons. To access criticality, we employ the "n -replica trick," as in the spin-glass theory, and the Trotter-Suzuki method for decomposition of the statistical density operator, along with numerical calculations. The interplay between disorder, quantum, and thermal fluctuations leads to phase diagrams exhibiting a glassy state of bosons, which are studied as a function of model parameters. The considered system may be relevant for quantum simulators of optical-lattice bosons, where the randomness can be introduced in a controlled way. The latter is supported by a proposition of experimental realization of the system in question.

  12. Two-dimensional thermofield bosonization

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2005-01-01

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized

  13. Precision calculations for h → WW/ZZ → 4 fermions in the Two-Higgs-Doublet Model with Prophecy4f

    DEFF Research Database (Denmark)

    Altenkamp, Lukas; Dittmaier, Stefan; Rzehak, Heidi

    2018-01-01

    We have calculated the next-to-leading-order electroweak and QCD corrections to the decay processes h → WW/ZZ → 4 fermions of the light CP-even Higgs boson h of various types of Two-Higgs-Doublet Models (Types I and II, “lepton-specific” and “flipped” models). The input parameters are defined in ...

  14. Boson-fermion duality in four dimensions: Comments on the paper by Luther and Schotte

    International Nuclear Information System (INIS)

    Garbaczewsky, P.

    1985-01-01

    Fock space for the fermion field can be identified with this for the boson field, provided the overall numbers of internal degrees of freedom are the same. As a consequence the respective free field Hamiltonian systems are equivalent (dual): the four component neutrino model is thus equivalent to the doublet of independent ('electric' and 'magnetic' respectively) Maxwell fields which are quantized in the manifest Coulomb gauge. This statement arises on the continuum field theory level and seems to falsify the claim that realistic photons can be constructed from (bound) pairs of neutrinos. The more correct claim in this framework is that each (anti)neutrino degree of freedom represents and is represented by the photon type ('electric' and 'magnetic' respectively) degree of freedom. By repeating the classic Weinberg's construction we can rewrite the common for both models Hamiltonian in two equivalent ways: in terms of a relativistic spin 1/2, m=0 field or in terms of the spin 1, m=0 doublet of four-potentials. One of them is the standard Maxwell ('electric') potential while the other has all symmetry properties of the dual ('magnetic') one. (orig.)

  15. Profile of a nonstandard Higgs boson at the CERN LHC

    International Nuclear Information System (INIS)

    Kominis, D.; Koulovassilopoulos, V.

    1995-01-01

    In a wide class of extensions of the standard model there is a scalar resonance with the quantum numbers of the usual Higgs boson but with different couplings to fermions and gauge bosons. Using an effective Lagrangian description, we examine the phenomenology of such a generic nonstandard Higgs boson at the CERN LHC. In particular, we determine the circumstances under which such a particle can be observed in its ZZ decay mode and distinguished from the Higgs boson of the standard model. We briefly comment on the energy scale effectively probed at the LHC, if the nonstandard nature of an observed Higgs particle can be asserted

  16. Description of spectrum and electromagnetic transitions in 94Mo through the proton-neutron interacting boson model

    Science.gov (United States)

    Mu, ChengFu; Zhang, DaLi

    2018-01-01

    We investigated the properties of low-lying states in 94Mo within the framework of the proton-neutron interacting boson model (IBM-2), with special focus on the characteristics of mixed-symmetry states. We calculated level energies and M1 and E2 transition strengths. The IBM-2 results agree with the available quantitative and qualitative experimental data on 94Mo. The properties of mixed-symmetry states can be well described by IBM-2 given that the energy of the d proton boson is different from that of the neutron boson, especially for the transition of B( M1; 4 2 + → 4 1 + ).

  17. Higgs boson resonance parameters and the finite temperature phase transition in a chirally invariant Higgs-Yukawa model

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Gerhold, Philip; Kallarackal, Jim; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humbolt-Univ. Berlin (Germany)

    2011-12-15

    We study a chirally invariant Higgs-Yukawa model regulated on a space-time lattice. We calculate Higgs boson resonance parameters and mass bounds for various values of the mass of the degenerate fermion doublet. Also, first results on the phase transition temperature are presented. In general, this model may be relevant for BSM scenarios with a heavy fourth generation of quarks. (orig.)

  18. Fermionization of strings, and their conformal invariant solutions

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.

    1987-01-01

    The fermionic description of bosonic string theory, which turns out to be a Thirring model, is given. The relation of continuous spin to compactification is discussed, and regular solutions with finitely many fields can be found if the spin is a rational number. The relation between W.Z.W. theory and SU (n) Thirring model is also treated. (Author) [pt

  19. Search for new heavy charged gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Magass, Carsten Martin [RWTH Aachen Univ. (Germany)

    2007-11-02

    Additional gauge bosons are introduced in many theoretical extensions to the Standard Model. A search for a new heavy charged gauge boson W' decaying into an electron and a neutrino is presented. The data used in this analysis was taken with the D0 detector at the Fermilab proton-antiproton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of about 1 fb-1. Since no significant excess is observed in the data, an upper limit is set on the production cross section times branching fraction σW'xBr (W' → ev). Using this limit, a W' boson with mass below ~1 TeV can be excluded at the 95% confidence level assuming that the new boson has the same couplings to fermions as the Standard Model W boson.

  20. Investigations of interactions mediated by neutral currents

    International Nuclear Information System (INIS)

    Witek, M.

    2007-03-01

    The report is devoted to four-fermion interactions mediated by the neutral currents. The results from the second phase of LEP are presented, when the production of two massive bosons was possible with the increased energy of the e + e - collisions. It enabled for a direct test of nonabelian structure of the electroweak theory. The results concern the four-fermion production of the pairs of the ZZ bosons, single Z and Zγ * production as well as search for anomalous gauge bosons couplings. The large part of the report is devoted to experimental techniques, physics analyses and discussion of results. (author)

  1. Comment on ''Spectroscopy of samarium isotopes in the sdg interacting boson model''

    International Nuclear Information System (INIS)

    Kuyucak, S.; Lac, V.

    1993-01-01

    We point out that the data used in the sdg boson model calculations by Devi and Kota [Phys. Rev. C 45, 2238 (1992)] can be equally well described by the much simpler sd boson model. We present additional data for the Sm isotopes which cannot be explained in the sd model and hence may justify such an extension to the sdg bosons. We also comment on the form of the Hamiltonian and the transition operators used in this paper

  2. Asymptotically Safe Standard Model via Vectorlike Fermions

    Science.gov (United States)

    Mann, R. B.; Meffe, J. R.; Sannino, F.; Steele, T. G.; Wang, Z. W.; Zhang, C.

    2017-12-01

    We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.

  3. A nonperturbative fermion-boson vertex

    International Nuclear Information System (INIS)

    Bashir, A.; Raya, A.

    2002-01-01

    We calculate the massive fermion propagator at one-loop order in QED3. The Ward-Takahashi identity (WTI) relates the propagator to the vertex. This allows us to split the vertex into its longitudinal and transverse parts. The former is fixed by the WTI. Following the scheme of Ball and Chiu later modified by Kizilersue et. al., we calculate the full vertex at one-loop order. A mere subtraction of the longitudinal part of the vertex gives us the transverse part. The α dependence in the transverse vertex can be eliminated by making use of the perturbative expressions for the wavefunction renormalization function and the mass function of complicated arguments of the incoming and outgoing fermion momenta. This leads us to a vertex which is nonperturbative in nature. We also calculate an effective vertex for which the arguments of the unknown functions have no angular dependence, making it particularly suitable for numerical studies of dynamical symmetry breaking

  4. The role of self-coherence in correlations of bosons and fermions in linear counting experiments. Notes on the wave-particle duality

    International Nuclear Information System (INIS)

    Varro, S.

    2011-01-01

    Correlations of detection events in two detectors are studied in case of linear excitations of the measuring apparatus. On the basis of classical probability theory and fundamental conservation laws, a general formula is derived for the two-point correlation functions for both bosons and fermions. The results obtained coincide with that derivable from quantum theory which uses quantized field amplitudes. By applying both the particle and the wave picture at the same time, the phenomena of photon bunching and antibunching, photon anticorrelation and fermion antibunching measured in beam experiments are interpreted in the frame of an intuitively clear description. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. A local factorization of the fermion determinant in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ce, Marco [Scuola Normale Superiore, Pisa (Italy); INFN, Pisa (Italy); Giusti, Leonardo [Milano-Bicocca Univ. (Italy). Dipartimento di Fisica; INFN, Milano-Bicocca (Italy); Schaefer, Stefan [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2016-09-15

    We introduce a factorization of the fermion determinant in lattice QCD with Wilson-type fermions that leads to a bosonic action which is local in the block fields. The interaction among gauge fields on distant blocks is mediated by multiboson fields located on the boundaries of the blocks. The resultant multiboson domain-decomposed hybrid Monte Carlo passes extensive numerical tests carried out by measuring standard gluonic observables. The combination of the determinant factorization and of the one of the propagator, that we put forward recently, paves the way for multilevel Monte Carlo integration in the presence of fermions. We test this possibility by computing the disconnected correlator of two flavor-diagonal pseudoscalar densities, and we observe a significant increase of the signal-to-noise ratio due to a two-level integration.

  6. Mixtures of Strongly Interacting Bosons in Optical Lattices

    International Nuclear Information System (INIS)

    Buonsante, P.; Penna, V.; Giampaolo, S. M.; Illuminati, F.; Vezzani, A.

    2008-01-01

    We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of 41 K induces a significant loss of coherence in 87 Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices

  7. Exactly soluble local bosonic cocycle models, statistical transmutation, and simplest time-reversal symmetric topological orders in 3+1 dimensions

    Science.gov (United States)

    Wen, Xiao-Gang

    2017-05-01

    We propose a generic construction of exactly soluble local bosonic models that realize various topological orders with gappable boundaries. In particular, we construct an exactly soluble bosonic model that realizes a (3+1)-dimensional [(3+1)D] Z2-gauge theory with emergent fermionic Kramers doublet. We show that the emergence of such a fermion will cause the nucleation of certain topological excitations in space-time without pin+ structure. The exactly soluble model also leads to a statistical transmutation in (3+1)D. In addition, we construct exactly soluble bosonic models that realize 2 types of time-reversal symmetry-enriched Z2 topological orders in 2+1 dimensions, and 20 types of simplest time-reversal symmetry-enriched topological (SET) orders which have only one nontrivial pointlike and stringlike topological excitation. Many physical properties of those topological states are calculated using the exactly soluble models. We find that some time-reversal SET orders have pointlike excitations that carry Kramers doublet, a fractionalized time-reversal symmetry. We also find that some Z2 SET orders have stringlike excitations that carry anomalous (nononsite) Z2 symmetry, which can be viewed as a fractionalization of Z2 symmetry on strings. Our construction is based on cochains and cocycles in algebraic topology, which is very versatile. In principle, it can also realize emergent topological field theory beyond the twisted gauge theory.

  8. Derivation of equations for high-Tc by means of slave boson technique

    International Nuclear Information System (INIS)

    Nguyen Van Hieu; Ha Vinh Tan; Nguyen Toan Thang

    1988-07-01

    The ''slave boson'' technique is applied for studying the superconductivity of the system of strongly correlated electrons with the Hubbard Hamiltonian. On the basis of the equations of the Green functions for the new boson and fermion operators we derive the dynamical equations determining the order parameters of the given RVB model. (author). 4 refs

  9. Fermion loops in the effective potential of N = 1 supergravity, with application to no-scale models

    International Nuclear Information System (INIS)

    Burton, J.W.

    1990-01-01

    Powerful and quite general arguments suggest that N = 1 supergravity, and in particular the superstring-inspired no-scale models, may describe the physics of the four-dimensional vacuum at energy densities below the Planck scale. These models are not renormalizable, since they arise as effective theories after the large masses have been integrated out of the fundamental theory; thus, they have divergences in their loop amplitudes that must be regulated by imposing a cutoff. Before physics at experimental energies can be extracted from these models, the true vacuum state or states must be identified: at tree level, the ground states of the effective theories are highly degenerate. Radiative corrections at the one-loop level have been shown to break the degeneracy sufficiently to identify the states of vanishing vacuum energy. As the concluding step in a program to calculate these corrections within a self-consistent cutoff prescription, all fermionic one-loop divergent corrections to the scalar effective potential are evaluated. (The corresponding bosonic contributions have been found elsewhere.) The total effective scalar Lagrange density for N = 1 supergravity is written down, and comments are made about cancellations between the fermionic and bosonic loops. Finally, the result is specialized to a toy no-scale model with a single generation of matter fields, and prospects for eventual phenomenological constraints on theories of this type are briefly discussed. 48 refs

  10. Particle-hole excitations in the interacting boson model; 4, the U(5)-SU(3) coupling

    CERN Document Server

    De Coster, C; Heyde, Kris L G; Jolie, J; Lehmann, H; Wood, J L

    1999-01-01

    In the extended interacting boson model (EIBM) both particle- and hole-like bosons are incorporated to encompass multi-particle-multi-hole excitations at and near to closed shells.We apply the group theoretical concepts of the EIBM to the particular case of two coexisting systems in the same nucleus exhibiting a U(5) (for the regular configurations) and an SU(3) symmetry (for the intruder configurations).Besides the description of ``global'' symmetry aspects in terms of I-spin , also the very specific local mixing effects characteristic for the U(5)-SU(3) symmetry coupling are studied.The model is applied to the Po isotopes and a comparison with a morerealistic calculation is made.

  11. Coupling of open to closed bosonic strings in four dimensions

    International Nuclear Information System (INIS)

    Bern, Z.; Dunbar, D.C.

    1987-11-01

    We study the construction of D < 26 open bosonic string theories using the fermionic formulation for the internal degrees of freedom. The various models are specified by the boundary conditions of the world sheet fermions on the annulus. Using the fact that open string loops can be transformed into closed string exchanges, we determine possible open string models which may be coupled to known D < 26 closed string models. Finally, as a verification of consistency, we examine particular open string non-planar amplitudes. (orig.)

  12. Optical Lattice Gases of Interacting Fermions

    Science.gov (United States)

    2015-12-02

    interacting Fermi gases has topological properties similar to the conventional chiral p- wave state. These include a non-zero Chern number and the...interacting cold gases with broad impacts on the interfaces with condensed matter and particle physics . Applications and experiments of some of the physics ...AFRL-AFOSR-VA-TR-2016-0016 Optical Lattice Gases of Interacting Fermions Wensheng Vincent Liu UNIVERSITY OF PITTSBURGH Final Report 12/02/2015

  13. Study of Fermion Pair Production in $e^{+}e^{-}$ Collisions at 130-183 GeV

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Alemany, R.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Morawitz, P.; Pacheco, A.; Park, I.C.; Riu, I.; Colaleo, A.; Creanza, D.; De Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Boix, G.; Cattaneo, M.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Loomis, C.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Tournefier, E.; Vreeswijk, M.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Curtis, L.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raeven, B.; Raine, C.; Smith, D.; Teixeira-Dias, P.; Thompson, A.S.; Ward, J.J.; Buchmuller, O.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Goodsir, S.; Marinelli, N.; Martin, E.B.; Nash, J.; Nowell, J.; Sciaba, A.; Sedgbeer, J.K.; Spagnolo, P.; Thomson, Evelyn J.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A.P.; Bowdery, C.K.; Buck, P.G.; Colrain, P.; Crawford, G.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Williams, M.I.; van Gemmeren, P.; Giehl, I.; Holldorfer, F.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Krocker, M.; Nurnberger, H.A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Ealet, A.; Fouchez, D.; Motsch, F.; Payre, P.; Talby, M.; Thulasidas, M.; Tilquin, A.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Buescher, Volker; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Kado, M.; Lefrancois, J.; Serin, L.; Veillet, J.J.; Videau, I.; de Viviede Regie, J.B.; Zerwas, D.; Bagliesi, Giuseppe; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sguazzoni, G.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Coles, J.; Cowan, G.; Green, M.G.; Hutchcroft, D.E.; Jones, L.T.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Thompson, J.C.; Bloch-Devaux, Brigitte; Colas, P.; Fabbro, B.; Faif, G.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Przysiezniak, H.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Black, S.N.; Dann, J.H.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Kelly, M.S.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Misiejuk, A.; Prange, G.; Sieler, U.; Giannini, G.; Gobbo, B.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R.W.; Armstrong, S.R.; Charles, E.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Greening, T.C.; Hayes, O.J.; Hu, H.; Jin, S.; McNamara, P.A., III; Nachtman, J.M.; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    2000-01-01

    The cross sections and forward-backward asymmetries of hadronic and leptonic events produced in e+e- collisions at centre-of-mass energies of 130-183 GeV are presented. Results for ee, mumu, tautau, qq, bb and cc production show no significant deviation from the Standard Model predictions. This enable constraints to be set upon physics beyond the Standard Model such as four-fermion contact interactions, leptoquarks, Z' bosons and R-parity violating squarks and sneutrinos. Limits on the energy scale Lambda of eeff contact interactions are typically in the range from 2-10 TeV. Limits on R-parity violating sneutrinos reach masses of a few hundred GeV for large values of their Yukawa couplings.

  14. Comparing several boson mappings with the shell model

    International Nuclear Information System (INIS)

    Menezes, D.P.; Yoshinaga, Naotaka; Bonatsos, D.

    1990-01-01

    Boson mappings are an essential step in establishing a connection between the successful phenomenological interacting boson model and the shell model. The boson mapping developed by Bonatsos, Klein and Li is applied to a single j-shell and the resulting energy levels and E2 transitions are shown for a pairing plus quadrupole-quadrupole Hamiltonian. The results are compared to the exact shell model calculation, as well as to these obtained through use of the Otsuka-Arima-Iachello mapping and the Zirnbauer-Brink mapping. In all cases good results are obtained for the spherical and near-vibrational cases

  15. Born-Kothari Condensation for Fermions

    Directory of Open Access Journals (Sweden)

    Arnab Ghosh

    2017-09-01

    Full Text Available In the spirit of Bose–Einstein condensation, we present a detailed account of the statistical description of the condensation phenomena for a Fermi–Dirac gas following the works of Born and Kothari. For bosons, while the condensed phase below a certain critical temperature, permits macroscopic occupation at the lowest energy single particle state, for fermions, due to Pauli exclusion principle, the condensed phase occurs only in the form of a single occupancy dense modes at the highest energy state. In spite of these rudimentary differences, our recent findings [Ghosh and Ray, 2017] identify the foregoing phenomenon as condensation-like coherence among fermions in an analogous way to Bose–Einstein condensate which is collectively described by a coherent matter wave. To reach the above conclusion, we employ the close relationship between the statistical methods of bosonic and fermionic fields pioneered by Cahill and Glauber. In addition to our previous results, we described in this mini-review that the highest momentum (energy for individual fermions, prerequisite for the condensation process, can be specified in terms of the natural length and energy scales of the problem. The existence of such condensed phases, which are of obvious significance in the context of elementary particles, have also been scrutinized.

  16. Search for the SM Higgs Boson in the Channel $WH \\to l\

    CERN Document Server

    Will, Jonas Zacharias

    One of the most important scientific challenges of ATLAS and CMS, multi-purpose de- tectors at CERN’s Large Hadron Collider (LHC), is the discovery or exclusion of the longly sought standard model Higgs boson predicted almost fifty years ago. In summer 2012, both ATLAS and CMS discovered a new particle. Its mass is determined to be 126 . 0 ± 0 . 4 (stat) ± 0 . 4 (sys) GeV (ATLAS) and 125 . 3 ± 0 . 4 (stat) ± 0 . 5 (sys) GeV (CMS) [ 1 , 2 ]. Its further properties are so far consistent with the predicted properties of a standard model Higgs boson within large uncertainties. Besides the Higgs search in the sensitive bosonic channels, H → γγ , H → ZZ , and H → WW , the fermionic channels H → ττ and H → b b contributed to the exclusion of a standard model Higgs boson below the observed excess and are essential for measuring the couplings of the new particle to fermions. In the analysis presented here, the associated Higgs production WH in the Higgs decay channel H → b b is studied on the co...

  17. Chiral Floquet Phases of Many-Body Localized Bosons

    Directory of Open Access Journals (Sweden)

    Hoi Chun Po

    2016-12-01

    Full Text Available We construct and classify chiral topological phases in driven (Floquet systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in two spatial dimensions. The construction proceeds by introducing exactly soluble models with chiral edges, which in the presence of many-body localization (MBL in the bulk are argued to lead to stable chiral phases. These chiral phases do not require any symmetry and in fact owe their existence to the absence of energy conservation in driven systems. Surprisingly, we show that they are classified by a quantized many-body index, which is well defined for any MBL Floquet system. The value of this index, which is always the logarithm of a positive rational number, can be interpreted as the entropy per Floquet cycle pumped along the edge, formalizing the notion of quantum-information flow. We explicitly compute this index for specific models and show that the nontrivial topology leads to edge thermalization, which provides an interesting link between bulk topology and chaos at the edge. We also discuss chiral Floquet phases in interacting fermionic systems and their relation to chiral bosonic phases.

  18. Study of WW decay of a Higgs boson with the ALEPH and CMS detectors

    CERN Document Server

    AUTHOR|(CDS)2068184; Lemaitre, Vincent

    The Standard Model is a mathematical description of the very nature of elementary particles and their interactions, now seen as relativistic quantum fields. A key feature of the theory is the Brout-Englert-Higgs mechanism, responsible for the spontaneous symmetry breaking of the underlying gauge symmetry, and which implies the existence of a neutral Higgs particle. Searches for the Higgs boson were conducted at the Large Electron Positron collider until 2000 and are still ongoing at the Tevatron collider, but the particle has not been not observed. In order to better constrain models with an exotic electroweak symmetry breaking sector, a search for a Higgs boson decaying into a W pair is carried out with the ALEPH detector on 453 pb-1 of data collected at center-of-mass energies up to 209 GeV. The analysis is optimized for the many topologies resulting from the six-fermion final state. A lower limit at 105.8 GeV/c² on the Higgs boson mass in a fermiophobic Higgs boson scenario is obtained. The ultimate mac...

  19. Strongly-interacting mirror fermions at the LHC

    Directory of Open Access Journals (Sweden)

    Triantaphyllou George

    2017-01-01

    Full Text Available The introduction of mirror fermions corresponding to an interchange of leftwith right-handed fermion quantum numbers of the Standard Model can lead to a model according to which the BEH mechanism is just an effective manifestation of a more fundamental theory while the recently-discovered Higgs-like particle is composite. This is achieved by a non-abelian gauge symmetry encompassing three mirror-fermion families strongly coupled at energies near 1 TeV. The corresponding non-perturbative dynamics lead to dynamical mirror-fermion masses between 0.14 - 1.2 TeV. Furthermore, one expects the formation of composite states, i.e. “mirror mesons”, with masses between 0.1 and 3 TeV. The number and properties of the resulting new degrees of freedom lead to a rich and interesting phenomenology, part of which is analyzed in the present work.

  20. Seniority bosons from similarity transformations

    International Nuclear Information System (INIS)

    Geyer, H.B.

    1986-01-01

    The requirement of associating in the boson space seniority with twice the number of non-s bosons defines a similarity transformation which re-expresses the Dyson pair boson images in terms of seniority bosons. In particular the fermion S-pair creation operator is mapped onto an operator which, unlike the pair boson image, does not change the number of non-s bosons. The original results of Otsuka, Arima and Iachello are recovered by this procedure while at the same time they are generalized to include g-bosons or even bosons with J>4 as well as any higher order boson terms. Furthermore the seniority boson images are valid for an arbitrary number of d- or g-bosons - a result which is not readily obtainable within the framework of the usual Marumori- or OAI-method

  1. Correlation energy for elementary bosons: Physics of the singularity

    International Nuclear Information System (INIS)

    Shiau, Shiue-Yuan; Combescot, Monique; Chang, Yia-Chung

    2016-01-01

    We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman “bubble” diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose–Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman “bubble” diagrams, the previous elementary boson approaches, which hide this physics, being inappropriate to do so.

  2. Correlation energy for elementary bosons: Physics of the singularity

    Energy Technology Data Exchange (ETDEWEB)

    Shiau, Shiue-Yuan, E-mail: syshiau@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan (China); Combescot, Monique [Institut des NanoSciences de Paris, Université Pierre et Marie Curie, CNRS, 4 place Jussieu, 75005 Paris (France); Chang, Yia-Chung, E-mail: yiachang@gate.sinica.edu.tw [Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan (China); Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan (China)

    2016-04-15

    We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman “bubble” diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose–Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman “bubble” diagrams, the previous elementary boson approaches, which hide this physics, being inappropriate to do so.

  3. Constraints on Models for the Higgs Boson with Exotic Spin and Parity

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Emily Hannah [Michigan State U.

    2016-01-01

    The production of a Higgs boson in association with a vector boson at the Tevatron offers a unique opportunity to study models for the Higgs boson with exotic spin J and parity P assignments. At the Tevatron the V H system is produced near threshold. Different JP assignments of the Higgs boson can be distinguished by examining the behavior of the cross section near threshold. The relatively low backgrounds at the Tevatron compared to the LHC put us in a unique position to study the direct decay of the Higgs boson to fermions. If the Higgs sector is more complex than predicted, studying the spin and parity of the Higgs boson in all decay modes is important. In this Thesis we will examine the WH → ℓνb¯b production and decay mode using 9.7 fb-1 of data collected by the D0 experiment in an attempt to derive constraints on models containing exotic values for the spin and parity of the Higgs boson. In particular, we will examine models for a Higgs boson with JP = 0- and JP = 2+. We use a likelihood ratio to quantify the degree to which our data are incompatible with exotic JP predictions for a range of possible production rates. Assuming the production cross section times branching ratio of the signals in the models considered is equal to the standard model prediction, the WH → ℓνb¯b mode alone is unable to reject either exotic model considered. We will also discuss the combination of the ZH → ℓℓb¯b, WH → ℓνb¯b, and V H → ννb¯b production modes at the D0 experiment and with the CDF experiment. When combining all three production modes at the D0 experiment we reject the JP = 0- and JP = 2+ hypotheses at the 97.6% CL and at the 99.0% CL, respectively, when assuming the signal production cross section times branching ratio is equal to the standard model predicted value. When combining with the CDF experiment we reject the JP = 0- and JP = 2+ hypotheses with significances of 5.0 standard deviations and 4.9 standard deviations

  4. On a new approach to the microscopic substantiation of the interacting boson model-1

    International Nuclear Information System (INIS)

    Karadjov, D.; Voronov, V.V.; Kyrchev, G.; Paar, V.

    1990-01-01

    An Lie algebraic approach to the microscopic foundation of interacting boson model-1 (IBM-1) is itemized, treating on an equal footing the SU(6) governed dynamics and the accompanying SU(6) constraints. The introduction of the collective random phase approximation phonon operators as preferred pairs with subsequent enforcement of the relevant SU(6) algebra has enabled: to identify the decoupled phonon subspace as carrier space of the totally symmetric irreducible representation of SU(6); to single out from a microscopic reference Hamiltonian the fragment with the ensuing IBM-1 sd-boson form. Using this approach, the IBM-1 parameters have been calculated for the sequence of even-even 64-70 Zn isotopes. 45 refs.; 2 figs.; 5 tabs

  5. On large N fixed points of a U(N) symmetric (phisup(*)xphi)3sub(D=3) model coupled to fermions

    International Nuclear Information System (INIS)

    Nissimov, E.R.; Pacheva, S.J.

    1984-01-01

    The three-dimensional U(N) symmetric eta(phisup(*) x phi) 3 model coupled to N component fermions is considered within the 1/N expansion. In contrast to the purely bosonic case, here we find in the large N limit only a (nonperturbative) ultraviolet fixed point at eta=etasup(*) approx.= 179, whereas infrared fixed points are absent. (orig.)

  6. Tests of the Standard Model and Constraints on New Physics from Measurements of Fermion-Pair Production at 189-209 GeV at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    Cross-section and angular distributions for hadronic and lepton-pair final states in e+e- collisions at centre-of-mass energies between 189 GeV and 209 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The measurements are used to determine the electromagnetic coupling constant alphaem at LEP2 energies. In addition, the results are used together with OPAL measurements at 91-183 GeV within the S-matrix formalism to determine the gamma-Z interference term and to make an almost model-independent measurement of the Z mass. Limits on extensions to the Standard Model described by effective four-fermion contact interactions or the addition of a heavy Z boson are also presented.

  7. Free fermion resolution of supergroup WZNW models

    Energy Technology Data Exchange (ETDEWEB)

    Quella, T.; Schomerus, V.

    2007-06-15

    Extending our earlier work on PSL(2 vertical stroke 2), we explain how to reduce the solution of WZNW models on general type I supergroups to those defined on the bosonic subgroup. The new analysis covers in particular the supergroups GL(M vertical stroke N) along with several close relatives such as PSL(N vertical stroke N), certain Poincar'e supergroups and the series OSP(2 vertical stroke 2N). This remarkable progress relies on the use of a special Feigin-Fuchs type representation. In preparation for the field theory analysis, we shall exploit a minisuperspace analogue of a free fermion construction to deduce the spectrum of the Laplacian on type I supergroups. The latter is shown to be non-diagonalizable. After lifting these results to the full WZNW model, we address various issues of the field theory, including its modular invariance and the computation of correlation functions. In agreement with previous findings, supergroup WZNW models allow to study chiral and non-chiral aspects of logarithmic conformal field theory within a geometric framework. We shall briefly indicate how insights from WZNW models carry over to non-geometric examples, such as e.g. the W(p) triplet models.

  8. Free fermion resolution of supergroup WZNW models

    Energy Technology Data Exchange (ETDEWEB)

    Quella, T; Schomerus, V

    2007-06-15

    Extending our earlier work on PSL(2 vertical stroke 2), we explain how to reduce the solution of WZNW models on general type I supergroups to those defined on the bosonic subgroup. The new analysis covers in particular the supergroups GL(M vertical stroke N) along with several close relatives such as PSL(N vertical stroke N), certain Poincar'e supergroups and the series OSP(2 vertical stroke 2N). This remarkable progress relies on the use of a special Feigin-Fuchs type representation. In preparation for the field theory analysis, we shall exploit a minisuperspace analogue of a free fermion construction to deduce the spectrum of the Laplacian on type I supergroups. The latter is shown to be non-diagonalizable. After lifting these results to the full WZNW model, we address various issues of the field theory, including its modular invariance and the computation of correlation functions. In agreement with previous findings, supergroup WZNW models allow to study chiral and non-chiral aspects of logarithmic conformal field theory within a geometric framework. We shall briefly indicate how insights from WZNW models carry over to non-geometric examples, such as e.g. the W(p) triplet models.

  9. sdg interacting-boson model in the SU(3) scheme and its application to 168Er

    Science.gov (United States)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1988-07-01

    The sdg interacting-boson model is presented in the SU(3) tensor formalism. The interactions are decomposed according to their SU(3) tensor character. The existence of the SU(3)-seniority preserving operator is found to be important. The model is applied to 168Er. Energy levels and electromagnetic transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first Kπ=4+ band relative to that of the first Kπ=2+ one. E4 transitions are calculated to give different predictions from those by the quasiparticle-phonon nuclear model.

  10. Boson and fermion many-body assemblies: Fingerprints of excitations in the ground-state wave functions, with examples of superfluid 4He and the homogeneous correlated electron liquid

    International Nuclear Information System (INIS)

    March, N.H.

    2007-08-01

    After a brief summary of some basic properties of ideal gases of bosons and of fermions, two many-body Hamiltonians are cited for which ground-state wave functions allow the generation of excited states. But because of the complexity of ground-state many-body wave functions, we then consider properties of reduced density matrices, and in particular, the diagonal element of the second-order density matrix. For both the homogeneous correlated electron liquid and for an assembly of charged bosons, the ground-state pair correlation function g(r) has fingerprints of the zero-point energy of the plasmon modes. These affect crucially the static structure factor S(k), in the long wavelength limit. This is best understood by means of the Ornstein-Zernike direct correlation function c(r), which plays an important role throughout this article. Turning from such charged liquids, both boson and fermion, to superfluid 4 He, the elevated temperature (T) structure factor S(k, T) is related, albeit approximately, to its zero-temperature counterpart, via the velocity of sound, reflecting the collective phonon excitations, and the superfluid density. Finally some future directions are pointed. (author)

  11. A quantum information perspective of fermionic quantum many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Christina V.

    2009-11-02

    In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS

  12. A quantum information perspective of fermionic quantum many-body systems

    International Nuclear Information System (INIS)

    Kraus, Christina V.

    2009-01-01

    In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS known for spin systems, and they

  13. Fermionic extensions of the Standard Model in light of the Higgs couplings

    Science.gov (United States)

    Bizot, Nicolas; Frigerio, Michele

    2016-01-01

    As the Higgs boson properties settle, the constraints on the Standard Model extensions tighten. We consider all possible new fermions that can couple to the Higgs, inspecting sets of up to four chiral multiplets. We confront them with direct collider searches, electroweak precision tests, and current knowledge of the Higgs couplings. The focus is on scenarios that may depart from the decoupling limit of very large masses and vanishing mixing, as they offer the best prospects for detection. We identify exotic chiral families that may receive a mass from the Higgs only, still in agreement with the hγγ signal strength. A mixing θ between the Standard Model and non-chiral fermions induces order θ 2 deviations in the Higgs couplings. The mixing can be as large as θ ˜ 0 .5 in case of custodial protection of the Z couplings or accidental cancellation in the oblique parameters. We also notice some intriguing effects for much smaller values of θ, especially in the lepton sector. Our survey includes a number of unconventional pairs of vector-like and Majorana fermions coupled through the Higgs, that may induce order one corrections to the Higgs radiative couplings. We single out the regions of parameters where hγγ and hgg are unaffected, while the hγZ signal strength is significantly modified, turning a few times larger than in the Standard Model in two cases. The second run of the LHC will effectively test most of these scenarios.

  14. Quantum solitons and their classical relatives. II. ''Fermion--boson reciprocity'' and classical versus quantum problem for the sine-Gordon system

    International Nuclear Information System (INIS)

    Garbaczewski, P.

    1981-01-01

    Both quantum and classical sine--Gordon fields can be built out of the fundamental free neutral massive excitations, which quantally obey the Bose--Einstein statistics. At the roots of the ''boson-fermion reciprocity'' invented by Coleman, lies the spin 1/2 approximation of the underlying Bose system. By generalizing the coherent state methods to incorporate non-Fock quantum structures and to give account of the so-called boson transformation theory, we construct the carrier Hilbert space H/sub SG/ for quantum soliton operators. The h→0 limit of state expectation values of these operators among pure coherentlike states in H/sub SG/ reproduces the classical sine--Gordon field. The related (classical and quantum) spin 1/2 xyz Heisenberg model field is built out of the fundamental sine--Gordon excitations, and hence can be consistently defined on the appropriate subset of the quantum soliton Hilbert space H/sub x/yz . A correct classical limit is here shown to arise for the Heisenberg system: phase manifolds of the classical Heisenberg and sine--Gordon systems cannot be then viewed independently as a consequence of the quantum relation

  15. The Hybrid Monte Carlo (HMC) method and dynamic fermions

    International Nuclear Information System (INIS)

    Amaral, Marcia G. do

    1994-01-01

    Nevertheless the Monte Carlo method has been extensively used in the simulation of many types of theories, the successful application has been established only for models containing boson fields. With the present computer generation, the development of faster and efficient algorithms became necessary and urgent. This paper studies the HMC and the dynamic fermions

  16. Solvable Model of a Generic Trapped Mixture of Interacting Bosons: Many-Body and Mean-Field Properties

    Science.gov (United States)

    Klaiman, S.; Streltsov, A. I.; Alon, O. E.

    2018-04-01

    A solvable model of a generic trapped bosonic mixture, N 1 bosons of mass m 1 and N 2 bosons of mass m 2 trapped in an harmonic potential of frequency ω and interacting by harmonic inter-particle interactions of strengths λ 1, λ 2, and λ 12, is discussed. It has recently been shown for the ground state [J. Phys. A 50, 295002 (2017)] that in the infinite-particle limit, when the interaction parameters λ 1(N 1 ‑ 1), λ 2(N 2 ‑ 1), λ 12 N 1, λ 12 N 2 are held fixed, each of the species is 100% condensed and its density per particle as well as the total energy per particle are given by the solution of the coupled Gross-Pitaevskii equations of the mixture. In the present work we investigate properties of the trapped generic mixture at the infinite-particle limit, and find differences between the many-body and mean-field descriptions of the mixture, despite each species being 100%. We compute analytically and analyze, both for the mixture and for each species, the center-of-mass position and momentum variances, their uncertainty product, the angular-momentum variance, as well as the overlap of the exact and Gross-Pitaevskii wavefunctions of the mixture. The results obtained in this work can be considered as a step forward in characterizing how important are many-body effects in a fully condensed trapped bosonic mixture at the infinite-particle limit.

  17. The geometric content of the interacting boson model for molecular spectra

    International Nuclear Information System (INIS)

    Levit, S.; Smilansky, U.

    1981-12-01

    The recently proposed algebraic model for collective spectra of diatomic molecules is analysed in terms of conventional geometrical degrees of freedom. We present a mapping of the algebraic Hamiltonian onto an exactly solvable geometrical Hamiltonian with the Morse potential. This mapping explains the success of the algebraic model in reproducing the low lying part of molecular spectra. At the same time the mapping shows that the expression for the dipole transition operator in terms of boson operators differs from the simplest IBM expression and in general must include many-body boson terms. The study also provides an insight into the problem of possible interpretations of the bosons in the nuclear IBM. (author)

  18. Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock

    Science.gov (United States)

    Bromley, S. L.; Kolkowitz, S.; Bothwell, T.; Kedar, D.; Safavi-Naini, A.; Wall, M. L.; Salomon, C.; Rey, A. M.; Ye, J.

    2018-04-01

    Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.

  19. Review of Physics Results from the Tevatron: Higgs Boson Physics

    International Nuclear Information System (INIS)

    Junk, Thomas R.; Juste, Aurelio

    2015-01-01

    We review the techniques and results of the searches for the Higgs boson performed by the two Tevatron collaborations, CDF and DO. The Higgs boson predicted by the Standard Model was sought in the mass range 90 GeVboson fusion, and tt ¯ H production, and in five main decay modes: H→bb ¯ , H→τ + τ − , H→WW (∗) , H→ZZ (∗) , and H→γγ . An excess of events was seen in the H→bb ¯ searches consistent with a Standard Model Higgs boson with a mass in the range 115 GeVboson mass of m H =125 GeV, studies of Higgs boson properties were performed, including measurements of the product of the cross section times branching the ratio in various production and decay modes, constraints on Higgs boson couplings to fermions and vector bosons, and tests of spin and parity. We also summarize the results of searches for supersymmetric Higgs bosons, and Higgs bosons in other extensions of the Standard Model

  20. Granular superconductor in a honeycomb lattice as a realization of bosonic Dirac material

    Science.gov (United States)

    Banerjee, S.; Fransson, J.; Black-Schaffer, A. M.; Ågren, H.; Balatsky, A. V.

    2016-04-01

    We examine the low-energy effective theory of phase oscillations in a two-dimensional granular superconducting sheet where the grains are arranged in a honeycomb lattice structure. Using the example of graphene, we present evidence for the engineered Dirac nodes in the bosonic excitations: the spectra of the collective bosonic modes cross at the K and K' points in the Brillouin zone and form Dirac nodes. We show how two different types of collective phase oscillations are obtained and that they are analogous to the Leggett and the Bogoliubov-Anderson-Gorkov modes in a two-band superconductor. We show that the Dirac node is preserved in the presence of an intergrain interaction, despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sublattice symmetry by choosing different on-site potentials for the two sublattices leads to a gap opening near the Dirac node, in analogy with fermionic Dirac materials. The Dirac node dispersion of bosonic excitations is thus expanding the discussion of the conventional Dirac cone excitations to the case of bosons. We call this case as a representative of bosonic Dirac materials (BDM), similar to the case of Fermionic Dirac materials extensively discussed in the literature.

  1. Supersymmetric Higgs boson production in Z decays

    International Nuclear Information System (INIS)

    Gamberini, G.; Giudice, G.F.; Ridolfi, G.

    1987-01-01

    The problem of distinguishing between the standard model and the supersymmetric Higgs bosons is considered in the context of Z 0 decays. We find that, for some choices of the parameters, the branching ratio for Z 0 → H 0 γ is strongly enhanced by the exchange of supersymmetric fermions as virtual particles. This makes the study of this process at LEP very interesting, since other Z 0 branching modes into Higgs bosons, such as Z 0 → H 0 μ + μ - , are not so clearly modified by supersymmetry. (orig.)

  2. Structure of Even-Even 218-230 Ra Isotopes within the Interacting Boson Approximation Model

    Directory of Open Access Journals (Sweden)

    Diab S. M.

    2008-01-01

    Full Text Available A good description of the excited positive and negative parity states of radium nuclei (Z=88, N=130-142 is achieved using the interacting boson approximation model (IBA-1. The potential energy surfaces, energy levels, parity shift, electromagnetic transition rates B(E1, B(E2 and electric monopole strength X(E0/E2 are calculated for each nucleus. The analysis of the eigenvalues of the model Hamiltonian reveals the presence of an interaction between the positive and negative parity bands. Due to this interaction the $Delta I = 1$ staggering effect, between the energies of the ground state band and the negative parity state band, is produced including beat patterns.

  3. Models of light singlet fermion and neutrino phenomenology

    International Nuclear Information System (INIS)

    Chun, E.J.; Joshipura, A.S.; Smirnov, A.Yu.

    1995-05-01

    We suggest that a single fermion S exists beyond the standard see-saw structure. It mixes with light neutrinos via interactions with the right-handed neutrino components, so that ν e → S conversion solves the solar neutrino problem. Supersymmetry endowed with R-symmetry is shown to give a natural framework for existence, mass scale (∼ 3 · 10 -3 eV) and mixing (sin 2 2θ es ∼ (0.1 - 1.5) · 10 -2 ) of such a fermion. Models with an approximate horizontal symmetry are constructed, which embed the fermion S and explain simultaneously solar, atmospheric, hot dark matter problems as well as may predict the oscillation ν-bar μ → ν-bar e in the region of sensitivity of KARMEN and LSND experiments. (author). 24 refs

  4. Relativistic Model of Hamiltonian Renormalization for Bound States and Scattering Amplitudes

    International Nuclear Information System (INIS)

    Serafin, Kamil

    2017-01-01

    We test the renormalization group procedure for effective particles on a model of fermion–scalar interaction based on the Yukawa theory. The model is obtained by truncating the Yukawa theory to just two Fock sectors in the Dirac front form of Hamiltonian dynamics, a fermion, and a fermion and a boson, for the purpose of simple analytic calculation that exhibits steps of the procedure. (author)

  5. Quantum separability of thermal spin one boson systems

    International Nuclear Information System (INIS)

    Lee, Jae-Weon; Oh, Sangchul; Kim, Jaewan

    2007-01-01

    Using the temperature Green's function approach we investigate entanglement between two non-interacting spin 1 bosons in thermal equilibrium. We show that, contrary to the fermion case, the entanglement is absent in the spin density matrix. Separability is demonstrated using the Peres-Horodecki criterion for massless particles such as photons in black body radiation. For massive particles, we show that the density matrix can be decomposed with separable states

  6. The Discovery of the Higgs Boson with the CMS Detector and its Implications for Supersymmetry and Cosmology

    CERN Document Server

    De Boer, Willem

    2013-01-01

    The discovery of the long awaited Higgs boson is described using data from the CMS detector at the LHC. In the SM the masses of fermions and the heavy gauge bosons are generated by the interactions with the Higgs field, so all couplings are related to the observed masses. Indeed, all observed couplings are consistent with the predictions from the Higgs mechanism, both to vector bosons and fermions implying that masses are indeed consistent of being generated by the interactions with the Higgs field. However, on a cosmological scale the mass of the universe seems not to be related to the Higgs field: the baryonic mass originates from the binding energy of the quarks inside the nuclei and dark matter is not even predicted in the SM, so the origin of its mass is unknown. The dominant energy component in the universe, the dark energy, yields an accelerated expansion of the universe, so its repulsive gravity most likely originates from a kind of vacuum energy. The Higgs field would be the prime candidate for this,...

  7. Vector and Axial-vector resonances in composite models of the Higgs boson

    DEFF Research Database (Denmark)

    Franzosi, Diogo Buarque; Cacciapaglia, Giacomo; Cai, Haiying

    2016-01-01

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT const...... as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.......We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT...... constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used...

  8. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    Science.gov (United States)

    Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.

    2014-10-01

    Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.

  9. Higgs boson mass bounds in the presence of a very heavy fourth quark generation

    International Nuclear Information System (INIS)

    Gerhold, P.; Kallarackal, J.; DESY, Zeuthen; Jansen, K.

    2010-11-01

    We study the effect of a potential fourth quark generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)

  10. Review of Physics Results from the Tevatron: Searches for New Particles and Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Toback, David [Texas A-M; ŽIvković, Lidija [Belgrade U.

    2015-02-17

    We present a summary of results for searches for new particles and interactions at the Fermilab Tevatron collider by the CDF and the D0 experiments. These include results from Run I as well as Run II for the time period up to July 2014. We focus on searches for supersymmetry, as well as other models of new physics such as new fermions and bosons, various models of excited fermions, leptoquarks, technicolor, hidden-valley model particles, long-lived particles, extra dimensions, dark matter particles, and signature-based searches.

  11. Jordan-Wigner fermionization and the theory of low-dimensional quantum spin models

    International Nuclear Information System (INIS)

    Derzhko, O.

    2007-01-01

    excitation continua. The four-fermion dynamic quantities are of intermediate complexity between simple two-fermion (like the zz dynamic structure factor) and enormously complex multi-fermion (like the xx (yy) dynamic structure factor) dynamic quantities. We also review analytical and numerical results for the multi-fermion dynamic quantities. Further we discuss the effect of dimerization, anisotropy of XY interaction, and additional Dzyaloshinskii-Moriya interaction on various dynamic quantities. Finally we consider the dynamic transverse spin structure factor S zz (k, ω) for the s = 1/2 XX model on a spatially anisotropic square lattice which allows one to trace a one- to two-dimensional crossover in dynamic quantities. Throughout these lectures we also compare the dynamic quantities, as calculated within the Jordan-Wigner fermionization approach, with those found by other methods. (author)

  12. Hierarchy spectrum of SM fermions: from top quark to electron neutrino

    International Nuclear Information System (INIS)

    Xue, She-Sheng

    2016-01-01

    In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν_R"f. Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν_R"f and their left-handed conjugated fields ν_R"f"c. Light masses of gauged Majorana neutrinos in the normal hierarchy (10"−"5−10"−"2 eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of tt̄-production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).

  13. Hierarchy spectrum of SM fermions: from top quark to electron neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Xue, She-Sheng [ICRANet,Piazza della Repubblica 10, 65122 Pescara (Italy); Physics Department, Sapienza University of Rome,Piazzale Aldo Moro 5, 00185 Roma (Italy)

    2016-11-10

    In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν{sub R}{sup f}. Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν{sub R}{sup f} and their left-handed conjugated fields ν{sub R}{sup fc}. Light masses of gauged Majorana neutrinos in the normal hierarchy (10{sup −5}−10{sup −2} eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of tt̄-production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).

  14. Majorana fermion codes

    International Nuclear Information System (INIS)

    Bravyi, Sergey; Terhal, Barbara M; Leemhuis, Bernhard

    2010-01-01

    We initiate the study of Majorana fermion codes (MFCs). These codes can be viewed as extensions of Kitaev's one-dimensional (1D) model of unpaired Majorana fermions in quantum wires to higher spatial dimensions and interacting fermions. The purpose of MFCs is to protect quantum information against low-weight fermionic errors, that is, operators acting on sufficiently small subsets of fermionic modes. We examine to what extent MFCs can surpass qubit stabilizer codes in terms of their stability properties. A general construction of 2D MFCs is proposed that combines topological protection based on a macroscopic code distance with protection based on fermionic parity conservation. Finally, we use MFCs to show how to transform any qubit stabilizer code to a weakly self-dual CSS code.

  15. Grassmann phase space methods for fermions. II. Field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, B.J., E-mail: bdalton@swin.edu.au [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia); Jeffers, J. [Department of Physics, University of Strathclyde, Glasgow G4ONG (United Kingdom); Barnett, S.M. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2017-02-15

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.

  16. Grassmann phase space methods for fermions. II. Field theory

    International Nuclear Information System (INIS)

    Dalton, B.J.; Jeffers, J.; Barnett, S.M.

    2017-01-01

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.

  17. New perturbative upper bound on MH from fermionic Higgs decays at two loops

    International Nuclear Information System (INIS)

    Durand, L.; Kniehl, B.A.; Riesselmann, K.

    1993-09-01

    We present the dominant two-loop O (G F 2 M H 4 ) electroweak corrections to the fermionic decay widths of a high-mass Higgs boson in the Standard Model. The corrections are negative and quite significant, and are larger in magnitude than the one-loop electroweak corrections for M H > or ∼400 GeV. This indicates the onset of a breakdown of perturbation theory in the Higgs sector of the Standard Model at this surprisingly low value of the Higgs boson mass. (orig.)

  18. Partial widths of boson resonances in the quark-gluon model of strong interactions

    International Nuclear Information System (INIS)

    Kaidalov, A.B.; Volkovitsky, P.E.

    1981-01-01

    The quark-gluon model of strong interactions based on the topological expansion and the string model ib used for the calculation of the partial widths of boson resonances in the channels with two pseudoscalar mesons. The partial widths of mesons with arbitrary spins lying on the vector and tensor Regge trajectories are expressed in terms of the only rho-meson width. The violation of SU(3) symmetry increases with the growth of the spin of the resonance. The theoretical predictions are in a good agreement with experimental data [ru

  19. Bosonization of fermion operators as linked-cluster expansions

    International Nuclear Information System (INIS)

    Kishimoto, T.; Tamura, T.

    1983-01-01

    In order for a boson-expansion theory to be useful for practical purposes, it must satisfy at least two requirements: It must be in the form of a linked-cluster expansion, and the pure (ideal) boson states must be usable as basis states. Previously, we constructed such a boson theory and used it successfully for many realistic calculations. This construction, however, lacked mathematical rigor. In the present paper, we develop an entirely new approach, which results in the same boson expansions obtained earlier, but now in a mathematically rigorous fashion. The achievement of the new formalism goes beyond this. Its framework is much more general and flexible than was that of the earlier formalism, and it allows us to extend the calculations beyond what had been done in the past

  20. Fermionic spin liquid analysis of the paramagnetic state in volborthite

    Science.gov (United States)

    Chern, Li Ern; Schaffer, Robert; Sorn, Sopheak; Kim, Yong Baek

    2017-10-01

    Recently, thermal Hall effect has been observed in the paramagnetic state of volborthite, which consists of distorted kagome layers with S =1 /2 local moments. Despite the appearance of magnetic order below 1 K , the response to external magnetic field and unusual properties of the paramagnetic state above 1 K suggest possible realization of exotic quantum phases. Motivated by these discoveries, we investigate possible spin liquid phases with fermionic spinon excitations in a nonsymmorphic version of the kagome lattice, which belongs to the two-dimensional crystallographic group p 2 g g . This nonsymmorphic structure is consistent with the spin model obtained in the density functional theory calculation. Using projective symmetry group analysis and fermionic parton mean field theory, we identify twelve distinct Z2 spin liquid states, four of which are found to have correspondence in the eight Schwinger boson spin liquid states we classified earlier. We focus on the four fermionic states with bosonic counterpart and find that the spectrum of their corresponding root U (1 ) states features spinon Fermi surface. The existence of spinon Fermi surface in candidate spin liquid states may offer a possible explanation of the finite thermal Hall conductivity observed in volborthite.

  1. Creating Spin-One Fermions in the Presence of Artificial Spin-Orbit Fields: Emergent Spinor Physics and Spectroscopic Properties

    Science.gov (United States)

    Kurkcuoglu, Doga Murat; de Melo, C. A. R. Sá

    2018-05-01

    We propose the creation and investigation of a system of spin-one fermions in the presence of artificial spin-orbit coupling, via the interaction of three hyperfine states of fermionic atoms to Raman laser fields. We explore the emergence of spinor physics in the Hamiltonian described by the interaction between light and atoms, and analyze spectroscopic properties such as dispersion relation, Fermi surfaces, spectral functions, spin-dependent momentum distributions and density of states. Connections to spin-one bosons and SU(3) systems is made, as well relations to the Lifshitz transition and Pomeranchuk instability are presented.

  2. Interacting fermions in two dimensions: Beyond the perturbation theory

    International Nuclear Information System (INIS)

    Gangadharaiah, S.; Maslov, D.L.; Chubukov, A.V.; Glazman, L.I.

    2005-05-01

    We consider a system of 2D fermions with short-range interaction. A straightforward perturbation theory is shown to be ill-defined even for an infinitesimally weak interaction, as the perturbative series for the self-energy diverges near the mass shell. We show that the divergences result from the interaction of fermions with the zero-sound collective mode. By re-summing the most divergent diagrams, we obtain a closed form of the self-energy near the mass shell. The spectral function exhibits a threshold feature at the onset of the emission of the zero-sound waves. We also show that the interaction with the zero sound does not affect a non- analytic, T 2 -part of the specific heat. (author)

  3. SO(10) - Grand unification and fermion masses

    International Nuclear Information System (INIS)

    Oezer, A.D.

    2005-01-01

    quantities that are not present in the Standard Model like the masses of new gauge bosons, the vector and axial-vector couplings of a new NC current, the masses of a light left-handed and a heavier right-neutrino, the values of various mixing parameters and CP phases etc. The input values required for these evaluations are acquired mainly from two sources: First, we determine the vacuum expectation values and the coupling strengths of gauge interactions given by the SO(10) theory in so far as possible through studying the mass scales in SO(10) in the framework of coupling unification. Complementarily, we determine the vacuum expectation values and their phases by adjusting them to the masses of the known gauge bosons and fermions below the Fermi scale which are accurately measured and known. We are able to predict more than 67 parameters with an input of 7 vacuum expectation values, 5 angles, 1 gauge coupling and 1 Yukawa coupling. (Orig.)

  4. Fermionic dark matter in a simple t-channel model

    International Nuclear Information System (INIS)

    Goyal, Ashok; Kumar, Mukesh

    2016-01-01

    We consider a fermionic dark matter (DM) particle in renormalizable Standard Model (SM) gauge interactions in a simple t-channel model. The DM particle interactions with SM fermions is through the exchange of scalar and vector mediators which carry colour or lepton number. In the case of coloured mediators considered in this study, we find that if the DM is thermally produced and accounts for the observed relic density almost the entire parameter space is ruled out by the direct detection observations. The bounds from the monojet plus missing energy searches at the Large Hadron Collider are less stringent in this case. In contrast for the case of Majorana DM, we obtain strong bounds from the monojet searches which rule out DM particles of mass less than about a few hundred GeV for both the scalar and vector mediators.

  5. Supersymmetry in nuclei

    International Nuclear Information System (INIS)

    Jolie, J.

    2002-01-01

    All the elementary particles that make up matter (as do quarks, electrons, neutrinos....) are fermions, the particles that convey the fundamental interactions (as do photons, gluons, W, Z...) are bosons. Composite particles are either bosons, or fermions according to the number of fermions they contain: if this number is even the particle is a boson, otherwise it is a fermion. According to this rule a proton is a fermion and the He 4 atom is a boson. Symmetry plays an important role in the standard model, a symmetry is a transformation that connect bosons with other bosons or fermions with other fermions. Supersymmetry associates a boson with a fermion or a fermion with a boson, in fact supersymmetry connects nuclei that are not generally considered as akin. Supersymmetry has just been observed in low energy levels of Gold 195-196 and Platinum 194 - 195 , it means that the description of these energy levels is simplified and can be made by a common set of quantum numbers. (A.C.)

  6. Extended gauge sectors at future colliders: Report of the New Gauge Boson Subgroup

    International Nuclear Information System (INIS)

    Rizzo, T.G.

    1996-12-01

    The author summarizes the results of the New Gauge Boson Subgroup on the physics of extended gauge sectors at future colliders as presented at the 1996 Snowmass workshop. He discusses the direct and indirect search reaches for new gauge bosons at both hadron and lepton colliders as well as the ability of such machines to extract detailed information on the couplings of these particles to the fermions and gauge bosons of the Standard Model. 41 refs., 18 figs., 5 tabs

  7. Sdg interacting-boson model in the SU(3) scheme and its application to /sup 168/Er

    International Nuclear Information System (INIS)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1988-01-01

    The sdg interacting-boson model is presented in the SU(3) tensor formalism. The interactions are decomposed according to their SU(3) tensor character. The existence of the SU(3)-seniority preserving operator is found to be important. The model is applied to /sup 168/Er. Energy levels and electromagnetic transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first K/sup π/ = 4 + band relative to that of the first K/sup π/ = 2 + one. E4 transitions are calculated to give different predictions from those by the quasiparticle-phonon nuclear model

  8. Dynamical symmetries for fermions

    International Nuclear Information System (INIS)

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs

  9. Perturbative quantum field theory in the framework of the fermionic projector

    International Nuclear Information System (INIS)

    Finster, Felix

    2014-01-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur

  10. Perturbative Quantum Field Theory in the Framework of the Fermionic Projector

    OpenAIRE

    Finster, Felix

    2013-01-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  11. Perturbative quantum field theory in the framework of the fermionic projector

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix, E-mail: finster@ur.de [Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg (Germany)

    2014-04-15

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  12. Perturbative quantum field theory in the framework of the fermionic projector

    Science.gov (United States)

    Finster, Felix

    2014-04-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  13. Search for new resonances involving Higgs, W or Z boson at CMS

    CERN Document Server

    Rappoccio, Salvatore

    2016-01-01

    Beyond the standard model theories like composite Higgs models predict resonances with large branching fractions in a Higgs boson and a vector boson with negligible branching fractions to light fermions. We present an overview of searches for new physics containing a Higgs boson and a W or Z boson in the final state, using proton-proton collision data collected with the CMS detector at the CERN LHC. For high-mass resonances decaying to intermediate bosons, the large boost for hadronic decays gives rise to one single merged jet, which can be identified through a study of its substructure consistent with the presence of two quarks, enhancing the sensitivity due to the large branching ratios for hadronic decays. B-quark identification algorithms are used in addition to identify the hadronic H decays.

  14. Measurements of Gauge Boson Self-Interactions at CMS

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    A critical prediction of the Standard Model electroweak theory is the existence of triple and quartic gauge-boson self-interactions. The 2010-12 LHC run has resulted in a wealth of data in this sector, which can now be probed in many different production modes, both ordinary and potentially anomalous, with a sensitivity that is world-leading. In this seminar, recent CMS results are presented for: measurements of diboson production, with associated constraints on triple gauge boson couplings; the first LHC measurement of purely electroweak production of a Z with two forward jets; and two-photon production of W pairs, with the first LHC constraints on quartic gauge couplings.

  15. β4 systematics in rare-earth and actinide nuclei: sdg interacting boson model description

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1992-01-01

    The observed variation of hexadecupole deformation parameter β 4 with mass number A in rare-earth and actinide nuclei is studied in the sdg interacting boson model (IBM) using single j-shell Otsuka-Arima-Iachello mapped and IBM-2 to IBM-1 projected hexadecupole transition operator together with SU sdg (3) and SU sdg (5) coherent states. The SU sdg (3) limit is found to provide a good description of data

  16. Ground State Structure of a Coupled 2-Fermion System in Supersymmetric Quantum Mechanics

    Science.gov (United States)

    Finster, Felix

    1997-05-01

    We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to theN=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like

  17. New method for studying the microscopic foundations of the interacting boson model

    International Nuclear Information System (INIS)

    Klein, A.; Vallieres, M.

    1981-01-01

    We describe (i) a mapping, using a multishell seniority basis, from a prescribed subspace of a shell model space to an associated boson space. (ii) A new dynamical procedure for selecting the collective variables within the boson space, based on the invariance of the trace. (iii) A comparison with exact calculations for a multi-level pairing model, to demonstrate that the method works. (orig.)

  18. Weak interactions at high energies

    International Nuclear Information System (INIS)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references

  19. Search for the Higgs Boson and Technicolor Particles in p anti-p Colisions at √s = 1.8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Cortabitarte, Rocio Vilar [Univ. of Cantabria (Spain)

    1999-11-01

    In the Standard Model (SM) of the elementary particles, the interactions among the known fundamental fermions (leptons and quarks) are mediated through gauge bosons which obey the symmetry: SU(3) Ⓧ SU(2) Ⓧ U(1). More precisely, the electroweak interaction [4-6] is described by a gauge symmetry SU(2) Ⓧ U(1) which is broken spontaneously. The electroweak symmetry breaking is implemented by the introduction of a complex scalar Higgs field which has a non-zero vacuum expectation value (vev). This way, the lagrangian of the theory remains invariant under SU(2) transformations, but quantization of the fields must start from a ground state which does not exhibit this symmetry, and therefore the full symmetry of the lagrangian is not manifest. Invariance of the theory under local SU(2) transformations implies the presence of vectorial gauge fields which mediate the electroweak interactions. The so called spontaneous symmetry breaking allows the quanta of these gauge fields, the W and Z bosons, to acquire a finite mass. The photon, the particle which mediates the electromagnetic interaction, remains massless. The Higgs boson is one of only two particles in the SM which have not yet been directly observed (the other is the vτ, although there is indirect evidence of its existence). Although the SM does not predict the Higgs mass, a lower limit ~ 100 GeV/c2 is set by LEPII data, and theoretical considerations prefer Higgs masses not higher than a few hundred GeV/c2. At the Tevatron, a search for the Higgs boson is hard due to the small production cross section and the huge backgrounds that do not allow to see the signal clearly. It is still interesting, however, to perform sensitivity studies at the Tevatron. The easiest production channel to observe at the Tevatron is the associated production of Higgs with weak (W or Z) bosons. The Higgs boson coupling to the fermions increases with fermion mass, so the most likely decay in the mass

  20. Search for the Standard Model Higgs Boson and Test of CP Invariance in Vector-Boson Fusion Production of the Higgs Boson in the Fully Leptonic H->tautau->ll4nu Final State in Proton-Proton Collisions with the ATLAS Detector at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00336635

    2016-11-04

    Results of a search for fully leptonic H->tautau->ll4nu decays are presented, based on the set of proton–proton collision data recorded by the ATLAS experiment at the LHC during 2012. The data corresponds to an integrated luminosity of 20.3 fb^-1 at the centre-of-mass energy of sqrt(s)=8 TeV. An excess of events over the expected background from other Standard Model processes is found. The observed (expected) significance is 2.7 (1.3) standard deviations. The measured signal strength, normalised to the Standard Model expectation, is mu =2.1+1.0-0.8. This is consistent with the predicted Yukawa coupling strength in the Standard Model. The analysis contributes to the combined search for H->tautau including also the fully hadronic and semi-leptonic final states. The combined analysis provides evidence for the direct coupling of the Higgs boson to fermions with the observed (expected) significance of 4.5 (3.4) standard deviations. Furthermore a test of CP invariance in Higgs boson production via vector-boson fu...